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Abstract
Recently, we introduced a resonant microwave cavity as a diagnostic tool for the study of ultracold
plasmas (UCPs). This diagnostic allows us to study the electron dynamics of UCPs
non-destructively, very fast, and with high sensitivity by measuring the shift in the resonance
frequency of a cavity, induced by a plasma. However, in an attempt to theoretically predict the
frequency shift using a Gaussian self-similar expansion model, a three times faster plasma decay
was observed in the experiment than found in the model. For this, we proposed two causes:
plasma–wall interactions and collisional microwave heating. In this paper, we investigate the effect
of both causes on the lifetime of the plasma. We present a simple analytical model to account for
electrons being lost to the cavity walls. We find that the model agrees well with measurements
performed on plasmas with different initial electron temperatures and that the earlier discrepancy
can be attributed to electrons being lost to the walls. In addition, we perform measurements for
different electric field strengths in the cavity and find that the electric field has a small, but
noticeable effect on the lifetime of the plasma. By extending the model with the theory of
collisional microwave heating, we find that this effect can be predicted quite well by treating the
energy transferred from the microwave field to the plasma as additional initial excess energy for
the electrons.

1. Introduction

With typical particle number densities of 1016 m−3, and temperatures as low as ∼1 K for electrons and a few
hundreds of microkelvins for ions, ultracold plasmas (UCPs) form a new exotic category of plasmas in
which the limits of conventional theories in plasma physics can be tested experimentally [1].

UCPs can be produced from ultracold atoms in a magneto-optical trap (MOT) by photo-ionizing the
atoms just above their ionization threshold [2]; the amount of excess energy of the ionization laser’s
photons, and the laser’s intensity profile determine the initial temperature of the electrons, and the plasma
density distribution, respectively. This makes it possible to create a plasma with much better controlled
initial conditions than in many other more conventional plasmas [3].

One of the remarkable features of UCPs is that they can also get strongly coupled, a condition in which
the average thermal energy between the particles in the plasma is less than their electrostatic potential
energy. As a result, correlations between particles become important, and kinetic plasma theory, which
assumes a large number of particles within a Debye sphere to screen the long-range Coulomb interactions,
breaks down. This condition is quantified by the so-called coupling parameter Γα > 1, with Γα being
defined as

Γα ≡ q2
α

4πε0akBTα
. (1)

Here, ε0 is the vacuum permittivity, a the Wigner–Seitz radius, kB the Boltzmann constant, and qα and Tα

the charge and temperature of the particle species α, respectively (α = e for electrons and α = i for ions).
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Experimentally, strong coupling can be observed in complex plasmas [4–6] and ionic plasmas, where it
may lead to Wigner crystallization. Similar conditions that may result in strong coupling are expected to be
found in astrophysical systems, such as white dwarfs, Jovian planets, and the crust of neutron stars [7, 8].

However, in the case of UCPs, certain heating mechanisms such as three-body recombination for the

electrons (due to the strong T−9/2
e rate dependence [9]), and disorder-induced heating for both electrons

[10] and ions [11] are preventing the plasma to go into the strongly coupled regime. Only recently, Killian
et al managed to obtain an ionic coupling parameter as high as 11, by laser cooling the ions in a Sr UCP
[12].

UCPs are typically studied with techniques which are employed in the field of atomic and particle
physics as well: charged particle diagnostics and optical techniques, such as laser-induced fluorescence [13]
and absorption imaging [14]. Charged particle detection, on the one hand, uses a static electric field to
capture the density profile of either the electrons or ions in the plasma by accelerating them to a nearby
microchannel plate detector with a static electric field. This technique allows the dynamics of the plasma
profile to be monitored at microsecond timescales, but is destructive for the plasma as a whole [1]. The
optical techniques, on the other hand, make it possible to capture the dynamics of the ions in a UCP
non-destructively and with a much higher temporal resolution, but are limited to UCPs with ions that
possess ground state electric-dipole-allowed transitions accessible to lasers and cameras [15]; they are
therefore not applicable to UCPs of all atomic species.

Recently, we introduced a new type of diagnostic for the study of UCPs that combines some of the
advantages provided by previous UCP diagnostic techniques; it allows the plasma to be followed
simultaneously in a non-destructive manner, with nanosecond temporal resolution, high sensitivity, and is,
as a technique, applicable to UCPs of all atomic species [16, 17].

This diagnostic tool is a 5 GHz microwave cavity with a compact diffraction grating-based
magneto-optical trap inside to laser cool and trap a cloud of 85Rb atoms [18, 19]. It uses the shift in the
resonance frequency of the cavity, induced by the UCP created from this ultracold atomic cloud, to retrieve
information on the electron dynamics of the plasma. The technique of using the frequency shift of a cavity
to probe a plasma is known as microwave cavity resonance spectroscopy (MCRS) [20–22] and has been used
before to study the dynamics of some other types of plasmas, such as low-pressure rf plasmas [23], etching
plasmas [24, 25], powder-forming plasmas [26], and more recently, plasmas induced by extreme ultraviolet
irradiation [27] and atmospheric-pressure plasma jets [28–30].

Although MCRS is an established method to measure the electron dynamics of plasmas, for UCPs, a full
quantitative comparison of the measured MCRS signal with a theoretical model has not been given so far.
In a first attempt to theoretically predict the MCRS signal in the study of an ultracold 85Rb plasma with the
aforementioned cavity, we found a quite good agreement between the measured shift in the resonance
frequency of the cavity, immediately after photo-ionization of the atomic cloud, and the theoretically
predicted shift, based on the knowledge of the atomic cloud, the laser beams used, and the photo-ionization
cross section of rubidium. However, we also observed that the plasma decayed three times faster than
predicted by a self-similar Gaussian expansion model [31]. We proposed two potential explanations for the
increased plasma decay: collisional microwave heating or inverse Bremsstrahlung, in which electrons
quivering in the Coulomb fields of the stationary ions deflect and absorb part of the cavity’s microwave
energy [32], and plasma–wall absorption.

