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In this paper, we show how designed loss in open quantum systems can break the reciprocity of field propagation,
and how non-reciprocal and even unidirectional propagation can be achieved for different kinds of designed loss,
both linear and nonlinear. In particular, we show how unidirectional propagation can be achieved for input states of
certain symmetry in linear schemes, and demonstrate the possibility of building a single-mode optical insulator by
combining two kinds of nonlinear designed losses, and the way to build a non-reciprocal asymmetric field distribu-
tor with a planar structure of dissipatively coupled waveguides. We discuss the feasibility of the considered schemes
and suggest possible realizations. © 2022 Optica Publishing Group

https://doi.org/10.1364/JOSAB.460706

1. INTRODUCTION

Recently, non-reciprocal propagation of the electromagnetic
field became a popular research theme. Non-reciprocity is
important for quite a wide range of practical tasks, from field
distributors and circulators to lasing and high-precision sensing
[1–6]. Current interest for realization of non-reciprocal sys-
tems, and especially isolators, is born of the necessity to extend
methods commonly applied for longer wavelengths (radio,
microwaves, etc.) toward the optical region and the possibility
of integrating non-reciprocal systems into photonic circuitry.
Traditional realizations implementing magneto-sensitive media
are either hard to realize on the basis of existing integration plat-
forms or difficult even to realize for optical wavelength, or both
[4,5]. So, a plethora of novel schemes for breaking reciprocity
has appeared in recent years. There are schemes exploiting
time modulation [7,8], nonlinearities [9–11], and interaction
with few-level systems, such as atom-like structures [4,12–14],
optomechanics [15], and topological properties of structured
media [5,16,17].

Some quite interesting results were also obtained by con-
sidering loss. Recently, it was shown that even common
single-photon energy losses in conjunction with the usual (i.e.,
unitary) coupling can also be a tool for devising non-reciprocal
multi-mode structures [18,19]. Even more interesting results
are obtained with designed loss, i.e., for example, when dif-
ferent systems are coupled to the same loss reservoir inducing
dissipative coupling between them, or when loss is made to be
nonlinear. For instance, designed collective linear loss can lead
to unidirectional transport and amplification [20,21].

Here we present another interesting feature of designed loss:
its ability to break reciprocity in photonic systems without con-
joining with simultaneous unitary coupling. We discuss a way to

do this with the designed loss, provide several examples, and out-
line ways for possible practical realizations, in particular, with
integrable planar waveguide systems. Notice that schemes rely-
ing only on the designed loss might be easier to realize in practice
than schemes combining unitary and dissipative couplings,
since one does not need to adjust different types of couplings.
We show how the designed nonlinear loss can break reciprocity
even for a single-mode system, and how to realize this system
using conventional Kerr nonlinearity and dissipative coupling.
We also demonstrate the way to achieve non-reciprocal asym-
metric field distribution between waveguides using dissipative
coupling.

The outline of the paper is as follows. In Section 2, we recall a
non-reciprocity criterion for linear systems and suggest a simple
generalization of the reciprocity concept suitable for quan-
tum state/correlation transfer, since nonlinear designed loss
can produce non-classical states from classical input. Then, in
Section 3, we describe the mechanics of reciprocity breaking for
dissipatively coupled systems and give examples of two-mode
devices, providing for asymmetric transfer between waveguides
in different directions. In Sections 4 and 5, we discuss exam-
ples of single-mode reciprocity breaking and unidirectional
propagation with nonlinear designed loss in asymptotic and
non-asymptotic regimes, and address practical realization of
such schemes. We argue that such schemes are quite feasible
with existing photonic integration platforms and with such
common modeling and simulation tools as systems of laser-
written waveguides in bulk dielectric. In Section 6, we show
how such a common type of loss as dephasing can also break
reciprocity, and demonstrate reciprocity breaking in correlation
propagation for a simple device of a beam splitter and dephaser.
In Section 7, we discuss a non-reciprocal field distributor with
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sharply asymmetric field exchange between waveguides, imple-
menting only dissipative coupling. In Appendices A and B,
we describe several designs of integrable dissipatively coupled
structures and discuss how dissipative coupling arises from the
system of unitary coupled waveguides with designed loss.

2. RECIPROCITY

First, let us clarify the concept of reciprocity and its breaking
as applicable for the designed loss structures. We consider here
both linear and nonlinear structures, and the latter are known
to produce non-classical states from classical ones [22–25].
So, it is necessary to provide for a suitable generalization of
the reciprocity concept for open quantum systems. Here we
will not pursue the task of discussing the general reciprocity
concept for open quantum systems in the manner as it was
done for unitary systems, for example, in Refs. [26,27]. Here
we introduce a simple generalization of the classical definition
[4,26–29]). We formulate the classical definition using quan-
tum operators in the following way [30,31]. Let us define a set of
N input modes described by the bosonic annihilation operators
Ea = [a1, a2, . . . a N] (and the corresponding creation operators
a †

n), and a set of N output modes described by the bosonic anni-
hilation operators Eb = [b1, b2, . . . bN] (and the corresponding
creation operators b†

n). For the linear device transforming input
into output, one can write [30]

Eb = SEa + EN, (1)

where the vector of operators EN describes noise. For passive sys-
tems with 〈 EN〉 = 0, one gets

〈Eb〉 = S〈Ea〉, (2)

where the expression 〈x 〉 = Tr {xρ} denotes the quantum
mechanical average of operator x over density matrix ρ describ-
ing the quantum state of the whole system. For coherent modal
states, 〈Ea〉, 〈Eb〉 are the modal amplitudes. Thus, one arrives to
the well-known classical description of reciprocity for the system
of electromagnetic field modes. Reciprocity is directly associated
with the features of scattering matrix S. Non-symmetrical scat-
tering matrix S 6= ST means that the system breaks reciprocity
[4,26–29]. Notice that symmetry should be considered taking
into account the arbitrariness of the modal phase, i.e., the pos-
sibility to make all elements of the scattering matrix real by the
local gauge transformation

x→ x exp{iφx }, (3)

where x = a , b with some phasesφx [18].
Generally, Eq. (1) allows extending the description of reci-

procity for the quantum case. For example, one can derive the
transfer equation similar to Eq. (2) also for the correlation func-
tion of different orders. For nonlinear transformations, Eq. (1)
can hardly be applied. However, one can return to linearity just
by considering transformation of the density matrix elements
instead of modal operators. Let us proceed discussing reciprocity
in open quantum systems in such a way as it was done for unitary
systems in Refs. [26,27].

