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Summary

The urban environment is increasingly exposed to excessive noise from the envi-
ronmental noise sources and neighbours. To address this problem, an acoustically
high-quality built environment is needed to ensure health and comfort. In designing
such an environment, the prediction of sound propagation and vibrations in buildings
have a vital role. This research aims to develop an efficient yet detailed numerical
model of sound propagation and vibration in building applications, especially in the
low-frequency range. It targets solving sound propagation, structural vibration, and
vibroacoustic problems. This research employs a wave-based method to solve these
problems.

The chosen wave-based method is the time-domain nodal discontinuous Galerkin
(DG) method due to its favourable features such as computational efficiency, high-
order accuracy, geometric flexibility, and the potential for massive parallel computing.
This computational method has been used in many other branches of applied physics,
but its use for vibration and vibroacoustic problems in buildings has not been inves-
tigated yet. This research is divided into three parts: the first part is concerned with
the nodal DG method development for sound propagation in air; the second part is
devoted to the development of the method for structural vibrations; the third part
expands the method for sound and vibration interaction (vibroacoustic) problems.

The first part of this research is comprised of two sections. The first section demon-
strates the implementation of the nodal DG method for applications in room acous-
tics. In this section, the numerical formulation of the method for the linear acoustic
equations is presented, along with a strategy to realise the frequency-independent
impedance boundary condition (BC). Several simulation configurations are analysed
to determine the convergence, dispersion, and dissipation errors of this method. This
analysis shows the great potential of the nodal DG method for room acoustics prob-
lems. Afterwards, sound propagation in a room under laboratory conditions is com-
puted and compared with the experimental data, which showed satisfactory results.
The second section demonstrates an application of the nodal DG method for outdoor
sound propagation. The method is applied to investigate several noise intervention
scenarios in an airport environment in the presence of wind flow. This investigation
extends the room acoustics application by solving the same governing equations, while
the wind conditions are incorporated by using an effective sound speed approach. This
approach is validated with results from the finite element method (FEM). It is shown
that the intervention scenarios effectively reduce the aircraft noise propagation from
the airport to the residential area in the low-frequency range.

In the second part, the implementation of the nodal DG method for structural vibra-
tion is presented. This part is divided into two sections. The first section is devoted
to the vibration of monolithic structures. These structures include rectangular plates
and an L-shaped structure, whose vibrations are modelled by the linear elasticity
equations in three-dimensional geometry. The numerical formulation of the nodal
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DG method for the linear elasticity equations are presented, along with several as-
pects such as boundary conditions, point force excitation, and the upwind numerical
flux. The numerical results are validated for rectangular concrete slabs with different
BCs and thicknesses by comparing vibration mobilities derived from classical plate
theory (CPT) and the first-order shear deformation theory (FSDT) via the modal
expansion method. An excellent agreement is found between the numerical solution
and the FSDT. In case of the L-shaped structure, the vibration mobility is compared
with the mobilities obtained using the CPT, FSDT and linear elasticity equations
(via FEM). It shows excellent agreement with the mobility obtained by the FEM
over the entire frequency range of interest (up to 1 kHz). However, the numerical
mobility agrees well with the CPT and FSDT only in the lower frequency range (be-
low 700 Hz). In the second section of this part, the nodal DG method is presented
for the vibrations of structures with piecewise constant material properties. The
previous nodal DG application is extended by simulating vibration of assemblies of
several monolithic components that differ in their mechanical properties. Two ex-
amples are simulated: a T-shaped structure and a scaled lightweight wooden floor.
In the nodal DG method, the Rankine-Hugoniot jump conditions are used to obtain
an accurate numerical flux, and the constant viscous damping forces were added to
model vibration energy losses in the structure. To validate the method, the numeri-
cal results are compared with experimental data as obtained from actual structures.
Good agreement is found between numerical and experimental results; however, there
are discrepancies in the higher frequency region (>250 Hz). The main reason for this
was that the chosen damping approach is insufficient to represent a wide frequency
range.

In the last part of this thesis, the nodal DG method is applied to the vibroacoustic
problems. Two vibroacoustic cases that typically occur in buildings were simulated.
The first case concerned the impact sound radiation from a rectangular slab into a
cuboid room, and the second was the sound transmission between two cuboid rooms
with direct and flanking contributions. As a combination of the previous methodolo-
gies, the vibration was governed by the linear elasticity equations and the linearised
acoustic equations governed the sound propagation. In this part, the upwind nu-
merical flux for the linearised acoustic equations based on Rankine-Hugoniot jump
conditions are presented, as well as the coupling conditions between acoustic and
vibration variables. In the first case, the nodal DG results are compared with those
obtained by the modal expansion method, and in the second case the nodal DG re-
sults are compared with those obtained by FEM. Good agreements are found between
the solutions obtained with the nodal DG method and those obtained with the modal
expansion method/FEM. These examples demonstrate the applicability of the nodal
DG methodology for the vibroacoustic problems.
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1 General introduction

1.1 Motivation
Noise is defined as unwanted sound generated primarily by various human activities,
ranging from occupational, commuting, and domestic activities. Noise is present ev-
erywhere, including in the work place, urban areas, and dwellings. Within industry,
some occupations are exposed to excessive noise, which can cause hearing loss (such
as: miners, construction workers, carpenters) [1], [2]. In urban areas, people suffer
from environmental noise generated by traffic, outdoor equipment, and leisure activ-
ities (such as: live music events, recreational noise, personal listening devices) [3]. In
dwellings, people can also be affected by domestic noise caused by various sources,
such as noisy neighbours, household appliances, and footsteps [4].

Noise can affect comfort and cause adverse health effects. The World Health Organi-
zation reported that road traffic and aircraft noise increase the risk of cardiovascular
diseases such as ischaemic heart disease, heart attacks, and hypertension [5]. This
environmental noise can also cause cognitive impairment in children, sleep distur-
bances, tinnitus, and annoyance (which leads to anger, distraction, stress, tiredness,
etc.). Besides environmental noise, there is a growing awareness of neighbour noise
(e.g., speech, music, footsteps) as one of the sources for domestic noise. This type of
noise has the potential for task distraction since it draws human attention due to its
informative sounds even if at low levels [6]. It also could affect health via long-lasting
annoyance [4]. A recent review and study on neighbour noise can be found in Ref.
[7], where it is shown that annoyance caused by neighbour noise results in physical
and mental health symptoms.

Increased awareness of the noise hazards has led many countries to enact regulations
to control noise levels. This has resulted in the introduction of policy and practical
measures to reduce noise exposure in the workplace, such as the OSHA instruction
PER 04-00-004 [8] and the EU directive 2003/10/EC [9], which requires employers to
implement a hearing protection programme for workers. It also prompts the govern-
ments to issue regulations to control environmental noise, such as the EU directive
2002/49/EC (END) [5]. The END requires EU members to assess environmental
noise exposure to their population and to create a noise management action plan re-
lated to the assessment. Related to the domestic noise, minimum values of airborne
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and impact sound insulation for dwellings have been regulated in many countries
[10], [11]. These regulations require the new dwellings to fulfil minimum standard-
ised sound insulation descriptors, as presented in ISO 717:1996. These regulations
have evolved in all European countries since the early 1960s [12], [13].

Although various policies have been undertaken to control noise levels, the number
of people exposed to environmental noise is still high. The European Environmen-
tal Agency [14] reported that the number of people exposed to high levels of noise
since 2012 has broadly remained stable following the END in 2002. The number of
people exposed to road traffic noise inside urban areas is still expected to increase
by approximately 8% by 2030. This outlook is projected as a result of future urban
growth and increased mobility demand. This is in line with studies in Refs.[15], [16].

As shown in Refs. [4], [7], [17], the number of people annoyed by neighbourhood noise
has remained high. Several factors caused this, for example, the trend in construction
in moving from heavyweight (concrete, masonry, heavy-steel elements) to lightweight
(timber, plasterboard, glass, light-steel elements) construction systems and elements,
increased number of noise sources (e.g., wall- and floor-mounted household appli-
ances, consumer electronics, etc.), and poor design/workmanship of the sound insu-
lating properties of building construction. The trend towards the use of lightweight
constructions is still ongoing. There are a number of advantages to lightweight con-
struction over heavyweight construction. For example, timber-frame construction
demonstrates several critical aspects of sustainability. For instance, it enables the
storage of CO2, is a renewable raw material, and requires little energy to manu-
facture [18], [19]. Another advantage is that building components of a lightweight
construction are easier to be prefabricated; therefore it lefts less waste on site and
the assembly process is fast.

The adverse effects of noise and the outlook of environmental and domestic noise
demand a built environment with a high acoustic quality. To achieve this, the acous-
tics of the building must be designed appropriately. For this reason, modelling and
prediction of sound propagation and vibrations are essential. The main motivation of
this thesis is to contribute to enabling the creation of such environments by further
developing a numerical technique for the prediction of sound and vibration fields in
room (and outdoor) acoustics and building acoustics applications, with more empha-
sis on the latter.

1.2 Background
An illustration of a simple building construction and its environment is presented in
Figure 1.1. This picture shows that sound can propagate into the lower right room in
a building from various sources, such as vehicles outside the building, walking sound
from the upper-floor, and entertainment equipment in the next room. To model the
sound propagation and structural vibration, there are several governing equations
that can be used, and they are described in this section.
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Figure 1.1: Illustration of a simple building with its environment. The front façade is
removed to see the building section.

Sound propagation in a room is governed by the linear acoustic equations. This set
of equations models the small perturbation of pressure and velocities in air, and is
derived from the conservation and state equations as:

∂v

∂t
+ 1
ρ0
∇p = 0,

∂p

∂t
+ ρ0c

2
0∇ · v = 0,

(1.1)

where v = [u, v, w]T is the particle velocity, p is the sound pressure, ρ0 is the air
density, and c0 is the adiabatic sound speed. Equations (1.1) also can be used to
model the outdoor sound propagation, but with a limited accuracy [20]. This is
conducted by setting the sound speed as a space-dependent variable to accommodate
the atmospheric conditions (temperature and wind fields).

When sound impinges on the building structure (solid media), or a force excitation is
given, vibrations occur in solid media. The linear elasticity equations, which govern
the propagation of elastic waves, can be used to model this structural vibration. This
set of equations is derived from momentum conservation and Hooke’s constitutive
equations [21]. For a Cartesian three-dimensional coordinate system, the equations
for an isotropic medium can be written in a velocity-stress form, as shown in Equa-
tions (1.2). The vx, vy, vz are the solid particle velocity. The σxx, σyy, σzz, σxz, σyz,
σxy are the normal and shear stress components, ρ is the solid mass density, λ is the
first Lamé parameter, and µ is the second Lamé parameter or the shear modulus.
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∂vx
∂t
− 1
ρ

∂σxx
∂x
− 1
ρ

∂σxy
∂y
− 1
ρ

∂σxz
∂z

= 0,

∂vy
∂t
− 1
ρ

∂σxy
∂x
− 1
ρ

∂σyy
∂y
− 1
ρ

∂σyz
∂z

= 0,

∂vz
∂t
− 1
ρ

∂σxz
∂x
− 1
ρ

∂σyz
∂y
− 1
ρ

∂σzz
∂z

= 0,

∂σxx
∂t
− (λ+ 2µ) ∂vx

∂x
− λ∂vy

∂y
− λ∂vz

∂z
= 0,

∂σyy
∂t
− λ∂vx

∂x
− (λ+ 2µ) ∂vy

∂y
− λ∂vz

∂z
= 0,

∂σzz
∂t
− λ∂vx

∂x
− λ∂vy

∂y
− (λ+ 2µ) ∂vz

∂z
= 0,

∂σxz
∂t
− µ∂vx

∂z
− µ∂vz

∂x
= 0,

∂σyz
∂t
− µ∂vy

∂z
− µ∂vz

∂y
= 0,

∂σxy
∂t
− µ∂vx

∂y
− µ∂vy

∂x
= 0.

(1.2)

Structural vibrations could also be modelled using different governing equations other
than the linear elasticity equations. These equations are derived for a structure
with a cross-sectional dimension that is much larger than its thickness. For this
condition, the structure’s bending deformation can be modelled by two-dimensional
plate theories. These theories assume certain deformation at the thickness dimension
of a structure, such as shown in Ref. [22].

Figure 1.2: Deformation of the plate based on different plate theory adapted from Ref.[22].
(a) initial undeformed condition, (b) plate deformation based on the classical plate theory
(CPT), (c) plate deformation based on the first-order shear deformation theory (FSDT).
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There are two commonly used theories: the classical plate theory (CPT) or known as
thin plate theory, and the first-order shear deformation theory (FSDT) or known as
thick plate theory. The illustration of the plate deformation based on these theories
is presented in Figure 1.2. The CPT is derived based on Kirchhoff-Love assumption
[22], [23]. This theory has three assumptions: first, straight lines perpendicular to
the mid-surface (i.e., transverse normals) before deformation remain straight after
deformation; second, the transverse normals do not experience elongation; third, the
transverse normals rotate such that they remain perpendicular to the middle surface
after deformation. For an isotropic rectangular plate with thickness h, the CPT
governing equation can be written as:

I0
∂2w0

∂t2
+D

(
∂4w0

∂x4 + 2 ∂4w0

∂x2∂y2 + ∂4w0

∂y4

)
= 0, (1.3)

where D = Eh3/12
(
1− ν2), I0 = ρh, w0 is the displacement normal to the plate

surface, and E, ν are the Young’s modulus and Poisson’s ratio of the solid media,
respectively. The FSDT is derived based on the Mindlin-Reissner assumption. This
assumption extends the CPT by relaxing the normality restriction and allowing for
arbitrary but constant rotation of transverse normals [22], [24]. The governing equa-
tions can be written as:

I0
∂2w0

∂t2
+ κ2µh

[
∇2w0 +

(
∂ϕx
∂x

+ ∂ϕy
∂y

)]
= 0, (1.4)

I2
∂2ϕy
∂t2

+ D (1− ν)
2 ∇2ϕy + D (1 + ν)

2

(
∂2ϕx
∂x∂y

+ ∂2ϕy
∂y2

)
− κ2µh

(
ϕy + ∂w0

∂y

)
= 0,

I2
∂2ϕx
∂t2

+ D (1− ν)
2 ∇2ϕx + D (1 + ν)

2

(
∂2ϕy
∂x∂y

+ ∂2ϕx
∂x2

)
− κ2µh

(
ϕx + ∂w0

∂x

)
= 0,

where κ is the shear correction factor, rotary inertia I2 = ρh3/12, ϕx and ϕy are
the bending rotations of a transverse normal about the y- and x-axes, respectively.
In this work, to model the structural vibration, the linear elasticity equations are
used, and the vibration results based on CPT and FSDT are used as a comparison.
Please note that all equations described above are without source terms. Moreover,
when a structure has only one dimension which is much longer than the other two,
its vibration can be modelled using beam theories. Details on these theories can be
found in Ref. [25].
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Figure 1.3: Problem domains and boundary conditions for the sound and vibration in the
built environment: (a) pure acoustic problem, (b) solid vibration problem, (c) fluid-structure
interaction problem.

There are three acoustic research fields concerning sound propagation in the built
environment: sound waves in fluid, structural vibrations, and their interaction
(fluid-structure interaction). Figures 1.3a - 1.3c show simplified illustration of
wave-propagation domains of interest in this thesis. The domains of the figure
can be categorized into two fluid (pure acoustic) domains (Ωia and Ωea) and one
solid domain (Ωs). Ωia and Ωea represent the indoor and outdoor acoustic domains,
respectively, and Ωs represents structural components of buildings.

In Figure 1.3, the Ωia or Ωea is bounded by boundaries Γz, Γenc, and Γc; they denote
surface impedance boundary, encompassing boundary, and fluid-structure interaction
boundary, respectively. The impedance boundary, Γz, is defined as the ratio between
the sound pressure and the particle velocity component normal to the Γz. The
encompassing boundary, Γenc, could be defined as a hardwall to represent indoor
domain (Ωia) or an infinite boundary to represent the outdoor domain (Ωea). On
surface Γc, the sound and structural motion are coupled. The building structure
is a solid domain denoted by Ωs and has surface boundary Γs. The Γs is generally
assumed as a specified traction/velocities surface supported by fixed or rotating edges.

There are several types of acoustic problems that can be identified in Figure 1.3.
First is the room acoustics problem where the source of sound and the listenere are
located in the same room, which happens in Ωia. In Ωia, the structural motion of
the encompassing boundary (Γc) is assumed insignificant and the domain can be
modelled by using the governing equation shown in Equation (1.1), while boundary
conditions (BCs) are described using acoustic impedance values. Ωea is the outdoor
acoustic domain. Ωea is similar to Ωia apart from that it is not fully enclosed and
wind and temperature effects may play a significant role in sound propagation. An
example of the outdoor acoustic domain is shown in Figure 1.4, where a sound wave
is seen propagating over a sequence of building canyons.
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Figure 1.4: Spatial distribution of absolute sound pressure at certain time over building
canyons taken from an example case in Chapter 3.

The second type of problem is that of the structural vibration system, where the
solid media is excited by a force, and the vibration response of the solid media is of
interest. This problem occurs in Ωs when the interaction with air is not of interest,
and the effect of air on the vibration is considered negligible. The third type is
the vibroacoustic problem in the form of sound radiation and transmission. The
vibration occurs when force excites the solid domain Ωs and interacts with the air
domain Ωia to radiate sound. An example of this problem is exhibited in Figure 1.5,
where the absolute sound pressure distribution in a room due to impact excitation is
shown. Moreover, another vibroacoustic problem is the sound transmission between
two spaces (from Ωia to Ωia or Ωia to Ωea, or vice versa) through solid structures.

To solve all of these acoustical problems, methods for modelling and predicting the
sound and vibration fields are needed. This thesis gives overviews of these methods
in the following sections, with more emphasis on the building acoustics applications.

Figure 1.5: Spatial distribution of absolute sound pressure at certain time taken from impact
sound radiation case in Chapter 6. Blue dot denotes the impact excitation position and grey
cuboid denotes a concrete slab.
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1.3 Modelling and prediction for room acoustics
This section discusses briefly the methods used to model sound propagation for room
acoustics applications. Generally, the main objective of room acoustic simulations
is to provide time-energy or impulse responses that can be used to calculate various
field descriptors such as reverberation time and speech transmission index. With
these descriptors, interior spaces can be designed to have good acoustic quality and
support different activities (e.g. speech, rest, learning).

There are three methods commonly used to model interior sound propagation: ge-
ometrical acoustics (GA) method, energy-based method, and wave-based method.
Each of these methods have been described in detail in the literature. Some ba-
sic concepts, implementations, and applications of these methods are reviewed in
Refs. [26]–[28] for geometrical and wave-based methods, while energy-based meth-
ods are described, for example, in Refs. [29]–[31]. In the GA methods, a sound
wave is assumed to propagate like a ray and various wave properties are neglected
[27]. Two primary methods of the GA methods are the ray tracing and the image
sources method. The ray tracing method describes sound energy propagation as a
stochastic process of particle radiation and detection, while the image source method
uses geometrically constructed sound sources that correspond to specular paths of
sound rays [26]. This assumption is valid at high frequencies, where the wavelength
of sound is short compared to surface dimensions and the overall dimensions of the
interior space. However, the GA methods fail for small and medium-sized rooms and
for studies with distinct wave effects, such as wave diffraction or interference. In
practice, the GA techniques are widely used to calculate room acoustic parameters
in the mid-and high-frequency ranges [32], [33].

Another approach to model sound propagation in the air is the energy-based method.
One method example of this method is the diffusion equation method [29]–[31]. This
method assumes the propagation of sound energy as air particle movement in gas
with diffusive boundaries or objects. In this method, the flow of sound energy follows
a diffusion gradient equation, which means that an energy gradient produces a mean
motion of sound particles from high to lower density volume. The main advantage
of this method is the accurate prediction of the late part of sound energy decay. The
main limitation of this method is the inability to predict the specular reflections or
sound diffraction. The diffusion equation is a generalisation of the famous classical
diffuse sound-field theory such as the Sabine’s or Eyring’s equations [34]. In classical
diffuse sound field theory, sound energy is assumed to be uniform throughout the
space. This causes the gradient term in the diffusion equation to be zero. If applied
to model the sound energy decay in a room under these conditions, the diffusion
equation solution will be the same as the Sabine’s or Eyring’s equations.

In contrast with previous methods, wave-based methods solve the governing equa-
tions as shown in Section 1.2. Examples of wave-based methods are the finite element
method (FEM), the boundary element method (BEM), and the finite difference time
domain (FDTD) method. The main advantage of wave-based methods is that they
can model sound propagation accurately because all wave properties are present in-
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trinsically. This method can be accurate if all simulation aspects, such as source direc-
tivity, impedance BCs, and detailed geometry are also defined precisely. The main
disadvantage of these methods is that the required computational effort increases
rapidly with the simulated sound frequency. They are suitable for low frequencies as
solving high frequencies requires high computational effort. Among these methods,
time-domain approaches for modelling wave problems have attracted considerable at-
tention in the last decades as they are preferred over frequency-domain methods for
auralisation purposes. The main time-domain wave-based numerical methods used
for room acoustic problems are FDTD [35] [36] [37] [38], FEM [39], finite volume
method (FVM) [40], and Fourier spectral methods such as adaptive rectangular de-
composition (ARD) [41] and pseudospectral time-domain (PSTD) method [42] [43]
[44].

More detailed reviews of modelling and prediction methods for room acoustics ap-
plications can be found in Ph.D. dissertations by Wang [45] and Pagán Muñoz [46].
These references also focus on the wave-based methods developed in this work us-
ing the time-domain DG method. In the next section, a more detailed review on
modelling and prediction methods for building acoustics applications is given.

1.4 Modelling and prediction for building
acoustics

When sound is generated in a room, it can be transmitted to another room via
different paths such as walls, floors, and façades. Likewise, if vibration is excited by
sources (such as footsteps or household appliances), it can be radiated into rooms
via these paths. The insulation of the transmitted or radiated sound energy in a
room is termed as airborne or impact sound insulation. The noise generated from
impact excitation on the floor or stairs in a building is characterised by the impact
sound pressure level. This level is measured by using a standardised tapping machine
according to measurement standards ISO 16283-2 in buildings [47] or ISO 10140-
3 in the laboratory [48]. On the other hand, the sound transmission loss (TL) or
sound reduction index is used to quantify the airborne sound insulation, as defined
in Equation (1.5).

TL = −10 log10(τ) = −10 log10

(
Wt

Ws

)
. (1.5)

τ is the sound transmission coefficient, Wt is the transmitted sound power to the
receiver room, and Ws is the incident sound power on the room’s partition in the
source room. It should be noted that the total sound transmission between two
rooms is divided into separate transmission paths (direct and flanking paths), with
each path starting with an excited structure by sound pressure in the source room
and ending with a radiating structure in the receiving room [49]. In this section, the
modelling and prediction of airborne insulation is reviewed.

There are many different aspects that influence the airborne sound insulation of a
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building element such as geometrical details (room sizes, wall dimensions, thickness
of structure, position of the sound source/receiver), mechanical properties (densities,
stiffnesses of materials, damping), or acoustic parameters (surface impedance, struc-
tural BC). To design a building component such as partition wall, façade, or floor, the
sound transmission prediction models that can take into account the previously men-
tioned factors are needed. Many approaches of theoretical or semi-empirical models
have been investigated to predict the sound transmission loss of a component [50],
[51]. Some of these prediction models are described below.

There are several analytical models that can be used to predict the direct sound
transmission loss of a single panel construction. These analytical models generally
assumed that the bending wave is the considered wave type on the panel. One of the
models is the mass law and it has been used under the assumption that the panel
has infinite dimensions and is excited by a plane wave [51]. In the mass law model,
the sound transmission loss increases by 6 dB per doubling the frequency or doubling
the mass per unit area. This model depends only on the mass surface density of
the plate and not on its stiffness. Cremer [52] extended the mass law by including
the coincidence condition in the sound transmission loss prediction. The coincidence
condition occurs when the projection of the wavelength in air onto the surface of
the plate equals to the bending wavelength [50]. This condition leads to an almost
undamped transmission of the sound energy. With grazing angle of incidence, this
coincidence occurs at the critical frequency of the plate. Cremer studied the role of
panel stiffness in estimating sound transmission loss using the coincidence condition.
Furthermore, London [53] developed the prediction of the transmission loss for a
random incidence excitation field. The average transmission loss for a diffuse incident
sound field was discovered by integrating the transmission coefficient over the angles
of incidence. In his work, London also included the panel dissipation/attenuation
term for the prediction of sound transmission loss.

The previously mentioned models assume infinite dimensions for the panels. However,
real constructions have components with finite dimensions. Sewell [54] developed a
sound transmission loss model for the finite panel with the panel vibration following
the thin plate theory. Sewell used a modal expansion to describe panel vibrations
and travelling waves to describe sound propagation in semi-infinite air. Sewell showed
that the resonance of the panels played an important role in the prediction of sound
transmission loss. These developments provided a more accurate theory of the sound
insulation of individual panels.

Multi-panel systems are commonly utilised to boost the sound insulation of a con-
struction component. Sound insulation prediction models are needed for such sys-
tems. Some examples of predictions for infinite double panels without structural
connections or studs were proposed by Beranek and Work [55], and by London [56],
and double panel systems connected by points or line studs were proposed by Davy
[57]. Since the 1960s, many prediction models have been proposed for different con-
figurations of double panel systems. A survey of models of the double infinite panel
systems (excluding numerical models) was made by Hongisto [58]. Hongisto tested
seventeen different models using measurement results for different categories of double
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walls. The result was that the average prediction errors of each 1/3 octave frequency
band were up to 20 dB for most models, while they were less than 10 dB for the best
models. None of the models were sufficiently accurate to predict the sound insulation
of double walls.

As the construction of walls or floors becomes more complex, it is difficult to formu-
late accurate analytical models to predict sound insulation. Ideally, a method that
predicts sound insulation over a broad frequency range is preferred. For example the
frequency range in sound insulation measurement is between 50 - 5000 Hz. However,
the computing power might be too high for the high-frequency region or for an acous-
tically large domain (for example by using FEM). Some methods can predict sound
insulation suitably depending on the frequency range of interest, i.e., high, mid, and
low-frequency methods. In building acoustics applications, the low-frequency range
is usually defined at: 50 - 200 1/3 octave band Hz, mid-frequency: 250 - 1000 1/3
octave band Hz, and high-frequency range: 1250 - 5000 1/3 octave band Hz [50].

In the high-frequency range, the characteristic length of the room or building com-
ponent is much greater than the wavelength of the sound. In this condition, the
modal density1 and modal overlap2 is high, and the system is very sensitive to small
variations in material properties, geometrical details, and BCs [50]. Since the number
of modal frequencies and the modal overlap are high, the analysis of the system can
be conducted using a statistical approach. This approach is the statistical energy
analysis (SEA) [60], [61]. SEA is a framework for calculating the flow and storage
of dynamic energy in a complex system. Building components are defined as inter-
connected subsystems in this framework. Each subsystem is made up of a set of
modal energies that are related to one another, such as bending vibration, torsional
vibration, or acoustic energy. This energy can be dissipated via system dampening
or redistributed across subsystems. The response of each subsystem to the energy
input is determined in frequency bands. The SEA relies on power balance equations
that can be solved by linear algebra. The energy in each subsystem is based on pa-
rameters such as modal density, damping, and coupling loss factor. The drawbacks
of this method are the random excitation assumption (this is defined as unity mag-
nitude, random phase, multi-point excitation over the entire subsystem), an equal
spatial energy distribution in each subsystem, and also it holds for subsystems with
homogenous material properties. Further details on this method can be found in the
Refs. [50], [62].

In the low-frequency range, the characteristic length of the room is much smaller
(or of the same order) than the sound wavelength. In this range, the sound field is
determined by well-separated modes and can be predicted by wave-based numerical
methods such as the FEM, the finite difference method, and the FVM. In these
methods, the spatial domain is discretised. Afterwards, the solution of the PDE that
govern the sound propagation and vibration are approximated. These methods are
explored in more detail in Section 1.5.

1average number of modal natural frequencies per unit frequency [59]
2average number of modal resonance frequencies lying within the half-power bandwidth of the

average mode [59].
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In the mid-frequency range, no specific method is generally used to evaluate sound
and vibration fields. However, several approaches are commonly utilised to cover this
frequency range [63]. The first is to extend the frequency range of the wave-based
numerical methods. In this range, the linear system equations are large, and the
optimised iterative solver can be used instead of the direct method to solve the system
of equations especially for frequency domain FEM/BEM [64]. Moreover, parallel
computing can be adopted to accelerate the calculations. The second approach is
to extend the SEA towards the lower frequency region. For example, application
of SEA method for low modal density systems with low modal overlap (such as in
concrete/masonry walls or floors the in low-frequency range) [65], or to relax the
assumptions imposed by SEA so that the modal energies in subsystems need not be
similar [66]. A recent review of the extension of the SEA method can be found in
Ref. [67]. Another approach is a hybrid between a wave-based numerical method
and the SEA method. In this approach, the wave-based numerical method is used
for the deterministic subsystem in the mid-frequency range, and the SEA method
is used for the subsystem that is very sensitive to the local variation of the system
(such as material properties and geometrical details). A reciprocity relation gives the
coupling between the two methods [68]–[70]. There are some other approaches on the
mid-frequency region. More rigorous review on these approaches for general acoustic
and vibration applications can be found in Ref. [71].

1.5 Wave-based numerical method for building
acoustics

Using a wave-based numerical technique, this thesis offers a system for solving the
propagation of sound and vibration in structures. Finally, the primary objective
is to forecast sound transmission through building components. Since the target
frequency is low to mid frequency, the wave-based numerical method is used. The
wave-based numerical methods solve Equations (1.1)-(1.2) that determine the sound
and vibration fields in buildings and their interaction. In the following subsections,
an overview of different wave-based numerical methods is given, especially concerning
their application in building acoustics problems if available.

1.5.1 Finite element method
The finite element method (FEM) is one of the most versatile methods for solving
PDEs. FEM discretizes the domain into smaller regions or finite elements. In each
element, the unknown variables are approximated by known functions. These func-
tions are usually polynomials, which may be linear or higher-order expansions of
functions. Then the PDEs are integrated as in the weighted residuals method, and
the residuals are summed over the entire problem domain, which is enforced to be
zero. This technique yields a set of finite linear equations with regard to the unknown
variables at the element nodes. Because the nodes are shared on the faces of neigh-
bouring elements, the discretised system is linked between the elements, resulting in
a substantial sparse linear system that may be solved using linear algebra techniques.
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Several researchers applied FEM to room and building acoustics. For example, Pan-
neton and Atalla [72] used FEM to solve the sound transmission problem of finite
multilayer systems containing a combination of plates, air, and poroelastic materi-
als in frequency domain. The approach was based on a three-dimensional geometry
with a semi-infinite medium on the receiver and source sides. The FEM was cou-
pled with BEM to account for fluid-structure coupling, where the BEM was used
to model sound radiation in the fluid. In addition, Sgard et al. [73] used the same
approach and extended the feature for a diffuse field excitation on the plate. Maluski
and Gibbs [74] investigated sound transmission between two rooms at low frequen-
cies using FEM for unequal rooms volume and asymmetric configurations. The walls
consisted of brick and mortar layers and were modelled as a finite thin plate with
various BCs. A good agreement was found between measured and predicted values
in the 1:4 scale and full-size rooms. Another example comes from Davidsson et al.
[75], who studied the sound transmission loss of double panels (with studs) in the
low-frequency range using FEM. In the study, the structure of the double panels was
modelled as thin plates. Furthermore, Arjunan et al. [76] solved the same problem
using FEM, modelling the walls as a three-dimensional solid structure instead of thin
plates. The coupling elements between fluid and solid were introduced, and the simu-
lation results were validated using standard experiments in a broader frequency range
(100 - 3150 Hz). The two-dimensional plane strain elasticity approach was also used
to model the sound insulation of a multilayer lightweight concrete hollow block wall
and a double wall with steel columns in a two-dimensional geometry. The model was
solved using FEM [77]–[79] and the spectral element method (high order variant of
FEM) [80]. The approach was used to reduce the computational cost and extend the
frequency range up to 5 kHz. However, the two-dimensional approach was inaccurate
compared to the measured results.

All of the previously mentioned FEM techniques are based on the frequency-domain
formulation of the governing equations. To the author’s knowledge, FEM in the time
domain is rarely used for vibration or vibroacoustic applications. However, FEM in
the time domain has been used for room-acoustic applications, such as presented in
Refs. [81]–[84].

1.5.2 Finite diference time-domain method
One of the most popular wave-based methods is the finite difference time domain
(FDTD) method [85]. The term FDTD was coined by Taflove in the computational
electromagnetics community for the solution of Maxwell’s equations in the 1980s [86].
The FDTD method solves a PDE by discretising the spatial domain and the time
interval into discrete points. At each point, the partial derivative is approximated
by finite differences, for example, by Taylor expansion series from the values of the
neighbouring points. With this technique, the differential equations are transformed
into a linear system of equations that can be solved with matrix algebraic techniques.
Due to its relative ease of implementation and robustness for a wide range of wave
problems, FDTD is widely used in many engineering applications, including room
acoustic, structural vibration and building acoustic applications.
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For room acoustic applications, there are many examples, such as the work of Bot-
teldooren [35], Sakamoto [87], Sakamoto et al. [88], and Sakamoto et al. [89]. The
FDTD method has also been adapted to solve many structural vibration problems.
For example, the vibration of framed structures using the beam theory [90], the vi-
bration of plate structures [91], the vibration of beam-plate structures [92], and the
vibration of heterogeneous solid orthotropic three-dimensional structures [93].

In addition, the FDTD method has also been used for vibroacoustic applications,
especially for sound transmission problems. The method solves the coupling between
linear acoustic equations and the various vibration models. The earliest work was
conducted by Toyoda and Takahashi, who solved linear elasticity equations with two
damping terms using the FDTD method for impact sound transmission in two-storey
concrete buildings [94]. In their paper, sound propagation in air and vibration of
concrete building were modelled using the same equations. These equations were
used regardless of the medium so that no additional interface element is required
for the sound and vibration interaction. However, this leads to high computational
costs. To reduce this cost, the coupling between linear acoustic equations and the
plates equations (based on CPT and FSDT) has been used in the FDTD method.
The coupling with the thin plate equations was undertaken to solve the transmission
problem of glass panels by Asakura et al. [95], and for transmission problem of
plasterboard walls by Asakura and Sakamoto [96]. The coupling with the thick
plate equations was carried out for several concrete elements in Ref. [97]. Moreover,
Asakura developed the sound radiation of a double slab floor structure [98], impact
sound auralisation of floor [99], and Asakura et al. developed FDTD for the building
facade transmission problem [100]. Another work by Ferreira and Hopkins developed
a scaling approach for the FDTD method to solve the linear elasticity equations with
three damping terms to reduce computation times [101]. The scaling approach is
conducted by modifying the geometry and physical properties of the structure that
preserve the dynamic characteristics of the model, whilst allowing a much larger
time step and it could reduce the computation times. Although the FDTD method
is flexible enough to adapt to different PDEs, it lacks geometric flexibility due to
its structured mesh. If the Cartesian grid is used, curved geometries have to be
approximated with a staircase approximation, which would lead to artificial scattering
on a smooth surface.

1.5.3 Pseudospectral time-domain method
Another wave-based method used for wave propagation is the pseudospectral time-
domain method (PSTD). The PSTD method approximates the solution of the PDE
using trigonometric or Chebyshev polynomials [102]–[104]. In the PSTD method,
the computational domain is discretised by grid points. In contrast to the FDTD
method, where the spatial partial derivative is approximated using the neighbouring
values, it is approximated by the derivatives of the expansion polynomials, which
cover the entire spatial domain. Once the spatial derivatives have been obtained,
various methods such as the Runge-Kutta method or the finite difference method can
be used to perform the integration of the temporal derivative.
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The PSTD method has spectral accuracy, which means that the numerical dispersion
error decreases exponentially with the grid density when applied to a single region
with a smooth inner medium. Depending on the expansion polynomials, the PSTD
method is mainly divided into the Fourier (trigonometric) or the Chebyshev PSTD
method. In the Fourier PSTD method, the forward and inverse spatial discrete
Fourier transform are used to evaluate the partial spatial derivatives. One advantage
of the Fourier transform is that it has no dispersion error since the Fourier transforms
used to describe the spatial derivatives or integrals are exact. In addition, the Fourier
PSTD method requires only two cells per wavelength, which is given by the Nyquist
sampling theorem [103]. For this reason, the PSTD method is one of the most
computationally efficient methods for wave propagation. However, like the FDTD
methods, it lacks geometric flexibility due to its structured point grid. Furthermore,
due to the discrete Fourier transform, periodicity is assumed in the spatial dimensions.
This periodicity is a disadvantage of the PSTD method, as it hardly occurs in reality.

In the field of room acoustics, the PSTD method has been used for many problems
[43], [44], [105]–[107]. The PSTD method has been applied to outdoor sound prop-
agation around screens and urban canyons with moving atmosphere by Hornikx et
al. [108], and also to evaluate noise mitigation measures for road traffic noise prop-
agation to the roadside yard by Hornikx and Forssén [109]. In addition, the latest
improvement of the hybrid method of PSTD and discontinuous Galerkin method was
carried out [110]. To the author’s knowledge, PSTD has not been used for vibration
or vibroacoustic modelling.

1.5.4 Nodal discontinuous Galerkin method
Another wave-based numerical method is the discontinuous Galerkin (DG) method.
This approach offers characteristics that make it a potential method for solving an
acoustically large domain or for vibroacoustic prediction in the low and mid-frequency
regions. Like the FEM, the DG method discretises the spatial domain into several
elements. This method allows an unstructured discretisation for domains with com-
plex geometry. In each element, the DG method approximates the unknown vari-
ables using interpolation polynomials that are discontinuous at the interface with the
neighbouring elements. At this interface, the approximated solution is duplicated to
ensure the locality of the scheme. Afterwards, the weighted residual formulation can
be performed using Galerkin methods.