In this paper, we investigate both decay mechanisms. We performed measurements of the plasma decay
with MCRS for different rf electric field strengths in the cavity. In addition, we developed an analytical
microscopic plasma model, derived from the macroscopic Gaussian self-similar expansion model, to predict
the flux and thus the loss of electrons to the cavity walls. We validated this model with MCRS
measurements performed on UCPs with different initial electron temperatures. We will show that the
cavity’s electric field indeed influences the lifetime of the plasma, but that this effect is rather subtle; we will
demonstrate that the major cause for the observed increase in plasma decay can be attributed to losses of
electrons from the plasma to the cavity walls, which is described quite well by the analytical plasma model.
In addition, by extending the model with the theory of collisional microwave heating, we find that the
measurements performed on plasmas with different rf electric field strengths in the cavity can be predicted
quite well by treating the energy transferred from the microwave field to the plasma as additional initial
excess energy for the electrons.

This paper is organized as follows. In section 2, the experimental setup is described and the technique of
MCRS is discussed in more detail. Then, in section 3, the measurements of the effect of the cavity’s rf
electric field on the decay time of the plasma are presented. Subsequently, the plasma model is discussed
(section 4); from the macroscopic self-similar expansion model, discussed in section 4.1, we derive the
equations for the microscopic model, which are presented in section 4.2. To verify the microscopic model,
we perform MCRS measurements on UCPs with different initial electron temperatures (section 4.3), and
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Figure 1. Experimental setup with the microwave cavity and a schematic representation of the data-acquisition system used to
measure the frequency shift of the cavity induced by a UCP.

subsequently, in section 4.4, the limitations of the microscopic model are discussed. To explain the rf
electric field measurements presented in section 3, the microscopic model is extended in section 5, by
including the theory of collisional microwave heating, and the model is subsequently compared to the rf
electric field measurements. Finally, in section 6, the conclusions and outlook are presented.

2. Experiment and methods

To produce a UCP and to perform MCRS experiments, we make use of the setup depicted in figure 1, and
follow similar steps as described in reference [17].

We laser cool and trap 85Rb atoms in the overlap volume formed by the incident and diffracted trapping
laser beams above a diffraction grating chip [18, 19] inside a 5 GHz microwave cavity.

Next, we use a two-step photo-ionization scheme to create a UCP; we excite the atoms from the
52S1/2(F = 3) ground state to the 52P3/2(F

′
= 4) excited state with the 780 nm trapping laser as excitation

laser, and subsequently we photo-ionize the atoms just above their ionization threshold using a tunable
480 nm pulsed dye laser (6 ns). This laser enters the cavity through one of the access holes, and its
wavelength is set to 477.867 nm, 476.679 nm, 474.322 nm, and 467.388 nm to create plasmas with initial
electron temperatures of 50 K, 100 K, 200 K, and 500 K, respectively.

Once the plasma is created, we measure the shift in the resonance frequency of the cavity, induced by the
presence of the plasma, with the data-acquisition system depicted in figure 1. We perform a frequency scan
with an rf generator controlled by a pc, for frequencies ω/2π ranging from 4948 MHz to 4958 MHz, in
steps of 100 kHz. The output power of the rf generator depends on the experiment, and is set between
−20 dBm and 10 dBm. For each applied frequency ω in a scan, we electrically couple an amount of rf
power Pin to the 5 GHz TM010 eigenmode of the cavity with a linear antenna, and measure (ten percent of)
the reflected power Pr with a power detector behind a directional coupler. The detector converts the
measured power into a voltage Vr, which is recorded as a function of time with an oscilloscope, as
illustrated in figure 2 by some waveforms that were acquired for different applied frequencies to the cavity
near its unperturbed resonance frequency ω0/2π ≈ 4952.95 MHz. The waveforms can be used to
reconstruct a set of Lorentzian curves describing the cavity’s resonant behavior for each time step. From
these curves, the frequency shift Δω(t) as a function of time t can be determined.

For a collisionless nonmagnetized UCP, the resonance frequency shift is related to the electron density
by [33]

Δω(t)

ω0
=

e2

2meε0ω2
0

ne(t), (2)

with e the elementary charge, me the electron mass, ω0 the resonance frequency of the empty (vacuum)
cavity, and ne(t) the so-called field-averaged electron density. The field-averaged electron density is defined
as
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Figure 2. The change in the cavity reflection voltage ΔVr ≡ Vr − V0 as a function of time t for six different applied frequencies
ω/2π to the cavity, due to the creation of a UCP at t = 0, with V0 being the average reflection voltage for t < 0.

Figure 3. The simulated electric field profile of the TM010 mode of the cavity, at different positions in the yz-plane. The color
indicates the square of the normalized electric field amplitude E/E0, with E0 being the field amplitude at position x = 0 mm,
y = 0 mm, and z = 2 mm. Reproduced from [17]. CC BY 4.0.

ne(t) ≡
∫

Vcav
ne(r, t)|E(r)|2d3r∫
Vcav

|E(r)|2d3r
, (3)

and represents the weighted average of the local electron density ne in the plasma, with the square of the
electric field E of the used resonant eigenmode of the cavity as a weight factor; it is calculated over all

positions r in the cavity volume Vcav, with r ≡
(
x, y, z

)T
being a position in Cartesian coordinates with

respect to the center of the diffraction grating chip in the cavity.
To interpret measurements of the decay of the field-averaged electron density ne(t) in terms of plasma

dynamics, an electric field map of the used eigenmode of the cavity, and a plasma model describing the
electron dynamics as a function of position and time are needed.

In section 4.2, a plasma model is presented. For the electric field, we use the field-map of the simulated
TM010 mode of the cavity, see figure 3. This field-map was previously obtained from simulations performed
in CST Microwave Studio [34] and verified with bead-pull measurements of the electric field (see reference
[17]).

4
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Figure 4. The normalized field-averaged electron density ne(t)/ne(0) as a function of time t for six different rf generator output
powers ranging from −20 dBm to +10 dBm, in steps of 6 dB; the amount of rf power Pin that enters the cavity (see figure 1) is
4.3 dB less due to losses in the directional coupler. The values in the legend between brackets indicate the rf electric field
amplitude E0 (in kV m−1) in the cavity estimated from the cavity’s quality factor [16].

