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Learning to Predict Collision Risk from Simulated Video Data

Tim J. Schoonbeek1, Fabrizio J. Piva1, Hamid R. Abdolhay2 and Gijs Dubbelman1

Abstract— We propose an image-based collision risk predic-
tion model and a training strategy that allows training on
simulated video data and successfully generalizes to real data.
By doing so, we solve the data scarcity problem of collecting
and labeling real (near) collisions, which are exceptionally rare
events. Domain generalization from simulated to real data
is taken into account by design by decoupling the learning
strategy, and using task-specific, domain-resilient intermediate
representations. Specifically, we use optical flow and vehicle
bounding boxes, since they are instinctively related to the task
of collision risk prediction and because their simulated-to-real
domain gap is significantly lower than that of camera video
data, i.e., they are more domain resilient. To demonstrate our
approach, we present RiskNet, a novel neural network for
image-based collision risk prediction, which classifies individual
frames of a video sequence of a front-facing camera as safe
or unsafe. Additionally, we present two novel datasets: the
simulated Prescan dataset (which we intend to make publicly
available) for training and the YouTube Driving Incidents
Database (YDID) for real-world testing. The performance of
RiskNet, trained solely on simulated data and tested on the
real-world YDID, is comparable to that of a human driver, both
in accuracy (91.8% vs. 93.6%) and F1-score (0.92 vs 0.94).

I. INTRODUCTION

Road accidents are still a major concern of both auto-
motive industry and society as a whole, as globally 1.35
million people lose their lives in traffic every year [1]. Since
the number of vehicles is only increasing [2], the need
for more competent advanced driver assistance systems and
specifically collision avoidance systems grows. The current
industry standards in collision risk prediction are limited by
their lack in predicting possible collisions under dynamic
and complex movement patterns that are frequent on rural
and urban roads [3], [4]. In this work, we present a deep
data-driven, image-based collision risk prediction model that
is designed to handle complex and versatile scenarios.

Significant research is being done on making model-based
approaches capable of dealing with highly dynamic scenarios
[5]–[9]. In these approaches, a physical or probabilistic
representation of the surroundings of the ego-vehicle is
constructed, after which the model’s parameters are tuned to
a dataset. Tuning to a specific dataset suffers from reduced
generalization to new scenarios, often requiring updating
the parameters for specific scenarios manually or via on-
line self-supervised learning [10]. Additionally, model-based
approaches often rely on sensors that are currently infeasible
to install in mass-production vehicles, such as highly accurate
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Fig. 1: We propose RiskNet, a collision risk prediction
method that can be trained solely on simulated data and
generalizes successfully to real data. It classifies images of
video streams (bottom part of illustration) in unsafe, i.e., risk
of collision in the upcoming 1 second, or safe. Our approach
is based on the concept of decoupled learning (top part
of illustration). The Perception module is trained separately
on real-world data for tasks where data is not scarce, i.e.,
optical flow estimation and vehicle detection. RiskNet, for
which real training data is scarce, is trained on simulated
data using the intermediate representations provided by the
Perception module, for which the domain gap between real
and simulated data is minimal by design.

localization systems [5], [6] or expensive high-end LiDAR
sensors [9]. Instead, we rely on a low-cost and widely
available sensor, i.e., a camera.

The alternative to model-based approaches are deep data-
driven approaches, which have shown significant advances
in the past decade [11], [17]. Instead of explicitly designing
a model, a model is learned from training data. This has
shown to be very robust to noisy data from low-cost sensors
such as cameras [18]. Furthermore, such deep data-driven
models can handle complex and versatile scenarios as long
as they are sufficiently represented in the training data. If
sufficient representative training data is available, deep data-
driven approaches are known to significantly outperform
model-based approaches. However, representative real-world
vehicle collision data is scarce, and creating a new dataset is
highly time-consuming, expensive, and infeasible without a
large fleet of vehicles. To overcome this data scarcity, one can
choose to utilize simulated training data, where numerous
collision samples can be readily generated. This however
introduces a sim-to-real domain gap, as it is challenging to
capture the visual complexity of the real world in a simulator
[19], [20].