To ensure the global solution’s uniqueness and connect each local solution to its neigh-
bours, numerical fluxes are introduced as in the FVM. The calculation of numerical
fluxes is the only operation that is not local in the DG method. This element-wise
formulation allows for a relatively simple parallelisation computation that can accel-
erate the DG calculation [111]. The structure of the DG method is very similar to
that of the FEM. It allows local refinement by increasing the polynomial order or
the number of elements. However, unlike FEM, the mass or stiffness matrices are
local and, thus, can be inverted at a minimal cost. However, this comes at a price,
mainly by increasing the degrees of freedom (DoF) due to decoupling the elements.
The details of the method can be found in the literature written by Hesthaven and
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Warburton [112].

The DG method was originally published by Reed and Hill in 1973 [113]. The DG
method has been applied in various fields of physics and engineering. For example, it
was used by Hesthaven and Warburton for electromagnetic problems [114]–[116]. In
the geophysics field, the DG method has been used in several papers by Käser and
Dumbser [117], [118], Käser et al.[119], De La Puente [120], and Dumbser et al. [121].
In the field of room acoustics, the DG method has been used in several publications
by Wang et al. [122], Wang and Hornikx [123] and Wang et al. [124].

1.5.5 Other methods
Several other wave-based numerical methods have been applied to vibroacoustic ap-
plications, such as the FVM and the BEM. The FVM is derived based on the integral
form of the conservation law [21]. In the FVM, the problem domain is discretised
into several cells. The PDE is then integrated within each cell. The volume integrals
in a PDE containing a divergence term are converted into surface integrals using the
divergence theorem. The advantage of this method over the finite difference method
is that it allows an unstructured discretisation of the problem domain. This method
has been applied for room acoustics in Refs.[125], [126], and vibroacoustic application
in Ref.[127]. The disadvantage of FVM is that it requires a large number of elements
to achieve the same accuracy as FEM. The BEM is a wave-based numerical method
that solves the PDE with a boundary discretisation, which is different from other
methods that use spatial discretisation. The method uses the boundary integral for-
mulation of the PDE and requires fewer elements and nodes, significantly reducing
the number of DoFs of the problems. It is a powerful method for sound radiation
and scattering in the free field. The BEM typically produces a linear system with a
dense matrix that must be solved. This matrix causes a large number of operations
and memory requirements, making it difficult to apply BEM to large problems [128].
However, the development of the fast multiple method has been employed to acceler-
ate the solution of a BEM system of equations [129], [130]. The BEM also has been
applied for the plate vibration problems and linear elasticity equations such as shown
in Ref. [131]. The details of this method and its application to various acoustic and
vibration problems can be found in the Refs. [128], [131], [132].

1.6 Motivation of selected modelling approaches
According to the literature review above, there is a lack of a wave-based method to
solve any building acoustic problem in the time domain for low and mid frequencies.
In this research, the nodal DG method is proposed to solve vibroacoustic problems
in the field of building acoustics, ranging from low-frequency to the mid-frequency
range. To the authors’ best knowledge, no reference is found in the scientific literature
about the application of the nodal DG method to building acoustics problems. The
aim of this work is to extend its application. There are several main reasons for the
interest in the nodal DG method for solving the propagation of sound and structural
vibrations:
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1. Nodal DG method discretises the problem domain by using struc-
tured/unstructured mesh elements of various element shapes. This feature
allows geometric flexibility in representing a complex domain.

2. Nodal DG method uses simple linear algebra techniques to solve the system of
linear equations.

3. The element-wise formulation allows straightforward implementation of parallel
computation, thereby, having a high potential to get accelerated on modern
computer architectures.

4. The method offers flexible ways to achieve high accuracy by increasing the num-
ber of elements or applying for a higher polynomial order within the elements.

5. The method naturally handles impulsive wave behaviour. As a time-domain
solver, the nodal DG method can directly calculate broadband temporal wave-
forms or the sinusoidal steady-state response at any frequency within the exci-
tation spectrum.

1.7 Research objectives and contributions
This research contributes to creating a built environment with high acoustic quality
by developing an efficient computational method for sound propagation, structural
vibration, and vibroacoustic applications. This work is divided into three main parts
with the following objectives, and for all three objectives the time-domain solutions
are targeted.

1. Development of the nodal DG method to solve the governing equations for room
acoustics. This methodology is important because indoor sound propagation,
as part of the sound insulation problem, has different governing equations than
the vibration in the solid part. Additionally, the application of the method to
outdoor sound propagation is given as a special application.

2. Development of the nodal DG method to solve structural vibration problems
in building elements. This methodology is important because sound can be
generated or transmitted by the vibration of the structure. In this part, the
nodal DG method is targeted to the vibration of isotropic structures.

3. Development of the DG method to solve vibroacoustic problems in buildings.
This method is required because the interaction of sound and vibration man-
ifests through the sound radiation and sound transmission in buildings. This
part should combine the previous two methodologies for solving various building
acoustics applications.

The research contributions are listed below:

• An important feature that has not yet been developed with the nodal DG
method is the vibration of structures. In this research, computational aspects of
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predicting vibration in isotropic structures has been developed, including force
excitation, a constant viscous damping approach, and vibration with piece-
constant material properties.

• Another important feature not yet developed in the nodal DG method is mod-
elling sound transmission and impact sound radiation. In this research paper,
the impact sound radiation of a single slab structure and the problem of sound
transmission through a wall are addressed with direct and flanking contribu-
tions.

• A joint contribution to this work is the implementation of the nodal DG method
for room acoustic application, which according to the authors’ best knowledge
was not shown before. This work deals with the error analysis and the imple-
mentation of the frequency independent impedance BCs.

• Another joint contribution to this work is the application of the nodal DG
method for outdoor sound propagation. In this paper, the application of the
nodal DG method for sound propagation in an airport environment is presented.
The wind conditions are given by the effective sound velocity approach. This
approach could also be applied to the insulation of building facades in the
future.

1.8 Thesis structure and related publications
This thesis consists of three main parts. The first part is devoted to the development
of the nodal DG method for indoor and outdoor sound propagation. The second part
develops the nodal DG method for structural vibrations, and the third part deals
with the problems of sound-vibration interaction. In addition, this thesis contains
two general chapters: Chapter 1 gives an introduction to the thesis, and Chapter 7
summarises the research results and gives suggestions for further work.

The first part is divided into two chapters. Chapter 2 demonstrates the application
of DG to room acoustics in a static medium (no wind flow). An example of sound
propagation in a room under laboratory conditions is simulated and compared with
measurements. Chapter 3 applies the nodal DG method to outdoor sound propaga-
tion in a moving atmosphere (under wind flow conditions) under the effective sound
speed approach. As an example, several scenarios of noise mitigation in the airport
environment are simulated using the nodal DG method. These chapters are primarily
based on work presented in the following journal articles:

• H. Wang, I. Sihar, R. Pagán Muñoz, and M. Hornikx. (2019). Room acoustics
modelling in the time-domain with the nodal discontinuous Galerkin method.
The Journal of the Acoustical Society of America, 145(4), 2650–2663.

H. Wang: conceptualization, methodology, software, validation, visualization,
formal analysis, writing (whole paper except for Section I, IV.D and IV.C). I.
Sihar: software, validation, writing (Section IV.C). R. Pagán Muñoz: software,
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validation, investigation, writing (Section I and IV.D). M. Hornikx: supervision,
writing-reviewing and editing.

• I. Sihar, R. Pagán Muñoz, C.F. Fernandez, J. Yang, and M. Hornikx. Nu-
merical modelling of noise intervention scenarios in an airport environment.
Manuscript in preparation for submission.

I. Sihar: conceptualization, methodology, software, validation, visualisation,
formal analysis, writing. R. Pagán Muñoz: conceptualization, software, inves-
tigation, visualisation, writing - original draft. C.F. Fernandez : methodology,
software, writing - original draft. J. Yang: supervision, writing-reviewing, and
editing. M. Hornikx: supervision, writing-reviewing and editing.

The second part consists of two chapters. Chapter 4 presents the application of the
nodal DG method to the vibrations of monolithic structures. These structures include
an L-shaped structure and plates with different BCs and thicknesses. Moreover, the
results of the nodal DG method are compared with analytical solutions. Chapter 5
demonstrates the application of the nodal DG method to the vibrations of complex
structures with piecewise constant material properties. A T-shaped structure and a
scaled lightweight wooden floor are used as examples. In this chapter, the numeri-
cal results are compared with experimental results of the actual structures. These
chapters are based on work contained in the following journals/conference papers:

• I. Sihar, M. Hornikx, and Pranowo. (2017). Time-domain structural vibration
simulations by solving the linear elasticity equations with the discontinuous
Galerkin method. Proceedings of the 24th International Congress on Sound &
Vibration (ICSV-24), 23-27 July 2017, London, United Kingdom.

I. Sihar: conceptualization, methodology, software, validation, visualisation,
formal analysis, writing. M. Hornikx: supervision, writing-reviewing and edit-
ing. Pranowo: methodology.

• I. Sihar and M. Hornikx. (2019). Implementation of the nodal discontin-
uous Galerkin method for the plate vibration problem using linear elasticity
equations. Acta Acustica united with Acustica, 105(4), 668-681.

I. Sihar: conceptualization, methodology, software, validation, visualisation,
formal analysis, writing. M. Hornikx: supervision, writing-reviewing and edit-
ing.

• I. Sihar, J. Yang, and M. Hornikx. (2021) Numerical modelling of structural
vibration with piece-wise constant material properties using the nodal discon-
tinuous Galerkin method. In Proceedings of Euronoise 2021.

I. Sihar: conceptualization, methodology, software, validation, visualisation,
formal analysis, writing. J. Yang: supervision, writing-reviewing and editing.
M. Hornikx: supervision, writing-reviewing and editing.

• I. Sihar, J. Yang, and M. Hornikx. Application of the time-domain nodal dis-
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continuous Galerkin method for low-frequency structural vibrations with piece-
wise constant material properties. Manuscript in preparation for submission.

I. Sihar: conceptualization, methodology, software, validation, visualisation,
formal analysis, writing. J. Yang: supervision, writing-reviewing and editing.
M. Hornikx: supervision, writing-reviewing and editing.

The last part consists of a single chapter: Chapter 6 presents the nodal DG method
for impact sound radiation and sound transmission through a wall with different
shapes. The different shapes are intended to create direct and flanking transmis-
sion. This chapter presents the coupling between the equations of linear elasticity
and linear acoustics via numerical fluxes. The numerical results are then compared
with analytical and FEM solutions. This chapter is based on the work in the given
journal/conference paper:

• I. Sihar, J. Yang, and M. Hornikx. Implementation of nodal discontinuous
Galerkin method for vibro-acoustic problems to predict sound radiation and
transmission in buildings. Manuscript in preparation for submission.

I. Sihar: conceptualization, methodology, software, validation, visualisation,
formal analysis, writing. J. Yang: supervision, writing-reviewing and editing.
M. Hornikx: supervision, writing-reviewing and editing.
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Part I

Developments of time-domain
DG method for simulation of
indoor and outdoor sound

propagation
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2 Discontinuous Galerkin method for
room acoustics applications

This chapter is based on the journal paper:

• H. Wang, I. Sihar, R. Pagán Muñoz, & M. Hornikx. (2019). Room acoustics
modelling in the time-domain with the nodal discontinuous Galerkin method.
The Journal of the Acoustical Society of America, 145(4), 2650–2663.

The contributions of the author of this thesis to this research are indicated in Section
1.7.

Abstract
In this chapter, the performance of the time-domain nodal discontinuous Galerkin
(DG) method is evaluated when solving the linear acoustic equations for room acous-
tic purposes. A nodal DG method is used for the evaluation of the spatial deriva-
tives, and for the time-integration an explicit multi-stage Runge-Kutta method is
adopted. The scheme supports a high order approximation on unstructured meshes.
To model frequency-independent real-valued impedance boundary conditions, a for-
mulation based on the plane wave reflection coefficient is proposed. Semi-discrete
stability of the scheme is analysed using an energy method. The performance of
the DG method is evaluated for four three-dimensional configurations. The first two
cases concern sound propagation in free field and over a flat impedance ground sur-
face. Results show that the solution converges with increasing DG polynomial order
and the accuracy of the impedance boundary condition is independent on the inci-
dence angle. The third configuration is a cuboid room with rigid boundaries, for
which an analytical solution serves as the reference solution. Finally, DG results for
a real room scenario are compared with experimental results and the comparison is
quite satisfactory.

2.1 Introduction
Computer simulation of the sound field in indoor environments has been investigated
during the period since the publication by Schroeder [133]. After all these years,
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prediction methods for room acoustic applications are still under development in an
effort to improve efficiency of the calculations and accuracy and realism of the results,
hand in hand with the advances in computer power. In acoustics, the computational
techniques are mainly separated between wave-based, geometrical and diffuse field
methods. Each of these methodologies has been amply presented in literature. Con-
cepts, implementations and applications of room simulation methods are reviewed
by Vorländer [26], Savioja and Svensson [27], and Hamilton [28] for geometrical and
wave-based methods, while diffuse field methods are described for instance by Valeau
et al. [30] or Navarro et al. [31].

In contrast with the high-frequency simplifications assumed in the geometrical and
diffuse field methods, wave-based methodologies solve the governing physical equa-
tions, implicitly including all wave effects such as diffraction and interference. Among
these methods, time domain approaches to model wave problems have attracted sig-
nificant attention in the last decades, since they are favoured for auralisation pur-
poses over frequency domain methods. The main wave-based time domain numerical
techniques employed in room acoustics problems are finite difference time-domain
(FDTD) [35] [36] [37] [38], finite element method (FEM) [39] and finite volume
method (FVM) [40], and Fourier spectral methods such as the adaptive rectangu-
lar decomposition method [41] and pseudospectral time domain methods (PSTD)
[42] [43] [44].

In the last few years, the time-domain DG method [134] is another approach gain-
ing importance, mainly in the aero-acoustic community [135] [136] [137]. The DG
method discretises the spatial domain into non-overlapping mesh elements, in which
the governing equations are solved elementwise, and uses the so-called numerical flux
at adjacent elements interfaces to communicate the information between them. The
DG method combines the favourable properties of existing wave-based time domain
methods for room acoustics as it preserves high order accuracy, allows for local re-
finement by a variable polynomial order and element size, and therefore can deal
with complex geometries. Also because equations are solved elementwise, it allows
for easy parallelisation and massive calculation acceleration opportunities [111], like
other methods as FDTD and FVM. DG method can be seen as an extension to
FVM by using a polynomial basis for evaluating the spatial derivatives, leading to
a higher order method. Also, DG method can be seen as an extended FEM version
by decoupling the elements without imposing continuity of the variables, thereby
creating local matrices. Therefore, DG method is a very suitable numerical method
for acoustic propagation problems including, definitely, room acoustics. However,
some developments towards room acoustic applications are still missing: although
results for impedance boundary conditions (BCs) with the DG method have been
presented [138], a proper formulation of these BCs in the framework of DG has not
been published. In contrast, frequency-dependent impedance conditions have been
extensively developed in other methodologies (FDTD, FVM) [40]. In the present
work, a frequency-independent real-valued impedance BC formulation, based on the
plane wave reflection coefficient is proposed, following the idea firstly presented by
Fung and Ju [139].
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To the authors’ best knowledge, no reference is found in scientific literature about
the application of DG method to room acoustics problems. The aim of this work is
to address the positioning of DG method as a wave-based method for room acous-
tics. The accuracy of the method for this type of applications is quantified and the
developments needed to arrive at a fully-fledged DG method for room acoustics are
summarised as future work.

The chapter is organised as follows. In Section 2.2, the governing acoustic equations
are introduced as well as the solution by the time-domain nodal DG method. The
formulations of impedance BCs and its semi-discrete stability analysis are presented
in Section 2.3, and are in this work restricted to locally reacting frequency indepen-
dent conditions. Section 2.4 quantifies and discusses the accuracy of the implemented
nodal DG method for sound propagation in several scenarios: 1) Free field propa-
gation in a periodic domain; 2) A single reflective plane; 3) A cuboid room with
acoustically rigid boundaries; 4) A real room. Finally, conclusions and outlook can
be found in Section 2.5.

2.2 Linear acoustic equations and nodal DG
method

2.2.1 Linear acoustic equations
Acoustic wave propagation is governed by the linear acoustic equations, which are
derived from the general conservation laws [140]. For room acoustics applications, it
can be assumed that sound propagation in air that is completely at rest and constant
in temperature. Under these assumptions, the homogeneous linear acoustic equations
are:

∂v

∂t
+ 1
ρ0
∇p = 0,

∂p

∂t
+ ρ0c

2
0∇ · v = 0, (2.1)

where v = [u, v, w]T is the particle velocity vector, p is the sound pressure, ρ0 is
the constant density of air and c0 is the constant adiabatic sound speed. The linear
acoustic equations can be combined into one equation: the wave equation. Equations
(2.1), completed with initial values or a force formulation at the right side, as well as
a formulation of BCs at all room boundaries, complete the problem definition. In this
study, the linear acoustic equations are solved instead of the wave equation because
it is beneficial for implementing impedance BCs.

2.2.2 Time-domain Nodal DG method
To numerically solve Equations (2.1), the nodal discontinuous Galerkin method is
used to discretise the spatial derivative operators. First of all, Equations (2.1) are
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rewritten into the following linear hyperbolic system:

∂qa
∂t

+∇ · F (qa) = ∂qa
∂t

+Aj
∂qa
∂xj

= 0, (2.2)

where qa(x, t) = [u, v, w, p]T is the acoustic variable vector and x = [x, y, z] is the
spatial coordinate vector with index j ∈ [x, y, z]. The flux is given as:

F = [fx,fy,fz] = [Axqa,Ayqa,Azqa], (2.3)

where the constant flux Jacobian matrix Aj :

Aj =


0 0 0 δxj

ρ0

0 0 0 δyj
ρ0

0 0 0 δzj
ρ0

ρ0c
2
0δxj ρ0c

2
0δyj ρ0c

2
0δzj 0

 , (2.4)

and δij denotes the Kronecker delta function.

Similar to the FEM, the physical domain Ω is approximated by a computational
domain Ωh, which is further divided into a set of K non-overlapping elements Dk,
i.e., Ωh =

⋃K
k=1D

k. This work adopts the quadrature-free approach [141] and follows
the nodal DG algorithm presented in Ref. [112]. The global solution is approximated
by a direct sum of local piecewise polynomial solutions as:

qa(x, t) ≈ qah(x, t) =
K⊕
k=1

qkah(x, t). (2.5)

The local solution qkah(x, t) in element Dk is expressed by:

qkah(x, t) =
Np∑
i=1

qkah(xki , t)lki (x), (2.6)

where qkah(xki , t) are the unknown nodal values in element Dk, lki (xki ) is the multi-
dimensional Lagrange polynomial basis of order N based on the nodes x ∈ Dk,
which satisfies lki (xkj ) = δij . The number of local basis functions (or nodes) Np
is determined by both the dimensionality of the problem d and the order of the
polynomial basis N , which can be computed as Np = (N + d)!/N !d!. In this work,
the α-optimized nodes distribution [142] for tetrahedron elements are used over a
wide range of polynomial order N . The locally defined basis functions constitutes a
function space as V kh = span{lki (x)}Npi=1. Then, the Galerkin projection is followed
by choosing test functions equal to the basis functions. The solution is found by
imposing an orthogonality condition: the local residual is orthogonal to all the test
functions in V kh , ∫

Dk

(
∂qkah
∂t

+∇ · F kh(qkah)
)
lki dx = 0. (2.7)
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Integration by parts and applying the divergence theorem results in the local weak
formulation: ∫

Dk

(
∂qkah
∂t

lki − F
k
h(qkah) · ∇lki

)
dx = −

∫
∂Dk

n · F ∗lki dx, (2.8)

where n = [nx, ny, nz] is the outward normal vector of the element surface ∂Dk

and F ∗(q−ah, q
+
ah) is the so-called numerical flux from element Dk to its neighbor-

ing elements through their intersection ∂Dk. In contrast to the classical continuous
Galerkin method, the discontinuous Galerkin method uses local basis functions and
test functions that are smooth within each element and discontinuous across the ele-
ment intersections. As a result, the solutions are multiply defined on the intersections
∂Dk, where the numerical flux F ∗(q−ah, q

+
ah) should be defined properly as a function

of both the interior and exterior (or neighboring) solution. In the remainder, the
solution value from the interior side of the intersection is denoted by a superscript
“-” and the exterior value by “+”. Applying integration by parts once again to the
spatial derivative term in Equation (2.8) yields the strong formulation:

∫
Dk

(
∂qkah
∂t

+∇ · F kh(qkah)
)
lki dx =

∫
∂Dk

n ·
(
F kh(qkah)− F ∗

)
lki dx. (2.9)

In this study, the flux-splitting approach in [21] is followed and the upwind numerical
flux is presented in the following derivation. Let consider the case where the element
Dk lies in the interior of the computational domain. As is shown in Equation (2.9),
the formulation of the flux along the surface normal direction, n i.e., n ·F = (nxfx+
nyfy+nzfz) is of interest. To derive the upwind flux, the hyperbolic property of the
system is used, decomposing the normal flux on the interface ∂Dk into outgoing and
incoming waves. Mathematically, an eigen decomposition applied to the normally
projected flux Jacobian An = (nxAx + nyAy + nzAz) yields:

An =


0 0 0 nx

ρ0

0 0 0 ny
ρ0

0 0 0 nz
ρ0

ρ0c
2
0nx ρ0c

2
0ny ρ0c

2
0nz 0

 = LΛL−1, (2.10)

where

L =


−ny −nz nx/2 −nx/2
nx 0 ny/2 −ny/2
0 nx nz/2 −nz/2
0 0 ρ0c0/2 ρ0c0/2

 , Λ =


0 0 0 0
0 0 0 0
0 0 c0 0
0 0 0 −c0

 . (2.11)

The upwind numerical flux is defined by considering the direction of the characteristic
speed as:

(n · F )∗ = L(Λ+L−1q−ah + Λ−L−1q+
ah). (2.12)
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where Λ+ and Λ− contain the positive and negative entries of Λ respectively. Phys-
ically, Λ+ (Λ−, respectively) corresponds to the characteristic waves propagating
along (opposite to, respectively) the normal direction n, which are referred to as
outgoing waves out of Dk (incoming waves into Dk, respectively). Therefore, the
outgoing waves are associated with the interior solution q−ah whereas the incoming
waves are dependent on the exterior (neighbouring) solution q+

ah. Finally, the semi-
discrete formulation is obtained by substituting the nodal basis expansion Equation
(2.6) and the upwind flux Equation (2.12) into the strong formulation Equation (2.9),
which can be further recast into the following matrix form:

Mk ∂u
k
h

∂t
+ 1
ρ0
Skxp

k
h =

f∑
r=1

MkrF̂
kr

u , (2.13a)

Mk ∂v
k
h

∂t
+ 1
ρ0
Skyp

k
h =

f∑
r=1

MkrF̂
kr

v , (2.13b)

Mk ∂w
k
h

∂t
+ 1
ρ0
Skzp

k
h =

f∑
r=1

MkrF̂
kr

w , (2.13c)

Mk ∂p
k
h

∂t
+ ρ0c

2
0S

k
xu

k
h + ρ0c

2
0S

k
yv

k
h + ρ0c

2
0S

k
zw

k
h =

f∑
r=1

MkrF̂
kr

p , (2.13d)

where the second superscript r denotes the rth faces ∂Dkr of the element
Dk and f is the total number of faces of the element Dk, which is equal to
four for tetrahedra elements. ukh,v

k
h,w

k
h, and pkh are vectors representing all

the unknown nodal values ukh(xki , t), vkh(xki , t), and pkh(xki , t), respectively, e.g.,
ukh = [ukh(xk1 , t), ukh(xk2 , t), . . . , ukh(xkNp , t)]

T . F̂
kr

u , F̂
kr

v , F̂
kr

w , and F̂
kr

p are flux terms
associated with the integrand n ·

(
F kh(qkah) − F ∗

)
over the element surface ∂Dkr in

the strong formulation Equation (2.9). The element mass matrix Mk, the element
stiffness matrices Skj and the element face matrices Mkr are defined as:

Mk
mn =

∫
Dk

lkm(x)lkn(x)dx ∈ RNp×Np , (2.14a)

(Skj )mn =
∫
Dk

lkm(x)∂l
k
n(x)
∂xj

dx ∈ RNp×Np , (2.14b)

Mkr
mn =

∫
∂Dkr

lkrm (x)lkrn (x)dx ∈ RNp×Nfp , (2.14c)

where j is the jth Cartesian coordinates and Nfp is the number of nodes along one
element face. When the upwind flux is used, the flux terms for each acoustic variable
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read as:

F̂
kr

u = −c0n
kr
x

2

2 [ukrh ]−
c0n

kr
x n

kr
y

2 [vkrh ]− c0n
kr
x n

kr
z

2 [wkr
h ] + nkrx

2ρ0
[pkrh ],(2.15a)

F̂
kr

v = −
c0n

kr
y

2

2 [vkrh ]−
c0n

kr
x n

kr
y

2 [ukrh ]−
c0n

kr
y n

kr
z

2 [wkr
h ] +

nkry
2ρ0

[pkrh ],(2.15b)

F̂
kr

w = −c0n
kr
z

2

2 [wkr
h ]− c0n

kr
x n

kr
z

2 [ukrh ]−
c0n

kr
y n

kr
z

2 [vkrh ] + nkrz
2ρ0

[pkrh ], (2.15c)

F̂
kr

p = c20ρ0n
kr
x

2 [ukrh ] +
c20ρ0n

kr
y

2 [vkrh ] + c20ρ0n
kr
z

2 [wkr
h ]− c0

2 [pkrh ], (2.15d)

where [ukrh ] := ukrh −uls, [vkrh ] := vkrh −vlsh , [wkr
h ] := wkr

h −wls
h and [pkrh ] := pkrh −plsh

are the jump differences across the shared intersection face ∂Dkr or equivalently ∂Dls,
between neighboring elements Dk and Dl, ukrh , etc. are the nodal value vector, over
the element surface ∂Dkr.
In this work, flat-faced tetrahedral elements are used so that each tetrahedron can
be mapped into a reference tetrahedron by a linear transformation with a constant
Jacobian matrix. As a consequence, the integrals in the above element matrices, i.e.,
Mk, Skj and Mkr, need to be evaluated only once. The reader is referred to Ref.
[112] for more details on how to compute the matrices locally and efficiently.

2.2.3 Numerical dissipation and dispersion properties

For a DG scheme that uses polynomial basis up to order N , it is well known that
generally the rate of convergence in terms of the global L2 error is hN+1/2 (h being
the element size) [143]. The dominant error comes from the representations of the
initial conditions, while the additional dispersive and dissipative errors from the wave
propagations are relatively small and only visible after a very long time integration
[112]. The one-dimensional eigenvalue problem for the spatially propagating waves is
studied in [144] and it is reported that the dispersion relation is accurate to (κh)2N+2

locally, where κ is the wavenumber. When the upwind flux is used, the dissipation
error has been proved to be of order (κh)2N+2 while the dispersion error is of order
(κh)2N+3 [145]. When the centered numerical flux is used, the dissipation rate is
exactly zero, but the discrete dispersion relation can only approximate the exact
one for a smaller range of the wavenumber [146]. Extensions to the two-dimensional
hyperbolic system on triangle and quadrilateral mesh are studied in [147] and the
same numerical dispersion relation as the one-dimensional case are reported. In
[145], a rigorous mathematical proof of the above numerical dispersion relation and
error behavior is provided for a general multi-dimensional setting (including three-
dimensional).
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2.2.4 Time integration with the optimal Runge-Kutta
method

After the spatial discretisation by the nodal DG method, the semi-discrete system
can be expressed in a general form of ordinary differential equations (ODE) as:

dqah
dt = L

(
qah(t), t

)
, (2.16)

where qah is the vector of all discrete nodal solutions and L the spatial discretization
operator of DG. Here, a low-storage explicit Runge-Kutta method is used to integrate
Equation (2.16), which reads as:

q
(0)
ah = qnah,{
k(i) = aik

(i−1) + ∆tL
(
tn + ci∆t, q(i−1)

ah

)
,

q
(i)
ah = q

(i−1)
ah + bik

(i),
for i = 1, . . . , s

qn+1
ah = q

(s)
ah ,

where ∆t = tn+1− tn is the time step, qn+1
ah and qnah are the solution vectors at time

tn+1 and tn, respectively, s is the number of stages of a particular scheme. In this
work, the coefficients ai, bi, and ci are chosen from the optimal Runge-Kutta scheme
reported in [148].

2.3 Impedance boundary conditions and
numerical stability

In this section, a new formulation of the impedance BCs based on the plane wave
reflection coefficient is proposed to simulate the locally-reacting surfaces with
frequency-independent real-valued impedances. Additionally, the stability properties
of the DG scheme is discussed.

2.3.1 Numerical flux for frequency-independent impedance
boundary conditions

The numerical flux F ∗ plays a key role in the DG scheme. Apart from linking neigh-
boring interior elements, it serves to impose the BCs and to guarantee stability of the
formulation. BCs can be enforced weakly through the numerical flux either by refor-
mulating the flux subject to specific BCs or by providing the exterior solution q+

ah

[149]. In both cases, the solutions from the interior side of the element face (equiv-
alent to boundary surface) q−ah are readily used, whereas, for the second case, the
exterior solutions q+

ah need to be suitably defined as a function of interior solution q−ah
based on the imposed conditions. In the following, the impedance BC is prescribed
by reformulating the numerical flux. It should be noted that throughout this study,
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only plane-shaped reflecting boundary surfaces are considered. Furthermore, only
locally-reacting surfaces are considered, whose surface impedance is independent of
the incident angle. This assumption is in accordance with the nodal DG scheme,
since the unknown acoustic particle velocities on the boundary surface nodes depend
on the pressure at exactly the same positions.
To reformulate the numerical flux at an impedance boundary, we take advantage of
the characteristics of the underlying hyperbolic system and utilize the reflection co-
efficient R for plane waves at normal incidence. Firstly, the same eigendecomposition
procedure is performed for the projected flux Jacobian on the boundary as is shown
in Equation (2.10). Secondly, by pre-multiplying the acoustic variables qa with the
left eigenmatrix L−1, the characteristics corresponding to the acoustic waves [150],
[151] read: [

ωo
ωi

]
=
[
p/ρ0c0 + unx + vny + wnz
p/ρ0c0 − unx − vny − wnz

]
, (2.17)

where ωo corresponds to the outgoing characteristic variable that leaves the compu-
tational domain and ωi is the incoming characteristic variable.

The general principle for imposing BCs of hyperbolic systems is that the outgoing
characteristic variable should be computed with the upwind scheme using the interior
values, while the incoming characteristic variable are specified conforming with the
prescribed behaviour across the boundary. The proposed real-valued impedance BC
formulation is accomplished by setting the incoming characteristic variable as the
product of the reflection coefficient and the outgoing characteristic variable, i.e.,
ωi = R · ωo. Finally, the numerical flux on the impedance boundary surface can be
expressed in terms of the interior values q−ah as follows:

(n · F ∗) = LΛ


0
0

p−h /ρ0c0 + u−h nx + v−h ny +w−h nz
R · (p−h /ρ0c0 + u−h nx + v−h ny +w−h nz)

 . (2.18)

For given constant values of the normalized surface impedance Zs, the reflection
coefficient can be calculated from R = (Zs − 1)/(Zs + 1), which is consistent with
the fact that the numerical flux from the nodal DG scheme is always normal to the
boundary surface. When the reflection coefficient is set to zero it can be easily verified
that the proposed formulation reduces to the characteristic non-reflective BC, which
is equivalent to the first-order Engquist-Majda absorbing BC [152].

2.3.2 Numerical stability of the DG scheme

In this section, the stability properties of the DG scheme are discussed. Firstly, the
semi-boundedness of the spatial DG operator together with the proposed impedance
BC is analysed using the energy method. Secondly, the fully discrete stability is
discussed and the criterion for choosing the discrete time step is presented.
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Stability of the semi-discrete formulation

Under a certain initial condition and impedance BC, the Equations (2.1) constitute a
general initial-boundary value problem. For real-valued impedance BCs, the classical
von Neumann (or Fourier) stability analysis can no longer be applied, because the
necessary periodic BC for the Fourier components do not exist. To analyse the
stability or boundedness of the semi-discrete system, the energy method [153] is
adopted here. The principle is to construct a norm and to demonstrate it does not
grow with increasing time. This technique has also been applied in other acoustic
simulation methods [28], [154], even in the fully-discrete case.

For the numerical solution of the acoustic variables, e.g., uh(x, t), the local inner
product and its associated L2 norm in function space V kh are defined as:

(
ukh, u

k
h

)
Dk

=
∫
Dk

ukh(x, t)ukh(x, t)dx = ‖ukh‖2Dk . (2.19)

Similarly, over the element surface ∂Dkr, define:(
ukrh , u

kr
h

)
∂Dkr

=
∫
∂Dkr

ukrh (x, t)ukrh (x, t)dx = ‖ukrh ‖2∂Dkr , (2.20)

where ukrh is the numerical solution on the element surface ∂Dkr. Now, the discrete
acoustic energy norm inside single element Dk can be defined as:

Ekh = 1
2ρ0‖ukh‖2Dk + 1

2ρ0‖vkh‖2Dk + 1
2ρ0‖wkh‖2Dk + 1

2ρ0c20
‖pkh‖2Dk . (2.21)

This definition is in complete analogy with the continuous acoustic energy, denoted
as E, throughout the whole domain Ω, i.e., E =

∫
Ω(1/2ρ0c

2
0)p2 + ρ0/2|v2|dx.

By summing all the local discrete acoustic energies over the volume and the bound-
aries, it can be proved in Appendix A that the total discrete acoustic energy, which

is denoted as Eh =
K∑
k=1

Ekh, is governed by:

d
dtEh =−

∑
∂Dmt∈FB

(1−Rmt

2ρ0c0
‖pmth ‖2∂Dmt + ρ0c0

2 (1 +Rmt)‖vmthn‖2∂Dmt
)
. . .

−
∑

∂Dkr∈FI

( 1
2ρ0c0

‖[pkrh ]‖2∂Dkr + ρc

2 ‖n
kr
x [ukrh ] + nkry [vkrh ] + nkrz [wkrh ]‖2∂Dkr

)
,

(2.22)

where FI and FB denote the union set of interior elements and elements with at least
one surface collocated with a physical boundary. [·] denotes the jump differences
across the element surfaces. vmthn = nmtx umth +nmty vmth +nmtz wmth denotes the outward
velocity component normal to the impedance boundary. Rmt is the normal incidence
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plane-wave reflection coefficient along the tth boundary surface of element ∂Dm.
∂Dkr and ∂Dls refer to the same element intersection surface between neighbouring
elements Dk and Dl. Since each norm is non-negative and R ∈ [−1, 1] holds for
a passive impedance BC [155], it is proved that the semi-discrete acoustic system
resulting from the DG discretisation is unconditionally stable for passive BCs with a
real-valued impedance.

It is worth mentioning that the second sum term of the above Equation (2.22) is
related to the energy dissipation inside the computational domain due to the use of
the upwind scheme. This dissipation will converge to zero when the jump differences
across the shared element interfaces converge to zero at a rate corresponding to
the approximation polynomial order. The first sum of the above Equation (2.22) is
associated with the energy flow through the impedance boundary. One advantage
of using the reflection coefficient to impose the impedance BC is that the following
singular cases can be considered without the need for exceptional treatments.

• Hard wall case. As Zs → ∞ or R → 1, vhn → 0, then the boundary energy
term converges to 0, meaning that the energy is conserved.

• Pressure-release condition. As Zs → 0 or R→ −1, ph → 0, then the boundary
energy term once again converges to 0, and the energy is conserved as well.

Stability of the fully discrete formulation and time step choices

The above analysis is devoted to the stability analysis of the semi-discrete formulation
Equation (2.16), which in matrix form read as:

dqah
dt = Lhqah, (2.23)

where Lh is the matrix representation of the spatial operator L. Ideally, the fully
discrete approximation should be stable, at least under a reasonable upper bound on
the time step size. Unfortunately, the theoretical ground for stability of a discretized
PDE system is not very complete [153], particularly for high order time integration
methods. A commonly-used approach based on the von Neumann analysis is to choose
the time step size ∆t small enough so that the product of ∆t with the full eigenvalue
spectrum of Lh falls inside the stability region of the time integration scheme. It
should be noted that this is only a necessary condition for a general initial-boundary
value problem, with the sufficient condition being more restrictive and complex [156],
[157]. However, for real world problems, this necessary condition serves as a useful
guideline.

It is computationally infeasible to compute the eigenvalue of Lh before the simulation
is started for various unstructured mesh, polynomial order and BCs. For the DG
method, it is found that for the first order system Equation (2.16), the gradients of
the normalized N -th order polynomial basis are of order O(N2/h) near the boundary
part of the element [112], consequently the magnitude of the maximum eigenvalue
λN scales with the polynomial order N as: max(λN ) ∝ N2, indicating that ∆t ∝
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N−2. This severe time step size restriction limits the computational efficiency of high
polynomial order approximations. In all the numerical experiments presented in this
work, the temporal time steps are determined in the following way [148]:

∆t = CCFL ·min(rD) · 1
c
, (2.24)

where rD is the radius of the inscribed sphere of the tetrahedral elements. As a
reference, the tabulated maximum allowable Courant number CCFL of the fourth-
order Runge-Kutta method with eight stages (RKF84) scheme for each polynomial
order N can be found in [148]. In each of the following numerical tests, the exact
value of CCFL are explicitly stated for completeness.