3. Experimental evidence of collisional microwave heating

Before we proceed with the plasma model, we first experimentally investigate the effect of the rf electric field
strength on the decay time of the plasma.

In a previous paper [16], we created a plasma with an initial electron temperature of 50 K, and
calculated that, for the used rf electric field in the cavity (estimated to be �1.9 kV m−1 for an rf generator
output power of 10 dBm), collisional microwave heating could increase the temperature by as much as
∼102 K in the first microsecond after the plasma was created.

Here, we create a plasma with an initial electron temperature of 50 K as well, and lowered the rf power
supplied to the cavity to investigate whether collisional microwave heating affects the plasma decay time.

To create a UCP, we first laser cool and trap a cloud of 85Rb atoms. The trap contains 6.2 × 107

atoms, determined by fluorescence imaging, and has a Gaussian density distribution with a peak density of
1.1 × 1016 m−3 and rms sizes of 1.1 mm by 0.54 mm by 0.57 mm in the x-, y-, and z-direction, respectively.

Subsequently, a UCP is produced by photo-ionizing the ultracold atomic cloud with the dye laser, with
on average, 420 μJ per pulse. The field-averaged electron density as a function of time t was measured for
six different rf generator output powers, ranging from −20 dBm to +10 dBm; see figure 4. The density was
normalized for each rf curve with respect to the density at time t = 0 μs, and the noisy data was smoothed
with a moving average filter with a window of 500 ns to make the plasma decay trend clearer, without losing
a significant amount of temporal information in the data; the 1/e response time (temporal resolution) of
the cavity to a perturbation is, after all, 18 ns [17].

As can be seen from figure 4, the rf electric field influences the plasma lifetime; decreasing the rf power
leads to a slower plasma decay. Moreover, for an rf generator output power of −8 dBm or less, the curves
start to lie on top of each other and the electric field in the cavity does not seem to influence the decay time
of the plasma significantly anymore; note that using this value allows us to study the UCP with MCRS
non-intrusively as well.

Nevertheless, the effect of the rf electric field on the decay time of the plasma is too small to explain the
discrepancy between earlier observations and the self-similar Gaussian expansion model. To fully explain
the data, an additional loss mechanism is needed.

4. Analytical model for plasma expansion and wall interaction

In this section, the influence of the loss of electrons to the cavity walls is investigated. For this, a simple
microscopic model was developed to calculate the flux and thus the loss of electrons to the cavity walls. This
model is based on the macroscopic self-similar Gaussian expansion model, which has been described in
literature before, see e.g. references [1, 35] for an in-depth treatment. Here, we first recapitulate the
important steps that lead to its derivation, since we use some of the results to derive the microscopic model.

4.1. Self-similar expansion model
The self-similar Gaussian expansion model is a collisionless plasma model, with its dynamics governed by
the Vlasov equation. The model assumes (1) the electrons to be in equilibrium with each other at all time
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instances, (2) a Gaussian particle density distribution for both the electrons and ions, and (3)
quasi-neutrality for the plasma as a whole.

The first assumption (‘electron equilibrium’) is justified by the small electron-to-ion mass ratio, which
makes electrons very mobile on the timescales the ions move. This means that the velocity distribution of
the electrons can be described by a Maxwell–Boltzmann velocity distribution

fv,e =

(
me

2πkBTe(t)

)3/2

exp

(
− mev

2

2kBTe(t)

)
, (4)

at all times, with v the velocity of the particles.
The second assumption (‘Gaussian profile’) corresponds with the typical shape of a UCP produced in

experiments [1]. For electrons in the cavity, the Gaussian electron density distribution ne is given by

ne =
Ne

(2π)3/2σ3(t)
exp

(
− (r− r0)2

2σ2(t)

)
, (5)

with Ne the total number of electrons in the plasma, σ the rms size of the plasma, and r0 =
(
x0, y0, z0

)T
the

position of the center of the UCP with respect to the center of the diffraction grating chip.
Substituting the product of these distributions, which represents the electron phase space density

fe = fv,ene, into the electronic Vlasov equation results in the following expression for the mean-field
potential ϕ experienced by the electrons and ions:

e∇ϕ = −kBTe(t)

σ2(t)
(r− r0). (6)

Equation (6) shows that the force Fα = −qα∇ϕ acting on the particles of species α is proportional to the
position with respect to the center of the plasma. For the ions, this suggests that their velocity distribution
can be described by a local Maxwell–Boltzmann distribution

fv,i =

(
mi

2πkBTi(t)

)3/2

exp

(
−mi(v− u)2

2kBTi(t)

)
, (7)

with u = γ(t)(r − r0) the average velocity of the ions, mi the mass of the ions, and γ(t) a parameter
describing the rate at which the plasma expands.

Substituting equations (6) and (7) into the ionic Vlasov equation, and assuming the plasma to be
quasi-neutral, such that the ion density distribution ni ≈ ne, gives a set of three differential equations for
the macroscopic plasma parameters σ(t), γ(t), and Ti(t), with solutions [1]:

σ2(t) = σ2(0)
(
1 + t2/τ 2

)
, (8a)

γ(t) =
t/τ 2

1 + t2/τ 2
, (8b)

Ti(t) =
Ti(0)

1 + t2/τ 2
, (8c)

where τ ≡
√

miσ2(0)/kB[Te(0) + Ti(0)] is the expansion time of the plasma. A fourth macroscopic plasma
parameter, the electron temperature

Te(t) =
Te(0)

1 + t2/τ 2
, (8d)

follows from the conservation of the average kinetic energy E per electron–ion pair in the plasma:

dE

dt
=

d

dt

{
3

2
kB[Te(t) + Ti(t)] +

3

2
miγ

2(t)σ2(t)

}
= 0. (9)

Equations (8a)–(8d) give a full description of the macroscopic plasma behavior in the self-similar
expansion model; they show that the phase space distributions of the electrons and ions remain Gaussian,
while expanding.