TABLE I: Placement of our work in the existing literature.

Data specifications Leveraged modalities
Automotive
application

Ego
focused

Simulated
training data Temporal Optical flow Object information Depth

DroNet [11] ✓
FlowDroNet [12] ✓ ✓ ✓
D3QN [13] ✓ ✓ ✓ ✓
DSA-RNN [14] ✓ ✓ ✓
AdaLEA [15] ✓ ✓ ✓ ✓
NIDB [16] ✓ ✓ ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓ ✓

In order to circumvent this aforementioned domain gap,
we propose the decoupled learning strategy outlined in Fig.
1. Our approach consists of a Perception and a task-specific
module, RiskNet. The Perception module is trained with real-
world data for two tasks without data scarcity issues, namely
object detection [21] and optical flow (OF) estimation [22].
The outputs of this module, i.e., bounding boxes and per-
pixel flow maps, are intermediate representations. We hy-
pothesize these intermediate representations to be more do-
main resilient than camera video data as they are not natural
images, but representations of motion and type of object
in images. This allows us to train the task-specific module,
which predicts collision risk, on intermediate representations
generated from easily generated simulated collision data.
In doing so, we solve the data scarcity problem without
having to engage in complex domain adaptation techniques
to overcome the simulated-to-real domain gap [20], [23]. Our
approach is described further in Section III.

In order to train and validate our work, we present two
novel datasets which we intend to make publicly available at
[24]. Firstly, we provide the Prescan dataset, which contains
simulated (near) collisions and is used exclusively to train
RiskNet. Secondly, we provide the YouTube Driving Inci-
dents Database (YDID), which contains real (near) collisions
collected on the YouTube video sharing platform. Section IV
outlines both datasets in detail. We perform a quantitative and
qualitative analysis of the performance of RiskNet on YDID,
as further described in Section V.

To summarize, this work contains the following contribu-
tions:

• A decoupled learning strategy where the domain gap
between simulated and real-world data is reduced sig-
nificantly by creating multiple task-specific, domain-
resilient input representations.

• The successful validation of our decoupled training
strategy to collision risk prediction, which is facilitated
by our RiskNet deep neural network architecture.

• Two ego-focused, image-based vehicle collision
datasets: Prescan and YDID.

II. RELATED WORK

In this section, we discuss existing work on (deep) data-
driven collision risk and provide a summary of the most
relevant related research.

A. Data-Driven Collision Risk Prediction

Deep learning approaches are popular for many computer
vision tasks, such as object detection and semantic segmenta-
tion [17], [21]. Recently, several works have also successfully
shown its application in collision prediction [4], [11], [14]–
[16]. An overview of the most relevant implementations
using front-facing cameras is shown in Table I.

Other works have successfully leveraged optical flow [12]
or disparity maps [13] to significantly reduce the sim-to-
real performance gap. However, the applicability of both
works is limited, as they evaluate relatively simple scenarios
where collisions with (often static) objects within only a few
meters are predicted. However, the noise in optical flow and
depth estimation significantly increases with distance, which
prevents these approaches from being used in the automotive
domain, risk often exists at much greater distances. In order
to handle noisy inputs, we propose not only to extract optical
flow or depth, but to also extract attention masks based on
vehicle detections, to direct our models attention.

The automotive approaches outlined in Table I are based
on real-world datasets, which they, together with their trained
models, keep private. This prevents a direct comparison of
our approach with theirs. AdaLEA [15] and NIDB [16] focus
on ego-vehicle collisions and are trained and evaluated on a
near-miss incident database, captured with vehicle-mounted
driving recorders on more than 100 taxis over a period of
10 years. In total, they collected less than 5 near-miss events
per taxi per year, showing the extremity of the data scarcity
for the task of prediction collision risk. Both AdaLEA and
NIDB fail to consistently classify negative samples (i.e.,
safe driving), as it is difficult for the neural networks to
distinguish safe from unsafe behavior.