Let us assume that our system of interest is described by
density matrix ρin, and we have two propagators describing

propagation in different directions,
←−
D and

−→
D . The state trans-

formation corresponding to propagation in these directions is
described by the mapping

ρin→
−→ρ out =

−→
D ρin, ρin→

←−ρ out =
←−
D ρin. (4)

Here we are not interested in the complete description of the
transferred density matrix but rather in the dynamics of certain
observable quantities, for example, energy. If for the same input
state of our passive system the output energy for different propa-
gation directions is different, it is a sufficient condition of reci-
procity breaking. So, let us introduce a set of Hermitian opera-
tors P j describing the observables of interest, so that quantities
p j = Tr {P jρin},

−→p j = Tr {P j
−→ρ out} (

←−p j = Tr {P j
←−ρ out}) can

be measured at the input and output of our device described by

map
−→
D (
←−
D ). For reciprocal transmission, one would have

←−p j =
−→p j , ∀ j . (5)

Thus, breaking Eq. (5) would mean non-reciprocity. Notice
that this simple equation implies a number of important obser-
vations. First, the condition in Eq. (5) is state dependent. So,
one needs to define a class of initial density matrices {ρin} to
discuss reciprocity. Second, reciprocity is defined for a particu-
lar set of {P j }. This set might be complete and sufficient for
description/inference of the density matrix, or not. Different
sets of {P j }might demonstrate both reciprocity and breaking of
it for the same system. Only proving reciprocity for arbitrary ini-
tial states and observables allows calling the system completely
reciprocal.

3. BREAKING RECIPROCITY BY LINEAR
DISSIPATIVE COUPLING

First, let us demonstrate how a purely dissipative device breaks
reciprocity. We consider a set of dissipatively coupled wave-
guides without additional unitary coupling between them.
Such a coupling can be realized by the usual unitary coupling
of several waveguides to the common dissipative reservoir, say,
a waveguide with strong loss [as depicted in Fig. 1(a)]. Such an
arrangement can be easily realized in practice, for example, by
laser-writing a system of single-mode waveguides in a bulk glass
[24,25,32–34], or growing planar semiconductor structures on
some platform, for example, InGaAsP material on InP [6,35]
(see Appendix A for a discussion of several designs of dissipative
waveguide couplers on the integrated photonic platform).

To demonstrate a breaking of reciprocity, let us consider
a bipartite two-waveguide system as schematically shown in
Fig. 1(c). During propagation through the j th part of the sys-
tem, the density matrixρ dynamics is described by the following
master equation:

d
dt
ρ = γ j

(
2L jρL†

j − ρL†
j L j − L†

j L jρ
)
, (6)

where the Lindblad operators for the j th part are taken as
L j = a + δ j b, a and b being the annihilation operators for
modes A and B; δ j are asymmetry parameters describing the
respective strength of waveguides coupling to the common
reservoir; γ j are decay rates corresponding to each part. Taking
into account a possibility of the local gauge transformation,
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(a) (b)

(d)(c)

Fig. 1. (a) Scheme of the dissipative coupling of two waveguides A and B through the common loss reservoir are represented as lossy waveguide C.
(b) Illustration of the modal amplitude dynamics for direct and reverse propagation through the two waveguides with different dissipative couplings
in the first part [denoted as L1 in (c)] and second part [denoted as L2 in (c)]. Solid and dotted curves correspond to field propagation in waveguides
A and B in direction 1→ 2, and dashed and dashed-dotted lines correspond to field propagation in waveguides A and B in direction 2→ 1, respec-
tively. For the first device part, the Lindblad operator is L1 = γ (a − 0.5b), and for the second part, the Lindblad operator is L2 = γ (a − b). The ini-
tial amplitude for mode a is+1, and for mode b−1. (d) Scheme of the integrable device combining two kinds of dissipative coupling by variable plac-
ing of a central lossy waveguide between two low-loss waveguides (see discussion in Appendix A).

Eq. (3), one can assume real δ j (this we also assume in the further
considerations). In Appendix B, we show how master Eq. (14)
arises in the system of single-mode waveguides illustrated in
Fig. 1(a).

In Fig. 1(b), one can see an illustration of reciprocity
breaking for bipartite systems with L1 = γ (a − 0.5b) and
L2 = γ (a − b). For the asymmetric input state of both modes
(i.e., when the sum of the amplitudes is zero), one has unidi-
rectional energy flow through the system. For such input, the
action of the second part of the device just exponentially reduces
the state to the vacuum.

Such behavior can be easily understood from the character of
dynamics dictated by master Eq. (6). The dissipative coupling
between modes in the j th part of the system drives their state
to the one satisfying L jρ = 0 [24,34]. Asymptotically (i.e.,
for interaction time tending to infinity), the modal amplitude
transformation can be described by the following scattering
matrix:[
〈aout〉

〈bout〉

]
= S j

[
〈a in〉

〈bin〉

]
, S j =

1

1+ δ2
j

[
δ2

j −δ j

−δ j 1

]
. (7)

Generally, for δ1 6= δ2 and δ1δ2 6= −1, the product of matri-
ces S1 and S2 is not symmetric:

S1S2 =
1+ δ1δ2

(1+ δ2
1)(1+ δ

2
2)

[
δ1δ2 −δ1

−δ2 1

]
. (8)

So, our bipartite device is indeed not reciprocal. Moreover,
it does not allow the states satisfying δ1〈a in〉 − 〈bin〉 = 0 to

propagate in direction 1→ 2, and it does not allow the states
satisfying δ2〈a in〉 − 〈bin〉 = 0 to propagate in the opposite
direction. Notice that different dissipative couplings in the reali-
zation schematically depicted in Fig. 1(a) can be simply realized
by adjusting coupling with the common reservoirs, for example,
by adjusting distances between waveguides A and B and the
central dissipative waveguide as shown in Fig. 1(d) [25,34].