4.2. Plasma-wall interaction model
However, to describe the effect of absorption of electrons by the cavity walls, we need a microscopic plasma
model. To establish such a model, we first have to calculate how the positions and velocities of individual
particles in the plasma change under the influence of the mean-field potential [equation (6)]. We can do
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Figure 5. The trajectories of two outwards spiraling electrons with different initial positions and velocities in the yz-plane of the
cavity.

this by substituting the solutions of the plasma rms size [equation (8a)] and the electron temperature
[equation (8d)] back into equation (6). This gives an explicit expression for the force Fα acting on particles
of species α as a function of position and time, i.e.,

Fα =
sgn(qα)kBTe(0)

σ2(0)
(
1 + t2/τ 2

)2 (r− r0), (10)

with sgn(x) ≡ x/|x| the sign function.
The equation of motion for a single electron in the plasma then becomes

me
d2re

dt2
= − kBTe(0)

σ2(0)
(
1 + t2/τ 2

)2 (re − r0), (11)

with re being the position of an electron as a function of time. Solving equation (11), and assuming that the
electron temperature Te � Ti yields (see appendix A):

re(t) = r0 +

√
1 +

t2

τ 2

{
ve,0τ

χ
sin

[
χ arctan

( t

τ

)]
+ (re,0 − r0) cos

[
χ arctan

( t

τ

)]}
, (12)

with re,0 and ve,0 the initial position and velocity of an electron, respectively, and χ2 − 1 ≡ mi/me the
ion-to-electron mass ratio. The trajectories described by equation (12) represent outwardly directed spiral
trajectories in a plane through the plasma. To illustrate this, we plotted the trajectories of two electrons with
a different initial position re,0 and initial velocity ve,0 as a function of time; see figure 5.

To calculate the amount of electrons lost to the cavity walls, we perform a simulation in which we follow
the trajectories of Nmacr ∼ 103 macroparticles representing a collection of electrons, with their initial
positions sampled from a Gaussian electron density distribution, given by equation (5), and their initial
velocities sampled from a Maxwell–Boltzmann distribution [equation (4)]. For each macroparticle k in the
plasma (k ∈ {1, 2, 3, . . . , Nmacr}), we use equation (12) to keep track of its position re(k, t) in order to
calculate the time tw,k at which it collides with the nearest cavity wall. Since the cavity is grounded, we
assume the electrons in a macroparticle to be absorbed by the wall when this occurs; we consequently
remove the macroparticle from the simulation and calculate the remaining number of electrons in the
cavity (or equivalently the electron flux to the wall) as a function of time.

To compare the model with a measurement of the field-averaged electron density, we notice that the
number of electrons in the cavity Ne(t) ∼ ne(t) for early times after the plasma is created. This is because
the electric field in equation (3) is nearly constant in the region 4.8 mm � z � 0 mm and x2 + y2 �
100 mm2 where the plasma is typically created; see figure 3.

However, for a more accurate comparison at all times during the plasma decay, we use the field map of
figure 3 to determine the field-averaged electron density. The field map consists of Ngrid = 273 × 273 × 211
Cartesian grid points with Vgrid = 0.25 × 0.25 × 0.25 mm3 the volume of a cell surrounding each grid
point, and En the magnitude of the local electric field at the nth point (n ∈ {1, 2, 3, . . . , Ngrid}). We calculate
the field-averaged electron density by discretizing equation (3), which results in

ne(t) ≈ Ne(0)

Nmacr

∑Nmacr
k=1 E2

f (re(k,t))H(tw,k − t)∑Ngrid
n=1 E2

nVgrid

, (13)

with f being a function which maps the position re(k, t) of the kth macroparticle at time t on the nearest
gridpoint n of the electric field map, H the Heaviside step function, and Ne(0) the total number of electrons
in the plasma at time t = 0.
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Figure 6. The particle positions in the yz-plane of the cavity, at time t = 50 μs and t = 100 μs for the case without wall
absorption (two left figures) and the case with wall absorption (two right figures). The cavity walls are indicated in gray and the
red circle drawn around the plasma, having a radius of 2σ(t), illustrates the size of the plasma according to the macroscopic
model [equation (8a)].

As can be seen from equations (4), (5) and (12), our model essentially depends on four input
parameters: the initial electron temperature Te(0), the initial number of electrons Ne(0) in the plasma, the
initial plasma rms size σ(0), and the initial position r0 of the center of the plasma with respect to the
diffraction grating chip.

To compare our model with the self-similar expansion model, we performed a simulation in which we
track the positions of 3000 particles as a function of time, during the first 100 μs of the plasma decay, in
time steps of 100 ns. We created a particle distribution with initial conditions resembling the conditions of
the measurement reported in a previous paper [16]; we chose Te(0) = 50 K, Ne(0) = 5.2 × 106 electrons,
r0 = (0, 0, 3.5)T mm, and, since our model assumes the plasma to have a spherical instead of ellipsoidal
shape, we set σ(0) to the geometrical mean of the rms sizes of the plasma created in reference [16], which is
410 μm.

The results of the simulation for two time steps during the plasma decay are shown in figure 6; on the
left side, the particle positions in the yz-plane are shown for the case absorption of the particles by the
cavity walls is turned off, which is equivalent to the situation described by the macroscopic self-similar
expansion model, while the right side of figure 6 shows the situation where particles are absorbed by the
cavity walls, as described by the microscopic model. The cavity walls are indicated in gray and a red circle
with a radius of 2σ(t), containing ∼73% of the total amount of particles in the case without wall
absorption, is drawn around the plasma to illustrate the size of the plasma according to the self-similar
model [equation (8a)].

As can be noticed from figure 6, the number of electrons inside the cavity, responsible for the magnitude
of the field-averaged electron density, is significantly less in the case with wall absorption than in the case
without wall absorption, which could explain the faster decay in the microscopic model. In both cases, the
electrons that enter the region z < 0 do not contribute to the field-averaged electron density, since the
electric field E = 0 kV m−1. However, a difference between the microscopic and macroscopic model
originates from the spiral trajectories electrons make in the microscopic model. If such a spiral trajectory
intersects with a wall, then the electron is absorbed. As a consequence, the upper part of the plasma sphere
in figure 6 is empty in the case wall absorption is turned on, since these particle positions have become
‘forbidden’ by the microscopic model. Hence, this leads to a faster plasma decay in the microscopic model
than in the macroscopic model.