B. Intermediate representations for Domain Generalization

A critical problem in supervised deep learning methods is
the assumption of the same distribution between the train and
test data. In reality, a domain gap exists between two datasets
due to many possible differences in the distribution of their
data, such as weather, object textures, or traffic density. When
the training data is based on simulation but the testing data is
real, the so called simulated-to-real, or sim-to-real, domain
gap is especially large for camera data as it is difficult to
capture the complexity of the natural environment and render
them photo-realistically.

FlowDroNet [12] and Xie et al. [13] have successfully
shown good generalization from simulated to real-world



data by using optical flow or depth as a task-specific input
representation. FlowDroNet is closest to our work as it
includes non-static objects and supervised learning, therefore
we focus on comparing to their work and leave depth as
intermediate modality for future work. Flow inherently gen-
eralizes better to unseen data compared to camera video data
due to its decreased visual complexity, as textures, colors and
illuminations do not exist in optical flow [12]. Additionally,
optical flow represents motion which is inherently relevant to
collision prediction. Despite all the positive traits that optical
flow offers with regards to generalization, we consider that
object information also plays a key role especially when
dealing with complex scenarios, and for this reason we
complement optical flow with attention masks derived from
vehicle detections.

C. Attention Masks

Vehicle collision risk does not exist without other vehicles,
therefore it makes sense to attend our model to areas of the
image which contain vehicles. Collision prediction studies
have successfully directed their models’ attention by taking
a crop of each vehicle detection and extracting a set of local
features from the crops [14], [15]. However, as our features
are extracted from optical flow rather than RGB, significantly
fewer features can be extracted from local objects [12]. In
other classification problems, research has shown that fusing
attention masks in feature space rather than taking crops in
the data-space shows increased performance [25]. We adopt
this technique and fuse binary attention masks with optical
flow early-on in feature space.

III. METHOD

The purpose of our research is to demonstrate that it is
possible to train a deep neural network on simulated data
for a task where real-world data is particularly scarce, i.e.,
vehicle collision prediction. We formulate vehicle collision
risk prediction as a binary classification problem with as
input Xi, a sequence of RGB camera images, and as output
the predicted collision risk ŷi. We propose a decoupled
learning strategy with a task-specific collision risk prediction
model RiskNet and a Perception module, i.e.,

ŷi = RiskNet(Perception(Xi)). (1)

The Perception module predicts optical flow and object
detections and is trained on real data, as it does not rely on
task-specific collision data. RiskNet is trained exclusively on
the simulated collision dataset Dsrc and the entire model is
tested on the real-world dataset Dtarget. More information
on the datasets is provided in Section IV.

We define collision risk ŷi as

ŷi = (psafe
i , punsafe

i ), (2)

where psafe
i ∈ [0, 1] is the score for the classification safe

and punsafe
i = 1 − psafe

i , ensured via a softmax function, the
score for unsafe. Every sample with a punsafe

i score exceeding
a threshold tH is classified as unsafe.

Fig. 2: Simulated camera input (left), ground truth (center)
and CNN estimated (right) horizontal optical flow.

A. Decoupled learning

To solve the data scarcity problem without inducing a
significant domain gap, we propose a decoupled learning
approach. The first module, Perception, is defined as

(Fi, Ai) = Perception(Xi), (3)

where Fi is a sequence of optical flow images and Ai a
sequence of binary attention masks, which indicate vehi-
cle detections. Fi and Ai are our proposed intermediate
representations, which we hypothesize to be more domain
resilient, as they are not natural images but lower dimen-
sional representations of those images. Moreover, to train
this general Perception module, we can use data that does
not necessarily have to include (near) collisions. Such real-
world data is readily and abundantly available [26], [27]. The
second module, RiskNet, is defined as

ŷi = RiskNet(Fi, Ai), (4)

and predicts the collision risk based on optical flow and
attention masks as intermediate representations. We train
RiskNet exclusively on simulated data because its inputs (Fi,
Ai) and labels yi can readily be generated with a simulator,
whilst real-world vehicle collision data is scarce.