Interestingly, the simple linear device discussed here can offer
quite considerable asymmetry in energy exchange between
waveguides for different propagation directions. Indeed, it
is easy to get from Eq. (8) that the ratio of the off-diagonal
elements of the matrix products,∣∣∣∣ [S1S2]12

[S2S1]12

∣∣∣∣= ∣∣∣∣δ1

δ2

∣∣∣∣ , (9)

is proportional to the ratio of the asymmetry parameters. As
long as the value of δ jγ remains much larger than the rate of
uncorrelated single-photon loss inevitably present in a real-
istic waveguide system, one can get | δ1

δ2
|
2 difference in energy

transmission between waveguides in different directions. For
example, for the planar systems described in Appendix A, it
seems realistic to reach the ratio of 0.1 between waveguide
coupling rates in the scheme depicted in Fig. 1(d), thus to have
|
δ1
δ2
|
2
= 0.01 and 20 dB in energy exchange asymmetry.

Naturally, our discussion can be easily extended for a more
involved dissipatively coupled system of modes. The main
message would be the same: conjunction of parts with different
dissipative couplings leads to breaking of reciprocity.
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Also, it is useful to note that breaking reciprocity can be
achieved with only one of two parts being a dissipative coupler.
Indeed, replacing, for example, the first part with the beam
splitter transforming some set of input states to one satisfying
δ2〈a in〉 − 〈bin〉 = 0, one gets unidirectional propagation of
energy for this set of states (only for 2→ 1). Also, to break reci-
procity, one can simply introduce different uncorrelated losses
in both modes of the first part. Indeed, for the uncorrelated
loss in both waveguides A and B (taken to be finite length)
the scattering matrix is S1 = diag{TA, TB }, where TA, TB are
transmission coefficients for modes A and B . We assume the
asymptotic regime for the second, dissipative coupler part. So,
for transmission through the bipartite compound device, one
has the following scattering matrix:

S2S1 =
1

1+ δ2
2

[
TAδ2 −TBδ2

−δ2TA TB

]
. (10)

The product, Eq. (10), is asymmetric. The asymmetry in
energy exchange between waveguides is therefore defined by the
ratio (TA/TB )

2.

4. BREAKING RECIPROCITY WITH NONLINEAR
DISSIPATION

The obvious idea of breaking commutativity of dynamics in
different parts of a compound system to break reciprocity can be
easily extended for the general dissipative dynamics. Generally,
the state transformation of the open system can be described in a
standard way with help of the Kraus operators D j as

ρout =
∑
∀ j

D jρin D†
j , (11)

where the Kraus operators satisfy
∑
∀ j D†

j D j = 1 [36].
It is easy to surmise that for our bipartite system as depicted

in Fig. 1(c), non-commutativity of Kraus operators D(1)
j and

D(2)
k corresponding to the first and second parts of the system,

can also lead to breaking of reciprocity. Now let us show that the
dissipative systems possessing several stationary states (similar
to the linear case described above) can also break reciprocity.
Moreover, in stark difference with the linear case, such a system
can provide for single-mode non-reciprocity.

Indeed, let us consider a simple example of single-mode sub-
systems 1 and 2 with just two stationary states each. These sys-
tems are described by the following Kraus operators:

D(1,2)
m =

{
|m1,2〉〈m| ∀m ≥m1,2

|0〉〈m| ∀m <m1,2,
(12)

where states |m〉 are Fock states with m photons of the sin-
gle considered mode, and m1,2 6= 0. For m1 6=m2, some
Kraus operators corresponding to different parts are obviously
not commuting, so the field propagation is not reciprocal.
Moreover, a combination of subsystems 1 and 2 realizes a single-
mode optical insulator. Indeed, for m1 >m2, any Fock-state
input with m >m1 produces a Fock state with m2 photons
when propagating 1→ 2, whereas any state input from the
opposite side (i.e., when 2→ 1) produces just the vacuum state.

0 1 2 3 4 5 6
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<
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0 1 2 3 4 5
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1

n

nn

0 0.5 1
0
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2 1

1 2

2 1

1 2

Fig. 2. Dynamics of the population for the single-mode bipartite
system with parts described by the Lindblad operators, Eq. (13), with
m1 = 4 and m2 = 2 as given by master Eq. (6) for the initial coherent
state with five photons and the same rate γ . Solid lines in both the main
panel and upper inset correspond to propagation 1→ 2; dashed lines
in both the main panel inset correspond to propagation 2→ 1. In the
main panel, propagation through each part occurs during the interval
3γ t ; for the upper panel, propagation through each part occurs during
the interval 0.5γ t . Lower panel shows the photon number distribution
of the output state for propagation 1→ 2 depicted in the main panel.

Despite its seemingly idealized character, the scheme with
Kraus operators, Eq. (12), can be realized, for example, with
nonlinear coherent loss (NCL) described by the Lindblad
operators

L j = a(a †a −m j ), j = 1, 2, (13)

m being a positive integer number [37].
It is interesting that the regime of optical isolation with the

device described by the Lindblad operators, Eq. (13), functions
also with classical inputs. An example of such functioning is
shown in Fig. 2. The main panel of Fig. 2 shows how the aver-
age number of photons behaves for the input at the part with
m1 = 4 (solid line) and output at the part with m2 = 2. Dashed
lines show the dynamics of the average number of photons for
propagation in the opposite direction. The lower inset shows
that the output state for propagation 1→ 2 is non-classical,
being a mixture of the vacuum with the two-photon Fock state.

Another interesting feature of the Eq. (13) scheme is that
non-reciprocity can be quite pronounced even far from the
asymptotic regime, i.e., when the state of the mode is far from
the one given by the condition L jρ = 0. This situation is illus-
trated in the upper panel in Fig. 2. Actually, this feature makes it
feasible looking for practical realization of non-reciprocity with
designed nonlinear loss of the considered kind. Indeed, close to
the stationary state satisfying L jρ = 0, the dynamics resulted
from nonlinear loss is rather slow and can be easily disrupted by
common single-photon loss, unavoidable in realistic systems
[24,25].