4.3. Experimental verification of the model
To verify our model, we first performed MCRS measurements on UCPs with four different initial electron
temperatures; see figure 7. We measured the field-averaged electron density as a function of time for
decaying plasmas with an initial electron temperature set to Te(0) = 50 K, 100 K, 200 K, and 500 K. The
temperature was set by controlling the wavelength (photon excess energy) of the ionization laser. The
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Figure 7. The field-averaged electron density ne as a function of time t for a UCP with an initial electron temperature
Te(0) = 50 K, 100 K, 200 K, and 500 K.

output power of the rf generator was set to −8 dBm, such that the influence of the cavity’s rf electric field
on the plasma decay time is negligible, as discussed in section 3.

Subsequently, a simulation was performed and the field-averaged electron density predicted by our
model was compared to the measurements.

The input parameters for our model were determined as follows. The value of the initial electron
temperature Te(0) was calculated from the measured wavelength of the ionization laser, as mentioned
before.

The initial number of electrons Ne(0) was chosen, such that the initial measured field-averaged electron
density of the 500 K curve matches the predicted one quite well. This is justified since we already showed in
a previous paper [16] that we could predict Ne(0) quite well (within 20% of the measured value), and since
Ne(0) in our model does not determine how fast the plasma decays. Using the 500 K measurement curve as
a reference, gives Ne(0) = 5.0 × 106 electrons. For the simulation of the other measurement curves, this
value was scaled by the ratio of ne(0) of the 500 K measurement curve and ne(0) of a curve at temperature
Te(0).

The initial plasma rms size was set to σ(0) = 465 μm. This value was estimated from the dimensions of
the MOT and from the properties of the ionization laser beam [16]. Knowing the initial plasma rms size
very accurately is, however, not important; for early times during the plasma decay, the plasma is located in
a constant electric field region, and the MCRS signal therefore does not depend on the size of the plasma.
For later times (when the plasma collides with the wall), the contribution of σ(0) to the total plasma rms
size σ(t) [equation (8a)] becomes negligible. For example, when we consider the UCP with an initial
electron temperature Te(0) = 500 K, which starts colliding with the wall around t = tw ≈ 6 μs (see
figure 7), then we find that the rms size σ(tw) = 1.4 mm. However, if the initial rms size is not taken into
account, then this yields σ(tw) = tw

√
kBTe(0)/mi = 1.3 mm, a difference of only 6%, which is increasingly

becoming smaller.
The initial position z0 of the plasma above the diffraction grating chip was determined from a

fluorescence image of the laser-cooled 85Rb gas cloud; the image was taken with an infrared camera behind
a dichroic mirror, through one of the cavity access holes, see figure 8. With the help of an accurate, in-house
built computer-controlled translation stage the ionization laser beam was moved along the x- and
z-direction inside the cavity, until the center of the 85Rb cloud overlapped as good as possible with the
center of the ionization laser beam and the measured MCRS signal is maximal; the position of the center of
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Figure 8. Determination of the position z0 of the plasma above the diffraction grating chip. (a) With the help of a
computer-controlled stage (not shown here), the ionization laser (1) is moved along the x- and z-direction in the cavity (2), until
the laser overlaps best with the 85Rb gas cloud (3) and the measured MCRS signal is maximal. The position of the cloud above
the grating, obtained from a fluorescence image taken with an infrared camera (4) behind a dichroic mirror (5), can then be used
as an estimate for z0. (b) The actual fluorescence image used to determine the position z0. From the known height h = 7.5 mm of
the access hole through which the camera looks, the pixel density of the image/camera magnification was determined.

the cloud above the diffraction grating chip can then be used as an estimate for the initial position z0 of the
UCP in the cavity.

From the known height h = 7.5 mm of the cavity access hole, the pixel density of the fluorescence image
was determined to be (127 ± 10) px/7.5 mm ≈ (17 ± 2) px mm−1. Multiplying the inverse of this value
with the amount of pixels the atomic cloud is located above the diffraction grating chip, results in
z0 = (3.6 ± 0.4) mm. The value of z0 = 3.6 mm was therefore used as an input parameter for the
simulation. The positions x0 = y0 = 0 mm, since the plasma is created above the center of the diffraction
grating chip.

With these input parameters, we performed a simulation of the plasma decay for each of the measured
curves given in figure 7; we compared the field-averaged electron density predicted by our model (‘wall
interaction model’) to the measurement data and ne resulting from the self-similar expansion model.

As can be seen from figure 7, the field-averaged electron density predicted by the wall interaction model
matches the measurement data quite well; there are some small deviations, but the model overall predicts
the timescale at which the plasma decays, in comparison with the self-similar model, quite accurately.
Moreover, it works for UCPs with different initial electron temperatures and does not require any fit
parameters to do so.

4.4. Discussion of the validity of the model
Self-similarity. For the UCP with Te(0) = 50 K, and for later times during the decay of each plasma, there

are still some small deviations. This is, however, not surprising, since the self-similar expansion model, and
therefore also the wall interaction model start to lose their validity in those cases. For Te(0) � 50 K, UCP
heating mechanisms, such as three-body recombination, become relevant, which cause the plasma to
expand faster than solely based on the excess energy of the ionization laser’s photons. In addition, the
self-similar expansion model assumes the plasma to be completely neutral; in reality, many UCPs are
quasi-neutral and have a small charge-imbalance due to the escape of the hot electrons right after the
moment the UCP is created. In our case, we estimate the initial charge-imbalance of the UCP to be on the
order of ∼10%, which increases for later times during the plasma decay, since we expect relatively more
electrons than ions to be absorbed by the cavity walls. This might lead to a UCP that expands faster than
predicted by the model at later times during the decay (see figure 7), for similar reasons as why we would
expect a (completely positively charged) cloud of ions to expand faster than a neutral plasma (which is the
consequence of large space-charge forces between the ions, leading to a rapid Coulomb explosion of the ion
cloud).