B. Perception module

Our Perception module consists of two neural networks,
one for estimating optical flow and one for creating attention
masks based on vehicle detections.

a) Optical flow: We define optical flow Fi as

Fi = (ft−(T−1), · · · , ft−1, ft)i ∈ RT×2×H×W , (5)

where ft is the estimated optical flow at time t, T the total
number of frames, H the height and W the width of each
flow estimate. As flow consists of a horizontal and vertical
component, two H×W images are provided at every t. Since
optical flow is estimated based on two observed frames, we
require T + 1 RGB images for T optical flow frames.

We experiment with training on ground truth optical flow
provided in Dsrc (with pre-processing similarly to [12])
and training on flow estimated by LiteFlowNet [22] on
the simulated camera data. Fig. 2 shows a comparison
between ground truth and CNN estimated optical flow. For
Dtarget, Fi is always estimated by LiteFlowNet. We avoid
training on raw optical flow vectors and instead normalize the
vectors for each frame to 8-bit unsigned integers, as the raw,
absolute optical flow values depend largely on the input video
parameters, such as frames per second (FPS) and resolution.



Fig. 3: Attention mask estimation in the simulated training
data. Ground truth semantic segmentation (left) is used to
create object detections (middle), around which attention
masks are created (right).
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Fig. 4: Architecture of the task-specific module, showing
early fusion via element-wise multiplication after a single
Conv3D layer, before the 3D CNN feature extractor [30].

b) Attention masks: Let B = {0, 1} be a binary set, we
define attention mask Ai as

Ai = (at−(T−1), · · · , at−1, at)i ∈ BT×1×H×W , (6)

where at is the estimated attention mask mask at time t.
The binary attention masks for Dtarget are obtained based on
vehicle detections from Faster R-CNN [21]. For each vehicle,
a circular mask is drawn inside it’s estimated bounding box.
As demonstrated in Fig. 3, we apply a similar approach
for the simulated Dsrc, but use the semantic segmentation
already provided in the dataset to extract the vehicle bound-
ing boxes. This results in overlapping cars being grouped
together in a single bounding box during training, the effects
of which we do not explicitly investigate. But, for future
work, we recommend using per-vehicle simulated bounding
boxes instead of using simulated semantic segmentation.

Since the simulated Dsrc provides us with highly accurate
semantic segmentations and therefore near-perfect attention
masks, whilst real-world detections are likely to contain
errors, we add false attention masks (with a random radius)
Nf times with a probability pn to each Ai sequence. Addi-
tionally, by opting for circular rather than oval or rectangular
attention masks, we keep information about the shape of the
detected object to a minimum, preventing the model from
overfitting on unintentional biases in the dataset.

As explained before, the real-world validation set Dtarget

likely contains false detections, resulting in noisy attention
masks. Therefore, we apply prior filtering to the attention
masks with prior knowledge, similarly to [28]. We construct
our prior by calculating the sum of all road and vehicle
pixels from the GTA V dataset [29], normalizing the values
between 0 and 1 and finally rounding all values to the
closest integer. We then element-wise multiply the binary
prior and attention masks during interference on Dtarget, to
e.g. suppress vehicles that are detected in the sky.

Fig. 5: Samples from the Prescan (source) dataset Dsrc,
displayed at the used sampling rate of 10Hz.

C. RiskNet collision risk model

RiskNet, the proposed task-specific module as described
by (4) and in Fig. 4, is a two-stream spatio-temporal 3D
CNN. RiskNet takes estimated optical flow Fi and attention
masks Ai as inputs.

The two streams of optical flow and attention masks each
pass through a single 3D convolution (Conv3D) layer with
8 output channels, kernel size 3, zero padding to maintain
the original input dimensions and a stride of 1. The outputs
of these two Conv3D layers are fused via element-wise
multiplication, which acts as a soft attention mechanism
proposed in [25]. The fused features are fed into a 3D
ResNext feature extractor with 18 layers [30]. Finally, a fully
connected layer predicts a probability for the safe and unsafe
classes respectively, which are automatically normalized.

For training we use the binary cross entropy loss, which
for sample i is defined as

Li = −[yi log(p
safe
i ) + (1− yi) log(p

unsafe
i )], (7)

where yi is the ground truth label at time t. More details of
the hyperparameters used in training are provided in Section
V.