5. TOWARD PRACTICAL NON-RECIPROCITY
WITH NONLINEAR DISSIPATION

As already mentioned, practical realization of the dissipative
coupling between waveguides is rather simple to achieve, for
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example, by laser-writing single-mode waveguides in glass
[24,25,32–34], or fabricating planar structures as described
in Appendix A (and one might mention that waveguide
writing in borosilicate glass has become a very versatile pho-
tonic instrument for modeling a plethora of exotic physical
effects (see, for example, Refs. [34,38]). Designing nonlinear
loss is more difficult and involved. Some schemes were sug-
gested and experimentally demonstrated with trapped ions
and atoms, nanomechanical resonators, superconducting
microwave circuits, nonlinear Kerr resonators, etc. [39–44]. To
demonstrate the way of experimental realization of reciprocity
breaking purely by designed nonlinear loss, here we consider a
recently suggested scheme with self-Kerr nonlinear waveguides
that implements the dissipative coupling scheme depicted in
Fig. 1(a) [24,25,45]. This scheme allows to produce two-photon
loss or NCL of the kind given by Eq. (13) for m j = 1 combined
with two-photon loss for the essentially single-mode device.

Dynamics of the single-mode system considered in
Refs. [24,25] is described by the following master equation:

d
dt
ρ =

2∑
j=0

γ j (2L jρL†
j − ρL†

j L j − L†
j L jρ), (14)

where L0 = a describes common single-photon loss; L1 = a2

describes two-photon loss, and L2 = a(a †a − 1) describes so
called NCL [37];γ0,1,2 are the corresponding loss rates.

First, let us show that the bipartite system composed of the
parts described by master Eq. (14) with different sets of decay
rates γ j can lead to asymptotic breaking of reciprocity. To
that end, we assume that for the first part, we have γ0,2 = 0,
γ1 = γ , and for the second part, we have γ0,1 = 0, γ2 = γ in
Eq. (14), i.e., we have only two-photon loss in the first part and
only NCL in the second part of our device. Two-photon loss
does not affect states in the subspace of single and zero photon
states. Asymptotically, two-photon loss drives an initial state
with the number of photons much larger than unity toward a
mixed single-photon state with one-half photons on average
[23,46]. The NCL described by L2 also does not affect states in
the subspace of single and zero photon states. But asymptoti-
cally, it drives an initial state with the number of photons much
larger than unity toward the single-photon state [24,37]. So,
for the initial coherent state with the average number of pho-
tons much larger than unity, the bipartite system will produce
asymptotically the state with 1/2 photon on average for 1→ 2
propagation, and the single-photon state for propagation in the
opposite direction.

Figure 3(b) shows that reciprocity is broken for such a system
also for a finite time even in the regime when the system’s state
is far from the stationary state. For the simulation, we have
taken that the system is also subject to common single-photon
loss, and that two-photon loss is present also in the second
part of the device (which corresponds to the realistic three-
waveguide scheme [25,45]). So, for the first part, we have taken
γ0 = γ1 = γ , γ2 = 0; for the second part, we have taken γ j = γ ,
∀ j . The initial state is taken to be the coherent one with ampli-
tude 20. One can see from Fig. 3(b) that the average number of
photons at outputs is different, and the photon number distri-
butions of output states [shown in the inset in (b)] are also quite
different. Both output states are sub-Poissonian, but for 1→ 2

(b)

(c)
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Fig. 3. (a) Scheme of the single-mode bipartite non-reciprocal
device described by Eq. (14). (b) Dynamics of the average number
of photons for the structure schematically depicted in (a). The solid
line corresponds to propagation 1→ 2, and dashed line corresponds
to propagation in the opposite direction. For part 1, the dynamics is
described by master Eq. (14) with decay rates γ0 = γ1 = γ , γ2 = 0.
For part 2, the decay rates are γ0,1,2 = γ . The unitary transformation
between the two parts is supposed to leave the collective mode state
unchanged. The initial state at each input is taken as the coherent state
of the corresponding “stationary” collective mode with amplitude
α = 20. The inset shows the output state photon number distribution,
ρnn , for propagation 1→ 2 (thick gray bars) and for propagation
in the opposite direction, 2→ 1 (thin black bars). (c) Example of
bipartite nonlinear loss scheme for realizing non-asymptotic breaking
of reciprocity by single-mode nonlinear loss. Two self-Kerr nonlin-
ear waveguides are coupled to the third waveguide, but not to each
other. The third waveguide is designed to have excess loss. In part 1,
the third waveguide is coupled symmetrically to waveguides A and
B, realizing two-photon loss. In part 2, the coupling is asymmetric,
realizing both two-photon loss and nonlinear coherent loss (NCL). We
assume unitary coupling between parts 1 and 2, allowing for lossless
transformation of collective mode Ã1 to collective mode Ã2 and
vice versa.

propagation, the state is considerably more photon-number
squeezed, with Mandel parameter Q ≈−0.7, whereas in the
opposite direction, Q ≈−0.5.

The single-mode device analyzed above can be realized
with the waveguide arrangement schematically shown in
Fig. 3(c). The device consists of three parts: parts 1 and 2 realize
different kinds of nonlinear loss by the dissipative coupling
scheme shown in Fig. 1(a). The symmetric coupling between
the side self-Kerr nonlinear waveguides and the lossy central
one allows to realize the two-photon loss of the collective mode
A1 ∝ a1 − b1, where a1, b1 are the modes guided in correspond-
ing waveguides. Mode A1 would be a stationary mode of part 1
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in absence of nonlinearity and uncorrelated single-photon loss.
In part 2, the coupling is asymmetric, so NCL arises described
by Lindblad operator L2 in addition to the two-photon loss
for collective mode A2 ∝ δa2 − b2, parameter δ describing
the coupling asymmetry [24,37]. Notice that for initial states
with large numbers of photons, on the initial stage of dynamics
(i.e., when the average number of photons still remains large),
NCL dominates two-photon loss, making its influence on
photon number dynamics negligible even though the loss rates
are close in value [25]). The third part connecting parts 1 and 2
in Fig. 3(a) provides for the effectively single-mode operation
of the device transforming collective mode A1 into A2 and vice
versa. Initially, one should also excite only A1 for propagation
1→ 2, and A2 from propagation in the opposite direction.