However, in order to better predict the effect of a charge-imbalance on the plasma decay at later times
during the decay, more advanced simulations should be performed that take the change of the mean-field
potential due to a charge-imbalance into account.

Electron trajectories. The microscopic model we presented was based on a collisionless approach: the
mean-field force acting on the electrons in the plasma lets them make spiral movements which inherently
conserve the Maxwell–Boltzmann distribution [equation (4)], without the need for collisions. In reality,
however, electron–electron collisions might change the directions of the electrons in the plasma, and thus
their trajectories. In fact, an estimation of the electron–electron collision frequency νee according to the
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Landau–Spitzer treatment shows that, for early times during the plasma decay,

νee =
1√
3π

ωp,eΓ
3/2
e ln Λ ∼ 102 μs−1. (14)

In this equation, ωp,e =
√

nee2/(meε0) is the electron plasma frequency, and lnΛ = ln[(1 + b2
max/b2

min)1/2]
the Coulomb logarithm, with bmin and bmax the minimum and maximum impact parameter, respectively.
Here, we set bmin to bmin = e2/

(
4πε0mev

2
th

)
as minimum cut-off value for the Coulomb logarithm, with

vth =
√

kBTe/me the thermal velocity of electrons, and used the Debye length λD = vth/ωp,e as maximum
impact parameter.

However, in the presence of an rf electric field, the Coulomb logarithm changes significantly [32];
besides the thermal motion of electrons, the ponderomotive velocity vosc = eE0/(meω0) needs to be taken
into account as well, which replaces the thermal velocity vth in the Coulomb logarithm by an effective
velocity veff ≡

√
v2

th + v2
osc, and the electron plasma frequency in bmax by the frequency ω0 of the rf electric

field.
A calculation then shows that, for the used electric field in the cavity (estimated to be E0 ≈ 0.2 kV m−1),

the collision frequency rapidly drops to νee ∼ 0.1 μs−1 in approximately 20 μs after the plasma is created.
This time is comparable with the time it takes for the plasma to hit the wall, and the electron–electron
collision time τ ee = 1/νee ∼ 10 μs around that moment becomes similar in size to the earlier defined
expansion time τ ≈

√
miσ2(0)/ [kBTe(0)] of the UCP (see section 4.1). We therefore think collisions are

not significant for the plasma decay, which agrees well with the measurements, but this reasoning assumes
that the weakly coupled theory for the collision frequency is valid. In reality, the Landau–Spitzer theory
starts to break down for Γe � 0.2, which occurs for the 50 K plasma at almost the same time the collision
frequency reaches νee ∼ 0.1 μs−1. Although several expressions have been proposed recently that replace the
Coulomb logarithm in equation (14) by an effective Coulomb logarithm to correct for strong coupling
effects [36], to our best knowledge, none of these corrections include the effect of an rf electric field as well.
In order to make a better prediction of the exact effect of collisions on our decay curves, new theory should
therefore be developed that takes into account both the effects of strong coupling and an rf electric field on
the Coulomb logarithm. In addition, more advanced simulations should be performed that take the change
of the mean-field potential due to a charge-imbalance at later times during the plasma decay into account.

5. Collisional microwave heating

In the previous section, a model for the expansion and wall losses was developed and validated. In this
section, we will extend this model to include collisional microwave heating and apply this to explain the
observations made in section 3.

The collisional microwave heating rate Pei for electrons in an rf electric field is given by [32]

Pei = 2νeiUp, (15)

with νei the effective electron–ion collision frequency, which is, for vosc � vth and apart from a factor
√

2,
equal to the electron–electron collision frequency νee given by equation (14), and Up = (eE0)2/(4meω

2
0),

the ponderomotive energy of an electron in the rf electric field.
Adding this term to the right-hand side of the energy conservation equation, equation (9), as a heating

source term for the electrons, and assuming the temperature of the electrons Te � Ti, results in the
following set of coupled differential equations for the macroscopic plasma parameters σ(t), γ(t), and Te(t):

∂σ2(t)

∂t
= 2γ(t)σ2(t), (16a)

∂γ(t)

∂t
=

kBTe(t)

miσ2(t)
− γ2(t), (16b)

∂Te(t)

∂t
= −2γ(t)Te(t) +

Pei [E0, Te(t), ne(t)]
3
2 kB

. (16c)

The microwave heating rate Pei in equation (16c) is a function of the electric field strength E0, the electron
temperature Te, and the electron density ne. To couple equation (16c) to (16a), and to solve the problem, we
still need to establish an additional relationship between ne and σ. For simplicity, we ignore the spatial
dependence of the electron density profile and set the electron density ne in the microwave heating rate
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Figure 9. The macroscopic plasma parameters σ, γ, and Te as a function of time, for different rf electric fields strengths, for
initial conditions Ne(0) = 7.4 × 106 electrons, σ(0) = 4.6 × 102 μm, and Te(0) = 50 K.

expression to half of the peak density of a Gaussian-shaped UCP with rms size σ, i.e.,

ne(t) =
1
2 Ne(0)

(2π)3/2σ3(t)
. (16d)

Equations (16a)–(16d) then describe the macroscopic plasma behavior in the presence of an rf electric
field, without wall absorption. The numerical solutions for the plasma parameters are illustrated in figure 9,
for electric field strengths and initial conditions very similar to those for the plasma produced for the rf
measurements discussed in section 3, i.e., Ne(0) = 7.4 × 106 electrons, σ(0) = 4.6 × 102 μm, and
Te(0) = 50 K.

As can be seen from figure 9, the electron temperature rises immediately after the UCP is created, in the
presence of an rf electric field. This is because the microwave heating rate is strongest during the initial
phase of the plasma expansion and then quickly drops due to an initial increase in temperature and a
decreasing electron density.