2.4 Applications
To investigate the applicability of the nodal DG time domain method as described in
Sections 2.2 and 2.3 for room acoustics problems, various three-dimensional numerical
tests are designed and compared in this section. The first test is a free field propaga-
tion of a single frequency plane wave under periodic BCs. In this case, the dissipation
error in terms of the wave amplitude and the dispersion error are investigated. The
second configuration is a sound source over an impedance plane. The accuracy of
the proposed DG formulation to simulate frequency-independent impedance BCs is
verified. The third configuration is a sound source in a cuboid room with rigid BCs,
embodying an approximation to a real room including multiple reflections. The modal
behaviour of the space is investigated for different polynomial order N of the basis
functions when compared with the analytical solution, together with an analysis of
the sound energy conservation inside the room to quantify the numerical dissipation.
Finally, the fourth configuration is adopted to demonstrate the applicability of the
method to a real room. The configuration is a room with complex geometry and
a real-valued impedance BC. In this configuration, the pressure response functions
in the frequency domain are compared with the measured results at several receiver
locations. For the acoustic speed and the air density, c0 = 343 m/s and ρ0 = 1.2
kg/m3 are used in all calculations. Due to the fact that there are duplicated nodes
along the element interfaces, in this work, the number of degrees of freedom per
wavelength λ (DPW) is used to give a practical indication of the computational cost.
It is computed as:

DPW = λ
3

√
Np ×K
V

, (2.25)

where Np ×K is the number of degrees of freedom for a single physical variable in
the computational domain, V is the volume of the whole domain.

2.4.1 Free field propagation in periodic domain

To verify the accuracy of the free field propagation, a cubic computational domain of
size [0, 1]3 in meter is considered, which is discretized with 6 congruent tetrahedral
elements. 10 × 10 × 10 receivers are evenly spaced in all directions throughout the
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domain. The domain is initialized with a single frequency plane wave propagating in
the x-direction only:

p(x, t = 0) = sin(−2πx), (2.26a)

u(x, t = 0) = 1
ρc

sin(−2πx), (2.26b)

v(x, t = 0) = 0, w(x, t = 0) = 0. (2.26c)

The wavelength λ is chosen to be equal to 1 m such that periodic BCs can be applied
in all directions. As mentioned in Section 2.2.3, when an initial value problem is
simulated, the approximation error associated with the representations of the initial
conditions is a dominant component. In order to rule out this approximation error and
to assess the dissipation and dispersion error accumulated from the wave propagation
alone, the solution values at receiver locations recorded during the first wave period
T of propagation are taken as the reference values. The solutions sampled during
later time period inverval t = [(n−1)T, nT ] are compared with these reference values,
where n = 10, 20, 30, . . . , 100. The amplitude and phase values of the single frequency
wave at each of the receiver locations are obtained from a Fourier transform of the
recorded time signals without windowing. The dissipation error εamp in dB and the
phase error εφ in % are calculated as follows:

εamp = max
(

20 log10
|Pref (x)|
|PnT (x)|

)
, (2.27a)

εφ = max
(∣∣φ(PnT (x)

)
− φ

(
Pref (x)

)∣∣
π

× 100%
)
, (2.27b)

where Pref (x) and PnT (x) are the Fourier transform of the recorded pressure values
at different locations, during the first time period and the nth period respectively.
φ
(
·
)
extracts the phase angle of a complex number.

Simulations for N = 5, 6, 7 corresponding to DPW=6.9, 7.9, 8.9 have been carried out
and a single time step size ∆t = T/100 = 1/(100 ∗ 343) is used for all simulations to
make sure the time integration error is much smaller than the spatial error.

The dissipation and the phase error from the explicit Runge-Kutta time integration
is calculated based on the descriptions presented in [158] and shown as dashed lines
in Fig. 1. As can be seen, both the dissipation error and the phase error grow linearly
with respect to the propagation distance. For 5th order polynomial basis (DPW=6.9),
the averaged dissipation error is approximately 0.035 dB when the wave travels one
wavelength distance while the phase error is 0.095%. Both error drop to 0.002 dB
and 0.005% respectively when the DPW increases to 8. When the DPW is equal to
8.9, the dissipation error is 1.1 ·10−4 dB per wavelength of propagation and the phase
error is less than 3 · 10−4%.
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Figure 2.1: a) Amplitude error εamp and b) phase error εφ for the periodic propagation of
a single frequency plane wave Equation (2.26).

2.4.2 Single reflective plane

To verify the performance of the proposed frequency-independent impedance BC, a
single reflection scenario is considered and the reflection coefficient obtained from
the numerical tests is compared with the analytical one based on a locally reacting
impedance. The experiment consists of two simulations. In the first simulation,
we consider a cubic domain of size [−8, 8]3 in meter, where the source is located
at the center [0, 0, 0] m, and two receivers are placed at xr1 = [0, 0,−1] m and
xr2 = [0, 4,−1] m. In this case, the free field propagation of a sound source is
simulated and sound pressure signals are recorded at both receiver locations. In the
second simulation, a plane reflecting surface is placed 2 m away from the source at
z = −2 m. The measured sound pressure signals not only contain the direct sound but
also the sound reflected from the impedance surface. In both cases, initial pressure
conditions are used to initiate the simulations:

p(x, t = 0) = e
−ln(2)
b2

(
(x−xs)2+(y−ys)2+(z−zs)2

)
, (2.28a)

v(x, t = 0) = 0, (2.28b)

which is a Gaussian pulse centered at the source coordinates [xs, ys, zs] = [0, 0, 0]. The
half-bandwith of this Gaussian pulse is chosen as b = 0.25 m. Simulations are stopped
at around 0.0321 s in order to avoid the waves reflected from the exterior boundaries
of the whole domain. In order to eliminate the effects of the unstructured mesh
quality on the accuracy, structured tetrahedra meshes are used for this study, which
are generated with the meshing software Gmsh [159]. The whole cuboid domain is
made up of structured cubes of the same size, then each cube is split into 6 tetrahedra
elements. The length of each cube is 0.5 m.
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Let pd denote the direct sound signal measured from the first simulation, then the
reflected sound signal pr(t) is obtained by eliminating pd(t) from the solution of the
second simulation. Let R1 denote the distance between the source and the receiver
and R2 is the distance between the receiver and the image source (located at [0,0,-4]
m) mirrored by the reflecting impedance surface. The spectra of the direct sound and
the reflected sound, denoted as Pd(f) and Pr(f) respectively, are obtained by Fourier
transforming pd and pr without windowing. The numerical reflection coefficient Qnum
is calculated as follows:

Qnum(f) = Pr(f) ·G(κR1)
Pd(f) ·G(κR2) , (2.29)

where
G(κR) = eiκR/R, (2.30)

is the Green function in three-dimensional free space. κ is the wavenumber. The
analytical spherical wave reflection coefficient Q reads [160]:

Q = 1− 2 κR2

ZseiκR2

∫ ∞
0

e−
qκ
Zs

eiκ
√
r2
p+(z+zs+iq)2√

r2
p + (z + zs + iq)2

dq, (2.31)

where Zs is the normalized surface impedance, z = 1 is the distance between the
receiver and the reflecting surface, zs = 2 is the distance between the source and
the surface, rp is the distance between the source and the receiver projected on the
reflecting surface.

Table 2.1: CCFL number and time step ∆t for single reflection case (h=0.5 m).

N CCFL ∆t [s]
5 0.185 9.721 · 10−5

6 0.144 7.550 · 10−5

7 0.114 5.993 · 10−5

8 0.094 4.908 · 10−5

Simulations with polynomial order N = 5 up-to N = 8 are carried out with the
corresponding CCFL and time step ∆t presented in Table 2.1. The results of the
numerical tests for Zs = 3 are illustrated in Figure 2.2 The DPW is calculated based
on the frequency of 500 Hz. The comparison of the magnitudes of the spherical wave
reflection coefficient for both the normal incidence angle θ = 0◦ and the oblique
incidence (θ = 53◦) are shown in Figures 2.2a and 2.2b respectively. The phase angle
comparison is presented in Figures 2.2c and 2.2d. It can be seen that with increasing
polynomial order N (or DPW), the numerical reflection coefficient converges to the
analytical one in terms of the magnitude and the phase angle. Also, the accuracy is
rather independent on the two angles of incidence θ. In order to achieve a satisfactory
accuracy, at least 12 DPW are needed. Many tests are performed with different
impedances (Zs ∈ [1,∞]) and receiver locations (θ ∈ [0◦, 90◦]), the same conclusion
can be reached.
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Figure 2.2: Numerical reflection coefficient calculated by Equation (2.29) with different
polynomial orders, compared with the theoretical result according to Equation (2.31) (black
dashed line): a) magnitude for receiver 1, θ = 0◦, b) magnitude for receiver 2, θ = 53◦, c)
phase angle for receiver 1, θ = 0◦, d) phase angle for receiver 2, θ = 53◦.
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2.4.3 Cuboid room with rigid boundaries

In this section, the nodal DG method is applied to sound propagation in a three-
dimensional room with rigid boundaries (R = 1). In contrast to the previous appli-
cations, sound propagation inside the room is characterized by multiple reflections
and sound energy is conserved. The domain of the room is [0, Lx] × [0, Ly] × [0, Lz]
m, with Lx = 1.8, Ly = 1.5, Lz = 2. Initial conditions are given as in Equations
(2.28), with b = 0.2 m. The source is positioned at [0.9, 0.75, 1] m, and a receiver is
positioned at [1.7, 1.45, 1.9] m. Same as the previous test case, the room is discretized
using structured tetrahedral elements of size 0.4 m. The analytical pressure response
in a cuboid domain can be obtained by the modal summation method, and in the
three-dimensional Cartesian coordinate can be written as [34]:

p (x, t) =
∞∑
l=0

∞∑
m=0

∞∑
n=0

p̂lmn (t)ψlmn (x) cos (ωlmnt) , (2.32a)

ψlmn (x) = cos
(
lπx

Lx

)
cos
(
mπy

Ly

)
cos
(
nπz

Lz

)
, (2.32b)

ωlmn = c0

√(
lπ

Lx

)2
+
(
mπ

Ly

)2
+
(
nπ

Lz

)2
, (2.32c)

with ψlmn the modal shape function, p̂lmn the modal participation factor, ωlmn the
natural angular frequency, and l,m,n the mode indices. Since reflections from the
room boundaries occur without energy loss, the modal participation factors are con-
stant over time. To obtain p̂lmn(0), the initial pressure distribution is projected onto
each modal shape as:

p̂lmn(0) = 1
Dlmn

∫
Ω
p(x, t = 0)ψlmn(x)dx, (2.33a)

Dlmn =
∫

Ω
ψ2
lmn(x)dx. (2.33b)

The integration in Equation (2.33a) can be calculated separately for each coordinate.
For example in x-coordinate, the indefinite integration can be expressed in terms of
error function as:∫

e(−a0(x−xs)2) cos(b0x)dx =

√
π

4√a0
e

(
−

b2
0

4a0
−ib0xs

) [
erf(B) + e(i2b0xs)erf(B∗)

]
+ C, (2.34)

with B = √a0 (x− x0) + ib0/2
√
a0, a0 = ln (2)/b2, b0 = lπ/Lx, and C is a constant.

The Equation (2.32a) is used as the reference solution with modal frequencies up to
8 kHz. Furthermore, to show the applicability of the nodal DG method for a long
time simulation, 10 seconds are taken as the simulation duration. To solve for this
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configuration, the CCFL numbers and time steps for the approximating polynomial
orders of N = 3 up-to N = 7 are presented in Table 2.2. To compare the nodal DG
solution with the reference solution, the sound pressure level is computed as:

Lp = 20 log10

∣∣∣∣ P (f)√
2P0

∣∣∣∣ , (2.35)

with P0 = 2 · 10−5 Pa, and P (f) as the spectrum of recorded pressure time signal
p(t) at the receiver location. The end of the time signal is tapered using a Gaussian
window with length of 3.5 s to avoid the Gibbs effect.

Table 2.2: Courant number CCFL and time step ∆tDG for a rigid cuboid room (h=0.4 m).

NDG CCFL ∆tDG [s]
3 0.355 1.400 · 10−4

4 0.248 9.810 · 10−5

5 0.185 7.322 · 10−5

6 0.144 5.687 · 10−5

7 0.114 4.514 · 10−5

Figure 2.3a shows the sound pressure level at the receiver location. The numerical
solutions show an excellent agreement with the reference solution, with the accuracy
of the numerical solution increasing as approximating polynomial order increases.
Figure 2.3b displays the results in the frequency range from 950 to 1000 Hz. This
figure shows that the resonance frequencies are not well represented for N ≤ 5, for
which DPW varies between 4.5 and 6.6 in this frequency range. On the other hand,
the resonance frequencies are correctly represented for N ≥ 6, where the minimum
number of DPW is 7.2. The correct representation of the room resonance frequencies
indicates that the numerical dispersion is low in the DG solution. The numerical
dispersion aspect is essential with regards to the auralisation as shown by Saarelma
et al. [161], where the audibility of the numerical dispersion error from the finite
difference time domain simulation is investigated. Furthermore, Figure 2.3b shows
that the amplitude of the resonances is smaller than for the reference solution for low
order polynomials.

2.4.4 Real room with real-valued impedance boundary
conditions

The final scenario presents a comparison between experimental and numerical results
of a real room. The room was located in the Acoustics Laboratory building (ECHO
building) at the campus of the Eindhoven University of Technology. Geometrical data
of the room, including the dimensions and the location of the source and microphone
positions are presented in Figure 2.4. The room has a volume of V = 89.54 m3 and
a boundary surface area of S = 125.08 m2.

The source is located at [1.7, 2.92, 1.77] m and microphones (M) are located at [3.8,
1.82, 1.66] m for M1 and [4.75, 3.87, 1.63] m for M2. The height (z-coordinate) of
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Figure 2.3: Sound pressure level at receiver position in the configuration of the three-
dimensional rigid cuboid room for different polynomial orders presented for: a) complete
evaluated frequency range and b) sound pressure level between 950 Hz and 1000 Hz.
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the sound source location is measured at the opening (highest point) of the used
sound source (B&K type 4295, OmniSource Sound Source). The measurements were
performed using one free-field microphone B&K type 4189 connected to a Triton USB
Audio Interface. The impulse responses were acquired with a sampling frequency of
48 KHz with a laptop using the room acoustics software DIRAC (B&K Type 7841).
The input channel is calibrated before starting the measurements using a calibrator
(B&K type 4230). The sound signal used for the excitation of the room is the DIRAC
built-in e-Sweep signal with a duration of 87.4 seconds connected to an Amphion
measurement amplifier. At each microphone position, three measurement repetitions
were performed. The results presented in this section for M1 and M2 represent the
average of the three repetitions.

The room was discretized in 9524 tetrahedral elements by using the mesh software
Gmsh and the largest element size is 0.5 m. A detail of the mesh is shown in Figure
2.4b. The same initial pressure distribution as for the three-dimensional cuboid
room of Section 2.4.3 was used. The polynomial order used in the calculations is
N = 4 with a CFL number of CCFL = 0.25. The computed impulse responses had a
duration of 15 seconds. The model used a DPW of 13 for the frequency of 400 Hz.
All the boundaries of the model were computed using a uniform real-valued reflection
coefficient of R = 0.991. The coefficient was calculated from the experimental results
at M1 by computing the Q-value of the resonance at f0 = 97.9 Hz, using:

R = 1− δr8V
cS

, (2.36)

with δr = 2πf0/2Q the decay constant of the room’s resonance [34]. Both impulse
responses from the measurements and simulations were transformed to the frequency
domain by using a forward Fourier transform. The end of the time signals was tapered
by a single-sided Gaussian window with a length of 500 samples (approximately, 5.6
ms) to avoid the Gibbs effect. Furthermore, the time function of the numerical source
was obtained from the following analytical expression:

ps,ana(t) = rsr − c0t
2rsr

e
− log(2)
b2 (rsr−c0t)2

+ rsr + c0t

2rsr
e
− log(2)
b2 (rsr+c0t)2

, (2.37)

with rsr the source-receiver distance. This function was transformed to the frequency
domain to normalise the calculated impulse responses in DG by the source power
spectrum. Likewise, the experimental results were normalised by the B&K 4295 sound
power spectra. The source spectra of an equivalent source B&K 4295 was obtained
by measurements in the anechoic room of the Department of Medical Physics and
Acoustics at Carl von Ossietzky Universität Oldenburg. The corrected results should
be taken with care at frequencies below 50 Hz, due to limitations of the anechoic
field in the determination of the power spectra of the source. The numerical and
experimental results were normalised at 100 Hz, using the results of position M1.

The comparison of numerical and experimental solutions is shown in Figure 2.5 for
narrow and 1/3 octave frequency bands. The results are satisfactory considering that
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Figure 2.4: Graphical data of the room under investigation: (a) Isometric view; (b) Iso-
metric view with surface elements; (c) Plan view; (d) Section view; (e) Picture during the
measurements.

only one uniform real-valued impedance has been used for the whole frequency range
of interest. The biggest deviation, 3.6 dB, is found at position M2 in the 63 Hz 1/3
octave band, while for position M1 the maximum deviation is 2.8 dB in the 250 Hz
1/3 octave band. The average deviation for the 1/3 octave band spectra is 1.2 dB
for M1 and 2.3 dB for M2. Overall, the deviations shown in Figure 2.5 are within a
reasonable range. Factors like the geometrical mismatches between the real room and
the model or the uncertainty in the location of the source and microphone positions
are influencing the deviations.

2.5 Conclusions
In this chapter, the time-domain nodal discontinuous Galerkin method has been
evaluated as a technique to solve the linear acoustic equations for room acoustic
purposes. A nodal DG method was used for the evaluation of the spatial derivatives,
and for time-integration a low-storage optimised 8-stage explicit Runge-Kutta method
was adopted. A new formulation of the impedance BC, which is based on the plane
wave reflection coefficient, is proposed to simulate the locally-reacting surfaces with
frequency-independent real-valued impedances and its stability is analysed using the
energy method.



44 2 Discontinuous Galerkin method for room acoustics applications

4050 63 80 100 125 160 200 250 315

Frequency [Hz]

-60

-40

-20

0

20

40

60

L
p
 [

d
B

]

(a)

4050 63 80 100 125 160 200 250 315

Frequency [Hz]

-60

-40

-20

0

20

40

60

L
p
 [

d
B

]

(b)

Figure 2.5: Sound pressure level Lp in the real room configuration for the experimental and
the DG results in narrow frequency bands (black broken line and red solid line, respectively)
and 1/3 octave bands (black dot and red dot, respectively) for the microphone positions a)
M1 and b) M2.
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The time-domain nodal discontinuous Galerkin method was implemented for four
configurations. The first test case is a free field propagation, where the dissipation
error and the dispersion error are investigated using different polynomial orders. Nu-
merical dissipation exists due to the upwind numerical flux. The benefits of using
high-order basis are demonstrated by the significant improvement in accuracy. When
DPW is around 9, the dissipation error is 1.1 · 10−4 dB and the phase error is less
than 3 ·10−4% under propagation of one wavelength. In the second configuration, the
validity and convergence of the proposed impedance boundary formulation is demon-
strated by investigating the single reflection of a point source over a planar impedance
surface. It is found that the accuracy is rather independent on the incidence angle.
As a third scenario, a cuboid room with rigid boundaries is used, for which a long
time (10 seconds) simulation is run. By comparing against the analytical solution, it
can be concluded again that with a sufficiently high polynomial order, the dispersion
and dissipation error become very small. Finally, the comparison between numerical
and experimental solutions shows that DG is a suitable tool for acoustic predictions
in rooms. Taking into account that only one uniform real-valued impedance has been
used for the whole frequency range of interest, the results are quite satisfactory. In
this case, the implementation of frequency dependent BCs will clearly improve the
precision of the numerical results.

In this study, the performance of the time-domain nodal DG method is investigated
by comparing with analytical solutions and experimental results, without comparing
with other commonly-used room acoustics modelling techniques such as FDTD and
FEM. The aim of this work is to demonstrate the viability of the DG method to
room acoustics modelling, where high-order accuracy and geometrical flexibility are
of key importance. With the opportunity to massively parallelise the DG method,
it has a great potential as wave-based method for room acoustic purposes. Whereas
the results show that high accuracy can be achieved with DG, some issues remain
to be addressed. The improvements in accuracy using high-order schemes come at a
cost of smaller time step size for the sake of stability. There is a trade-off between
a high-order scheme with a small time step and fewer spatial points and a low-order
methods, where a larger time step is allowed but a higher number of spatial points
are needed to achieve the same accuracy.
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3 Discontinuous Galerkin method for
outdoor acoustics applications

Abstract
Mitigating ground noise from aircrafts by rows of industrial buildlings is numerically
studied in this chapter. The environment of interest includes an airport and a nearby
residential area, affected by aircraft noise pollution. A sound source representing an
aircraft is positioned 4 m above the ground on an airport runway, and the residential
area is located approximately 2 km from the runway. Different numbers and shapes
of industrial buildings have been modelled in an intervention area between the run-
way and the affected residential area. To estimate the effect of the noise intervention
in the residential region, calculations are conducted for a non-refracting atmosphere
and for conditions with downwind from runway to residential area, calculated using
computational fluid dynamics (CFD), solving the Reynolds-averaged Navier-Stokes
(RANS) equations. Using the effective sound speed approach, the sound field is
calculated by solving the linearised acoustic equations using the time-domain nodal
discontinuous Galerkin (DG) method. The locally-reacting impedance boundary con-
ditions are used to simulate the boundary conditions at the ground and the building
facades. It is found that the noise insertion loss (IL) values are more stable around
10 dB in the configuration without wind over the whole frequency range. However,
the IL values fluctuate over frequency between 1.3 dB (at 250 Hz frequency band) to
24.7 dB (at 25 Hz frequency band) in the configuration without wind. Moreover, by
implementing the intervention measure C1 under wind condition, the levels produced
by a B747-400 aircraft during take-off can be reduced from 73 dB to 55.9 dB and
from 55.2 dB to 47.8 dB for the octave bands of 31.5 Hz and 63 Hz, respectively.

3.1 Introduction
The increase in air transportation has resulted in many airports operating at their
maximum capacity [162]. One factor limiting the operational capacity of airports
is aircraft noise pollution. To address this problem, the international civil aviation
organization has proposed a balanced approach to manage noise at airports [163].
The approach consists of four elements: reduction at source, land-use planning and
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management, operational procedures for noise abatement, and aircraft operational
restrictions. The implementation of these elements has been enforced for European
airports by Regulation (EU) No 598/2014 on rules and procedures concerning noise-
related operating restrictions at airports [164]. In this study, the land-use planning
and management element is studied around Amsterdam Schipol airport. A noise
intervention study is conducted to discover a means of reducing the noise from the
airport within the surrounding area.

As shown in Figure 3.1, the intervention area is part of Hoofddorp (coloured in blue)
and lies between the N201 road (yellow line) and the noise contours of Amsterdam
Airport Schiphol (LIB 4 and LIB 5, coloured in green and yellow, respectively). This
area lies outside the noise contours of Amsterdam Airport Schiphol and could be used
as a new building area. In this study, noise propagation from the airport runway
(white line) to Hoofddorp via intervention area is simulated, where the general wind
direction (black arrows) blows from the runway to the residential area (downwind
condition). This study evaluates the benefits of including buildings such as industrial
buildings that do not have strict noise regulations in the intervention area as an
aircraft take-off noise mitigating measure. This acoustic evaluation will serve as an
initial guideline that can be considered by urban planners designing the zone.

Figure 3.1: Top view of the area of interest.

In this study, two-dimensional sound propagation simulations are conducted in the
intervention area, which extends over approximately 2 km. With such a distant
propagation, the atmospheric conditions in the area are important. In a certain re-
fractive atmospheric boundary layer (ABL), aircraft noise levels may be greater in
the residential area than in an environment with no significant wind or temperature
gradients. This is the case, for example, when there is a positive temperature gra-
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dient or under downwind conditions. Under these conditions, the sound is refracted
downwards, increasing the sound pressure level close to the ground surface [20]. To
accurately predict such an environment, a sound propagation model that considers
multiple reflections, diffraction, scattering, impedance boundary conditions, and the
wind field around buildings is required. A two-step methodology is used to account
for the factors mentioned above. First, the wind field on the intervention area is mod-
elled using computational fluid dynamics (CFD). Second, the wind field is adopted
in a wave-based computational acoustic (CA) method to calculate the sound field.

There are several wave-based CA methods that can account for sound propagation
in an ABL. One example is the parabolic equation (PE) method [20]. In the PE
method, the sound field is computed by solving a PE that follows the acoustic wave
equation by neglecting the contributions of sound waves with large elevation angles
to the field, as well as back propagation. This method was used by Salomons and
Rasmussen [165], [166] to model the wind effect on the performance of a noise screen.
They determined the wind field around the noise screen using a CFD simulation and
wind-tunnel experiments. The wind field was then adopted using the effective sound
speed approach. PE method was also used by Rosenbaum [167] to predict the sound
propagation of aircraft noise, and by Bosschaart et al., [168] to predict the noise
attenuation of sound scattering elements from ground taxiing aircraft in the vicinity
of Amsterdam Airport Schiphol. The PE method is a computationally efficient CA
method. However, it has a drawback for the present scenario of Figure 3.1 that the
reflected waves are not taken into account.

Another wave-based CA method is the finite difference time domain (FDTD) method.
Van Renterghem and Botteldooren used the FDTD method to predict the effects of
wind on the performance of noise barriers [169]. The wind field was determined using
the CFD approach and adapted to the sound propagation using linearised Euler
equations. The method was extended into a more efficient wave-based CA method
by combining the PE and FDTD approaches [170], [171]. Heimann applied the FDTD
method to 3-D idealised urban situations to investigate the effects of different roof
types, soil properties, wind flow, and turbulence on sound propagation [172]. Oshima
et al. used the FDTD method to model the atmospheric sound propagation on
actual urban terrain. They employed the digital geographical information to create a
realistic urban geometry, and a CFD technique was applied to obtain the wind field
[173]. The FDTD method has the advantage of being robust and straightforward in
implementation. However, it is unable to model complex geometries, for example, all
grid points in the simulation domain are structured, which can result in non-physical
scattering from a tilted smooth surface.

A more recent CA method is the pseudo-spectral time-domain (PSTD) method.
Hornikx et al. [108] used the PSTD method to compute atmospheric sound prop-
agation for several applications such as noise barriers and urban canyons. Hornikx
et al. [174] also modelled sound propagation in generic 2-D urban configurations
with multiple building blocks under a downward refracting ABL. The wind field was
computed using a CFD approach and values were adopted in the linearised acoustic
equations using the effective sound speed approach. The PSTD method is a com-
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putationally efficient method, and it requires only two grid points per wavelength
to achieve good accuracy. However, similar to the FDTD method, there are limita-
tions in the structured approximation of the geometries and the frequency-dependent
impedance boundary conditions (BC) implementation.

Another numerical method is the finite element method (FEM). This method was
rarely used for outdoor sound propagation due to special treatment in solving the
acoustic wave equation for exterior problems [128], [175]. However, as commercial
software has been developed, the FEM has become increasingly used in urban sound
propagation. Pelat et al. [176] modelled sound propagation in a street canyon with
buildings of different sizes using FEM and modal-FEM by solving acoustic wave
equation. The same method was also used by Miguel et al.[177] to evaluate sound
propagation in 3-D periodic urban canyons. The FEM was also used to investigate the
effect of several façade configurations on the sound field in street canyons [178], and
to calculate insertion loss from noise barriers [179]. There are also other CA methods
that can be used to simulate sound propagation in urban environments, such as the
boundary element method (BEM), fast-field programme (FFP), and equivalent source
method (ESM). More details on other CA methods can be found in Ref. [180].

In this study, the time-domain nodal discontinuous Galerkin (DG) method [112] is
used to investigate noise intervention cases in an airport environment. The nodal
DG method has several advantages compared to other CA methods. For example, it
can use an unstructured mesh to represent the simulation domain, unlike the FDTD
and PSTD methods that use structured grids/staircase approximation. In addition,
the spatially dependent atmospheric field variables, such as wind speed, can be rep-
resented, which is not possible in the BEM, ESM, and FFP methods. Another ad-
vantage is that the DG variational formulation results in an element-wise formulation
unlike FEM. Therefore, it allows for relatively easy parallel computation, especially
for large domains such as an airport environment. The accuracy of the nodal DG
method can also be improved by reducing the element size or by increasing the poly-
nomial order, the so-called hp refinement [181]. Moreover, the recent developments by
Wang et al. [182] and Wang and Hornikx [183] have shown the ability of the nodal DG
method to deal with both frequency-independent and -dependent impedance BCs.

The following sections of this chapter is organised as follows: Section 3.2 provides
details of the calculation models for the noise intervention cases; In Section 3.3,
methodologies for calculating the wind flow field and sound propagation are presented
and the computational setting and the processing of the results are described as well;
The simulation results of all configurations are discussed in Section 3.4; Finally,
conclusions and suggestions for further work can be found in Section 3.5. In the
appendices, the validation on the nodal DG methodology is given with the details of
the impedance BCs used for the simulation.
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3.2 Noise intervention case

Figure 3.2: The top view of the simulated two-dimensional scenarios between the noise
source and the first row of residential houses. Two arrows represent the viewing angle of the
computational cases.

(a)

(b)

Figure 3.3: (a) Cross-sectional view of the case without noise intervention (case 0). (b)
Colors in the top view specify materials (asphalt and grass) considered. Dimensions in
meters.

The red line in Figure 3.2 represents the top view of the 2-D section of the noise
intervention case. The line is drawn at an angle of about 45 degrees from the runway
axis. This direction corresponds to the angle where the main lobe is located in the
directivity pattern of aircraft noise, and it is assumed as the direction of high noise
radiation. The computational domain was chosen to represent a simplified geometry
between the source and the first row of existing houses in the residential area.

Figure 3.3 (a) shows the cross-sectional view of the computational domain without
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the noise intervention (case 0). The origin of the coordinate system is at the leftmost
side of the domain on the ground level, and the sound source (S) is placed at (xs, zs) =
(11, 4) m. Figure 3.3 (b) shows the materials used in the configurations (excluding
the surfaces of the buildings). The first row of residential houses is modelled on the
rightmost side of the simulation domain. The height of the house is 8 m. The total
dimensions of the simulation domain are (Lx, Lz) = (2117, 70) m.

The noise mitigation concept is to populate the intervention area of 869 m depth
with industrial buildings to significantly reduce the noise level from the runway to
Hoofddorp. In this study, we consider two geometrical shapes of buildings of width
50 m and height 10 m with flat (Case 1) and tilted roofs (Case 2) shown in Figure
3.4.

(a)

(b)

Figure 3.4: Cross-sectional view of building geometries in the intervention area representing
(a) case 1: flat roof and (b) case 2: tilted roof. Dimensions in meters.

The tilted roof was considered to investigate the influence of upward sound reflection
by the tilted roofs on the noise mitigation. The buildings are placed in the interven-
tion area with certain distance in between, as listed below. Figures 3.5-3.6 show the
cross-sectional and top views of the simulation cases.

• Case 1a: 10 buildings with a rectangular shape, and a separation of 30 m
between the buildings (Figure 3.5 (a)).

• Case 2a: 10 buildings with tilted roofs (Figure 3.5 (b)).

• Case 1b: 14 buildings with a rectangular shape, and a separation of 5 m between
the buildings (Figure 3.6 (a)).

• Case 2b: 14 buildings with tilted roofs (Figure 3.6 (b)).
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(a)

(b)

(c)

Figure 3.5: (a) Cross-sectional view of intervention case 1a, (b) Cross-sectional view of
intervention case 2a, (c) top view of intervention case 1a and 2a. (dimensions in meters)

(c)

(a)

(b)

Figure 3.6: (a) Cross-sectional view of intervention case 1b, (b) Cross-sectional view of
intervention case 2b, (c) top view of intervention case 1b and 2b. (dimensions in meters)

For each case, two atmospheric conditions have been studied: a static atmosphere
(without wind), and a refractive atmosphere where the wind blowing from the NE
direction (see Figure 3.1).

In addition, different sound absorption scenarios are considered in the impedance BCs
of the rooftops to investigate the influence of different sound-absorbing mechanisms.
Two types of acoustic absorption at the roofs of the new buildings are evaluated for
all four intervention cases mentioned above (cases 1a, 1b, 2a, and 2b): roofs with
a constant sound absorption coefficient, and a different resonant absorber for each
roof. In total, there are 18 configurations of the simulation cases, including two
configurations of case 0 (C0 and C0w, without wind and with wind, respectively).
All the configurations are listed in Table 3.1 and the notations presented in the table
will be used to present the results of the acoustic simulations.
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Configuration # Cases Reflection coefficients R [-]

Static
atmosphere

Refractive
atmosphere

Asphalt Grass† Roof1 Roof2 Façades

C1 C1w 1a 0.95 A4 T.A.∗ 0.9 0.9
C2 C2w 1b 0.95 A4 T.A.∗ 0.9 0.9
C3 C3w 2a 0.95 A4 T.A.∗ 0.9 0.9
C4 C4w 2b 0.95 A4 T.A.∗ 0.9 0.9
C5 C5w 1a 0.95 A4 0.9 0.9 0.9
C6 C6w 1b 0.95 A4 0.9 0.9 0.9
C7 C7w 2a 0.95 A4 0.9 0.9 0.9
C8 C8w 2b 0.95 A4 0.9 0.9 0.9
C0 C0w 0 0.95 A4 - 0.9 0.9

†
A4 denotes the Attenborough’s four parameters model (see Appendices B-C.1).

1 Roofs of new industrial buildings
2 Roof of residential house
* Tuned-resonant absorbers (see Appendix C.2)

Table 3.1: Simulation configurations and reflection coefficients of the materials in each case.

C1 and C1w

C2 and C2w

C3 and C3w

C4 and C4w

(a) Tuned absorbers

C5 and C5w

C6 and C6w

C7 and C7w

C8 and C8w

(b) Constant absorption

Figure 3.7: Notation to facilitate the reading of the results for the different configurations.

Additionally, Table 3.1 contains the normal-incidence reflection coefficients (R) of the
different materials used in the model. For materials with a frequency-independent
impedance, a constant value is given in the table. For the frequency-dependent
absorption coefficient, i.e., the grass surfaces and resonant absorbers, the values are
presented in Appendices C.1 and C.2, respectively. Each new building rooftop has a
dedicated resonant absorber tuned to a different frequency in several configurations.
Each resonant absorber is tuned at the centre frequencies of the one-third octave
bands starting from 20 Hz. For cases ’a’, 10 absorbers are used, while for cases
’b’, 14 absorbers are used. Figure 3.7 is presented to facilitate the understanding
of the differences between simulation cases. The red lines are where the frequency-
dependent impedance BCs of tuned absorbers are applied, whereas the black lines
are where the frequency-independent impedance BCs are applied.

Several receivers are placed in the domain as indicated in Table 3.2 and Table 3.3, for
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Index (x, z) [m] x-distance [m]
Source-receiver Previous receiver

Source (S) (11,4) - -
P1a (1159,1.7) 1148 -
P2a (1239,1.7) 1228 80
P3a (1319,1.7) 1308 80
P4a (1399,1.7) 1388 80
P5a (1479,1.7) 1468 80
P6a (1559,1.7) 1548 80
P7a (1639,1.7) 1628 80
P8a (1719,1.7) 1708 80
P9a (1799,1.7) 1788 80
P10a (1879,1.7) 1868 80
PR (2089,1.7) 2078 210
Table 3.2: Source and receiver positions for cases 0, 1a and 2a.

geometry cases a (Figure 3.5) and cases b (Figure 3.6), respectively. These tables are
given in Section 3.4 to facilitate easier reading of the results. All receivers are located
at 2 m before the building façades and 1.7 m above the ground. There are two main
areas of interest related to the placement of receivers. The first one is close to the
existing houses. The insertion loss is calculated at this receiver position to capture
the impact of new buildings. The second area is the intervention area. By placing
receivers in front of the façades of each new building, the sound pressure level can
be compared with one another. Tables 3.2 and 3.3, additionally, show the horizontal
distance between source and receiver and the distance to the previous receiver.

3.3 Methodology

3.3.1 Wind flow modelling
Computational model

Modelling wind flow over building canyons is important in regard to urban acoustics,
as shown in Refs. [166], [174], [184]. In this study, the wind flow over the building
canyons in the intervention area was obtained by a CFD model that assumes neutral
atmospheric conditions where thermal effects (e.g., buoyancy) are neglected. The
flow is assumed to be stationary, and the geometry is two dimensional.

The open-source finite-volume code OpenFOAM 2.4 [185], [186] was used to solve the
incompressible Reynolds-averaged Navier-Stokes (RANS) equations. For the RANS
equations, the standard k − ε turbulence model [187] is used to complete the system
of equations. The values of constants used in the k−ε turbulence model are presented
in Table 3.4, following Ref. [188]. Further numerical and modelling details of the
turbulence model can be found in the literature, e.g., Ref. [189].
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Index (x, z) [m] x-distance [m]
Source-receiver Previous receiver

Source (S) (11,4) - -
P1b (1159,1.7) 1148 -
P2b (1214,1.7) 1203 55
P3b (1269,1.7) 1258 55
P4b (1324,1.7) 1313 55
P5b (1379,1.7) 1368 55
P6b (1434,1.7) 1423 55
P7b (1489,1.7) 1478 55
P8b (1544,1.7) 1533 55
P9b (1599,1.7) 1588 55
P10b (1654,1.7) 1643 55
P11b (1709,1.7) 1698 55
P12b (1764,1.7) 1753 55
P13b (1819,1.7) 1808 55
P14b (1874,1.7) 1863 55
PR (2089,1.7) 2078 215
Table 3.3: Source and receiver positions for cases ’b’ and case 0.

Parameter Value
Cµ 0.09
Cε1 1.44
Cε2 1.92
σk 1.0
σε 1.3

Table 3.4: The k − ε turbulence model constants.