Notice that to demonstrate non-reciprocity, one might
simplify the setup in Fig. 3(c), getting rid of the central uni-
tary coupled part, i.e., leaving only two conjoined nonlinear
dissipative couplers as in Fig. 1(d). But the single modality of
the operation would be lost, and both linear (considered in
Section 3) and nonlinear effects of reciprocity breaking would
be combined.

6. BREAKING RECIPROCITY BY DEPHASING

We have already shown with examples of both linear and
nonlinear dissipative dynamics that dissipative systems pos-
sessing several stationary states can break reciprocity. Now let
us consider another example of a quite simple and widespread
(actually, even virtually ubiquitous) kind of dissipative dynam-
ics with several (and possibly even infinite number of ) stationary
states that can also break reciprocity. Also, this reciprocity
violation cannot be captured by a simple classical criterion
implementing the amplitude scattering matrix Eq. (7).

This kind of dissipation is dephasing [47]. The essence of it is
as follows. The dephasing with respect to some orthogonal basis
{|ψ j 〉} (i.e, 〈ψk |ψ j 〉 = δk j ) means that asymptotically, any state
is transformed to a state with only diagonal components in this
basis:

ρ =
∑
∀ j ,k

c j k |ψ j 〉〈ψk |→ ρ̄ =
∑
∀ j

c j j |ψ j 〉〈ψ j |, (15)

where coefficients c j k describe the representation of the state
density matrix in the basis {|ψ j 〉}. Transformation Eq. (15) is

realized by the Kraus operators D j = |ψ j 〉〈ψ j |, and any state
commuting with all these Kraus operators is stationary.

It is easy to see that a bipartite system with each part perform-
ing dephasing with respect to different bases breaks reciprocity.
Indeed, let us take that the j th part dephases the input state
with respect to the basis {|ψ ( j )

k 〉}, and at least for some j and
k, one has 〈ψ (1)

k |ψ
(2)
j 〉 6= 0. Then, the corresponding Kraus

operators D(1)k and D(2) j do not commute and the dynamics is
not reciprocal.

Physically, realization of single-mode dephasing in dif-
ferent bases is not simple and involves state transformation
corresponding to transition to the different bases. However,
reciprocity breaking can be realized conjoining unitary and
feasible dephasing parts. Dephasing in the energy basis is quite
simply realized by random fluctuation of frequency, or, equiv-
alently, by inducing random fluctuation of modal phase [47].
This kind of dephasing is quite usual for solid-state qubits, such
as, for example, quantum dots, and is a common reason for
decoherence. Curiously, such dephasing was shown to enable
non-reciprocal state transfer between qubits [48,49]. Let us
show how it is possible to break reciprocity in propagation of
correlations by a bipartite system consisting of a simple 50/50
beam splitter and the energy dephaser.

We take a two-mode bipartite system as shown in Fig. 4(a).
Part 1 is a beam splitter performing the following standard
transformation:

aout =
1
√

2
(a in + ibin), bout =

1
√

2
(ia in + bin). (16)

Part 2 is the dephaser in the energy basis. The way to realize
this setup in practice is depicted in Fig. 4(b). The dephaser
is realized by phase randomizers on the output modes act-
ing on a modal annihilation operator x in the following way:
x→ e−iφx . So, any density matrix ρ dephases in the following
way given by Eq. (15):

ρ =
∑
m,n

ρmn|m〉〈n|→
1

2π

∫ 2π

0
dφ

∑
m,n

ρmne i(n−m)φ
|m〉〈n|

=

∑
m

ρmm |m〉〈m|.

Fig. 4. (a) Scheme of bipartite device for breaking reciprocity by unitary beam splitting and dephasing. (b) Example of the practical realization of
the scheme in (a) with phase randomizers for performing dephasing.
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Similarly, one can introduce energy dephazing for any multi-
modal state by phase-randomizing each mode [as shown for our
two-modal scheme in Fig. 4(b)].

Let us consider the following pure input state:

ρin = |ψ〉〈ψ |, |ψ〉 = x |1a 〉|0b〉 +
√

1− x 2|0a 〉|1b〉,

(17)
where vector |nx 〉 is the Fock state of mode x with nx photons,
and a real x satisfies |x | ≤ 1.

Now, as discussed in Section 2, let us consider an observable
P = λa †b + λ∗b†a , whereλ is a scalar parameter. It is easy to see
that the value of this observable for the initial state, Eq. (17), is

p =Tr{Pρin} = (λ+ λ
∗)x
√

1− x 2.

For propagation 1→ 2, we have from Eqs. (16) and (17)
−→p = 0. For propagation 2→ 1, we have

←−p =
i
2
(λ− λ∗)(1− 2x 2).

So, according to the definition given by Eqs. (4) and (5), for
λ 6= λ∗ and |x | 6= 1/

√
2, our device is indeed breaking reci-

procity. In our case, modal correlations are non-reciprocally
transmitted through our bipartite device. Notice that the classi-
cal definition, Eq. (2), cannot work for the case. For the initial
state, Eq. (17), modal amplitudes are zero.

7. ASYMMETRIC DISSIPATIVELY COUPLED
DISTRIBUTOR

Finally, let us demonstrate how purely dissipative coupling
might serve for building an asymmetric optical “distribu-
tor,” i.e., a device that asymmetrically transfers modal energy
between modes depending on the initial excitation. We consider
a bipartite structure with each part having three physical modes
A, B, C, where dissipative coupling is only between modes A, B
and B, C (which makes the structure feasible to fabricate using
a planar arrangement of strongly coupled low-loss waveguides
A, B, C and high-loss waveguides D as shown in Fig. 5(a); such
a structure is a simple generalization of the ones discussed in
Appendix A).

Each part of our bipartite setup is described by the following
master equation ( j = 1, 2):

d
dt
ρ =

∑
x=AB,BC

γx , j (2L x , jρL†
x , j − ρL†

x , j L x , j − L†
x , j L x , jρ),

(18)
where γx j are corresponding loss rates, and the Lindblad opera-
tors are given by

L AB, j = a + y j b, L BC , j = b + z j c , (19)

where y j , z j are the asymmetry parameters. We consider only
propagation from part 1 to part 2.

To uncover specifics of the non-reciprocal field transfer
among modes A, B, and C performed by the device shown in
Fig. 5(a), let us consider first the asymptotic regime when the
single-photon uncorrelated loss is absent and the lengths of both
parts are sufficiently large for transition to the stationary state.