IV. DATASETS

As there are no publicly available collision datasets that fo-
cus on ego-vehicle collisions, we compose two new datasets.
The Prescan source dataset Dsrc contains simulated video
data obtained from the Prescan simulator [31] and is used
for training RiskNet. The generalization of our models is
tested on Dtarget, the YouTube Driving Incidents Database
(YDID). We intend to publish Dsrc to the public at [24].
Each video frame in both datasets is provided with a safe
or unsafe label. This section outlines the datasets and their
labeling techniques.

A. Prescan

The Prescan dataset consists of nearly one hour of driv-
ing footage containing cars, motorcycles, buses and trucks,
simulated with the Prescan simulator [31]. Samples from the
Prescan dataset are shown in Fig. 5. The dataset contains a
wide range of simple movement patterns, with all vehicles
having a constant steering angle and velocity. The aim of
the design of the simulated data is to have a high level



safe unsafe safe

Ego

Other

unsafe

Fig. 6: Prescan labeling criteria. The spaces which each
vehicle will occupy within the next 1.0 second are drawn
for each frame. If there is an overlap in space, the situation
is labeled unsafe. In a typical crossing where two vehicles
pass near each other, this results in a transition from safe to
unsafe to safe.

Fig. 7: Samples from Dtarget, the YouTube Driving Incidents
Database (YDID), displayed at the used sample rate of 10Hz.

of randomness in the simulated motion patterns, such that
there is a high probability that real motion patterns are a
subset of the simulated motion patterns. This concept is
often referred to as domain randomization [32]. In total, 189
different runs were simulated at 20FPS with a duration up
to 30 s, depending on whether a crash occurs, upon which
the simulation is stopped. In total, Dsrc contains 58 904 safe
and 7788 unsafe frames.

Labeling protocol. As illustrated in Fig. 6, a frame is
labeled unsafe if there is any overlap in occupied space
between the ego and any other vehicle within a time horizon
of 1.0 s. Since all vehicles are driving with constant velocity
and steering angle, this approach to labeling is similar to the
time-to-event (TTE) metric widely used in the automotive
risk domain [4], [33]. The labels are limited to vehicles
within the ego-vehicles field of view, as we do not demand
the system to estimate collision risk when an unobserved
vehicle is going to collide within 1 second. Additionally, note
that no distinction is made between near-miss and collision
events, both events are labeled unsafe.

B. YouTube Driving Incidents Database (YDID)

The YDID contains 16 videos with a total duration 154 s,
collected on the online video sharing platform YouTube.
Some samples are shown in Fig. 7. The variety between
the videos is significant, both with regards to the scenarios
and camera positions and quality. YDID contains scenarios
recorded on rural, urban and highway roads, in both left and
right hand drive countries. Additionally, the lighting, camera
positions and image quality differ greatly per sample. All
videos are 30 FPS and cropped to the same aspect ratio as

Dsrc, resulting in an image size of 360×480 pixels (H×W).
Labeling protocol. In the real-world dataset, vehicles

actively try to avoid collisions by braking and steering
abruptly. Therefore, the YDID can not be labeled according
to the same approach as the simulated dataset. To solve this
problem, we asked 41 experienced drivers from different
ages, nationalities and genders to annotate our clips. The
annotators first see a clip completely, after which they are
encouraged to rewind the video and indicate in which frames
they believe another vehicle poses an urgent risk to the
ego-vehicle. The definitive annotation for each frame in the
dataset is determined by the majority voting over all 41
labelers. This approach to labeling is similar to pedestrian
intention estimation datasets, such as proposed in [34], the
main difference being that our drivers had future knowledge
advantage. Considering this advantage, we take the human
annotator consensus as an upper bound. In total, the YDID
contains 3604 safe and 1008 unsafe frames. Out of the 16
videos, 13 videos contained any unsafe labels.

V. EXPERIMENTS

Three sets of experiments are performed on the newly
presented YDID dataset, which has not been used to train
the collision risk model RiskNet:

• Comparison to state of the art. We study the perfor-
mance of our approach on a frame level and compare
this to both FlowDroNet [12] and human performance.