Computational settings

In the noise intervention case, the atmospheric conditions are simulated by CFD
techniques for all configurations with the wind (see Table 3.1). In the computational
domain, a logarithmic horizontal velocity profile is imposed at the inlet as:

U(z) = u∗

κ
ln
(
z + z0

z0

)
, (3.1)

with friction velocity u∗ = 0.888m/s, the aerodynamic roughness length z0 = 0.1m,
and the von Kármán constant κ = 0.41. The selected inlet condition is considered to
be quite extreme, meaning that the wind velocity is high (10 m/s at 10 m height).
Moreover, the grass and asphalt surfaces are modelled with a wall function suitable
for the atmospheric boundary layer with a roughness constant CS = 5, and the
equivalent sand-grain roughness height kS is calculated as proposed in Ref. [190].



3 Discontinuous Galerkin method for outdoor acoustics applications 57

The building roofs and façades are modelled with a wall-function without roughness
(i.e., smooth), and the uppermost boundary is modelled with a slip wall. The detailed
locations of these surfaces can be seen in Figures 3.3-3.6.

The computational grids of the configurations are generated using structured hexa-
hedral cells. In total, the number of cells ranged from 46 · 103 to 93 · 103 depending
on the configuration. The domain size is constructed taking the suggestions in Ref.
[191]. The inlet is located at 25H in front of the first building façades, and the upper
boundary is at 10H, where H is the height of the new buildings (10 m). In this case,
the wind profile before the inlet is assumed following Equation (3.1) as the grass
and asphalt surfaces are assumed to be flat. The outlet was placed at a sufficient
distance downstream (≈ 100H). Finally, the mean wind horizontal velocity field was
interpolated onto the acoustic domain for the subsequent sound propagation mod-
elling. Linear interpolation was done via a MATLAB function based on the Delaunay
triangulation of the horizontal velocity field.

3.3.2 Sound propagation modelling
Governing equations

The sound propagation is modelled by linearised acoustic equations for the acoustic
pressure and velocity components:

∂v

∂t
+ 1
ρ0
∇p = 0,

∂p

∂t
+ ρ0c

2
eff∇ · v = 0,

(3.2)

where v = [u, v]T is the particle velocity, p is the sound pressure, and ρ0 is the
air density. The effect of the mean wind component is given by the effective sound
speed ceff = c0 + U(x, z), where U(x, z) is the horizontal mean wind component
and c0 is the adiabatic sound speed in air. This approach is commonly adopted for
atmospheric sound propagation modelling when the horizontal propagation distances
are significantly larger than the vertical distances, or when horizontal wind speed
components are dominant over the vertical ones [20]. Moreover, the effective sound
speed approach is a reasonably accurate alternative to the linearised Euler equations
for atmospheric sound propagation modelling for the low-frequency region as shown
in Ref. [184], which is the frequency range of interest of this study. Also, because
atmospheric acoustic absorption is more significant at higher frequencies and the
influence in the low-frequency range is presumed minimal, it is omitted.

To solve Equations (3.2) numerically, the nodal DG method is used. This method
discretises the computational domain using non-overlapping simplex elements. The
particle velocity (v) and pressure (p) are approximated using 2-D Lagrange inter-
polation polynomial with order N in each local element to solve the spatial deriva-
tives. Moreover, numerical fluxes between adjacent elements are used to satisfy the
global connectivity. In this study, the triangular elements and the upwind numerical
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flux is used throughout the whole domain [112]. Afterwards, the time-derivatives
are integrated from the initial conditions using an eight-stage low-storage explicit
Runge-Kutta method [148]. The results from the DG simulation was validated by
the comparison with the results from FEM simulation. The details regarding this
validation and its results are shown in Appendix B. Moreover, the detailed imple-
mentation of this method can be found in [112], [182], [192]. For this work, an
in-house nodal DG algorithm implemented in MATLAB is used.

Impedance boundary conditions

The ground and the building envelopes are simulated by impedance BCs, follow-
ing the locally reacting frequency-independent and dependent impedance BCs in the
nodal DG method [182], [183]. In the nodal DG method, the impedance BC is im-
plemented by decomposing the numerical flux along the boundary surfaces. This
decomposition corresponds to the incoming and outgoing acoustic characteristics
waves ($in

n (ω),$out
n (ω)) that are oriented towards the outward-normal direction of

the boundary surface [183]. By utilising these waves, the reflection coefficient is
defined as:

R(ω) = $in
n (ω)

$out
n (ω) = Zs(ω)− 1

Zs(ω) + 1 , (3.3)

with Zs(ω) the surface impedance normalized to the characteristic impedance of air.
Notice that Zs(ω) can be a complex number and the reflection coefficient R(ω) is
formulated in the frequency-domain.

Several steps should be taken to translate the quantity defined in the frequency do-
main into its time-domain counterpart. The first step is to transform the normalised
surface impedance values (Zs(ω)) into the corresponding normal reflection coefficients
within the frequency range of interest (R(ω)), as shown in Equation (3.3). The Zs(ω)
values can be obtained from measurements or an acoustic model. Afterwards, the
reflection coefficients should be approximated by a sum of rational functions

R(ω) ≈ R∞ +
S∑
k=1

Ak
ζk + iω

+
T∑
l=1

(
Bliω + Clβl + αlBl

(αl + iω)2 + β2
l

)
, (3.4)

with [R∞, Ak, Bl, Cl, ζk, αl, βl] all being real numbers. The approximation of the
reflection coefficients R(ω) in the form of Equation (3.4) is essential since this can
be easily transformed into a function of time by an inverse Fourier transformation.
The values of ζk, αl, βl should be positive to satisfy the causality and the reality
conditions. An optimisation method has been employed to obtain all the coefficients
in Equation (3.4) such as shown in Appendix B.

Each term in Equation (3.4) can be explained in terms of its absorption coefficient
(α = 1−|R|2). The first term is the constant part of the reflection coefficient. It may
be used to model relatively hard surfaces with a small sound absorption value at all
frequencies. The second complex-valued term represents an acoustic low-pass filter.
In practice, a surface with this term alone could mimic the behaviour of the sound
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Table 3.5: Main parameters used in the nodal DG simulation for noise intervention case.

Parameter Value
Medium density ρ0 [kg/m3] 1.2
Speed of sound c0 [m/s] 344
Maximum frequency fmax [Hz] 282
DG polynomial order N 6
Number of discrete mesh elements K 436k - 443k
Degrees of freedom per wavelength DPW ≈10
Gaussian source half-bandwidth b [m] 0.5
Sound pressure recording duration T [s] 14
Time step ∆t [s] (8.4− 9.1) · 10−5

reflection by a porous material. The last complex-valued term corresponds with an
acoustic band-pass filter. The last and the first terms can be combined to create an
acoustic band-stop filter. This combination could mimic a resonant absorber, where
the sound absorption is significant only around the resonance frequency.

After obtaining R(ω), the inverse Fourier transform is applied to obtain the time-
domain reflection response function. The last step is to implement the time-domain
reflection response function into the numerical flux on the boundaries. The details
on this implementation can be observed in the work of Wang and Hornikx [183].

Computational settings

The intervention area was discretized in triangular elements using the meshing soft-
ware Gmsh [159], and all configurations use the same Gaussian-shaped initial condi-
tion as follows:

p(x, z) = e−
ln(2)
b2 ((x−xs)2+(z−zs)2),

v(x, z) = 0,
(3.5)

with (xs, zs) = (11, 4) m, and b = 0.5 is the width of the pulse. This width is taken
to have the source power up to the 250 octave band Hz. The maximum frequency of
interest (fmax) in this octave band is 282 Hz. To indicate the cost and accuracy of the
computation related to this maximum frequency, the number of degrees of freedom
per wavelength DPW is used:

DPW = c0
fmax

√
NpK

Sa
, (3.6)

where Np = (N + 2)(N + 1)/2 is the number of nodes in each element with N is
the DG model polynomial order, K is the number of triangular elements of the DG
mesh, and Sa

[
m2] is the surface area of the computational domain. For all noise

intervention configurations, the general parameters are summarised in Table 3.5.

Moreover, the left, right, and upper edges of the computational domain are termi-
nated by a perfectly matched layer (PML) to get reflection-free terminations. In all
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cases, the thickness of the PML is 20 m with a maximum element size of 1 m. The
PML has previously been applied to the nodal DG method for acoustic application
by, Pagán Muñoz [192], and it is adopted in this work.

According to Ref. [20], Sound propagation in a refractive atmosphere (such as the
researched scenarios where downwind circumstances are included) has a so-called
turning point of sound rays, which corresponds to the maximum height before the
sound begins to refract towards the ground. In this study, the total height of the
computational domain is 70 m. This dimension guarantees the highest turning point,
which is about 64 m, lies inside the domain for the investigated scenarios.

3.3.3 Acoustic quantifiers
Two quantities are calculated to evaluate the acoustic conditions of the studied cases.
The first quantity is the sound pressure level:

Lp(fn,xi) = 10 log10

(
1
2
|P (fn,xi)|2

P 2
ref

)
, (3.7)

where P is the complex sound pressure in frequency-domain, and Pref = 2 · 10−5 Pa
is the sound pressure reference. fn denotes the third-octave band center frequency,
and xi is the discrete receiver location in space. The second quantity is the insertion
loss:

IL(f,xi) = Lp,nai(f,xi)− Lp,ai(f,xi), (3.8)

where Lp,nai and Lp,ai are the sound pressure level without and with an acoustic
intervention, respectively. This quantity is used to show the effectiveness of a noise
intervention configuration where a positive IL value represents a noise reduction in a
certain frequency and location. The IL is presented in 1/3 octave bands between 25
Hz and 250 Hz near the residential buildings at location PR according to Tables 3.2
or 3.3.

Additionally, in the noise intervention case, the sound pressure level (Lp) [dB] from a
typical operating aircraft during ground operation is evaluated at different locations
for the frequency bands of 31.5 Hz and 63 Hz. These bands are where the acoustic
energy is primarily concentrated for the aircraft take-off operation [193]. The sound
pressure p2D(t) [Pa] has been recorded at the receiver locations (see Tables 3.2 and
3.3) to obtain the acoustic quantities of interest. The time recordings have been cor-
rected for each location by changing the cylindrical spreading of sound as obtained
from the 2-D simulation to spherical spreading of sound, which holds for 3-D simu-
lations. This correction has been conducted to approximate the corresponding 3-D
results p3D(t) according to Equation (3.9) [180]. Finally, p3D(t) were transformed
into the frequency domain by using the Fourier transform. It needs to be emphasised
that this correction does not return the 3-D solution, as the simulation was conducted
where both the source and the domain were 2-D. This acts as an approximation where
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the buildings are assumed to be invariant in the perpendicular direction.

p3D(t) = p2D(t) 1√
c0t

. (3.9)

3.4 Results and discussions

3.4.1 Noise intervention case results
Wind flow around new buildings

Figures 3.8-3.11 show the wind fields of the horizontal velocity in the range
between x = 1100m to 2127m and z = 0m to 50m, around the intervention
area. Prior to this region (x < 1100m), the wind flow deviates only slightly from
the inlet profile because there is no obstacle presented. The figures show that
a negative wind speed is generated behind each building, indicating the forma-
tion of wind vortices, and the wind flows often to have a similar profile in each canyon.

Figure 3.8: The horizontal wind velocity for Case 1a for x = 1100m to 2127m.

Figure 3.9: The horizontal wind velocity for Case 1b for x = 1100m to 2127m.

Figure 3.10: The horizontal wind velocity for Case 2a for x = 1100m to 2127m.
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Figure 3.11: The horizontal wind velocity for Case 2b for x = 1100m to 2127m.

Insertion loss at the residential building façade

To compute IL, intervention cases C1 to C8 are compared with configuration C0 for
the static atmosphere; while scenarios C1w to C8w are compared with C0w for the
refracting atmosphere (see Table 3.1). In this section, the IL results for the different
configurations are presented in Figures 3.12 to 3.14. In each figure, one main feature
of the configurations is compared:

• Figure 3.12 presents the comparison of the configurations with a different dis-
tribution of new buildings.

• Figure 3.13 presents the comparison of the configurations with a different roof
type.

• Figure 3.14 presents the comparison of the configurations with a different type
of roof absorption.

The investigated configurations, show that the noise intervention measures have pos-
itive impact to the residential building, with all IL values are positive, showing that
there is noise shielding effect from the industrial buildings as shown in Figures 3.12 to
3.14. The IL values are more stable around 10 dB for the configurations with static
atmosphere, while the IL values fluctuate over frequency between 1.3 dB (at 250 Hz
frequency band) to 24.7 dB (at 25 Hz frequency band) in the refracting atmosphere
configurations.

The downward refractive atmosphere reduces the shielding effect of the buildings
as the IL values become smaller at all frequencies except at 25 Hz frequency band,
when compared to the IL values of static atmosphere. This effect also decreases
with increasing frequency as the IL values become smaller at high frequencies. These
results are also consistent with the study by Hornikx et al. [174]. In addition, the
IL values vary more with frequency compared to the static atmosphere as shown in
Figures 3.12 to 3.14. This could be due to the fact that sound is refracted in the
canyons and excites the canyon modes more. For all configurations, the IL maximum
values for the static atmosphere are at the 1/3 frequency bands between 50 and 100
Hz, and when wind conditions are included, the IL maximum values are at the 1/3
frequency band of 25 Hz. The reason for the significantly higher IL values at the 25
Hz frequency band is not yet known and requires further investigation.

Considering the results for the configurations with a different distribution of buildings
in Figure 3.12, a lower number of buildings in the intervention area is favoured. This
analysis can be drawn at least for the static atmosphere, where the average IL value



3 Discontinuous Galerkin method for outdoor acoustics applications 63

is 1 dB higher for a lower number of buildings. Schiff et al. [194] have shown that
the sound attenuation of building canyons depends on the alley width (relative to the
total distance between receiver and source points) and also on the number of building
canyons. Increasing these two factors has a positive effect on the IL value. Thus,
there is no preference between these two factors. In this study, the attenuation of
10 buildings with wider alleys is greater than that of 14 buildings with smaller alleys
for a constant field length between source and receiver. However, this feature is very
limited with only a 1 dB higher IL average value.

Figure 3.13 shows the comparison of the configurations with a different building
geometry. The influence of this feature is very limited in this case, as the average IL
for the tilted-roof is only 0.4 dB higher than the flat-roof. This means that buildings
with tilted roofs offer small advantages over flat roofs in the current configurations.

Moreover, the analysis of the different types of roof absorption is presented in Figure
3.14. For a static atmosphere, tuned absorbers are more beneficial than the constant
absorption for all frequency bands, with the average IL is 0.9 dB higher. The minimal
gain compared to the constant absorber may be due to the limited interaction between
the sound waves and the roof of the building. As shown in the Appendix C.2, each
roof is tuned to a different resonant absorber, and the interaction only occurs when
sound waves pass through each roof of the building. For the refracting atmosphere,
the conclusion is more difficult to reach.
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Figure 3.12: Comparison of results between configurations with a different distribution of
buildings.
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Figure 3.13: Comparison of results between configurations with a different building geome-
try.
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Figure 3.14: Comparison of results between configurations with a different type of roof
absorption.

Sound pressure level due to the aircraft noise emission

The sound pressure level (Lp) has been evaluated at all the receiver locations indicated
in Tables 3.2 and 3.3. The computed values of Lp results are presented for the full



3 Discontinuous Galerkin method for outdoor acoustics applications 67

octave frequency bands of 31.5 Hz and 63 Hz. The calculations are performed using
the sound power levels LW emitted by a sound source corresponding to an aircraft
type B747-400, as included in the technical report [195] (no source directivity is
included in the calculations). Type B747-400 is one of the most common aircraft
currently operating at Amsterdam Airport Schiphol [195]. The results of the sound
pressure level Lp are presented in Figures 3.15 and 3.16 for the static atmosphere and
the refractive atmosphere, respectively.

Figures 3.15 and 3.16 show the benefits of including the proposed noise control mea-
sures in the intervention area, as already seen in Section 3.4.1. In general, noise
reduction is quite significant for all cases and locations. The maximum noise re-
duction between buildings in the intervention area reaches 22.7 and 31.9 dB for the
octave band of 31.5 Hz for cases ’a’ and ’b’, respectively. While for the 63 Hz octave
band, the maximum noise reduction for the same cases equals to 26.8 and 35.5 dB.
It is important to remind that the recording positions P1a to P10a and P1b to P14b
are equally spaced, respectively, however, PR is placed at a further distance (see
Tables 3.2 and 3.3). With the exception of several some results of the recording po-
sitions P1a and P1b (right before the first row of buildings of the intervention area),
the sound pressure levels are lower than those obtained under the current situation,
i.e., no intervention. The intervention is less effective at the recording position PR
(right before the first row of residential buildings) than for some locations situated
in between the new buildings.

The overall levels at the residential buildings (PR) without any acoustic intervention
produced by an aircraft type B747-400 during take-off roll operation (not including
source directivity in the calculations) can reach 73 dB when including wind for the
31.5 Hz octave band and 55.3 dB for the 63 Hz band. When including the evaluated
acoustic interventions, the levels can be lowered down to 55.7 dB (octave band 31.5
Hz) for intervention C4w, and 46.3 dB (octave band 63 Hz) for intervention C6w.

Additionally, Figures 3.15 and 3.16 show that the first building of the intervention
area reduces quite significantly the sound pressure levels due to the shielding from the
direct sound. It can be observed that for the configurations with tuned absorbers on
the roofs, the first buildings have a higher impact on reducing the noise levels. This
effect is clearer for the results of the 31.5 Hz octave band. This is due to the way
the tuned absorbers are spatially distributed. The absorbers of the first buildings
are tuned to the lowest frequency bands (see Appendix C.2). However, the results
of each graph in Figures 3.15 and 3.16 converge approximately to the same levels at
positions R.

The results show that the cases ’b’, i.e., the configurations with more buildings in
the intervention area (Figures 3.15b, 3.15d, 3.16b, and 3.16d), present a higher noise
reduction in the canyons between buildings. For these configurations, the canyons
are narrower (5 m) than the ones of cases ’a’ (30 m). In general, for the positions
between buildings, configurations with a tilted roof present a better performance
than the cases with flat roofs. For static atmosphere, the average noise reduction
for each receiver at 31.5 Hz and 62 Hz for the tilted roof is 1.5 dB and 2.6 dB
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higher, respectively, and for refractive atmosphere, the average noise reduction for
each receiver at 31.5 Hz and 62 Hz for the pitched roof is 0.7 dB and 1.2 dB higher,
respectively.
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Figure 3.15: Comparison of sound pressure level results for ground operations of aircraft
type B747-400 under a static atmosphere. Graphs (a) and (b) present the results for the
octave frequency band of 31.5 Hz, and (c) and (d) for the band of 63 Hz. Graphs (a) and
(c) show the results for configuration cases ’a’ (10 new buildings), while (b) and (d) present
the results for cases ’b’ (14 new buildings). C0 represents the no intervention configuration
under a static atmosphere.
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Figure 3.16: Comparison of sound pressure level results for ground operations of aircraft
type B747-400 under a refractive atmosphere (wind). Graphs (a) and (b) present the results
for the octave frequency band of 31.5 Hz, and (c) and (d) for the band of 63 Hz. Graphs
(a) and (c) show the results for configuration cases ’a’ (10 new buildings), while (b) and
(d) present the results for cases ’b’ (14 new buildings). C0w represents the no intervention
configuration under a refractive atmosphere.
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3.5 Conclusions
In this chapter, the nodal DG method has been evaluated as a technique to solve
the linear acoustic equations for outdoor sound propagation. This study simulates
distant sound propagation over the atmospheric boundary layer with an effective
sound speed approach. This method is validated by comparing the results to those
obtained using the finite element method. The comparison between the two results
shows close agreement at various impedance boundary conditions.

Moreover, this method evaluates the acoustic effects of using industrial buildings
around Amsterdam Airport Schiphol as noise mitigation measures. The atmospheric
condition around the buildings is simulated using CFD-RANS, and it significantly
influences the sound field in the residential area. It can be concluded that the building
topology studied is quite effective for the atmospheric sound propagation problem at
hand. Noise reduction is significant for all configurations at the residential building
site and in the intervention area. Some results of this study are:

• The IL values are more stable around 10 dB for the configurations with static
atmosphere, while the IL values fluctuate over frequency between 1.3 dB (at
250 Hz frequency band) to 24.7 dB (at 25 Hz frequency band) in the refracting
atmosphere configurations.

• In general, the studied building configurations give almost similar noise reduc-
tion results at the residential buildings.

• For the receiver locations in between the canyons, the configurations with more
buildings (cases ’b’) present a higher noise reduction, and the cases with tilted
roofs have a better performance in general.

• For the residential buildings, the maximum reduction is achieved for the 1/3
octave bands between 50 and 100 Hz for the static atmosphere and at the 25
Hz 1/3 octave band for the refractive atmosphere.

• By implementing the evaluated acoustic interventions C1 under the refractive
atmosphere, the levels generated by an aircraft type B747-400 during take-off
can be reduced from 73 dB to 55.9 dB and from 55.2 dB to 47.8 dB for the octave
bands of 31.5 Hz and 63 Hz, respectively. In addition, the levels under the static
atmosphere can be reduced from 65.8 dB to 55.0 dB and from 60.7 dB to 47.8
dB for the octave bands of 31.5 Hz and 63 Hz, respectively. This configuration
has higher average noise reduction values for the two octave bands.

For future work, the study on the optimal number and location of buildings in the
intervention area to achieve maximum IL values is needed. Moreover, investigation
of the 3-D configuration could be important, since it is assumed that the industrial
buildings in the intervention area are invariant in the third dimension. However,
the number of buildings is limited and their sizes may vary in reality. Finally, it
might be possible to extend this method to a higher frequency range by including the
atmospheric absorption, which means that acoustic equations with internal damping
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would be required to model the sound propagation, and the application of these
equations to the nodal DG method could be a topic for further research.
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4 Discontinous Galerkin method for
vibration of monolithic structure

This chapter is based on the journal paper:

• I. Sihar & M. Hornikx, (2019). Implementation of the nodal discontinuous
Galerkin method for the plate vibration problem using linear elasticity equa-
tions. Acta Acustica united with Acustica, 105 (4), 668-681.

The contributions of the author of this thesis to this research are indicated in Section
1.7.

Abstract
This work presents a numerical solution of the plate vibration problem using the nodal
discontinuous Galerkin (DG) method. The plate is modelled as a three-dimensional
domain, and its vibration is governed by the linear elasticity equations. The nodal
DG method discretises the spatial domain and computes the spatial derivatives of
the equations element-wise, while the time integration is conducted using the Runge-
Kutta method. This method is of particular interest as it is very favourable to carry
out the computation by a parallel implementation. Several aspects regarding the
numerical implementation, such as the plate boundary conditions, the point force
excitation, and the upwind numerical flux, are presented. The numerical results are
validated for rectangular concrete plates with different sets of boundary conditions
and thicknesses, by a comparison with the exact mobilities that are derived from the
classical plate theory (CPT) and the first-order shear deformation theory (FSDT)
via the modal expansion method. The plate thickness is varied to understand its
effect regarding the comparison with the CPT. An excellent agreement between the
numerical solution and the FSDT was found. The agreement with the CPT occurs
only at the first couple of resonance frequencies and as the plate is getting thinner.
Furthermore, the numerical example is extended to an L-shaped concrete plate. The
mobility is then compared with the mobilities obtained by the CPT, FSDT, and
linear elasticity equations.
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4.1 Introduction
To obtain a good building acoustic performance, an accurate prediction of the vibroa-
coustic characteristics of the building components is essential. Building components,
such as floors and walls, can be modelled as monolithic structures to obtain their
vibroacoustic characteristics. However, when a building component involves multi-
ple structures such as beams, plates, and cavities, the wave dynamics are complex,
and the monolithic models are not sufficient to represent the structures. Moreover,
when waves propagate across junctions or complex structures (i.e., non-homogeneous
walls), a more general model is needed to predict the vibroacoustic characteristics. To
solve this problem, one may use the energy flow model such as presented in the Euro-
pean standard EN 12354 or a more general statistical energy analysis [196]. However,
these methods are based on the assumption that the sound and vibration fields are
diffuse and have sufficient modal counts in each sub-system, while this assumption is
no longer appropriate in the low-frequency range. In that case, a wave-based method
capable of couple the dynamics of the air and the structure is of interest to predict
the vibroacoustic characteristics.

One approach is by modelling both the structural vibration and the wave propaga-
tion in the air using the linear elasticity equations [197], [198]. The linear elasticity
equations are often used in solid mechanics studies, yet its implementation in the
vibroacoustic problem is also feasible. There are advantages of using the linear elas-
ticity equations to solve vibroacoustic problems in a building. One advantage is
when the thin structure assumption does not hold, as thick structures can be solved
in the linear elasticity equations. Another advantage is when there are changes in the
cross-section area due to stiffeners, junctions, or any discontinuities, as they could be
treated directly in the model.

The linear elasticity equations have frequently been used to model seismic wave prop-
agation in the geophysics field. For instance, Vireux used the 2-D linear elasticity
equations to model the Rayleigh surface waves and solved it using FDTD method
[199]. Dumbser and Käser modelled three-dimensional seismic wave propagation us-
ing linear elasticity equations and solved it using the arbitrary high-order derivatives
discontinuous Galerkin (ADER-DG) method [118]. Another example is by Wilcox et
al., who used DG to simulate seismic waves propagation through coupled acoustic-
elastic media [200].

In the field of sound and vibration, Toyoda and Takahashi [94] have used the linear
elasticity equations to model impact sound in a two-story building and solved it
using the FDTD method. Another example is by Xuan et al. who applied the linear
elasticity equations to the structural-acoustic problem and solved it using FVM [127].
Additionally, Bermúdez at al. have modelled the vibroacoustic problem of a three-
dimensional vessel filled with fluid using linear elasticity equations and used the FEM
to calculate its eigenvalues [201].

In solving a real-life building acoustics problem, there is a need for a more efficient
method to solve the linear elasticity equations than FDTD, FVM, and FEM. This
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efficiency can be provided by the discontinuous Galerkin (DG) method. This method
is of particular interest as it is very favourable to carry out DG calculations by
a parallel implementation, opening opportunities to solve real-world problems in a
reasonable computation time.

In this chapter, as a first step to solve the vibroacoustic problem in a complex building
structure, the impact vibrations of plates are modelled. The vibration is modelled
using the linear elasticity equations and then solved numerically using the nodal DG
method. The nodal DG method satisfies the strong form of linear elasticity equations
by utilising the Lagrange interpolation polynomials as the basis functions, and the
Runge-Kutta method as the time integration solver. It has been used widely to
solve electromagnetic and fluid mechanics problems [112]. Furthermore, the hybrid
approach of the nodal DG method and Fourier pseudo-spectral time-domain has been
developed by Pagán Muñoz and Hornikx to solve the acoustic propagation problem
in air [202], which can be coupled with the current vibration problem.

The remainder of this chaper is organised as follows. Section 4.2 introduces the linear
elasticity equations and the numerical aspects such as the nodal DG formulation,
the upwind numerical flux, and the point force excitation. Section 4.3 introduces
rectangular plates and L-shaped plate configurations. In this section, the problem
domains, boundary conditions (BCs), and numerical settings are given. Section 4.4
discuss the comparison between transfer mobilities obtained by the nodal DG method
and other solutions. Finally, conclusions are given in Section 4.5

4.2 Methodology

4.2.1 Linear elasticity equations
In solid media, the structural vibration can be modelled using the conservation equa-
tions and constitutive equations. This set of equations is known as the linear elasticity
equations [21]. The linear elasticity equations for isotropic structures can be written
in the stress-velocity form using three-dimensional rectangular Cartesian coordinates
as:

∂qs
∂t

+∇ ·H(qs) = ∂qs
∂t

+Bj
∂qs
∂xj

= g, (4.1)

qs(x, t) =
[
vx vy vz σxx σyy σzz σxz σyz σxy

]T
,

g(x, t) =
[
gx gy gz 0 0 0 0 0 0

]T
.

where σxx, σyy, σzz, σxz, σyz, σxy are the stress components; vx, vy, vz are the velocity
components; and gx, gy, gz are the body force components. The flux matrix reads
H(qs) = [hx,hy,hz] = [Bxqs,Byqs,Bzqs]. The constant flux Jacobian matrix Bj
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is given as:

Bj =
[

03×3 B1,j
B2,j 06×6

]
,B1,j = −1

ρ

 δxj 0 0 δzj 0 δyj
0 δyj 0 0 δzj δxj
0 0 δzj δxj δyj 0

 ,

B2,j = −


(λ+ 2µ)δxj λδyj λδzj

λδxj (λ+ 2µ)δyj λδzj
λδxj λδyj (λ+ 2µ)δzj
µδzj 0 µδxj

0 µδzj µδyj
µδyj µδxj 0

 ,

where λ and µ are the Lamé parameters, ρ is the mass density and index j has
components [x, y, z]. The δij denotes the Kronecker delta function. The solution
of Equations (4.1) consists of a linear combination of elastic waves propagating with
longitudinal wave speed (cp =

√
(λ+ 2µ)/ρ) and transverse wave speed (cs =

√
µ/ρ)

[21]. The Lame parameters are represented by using Young’s modulus (E) and Pois-
son’s ratio (ν) as λ = Eν/(1 + ν)(1 − 2ν) and µ = E/2(1 + ν). The complete
description of the domain and the BCs are written in Section 4.3.1.

4.2.2 Nodal discontinuous Galerkin method
In this section, the nodal DG method as presented by Hesthaven and Warburton [112]
is applied to solve Equation (4.1). Initially, the problem domain is approximated by
the computational domain Ωh with K number of non-overlapping rectilinear tetrahe-
dral elements Dk as Ωh = ∪Kk=1D

k. The solution on each Dk is defined as the local
solution qksh(x, t), and the global solutions are approximated as the direct sum of the
local solutions as:

qs(x, t) ≈ qsh(x, t) = ⊕Kk=1q
k
sh(x, t). (4.2)

Each local solution is expanded by a combination of basis functions as:

qksh(x, t) =
Np∑
i=1

qksh(xi, t)li(x) =
Np∑
j=1

q̂kshj(t)Ψj(x), (4.3)

where li(x) are the three-dimensional Lagrange interpolation polynomials based on
nodal points xi, Np is the number of the nodal points, Ψj(x) are three-dimensional
modal basis functions, and q̂kshj are the coefficients of the modal basis functions. The
expression of Ψj(x) is given in Section 5.2.3.

The first term of Equation (4.3) is known as the nodal form, and the second term
is known as the modal form. In the nodal DG method, the nodal form is used
to approximate the solution. However, the closed-form expression of the Lagrange
interpolation polynomials in tetrahedral elements does not exist; therefore it is con-
structed by utilising the modal form. The relationship between nodal and modal
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form is established by the Vandermonde matrix (V ) as:

qsh = V q̂sh, Vij = Ψj(xi), l(x) =
(
V T
)−1

Ψ(x). (4.4)

In each element, we need to have a minimum number of nodal points Np to establish
Lagrange interpolation polynomials of order N . Np is defined as Np = (N + 1)(N +
2)(N + 3)/6. Moreover, to have a well-conditioned Vandermonde matrix, the nodal
points are distributed following the optimised Legendre Gauss Lobato (LGL) points
over a tetrahedral element [112].

Afterwards, the nodal basis functions are used to approximate the unknown variables
and the body forces in Equation (4.1). The residuals of the approximations are
then multiplied by the test functions in accordance with the Galerkin method. The
strong formulation of Equation (4.1) takes the following form after performing spatial
integration by parts twice:∫

Dk

[
∂qksh
∂t

+∇ ·H(qksh)
]
lki dx =

∫
Dk
gkhl

k
i dx−

∫
∂Dk

n ·
[
H∗ −H(qksh)

]
lidx, (4.5)

where ∂Dk is the element surface, gkh is the approximated body force vector, and n =
[nx, ny, nz] is the outward normal vector of the element surface ∂Dk. The flux along
the normal direction of the element surface is defined as n·H = (nxhx+nyhy+nzhz),
and theH∗ is the numerical flux. Equation (4.5) can be solved element-wise, and the
numerical flux has a role in ensuring continuity of the global solution. This role makes
the selection of numerical flux vital in the DG method. In this work, we select the
upwind numerical flux as the numerical flux. The details on this flux are elaborated
in Section 4.2.3.

After defining the numerical flux, we substitute the nodal basis and the numerical
flux into Equation (4.5) to obtain the semi-discrete form for each element as:

Mk ∂v
k
xh

∂t
− 1
ρ

(
Skxσxx

k
h + Skyσxy

k
h + Skzσxz

k
h

)
= Mkgkxh −

4∑
r=1

MkrĤ
kr

vx ,

Mk
∂vkyh
∂t
− 1
ρ

(
Skxσxy

k
h + Skyσyy

k
h + Skzσyz

k
h

)
= Mkgkyh −

4∑
r=1

MkrĤ
kr

vy ,

Mk ∂v
k
zh

∂t
− 1
ρ

(
Skxσxz

k
h + Skyσyz

k
h + Skzσzz

k
h

)
= Mkgkzh −

4∑
r=1

MkrĤ
kr

vz ,

Mk ∂σxx
k
h

∂t
− (λ+ 2µ)Skxvkxh − λSkyvkyh − λSkzvkzh = −

4∑
r=1

MkrĤ
kr

σxx ,

Mk ∂σyy
k
h

∂t
− λSkxvkxh − (λ+ 2µ)Skyvkyh − λSkzvkzh = −

4∑
r=1

MkrĤ
kr

σyy , (4.6)
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Mk ∂σzz
k
h

∂t
− λSkxvkxh − λS

k
yv

k
yh − (λ+ 2µ)Skzvkzh = −

4∑
r=1

MkrĤ
kr

σzz ,

Mk ∂σxz
k
h

∂t
− µSkzvkxh − µS

k
xv

k
zh = −

4∑
r=1

MkrĤ
kr

σxz ,

Mk ∂σyz
k
h

∂t
− µSkzvkyh − µS

k
yv

k
zh = −

4∑
r=1

MkrĤ
kr

σyz ,

Mk ∂σxy
k
h

∂t
− µSkyvkxh − µS

k
xv

k
yh = −

4∑
r=1

MkrĤ
kr

σxy .

The vkxh, vkyh, vkzh, σxx
k
h, σyy

k
h, σzz

k
h, σxz

k
h,σyz

k
h, and σxy

k
h are vectors representing

all unknown variables at the nodal points xi, with i = 1 to Np. Note that all the
mechanical properties in Equation (4.6) are defined in the interior element, with the
exception of the numerical flux terms. The second superscript r denotes the rth
faces of ∂Dkr of the element Dk. The terms Ĥ

kr

u , Ĥ
kr

v , Ĥ
kr

w , Ĥ
kr

σxx , Ĥ
kr

σyy , Ĥ
kr

σzz ,

Ĥ
kr

σxz , Ĥ
kr

σyz , and Ĥ
kr

σxy are associated with the flux terms n ·
[
H∗ −H(qksh)

]
over

the element surface in Equation (4.5). Mk is the element mass matrix, Skj are the
element stiffness matrices in the j-directions, andMkr are the element face matrices.
Details on these matrices are provided in Refs. [112], [203].

Having the semi-discrete form at hand, Equation (4.6) for the whole computational
domain can be expressed in the form of ordinary differential equations as:

dqsh
dt = L (qsh(t), t) , (4.7)

where qsh is the vector of all nodal solutions, and L is the semi-discrete operator
conducted over all elements. Finally, various methods can be employed to integrate
the time derivative in Equation 4.7. The fourth-order Runge-Kutta method with
eight stages (RKF84) is used in this work, as described in Ref. [148]. For the time
integration, the time-step (∆t) is defined as:

∆t = CCFL ·min(rDk)
N2 · cp

, (4.8)

where L is the semi-discrete operator, CCFL is the Courant number, cp is the longi-
tudinal wave speed, and min(rDk) is the shortest element edge in the computational
domain. In the implementation of nodal DG method, the mapping between the stan-
dard tetrahedral element and the general tetrahedral element (I) is introduced to
generalise the computation. The mapping between Dk and I will be discussed more
in Section 4.2.4.
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4.2.3 Upwind numerical flux
In this section, the upwind numerical flux is derived. For more details on the numer-
ical flux, we refer to the work of LeVeque [21], Wilcox et al. [200], or Dumbser et al.
[118]. To formulate the upwind numerical flux, the Riemann problem of Equation
(4.1) at the interfaces of each element should be solved. The Riemann problem is a
discontinuous initial value problem, where the initial value (q̊s) is defined as:

q̊s(x) =
{
q−s forx < 0,
q+
s forx > 0,

where q−s represents the variable at the local element, and q+
s represents the variable

at the neighbor elements. Since Equations (4.1) are hyperbolic equations, B can be
decomposed as B = RΛR−1, with Λ the eigen-values, and R the eigen-vectors. Λ
can be written as:

Λ = diag (−cp,−cs,−cs, 0, 0, 0, cs, cs, cp) ,

cp =
√

(λ+ 2µ) /ρ, cs =
√
µ/ρ,

where cp is the longitudinal wave speed, and cs is the shear wave speed. Further,
introducing wc = R−1qs as the characteristic variables, the homogeneous form of
Equation (4.1) can be diagonalized by the multiplication with R−1 to obtain the
following form:

∂wc

∂t
+ Λ∇ ·wc = 0. (4.9)

The initial characteristic variable is defined as:

ẘc(x) =
{
R−1q−s = w−c for x < 0,
R−1q+

s = w+
c for x > 0.

Equation (4.9) shows that each characteristic variable (wci(x, t)) is decoupled and
can be treated as an advection equation. The general solution of wci(x, t) is:

wci(x, t) =
{
w−ci for (x− λit) < 0,
w+
ci for (x− λit) > 0,

where λi is the wave velocity in the eigen-values matrix. This solution shows that
the discontinuity emanating from x = 0 is propagating along the characteristic curves
x = λit. Now, if p is defined as the maximum value of i for which x − λit > 0 at
(x, t), and transform it back to the original unknown variables by multiplying it with
R, the Riemann solution at the interface of the elements may be written as:

qs(x, t) =
p∑
i=1

w+
ciri +

6∑
i=p+1

w−ciri. (4.10)
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Figure 4.1: Illustration of the Ranking–Hugoniot jump conditions to construct the solution
of the Riemann problem.