From Eq. (18), one gets the following relation between input
and output values of the modal amplitudes: 〈aout〉

〈bout〉

〈c out〉

= S j

 〈a in〉

〈bin〉

〈c in〉

 ,

S j =
1

F j

 (y j z j )
2
−y j z2

j −y j z j

−y j z2
j z2

j −z j

−y j z j −z j 1

 , (20)

where F j = z2
j (1+ y 2

j )+ 1. From Eq. (20), one has∣∣∣∣ [S1S2]12

[S1S2]21

∣∣∣∣= ∣∣∣∣ y1

y2

∣∣∣∣ , ∣∣∣∣ [S1S2]23

[S1S2]32

∣∣∣∣= ∣∣∣∣ z1

z2

∣∣∣∣ ,∣∣∣∣ [S1S2]13

[S1S2]31

∣∣∣∣= ∣∣∣∣ y1z1

y2z2

∣∣∣∣ . (21)

So, whereas for our scheme, it is hardly possible to realize
an ideal circulator (which provides for unidirectional transfer,
i.e., A→ B , B→C , and C→ A) with the device in Fig. 5(a),
nevertheless, energy transfer between the waveguides is strongly
asymmetric.

In Figs. 5(b)–5(d), we show an example of asymmetric field
distribution for the bipartite structure as given by Eqs. (18) and
(19) with the all equal decay rates γx , j = γ ,∀x , j , and mirrored
asymmetry parameters in different parts, y1 =−z2 =−0.9,
y2 =−z1 =−0.1. In Figs. 5(b)–5(d), solid, dashed, and
dashed-dotted lines correspond to the modal amplitudes of
modes A, B, and C, respectively, and these figures correspond to
the initial coherent excitation with the unit amplitude of modes
A, B, and C with the vacuum of the other two modes. The
transformation of the modal amplitudes at the end of part 2 as
shown in Figs. 5(b)–5(d) is described by the following scattering
matrix:

S1S2 =

 0.0075 0.0070 −0.0529
0.0692 0.0669 −0.5306
−0.0768 −0.0743 0.5897

 . (22)

Matrix Eq. (22) shows about 20 dB asymmetry in power
transfer between waveguides A and B, and B and C. Notice that
due to strong coupling asymmetry, even for the interaction time
much exceeding the inverse decay rate γ−1, the dynamics shown
in Figs. 5(b)–5(d) is still not close to the asymptotic regime.

The dynamics shown in Figs. 5(b)–5(d) demonstrates
another curious feature, namely, that the asymmetry in field
distribution does not always require and is not always connected
to breaking of reciprocity (for a discussion, see, for example,
Ref. [4]). Each part of the structure depicted in Fig. 5(a) does
break reciprocity by itself. However, for example, part 1 by
itself provides for quite asymmetric field propagation from
waveguide A to waveguide B, and from waveguide C to wave-
guide B. Excitation of waveguide A creates strong excitation of
mode B, whereas excitation mode C leaves mode B non-excited.
It is interesting to notice that an asymmetric but reciprocal
field distributor was suggested in Ref. [34] for a dissipatively
coupled chain of waveguides. There, excitation was shown to
spread either to the left waveguide chain or to the right one in
dependence on the excitation of the control waveguide.
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Fig. 5. (a) Scheme of bipartite three-mode dissipatively coupled distributor. We consider only propagation 1→ 2. (b)–(d) Dynamics of modal
amplitudes as given by Eqs. (18) and (19) with decay rates γx , j = γ , ∀x , j , and asymmetry parameters y1 =−z2 =−0.9, y2 =−z1 = 0.1. The bor-
der between the parts corresponds to γ t = 5. In (b)–(d) solid, dashed, and dashed-dotted lines correspond to the modal amplitudes of the modes in
waveguides x = A, B,C , and (b)–(d) correspond to the initial coherent excitation with the unit amplitude of the modes of waveguides A, B, and C
with the vacuum of the other two modes.

8. CONCLUSION

Here we have shown that dissipatively coupled systems can
break reciprocity even without simultaneous conjoining unitary
and dissipative coupling. Even for linear systems, dynamics
corresponding to different dissipative coupling is not commu-
tative. This can give rise to practical linear optical diode devices
providing for unidirectional field propagation for certain classes
of input states. We outline the way to fabricate such devices
using laser-written waveguides in glass or a generic integration
platform on the basis of such standard materials as InP (in
Appendix A, we outline practical ways to create such planar
integrated structures).

We show also that designed nonlinear loss enables one to
create a single-mode optical insulator. We demonstrate the way
to do that with NCL, and show it is possible to achieve single-
mode non-asymptotic breaking of reciprocity with a practically
realizable system of waveguides with self-Kerr nonlinearity.
Such a system can realize both two-photon loss and NCL, able
asymptotically to produce a single-photon state from the initial
coherent state. We also show that dephasing is able to induce
non-reciprocity, and demonstrate non-reciprocity of correlation
transfer with a simple example of a bipartite system including a
beam splitter and a dephaser. We demonstrate an example of a
non-reciprocal optical distributor in a three-mode system with
purely dissipative coupling.

APPENDIX A: POSSIBILITIES FOR PRACTICAL
IMPLEMENTATION

In this appendix, we propose several options for practical reali-
zation of dissipative coupling that can be used to construct the
schemes discussed above (i.e., constitute components of the
bipartite setups discussed there). The suggested solutions use
a mature COBRA/Smart Photonics InP integration platform
[35], which features a large set of standard building blocks, and
thus can be used to integrate the dissipative couplers in more
complex circuits.

The suggested dissipative coupler consists of three parallel
single-mode waveguides A, B, and C, where C corresponds to
the common loss reservoir as shown in Fig. 1(a). Waveguide C
is placed between A and B, and has excessive loss0 compared to
them. Light coupling occurs in waveguide pairs A–C and C–B.