• Component analysis. Here, we study the contribution
of each individual proposed component via several
ablation experiments and test our hypothesis that optical
flow generalizes better to an unseen domain than raw
RGB images.

• Qualitative analysis. We perform a qualitative analysis,
to thoroughly understand RiskNet’s performance in dif-
ferent scenarios.

A. Performance Metrics and Evaluation Protocol

Since we approach collision risk prediction as a per-frame
binary classification problem, we evaluate our experiments
with classification metrics. Specifically, the average precision
(AP) [35] and the area under the receiver operating charac-
teristic curve (ROC-AUC) [36] metrics are used to evaluate
the performance of each model configuration. These metrics
are more robust to unbalanced test sets than F1-score and
accuracy [37]. Both ROC-AUC and AP evaluation metrics
are inadequate to quantify human performance, as our drivers
did not indicate confidence levels for their predictions.
Therefore, we use F1-score and accuracy to compare our
approach against human performance. For these threshold-
based metrics, we found tH = 0.8 most suitable, based on
the ROC and AP curves.

The videos in the simulated Dsrc are shuffled and divided
into five equal partitions. RiskNet is trained three times
for each experiment, every time on a different set of four
partitions (80% of Dsrc). For each metric, the mean ±
standard deviation of the best checkpoint from each of the



Fig. 8: Comparison of ROC curve and PR curve for our best
performing model and FlowDroNet [12] on YDID.
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Fig. 9: Comparison of confusion matrices (CM) for our best
performing model and FlowDroNet [12] on YDID.

three models is reported. We define the best checkpoint as
the one with the highest AP on Dtarget.

B. Implementation Details

In all experiments with a 3D CNN, our models take
sequences of T = 8 frames sampled at 10FPS as input
for both training and inference. Since even collision datasets
with numerous crashes tend to suffer class imbalance be-
tween the positive and negative samples, due to the period
of safe driving leading up to incidents, we apply horizontal
flipping and re-sampling to reduce class imbalance. Specifi-
cally, we over-sample the minority class, i.e., we take t={0,
..., 7}, t={2, ..., 10}, etc. for unsafe samples and take no
overlap for safe samples, i.e., t={0, ..., 7}, t={8, ..., 15},
etc. During inference, we evaluate sample every t.

For the 2D CNN experiments, only a single frame and
a 2D ResNet-18 [38] are used. We use a KITTI pre-trained
LiteFlowNet [22] to estimate optical flow and Faster R-CNN
ResNet-50 FPN [21] pre-trained on COCO train2017 [26]
for the vehicle detections. All detections with less than 80%
classification score, as well as all bounding boxes with an
area lower than 1% of the total image area, are discarded.

The intermediate representations are reduced to 120×160
(H×W) pixels using bilinear interpolation to speed up the
training process. RiskNet is trained with a batch size of 32
on a single NVIDIA Titan Xp GPU for 20 epochs and a
checkpoint is saved after every epoch. The model’s weights
are optimized with the Adam optimizer [39] and a constant
learning rate of 1e-5. Finally, noise masks were added with
Nf = 3 and pn = 20%.

C. Comparison to State of the Art

In this set of experiments, we compare our work to the
closest related work, FlowDroNet [12], as well as to human
performance. We train FlowDroNet from scratch on the

TABLE II: Comparison of our approach with attention masks
(AM) and optical flow (OF) against FlowDroNet [12] and
experienced human drivers. *Metric does not adequately
outline human performance, as humans did not indicate a
confidence level in their predictions.