To determine the plasma behavior in the case of collisional microwave heating with wall absorption, we
need a microscopic plasma description again. Such a description requires a non-conservative force acting
on the electrons to account for the energy increase by microwave heating, and is not easy to find. For
example, simply modeling collisional microwave heating phenomenologically as an effective frictional force
acting on the electrons [32] does not preserve the self-similarity of the model.

However, since the microwave heating mainly takes place during the initial phase of the plasma
expansion, we assume that the heating can be taken into account by an instantaneous electron temperature
increase, on top of the excess energy the electrons already obtain from the photo-ionization laser; we can
then use the wall interaction model again to estimate the effect of collisional microwave heating on the
plasma decay curves.

To account for the additional initial excess energy obtained from collisional microwave heating, we take
the maximum electron temperature the plasma reaches for each rf electric field strength, shown in figure 9,
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Figure 10. The measured and modeled normalized field-averaged electron density ne(t)/ne(0) for a decaying UCP with
Te(0) = 50 K. (a) The decay in the presence of an rf electric field with size E0 ≈ 0.06 kV m−1, where microwave heating is
negligible. (b) The decay in a field with size E0 ≈ 1.9 kV m−1, where microwave heating is relevant and leads to an increase of
Te(0) to 128 K in the wall interaction model. The dotted line in both figures indicates the half-time of the modeled decay.

Figure 11. The modeled normalized field-averaged electron density ne(t)/ne(0) as a function of time t for six different rf electric
field amplitudes E0 in the cavity. The field amplitudes correspond to the values used for the rf measurements presented in
figure 4. The initial electron temperature Te(0) for each curve was set to the maximum temperature the plasma reaches in
figure 9 due to collisional microwave heating.

and then perform a simulation with the wall interaction model with this temperature as initial electron
temperature.

Figure 10 shows the results of the simulation for the lowest and highest rf electric field strength used in
the rf measurements discussed in section 3. In figure 10(a), E0 ≈ 0.06 kV m−1, and collisional microwave
heating is negligible; the UCP indeed follows the wall interaction model with Te(0) = 50 K, solely
determined by the excess energy of the photo-ionization laser. In figure 10(b), however, the effect of
collisional microwave heating is expected to be relevant; the electric field strength E0 ≈ 1.9 kV m−1, which
leads to a rapid temperature increase from 50 K to 128 K according to the temperature curve in figure 9. By
setting Te(0) to Te(0) = 128 K in the wall interaction model, and performing a simulation, we can clearly
see that collisional microwave heating predicts the decay time (half-time) of the UCP quite well, see dotted
line in figures 10(a) and (b).
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In figure 11, the simulations for all field strengths are shown, with for each curve the initial electron
temperature set to the peak value the corresponding temperature curve reaches in figure 9. The overall
behavior of those curves agrees quite well with the behavior of the rf measurements presented in figure 4.

The observations of the reduced lifetime of the plasma with an increasing electric field size in the cavity,
made in section 3, can therefore be explained by the existing theory of collisional microwave heating.
However, to make a more realistic prediction of the effect of this heating mechanism on the plasma decay
time, more advanced simulations (e.g. particle-in-cell) should be performed, preferably in combination
with an improved cavity design in which the effect of the cavity wall is eliminated. This would enable us to
study collisional microwave heating in a more clean way, and potentially in relationship to other competing
fundamental plasma heating mechanisms of interest at low temperatures, such as three-body
recombination.

6. Conclusions and outlook

We investigated the effect of collisional microwave heating and plasma–wall interactions on the decay time
of a UCP measured with a resonant microwave cavity.

To study the effect of plasma–wall interactions, we developed a simple analytical microscopic model
which is based on the collisionless macroscopic Gaussian self-similar expansion model. We showed that the
electrons make spiral trajectories in the plasma, which lead to a faster plasma decay than predicted by the
macroscopic model when taking absorption of electrons by the cavity walls into account. We validated our
model with measurements of the decay of a UCP with an initial electron temperature of 50 K, 100 K, 200 K,
and 500 K, and found that the model agrees well with the measurements; some small deviations, present at
later times during the decay and in the 50 K measurement—which are not surprising given the analytical
nature of the model—are attributed to charge-imbalance effects and collisions associated with three-body
recombination, respectively.

To study the effect of collisional microwave heating, we performed measurements on the plasma decay
for different rf electric field strengths in the cavity. We found that, for fields below ∼0.2 kV m−1, the effect
is negligible; this allows us to use MCRS as a non-intrusive technique for studying UCPs as well. For higher
electric field strengths, there is a small, but noticeable effect on the lifetime of the plasma. By using the
microscopic model again and treating the energy transferred from the microwave field to the plasma as an
additional initial excess energy for the electrons, we found that the rf measurements match reasonably well
with the model. This means that the effect of the electric field on the decay time of the plasma can be
attributed to collisional microwave heating.

The earlier observed discrepancy of a factor of three in the decay time of the plasma between model and
measurement is therefore mainly caused by plasma–wall interactions; the effect of the rf electric field on the
decay time is only small.

However, more research is needed to investigate whether electron–electron collisions can alter the
electron trajectories in such a way that the decay time is significantly changed. Although there are strong
reasons to believe that this is not the case (the Coulomb logarithm is suppressed in the presence of an rf
field when the plasma hits the nearest wall, and there is a good agreement between the measurement data
and model), more advanced simulations should be performed to validate this. This should be done in
combination with the development of new collision theory, since the current collision theory that corrects
for strong coupling effects does not include the effect of an rf electric field on the Coulomb logarithm.
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Appendix A. Particle trajectories

To determine the time at which an electron in the plasma collides with a cavity wall and gets absorbed, and
therefore to estimate the amount of electrons lost to the walls, we need to calculate the electron trajectories.

In this appendix, we will give a derivation for the electron trajectories, and for the ion trajectories as
well. Our derivation, and thus the microscopic model presented in this paper, is based on the collisionless
macroscopic self-similar expansion model; it uses the mean-field potential given by equation (6) to calculate
the particle trajectories of both the electrons and ions.