Equation (4.10) shows that the Riemann solution is a combination of eigen-vectors ri
with wi as the magnitude. To get better insight, the Riemann solution is illustrated
in Figure 4.1, where six characteristic curves emanating from x = 0 are drawn.
The characteristic curves are related to the eigen-values −cp,−cs, cs, cp. Notice that
there are two coincident characteristic curves at −cs and cs. The zero eigen-values
are omitted since there is no contribution related to these eigen-vectors.

Based on Figure 4.1, the Riemann solution can be divided into six regions:
q−s , q

I
s, q

II
s , q

III
s , qIV

s , q
+
s . Each region represents the region of (x, t) with the same

solution. q−s is the solution of the first region where (x+ cpt < 0); qI
s is the solution

of the second region where (x+ cpt > 0) and (x+ cst < 0); qII
s is the solution of the

third region where (x + cst) > 0 and (x − cst < 0); and so on. The qI
s, q

II
s , q

III
s , qIV

s

are known as the intermediate states [21]. In these regions, the solution is unknown
and should be determined from the known initial values q+

s and q−s . From Equation
(4.10), it is known that across each i-th characteristic curve, the jump of the solution
qs can be defined as

(
w+
ci − w

−
ci

)
ri. Hence, the total jump between q+

s and q−s is:

q+
s − q−s =

(
w+
c1 − w

−
c1
)
r1 +

(
w+
c2 − w

−
c2
)
r2 (4.11)

+
(
w+
c3 − w

−
c3
)
r3 +

(
w+
c4 − w

−
c4
)
r4

+
(
w+
c5 − w

−
c5
)
r5 +

(
w+
c6 − w

−
c6
)
r6.

This jump between regions is called the Rankine-Hugoniot jump condition. This
condition is essential to derive the solution for the intermediate states. Further,
αi =

(
w+
ci − w

−
ci

)
is defined to have a more compact notation. Thus, Equation (4.11)

can be written as:

q+
s − q−s = α1r1 + α2r2 + α3r3 (4.12)

+ α4r4 + α5r5 + α6r6. (4.13)

Moreover, α can be defined from the jump condition as:

α = R−1 (q+
s − q−s

)
. (4.14)
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Having α at hand, now the intermediate states at any position and time can be
obtained. In the DG method, the location of discontinuity is at the interface between
elements. To calculate the numerical fluxes, the intermediate states located at the
discontinuity is needed, which in this case is the state at qII

s or qIII
s regions, both

expressions are equal. Based on Equations (4.10) and 4.14, these regions can be
written as:

qII
s = q−s + α1r1 + α2r2 + α3r3,

or
qIII
s = q+

s − α6r6 − α5r5 + α4r4.

The region qII
s is taken as the region of interest, and the upwind numerical flux is

expressed as H∗ = BqII
s . The details of H∗ is given in the Appendix D.

4.2.4 Point force excitation
In order to insert force into a plate domain, an external source can be introduced by
having the body force vector g [N/kg] at the right-hand side of the linear elasticity
equations. The point body force is approximated using the Lagrange interpolation
polynomials to excite the point body force solely at z-direction gz(x, t) as:

gz(x, t) = A(t) · δ(x− x0), (4.15)

where A(t) is an excitation function in time, δ(x) is the spatial Dirac delta function,
and x0 is the excitation location. The point body force can be approximated by
exciting one nodal basis in an element. However, it could create forces with certain
directivity where the support of the body force only depend on one element such as
shown by Etienne [204]. To overcome this problem, the same gz(x, t) are distributed
on several elements that have vertex located at the same x0. After applying the same
body force in each element, the total force F (t) [N] in the computational domain can
be computed as:

F (t) = ρ

Kp∑
k=1

Gk(t) = ρ

Kp∑
k=1

∫
Dk

gkz (x, t)dx, (4.16)

where Kp is the total number of elements around the excitation location, and gkz (x, t)
is the body force function in each element k. The integration in Equation (4.16) can
be conducted in each element by transform it into a standard tetrahedral element (I)
as:

Gk(t) = A(t)Jk
∫

I

Np∑
i=1

gkz (ξi, t)ϕi(ξ)dξ, (4.17)

where Jk is the transformation Jacobian of element Dk, ξi are the optimised LGL
points at I, and ξ is the reference coordinate (ξ1, ξ2, ξ3). The I is defined as:

I = {(ξ1, ξ2, ξ3) | ξ1, ξ2, ξ3 > −1; ξ1 + ξ + ξ3 6 1} . (4.18)
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Since only one nodal basis in each element is excited, the sum over index i on Equation
(4.17) only have a value at one nodal point. However, this nodal point might be
different for each element, so the index i is kept. To have the integration of Equation
(4.17), the closed-form of ϕi(ξ) is needed, and it can be expressed by the three-
dimensional orthogonal basis function Ψj(ξ) such as defined in Equation (4.4). By
this relation, Equation (4.17) could be re-written as:

F k(t) = ρA(t)Jk
Np∑
i=1

Np∑
j=1

gkz (ξi, t)(VT )−1
ij

∫
I
Ψj(ξ)dξ. (4.19)

The modal basis Ψj(ξ) is defined following Hesthaven [112] as:

Ψj(ξ1, ξ2, ξ3) =
√

8P (0,0)
a (η1)P (2a+1,0)

b (η2)
P (2a+2b+2,0)
c (η3)(1− η2)a(1− η3)a+b, (4.20)

η1 = −2(1 + ξ1)
ξ2 + ξ3

, η2 = 2(1 + ξ1)
1− ξ3

− 1, η3 = ξ3, (4.21)

where P (α,β)
a is the Jacobi polynomials with weight α and β, and a + b + c ≤ N .

The (η1, η2, η3) are the collapsed coordinates and they varies between [−1, 1]. By
expressing the Ψj(ξ) using the collapsed coordinates, the integration in Equation
(4.19) is separable and can be presented as:∫

I
Ψj(ξ)dξ = 1√

8

∫ 1

−1
P (0,0)
a (η1)dη1·∫ 1

−1
(1− η2)a+1P

(2a+1,0)
b (η2)dη2·∫ 1

−1
(1− η3)a+b+2P (2a+2b+2,0)

c (η2)dη3. (4.22)

It should be noted that the transformation Jacobian between reference coordinate
and the collapsed coordinate is included in Equation (4.22). Finally, the Equation
(4.22) can be integrated using the Gauss-Jacobi quadrature to have the total force
that is inserted into the computational domain. To summarise, the time-domain
body force is given at a specific vertex in several elements around the point force
excitation; afterwards, the Gauss-Jacobi quadrature formula is applied to compute
the total force. The total force is used to calculate the plate mobility of the nodal
DG solution such as configured in the next sections.

4.3 Case studies
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4.3.1 Rectangular plate configuration
The first case study in this chapter is the vibration of a rectangular plate. A rectangu-
lar plate represented by a cuboid computational domain of sizes [0, 1.8]×[0, 1.2]×[0, h]
m, with h is the plate thickness is taken an example. The plate is made of con-
crete with Young’s modulus (E) 33.7 GPa, density (ρ) 2300 kg/m3, and Poisson’s
ratio (υ) 0.3. The corresponding Lame parameters are λ = Eυ/(1 + υ)(1− 2υ) and
µ = E/2(1 + υ).

The first objective of this case configuration is to compute the transfer mobilities
of the rectangular plates with the mechanical properties as mentioned above with
different BCs and thicknesses. The transfer mobility is computed between the force
located at F = [0.3, 0.9, h] m and the velocity located at R = [1.6, 0.3, h] m. The
plate thickness are vary of h = [0.12, 0.08, 0.04] m, and each thickness has three sets
of BCs: S-S-S-S, S-S-S-C, and S-S-S-F BCs. Each set of the plate BCs is described
in Section 4.3.1.

The second objective is to analyse the accuracy of transfer mobility around the point
force excitation location. The plate with S-S-S-F BCs and h = 0.12 m is taken as
an example to investigate the accuracy. The transfer mobilities are taken between
the force located at F and several velocities located at R1 = [0.3, 0.85, h] m, R2 =
[0.25, 0.85, h] m, R3 = [0.35, 0.95, h] m, and R4 = [0.4, 0.9, h] m, which are located
close to the excitation point. To excite the vibration, the body force gz(x, t) is given
with A(t) in the form of Ricker wavelet:

A(t) = (0.5− (πfc(t− td))2)e(πfc(t−td))2
,

with the center frequency fc = 500 Hz and the center time td = 5 ms. This center
frequency is taken to have the force excitation up to 1 kHz. The plate is discretised
using unstructured tetrahedral elements generated by Gambit mesh generator [205].
The mesh of plate with h = 0.12 m is shown at Figure 4.2. The locations of the force
(F) and receiver (R) are marked in Figure 4.2, and the elements that are associated
with the point force are highlighted with red colour. Afterwards, the BCs are ascribed
to each computational face such as presented in Section 4.3.1. Moreover, the nodal
basis of N = 3 is used for all cases on rectangular plate configuration. Finally, the
details of the mesh, degrees of freedom (DoF), and time steps are given in the Table
4.1.
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Figure 4.2: Rectangular plate computational domain with thickness of h = 0.12 m. The
excitation force (F) and receiver (R) locations are marked, and the elements that are asso-
ciated with the point force are highlighted with red colour.

Table 4.1: Numerical settings of the nodal DGmethod for the computation of the rectangular
plate configuration.

h K DoF CCFL ∆t

0.12 m 641 12820 1 2.86 · 10−6

0.08 m 630 12600 1 2.02 · 10−6

0.04 m 616 12320 0.7 7.09 · 10−7

Boundary conditions

To complete the problem definition, the BCs are ascribed to each plate face. There
are six sets of rectangular plate BCs that have exact mode shapes and eigenvalues
based on plate theories [206], [207]. In this work, three sets of BCs are considered
which is the S-S-S-S plate, the S-S-S-C plate, and the S-S-S-F plate. The labels refer
to the plate faces at x = 0, y = 0, x = 1.8 m, and at y = 1.2 m, respectively. The
indexes S, C, and F indicates the simply supported BC, the clamped BC, and the
free BC, respectively. For all different BCs, the top and bottom faces at z = h and
z = 0 are considered as the free BCs which implies:

σxz = σyz = σzz = 0. (4.23)

In the nodal DG method, this translates to the following conditions:

σ+
xz = −σ−xz, σ+

xx = σ−xx, v+
x = v−x ,

σ+
yz = −σ−yz, σ+

yy = σ−yy, v+
y = v−y ,

σ+
zz = −σ−zz, σ+

xy = σ−xy, v+
z = v−z .

(4.24)

These settings set the stress components at the top and the bottom faces as in
Equation( 4.23).
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S-S-S-S plate

The details considering the S-S-S-S plate on the three-dimensional domain can be
found in the work of Srinivas et.al. [208]. According to them, to satisfy the simply
supported BC, the plate face at x = 0 and x = 1.8 m should have the following
conditions:

vy = 0, σxx = 0, σzz = 0,
vz = 0, σyy = 0, σyz = 0. (4.25)

In the nodal DG method, this BC is implemented as:

v+
y = −v−y , σ+

xx = −σ−xx, σ+
zz = −σ−zz,

v+
z = −v−z , σ+

yy = −σ−yy, σ+
yz = −σ−yz,

v+
x = v−x , σ+

xy = σ−xy, σ+
xz = σ−xz.

(4.26)

For the plate face at y = 0 and y = 1.2 m, it should have the following conditions:

vx = 0, σxx = 0, σzz = 0,
vz = 0, σyy = 0, σxz = 0. (4.27)

In the nodal DG method, this BC is implemented as:

v+
x = −v−x , σ+

xx = −σ−xx, σ+
zz = −σ−zz,

v+
z = −v−z , σ+

yy = −σ−yy, σ+
xz = −σ−xz,

v+
y = v−y , σ+

xy = σ−xy, σ+
yz = σ−yz.

(4.28)

S-S-S-C plate

To obtain the S-S-S-C plate, the plate faces at x = 0 and x = 1.8 m should satisfy
Equation (4.25) and follow the nodal DG settings at Equation (4.26). Afterwards,
the face at y = 0 should satisfy Equation (4.27) and follow the implementation at
Equation (4.28). For the face at y = 1.2 m, the plate should satisfy the following
conditions:

vx = vy = vz = 0.

In the nodal DG method, this BC is implemented as:

σ+
xx = σ−xx, σ+

xz = σ−xz, v+
x = −v−x ,

σ+
yy = σ−yy, σ+

yz = σ−yz, v+
y = −v−y ,

σ+
zz = σ−zz, σ+

xy = σ−xy, v+
z = −v−z .

S-S-S-F plate

The S-S-S-F plate has the same settings as the S-S-S-C plate at the faces of x = 0,
x = 1.8m, and y = 0. For the face at y = 1.2m, the plate should satisfy the following
condition:

σxy = σyy = σyz = 0. (4.29)
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In the nodal DG method, this BC is implemented as:

σ+
xy = −σ−xy, σ+

xx = σ−xx, v+
x = v−x ,

σ+
yy = −σ−yy, σ+

zz = σ−zz, v+
y = v−y ,

σ+
yz = −σ−yz, σ+

xz = σ−xz, v+
z = v−z .

(4.30)

4.3.2 Rectangular plate analytical mobility
To validate the numerical results from the nodal DG method, the plate mobility ob-
tained by the nodal DG method is compared with exact mobility obtained from plate
theories: classical plate theory (CPT) and first-order shear deformation plate theory
(FSDT). The CPT is selected since it has been used extensively in building acoustics
applications, and the FSDT is selected since it is more accurate than the CPT. The
mode shape and the natural frequency from each plate theories are obtained and the
mobility is calculated by applying the modal expansion method. The details of the
CPT and the FSDT can be found in literature [22]. The mobility (Y) between the
force located at (x0, y0) and the velocity (vz) located at (xr, yr) can be written as:

Y(ω) = iω

∞∑
m1=1

∞∑
m2=1

Fm1m2(x0, y0)Ξm1m2(xr, yr)
M(ω2

m1m2
(1 + jζ)− ω2) , (4.31)

where Fm1m2 is the mode force, Ξm1m2 is the mode shape,M is the inertia component,
ωm1m2 is the angular frequency of the natural mode m1,m2, ζ is the structural
damping, and ω is the angular frequency. The indexes m1 and m2 represent the
mode shape in x-direction and y-direction, respectively. Fm1m2 is the projection of
the force to the m1 m2 natural mode shape. For the point force excitation, mobility
can be written as:

Fm1m2 = Ξm1m2(x0, y0)∫ Lx
0
∫ Ly

0 Ξ2
m1m2

(x, y)dxdy
,

where Lx and Ly are the plate length and width. According to the CPT, the S-S-S-S
plate mode shape and natural angular frequency can be written as:

Ξm1m2(x, y) = sin(αm1x) sin(βm2y), (4.32)
ω2
m1m2

=D(α2
m1

+ β2
m2

)2/M, (4.33)

where αm1 = m1π/a, βm2 = m2π/b, the bending stiffness D = (Eh3)/(12(1− υ2)),
and the inertia componentM = ρh. In practical applications, often plate rotary iner-
tia is omitted in CPT. However, it could over-estimate the plate natural frequencies.
For the S-S-S-S plate, the effect of rotary inertia is included to calculate the mobility
by defining the inertia component in Equation (4.33) as:

M = ρh+ ρh3

12
(
α2
m1

+ β2
m2

)
.

For the mobility according to FSDT, Wang has presented an exact relationship be-
tween the natural angular frequency obtained by the CPT and the FSDT [207]. This
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relation has the mode shape as in Equation (4.33) and the natural angular frequency
ωFSDTm1m2

is as follows:

(
ωFSDTm1m2

)2 = 6KsG

ρh2

Cm1m2 −

√
C2
m1m2

−
ρh2

(
ω2
m1m2

)
3KsG

 ,

Cm1m2 = 1 + ωm1m2h
2

12

√
ρh

D

(
1 + 2

K2
s (1− υ)

)
,

where Ks is the shear correction factor. By this relation, the FSDT mobility is
obtained by replacing ω2

m1m2
with

(
ωFSDTm1m2

)2 in Equation (4.31). Concerning the S-
S-S-C and S-S-S-F plates, the mobility based on the CPT are calculated by adopting
the work of Gorman [209], and for the mobility based on the FSDT is calculated by
adopting the work of Wang and Wang [207]. These authors provide the exact natural
frequency and the mode shape of the plates. The interested reader is referred to the
Refs. [206], [207], [209] for further information.

4.3.3 L-shaped plate configuration
To have more complex plate vibration problem, the mobility of a three-dimensional
L-shaped plate is calculated. The problem domain is a merge between two cuboid
of h = 0.12 m. The first cuboid is of size [−h/2, 1.8] × [0, 1.2] × [−h/2, h/2] m, and
the second cuboid is of size [−h/2, h/2]× [0, 1.2]× [−h/2, 1.8] m. The cuboids have
domain overlap at [−h/2, h/2]× [0, 1.2]× [−h/2, h/2] m. The computational domain
for this configuration can be seen in Figure 4.3.

The objective of this configuration is to compute the transfer mobilities between
the point force located at F = [1.52, 0.21, h/2], and the velocity (vz) at R1 =
[0.4, 0.2, h/2] m, R2 = [h/2, 0.6, 0.4] m, and R3 = [h/2, 1, 0.8] m. Figure 4.3 shows
the computational domain, the point force location, and the velocity locations. To
complete the formulation, the BC is defined at each plate face. The faces at x = 1.8
m, x = −h/2 m, and x = h/2 m are the free BCs, this implies:

σxx = σxy = σxz = 0.

In the nodal DG method, this BC is implemented as:

σ+
xx = −σ−xx, σ+

yy = σ−yy, v+
x = v−x ,

σ+
xy = −σ−xy, σ+

zz = σ−zz, v+
y = v−y ,

σ+
xz = −σ−xz, σ+

yz = σ−yz, v+
z = v−z .

The faces at z = −h/2 m, z = h/2 m, and z = 1.8 m are also the free BCs.
The conditions are following Equation (4.23), and implemented in the nodal DG
method following Equation (4.24). Finally, the faces at y = 0 and y = 1.2 are
simply supported BC which follow Equation (4.27), and implemented in the nodal DG
method following the Equation (4.28) In this work, the L-shaped plate is discretized
with K = 3289 which equals to DoF = 65780.
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Figure 4.3: L-shaped plate computational domain with thickness h = 0.12 m. The force
excitation location (F) and receiver (R1,R2,R3) locations are marked by dots on the surface
of the structure.

4.4 Results and discussions
In this section, the plate mobilities from the various configurations are displayed.
The spectra of the force and the velocity from the nodal DG solution are obtained
to compute the plates mobilities. The spectra are obtained from a one-second time-
domain signal, windowed in the last 0.5 seconds using a Hann window to reduce
the Gibbs effect. Moreover, each spectrum is processed to have a 1 Hz resolution.
Afterwards, the nodal DG mobility are compared with the CPT and the FSDT
mobilities. It should be noted that a very weak constant damping (0.1%) is given
into the CPT and the FSDT to bound the amplitude of the mobility. Moreover, the
value of 0.86667 is used as the shear correction factor for the FSDT model following
Hashemi [206]. Section 4.4.1 - 4.4.3 show the rectangular plate mobilities for various
thickness and BCs, section 4.4.4 shows the mobilities of S-S-S-F plate for the locations
near to the excitation point, and section 4.4.5 shows the L-shaped plate mobilities.

4.4.1 S-S-S-S plate
Figures 4.4-4.6 show the mobilities of the S-S-S-S plate with different thicknesses. The
red lines are the mobilities obtained by the nodal DG method; the black solid lines are
the mobilities obtained by the CPT; the black dashed lines are the mobilities obtained
by the CPT with the including the rotary inertia (CPT-RI), and the blue lines are
the mobilities obtained by FSDT. The rotary inertia inclusion is shown only for the
S-S-S-S plate to show its significance to the results. From Figures 4.4-4.6, it can be
observed that the plate bending stiffness is lowered as the thickness is reduced. This
is shown by the reduction of the first natural frequency. At the natural frequencies,
the nodal DG mobility has a higher quality factor (Q factor) compared to the other



4 Discontinous Galerkin method for vibration of monolithic structure 91

mobilities. The high Q factor shows that the energy is conserved well throughout
the simulation. Overall, the comparison shows that the nodal DG mobility has an
excellent agreement with FSDT mobility.
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Figure 4.4: Rectangular plate mobility with thickness of h = 0.12 m and S-S-S-S BCs. The
red, black, dashed black, and blue lines represent the mobility obtained by the nodal DG
method, CPT, CPT with including rotary inertia, and FSDT, respectively.
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Figure 4.5: Rectangular plate mobility with thickness of h = 0.08 m and S-S-S-S BCs. The
red, black, dashed black, and blue lines represent the mobility obtained by the nodal DG
method, CPT, CPT with including rotary inertia, and FSDT, respectively.
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Figure 4.6: Rectangular plate mobility with thickness of h = 0.04 m and S-S-S-S BCs. The
red, black, dashed black, and blue lines represent the mobility obtained by the nodal DG
method, CPT, CPT with including rotary inertia, and FSDT, respectively.

The natural frequencies of the plate are tabulated in Tables 4.2-4.4. Compared to the
FSDT, the natural frequency differences are between 0 to 1 Hz for every thickness. On
the other hand, the nodal DG mobility shows significant natural frequency differences
in comparison with the CPT. The differences are varying between 5 to 75 Hz for the
plate with h = 0.12 m; 2 to 62 Hz for the plate with h = 0.08 m; and 0 to 24 Hz
for the plate with h = 0.04 m. Furthermore, the differences are reduced if the effect
of rotary inertia is included in the CPT model, where the differences are varying
between 4 to 55 Hz for the plate with h = 0.12 m; 2 to 46 Hz for the plate with
h = 0.08 m; and 0 to 18 Hz for the plate with h = 0.04 m. It is important to
notice that the bending wavelength for the S-S-S-S plate with h = 0.12m at 1 kHz is
0.934 m. It indicates that the thickness is well below 1/6 of the wavelength for every
thickness taken. This principle has been a rule of thumb to use CPT in building
acoustics application; however, considerable errors especially for high frequency are
present even for the thinner plate.

Table 4.2: Natural frequencies of the rectangular plate with thickness of h = 0.12 m and
S-S-S-S BCs for the frequency up to 1 kHz.

DG CPT CPT-RI FSDT

214 219 218 214
402 421 416 402
628 674 662 628
701 758 743 700
801 876 856 800
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Table 4.3: Natural frequencies of the rectangular plate with thickness of h = 0.08 m and
S-S-S-S BCs for the frequency up to 1 kHz.

DG CPT CPT-RI FSDT

144 146 146 144
275 281 279 275
435 449 446 435
487 505 501 487
560 584 578 560
763 809 797 763
774 820 808 773
893 955 939 892

Table 4.4: Natural frequencies of the rectangular plate with thickness of h = 0.04 m and
S-S-S-S BCs for the frequency up to 1 kHz.

DG CPT CPT-RI FSDT

73 73 73 73
140 140 140 140
223 225 224 223
250 253 252 250
289 292 291 289
398 404 403 398
404 410 409 404
469 477 475 469
534 545 542 534
550 562 559 550
598 612 609 598
641 657 653 641
742 764 759 742
790 814 808 790

4.4.2 S-S-S-C Plate
Figures 4.7-4.9 show the mobilities of the S-S-S-C plate with different thicknesses.
It can be seen that the bending stiffness of S-S-S-C plate is higher than the S-S-S-S
plate. The increment is shown by the natural frequencies shift to higher frequencies.
This shift occurs as a result of one plate face is clamped instead of simply supported.
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Figure 4.7: Rectangular plate mobility with thickness of h = 0.12 m and S-S-S-C BCs. The
red, black, and blue lines represent the mobility obtained by the nodal DG method, CPT,
and FSDT, respectively.
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Figure 4.8: Rectangular plate mobility with thickness of h = 0.08 m and S-S-S-C BCs. The
red, black, and blue lines represent the mobility obtained by the nodal DG method, CPT,
and FSDT, respectively.
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Figure 4.9: Rectangular plate mobility with thickness of h = 0.12 m and S-S-S-C BCs. The
red, black, and blue lines represent the mobility obtained by the nodal DG method, CPT,
and FSDT, respectively.

Tables 4.5-4.7 show the natural frequencies of each plate thickness. Moreover, similar
to the results obtained by the S-S-S-S plate, the comparison shows that the nodal
DG mobility has an excellent agreement with FSDT mobility. The natural frequency
differences are between 0 to 1 Hz for every thickness. On the other hand, the com-
parison with the CPT shows that differences are varying between 13 to 84 Hz for the
plate with h = 0.12 m; 5 to 61 Hz for the plate with h = 0.08 m; and 1 to 41 Hz for
the plate with h = 0.04 m.

Table 4.5: Natural frequencies of the rectangular plate with thickness of h = 0.12 m and
S-S-S-C BCs for the frequency up to 1 kHz.

DG CPT FSDT

277 290 277
443 471 443
726 794 726
742 826 742
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Table 4.6: Natural frequencies of the rectangular plate with thickness of h = 0.08 m and
S-S-S-C BCs for the frequency up to 1 kHz.

DG CPT FSDT

189 194 190
305 314 305
507 529 507
523 551 523
633 672 633
787 838 787
821 882 821

Table 4.7: Natural frequencies of the rectangular plate with thickness of h = 0.04 m and
S-S-S-C BCs for the frequency up to 1 kHz.

DG CPT FSDT

96 97 96
156 157 156
262 265 262
272 275 272
331 336 331
412 419 412
433 441 433
540 554 540
578 592 578
600 616 599
605 619 605
699 721 699
765 790 765
840 871 840
897 934 897
956 997 956

4.4.3 S-S-S-F Plate
Figures 4.10-4.12 show the mobilities of the S-S-S-F plate with different thicknesses.
It can seen that the bending stiffness of the S-S-S-F plate is lower than the S-S-
S-S plate, and the natural frequencies are shifted towards lower frequencies. This
shift occurs as a result of one plate face is free instead of suspending the transverse
displacement.
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Figure 4.10: Rectangular plate mobility with thickness of h = 0.12 m and S-S-S-F BCs. The
red, black, and blue lines represent the mobility obtained by the nodal DG method, CPT,
and FSDT, respectively.
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Figure 4.11: Rectangular plate mobility with thickness of h = 0.08 m and S-S-S-F BCs. The
red, black, and blue lines represent the mobility obtained by the nodal DG method, CPT,
and FSDT, respectively.
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Figure 4.12: Rectangular plate mobility with thickness of h = 0.04 m and S-S-S-F BCs. The
red, black, and blue lines represent the mobility obtained by the nodal DG method, CPT,
and FSDT, respectively.

Tables 4.8 4.10 show the natural frequencies of each plate thickness. Moreover, simi-
lar to the results obtained by the S-S-S-S plate, the comparison shows that the nodal
DG mobility has an excellent agreement with FSDT mobility. The resonance fre-
quency differences are between 0 to 1 Hz for every thickness. On the other hand, the
comparison with CPT mobility shows the differences are varying between 2 to 88 Hz
for the plate with h = 0.12 m; 0 to 71 Hz for the plate with h = 0.08 m; and 0 to 36
Hz for the plate with h = 0.04 m.

Table 4.8: Natural frequencies of the rectangular plate with thickness of h = 0.12 m and
S-S-S-F BCs for the frequency up to 1 kHz.

DG CPT FSDT

92 94 92
286 298 286
312 327 312
518 556 518
589 633 589
777 851 776
820 908 820
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Table 4.9: Natural frequencies of the rectangular plate with thickness of h = 0.08 m and
S-S-S-F BCs for the frequency up to 1 kHz.

DG CPT FSDT

62 62 62
195 198 195
213 218 213
358 371 358
408 422 408
542 567 542
575 605 575
682 723 682
695 735 695
861 924 861
897 968 897

Table 4.10: Natural frequencies of the rectangular plate with thickness of h = 0.04 m and
S-S-S-F BCs for the frequency up to 1 kHz.

DG CPT FSDT

31 31 31
99 99 99
108 109 108
183 185 183
209 211 209
280 283 280
298 302 298
355 362 355
362 367 362
453 462 453
473 484 473
548 560 548
556 569 556
620 637 620
630 648 630
647 665 647
736 761 736
825 854 825
892 928 893

4.4.4 Mobility near to excitation point
In this section, the mobilities of the S-S-S-F plate with h = 0.12 m around the
excitation point are presented. It should be noticed that the R1-R4 positions are
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located at the highlighted elements near to the point F such as shown in Figure
4.2, hence the velocity responses are taken at the same element where the force is
excited. Figure 4.13 shows the mobilities at R1 and R2, and Figure 4.14 shows the
mobilities at R3 and R4. Both figures show that the nodal DG mobilities are in
an excellent agreement with the FSDT mobilities. The maximum difference of the
natural frequency is 1 Hz for all velocity positions. However, some discrepancies
happen at the anti-resonance frequencies. The anti-resonance frequencies have a
lower Q factor compared to the FSDT anti-resonance frequencies. At R1, R2, R3,
and R4, the anti-resonance frequency differences vary between 0-10 Hz, 1-7 Hz, 1-11
Hz, and 1-11 Hz, respectively. Moreover, it can be observed that at the R4 location,
the maximum discrepancy happens at 451 Hz instead of at the highest anti-resonance
frequency of 977 Hz. Although the discrepancy at the anti-resonance frequency is
not a significant issue to the vibration problems, the agreement could be improved
by refining the mesh near the excitation point.
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Figure 4.13: Rectangular plate mobility with thickness of h = 0.12 m and S-S-S-F BCs at
position R1 (solid lines) and R2 (dashed lines). The red and blue lines represent the mobility
obtained by the nodal DG method and FSDT, respectively.
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Figure 4.14: Rectangular plate mobility with thickness of h = 0.12 m and S-S-S-F BCs at
position R3 (solid lines) and R4 (dashed lines). The red and blue lines represent the mobility
obtained by the nodal DG method and FSDT, respectively.

4.4.5 L-Plate
In this section, the L-shaped plate mobilities between position F and R1−R3 are pre-
sented following the configuration of section 4.3.3. The mobilities based on the CPT,
the FSDT and the linear elasticity equation model are calculated to be compared
with the mobility obtained by the nodal DG method. Kessissoglou presented the
exact CPT mobility for this configuration, where the transverse and in-plane plate
displacements are described in terms of a modal and travelling wave solution [210].
This solution is used for comparison. Moreover, the finite element method (FEM) in
the frequency-domain is used to obtain the mobilities based on the FSDT and the
three-dimensional linear elasticity equations. The FEM model is implemented using
COMSOL Multiphysics [211], where the FSDT is solved with a DoF up-to 98 · 103,
and the three-dimensional linear elasticity equations are solved with a DoF number
up-to 264 ·103. These numbers are taken to have the resonance frequencies converged
within a 1 Hz uncertainty. All mobilities are presented in Figures 4.15-4.17.
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Figure 4.15: L-shaped plate mobilities at position R1. The red, black, and blue solid lines
represent the mobility obtained by the nodal DG method, CPT, and FSDT, respectively.
The red dashed line represent mobility obtained by FEM.
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Figure 4.16: L-shaped plate mobilities at position R2. The red, black, and blue solid lines
represent the mobility obtained by the nodal DG method, CPT, and FSDT, respectively.
The red dashed line represent mobility obtained by FEM.
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Figure 4.17: L-shaped plate mobilities at position R3. The red, black, and blue solid lines
represent the mobility obtained by the nodal DG method, CPT, and FSDT, respectively.
The red dashed line represent mobility obtained by FEM.

At all locations (R1-R3), Figure 4.15-Figure 4.17 show that the mobilities obtained
by CPT, FSDT and nodal DG method are in a good agreement at frequency range
below 700 Hz. It can be observed that each natural frequency of nodal DG mobility
has its counterpart with the CPT or the FSDT mobility at all frequency range.
However, the CPT mobility has higher natural frequencies than nodal DG mobility.
These discrepancies are found as well in the rectangular plate case. The differences
vary between 4 Hz and 58 Hz at R1, 3 and 73 Hz at R2, and 3 and 49 Hz at R3.
Compared to the FSDT mobility, nodal DG natural frequencies have more difference
in the L-shaped plate case than in the rectangular plate case. The natural frequencies
differences are up to 38 Hz at R1, up to 53 Hz at R2, and up to 42 Hz at R3. At R2
location, one also could notice that the anti-resonance trend is not similar between
the nodal DG and the CPT/FSDT mobilities at around 700 Hz. Above 700 Hz,
the similarities between the nodal DG mobility and the CPT/FSDT mobilities are
lessening due to the resonance or the anti-resonance location.

For further validation on the nodal DG solution, the mobilities that are calculated
by FEM in Figures 4.15-4.17. The mobilities from nodal DG method and the FEM
show an excellent agreement with a maximum discrepancy of the natural frequency
less than 4 Hz.

4.5 Conclusions
The nodal DG method has been presented to solve the forced plate vibration problem.
The upwind numerical flux of the three-dimensional linear elasticity equations has
been presented in detail using the Rankine-Hugoniot condition for the stress-velocity
variables. Furthermore, numerical aspects such as the point force excitation and
the boundary conditions for the plates with S-S-S-S, S-S-S-F and S-S-S-C boundary
conditions have been implemented in the nodal DG methodology.
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For the rectangular plate case, the nodal DG mobility shows an excellent agreement
with the exact mobility of the first order shear deformation theory (FSDT). The
agreement could be observed even at the location near to the point force excitation.
On the other hand, a good agreement with the classical plate theory (CPT) happens
solely at the first couple of resonance frequencies, with increased accuracy as the
plate thickness is reduced.

For the L-shaped plate case, the nodal DG mobility shows a good agreement with
the CPT and FSDT in the lower frequency range. However, in the higher frequency
range, there are some disagreements due to significant frequency differences of the
resonance and the anti-resonance frequencies. However, the nodal DG mobility has
an excellent agreement with the mobility obtained by the finite element method
of the three-dimensional linear elasticity equations. An acceleration of the nodal
DG method by a parallel implementation will make this method highly useful for
industrial applications.
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5 Discontinous Galerkin method for
vibration of structures with piece-wise
constant material properties

Abstract
In this work, vibrations of complex structures excited by an impact source are mod-
elled using the time domain nodal discontinuous Galerkin (DG) method, which solves
linear elasticity equations. Two structures of interest, a T-shaped structure and a
scaled lightweight wooden floor, are taken as example cases. Both structures consist
of components that differ in their mechanical properties. Rankine-Hugoniot jump
conditions for piece-wise constant material properties are used to obtain accurate nu-
merical fluxes in the DG method. Free or fixed boundary conditions are imposed on
the surfaces in the structures, and constant viscous damping forces are added to the
model to create vibrational energy losses of the structures. To validate the numerical
results, the mobility of the structures is calculated and compared with experimental
data. The agreement is good regarding the natural frequencies, with a maximum ab-
solute difference of less than 20 Hz for the T-shaped structure in the frequency range
below 500 Hz, and less than 11 Hz for the scaled LWF in the frequency range below
200 Hz. The adopted damping approach is shown to be insufficient to represent a
broad frequency range.

5.1 Introduction
Due to the increasing focus on the sustainability issues with conventional concrete-
based construction methods, wood-based building methods have steadily gained trac-
tion. However, due to the low weight of building components, these wooden building
methods suffer from poor sound insulation in the low-frequency range [212], [213].
Structural motions caused by human activity or mechanical systems can induce vi-
brations in structures. These vibrations transmit through the building’s elements and
then radiate low-frequency noise, causing noise-related disturbance to the building’s
occupants.

T-shaped structures and lightweight wooden floors (LWF) are two types of structures
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that are commonly found in wooden-based buildings. To minimalise the noise and
vibration levels, it is necessary to accurately predict the level of vibration within the
structures. Several vibration models of the T-shaped structure were developed using
the beam and the plate theories in Refs. [214]–[216]. These models consider both
out-of-plane and in-plane vibrations. Some models have been developed to predict
the LWF vibration field by utilising thin plate and Euler beam vibration theories
[22], [25]. The modal expansion method was used to solve these models, as shown in
Refs. [217]–[219]. Reviews on the LWF vibration prediction methods can be found in
Refs. [220], [221]. According to a recent review [221], the LWF vibration model could
be refined using more general plate and beam vibration models, such as the Mindlin
plate and Timoshenko beam vibrations theories. However, analytical solutions for
these methods are only possible for specific geometries, boundary conditions, and
homogeneous materials.

To determine the transmission of vibrations through complex systems, energy-based
or wave-based methods are commonly used [63], [220]. Statistical energy analysis
(SEA) is one such energy-based method, which is primarily used at high frequencies
where the modal density is high. This method has been utilised to analyse vibration
transmission in coupled masonry and concrete walls [222]. Energy-based methods
are frequently preferred because they provide a quick solution, or when detailed
information on the structure is not required, such as octave band analysis. On the
other hand, energy-based methods fail in the low-frequency region, which is critical
for vibration problems in building acoustics applications [212].

Wave-based methods are numerical approaches for resolving the structural vibration
governing equations commonly used in the low-frequency region. Numerous wave-
based numerical methods are employed to predict the vibration field of structural
elements, including the finite element method (FEM) [223], the finite difference time
domain (FDTD) method [128], the spectral finite element method (SFEM) [224], and
the discontinuous Galerkin (DG) method [225]. Among these methods, the nodal DG
method is a comparatively recent methodology for modelling with vibration. This
method has a number of advantages over other wave-based methods. For example,
it can readily cope with a complex domain by representing it with an unstructured
mesh, and it allows refinement of the solution by increasing the polynomial order or
element number. Additionally, the nodal DG method solves the governing equations
using an element-wise formulation. As a result, it provides a framework that is well
suited for parallel computation. This allows for significantly accelerated calculations
[111]. This method has been extensively studied for application seismology [200]. Its
application to structural vibration, however, is still in its infancy.