Platform description. In the selected integration platform
[35], there are two types of waveguides: active and passive; see
Fig. 6. Passive refers to a lattice-matched InGaAsP material
that is transparent in the C band (1530–1565 nm). It is used
as a waveguiding layer with InP as upper and lower cladding
layers with a lower refractive index. Active is a quantum well
(QW)-based structure that uses quaternary InGaAsP material
with a composition chosen to have an emission wavelength
and bandgap around 1550 nm. This leads to the presence of
absorption at this wavelength and provides a means to create a
controlled amount of excess loss in waveguide C.

We have considered three possible ways of achieving excess
loss in the middle waveguide, shown in Fig. 6.
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Fig. 6. Possible implementations of the dissipative coupler.
(a) Active unbiased waveguide, (b) passive waveguide in isolation cross
section with metal, and (c) active waveguides with applied bias. In each
cross section, two side waveguides and a middle waveguide with extra
loss are shown.

Unbiased active sections. This option is shown in Fig. 6(a).
The middle waveguide is an active waveguide with high absorp-
tion at 1550 nm if unbiased [50]. This is the most natural
solution considering the absorption spectra of active and passive
waveguides. However, taking into account the required distance
between waveguides (below 3 µm), the reliable integration of
such narrow active stripes by passive regrowth is not possible
with the current fabrication flow.

Passive waveguides with metal. This option is shown in
Fig. 6(b). The middle waveguide is fabricated in the isolation
cross section, in which the strongly conductive part of the top
p-type cladding layer is removed. If we add the metal on top of
this waveguide, it will overlap with the optical mode and cause
extra losses. This option does not require any electrical signals
to be applied to the coupler. However, there is no possibility of
tuning the excess loss on the middle waveguide.

Active waveguides with applied bias. This option is shown
in Fig. 6(c). All three waveguides are fabricated in the active
cross section, and the two side waveguides have metal contacts
connected on top of them. By applying reverse bias voltage
or pump current to these metal pads, one can control the
absorption in the QW layer, and thus tune the amount of
excess loss in the middle waveguide. This scheme allows some
tunability, but requires an active driving electronic to be perma-
nently connected. Similar to the first option, a small distance
between waveguides means that the opening between the metal
stripes will be 3–4 µm, which is on the limit of the fabrication
technology.

APPENDIX B: APPEARANCE OF DISSIPATIVE
COUPLING

Here we show how dissipative coupling arises in the system of
unitary coupled waveguides shown in Fig. 1(a) in the presence
of strong linear loss in the middle waveguide, C, along the lines
outlined, for example, in Ref. [24]. The system of three coupled
single-mode waveguides shown in Fig. 1(a) is described by the
following master equation:

d
dt
ρall = i[H, ρall ] + 0(2cρall c †

− ρall c †c − c †cρall ),

(B1)
where the Hamiltonian H describes unitary interaction between
modes:

H = c †(g a a + g bb)+ (g a a †
+ g bb†)c . (B2)

In Eqs. (B1) and (B2), x and x †, x = a , b, c are annihilation
and creation operators of the waveguide modes, respectively;
0 is the loss rate of mode C, and g a ,b are interaction constants
describing coupling strengths of modes A and B with mode C.
For simplicity, let us take g a ,b to be real, and |g a g b |> 0.

Next, let us suppose that the loss rate 0 is so large that the
state of central mode C quickly goes to the vacuum during the
time when the states of modes A and B are only weakly changed.
Then, mode C can be adiabatically eliminated, which results
in the following reduced master equation only for the state of
modes A and B [47]:

d
dt
ρ = γ

(
2(a + δb)ρ(a †

+ δb†)− ρ(a †
+ δb†)(a + δb)

− (a †
+ δb†)(a + δb)ρ

)
,

(B3)

where the loss rate is γ = 4g 2
a/0, and the asymmetry parameter

is δ = g b/g a . Equation (B3) is the one describing each part of
the device considered in Section 3.
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Nat. Photonics 8, 821–829 (2014).

18. J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, “Time-reversal-
symmetry breaking in circuit-QED-based photon lattices,” Phys. Rev.
A 82, 043811 (2010).

19. X. Huang, C. Lu, C. Liang, H. Tao, and Y. Liu, “Loss-induced nonre-
ciprocity,” Light Sci. Appl. 10, 30 (2021).

20. A. Metelmann and A. A. Clerk, “Nonreciprocal photon transmission
and amplification via reservoir engineering,” Phys. Rev. X 5, 021025
(2015).

21. C. C. Wanjura, M. Brunelli, and A. Nunnenkamp, “Topological frame-
work for directional amplification in driven-dissipative cavity arrays,”
Nat. Commun 11, 3149 (2020).

22. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University, 1995).

23. H. Ezaki, E. Hanamura, and Y. Yamamoto, “Generation of phase
states by two-photon absorption,” Phys. Rev. Lett. 83, 3558–3561
(1999).

24. D. Mogilevtsev and V. S. Shchesnovich, “Single-photon genera-
tion by correlated loss in a three-core optical fiber,” Opt. Lett. 35,
3375–3377 (2010).

25. M. Thornton, A. Sakovich, A. Mikhalychev, J. D. Ferrer, P. de la Hoz,
N. Korolkova, and D. Mogilevtsev, “Coherent diffusive photon gun for
generating nonclassical states,” Phys. Rev. Appl. 12, 064051 (2019).

26. P. T. Leung and K. Young, “Gauge invariance and reciprocity in quan-
tum mechanics,” Phys. Rev. A 81, 032107 (2010).

27. L. Deák and T. Fülöp, “Reciprocity in quantum, electromagnetic and
other wave scattering,” Ann. Phys. 327, 1050–1077 (2012).

28. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M.
Popovic, A. Melloni, J. Joannopoulos, M. Vanwolleghem, C. Doerr,
and H. Renner, “What is—and what is not—an optical isolator,” Nat.
Photonics 7, 579–582 (2013).

29. L. Ranzani and J. Aumentado, “Graph-based analysis of nonre-
ciprocity in coupled-mode systems,” New J. Phys. 17, 023024
(2015).

30. T. Gruner and D.-G. Welsch, “Quantum-optical input-output relations
for dispersive and lossy multilayer dielectric plates,” Phys. Rev. A 54,
1661–1677 (1996).

31. A. Krasnok, D. Baranov, H. Li, M.-A. Miri, F. Monticone, and A. Alú,
“Anomalies in light scattering,” Adv. Opt. Photon. 11, 892–951
(2019).