As discussed in section 4.2, substitution of the solutions of the plasma rms size [equation (8a)] and
electron temperature [equation (8d)] into the mean-field potential [equation (6)] leads to an explicit
expression for the force acting on the particles [equation (10)] as a function of position and time. This
results in the following equation of motion for the position of individual particles in the plasma

(
1 + t2/τ 2

)2 d2r̃α
dt2

− Cαr̃α = 0. (A.1)

Here, r̃α ≡ rα − r0 is the position of a single particle of species α with respect to the position of the center
of the plasma, Cα a constant defined as Cα ≡ sgn(qα)kBTe(0)/

[
mασ

2(0)
]
, and mα the particle mass.

Equation (A.1) represents a second-order linear ordinary differential equation with non-constant
coefficients, and can be solved analytically by converting it to a constant-coefficient differential equation by
using the following transformation [37]:

ξ ≡ τ arctan(t/τ), (A.2a)

wα ≡ r̃α/
√

1 + t2/τ 2. (A.2b)

Substitution of equation (A.2b) into (A.1) yields

(
1 + t2/τ 2

)3/2 d2r̃α
dt2

− Cαwα = 0. (A.3)

This leaves us with calculating the second-order derivative of the particle positions d2r̃α/dt2 in terms of wα,
which in turn can be calculated from the first-order derivative. By applying the chain rule, using the
derivative of equation (A.2a), which is dξ/dt = 1/

(
1 + t2/τ 2

)
, and by using equation (A.2b), the

first-order derivative dr̃α/dt in terms of wα becomes

dr̃α
dt

=
dr̃α
dξ

dξ

dt

=

[
dwα

dξ

√
1 +

t2

τ 2
+wα

d

dξ

(√
1 +

t2

τ 2

)]
dξ

dt

=
dwα

dξ

1√
1 + t2/τ 2

+wα
t/τ 2√

1 + t2/τ 2

=

(
dwα

dξ
+

t

τ 2
wα

)
1√

1 + t2/τ 2
. (A.4)

The second-order derivative d2r̃α/dt2 in terms of wα can be found in a similar way, and becomes

d2r̃α
dt2

=
dξ

dt

d

dξ

(
dr̃α
dt

)

=
dξ

dt

[(
d2wα

dξ2
+

1

τ 2

dt

dξ
wα +

t

τ 2

dwα

dξ

)
1√

1 + t2/τ 2
−
(

dwα

dξ
+

t

τ 2
wα

)
t/τ 2

(1 + t2/τ 2)3/2

dt

dξ

]

=
1

(1 + t2/τ 2)3/2

[
d2wα

dξ2
+

(
1

τ 2
+

t2

τ 4

)
wα +

t

τ 2

dwα

dξ
−
(

dwα

dξ
+

t

τ 2
wα

)
t

τ 2

]

=
1

(1 + t2/τ 2)3/2

(
dwα

dt2
+

1

τ 2
wα

)
. (A.5)

Substitution of equation (A.5) into (A.3) results in the following second-order differential equation with
constant coefficients:

d2wα

dξ2
+

(
1

τ 2
− Cα

)
wα = 0. (A.6)
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This equation can be solved analytically by substituting the ansatz wα = exp (−Ωαξ) c, with c an arbitrary
vector, into the differential equation. This gives the following auxiliary equation

Ω2
α + 1/τ 2 − Cα = 0. (A.7)

The roots Ωα of the auxiliary equation depend on the plasma species α. For electrons, the two roots are
given by

Ωe = ±j

√
1

τ 2
− Ce

= ± jχe

τ
, (A.8)

with j the imaginary unit, and the variable χe defined as

χe ≡

√
1 +

mi

me

Te(0)

Te(0) + Ti(0)
. (A.9)

The general solution of equation (A.6) for electrons then becomes

we(ξ) = c1 cos
(χe

τ
ξ
)
+ c2 sin

(χe

τ
ξ
)

, (A.10)

with c1 and c2 two vectors depending on the initial conditions of an electron in the plasma. Rewriting
equation (A.10) in terms of the electron position re(t) by using equation (A.2b), yields

re(t) = r0 +

√
1 +

t2

τ 2

{
c1 sin

[
χe arctan

( t

τ

)]
+ c2 cos

[
χe arctan

( t

τ

)]}
. (A.11)

The vectors c1 and c2 can be found by applying the initial conditions for the position and velocity of an
electron to equation (A.11). From the initial electron position re(t = 0) = re,0, we find that c2 = re,0 − r0.
The vector c1 can be found by first calculating the velocity ve(t) of an electron as a function of time, by
taking the derivative of equation (A.11). This gives

ve ≡
dre

dt

=
t/τ 2√

1 + t2/τ 2

{
c1 sin

[
χe arctan

( t

τ

)]
+
(
re,0 − r0

)
cos

[
χe arctan

( t

τ

)]}

+
χeτ

t2 + τ 2

√
1 +

t2

τ 2

{
c1 cos

[
χe arctan

( t

τ

)]
− (re,0 − r0) sin

[
χe arctan

( t

τ

)]}
. (A.12)

By using the initial condition for the electron velocity ve(t = 0) = ve,0, we find that c1 = ve,0τ/χe.
The full solution of a trajectory of an electron in the plasma is then described by

re(t) = r0 +

√
1 +

t2

τ 2

{
ve,0τ

χe
sin

[
χe arctan

( t

τ

)]
+ (re,0 − r0) cos

[
χe arctan

( t

τ

)]}
. (A.13)

This represents a spiral trajectory in a plane through the plasma.
The ion trajectories can be found in a similar way. The roots of the auxiliary equation for ions are given

by

Ωi = ±j

√
1

τ 2
− Ci

= ± jχi

τ
, (A.14)

with the variable χi defined as

χi ≡

√
Ti(0)

Te(0) + Ti(0)
. (A.15)

The remaining steps for finding the trajectories are completely analogous to those discussed above for
finding the electron trajectories; the steps result in almost the same solution for the ion trajectories, with the
only exception that χe in equation (A.13) is replaced by χi. As a consequence, the ions will move in spiral
trajectories as well, but on a much larger time scale in comparison with the electrons; the latter is caused by
the much heavier mass and lower initial temperature of the ions in a UCP.
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