The purpose of this study is to present the nodal DG method to the vibration prob-
lem of solid structures with piece-wise constant material properties. The proposed
model is based on a three-dimensional solid domain, whereas the majority of other
methods propose vibration models in reduced dimensions such as beams and plates
[221]. Mobilities of the structures are determined using the nodal DG method and
are compared with experimental results. This chapter is organised as follows: Sec-
tion 5.2 describes the governing equations and the methodology of the nodal DG
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method; Section 5.3 shows the details of the case studies; Section 5.4 displays the
experimental setup for validating the nodal DG results. The computational settings
used to solve each case are shown in Section 5.5; Section 5.6 discusses the numerical
and experimental results, and Section 5.7 concludes the chapter.

5.2 Methodology

5.2.1 Linear elasticity equations
The linear elasticity equations which govern the propagation of elastic waves in a
solid medium can be used to model the linear vibration of a structure. This set of
equations consists of the momentum conservation and Hooke’s constitutive equations
[21]. For a Cartesian three-dimensional coordinate system, the equations for an
isotropic medium can be written in a velocity-stress form as follows:

∂qs
∂t

+∇ ·H(qs) = ∂qs
∂t

+Bj
∂qs
∂xj

= g − ζqs, (5.1)

qs(x, t) =
[
vx vy vz σxx σyy σzz σxz σyz σxy

]T
,

g(x, t) =
[
gx gy gz 0 0 0 0 0 0

]T
,

ζ = diag
(
ζx ζy ζz 0 0 0 0 0 0

)
,

where vx, vy, vz are the velocities in the x-, y-, and z- directions, respectively. σxx,
σyy, σzz, σxz, σyz, σxy are the normal and shear stress components, gx, gy, gz are
the body forces, and ζx, ζy, ζz are the viscous damping forces. The flux matrix reads
H(qs) = [hx,hy,hz] = [Bxqs,Byqs,Bzqs]. The constant flux Jacobian matrix Bj

is given as:

Bj =
[

03×3 B1,j
B2,j 06×6

]
,B1,j = −1

ρ

 δxj 0 0 δzj 0 δyj
0 δyj 0 0 δzj δxj
0 0 δzj δxj δyj 0

 ,

B2,j = −


(λ+ 2µ)δxj λδyj λδzj

λδxj (λ+ 2µ)δyj λδzj
λδxj λδyj (λ+ 2µ)δzj
µδzj 0 µδxj

0 µδzj µδyj
µδyj µδxj 0

 ,

where λ and µ are the Lamé parameters, ρ is the mass density and index j has
components [x, y, z]. The δij denotes the Kronecker delta function. The solution
of Equations (5.1) consists of a linear combination of elastic waves propagating with
longitudinal wave speed (cp =

√
(λ+ 2µ)/ρ) and transverse wave speed (cs =

√
µ/ρ).

The Lame parameters are represented by using Young’s modulus (E) and Poisson’s
ratio (ν) as λ = Eν/(1 + ν)(1− 2ν) and µ = E/2(1 + ν).
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5.2.2 Nodal discontinuous Galerkin method
The nodal discontinuous Galerkin (DG) method is used to solve the Equation (5.1).
The algorithm of the method is developed by Hesthaven and Warburton [112] and is
adopted in this thesis. The problem domain is approximated by the computational
domain Ωh with K number of non-overlapping rectilinear tetrahedral elements Dk as
Ωh = ∪Kk=1D

k. On each Dk, the local solution is expanded by nodal basis functions
as:

qksh(x, t) =
Np∑
i=1

qksh(xki , t)lki (x), (5.2)

where qksh(xki , t) are the unknown nodal values of the elastic wave variables. lki (x) are
the three-dimensional Lagrange interpolation polynomials based on the nodal points
xi, and Np is the number of nodal points. The global solutions are approximated as
the direct sum of the local solutions as:

qs(x, t) ≈ qsh(x, t) = ⊕Kk=1q
k
sh(x, t). (5.3)

The closed expression of the Lagrangian interpolation polynomials in tetrahedral
element is constructed by the products of the Jacobi polynomials of order N , with the
number of nodal points per element isNp = (N+1)(N+2)(N+3)/6. The distribution
of these points follows the optimised Legendre-Gauss-Lobato (LGL) points over a
tetrahedral element as described in Ref. [112].

In each element, the nodal basis functions are used to approximate the unknown
variables and the body forces in Equation (5.1). The residuals of the approximations
are then multiplied by the test functions in accordance with the Galerkin method.
The strong formulation of Equation (5.1) takes the following form after performing
spatial integration by parts twice:∫

Dk

[
∂qksh
∂t

+∇ ·H(qksh)
]
lki dx =

∫
Dk

(gkh − ζqksh)lki dx

−
∫
∂Dk

n ·
[
H∗ −H(qksh)

]
lidx,

(5.4)

where ∂Dk is the element surface, gkh is the approximated body force vector, and n =
[nx, ny, nz] is the outward normal vector of the element surface ∂Dk. The flux along
the normal direction of the element surface is defined as n·H = (nxhx+nyhy+nzhz),
and the H∗ is the numerical flux.

In the DG method, the numerical flux ensures continuity of the global solution. It is
a function of the interior solution (q−sh), which is the solution within the element Dk,
and the exterior solution (q+

sh), which is the solution of the adjacent elements around
Dk. The numerical flux used in this work is the upwind numerical flux. The upwind
numerical flux can be derived by solving the Riemann problem at the interface of two
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homogeneous media. This interface represents the faces of two adjacent elements that
are located in the same position. Consider that the interface is located at x = 0. The
properties of the medium (λ−, µ−, ρ−) are those of the internal medium at x < 0,
and (λ+, µ+, ρ+) are those of the adjacent medium at x > 0. The Riemann problem
is a discontinuous initial value problem that occurs at this interface as:

qsh(x, 0) =
{
q−sh if x < 0,
q+
sh if x > 0.

(5.5)

The solution to this problem is the intermediate solution (q∗sh(0, t)). It is derived us-
ing the Rankine-Hugoniot jump condition as described in Refs. [225],[200],[21],[226].
The term n ·

[
H∗ −H(qksh)

]
, which appears on the right-hand side of Equation (5.4),

is described in detail in Appendix D. The numerical fluxes n ·H∗ = n ·H(q∗sh) are
a function of the intermediate solution.

Following the definition of the numerical flux, the nodal basis and numerical flux are
substituted into Equation (5.4) to obtain the semi-discrete form for each element as:

Mk ∂v
k
xh

∂t
− 1
ρ

(
Skxσxx

k
h + Skyσxy

k
h + Skzσxz

k
h

)
= Mk

(
gx

k
h − ζxvkxh

)
−

4∑
r=1

MkrĤ
kr

vx ,

Mk
∂vkyh
∂t
− 1
ρ

(
Skxσxy

k
h + Skyσyy

k
h + Skzσyz

k
h

)
= Mk

(
gy

k
h − ζyv

k
yh

)
−

4∑
r=1

MkrĤ
kr

vy ,

Mk ∂v
k
zh

∂t
− 1
ρ

(
Skxσxz

k
h + Skyσyz

k
h + Skzσzz

k
h

)
= Mk

(
gz

k
h − ζzvkzh

)
−

4∑
r=1

MkrĤ
kr

vz ,

Mk ∂σxx
k
h

∂t
− (λ+ 2µ)Skxvkxh − λSkyvkyh − λSkzvkzh = −

4∑
r=1

MkrĤ
kr

σxx ,

Mk ∂σyy
k
h

∂t
− λSkxvkxh − (λ+ 2µ)Skyvkyh − λSkzvkzh = −

4∑
r=1

MkrĤ
kr

σyy , (5.6)

Mk ∂σzz
k
h

∂t
− λSkxvkxh − λS

k
yv

k
yh − (λ+ 2µ)Skzvkzh = −

4∑
r=1

MkrĤ
kr

σzz ,

Mk ∂σxz
k
h

∂t
− µSkzvkxh − µS

k
xv

k
zh = −

4∑
r=1

MkrĤ
kr

σxz ,

Mk ∂σyz
k
h

∂t
− µSkzvkyh − µS

k
yv

k
zh = −

4∑
r=1

MkrĤ
kr

σyz ,

Mk ∂σxy
k
h

∂t
− µSkyvkxh − µS

k
xv

k
yh = −

4∑
r=1

MkrĤ
kr

σxy .
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vkxh, vkyh, vkzh, σxx
k
h, σyy

k
h, σzz

k
h, σxz

k
h,σyz

k
h, and σxy

k
h are vectors representing all

elastic wave variables at the nodal points xi, with i = 1 to Np. Note that all the
mechanical properties in Equations (5.6) are defined in the interior element, except
for the numerical flux terms. The second superscript r denotes the rth faces of ∂Dkr

of the element Dk, where the number of faces of the tetrahedral element is four.
Ĥ

kr

vx , Ĥ
kr

vy , Ĥ
kr

vz , Ĥ
kr

σxx , Ĥ
kr

σyy , Ĥ
kr

σzz , Ĥ
kr

σxz , Ĥ
kr

σyz , and Ĥ
kr

σxy are the flux terms
associated with the term n ·

[
H∗ −H(qksh)

]
over the element surface in the strong

form (Equation (5.4)). Mk is the element mass matrix, Skj are the element stiffness
matrices in the j-directions, andMkr are the element face matrices. More details on
these matrices are given in Refs. [112], [182].

Having the semi-discrete form at hand, Equation (5.6) for the whole computational
domain can be expressed in the form of ordinary differential equations as:

dqsh
dt = L (qsh(t), t) , (5.7)

where qsh is the vector of all nodal solutions, and L is the semi-discrete operator
conducted over all elements. Finally, various methods can be employed to integrate
the time derivative in Equation (5.7). The fourth-order Runge-Kutta method with
eight stages (RKF84) is used in this work, as described in Ref. [148]. For the time
integration, the time-step (∆t) is defined as:

∆t = CCFL ·min(rDk)
N2 ·max(cp)

, (5.8)

where CCFL is the Courant number, max(cp) is the maximum longitudinal wave
speed, and min(rDk) is the shortest element edge in the computational domain.

5.2.3 Force excitation
The external excitation can be given by the body force components, [gx, gy, gz,0],
on the right-hand side of Equation (6.1). A point force excitation, similar to that
presented in Ref.[225], is used in this work. The body force along the z-direction
gz(x, t) is approximated using the Lagrange interpolation polynomials as:

gz(x, t) = A(t) · δ(x− x0), (5.9)

where A(t) is a time domain function, δ(x) is the spatial Dirac delta function, and
x0 is the excitation position. To obtain a uniform directivity, A(t) is distributed over
several elements, with one vertex located at x0. Following the application of the same
body force to each element, the total force F (t) [N] can be computed as follows:

F (t) = ρ

Kp∑
k=1

Gk(t) = ρ

Kp∑
k=1

∫
Dk

gkz (x, t)dx, (5.10)
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where Kp is the number of elements in the vicinity of the excitation point, and
gkz (x, t) is the body force function in each element k. Please note that the body
force is normalised to the mass density in Equation (5.1), and that multiplication
by the density is required to obtain the total force. The details of the integration of
Equation (5.10) can be found in Chapter 4.

5.2.4 Boundary conditions
The nodal DG method enables the numerical flux to enforce the boundary conditions
(BCs) by providing the exterior solution (q+

sh) at the boundary. The exterior solution
must be suitably defined as a function of the interior solution (q−sh) based on the
imposed BCs. This concept is analogous to how the ghost-cell values are determined
in the finite volume method, as described in Ref. [21]. The elastic motions at the
boundaries can be defined by imposing specific velocities or traction values. For
given velocities (U, V,W ), the exterior solution at the boundary’s nodal points should
satisfy the following conditions:

σxx
+
h = σxx

−
h , σyy

+
h = σyy

−
h , σzz

+
h = σzz

−
h ,

σxz
+
h = σxz

−
h , σyz

+
h = σyz

−
h , σxy

+
h = σxy

−
h ,

v+
xh = 2U − v−xh, v+

yh = 2V − v−yh, v+
zh = 2W − v−zh.

In case of a traction boundary condition, the values of (σxx, σxy, σxz) at the boundary
are given as (τxx, τxy, τxz). To meet this condition, the correct exterior solution on
this boundary can be set as follows:

σxx
+
h = 2τxx − σxx−h , σyy

+
h = σyy

−
h , σzz

+
h = σzz

−
h ,

σxz
+
h = 2τxz − σxz−h , σyz

+
h = σyz

−
h , σxy

+
h = 2τxy − σxy−h ,

v+
xh = v−xh, v+

yh = v−yh, v+
zh = v−zh.

In this work, fixed boundary conditions (U = V = W = 0), and traction free bound-
ary conditions, for example, ( σjx = σjy = σjz = 0), are used. These values ensure
that the Riemann solutions at the boundary are equal to the specified values. This
methodology was applied in the nodal DG method, as described in Refs.[225],[200].
Note that (λ+, µ+, ρ+) at the boundary are set equal to (λ−, µ−, ρ−) to satisfy the
specified BCs above.

5.3 Case studies
The nodal DG method is utilised to simulate two cases of structural vibrations excited
by an impact source. A T-shaped structure and a scaled lightweight wooden floor
(LWF) are used as examples. Each structure is comprised of multiple medium density
fibreboard components, each with its own set of mechanical properties. Appendix E
details the procedure for obtaining these properties.
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Figure 5.1: The case of the T-shaped structure in which a different boundary condition
(fixed or free) is applied to the black coloured area. The red and blue dots indicate the
excitation and receiver locations, respectively.

5.3.1 T-shaped structure
As illustrated in Figure 5.1, the T-shaped structure is a simple structure composed of
two components: a vertical beam, and a horizontal beam with dimensions of [14 cm
× 108 cm × 2.2 cm] and [2.2 cm × 108 cm × 7 cm], respectively. The origin of the
coordinate system is on the left-hand corner. The two components are glued together
to form a fixed connection at the interface z = -2.2 [cm]. The mechanical properties
of the components are given in Table 5.1. Please note that the damping forces are
assumed the same for both components and equal in all directions (ζx = ζy = ζz = ζ).

Two types of boundary conditions are considered for this structure, namely fixed
BCs and free BCs. Either boundary condition is applied to the black-coloured area
(or the clamped area), while the rest of the structure’s surfaces have free BCs. To
excite the vibration, a point force (F) is applied at the coordinates (13, 101.25, 0)
cm, marked with a red dot in Figure 5.1. To obtain the response of the structure,
four receivers (R1-R4) are selected to record the structure’s velocities, as shown with
blue dots. The receivers are selected in this manner because they are distributed at
varying distances from the force location. The coordinates of the receivers are R1 =
(1, 13.5, 0) cm, R2 = (13, 54, 0) cm, R3 = (7, 94.5, 0) cm, and R4 = (8.1, 94.5,−8.2)
cm.

Table 5.1: The mechanical properties of the constituting components of the T-shaped struc-
ture.

Component Density
[kg/m3]

Young’s
Modulus
[GPa]

Poisson’s
Ratio [-]

Damping
force(ζ)
[N ·m3/kg]

Vertical beam 616.1 2.39 0.3 10
Horizontal beam 720.8 3.57 0.3 10
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5.3.2 Scaled lightweight wooden floor
The scaled LWF is composed of a single panel as the top plate and seven joists to
reinforce the plate, as shown in Figure 5.2. This case represents a more complex
structure than the T-shaped structure, with more components and different mechan-
ical properties, as shown in Table 5.2. Each joist measures [108 cm × 2.2 cm × 7 cm]
and the top plate measures [112 cm × 112 cm × 0.9 cm]. The origin of the coordinate
system is at the top corner of the plate. The joists are spaced evenly apart by 13.75
cm, with Joist 1 being the closest to the origin. All surfaces of the structure have
free BCs. The connections between the top floor and joists are fixed, realised by nine
screw connections spaced evenly along each joist in the experiment.

112

112

7

2.2

0.9

13.75 

(0,0,0)

Z
Y
x

Joist 1

Joist 7

Figure 5.2: The scaled LWF structure, all dimensions are in cm.

Table 5.2: Mechanical properties of the individual components of the scaled LWF structure.

Component Density
[kg/m3]

Young’s
Modulus
[GPa]

Poisson’s
Ratio [-]

Damping
force(ζ)
[N ·m3/kg]

Plate 670 3.70 0.3 20
Joist 1 583 1.89 0.3 20
Joist 2 565 2.06 0.3 20
Joist 3 559 2.07 0.3 20
Joist 4 571 2.14 0.3 20
Joist 5 577 2.16 0.3 20
Joist 6 589 2.39 0.3 20
Joist 7 577 2.10 0.3 20
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Table 5.3: The excitation and receiver positions of the centre excitation configuration on
the scaled LWF case.

Index (x, y) [cm]
F (56, 56)
C1 (62.875, 42.25)
C2 (76.625, 28.5)
C3 (83.5, 28.5)
C4 (97.25, 14.75)

Two configurations are chosen to investigate the vibration of this structure under an
impact excitation. The first configuration is the centre excitation. As displayed in
Figure 5.3a, the excitation point (F) of this configuration is located in the centre of
the top plate. Four receivers, C1-C4, were selected to observe the vibration responses.
Their coordinates are listed in Table 5.3 (C denotes the centre excitation). The second
configuration is the corner excitation, as shown in Figure 5.3b. The excitation point is
this configuration is located towards a left-hand corner of the structure. To examine
the vibration response, several receiver points were distributed along the x-direction
(H1-H13) and y-direction (V1-V6). These points were chosen to observe the floor
mode shapes along the axial directions of the scaled LWF structure. The locations
of the receivers and the excitations points are listed in Tables 5.4-5.5, all with z=0.

(a)

0 14 28 42 56 70 84 98 11
2

x [cm]

0

14

28

42

56

70

84

98

112

y
 [
c
m

]

(b)

Figure 5.3: Top view of the scaled LWF structure. The red dots represent the impact
source position and the blue dots represent the receiver positions of (a) the centre excitation
configuration and (b) the corner excitation configuration.
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Table 5.4: Coordinates of the excitation and receiver positions for the corner excitation
configuration of the scaled LWF. All points are located between joists 1 and 2.

Index (x, y) [cm]
F (21.625, 21.625)
V1 (21.625, 28.5)
V2 (21.625, 42.25)
V3 (21.625, 56)
V4 (21.625, 69.75)
V5 (21.625, 83.5)
V6 (21.625, 97.25)

Table 5.5: Coordinates of the receiver positions for the corner excitation configuration on
the scaled LWF. The receivers are located along the transversal direction of the joists.

Index (x, y) [cm]
H1 (21.625, 28.5)
H2 (28.5, 28.5)
H3 (35.375, 28.5)
H4 (42.25, 28.5)
H5 (49.125, 28.5)
H6 (56, 28.5)
H7 (62.875, 28.5)
H8 (69.75, 28.5)
H9 (76.625, 28.5)
H10 (83.5, 28.5)
H11 (90.375, 28.5)
H12 (97.25, 28.5)
H13 (104.125, 28.5)

5.4 Computational settings

5.4.1 T-shaped structure
To simulate the vibrations of the case studies using the nodal DG method, an in-house
Matlab implementation is used to solve Equations (5.7). To assess the convergence
of nodal DG results, the computational domain is represented by multiple numbers
of elements. The T-shaped structure is discretised by unstructured tetrahedral ele-
ments using the COMSOL Multiphysics 5.4 mesh generator [211]. The same meshes
are used for the two configurations of the T-shaped structure (different boundary
condition). The initial number of elements, K = 1063, is used to obtain an average
mesh skewness of 0.3. The vibration signals are captured for a duration of 1 second,
and the maximum frequency of interest is 500 Hz. The remaining numerical settings
are shown in Table 5.6.
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Table 5.6: Elements and time discretization used in the nodal DG simulation for the T-
shaped structure case.

Parameter Number of elements
K = 1063 K = 2126 K = 4089

Maximum polynomial order, N 3 3 3
Degrees of freedom 21260 42520 81780
Minimum edge length, hmin [m] 0.0103 0.0100 0.0099
Maximum edge length, hmax [m] 0.0522 0.0397 0.0343
∆t [s] 4.4283e-07 4.3983e-07 4.3883e-07

The impact excitation on the T-shaped structure is given by external body force A(t)
at z-direction in the form of Ricker wavelet as:

A(t) =
(
0.5− (πfc(t− td))2) e(πfc(t−td))2

, (5.11)

with the centre-frequency of fc = 250 Hz and the centre-time of td = 7 ms. These
values are taken to impose a force excitation up to 500 Hz and to ensure a smooth
wavelet excitation. With the exception of the face representing the clamped area,
all faces of the T-shaped structure are set to free BCs (see Figure 5.1). The BC on
the clamped area is set to a fixed or free BC, depending on the configuration. As
mentioned in Section 5.2.4, the free BCs can be realised by setting the traction to
0 for the stress variable normal to the boundary, whereas fixed BCs is realised by
setting the velocity to 0. The reader is referred to Chapter 4 for more specific details.

In the convergence evaluation, the nodal DG solution is also compared with the
FEM solution via COMSOL Multiphysics 5.4 [211]. The three-dimensional solid
mechanics solver is selected with a frequency-domain study. The Rayleigh damping
is used in COMSOL Multiphysics to add the damping force, which is proportional to
the velocity as modelled by the nodal DG method. To obtain an accurate solution,
125k elements are used to discretise the T-shaped structure.

5.4.2 Scaled lightweight wooden floor
The scaled LWF is discretised by unstructured tetrahedral elements, as in the T-
shaped structure. To evaluate the convergence of the numerical results, several num-
ber of elements are used to represent the computational domain. The simulation
duration is 1 second with a maximum frequency of 500 Hz. The impact excitation is
given by external body force, as presented in Equation (5.11). All faces of the scaled
LWF are set to free BCs by using the traction free condition, as mentioned in Section
5.2.4. The remaining numerical settings are presented in Table 5.7.
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Table 5.7: Elements and time discretization used in the nodal DG simulation for the scaled
LWF case.

Parameter Number of elements
K = 6918 K = 13685 K = 21094

Maximum polynomial order, N 3 3 3
Degrees of freedom 138.4k 237.7k 421.9k
Minimum edge length, hmin [m] 0.009 0.009 0.014
Maximum edge length, hmax [m] 0.061 0.054 0.041
∆t [s] 3.6677e-07 3.6677e-07 5.6895e-07

5.5 Experimental validation

5.5.1 Experimental setup
This section describes the vibration experiments of the case studies as presented in
Section 5.3. The T-shaped structure is comprised of vertical and horizontal beams.
These beams were glued together to create a fixed connection. The vertical beam
was fastened by a steel clamp set on a concrete slab to generate the fixed BCs con-
figuration, as illustrated in Figure 5.4a. For the free BCs configuration, the structure
was suspended from a steel structure via two rubber ropes as shown in Figure 5.4b.
The T-shaped structure was assumed to have free BCs on all of its surfaces because
of this configuration.

In case of the scaled LWF structure, the structure was made of a top plate with
seven joists. In the experiment, each joist was attached to the bottom of the plate
using nine screws spaced equally along the joists axial direction. By having closely
adjacent screws, the joists were assumed to have a fixed connection to the top plate.
In this study, the scaled-LWF structure is designed to have free BCs. To realise these
BCs, several metal hooks were installed on the edge of the first and the last joists.
Afterward, four rubber ropes connected these hooks to a crane machine to elevate
the structure as shown in Figure 5.5. Upon elevation of the structure, it was assumed
the free BCs could be obtained.

In both experiments, the acceleration was picked up by nine single-axis accelerometers
(PCB 333B30). The signals were captured using National Instruments acquisition
systems (NI 9234 and cDAQ-9178) for the duration of seven seconds with a sampling
frequency of 51.2 kHz. The excitation was given using an impact hammer (BK 8202)
with a plastic tip. As mentioned in Section 5.3, each case study has a different receiver
and excitation positions; the accelerometers and impact position are given at those
specified coordinates.
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(a) (b)

Figure 5.4: Experimental setup of the T-shaped structure for different configurations. (a)
The fixed BCs configuration, (b) The free BCs configuration.

Figure 5.5: Experimental setup for the scaled LWF structure. The structure was elevated
to have the free BCs.

5.5.2 Vibration data processing
The time-domain vibration signals were obtained from the experiments and the
numerical computations in each case. The recorded signals were converted into
frequency-domain data using the fast Fourier transform. In the frequency domain,
the transfer function between velocity and force, i.e., mobility (Yij), was calculated
to represent vibration responses of the individual case studies. It reads as:

Yij(f) = vi(f)
Fj(f) , (5.12)

where i, j denote the velocity in the i-direction due to the force in the j-direction.
In this study, two transfer mobilities are considered, Yzz(f) and Yxz(f). To obtain
the transfer mobilities from the experiment, the H1 estimator, according to Equation
5.13 was used, as shown in Ref.[227]. This estimator is used to reduce the influence
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of the noise during the experiment.

Yij(f) =
Svi,Fj (f)
SFj ,Fj (f) . (5.13)

Svi,Fj (f) is the cross-spectral density function between the velocity in the i-direction
and the force in the j-direction. The SFj ,Fj (f) is the auto-spectral density function of
the force in the j-direction. The velocity in the i-direction (vi(f)) can be calculated
from the acceleration signals (ai(f)) using the relation vi(f) = ai(f)/j2πf . The
experiment was conducted three times to obtain average values of the mobilities.
The vertical mobility (Yzz) is evaluated at all receiver points on all computational
cases, with the sole exception is the receiver R4 for the T-shaped structure case (see
Figure 5.1). This point is located on the side of the vertical beam, and the horizontal
mobility (Yxz) is evaluated.

5.6 Results and Discussions

5.6.1 T-shaped structure
Fixed BCs configuration
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Figure 5.6: The mobilities at R2 position of the fixed BC configuration for different element
numbers.

Figure 5.6 depicts the nodal DG solution for the current configuration. In this figure,
three mobility curves Yzz are shown at location R2. Each curve was obtained from
the nodal DG solution with a different number of elements, K = 1063, 2126, and
4089. Table 5.8 lists all natural frequencies for each number of elements.

It should be noted that the slowest wave in the T-shaped structure, the transverse
wave, has a velocity of 1221.5 m/s. This means that the minimum wavelength at 500
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Hz is approximately 2.4 m, and the discretisation appears to have oversampled the
structure. However, since the structure has a thickness of 2.2 cm, the discretisation
should limit the skewness of the tetrahedral elements to achieve a good numerical
result. Moreover, the changes in natural frequencies between all different element
numbers are less than 2 Hz, assuming that the results have converged.

Table 5.8: Natural frequencies at the T-shaped structure obtained from the nodal DG
method and the experiment at position R2.

Index Natural frequency [Hz] |∆fn|
K = 1063 K = 2126 K = 4089 Experiment [Hz] [%]

1 21.0 20.0 20.0 19.3 0.7 3.6
2 86.0 87.0 87.0 89.0 2.0 2.2
3 127.0 126.0 126.0 128.6 2.6 2.0
4 263.0 264.0 264.0 269.9 5.9 2.2
5 328.0 327.0 328.0 330.6 2.6 <1.0
6 415.0 416.0 416.0 432.3 16.3 3.8
7 475.0 476.0 477.0 475.7 2.7 <1.0

In addition, the same case is simulated with FEM using COMSOL Multiphysics 5.4
[211] in frequency domain by solving the linear elasticity equations. The comparison
with the FEM solution shows that the nodal DG approach has a maximum difference
of 15 Hz at the highest natural frequency. This is caused by the discontinuity of BCs
at y = 0 cm and z = -2.2 cm. Owing to its discontinuous elements, the nodal DG
solution can have two solutions at the same point, whereas the solution in the FEM
is continuous at the BCs discontinuity. This is supported by results from free BC
configuration and also by additional calculations in Appendix F, where all boundaries
at y = 0 m are fixed), showing the natural frequency difference (|∆fn|) is at most 1
Hz.

Moreover, the DG results of K = 4089 are compared with the experimental results.
The mobilities at receivers R1-R4 are shown in Figure 5.7. It can be seen that the
mobilities obtained from the nodal DG method closely match those obtained from
the experiment. Figures 5.8 and 5.9 show structural mode shapes obtained from
the nodal DG method and the experiment. The comparison reveals that both mode
shapes are almost identical.

Despite these similarities, there are discrepancies in the resonant frequencies and
magnitudes of mobility. Table 5.8 lists all the discrepancies of the natural frequencies,
with the sixth natural frequency having a maximum absolute frequency difference
|∆fn| = 16.3 Hz from the measured value, which is 3.8% deviation. The other natural
frequencies have smaller absolute differences. It is assumed that, because the MDF
material has a slight orthotropic property [228], these differences are attributable to
the isotropic assumption of the vertical and horizontal beams in the nodal DG model.
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Figure 5.7: Mobilities of the T-shaped structure with the fixed BCs configuration obtained
by the nodal DG method and the experiment at the positions: (a) R1, (b) R2, (c) R3,
and (d) R4. (Thin lines represent nodal DG results and thick lines represent experimental
results)

The magnitude discrepancies are caused by inadequacy of internal damping proper-
ties. The given constant viscous damping cannot capture the frequency-dependent
damping properties of the structure. Figure 5.7 shows that the magnitude of mobili-
ties obtained by the nodal DG method and the experiment are of the same order for
the frequencies below 150 Hz. In the experimental data, however, the attenuation
increases more rapidly with frequency than in the computational results. In Figure
5.7d, the mobility in the x-direction at position R4 is shown. This mobility has the
same magnitude as the mobility in the z-direction at the other positions (R1-R3) due
to the body force in the z-direction. Figures 5.8 and 5.9 show a similar magnitude
of mobility. This indicates that the adhesive used to connect the two beams creates
a strong coupling and allows good vibrational energy transmission between them.
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(a) (b)

Figure 5.8: Second mode shape of the T-shaped structure with fixed BCs configuration
obtained by (a) experiment (89 Hz) and (b) nodal DG method (87 Hz).

(a) (b)

Figure 5.9: Fourth mode shape of the T-shaped structure with fixed BCs configuration
obtained by (a) experiment (270.4 Hz) and (b) nodal DG method (266 Hz).
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Free BC configuration
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Figure 5.10: The mobilities at R1 position of the free BC configuration for different element
numbers.

Figure 5.10 depicts the convergence of the nodal DG solution for the free BCs con-
figuration. In this figure, three mobility curves Yzz are shown at the R1 position.
As in the previous configuration, each result is obtained from the nodal DG solution
with K = 1063, 2026, 4089 elements. Convergence occurs when the number of ele-
ments is K = 4089, with natural frequency differences of no greater than 1 Hz when
compared to the solution with K = 1063. Furthermore, the nodal DG solution has a
maximum difference of 1 Hz at the highest natural frequency when compared to the
FEM solution. All natural frequencies are listed in Table 5.9.

Table 5.9: Natural frequencies at the T-shaped structure obtained from the nodal DG
method and the experiment at position R1.

Index Natural frequency [Hz] |∆fn|
K = 1063 K = 2126 K = 4089 Experiment [Hz] [%]

1 147.0 147.0 147.0 150.3 3.3 2.2
2 188.0 188.0 188.0 199.7 11.7 5.9
3 386.0 387.0 387.0 406.4 19.4 4.8

The mobility curves of receiver points R1-R4 are shown in Figure 5.11. The mobility
calculated using the nodal DG approach matches well with the mobility determined
from the experiment. Furthermore, as seen in Figures 5.12 and 5.13, these findings
have nearly identical mode-shapes. The discrepancies between the natural frequencies
are tabulated in Table 5.9, where the maximum absolute difference is 19.4 Hz, which
corresponds to a textless 5% deviation from the experimental results. Similar to
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the fixed BCs configuration, the damping of the T-shaped structure is frequency-
dependent and the current constant viscous damping cannot represent the mobility
magnitude well at frequencies above 150 Hz.
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Figure 5.11: Mobilities of the T-shaped structure with free BC configuration obtained by
the nodal DG method and the experiment at the positions: (a) R1, (b) R2, (c) R3, and (d)
R4. (Thin lines represent nodal DG results and thick lines represent experimental results)
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(a) (b)

Figure 5.12: Second mode shape of the T-shaped structure with free BCs configuration
obtained by (a) experiment (199.7 Hz) and (b) nodal DG method (188 Hz).

(a) (b)

Figure 5.13: Fourth mode shape of the T-shaped structure with free BCs configuration
obtained by (a) experiment (406.6 Hz) and (b) nodal DG method (387 Hz).
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5.6.2 Scaled lightweight wooden floor
Centre force excitation
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Figure 5.14: Numerical solutions of the scaled LWF at position C1 for different element
numbers with center excitation.

Table 5.10: Natural frequencies at the scaled LWF structure obtained from the nodal DG
method and experiment at position C1.

Index Natural Frequency [Hz] |∆fn|

K = 6918 K = 13685 K = 21094 Experiment [Hz] [%]

1 15.0 15.0 15.0 14.1 0.9 6.4
2 73.0 74.0 74.0 70.1 3.9 5.6
3 149.0 149.0 149.0 148.9 0.1 <1.0
4 167.0 168.0 168.0 159.6 8.4 5.3
5 193.0 193.0 193.0 190.9 2.1 1.1
6 270.0 271.0 272.0 260.9 10.1 3.9

Figure 5.14 presents the nodal DG solution for the scaled LWF excited by the force
at the centre position. In this figure, three mobility curves Yzz are shown at location
C1. Each curve was obtained from the nodal DG solution with a different number of
elements, K = 6918, 13685, and 21094. It should be noted that the thickness of the
plate structure is 0.9 cm, and a sufficient number of elements are required to maintain
a good skewness of the element (average skewness for K = 6918 is 0.33). The average
skewness of the element is expected to be more than 0.3 to have a good tetrahedral
element. Table 5.10 lists all natural frequencies for each number of elements below
300 Hz. The changes in natural frequencies between the different element numbers
are less than 2 Hz, and it could be assumed that the results have converged. In
the subsequent comparison with the experimental results, the results from the DG
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method with K = 13685 are used to save computational effort, since the difference
to K = 13685 is at most 1 Hz.
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Figure 5.15: Mobility of scaled LWF structure for the Centre excitation configuration at
position (a) C1, (b) C2, (c) C3, and (d) C4. (Thin lines represent nodal DG results and
thick lines represent experimental results)

Figure 5.15 shows the mobilities at positions C1-C4. As mentioned in Section 5.3.2,
these points are gradually further away from the excitation point. All mobilities ob-
tained by the nodal DG method agree well with the experimental results, particularly
in the frequency range 20-250 Hz. The disparity between experimental and simulation
results widens beyond this range. Similar to the previous case, the constant damp-
ing is one reason for this, as the model does not capture the frequency-dependent
damping of the structure. It can be seen that the first natural frequency at 15 Hz
is heavily damped in nodal DG solution, and the constant damping applied to this
mode is excessive. In contrast, above 250 Hz, the damping from the experimental
results increases and the location of the natural frequencies becomes indistinct. The
connection between the plate and the joists is another source of inconsistency. Mod-
elling these connections as fixed connections along the contact interface may generate
flaws since these components are fastened together with nails rather than glue.
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Corner force excitation

This configuration is used to show several vibrational mode-shapes along the scaled
LWF structure axial directions. Receiver points H1-H13 are aligned in the x-direction
to capture the mode shapes along y = 28.5 cm, and receiver points V1-V6 are ar-
ranged to capture the mode shapes at x = 21.6 cm in the y-direction.
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Figure 5.16: Mobility of the scaled LWF structure at the receiver positions H1-H13 obtained
with (a) the nodal DG method, and (b) the experiment.
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Figures 5.16a and 5.16b show the mobilities at receivers H1-H13 obtained from the
nodal DG method and the experiment. The figures clearly display the nodes and
anti-nodes of the mode shapes in the x-direction. At the lowest natural frequency, 17
Hz, there are two anti-nodes of the vibrational mode shape appearing at locations H1
and H13 as seen in Figure 5.16a. The node of this natural frequency occurs at position
H6 according to the nodal DG approach. However, this node is not clearly visible
from the experiment. Below 200 Hz, the mode shape determined from the nodal DG
approach and the experiment have a significant correlation. The structural responses
are heavily damped above this frequency, however, and the constant viscous damping
in the nodal DG approach is insufficient to adequately model the real damping.
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Figure 5.17: Mobility of the scaled LWF structure based on the receiver position V1-V6
obtained with the (a) nodal DG method, and (b) experiment.

The mode shapes in the y-direction are shown in Figures 5.17a and 5.17b. Compared
to the previously observed mode shapes along the x-direction, this direction exhibits
lower-order mode shapes. In the y-direction, there are at most two anti-nodes below
500 Hz, whereas five anti-nodes are observed along the x-direction in the frequency
range up to 125 Hz. This is because the joists significantly increase the stiffness of the
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Figure 5.18: Mobility of scaled LWF structure for the Corner excitation configuration at
position V6. (Thin lines represent nodal DG results and thick lines represent experimental
results)

floor in the y-direction. Figures 5.17a and 5.17b show that the mode shapes obtained
both from the experiment and the nodal DG method have a good correlation. For a
clearer comparison, the mobilities at the receiver V6 are shown in Figure 5.18. The
natural frequencies and mode shapes indices below 200 Hz are tabulated in Table
5.11 along with their discrepancies (|∆fn|). This table shows that the maximum
discrepancy happens at the (5,2) mode, which is 10.4 Hz or about 8.2% difference
from the experimental result. Moreover, it can be seen that these differences are
larger compared for the excitation position more central on the floor (see Table 5.10).

Table 5.11: List of natural frequencies of the scaled LWF structure based on the corner
excitation obtained by the nodal DG method and experiment at position V6. The mode
index in the x- and y- directions is defined by the number of anti-nodes found at each
resonant frequency.