32. D. N. Biggerstaff, R. Heilmann, A. A. Zecevik, M. Gräfe, M. A.
Broome, A. Fedrizzi, S. Nolte, A. Szameit, A. G. White, and I.
Kassal, “Enhancing coherent transport in a photonic network using
controllable decoherence,” Nat. Commun. 7, 11282 (2016).

33. T. Eichelkraut, S. Weimann, S. Stützer, S. Nolte, and A. Szameit,
“Radiation-loss management in modulated waveguides,” Opt. Lett.
39, 6831–6834 (2014).

34. S. Mukherjee, D. Mogilevtsev, G. Slepyan, T. H. Doherty, R.
Thomson, and N. Korolkova, “Dissipatively coupled waveguide
networks for coherent diffusive photonics,” Nat. Commun. 8, 1909
(2017).

35. L. M. Augustin, R. Santos, E. den Haan, S. Kleijn, P. J. A. Thijs, S.
Latkowski, D. Zhao, W. Yao, J. Bolk, H. Ambrosius, S. Mingaleev,
A. Richter, A. Bakker, and T. Korthorst, “InP-based generic foundry
platform for photonic integrated circuits,” IEEE J. Sel. Top. Quantum
Electron. 24, 6100210 (2018).

36. K. Kraus, A. Böhm, J. D. Dollard, and W. H. Wootters, States, Effects,
and Operations Fundamental Notions of Quantum Theory (Springer,
1983), Vol. 190.

37. A. Mikhalychev, D. Mogilevtsev, and S. Kilin, “Nonlinear coherent
loss for generating non-classical states,” J. Phys. A 44, 325307
(2011).

38. S. Mukherjee, M. Di Liberto, P. Öhberg, R. R. Thomson, and N.
Goldman, “Experimental observation of Aharonov-Bohm cages in
photonic lattices,” Phys. Rev. Lett. 121, 075502 (2018).

39. J. F. Poyatos, J. I. Cirac, and P. Zoller, “Quantum reservoir engineer-
ing with laser cooled trapped ions,” Phys. Rev. Lett. 77, 4728–4731
(1996).

40. A. R. R. Carvalho, P. Milman, R. L. de Matos Filho, and L. Davidovich,
“Decoherence, pointer engineering, and quantum state protection,”
Phys. Rev. Lett. 86, 4988–4991 (2001).

41. F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, “Quantum compu-
tation and quantum-state engineering driven by dissipation,” Nat.
Phys. 5, 633–636 (2009).

42. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynam-
ics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).

43. R. Ma, B. Saxberg, C. Owens, N. Leung, Y. Lu, J. Simon, and D. I.
Schuster, “A dissipatively stabilized Mott insulator of photons,”
Nature 566, 51–57 (2019).

44. P. Rabl, A. Shnirman, and P. Zoller, “Generation of squeezed states of
nanomechanical resonators by reservoir engineering,” Phys. Rev. B
70, 205304 (2004).

45. P. de la Hoz, A. Sakovich, A. Mikhalychev, M. Thornton, N. Korolkova,
and D. Mogilevtsev, “Integrated source of path-entangled photon
pairs with efficient pump self-rejection,” Nanomaterials 10, 1952
(2020).

46. M. Alexanian and S. K. Bose, “Comment on “Generation of phase
states by two-photon absorption”,” Phys. Rev. Lett. 85, 1136 (2000).

47. H. Breuer, F. Petruccione, and S. Petruccione, The Theory of Open
Quantum Systems (Oxford University, 2002).

48. Y. Matsuzaki, V. M. Bastidas, Y. Takeuchi, W. J. Munro, and S. Saito,
“One-way transfer of quantum states via decoherence,” J. Phys. Soc.
Jpn. 89, 044003 (2020).

49. K. Yamamoto, Y. Ashida, and N. Kawakami, “Rectification in nonequi-
librium steady states of open many-body systems,” Phys. Rev. Res.
2, 043343 (2020).

50. D. Pustakhod, K. Williams, and X. Leijtens, “Method for polarization-
resolved measurement of electroabsorption,” IEEE Photon. J. 10,
6600611 (2018).

https://doi.org/10.1103/PhysRevLett.111.023602
https://doi.org/10.1103/PhysRevLett.121.123601
https://doi.org/10.1002/qute.202100112
https://doi.org/10.1038/nphys4283
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1103/PhysRevA.82.043811
https://doi.org/10.1103/PhysRevA.82.043811
https://doi.org/10.1038/s41377-021-00464-2
https://doi.org/10.1103/PhysRevX.5.021025
https://doi.org/10.1038/s41467-020-16863-9
https://doi.org/10.1103/PhysRevLett.83.3558
https://doi.org/10.1364/OL.35.003375
https://doi.org/10.1103/PhysRevApplied.12.064051
https://doi.org/10.1103/PhysRevA.81.032107
https://doi.org/10.1016/j.aop.2011.10.013
https://doi.org/10.1038/nphoton.2013.185
https://doi.org/10.1038/nphoton.2013.185
https://doi.org/10.1088/1367-2630/17/2/023024
https://doi.org/10.1103/PhysRevA.54.1661
https://doi.org/10.1364/AOP.11.000892
https://doi.org/10.1038/ncomms11282
https://doi.org/10.1364/OL.39.006831
https://doi.org/10.1038/s41467-017-02048-4
https://doi.org/10.1109/JSTQE.2017.2720967
https://doi.org/10.1109/JSTQE.2017.2720967
https://doi.org/10.1088/1751-8113/44/32/325307
https://doi.org/10.1103/PhysRevLett.121.075502
https://doi.org/10.1103/PhysRevLett.77.4728
https://doi.org/10.1103/PhysRevLett.86.4988
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1038/s41586-019-0897-9
https://doi.org/10.1103/PhysRevB.70.205304
https://doi.org/10.3390/nano10101952
https://doi.org/10.1103/PhysRevLett.85.1136
https://doi.org/10.7566/JPSJ.89.044003
https://doi.org/10.7566/JPSJ.89.044003
https://doi.org/10.1103/PhysRevResearch.2.043343
https://doi.org/10.1109/JPHOT.2018.2795250