YDID performance
Approach AP ↑ ROC AUC ↑ F1-score ↑ Accuracy ↑

FlowDroNet [12] 0.24 ± 0.03 0.57 ± 0.06 0.77 ± 0.08 0.75 ± 0.12
Ours (AM) 0.59 ± 0.01 0.88 ± 0.00 0.82 ± 0.00 0.83 ± 0.00

Ours (RGB+AM) 0.53 ± 0.01 0.82 ± 0.01 0.84 ± 0.00 0.83 ± 0.00
Ours (OF+AM) 0.69 ± 0.00 0.90 ± 0.00 0.92 ± 0.00 0.92 ± 0.02

Human 0.54* ± 0.16 0.86* ± 0.09 0.94 ± 0.03 0.94 ± 0.03

simulated Dsrc in order to make a fair comparison. Fig. 8
shows the ROC-curves and PR-curves of both approaches.
Compared to FlowDroNet, our approach obtains nearly a
3 times higher average precision and a 42% higher ROC-
AUC. Furthermore, the confusion matrices, shown in Fig.
9, demonstrate that we outperform FlowDroNet in all four
quadrants. Note that since we evaluate on a strict per-frame
level, predicting unsafe a single frame too late already results
in a false negative.

As outlined in Table II, RiskNet performs best with optical
flow and attention masks as intermediate representations,
achieving an average precision of 0.69. Interestingly, RiskNet
with exclusively attention masks as input obtains an AP
of 0.59, whilst RiskNet with RGB and attention masks
together only achieves an AP of 0.53. The performance with
attention masks alone demonstrates that RiskNet is able to
learn valuable information from the sizes and positions of
vehicle detections over time, encoded with binary masks,
which is highly domain resilient. Secondly, the RGB domain
gap is substantial, to the extent that disregarding RGB data
altogether and training on attention masks exclusively, results
in better performance. This, combined with the performance
increase of using optical flow, clearly outlines the benefits of
training on task-specific, domain resilient representations.

Finally, a quantitative comparison is made between our
approach and human performance on YDID, by testing each
drivers’ individual performance against the common sense
consensus, excluding that individual drivers’ performance
from the consensus. These findings are also outlined in Table
II, and show that on real-world dataset YDID, we approach
human performance with a difference of merely 1.8% in
accuracy and 0.02 in F1-score. Please note that humans did
not indicate a confidence level in there performance, which
is why we compare accuracy and F1-score rather than AP.
Although our experiments are clearly not extensive enough
to truly conclude our system can replace human drivers, they
do show that our approach is a very capable and promising
direction for future research and development.

D. Component Analysis

We study the contribution of each individual proposed
component, the results of which are outlined in Table III.
The best configuration of RiskNet is a spatio-temporal (3D)
CNN which takes prior filtered attention masks and Lite-



TABLE III: Performance of different configurations of RiskNet on the real-world YDID. We compare RGB to the task-
specific intermediate representation optical flow.

Config- Temporal Attention CNN estimated Prior YDID performance (RGB input) YDID performance (OF input)
uration 2D CNN 3D CNN masks training OF filter AP ↑ ROC-AUC ↑ AP ↑ ROC-AUC ↑

a ✓ 0.21 ± 0.03 0.61 ± 0.06 0.25 ± 0.01 0.70 ± 0.01
b ✓ 0.24 ± 0.03 0.71 ± 0.05 0.16 ± 0.01 0.57 ± 0.02
c ✓ ✓ 0.52 ± 0.02 0.84 ± 0.02 0.61 ± 0.00 0.89 ± 0.00
d ✓ ✓ ✓ n/a n/a 0.63 ± 0.00 0.89 ± 0.00
e ✓ ✓ ✓ ✓ 0.53 ± 0.01 0.82 ± 0.01 0.69 ± 0.00 0.90 ± 0.00

FlowNet [22] estimated optical flow as input representations
(configuration e). We observe that our proposed attention
masks (configuration c) increase RiskNet’s average precision
by a significant 280% compared to not using attention masks
(configuration b). Using CNN estimated flow (configuration
d) yields a 3% improvement in AP compared to the pre-
processed ground truth optical flow (configuration c), and
using priors to filter real-world detection (configuration e)
results in our highest AP of 0.69. The results of this compo-
nent analysis confirm our hypothesis that in the automotive
domain, where risk originates at distances where optical
flow is particularly noisy, vehicle detections are immensely
important.