Mode index Natural frequency [Hz] |∆fn|
DG Experiment [Hz] [%]

(2,2) 17.0 15.3 1.7 11.1
(3,1) 38.0 35.7 2.3 6.4
(4,1) 74.0 70.0 4.0 5.7
(4,2) 96.0 88.0 8.0 9.1
(5,1) 117.0 114.7 2.3 2.0
(5,2) 138.0 127.6 10.4 8.2
(6,1) 167.0 165.9 1.1 <1.0
n.a. 184.0 178.6 5.4 3.0

For the scaled LWF structure, these discrepancies could be due to various factors.
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For example, the MDF materials used in each component are rarely homogeneous
or isotropic. Additionally, this structure includes several connections between the
plate and joists, and incorrect modelling may result in discrepancies in natural fre-
quencies. These connections are considered to be fixed in the nodal DG approach;
nevertheless, in practical experiments, the nails connection may introduce further
damping and stiffness. Furthermore, to depict the component’s frequency-dependent
internal damping, the constant viscous damping technique is insufficient. Moreover,
the structure’s boundary conditions, which are never completely free, may carry ad-
ditional inconsistencies into the modelling.

5.7 Conclusion
The nodal DG method has been presented and applied successfully to model the
vibration of structures with piece-wise constant properties. The structures consist
of a T-shaped structure and a scaled lightweight wooden floor comprised of several
components with different material properties. The numerical fluxes are derived by
the Rankine-Hugoniot jump condition, and are presented in detail in the Appendix.
The numerical model is validated by comparing its results with the experimental
results. The agreement on the natural frequencies is good, with a maximum absolute
difference of 19.4 Hz or less than 5 % for the T-shaped structure in the frequency
range below 500 Hz, and 10.4 Hz difference or less than 9% for the scaled LWF
structure in the range below 200 Hz. Many factors contribute to these discrepancies.
The selected damping strategy is insufficient to effectively depict a wide frequency
range, which is one modelling factor. Incorporating frequency-dependent dampening
into the nodal DG approach will be critical in the future. Furthermore, expanding the
system to include materials with anisotropic mechanical characteristics, especially for
wooden constructions, may be necessary.
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6 Discontinuous Galerkin method for
predicting sound radiation and
transmission of building components

Abstract
This study presents numerical solutions for two vibroacoustic problems using the
time-domain nodal discontinuous Galerkin (DG) method. The first problem is the
impact sound radiation from a rectangular slab into a cuboid room, and the second
is the sound transmission between two cuboid rooms with direct and flanking contri-
butions. The structures are modelled as three-dimensional solid structure governed
by the linear elasticity equations, and sound propagation in the rooms is governed
by the linear acoustic equations. In the impact sound radiation case, the normalised
sound pressure is evaluated and compared to the one obtained by the modal expan-
sion method. In the sound transmission case, pressure transfer functions between
different positions are calculated and compared to those obtained by the finite ele-
ment method (FEM). The upwind numerical fluxes for both governing equations, as
well as the coupling conditions, are presented in this thesis. There is excellent agree-
ment between the solutions obtained by the nodal DG and those obtained by the
modal expansion method/FEM. Although minor discrepancies exist in the resonance
frequencies and magnitude, the overall trend shows good agreement.

6.1 Introduction
Health effects of noise can manifest as the disturbance of well-being and adverse effects
in the long term, including sleep disturbance, annoyance, interference with intended
activities, and loss of task performance [5]. In dwellings, noise from neighbours can be
annoying, and can imply a lack of privacy due to the poor sound (impact) insulation.
This is apparent from several studies [229]–[231] that show the correlation between
sound insulation performance and the occupant’s perception of various constructions.
Therefore, adequate sound insulation between dwellings is essential to create a healthy
environment, privacy, and possibilities for activities without causing annoyance.

Many countries have regulations in buildings to address noise issues [11]. These
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regulations include airborne and impact sound insulation. In order to comply with the
regulations, prediction methods are needed to predict the sound insulation of building
elements (e.g., walls, floors, windows, etc.). There are several models that can be used
to predict airborne or impact sound insulation. Some of the simplest models assume
an infinite structure or a locally reacting panel, coupled with semi-infinite or diffuse
source and receiver rooms [51]. These models have been developed into engineering
software equipped with material libraries and empirical modifications, such as those
investigated in Ref.[232]. However, these models are limited to the assumption they
use such diffuse field assumption or infinite structure. The finiteness of the structures
and the rooms lead to different sound insulation properties, especially for sound
insulation in the low-frequency region. In this region, the sound and vibration fields
in buildings show modal behaviour, and many factors influence the sound insulation
of a building element, such as mechanical properties, construction details, boundary
conditions (BCs), excitation conditions, and receiver/room conditions [233], [234]. A
prediction model that can take account of all these parameters is necessary.

Several analytical models can be used to predict sound insulation, such as the modal
expansion methods described in Refs.[60], [235]–[237]. Sousa and Gibbs [233], [238]
adapted the method to calculate the impact sound radiation in a room under a floor.
A parametric survey was conducted on the factors affecting the low-frequency impact
sound radiation, and experimentally validated the analytical model. However, these
models are restricted to simple geometries and configurations for both structures and
rooms (see Ref.[239] for limitations). To predict the sound insulation where all the
details of the structures and the room are included, wave-based methods are required.
Wave-based methods solve the equations that govern the structural vibrations and
sound propagation in the rooms, including their interaction through sound radiation
and transmission (vibroacoustic problems).

Several wave-based methods have been used to model sound radiation and transmis-
sion in buildings. The finite element method (FEM) is one of the wave-based methods
often used to solve the partial differential equations that govern vibroacoustic prob-
lems. Maluski and Gibbs [74] used FEM to investigate sound transmission between
dwellings, solving the acoustic wave and thin plate equation in the frequency domain
to model sound and structural vibrations, respectively. To validate the approach,
the results were compared with actual measurements, and several parametric studies
were carried out on the effect of room size and the position of the source and receiver.
Brunskog and Davidsson [239] and Davidsson et al. [75] conducted studies on the
sound transmission of double-leaf walls using the FEM. In their studies, the sound
transmission of two plasterboard panels connected with studs and filled with porous
material was determined in the frequency-domain. The structure was modelled using
thin plate equations, and the sound propagation was modelled with modal basis func-
tions. Another study on a similar structure was undertaken by Arjunan et al.[76].
They modelled the double-leaf walls using the three-dimensional solid structure in-
stead of using a plate equation, and the acoustic wave equation used to model the
sound propagation. The study was conducted using finite element software ANSYS.

Another wave-based method often used to model the building acoustic problem is the
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finite-difference time-domain (FDTD) method. For example, Toyoda and Takahashi
[94] used FDTD method to simulate impact sound radiation in a real-scale two-storey
concrete building. The study modelled the building by the three-dimensional linear
elasticity equations that solved elastic wave variables for both solid and air domains.
In their study, the Lamé’s second parameter was set as zero in the air domain to
model sound propagation. Fereira [240] implemented the same FDTD methodology
for several building acoustic applications but proposed a scaling approach to reduce
the computational effort.

Another wave-based method that can be applied for the vibroacoustic problem is the
time-domain discontinuous Galerkin (DG) method. The DG method is a relatively
new method applied to vibroacoustic problems [225], [241]. To the authors’ knowl-
edge, the DG method has never been applied to sound transmission and radiation
problems. This method has certain advantages compared to the other wave-based
methods. For example, it can represent the problem domain using unstructured mesh
to deal with a complex domain accurately, and it allows for refinement of the solution
by increasing the polynomial order or element number. Another advantage is that
the DG method uses an element-wise formulation to solve the governing equations.
Therefore, it provides a framework well suited for parallel computation, as well as for
local time-stepping [45]. This allows for significantly accelerated calculations [111].
This method has been extensively studied for application in another area of applied
physics as seismology [117]–[120].

In the case of fluid-structure interaction problems in seismology, several studies have
been carried out. Käser and Dumbser [242] applied the ADER-DG method to simu-
late seismic wave propagation in heterogeneous media containing fluid and solid. In
their work, unified linear hyperbolic equations combining the linear elasticity equa-
tions and the linearised Euler equations are used to model the seismic waves in the
velocity-stress formulation. This approach allows moving fluids in the problem, and
similar to Toyoda and Takahashi [94], the fluid was treated by setting the Lamé’s
second parameter to zero in the fluid region. However, the computational cost of
solving the wave propagation in fluids is the same as in solids using this approach,
and it is not beneficial for a problem with a large fluid domain. The same method was
also used by Shukla et al.[243] to make a comparison between explicit and implicit
time integration in the DG method for seismic wave propagation. Moreover, Wilcox
et al.[200] introduced the DG method for three-dimensional wave propagation prob-
lems in coupled elastic–acoustic media. This formulation is more efficient than that
of Ref.[242] where the fluids are represented by elastic wave variables; however, the
problem is restricted to non-moving fluids. Wilcox et al. used a velocity-strain formu-
lation for the elastic wave propagation, and the upwind numerical flux was explained
in detail, including the coupling between elastic–acoustic media. Furthermore, Zhang
et al. [244] extended the DG methodology to the coupled elastic-acoustic anisotropic
media.

This chapter uses the nodal DG method to solve two vibroacoustic problems. The
first problem is the impact sound radiation from a rectangular slab into a cuboid
room, and the second problem is the sound transmission between two cuboid rooms
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with direct and flanking contributions. This work contributes to the application and
validation of the DG method for building acoustic problems. The remainder of this
chapter is organised as follows. In Section 6.2, the linear elasticity equations and the
linear acoustic equations are presented. The nodal DG formulation to solve these
equations is given, as well as the methodology to couple the two media using the
numerical fluxes. Section 6.3 describes the example cases in detail. In Section 6.4,
the simulation results for the first problem is compared with the results obtained by
the modal expansion method, and the solution for the second problem is compared
to the FEM solution. Finally, conclusions of the paper are given in Section 6.5.
Moreover, the appendices present the details of the upwind fluxes for both equations
and the modal expansion method used to obtain the analytical solution of the impact
sound radiation.

6.2 Methodology
The nodal DG method is employed to solve vibroacoustic problems in this study. The
vibrations of the structure are modelled by the linear elasticity equations, and sound
propagation in air is modelled by the linear acoustic equations. In this section, each
set of equations is presented along with the methodology to solve them using the
nodal DG method. To couple the two governing equations, the continuity conditions
between two subdomains are treated with the numerical flux presented in Section
6.2.4.

6.2.1 Linear elasticity equations
The linear vibration of a structure can be modelled using the linear elasticity equa-
tions, which governs the propagation of elastic waves in a solid medium. This set of
equations follows from the momentum conservation and constitutive equations [21].
For a Cartesian three-dimensional coordinate system, the equations for an isotropic
medium can be written as a set of linear first-order hyperbolic equations in a velocity-
stress form as:

∂qs
∂t

+∇ ·H(qs) = ∂qs
∂t

+Bj
∂qs
∂xj

= g − ζqs, (6.1)

qs(x, t) =
[
vx vy vz σxx σyy σzz σxz σyz σxy

]T
,

g(x, t) =
[
gx gy gz 0 0 0 0 0 0

]T
,

ζ = diag
(
ζx ζy ζz 0 0 0 0 0 0

)
,

where vx, vy, vz are the velocities in the x-, y-, and z- directions, respectively. σxx,
σyy, σzz, σxz, σyz, σxy are the normal and shear stress components, gx, gy, gz are the
body forces, and ζx, ζy, ζz are the viscous damping forces. The linear elasticity used in
this chapter is slightly different with the one used in Chapter 4 by the damping forces.
The flux matrix readsH(qs) = [hx,hy,hz] = [Bxqs,Byqs,Bzqs]. The constant flux
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Jacobian matrix Bj is given as:

Bj =
[

03×3 B1,j
B2,j 06×6

]
,B1,j = −1

ρ

 δxj 0 0 δzj 0 δyj
0 δyj 0 0 δzj δxj
0 0 δzj δxj δyj 0

 ,

B2,j = −


(λ+ 2µ)δxj λδyj λδzj

λδxj (λ+ 2µ)δyj λδzj
λδxj λδyj (λ+ 2µ)δzj
µδzj 0 µδxj

0 µδzj µδyj
µδyj µδxj 0

 ,

where λ and µ are the Lamé parameters, ρ is the mass density, and index j has
components [x, y, z]. The δij denotes the Kronecker delta function. The solution
of Equation (6.1) consists of a linear combination of elastic waves propagating with
longitudinal wave speed (cp =

√
(λ+ 2µ)/ρ) and transverse wave speed (cs =

√
µ/ρ).

The Lamé parameters are represented by using Young’s modulus (E) and Poisson’s
ratio (ν) as λ = Eν/(1 + ν)(1− 2ν) and µ = E/2(1 + ν).

6.2.2 Linear acoustic equations
The propagation of sound in a room that is absent of wind and is at a constant
temperature is governed by the linear acoustic equations. They are derived from the
general conservation laws and the adiabatic process of the ideal gas. For Cartesian
three-dimensional coordinates, these equations can be written as:

∂qa
∂t

+∇ · F (qa) = ∂qa
∂t

+Aj
∂qa
∂xj

= 0, (6.2)

qa(x, t) =
[
u v w p

]T
.

where p is the sound pressure, and u, v, w are the velocities in the x-, y-,
and z- directions, respectively. The flux matrix reads F (qs) = [fx,fy,fz] =
[Axqa,Ayqa,Azqa]. The constant flux Jacobian matrix Aj is given as:

Bj =


0 0 0 δxj

ρ0

0 0 0 δyj
ρ0

0 0 0 δzj
ρ0

ρ0c
2
0δxj ρ0c

2
0δyj ρ0c

2
0δzj 0

 .
where ρ0 is the density of air, and c0 is the adiabatic sound speed. Equations (6.1)-
(6.2) supplemented with initial values and BCs complete the problem definition.

6.2.3 Nodal discontinuous Galerkin method
The nodal discontinuous Galerkin (DG) method is used to solve Equations (6.1)-(6.2).
The algorithm of the method is developed by Hesthaven and Warburton [112] and is
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adopted in this study. The problem domain is approximated by the computational
domain Ωh with K number of non-overlapping rectilinear tetrahedral elements Dk

as Ωh = ∪Kk=1D
k. The problem domain consists of the structural subdomain (Ωsh)

and the air subdomain (Ωah) where Ωh = Ωsh ∪ Ωah. On each Dk, the local solution is
expanded by a combination of nodal basis functions as:

qksh(x, t) =
Np∑
i=1

qksh(xki , t)lki (x), (6.3)

qkah(x, t) =
Np∑
i=1

qkah(xki , t)lki (x), (6.4)

where qksh(xki , t), qkah(xki , t) are the unknown nodal values of the elastic and acoustic
wave variables, respectively. lki (x) are the three-dimensional Lagrange interpolation
polynomials based on the nodal points xi, and Np is the number of nodal points.
The global solutions are approximated as the direct sum of the local solutions as:

qs(x, t) ≈ qsh(x, t) = ⊕Kk=1q
k
sh(x, t), (6.5)

qa(x, t) ≈ qah(x, t) = ⊕Kk=1q
k
ah(x, t). (6.6)

The closed expression of the Lagrange interpolation polynomials in tetrahedral el-
ements is constructed by the products of the Jacobi polynomials of order N , and
the distribution of nodal points follows the optimised Legendre-Gauss-Lobato (LGL)
points over a tetrahedral element as presented in Ref.[112]. The number of nodal
points per element is Np = (N + 1)(N + 2)(N + 3)/6.

For each element in Ωsh, the nodal basis functions are used to approximate the elastic
wave variables and the body forces in Equation (6.1). Then the residuals of the
approximations are multiplied by the test functions following the Galerkin method.
By performing spatial integration by parts twice, the strong formulation of Equation
(6.1) is as follows:∫

Dk

[
∂qksh
∂t

+∇ ·H(qksh)
]
lki dx =

∫
Dk

(gkh − ζqksh)lki dx

−
∫
∂Dk

n ·
[
H∗ −H(qksh)

]
lidx,

(6.7)

where ∂Dk is the element surface, gkh is the approximated body force vector, and n =
[nx, ny, nz] is the outward normal vector of the element surface ∂Dk. The flux along
the normal direction of the element surface is defined as n·H = (nxhx+nyhy+nzhz),
and the H∗ is the numerical flux.

The numerical flux ensures continuity of the global solution. It is a function of the
interior solution (q−sh), which is the solution within the element Dk, and the exterior
solution (q+

sh), which is the solution of the neighbouring elements around Dk. In this
work, the upwind numerical flux is chosen as the numerical flux. The upwind nu-
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merical flux can be derived by solving the Riemann problem at the interface between
two homogeneous media. This interface represents the faces of two neighbouring el-
ements located at the same position. Consider that the interface lies at x = 0. The
properties of the medium (λ−, µ−, ρ−) are those of the internal medium at x < 0,
and (λ+, µ+, ρ+) are those of the adjacent one at x > 0. The Riemann problem is a
discontinuous initial value problem that happens at this interface as:

qsh(x, 0) =
{
q−sh if x < 0,
q+
sh if x > 0.

The solution to this problem, the intermediate solution (q∗sh(0, t)), is derived using the
Rankine-Hugoniot jump condition as described in Refs. [225],[200],[21].The numerical
fluxes n ·H∗ = n ·H(q∗sh) are a function of the intermediate solution. After defining
the numerical flux, the nodal basis and numerical flux are substituted into Equation
(6.7) to obtain the semi-discrete form for each element as:

Mk ∂v
k
xh

∂t
− 1
ρ

(
Skxσxx

k
h + Skyσxy

k
h + Skzσxz

k
h

)
= Mk

(
gkxh − ζxvkxh

)
−

4∑
r=1

MkrĤ
kr

vx ,

Mk
∂vkyh
∂t
− 1
ρ

(
Skxσxy

k
h + Skyσyy

k
h + Skzσyz

k
h

)
= Mk

(
gkyh − ζyvkyh

)
−

4∑
r=1

MkrĤ
kr

vy ,

Mk ∂v
k
zh

∂t
− 1
ρ

(
Skxσxz

k
h + Skyσyz

k
h + Skzσzz

k
h

)
= Mk

(
gkzh − ζzvkzh

)
−

4∑
r=1

MkrĤ
kr

vz ,

Mk ∂σxx
k
h

∂t
− (λ+ 2µ)Skxvkxh − λSkyvkyh − λSkzvkzh = −

4∑
r=1

MkrĤ
kr

σxx ,

Mk ∂σyy
k
h

∂t
− λSkxvkxh − (λ+ 2µ)Skyvkyh − λSkzvkzh = −

4∑
r=1

MkrĤ
kr

σyy , (6.8)

Mk ∂σzz
k
h

∂t
− λSkxvkxh − λS

k
yv

k
yh − (λ+ 2µ)Skzvkzh = −

4∑
r=1

MkrĤ
kr

σzz ,

Mk ∂σxz
k
h

∂t
− µSkzvkxh − µS

k
xv

k
zh = −

4∑
r=1

MkrĤ
kr

σxz ,

Mk ∂σyz
k
h

∂t
− µSkzvkyh − µS

k
yv

k
zh = −

4∑
r=1

MkrĤ
kr

σyz ,

Mk ∂σxy
k
h

∂t
− µSkyvkxh − µS

k
xv

k
yh = −

4∑
r=1

MkrĤ
kr

σxy .
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vkxh, vkyh, vkzh, σxx
k
h, σyy

k
h, σzz

k
h, σxz

k
h,σyz

k
h, and σxy

k
h are vectors representing all

elastic wave variables at the nodal points xi, with i = 1 to Np. Note that all the
mechanical properties in Equations (6.8) are defined in the interior element, except
for the numerical flux terms. The second superscript r denotes the rth faces of ∂Dkr

of the element Dk, where the number of faces of the tetrahedral element is four.
Ĥ

kr

u , Ĥ
kr

v , Ĥ
kr

w , Ĥ
kr

σxx , Ĥ
kr

σyy , Ĥ
kr

σzz , Ĥ
kr

σxz , Ĥ
kr

σyz , and Ĥ
kr

σxy are the flux terms
associated with the term n ·

[
H∗ −H(qksh)

]
over the element surface in the strong

form (Equation (6.7)). Mk is the element mass matrix, Skj are the element stiffness
matrices in the j-directions, andMkr are the element face matrices. More details on
these matrices are given in Refs. [112], [182].

For each element in the air subdomain Ωah, the same methodology as above are
used. The nodal basis functions are used to approximate the sound wave variables in
Equation (6.2). This leads to its strong formulation as:∫

Dk

[
∂qkah
∂t

+∇ · F (qkah)
]
lki dx =

∫
∂Dk

n ·
[
F ∗ − F (qkah)

]
lidx. (6.9)

The flux along the normal direction of the element surface is defined as n · F =
(nxF x+nyF y+nzF z), and the F ∗ is the numerical flux for the sound wave variables.
The upwind numerical flux is also used for the linear acoustics equations. Different
from the elastic medium, air has interior medium properties that consist of (ρ−0 , c

−
0 )

and (ρ+
0 , c

+
0 ) for the exterior one. It needs to be noted, that for this present study,

the same polynomial orders are used for both structure and air subdomains. This
is required to simplify the interface condition between air and structure, which is
presented in the Section 6.2.4. The details on the numerical flux for wave propagation
in air is given in Appendix G. After defining the numerical flux, the nodal basis and
the numerical flux are substituted into Equation (6.9) to obtain the semi-discrete
form for each element as:

Mk ∂u
k
h

∂t
+ 1
ρ0
Skxp

k
h =

4∑
r=1

MkrF̂
kr

u ,

Mk ∂v
k
h

∂t
+ 1
ρ0
Skyp

k
h =

4∑
r=1

MkrF̂
kr

v , (6.10)

Mk ∂w
k
h

∂t
+ 1
ρ0
Skzp

k
h =

4∑
r=1

MkrF̂
kr

w ,

Mk ∂p
k
h

∂t
+ ρ0c

2
0S

k
xu

k
h + ρ0c

2
0S

k
yv

k
h + ρ0c

2
0S

k
zw

k
h =

4∑
r=1

MkrF̂
kr

p ,

ukh, vkh, wk
h, and pkh are vectors representing all sound wave variables at the nodal

points xi, with i = 1 to Np. The terms F̂
kr

u , F̂
kr

v , F̂
kr

w , and F̂
kr

p are the flux terms
associated with the term n ·

[
F ∗ − F (qkah)

]
over the element surface in Equation
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(6.9). The element mass matrix (Mk), the element stiffness matrices (Skx,Sky ,Skz),
and the element face matrices (Mkr) are the same as mentioned before.

Having the semi-discrete form at hand, Equations (6.8) and (6.10) for the computa-
tional domain (Ωh) can be expressed in the form of ordinary differential equations
as:

dqsh
dt = Ls (qsh(t), t) , (6.11)

dqah
dt = La (qah(t), t) . (6.12)

where qsh, qah are the vector of all nodal solutions, and Ls, La are the semi-discrete
operator conducted over all elements in the solid and in air, respectively. Finally,
various methods can be used to integrate the time derivative in Equations (6.11)-
(6.12). In this work, the fourth-order Runge-Kutta method with eight stages (RKF84)
is used, which is described in Ref.[148]. The time-step (∆t) for the time integration
is defined as:

∆t = CCFL ·min(rDk)
N2 ·max(cp)

(6.13)

where CCFL is the Courant number, max(cp) is the maximum longitudinal wave
speed, and min(rDk) is the shortest element edge in the computational domain. It
should be pointed out that ∆t is determined by the fastest wave on the whole domain,
which in this case is the elastic longitudinal wave. To complete the numerical formu-
lation, the BCs, force excitation, and initial values should be given. The methodology
to apply the force excitation and the BCs for the structure subdomain can be found
in Ref.[225], while the BCs treatment for air subdomain can be found in Ref.[182].

6.2.4 Interface between solid and air

Solid

Air

Figure 6.1: The jump conditions on the interface between solid and air
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The interaction between solid and air is represented by the perfect slip boundary
condition. In this condition, the shear stress has to vanish, while the continuity
of the normal stresses and velocities has to be guaranteed [242]. In the nodal DG
method, this can be constructed through the numerical fluxes. To realise this, the
mesh must conform to the discontinuity between solid and air. It means that the
element interfaces must be aligned with the material interface.

In the structural elements interfaces, the numerical fluxes are computed following
Appendix G, with the exterior values of each variable set as illustrated in Figure 6.1.
The air (exterior element) is assumed to be an inviscid fluid, where the fluid cannot
sustain any shear stress. Thus, the transversal wave speed in the air c+s is zero, and
the shear stresses are set as σ+

ij = 0. Moreover, the exterior values of density and
longitudinal wave speed are ρ+ = ρ0 and c+p = c0 following medium properties of
air. The exterior value of the first Lamé parameter is set as the bulk modulus of air,
λ+ = ρ0c

2
0, and the exterior second Lamé parameter (shear modulus) is set to zero,

µ+ = 0.

To maintain the continuity of the velocities, the coupling can be set directly since
the same variables exist both in air and solid material. The exterior velocity of the
solid element, (v+

x , v
+
y , v

+
z ), equals the velocity in the air,(u, v, w), element and vice

versa. Moreover, the normal stresses are set by the condition σijnj = −pnj such as
presented in Ref.[245], and since shear stresses in air are zero, the normal stresses
in the solid are equal to sound pressure in air as σ+

xx = σ+
yy = σ+

zz = −p. This
methodology is also found in Refs. [21], [242].

6.3 Case studies
In this study, three vibro-acoustic cases are simulated using the nodal DG method.
The three cases are the sound radiation of a concrete slab into a room, sound trans-
mission between two rooms through a single separating wall, and sound transmission
between two rooms with flanking contributions. The first and second cases are com-
pared with the analytical solution and the finite element method solution for the
acoustic-solid interaction problem. These cases are selected to show the validity of
the nodal DG methodology for vibro-acoustic problems. The third case is given to
demonstrate the difference between sound transmission values of a wall with and
without flanking paths.

6.3.1 Impact sound radiation
The first case concerns impact sound radiation from a concrete slab into a room, as
shown in Figure 6.2a. The slab only radiates the sound towards the room, where the
upper surface does not radiate the sound. The room and the slab have dimensions
[1.2 m × 0.8 m × 1 m] and [1.2 m × 0.8 m × 0.08 m], respectively. The slab has
simply supported BCs on the edges and free BCs on the top. The room has rigid
BCs on all surfaces.
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(a) (b)

Figure 6.2: (a) The impact sound radiation case with the force and receiver positions, and
(b) its mesh for the DG method computation.

The mechanical properties of the concrete slab are as follows: Young’s modulus
E = 13.6 GPa, density ρ = 2300 kg/m3, and Poisson’s ratio ν = 0.3. Air has a
density of 1.2 kg/m3 and a wave speed of 344 m/s. An impact force on the slab at
position F = [0.2, 0.64, 1.08] m (marked with blue dot) is given as:

A(t) = −
(
a2 + a1(t− td)2) ea1(t−td)2

, (6.14)

with centre time td = 7 ms, centre frequency fc = 500 Hz, a1 = −(πfc)2, and a2 = 0.5.
The methodology to excite the point force can be seen in Chapter 4 and is adopted for
this work. The impact point force is positioned close to a corner of the plate to reduce
the possibility of hitting at multiple nodal lines of the slab at lower order modes. The
simulation duration is 4 seconds, and three receivers are distributed along the room
diagonal at R1 = [0.2, 0.2, 0.25] m, R2 = [0.6, 0.4, 0.5] m, R3 = [1, 0.6, 0.75] m to
obtain the sound radiation from slab as shown in Figure 6.2a (marked by red dots).

To discretise the problem domain for the nodal DG method, the mesh generator of
COMSOL Multiphysics is used [211]. The mesh is shown in Figure 6.2b. It consists
of 241 and 452 tetrahedral elements to represent the concrete slab and the room,
respectively. For the computation with the DG method, the Lagrange interpolation
polynomials with an order of N = 4 are applied. With this polynomial order, the
room has 10 degrees of freedom per wavelength (DPW) at 850 Hz, which becomes
the upper-frequency limit. Moreover, the material properties of the concrete slab
determines the time step since the solid medium has a much faster longitudinal wave
speed than air (cp = 2821.3 m/s). The Courant number CCFL = 1 is selected,
resulting in ∆t = 1.5588 · 10−6 s. The elastic longitudinal wavelength at 850 Hz is
3.32 m, which means that the slab has a DPW number of 158.9. Note that the slab’s
length is much shorter than the wavelength, and the thickness of the slab controls
the discretisation to have a good element skewness.
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The nodal DG solution is then compared with the analytical solution based on the
modal expansion method to validate the current computation. The time-domain
sound pressure in each receiver and the force are converted into the frequency-domain
data using the fast Fourier transform. The time-domain data is windowed using Hann
window [227] with the length of 2 seconds to reduce the Gibbs effect. Having the
frequency-domain data, the normalised sound pressure is calculated as:

Pn(x, f) = P (x, f)
G(F, f) , (6.15)

where P (x, f) is the frequency-domain pressure at each receiver location, and G(F, f)
is the frequency-domain force. The modal expansion solution is obtained in frequency-
domain, and the vibration of the slab is modelled by using the first shear deformation
theory (FSDT) (see Appendix H for more details).

6.3.2 Sound transmission
Direct sound transmission

(a) (b)

Figure 6.3: (a) The sound transmission through a single concrete panel case, and (b) its
mesh for the DG method computation.

The second case is sound transmission between two rooms through a single concrete
panel where flanking transmission is not included. The case geometry can be seen in
Figure 6.3a, where the source room is the one closest to the coordinate origin. The
source and receiver rooms have dimensions of [3.2 m × 2.9 m × 2.4 m] and [2.7 m ×
2.9 m × 2.4 m], respectively. The panel (marked by grey surfaces) has a thickness of
0.2 m, with all edges having fixed BCs. The red rectangle indicates the location of
the sound source (Q), the blue dots mark the receivers in the source room (S1-S3),
and the black dots mark the receivers in the receiver room (R1-R3). The locations
of these points are shown in Table 6.1.

The properties of the concrete slab and air are the same as in the case of impact
sound radiation (see Section 6.3.1). In addition, viscous damping forces ζx = ζy =
ζz = 20 [N ·kg/m3] are added to the concrete to dissipate the vibration energy during
transmission. Frequency-independent impedance BCs are applied to the surfaces of
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the rooms indicated by blue surface in Figure 6.3a, and each surface has a real-valued
reflection coefficient of R = 0.95. Other surface in the room is set as rigid BCs. The
simulation duration is 2 seconds, and to excite the sound on the location Q, initial
values are given as:

p(x, t = 0) = Q0 · e
−ln(2)
b2 ((x−xq)2+(y−yq)2+(z−zq)2),

v(x, t = 0) = 0.

This is a pressure Gaussian pulse centered at the source coordinates (xq, yq, zq), with
pulse half-bandwidth b = 0.15 and amplitude of Q0 = 10 Pa.

The mesh for the nodal DG method is shown in Figure 6.3b, where the concrete
panel has 531 elements, and both rooms have a total of 16516 elements. The
Lagrange interpolation polynomial order is N = 3. With these values, the solu-
tion has approximately 10 DPW at 650 Hz, which is the upper frequency limit for
the current configuration. The Courant number CCFL = 1 is selected, resulting
in ∆t = 6.4403 · 10−6 s. The methodology of applying the frequency-independent
impedance BCs for the nodal DG method can be found in Ref.[182].

To evaluate the numerical accuracy of the nodal DG method solution, the difference
between the sound pressure level (∆Lp) obtained in the source room (LSp (x)) and
the one obtained in the receiver room (LRp (x)) is calculated as:

∆Lp = LSp (x)− LRp (x). (6.16)

Three values of ∆Lp are calculated, i.e., the ∆Lp between S1 and R1, S2 and R2, and
between S3 and R3. These ∆Lp values are then compared with the values obtained
by the FEM.

The FEM solutions are obtained by COMSOL Multiphysics 5.4 [211]. In COMSOL,
the acoustic-solid interaction solver in the frequency-domain is used. In this solver,
the acoustic wave equations and the elastic wave equations are solved for the three-
dimensional geometry. The two-way coupling includes the acoustic pressure load on
the structure and the structural acceleration as experienced by the air. The room is
discretised using tetrahedral elements, and quadratic basis functions are used. The
size of elements is at maximum 10 cm, which is approximately the length of minimum
acoustic wavelength λmin/5. In FEM, a point source is used to represent the sound
excitation in the source room, and surface impedance BC is applied to the walls
coloured in blue in Fig. 6.3a as Zwall = Zair · (1 +R)/(1−R).

Sound transmission with flanking contribution

The third case is an extension of the single panel case from Section 6.3.2, where the
top and bottom slabs of the building are included. These inclusions add flanking
transmission contributions as shown in Figure 6.4. The first configuration is via the
ceiling, and the second is via ceiling and floor. These configurations are simulated
with the nodal DG method to show the differences in transfer functions compared
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Table 6.1: Locations of the source and receivers for the single panel transmission case.

Index (x, y, z) [m]
Q (0.8, 0.725, 0.6)
S1 (1.3, 2.4, 1.8)
S2 (2, 2, 1.3)
S3 (2.7, 1.5, 0.8)
R1 (4.8, 1.8, 0.5)
R2 (3.9, 2.4, 1.9)
R3 (5.6, 0.5, 0.5)

to the single panel configuration. The cases are given to demonstrate the ability of
the nodal DG method to simulate building acoustic problems. The computational
settings and material properties of these two configurations are the same as for the
case with a single panel, as in Section 6.3.2. The number of elements in the rooms
are slightly changed due to the inclusion of the ceiling and floor. The flanking config-
uration via ceiling has 1845 elements for the solid structure and 16724 elements for
the air, while the one via ceiling and floor has 3210 elements for the solid structure
and 16578 for the air.

(a) (b)

Figure 6.4: Sound transmission in rooms with flanking contribution, for case (a) via ceiling
and (b) via ceiling and floor.

6.4 Results and discussions

6.4.1 Impact sound radiation
Figures 6.5a-6.5c show the magnitudes of the normalised sound pressure at different
receivers obtained by the nodal DG and modal expansion methods. As can be seen,
both results are in excellent agreement. According to FSDT, there are five natural
frequencies below 850 Hz. These frequencies are indicated by vertical lines in the
figures and listed in Table 6.2. The natural frequencies of the slab are well separated
within the frequency range of interest. While for the room, 90 natural frequencies



6 Discontinuous Galerkin method for predicting sound radiation and transmission 149

exist below 850 Hz, assuming that the room has rigid BCs. Their distribution along
the 1/3 octave bands is shown in Table 6.3.

100 125 160 200 250 315 400 500 630 800

Frequency [Hz]

10
-6

10
-4

10
-2

10
0

(a)

100 125 160 200 250 315 400 500 630 800

Frequency [Hz]

10
-6

10
-4

10
-2

10
0

(b)

100 125 160 200 250 315 400 500 630 800

Frequency (Hz)

10
-6

10
-4

10
-2

10
0

(c)

Figure 6.5: The normalised sound pressure for the impact sound radiation case at position
(a) R1, (b) R2, and (c) R3. Black lines represent the nodal DG results, red dashed lines
represent the modal expansion results, and the black dashed vertical lines represent the
locations of the slab’s natural frequencies based on FSDT.

The natural frequencies of the room primarily characterise the spectrum of the impact
sound in the room since the room has more natural frequencies. There are minor
discrepancies between the nodal DG and modal expansion solutions, especially in the
magnitude and location of the peaks (local maxima) and throughs (local minima)
of the normalised pressure. For instance, at receiver R2 (which is located exactly
in the middle of the room) at 383 Hz and receiver R3 at around 300 Hz. Both
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Table 6.2: Natural frequencies of the concrete slab obtained from FSDT. The m1,m2 indi-
cates the number of the anti-node in the x-, and y- directions. (see Appendix H)

Modal index (m1,m2) Natural Frequency [Hz]
1,1 203.6
2,1 383.3
1,2 598.0
3,1 667.3
2,2 762.7

Table 6.3: Number of room modes with rigid BCs for each 1/3 octave band.

1/3 octave band
centre frequency [Hz]

Number of modes [-]

160 2
200 2
250 2
315 4
400 7
500 15
630 26
800 48

methods lack damping in the configuration, which may result in different magnitudes
at these places. The modal expansion method is a frequency-domain method that
assumes a steady-state solution, whereas the nodal DG method is a time-domain
method that calculates the frequency-domain solution using windowing and signal
truncation. This processing causes the sound wave interference that are not as strong
as the frequency domain methods, and can result in minor deviations especially from
the steady-state solution without damping. In addition, the modal expansion solution
is based on the FSDT instead of the linear elasticity equation, which could account
for some discrepancies.
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6.4.2 Sound transmission
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Figure 6.6: The ∆Lp between position (a) S1 and R1, (b) S2 and R2, and (c) S3 and R3
for the direct transmission case. Black lines represent ∆Lp obtained by the nodal DG and
red dashed lines represent ∆Lp obtained by the FEM.

The sound pressure level difference (∆Lp) values between two rooms divided by
a single panel are presented in Figures 6.6a-6.6c. It can be seen that the results
obtained by the nodal DG method and FEM are in a very good agreement. Minor
discrepancies occur in the peak of ∆Lp values, but the overall trends of the three
∆Lp agree very well with the FEM solution. It can be seen that above 250 Hz the
room acoustic modal density is high, with the peaks of the ∆Lp close to each other.
The number of acoustic modes in each frequency band is given in Table 6.4 assuming
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that all surfaces are rigid. Due to this high number of modes, it is clearer to present
the results in 1/3 octave frequency bands.
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Figure 6.7: One-third octave band sound pressure level difference between position (a) S1
and R1, (b) S2 and R2, and (c) S3 and R3. Black bars refer to the single panel with
only direct transmission path, red bars refer to the panel with flanking transmission via the
ceiling, and blue bars refer to the panel with flanking transmission via ceiling and floor.