Without explicitly having optimized our system for real-
time operation, our approach, including the optical flow and
object detection, achieves 8.5 FPS. The object detection
model operates at 14 FPS, the optical flow estimation at 26
FPS, and RiskNet itself at 140 FPS. As computation time
for the Perception tasks decreases due to continued research
efforts on efficient neural networks, so will the computation
time of our approach.

E. Qualitative Analysis

In Fig. 10 we demonstrate the qualitative performance
of RiskNet and FlowDroNet on three out of the sixteen
videos from the YDID dataset. Video 1 and 2 show scenarios
where our model’s predictions are as desired and similar to
the common consensus ground truth. Video 3 shows false
positives between frames 15 and 65, due to a stationary bus
in the path of the ego-vehicle. The human annotators did
not see this as an unsafe event, likely because the annotators
could use information from the clip’s end whilst labeling the
beginning of the clip, see Section IV for the used annotation
policy that allows humans to first watch the entire clip given
them an ‘unfair’ advantage. After passing the bus, the model
shows desirable behavior by predicting an increased risk, but
exceeding tH , for a vehicle turning into its lane. Even though
the scenarios in the videos differ greatly from the constant
velocity, constant radius driving in the simulated training
data Dsrc, RiskNet demonstrates good performance. On the
other hand, FlowDroNet’s predictions are noisy and do not
provide insights into the vehicle collision risk. The reason
for this poor performance of FlowDroNet is the level of
noise in optical flow at greater distances, which clearly shows
the need for vehicle detections as additional intermediate
representation.

Fig. 10: Results of RiskNet for three YDID videos, contain-
ing scenarios which differ greatly from the training data. The
black line indicates the ground truth labels, the red dashed
line the threshold tH , the blue line RiskNet’s predicted risk
and the green line FlowDroNet’s predicted risk.

VI. DISCUSSION

In this work, we showed via several experiments that
a decoupling learning strategy can be successfully imple-
mented for collision risk prediction, confirming our initial
hypothesis that the domain gap between simulated and real
data can be bridged by leveraging intermediate, domain
resilient representations. Additionally, we showed that our
model, trained only on straight-forward but highly random
driving scenarios is able to generalize to complex, real-world
driving scenarios.

Our approach can be extended by training on more com-
plex training scenarios, specifically removing the constant
velocity and radius assumptions. Such additional training
data can easily be obtained and is likely to improve RiskNet’s
performance. In future work, using simulated data makes
it possible to generate a multitude of realistic scenarios
automatically, and the ability of training on this simulated
data without a significant domain gap solves the data scarcity
problem. Additionally, although the size and position of the



attention masks already give a hint of depth, providing the
network with explicit depth estimates could prove to be
more robust, especially when dealing with partly occluded
vehicles, which inherently have reduced attention masks.

Furthermore, as real-world data is challenging to collect,
the YDID contains only 13 positive samples and in total 154 s
of driving time, which is not sufficient to make hard claims
on the real-world performance of our system compared to
human capabilities. Although analysis on more samples is
required in order to further demonstrate performance in real-
world conditions, our results demonstrate that our approach
is capable and a promising direction for future research.

VII. CONCLUSION

Training a collision prediction model on simulated data
is attractive, as (near) collisions can be readily generated
in simulators, whereas such samples are exceptionally chal-
lenging to record in the real world. We proposed to use
state-of-the-art approaches in optical flow estimation and
object detection, where real-world datasets are abundant,
to create task-specific input representations for which the
simulation-to-real domain gap is minimal by design. We
demonstrated that training a collision risk prediction model
on those input representations, generated in a simulator
with simple but highly randomized movement patterns, suc-
cessfully generalized to real-world data. RiskNet predicted
risks in complex, real-world scenarios, without requiring
any additional domain adaptation techniques, and approaches
human-level performance on the real-world YDID dataset.

We believe that with the specific improvements suggested
in Section VI, and especially by generating more simulated
data training data, which can be done efficiently, the method-
ology laid down in this work can effectively predict risk in
dynamic and complex traffic patterns and thereby contribute
to reducing accidents. Additionally, our meta-method can
be used for other tasks which require hard to collect, task-
specific data.
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