Now, the ∆Lp values between the single panel to the panels with flanking transmission
contribution (via ceiling and ceiling and floor) are presented. The ∆Lp of different
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Table 6.4: Number of the acoustic modes of the source and receiver rooms with all room
surfaces are assumed rigid.

1/3 octave band center
frequency [Hz]

Number of modes [-]
Source room Receiver room

50 1 0
63 2 2
80 1 2
100 4 2
125 5 6
160 13 9
200 19 15
250 33 32
315 66 57
400 126 110
500 154 156
630 314 224

locations are shown in Figures 6.7a-6.7c. The single panel has a higher ∆Lp at almost
all frequency bands compared to the two scenarios that include flanking transmission.
This means that the addition of ceiling and floor increases the overall transmitted
sound energy from the source room to the receiver room.

The critical frequency of the concrete panel can be obtained as fc = c0/(1.8 · cph) =
116.5 Hz, where c0, cp and h are the sound wave velocity in air, the longitudinal
elastic wave velocity and the panel thickness, respectively. Due to this frequency,
the ∆Lp values at 125 Hz are relatively low for all panel configurations, especially
for the single panel configuration. The figures also show that for the configuration
of flanking transmission via celing, the ∆Lp values at 80 Hz are lower compare to
other configurations. These might caused by the strong coupling between the ceiling
vibration to the sound in the rooms. From these results, it is demonstrated that there
are variations of the transfer functions (or sound transmission) due to the flanking
paths. To have a good sound insulation design, analysis of panel configurations are
needed to predict these variations. This analysis could be conducted by numerical
models more efficiently compared to the experimental method.

6.5 Conclusions
This chapter presented a methodology to solve vibroacoustic problems (represented
by linear acoustic and elasticity equations) using the nodal DG method. The coupling
conditions between acoustic and elastic wave variables provided by upwind fluxes
are described. The methodology is used to solve problems involving impact sound
radiation and sound transmission. The comparison of the impact sound radiation of
a concrete slab into a room calculated using the nodal DG method and the analytical
method shows a good agreement. There are slight discrepancies in the locations
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and magnitudes of natural frequencies. For the transmission case, comparing the
transfer functions between receiver locations in two rooms divided by a single wall
as computed with the DG method and a reference solution using the FEM shows
almost identical results. This illustrates that the methodology’s results are correct
and that it can potentially be applied to more advanced vibroacoustic applications.
One drawback of the current methodology is the small time step (∆t), which is
determined by the elastic wave-speed in the structure. In further work, utilising a
multi-time or a local time-stepping methodology could improve the computational
performance of the nodal DG method for vibroacoustic applications. Once this is
achieved, this technology will be a powerful tool for addressing engineering building
acoustics challenges at low frequencies when full governing equation solutions are
necessary.
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7 Conclusions and future work

This PhD research contributes to creating a built environment with high acoustic
quality. This contribution is made by developing an efficient, accurate, and geomet-
rically flexible wave-based modelling method for building acoustics applications. The
time-domain nodal discontinuous Galerkin (DG) method is a wave-based method
with several ideal features to meet this aim. The spatial discretisation of this method
creates a set of ordinary differential equations (ODE) with a block diagonal mass ma-
trix, and this matrix can be inverted at very little cost. This feature makes the nodal
DG method computationally efficient. This method can also achieve high-order accu-
racy, since it can refine the solution by increasing the polynomial order or the number
of elements. Another feature of this method is its flexibility to handle complex ge-
ometries by using unstructured mesh elements. Moreover, various time-integration
techniques can be used to solve the ODEs.

In this research, three objectives are defined related to the utilisation of the nodal DG
method as a building acoustics simulation method: the first objective is to develop
the nodal DG methodology to solve the governing equations for room acoustics;
the second objective is to develop the nodal DG methodology to solve structural
vibration problems in building elements; the final objective is to develop the nodal
DG methodology to solve vibroacoustic problems in buildings. The conclusions of
this research in regard fulfilling these three objectives are presented here. The first
objective is addressed in Chapters 2 and 3, objective two is treated in Chapters 4 and
5, and the work related to objective three is presented in Chapter 6.

7.1 Conclusions
The conclusions of this research are organised according to the chapters of this thesis
as follows:

• In Chapter 2, the time-domain nodal DG method has been used to solve the lin-
ear acoustic equations for room acoustics applications. In free-field, the method
showed that the dissipation error is 1.1× 10−4 dB and the phase error is less than
3 × 10−4% under propagation of one wavelength when the degree of freedom per
wavelength (DPW) is around 9. The frequency-independent impedance boundary
formulation has been proposed using the plane-wave reflection coefficient via nu-
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merical fluxes. The proposed formulation has been validated, and its convergence
has been demonstrated. Additionally, a long-time simulation (10 s) was run for
cuboid space with rigid boundary conditions. This case showed that the dispersion
and dissipation error becomes very small compared to the solution of the modal
expansion method DPW = 7.2 (at 1 kHz) was used. A simulation of a laboratory
room with a more complex geometry was also carried out, and the obtained sound
pressure level showed satisfactory agreement with the experimental results over
the frequency range of interest. The average deviations of the 1/3 octave band
sound pressure level at two receiver locations are 1.2 dB and 2.3 dB for frequencies
below 500 Hz.

• In Chapter 3, the time-domain nodal DG method has been used to simulate noise
propagation through the atmospheric boundary layer from aircraft take-offs. The
environment of interest includes an airport and a residential area nearby, affected
by aircraft noise pollution. The DG formulation of Chapter 2 is used, where the
governing equations are the same but with a spatially varying effective sound speed
to take into account the atmospheric conditions. The comparison of the results of
this method with those of the finite element method (FEM) shows a good agree-
ment for different impedance boundary conditions. Afterwards, the noise reducing
benefits of using non-noise sensitive buildings were studied. The atmospheric con-
ditions around the buildings were simulated using computational fluid dynamics
by solving Reynolds averaged Navier-Stokes equations (CFD-RANS). It can be
concluded that the building topology studied is quite effective to reduce the noise.
For every building configuration, the insertion loss values are stable at around 10
dB for the configurations with a static atmosphere in the frequency up to 250 Hz
1/3 octave band frequency, while the IL values fluctuate over frequency between
1.3 dB (at 250 Hz frequency band) to 24.7 dB (at 25 Hz frequency band) in the
refracting atmosphere conditions.

• In Chapter 4, the time-domain nodal DG method has been presented to solve the
linear elasticity equations for the isotropic plate vibration problem. The methodol-
ogy has been presented in detail for several aspects, such as the upwind numerical
fluxes, point force excitation, and the implementation of various boundary condi-
tions. This method has been applied for the vibration of several rectangular plates
and an L-shaped plate. For the rectangular plate cases, the nodal DG mobility
shows an excellent agreement with the mobility obtained by the first-order shear
deformation theory (FSDT), where the maximum natural frequency difference is
1 Hz for every plate thickness and boundary condition. On the other hand, a good
agreement with the classical plate theory (CPT) occurs solely at the first couple
of natural frequencies, with increased accuracy as the plate thickness is reduced.
For a more complex case, the L-shaped plate, the numerically calculated mobility
agrees well with the CPT and FSDT results in the lower frequency range (<500
Hz). However, at a higher frequency range (>700 Hz), the discrepancy of the nat-
ural frequency is up to 73 Hz, which is due to the difference in the used governing
equations. When compared with the mobility obtained by the FEM using the
linear elasticity equations, the nodal DG solution has a very good agreement with
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a maximum natural frequency difference of 4 Hz at the frequency range up to 1
kHz.

• In Chapter 5, the time-domain nodal DG method has been presented to model the
vibration of structures with piece-wise constant material properties. It extends the
study of the previous chapter, where the structures are geometrically more complex
and consist of several components with different material properties. Moreover,
structural damping was introduced into the methodology by using constant viscous
damping. The structures consist of a T-shaped structure and a scaled lightweight
wooden floor, for which experiments have been conducted. The presented model
has been validated by comparing its results with the experimental results. The
agreement on the natural frequencies is good, with a maximum absolute difference
of 19.4 Hz or less than 5% for the T-shaped structure in the frequency range below
500 Hz, and a 10.4 Hz difference or less than 9% for the scaled LWF structure in
the range below 200 Hz. It is also found that the given constant viscous damping is
not sufficient to model the actual damping of the structures accurately, especially
in higher frequency regions.

• Finally, Chapter 6 presented the time-domain nodal DG method to solve vibroa-
coustic problems. The methodology for applying the coupling between the acoustic
wave variables and the elastic wave variables using upwind numerical fluxes have
been described in detail. The method was applied for impact sound radiation and
airborne sound transmission problems. For the case of impact sound radiation,
the numerical results were compared with the results obtained by the modal inter-
action method, and it shows good agreement. In the case of sound transmission,
the comparison of sound pressure level difference between receiver locations cal-
culated by the DG method and a reference solution calculated by the FEM shows
almost identical results. This chapter also demonstrates the use of the nodal DG
method for calculating sound transmission through a homogeneous wall and in-
cludes flanking transmission paths. This shows that the proposed methodology
has the potential to be extended to more complex vibroacoustic applications.

7.2 Future work
This PhD project presents several developments in applying the time-domain nodal
DG method to simulate building acoustic problems. However, there are some issues
that can be resolved to apply the method for more comprehensive problems. Several
future topics that can be further investigated include:

• In this work, sound sources are given as initial pressure value distributions and have
omnidirectional directivity. In general, sound sources have a specific directivity.
To obtain more accurate sound field prediction, a method for applying source
directivity must be included in the sound propagation modelling. Furthermore,
with the spatially dependent effective sound speed as presented in Chapter 3,
the initial pressure values can be a source of error in the simulation of distant
sound propagation. The inhomogeneous linear acoustic equations with the source
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term on the right-hand side of the equations can be further investigated. This
development is also more beneficial when the source is close to the boundary or
to the receiver point.

• The use of wooden structures in buildings, such as plywood or fibreboard, implies
that the materials are anisotropic. Further development of this methodology for
anisotropic media is necessary to improve the accuracy of modelling structural
vibrations.

• Further development of the current method for vibration in a more general vis-
coelastic media is required. In this work, the vibration attenuation is modelled
using the frequency-independent constant viscous damping. However, this may
not be adequate to model varied materials in building structures across a wide fre-
quency range. There are several models of elastic wave propagation in viscoelastic
media, e.g., Maxwell, Kelvin-Voigt, and Zener models, as described in Ref. [246].
However, the general formulation of these models in the nodal DG methodology
could be challenging due to the inclusion of in-elastic variables creates additional
variables to be solved, increasing the degree of freedom rapidly. Moreover, for-
mulating an accurate numerical flux for this case is not easy, especially when
anisotropic viscoelastic media are required. This issue is essential to apply the
nodal DG method for more extensive building acoustics problems.

• One of the limitations in using the proposed method for the vibroacoustic problem
is that the allowed time-step in the solid media is significantly smaller than in air.
To reduce the computational costs, the current methodology can be modified to
use hexahedral elements. Using hexahedral elements, adjustments of the poly-
nomial order in each direction that accounts for the solid structure with thinner
dimensions could make the computation more efficient. Additionally, the local
time-stepping methods or the implicit-explicit time-stepping methods could be
used for more advanced time integration methods.

• In this work, the linear elasticity equations are used to model the structural vi-
brations. Further development by using other governing equations to model the
vibration, such as the CPT or the FSDT, could be worth investigating. It is
expected that this development will reduce the time-step constraints on time in-
tegration caused by the thin structure. This is because the spatial discretisation
in the thickness dimension is not needed. However, further research is needed to
determine the limitations and benefits of the nodal DG methodology for those
governing equations, especially those related to building acoustic applications.

• Accuracy analysis of the time-domain DG method, especially for practical vibra-
tion problems, is still missing. The time-domain approach, as demonstrated in the
literature, contains dissipation and dispersion errors that increase with simulation
duration. However, comprehensive error analysis was not performed in this work,
particularly to offer a more specific guidance on meshing quality (especially linked
to element skewness), polynomial order, and time step sizes, which can ensure the
accuracy of the simulation results.
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• In this study, an in-house nodal DG method implementation using MATLAB was
used. Developing this implementation with a lower programming language might
be necessary to increase the efficiency of the computation. Furthermore, compu-
tation acceleration using parallel programming will increase the performance of
the proposed methodology.
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Appendices

The following appendices are included in the next pages:

A. Derivations of the total discrete acoustic energy of the semi-discrete
system
In this appendix, it is proven that the total discrete acoustic energy is governed
by Equation (2.22) as presented in Chapter 2.

B. Validation case for outdoor sound propagation applications
This appendix provides the validation of the nodal DG methodology with ef-
fective sound speed approach as employed in Chapter 3.

C. Impedance of ground surface and resonator absorber rooftops
In this appendix, the impedance of the ground surface and the resonator ab-
sorber rooftops as applied in Chapter 3 are presented.

D. Upwind numerical flux for linear elasticity equations
This appendix presents the upwind numerical flux that is employed by the nodal
DG method to solve the linear elasticity equations in Chapters 4, 5, and 6.

E. Mechanical properties extraction of the wooden structure
This appendix presents the extraction of the mechanical properties of the
wooden structures studied in Chapter 5.

F. Additional result on the T-shaped structure
This section provides an additional result of the T-shaped structure to support
the findings in Chapter 5.

G. Upwind numerical flux for linear acoustic equations
This appendix presents the upwind numerical flux that is employed by nodal DG
method to solve the linear acoustic equations in Chapter 6 for the vibroacoustic
applications.

H. Solution of impact sound radiation case
This appendix presents the impact sound radiation solution based on the modal
expansion method as employed in Chapter 6.
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A Derivations of the total discrete
acoustic energy of the semi-discrete
system

In this appendix, it is proven that the total discrete acoustic energy is governed by
Equation (2.22) as presented in Chapter 2. It can be seen that the local energy can
be recovered from the product of the element mass matrixMk and the nodal vectors
ukh as follows:

(ukh)TMkukh =
∫
Dk

Np∑
i=1

ukh(xki , t)lki (x)
Np∑
j=1

ukh(xkj , t)lkj (x)dx = ‖ukh‖2Dk . (A.1)

Furthermore, it can be verified that:

(ukh)TSkxpkh =
∫
Dk

Np∑
i=1

pkh(xki , t)lki (x)
Np∑
j=1

ukh(xkj , t)
∂lkj (x)
∂x

dx

=
∫
Dk

pkh(x, t)∂u
k
h(x, t)
∂x

dx =
(
pkh,

∂ukh
∂x

)
Dk
, (A.2)

and

(ukh)TMkrpkrh =
∫
∂Dkr

Np∑
i=1

ukh(xki , t)lki (x)
Nfp∑
j=1

pkrh (xkrj , t)lkrj (x)dx

=
∫
∂Dkr

Nfp∑
i=1

ukrh (xkri , t)lki (x)
Nfp∑
j=1

pkrh (xkrj , t)lkrj (x)dx

=
∫
∂Dkr

ukrh (x, t)pkrh (x, t)dx =
(
ukrh , p

kr
h

)
∂Dkr

. (A.3)

Now, the total discrete acoustic energy Eh of the semi-discrete formulation Equation
(2.13) can be calculated. By pre-multiplying Equation (2.13a) with ρ0(ukh)T , pre-
multiplying Equation (2.13b) with ρ0(vkh)T , pre-multiplying Equation (2.13c) with
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ρ0(wk
h)T ,pre-multiplying Equation (2.13d) with 1

ρ0c2
0
(pkh)T and sum them together,

using the relations mentioned in Equations (A.1, A.2), yields:

d

dt
Ekh =

−
f∑
r=1

(
nkrx
(
ukrh , p

kr
h

)
∂Dkr

+ nkry
(
vkrh , p

kr
h

)
∂Dkr

+ nkrz
(
wkrh , p

kr
h

)
∂Dkr

)
. . .

+ ρ0(ukh)T
f∑
r=1

MkrF̂
kr

u + ρ0(vkh)T
f∑
r=1

MkrF̂
kr

v + ρ0(wk
h)T

f∑
r=1

MkrF̂
kr

w

+ 1
ρ0c20

(pkh)T
f∑
r=1

MkrF̂
kr

p , (A.4)

where the divergence theorem is used to obtain the surface integral term, that is:

(
ukh,

∂pkh
∂x

)
Dk

+
(
vkh,

∂pkh
∂y

)
Dk

+
(
wkh,

∂pkh
∂z

)
Dk

+
(
pkh,

∂ukh
∂x

)
Dk

+
(
pkh,

∂vkh
∂y

)
Dk

+
(
pkh,

∂wkh
∂z

)
Dk

=
f∑
r=1

(
nkrx
(
ukrh , p

kr
h

)
∂Dkr

+ nkry
(
vkrh , p

kr
h

)
∂Dkr

+ nkrz
(
wkrh , p

kr
h

)
∂Dkr

)
(A.5)

Substitute the numerical flux Equations (2.15) into Equation (A.4) and use Equation
(A.3), after some simple algebraic manipulations, the semi-discrete acoustic energy
balance on element yields:

d

dt
Ekh =

f∑
r=1
Rkrh , (A.6)

where

Rkrh =
(
pkrh , v

kr
hn

)
∂Dkr

− 1
2
(
ωkro , p

kr
h +ρ0c0v

kr
hn

)
∂Dkr

+ 1
2
(
ωlsi , p

kr
h −ρ0c0v

kr
hn

)
∂Dkr

(A.7)

is the discrete energy flux through the shared surface ∂Dkr or equivalently ∂Dls

between the neighboring elements Dk and Dl in the interior of the computation
domain. ω0 and ωi are the characteristic waves defined in Eq. (2.17). By using the
condition that the outward normal vector of neighboring elements are opposite, the
final form of energy contribution from the coupling across one shared interface reads

Rkrh +Rlsh = −
( 1

2ρ0c0
‖[pkrh ]‖2∂Dkr+ ρ0c0

2 ‖n
kr
x [ukrh ]+nkry [vkrh ]+nkrz [wkrh ]‖2∂Dkr

)
, (A.8)

which is non-positive. This ends the discussion for the interior elements. Now, for
elements that have at least one surface lying on the real-valued impedance boundary,
e.g., element Dm with surface ∂Dmt ∈ ∂Ωh, the numerical flux is calculated using
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Eq. (2.18). After some algebraic operations, the energy flux through the reflective
boundary surface becomes:

Rmth = −
(1−Rmt

2ρ0c0
‖pmth ‖2∂Dmt + ρ0c0

2 (1 +Rmt)‖vmthn‖2∂Dmt
)

(A.9)

Finally, by summing the energy flux through all of the faces of the mesh, we get the
total acoustic energy of the whole semi-discrete system as in Equation (2.22).
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B Validation case for outdoor sound
propagation applications

This appendix provides the validation of the nodal DG methodology with the effective
sound speed approach that is used in Chapter 3.

B.1 Computational model
The validation case considers a sound propagation problem in a two-dimensional
domain to validate the proposed nodal DG model with its impedance BCs. As shown
in Figure B.1, a rectangular domain of size 150 m × 50 m is chosen where the
atmospheric condition is present by a horizontal wind velocity with a logarithmic
profile U(x, z) as given in Equation (3.1). This profile is invariant in x-direction with
the friction velocity u∗ = 0.888m/s, the aerodynamic roughness length z0 = 0.1m,
and the von Kármán constant κ = 0.41. These values are chosen to set the horizontal
wind velocity at 10 meters height equals to 10 m/s.
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Figure B.1: The geometry of the validation case with source (S) and receivers (R1 & R2)
positions. The arrows show the wind vectors at x = 0.

Two receivers are positioned at R1 = (60, 2)m and R2 = (140, 2)m, and the sound
source is excited following Equation (3.5) at position S = (20, 3)m. To ensure an
unbounded domain except the ground surface at z = 0 m, a perfectly matched layer
(PML) is used to attenuate the reflection from z = 50 m, x = 0 m, and x = 150 m.
The PML has a thickness of 20 m and denoted by the blue shaded area.
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The validation case comprises four configurations representing different impedance
BCs at the ground surface: T1, T2, T3, and T4. T1 represents a constant-valued
surface impedance, T2 represents an impedance with monotonically increasing ab-
sorption in frequency, T3 represents a resonant absorber impedance, and T4 combines
all the aforementioned configurations. Descriptions of these configurations are pre-
sented in the following subsections. For all validation configurations, the general
parameters are summarised in Table B.1.

The validation is conducted by comparing the relative sound pressure levels ∆L(f,x)
at R1 and R2 obtained from the nodal DG simulation with the one obtained from an
FEM simulation via the commercial software COMSOL Multiphysics 5.4 [211]. The
sound pressure level relative to free-field is defined as:

∆L(f,xi) = Lp(f,xi)− Lp,free(f,xi), (B.1)

where Lp,free is the free-field sound pressure level at location xi, and f is the fre-
quency. This quantity indicates the sound pressure level deviation from the free-field
sound pressure level due to the presence of configuration, e.g. ground surface or
screens.

The following settings in COMSOL Multiphysics 5.4 are used to compare the nodal
DG solution with the FEM solution. The validation cases are modelled using the
pressure acoustics module by solving the acoustic wave equation with the frequency-
domain interface. In the model input, the sound speed is spatially defined following
the effective sound speed of the validation cases. The ground impedance is defined
as:

Z(ω) = Z0
(1 +R(ω))
(1−R(ω)) , (B.2)

where Z0 is the characteristic impedance of air. The reflection coefficients are given
as the values presented in the following subsections. Moreover, the PML domain is
used to attenuate the reflection from non-reflecting surfaces. The sound source is
generated by a point monopole with a power equal to 1 watt. The FEM meshes
are conditioned to have DPW ≈ 10 for each case. The validation case considers the
following four cases of impedance boundary conditions.

Constant absorption (T1)
T1 configuration has a frequency-independent impedance on the reflecting plane (z =
0). This impedance is modelled with a constant reflection coefficient:

R(ω) = R∞, (B.3)

with R∞ = 0.8.
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Table B.1: Main parameters used in the nodal DG simulation for validation case.

Parameter Value
Medium density ρ0 [kg/m3] 1.2
Speed of sound c0 [m/s] 344
Maximum frequency fmax [Hz] 282
DG polynomial order N 6
Number of discrete mesh elements K 30k
Degrees of freedom per wavelength DPW ≈10
Gaussian source half-bandwidth b [m] 0.5
Sound pressure recording duration T [s] 1
Time step ∆t [s] 8.7 · 10−5

Monotonically increased absorption (T2)
The T2 configuration is chosen to simulate the impedance of a grass field. The re-
flecting surface of the T2 configuration presents an impedance with an absorption
coefficient that is monotonically increasing over frequency. This impedance formula-
tion follows the Attenborough’s four parameters model presented in Appendix C.1.
Equivalently, the T2 configuration has reflection coefficients that are monotonically
reducing in frequency and can be defined as:

R(ω) =
4∑
k=1

Ak
ζk + iω

, (B.4)

where the values of Ak and ζk are given in Table B.2. These values are obtained by
an optimisation function in MATLAB, where the average reflection coefficient error
is less than 2.5% and the maximum error is less than 7.6%.

k Ak ζk

1 38944.5173103523 39999.8560346985
2 123.242859149582 1556.16553029109
3 -1690.27262893063 17138.6822577285
4 7.01360851666047 227.993345863625

Table B.2: Parameters of the reflection coefficient functions representing the grass impedance
in T2 configuration.

Resonant absorber system (T3)
T3 configuration represents the impedance of a resonator absorber. This configu-
ration is associated with the tuned absorbers for the rooftop surfaces on the noise
mitigation scenarios. In this validation case, the absorption coefficients are tuned to
have the absorption peak value of α = 0.99 at 25 Hz as shown in Figure B.2. This
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resonant absorber can be modelled by the reflection function as:

R(ω) = R∞ + B1iω + C1β1 + α1B1

(α1 + iω)2 + β2
1

, (B.5)

with all the parameters presented in Table B.3.
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Figure B.2: Normal-incidence sound absorption coefficients for the T3 configuration.

Table B.3: Parameters of the reflection functions representing the resonant absorber in T3
configuration.

Parameter Value
R∞ 1
B1 -200
C1 196.1940185847559
β1 112.1338976524200
α1 110

Complex absorption (T4)
Finally, the T4 configuration combines the above BCs on the reflection plane, where
constant absorption (T1) is imposed at x = [0, 50] m, the monotonically increased
absorption (T2) for x = [50, 100] m, and the resonant absorber system (T3) at x =
[100, 150] m. T4 configuration aims to mimic a real atmospheric sound propagation
with various surface impedance boundary conditions.

B.2 Validation case result
In Figure B.3, the sound pressure levels relative to the free field under wind conditions
are shown. The DG solutions display good agreement with the FEM solutions. There
are small deviations between the two solutions, which might due to the different
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implementation of the sound source excitation. The initial Gaussian pressure in the
nodal DG method might lead to a slight different sound field compared to the point
source in the FEM method under wind condition.
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Figure B.3: Comparison of the sound pressure level relative to the free-field at R1 and R2 be-
tween the nodal DG and the FEM solutions for (a) T1 Configuration, (b) T2 Configuration,
(c) T3 Configuration, and (d) T4 Configuration.
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C Impedance of ground surface and
resonator absorber rooftops

In this appendix, the impedance of ground surface and resonator absorber rooftops
that employed in Chapter 3 are presented.

C.1 Ground surface impedance
In this section, the four-parameter model presented by Attenborough [247] is used
to obtain the ground surface impedance as in Equation (C.1), with q2 = Ω−g. The
absorption coefficient is shown in Figure C.1 where the flow resistivity value is chosen
for a winter condition [195]. The model’s parameters are presented in Table C.1.

Zground =
(

4q2

3Ω + i
s2
fσ

ρω

)
ω

kc
, (C.1)

k = ω

c

√
γΩ

√(
4
3 −

γ − 1
γ

Npr

)
q2

Ω + i
s2
fσ

ρω
.

Table C.1: Parameters of the four-parameter model for the grassland surface impedance.

Parameter Value
Flow resistivity σ [Pa s m−2] 400 · 103

Grain shape factor g 0.5
Pore shape factor ratio sf 0.75
Porosity Ω 0.3
Prandtl number Npr 0.7
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Figure C.1: Absorption coefficient for normal incidence of grass.

C.2 Parameters of the resonator absorber rooftops
In this section, the parameters of the resonator absorber rooftops used in the Chapter
3 are given. For cases ’a’, 10 absorbers have been tuned at the frequencies of the 1/3
octave bands between 25 and 200 Hz and the absorption coefficients are presented in
Figure C.2. For cases ’b’, 14 absorbers have been tuned at the frequencies of the 1/3
octave bands between 16 and 315 Hz and the absorption coefficients are presented in
Figure C.3. In both cases, legend indicates the building where the tuned absorber has
been employed (Building 1 corresponds to the building closest to the sound source).
The reflection function of each rooftop follows Equation (B.5) where all the buildings
have coefficient of R∞ = 1, B1 = −200, and α1 = 110.
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Figure C.2: Absorption coefficients for normal incidence of the tuned absorbers used in cases
’a’ of the intervention area.
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Figure C.3: Absorption coefficients for normal incidence of the tuned absorbers used in cases
’b’ of the intervention area.
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Table C.2: Coefficients of the rational reflection functions representing the resonant absorber
rooftops in cases a (10 buildings) and cases b (14 buildings).

Case a Case b C1 β1

- Buil.1 1.938234687092393 ·103 11.350534662550537
- Buil.2 3.621004509404095 ·102 60.756621381895265

Buil.1 Buil.3 1.961940185847559 ·102 1.121338976524200 ·102

Buil.2 Buil.4 1.337084399021496 ·102 1.645371078751649 ·102

Buil.3 Buil.5 97.355170542539700 2.259766982831900 ·102

Buil.4 Buil.6 74.760750862057500 2.942720578153719 ·102

Buil.5 Buil.7 57.856717862926140 3.802497067345282 ·102

Buil.6 Buil.8 44.854837006366400 4.904710722029257 ·102

Buil.7 Buil.9 35.563330723912940 6.186147234293526 ·102

Buil.8 Buil.10 28.290110483074190 7.776569134702557 ·102

Buil.9 Buil.11 22.015995029420690 9.992734814211524 ·102

Buil.10 Buil.12 17.574504787510350 1.251813366350710 ·103

- Buil.13 14.040103250726853 1.566940043611222 ·103

- Buil.14 11.132790690705793 1.976144222164052 ·102
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D Upwind numerical flux for the linear
elasticity equations

This appendix presents the upwind numerical flux that is used for solving the lin-
ear elasticity equations using the nodal DG method in Chapters 4, 5, and 6. The
methodology for deriving this numerical flux is based on the Rankine-Hugoniot jump
conditions as given in Refs.[21], [200], [226]. This appendix provides the upwind nu-
merical flux that can be used for the case where the interior and the adjacent media
have different mechanical properties, as in Chapters 5, and 6. In Chapter 4, the
whole problem domain has similar mechanical properties, which further simplify the
current numerical flux. The upwind numerical flux can be written as:

n ·H∗ = n ·H +

 P 11 P 12 P 13
P 21 P 22 P 23
P 31 P 32 P 33

−
 S11 S12 S13
S21 S22 S23
S31 S32 S33

 [qs] ,

where [qs]=q+
sh − q

−
sh. The components of the above matrix are given as follows:

P 11 =
−Z+

p c
−
p

Z−
p

(
Z+
p + Z−

p

) [ n2
x nxny nxnz

nxny n2
y nynz

nxnz nynz n2
z

]
,

P 21 =
−Z+

p

Z+
p + Z−

p

 nx
(
λ− + 2µ−n2

x

)
ny
(
λ− + 2µ−n2

x

)
nz
(
λ− + 2µ−n2

x

)
nx
(
λ− + 2µ−n2

y

)
ny
(
λ− + 2µ−n2

y

)
nz
(
λ− + 2µ−n2

y

)
nx
(
λ− + 2µ−n2

z

)
ny
(
λ− + 2µ−n2

y

)
nz
(
λ− + 2µ−n2

z

)
 ,

P 31 =
−2µ−Z+

p

Z+
p + Z−

p

[
n2
xnz nxnynz n2

znx
nxnynz n2

ynz n2
zny

n2
xny n2

ynx nxnynz

]
,

P 12 =
−c−

p

Z−
p

(
Z+
p + Z−

p

) [ n3
x n2

ynx n2
znx

n2
xny n3

y n2
zny

n2
xnz n2

ynz n3
z

]
,
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P 22 = −1
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z
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 ,

P 32 = −2µ−
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,
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]
,
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 ,

P 33 = −4µ−
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]
,
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s c
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s
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s
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]
,
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z
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S32 = −µ−

Z+
s + Z−

s

 nxnz
(
2n2

x − 1
)

2n2
ynxnz nxnz

(
2n2

z − 1
)

2n2
xnynz nynz

(
2n2

y − 1
)

nynz
(
2n2

z − 1
)

nxny
(
2n2

x − 1
)

nxny
(
2n2

y − 1
)

2n2
znxny

 ,
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)
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 .
Note that the P components represent the longitudinal wave contributions and the
S components represent the shear wave contributions. There are two characteristic
impedances. The first is the longitudinal wave impedance, Zp = ρcp, and the second
is the shear wave impedance, Zs = ρcs.
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E Mechanical properties extraction of the
wooden structure

This appendix presents the extraction of the mechanical properties of the structures
used in Chapter 5. Prior to the numerical study, it is necessary to determine the me-
chanical properties of each component assembled into the T-shaped and the scaled
LWF structures. Four independent mechanical properties, i.e., Young’s modulus,
Poisson’s ratio, viscous damping, and density, should be available. For all compo-
nents, Poisson’s ratio is assumed to be 0.3 following Refs. [228], [248]. The density
is calculated by dividing the component’s mass by its volume. The viscous damping
is chosen by trials to match the mobility magnitude of the nodal DG and the ex-
perimental results. For each structure, this value is a constant and given in Section
5.3. The constant viscous damping values is a limitation of the current work. More
details on the solid viscoelastic model can be referred to [246].

Figure E.1: Experiment setup for the extraction of Young’s modulus of Joist 1.

The Young’s modulus of each component is determined by extracting its natural
frequencies and vibration mode shapes from the experiments. The experimental re-
sults are then compared to those obtained numerically using FEM with COMSOL
Multiphysics for various elastic modulus values. In the COMSOL Multiphysics, each
component is modelled using solid mechanics solver with a three-dimensional ge-
ometry. All components have free BCs as in the experiments. The eigenfrequency
analysis is used to obtain the natural frequencies and the mode shapes. In the FEM
simulation, the analysis is performed with the assumption that there is no damping
mechanism in the structure. The density and Poisson’s ratio are set as the values
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mentioned above. The Young’s modulus is then varied with a resolution of 0.01 GPa
to obtain the minimum difference in natural frequencies from the experiments. An
example of this approach for Joist 1 of the scaled LWF structure is as follows.

x [cm]

y
 [
c
m

]

Figure E.2: The positions of the accelerometers (blue dots) and impact source position (red
dot) on Joist 1.

200 400 600

Frequency [Hz]
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-4

10
-2

(a)
x [cm]

(b)

x [cm]

(c)

x [cm]

(d)

Figure E.3: The experimental results of the Joist 1. (a) Mobility at location x = 1 cm, (b)
mode shape of frequency 109 Hz, (c) mode shape of frequency 296 Hz, and (d) mode shape
of frequency 556 Hz.

Joist 1 was placed on a soft foam as shown in Figure E.1 to mimic free BCs. Nine
accelerometers were distributed evenly along the joist axial direction (blue dots) to
retrieve the mobility and the mode shapes (see Figure E.2). The impact excitation
was given at the red dot position and was conducted three times to obtain the average
mobility results. The average mobility curve of the joist at position x=1 cm is given
in Figure E.3a. Three natural frequencies were obtained from this curve, i.e., 109
Hz, 296 Hz, and 556 Hz. The mode shapes of these natural frequencies are shown
in Figures E.3b-E.3d. Afterwards, the eigenfrequencies with similar mode shapes
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that obtained from the FEM simulations are listed in Table E.1. Their absolute
differences (|∆fn|) were calculated and displayed in the Table E.2. The minimum
differences over three natural frequencies were found for the Young’s modulus equals
to 1.89 GPa. In this case, the Young’s modulus for Joist 1 was set as 1.89 GPa. This
approach was conducted for all components of the structures.

Table E.1: The list of eigenfrequency for Joist 1 obtained by FEM.

Mode number
Natural frequency [Hz]
Young’s modulus [GPa]

1.87 1.88 1.89 1.90 1.91 1.92
1 108.9 109.2 109.4 109.7 110.0 110.3
2 292.4 293.1 293.9 294.7 295.5 296.2
3 553.3 554.7 556.2 557.7 559.2 560.6

Table E.2: The absolute difference of the natural frequency obtained by FEM compared to
the experimental results for Joist 1.

Mode number
|∆fn| [Hz]

Young’s modulus [GPa]
1.87 1.88 1.89 1.90 1.91 1.92

1 0.1 0.2 0.4 0.7 1.0 1.3
2 3.6 2.9 2.1 1.3 0.5 0.2
3 2.7 1.3 0.2 1.7 3.1 4.6
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F Additional result on the T-shaped
structure

This section provides an additional result of the T-shaped structure in which all
surfaces at y = 0 m have fixed BCs as presented in Chapter 5. The nodal DG
method solution is compared to the FEM solution at receiver R2 (refer to Section
5.6.1). Both methods use a similar number of elements as described in Section 5.4.
Figure F.1 shows that the difference between the DG and FEM solutions at the
highest natural frequency is at most 1 Hz, which is a closer agreement than for the
BCs of Section 5.6.1. This confirms previous observations that the BCs discontinuity
at y = 0 m is the cause of the larger natural frequency difference between nodal DG
and FEM solutions.

10 100 200 300 400 500

Frequency [Hz]

10
-6

10
-4

10
-2

10
0

DG FEM

Figure F.1: Comparison between nodal DG method and FEM solutions at receiver R2 for
the fixed BCs at surfaces y = 0 m.
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G Upwind numerical flux for linear
acoustic equations

In this appendix, the upwind numerical flux for acoustic wave propagation (n ·F ∗) is
presented. The methodology for obtaining this flux is based on the Rankine-Hugoniot
jump condition, as shown in Chapter 4. More details on the derivation of this fluxes
can be found in Ref.[21]. This numerical flux differs from the one obtained in Chapter
2 as it considers the media discontinuity, which is required to solve the vibroacoustic
problems in Chapter 6. The upwind numerical flux can be written as:

n · F ∗ = n · F +C[qa],

C = −1
Z+ + Z−



Z+Z−n2
x

ρ−0

Z+Z−nxny

ρ−0

Z+Z−nxnz

ρ−0

−Z−nx
ρ−0

Z+Z−nxny

ρ−0

Z+Z−n2
y

ρ−0

Z+Z−nynz

ρ−0

−Z−ny
ρ−0

Z+Z−nxnz

ρ−0

Z+Z−nynz

ρ−0

Z+Z−n2
z

ρ−0

−Z−nz
ρ−0

−K−0 Z+nx −K−0 Z+ny −K−0 Z+nz K−0


,

where [qa]=q−ah − q
+
ah is the jump between interior and exterior acoustic variables.

The interior bulk modulus is K−0 = ρ−0 (c−0 )2. The internal and external impedance
are Z− = ρ−0 c

−
0 and Z+ = ρ+

0 c
+
0 , respectively.
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H Impact sound radiation solution

In this appendix, the solution of the impact sound radiation based on modal expansion
method is presented. This solution is used for calculating the impact sound radiation
of a concrete slab in Chapter 6.

The modal expansion method is widely used to solve the coupling problem between
sound in a cuboid cavity and a panel vibration. There are two approaches that
are commonly used: the first approach uses modal functions to expand the velocity
potential that satisfies the velocity continuity and pressure over the panel surface
[60], [249]; the second technique uses the rigid-walled acoustic modes as the basis
functions to expand the velocity potential [235]–[237].

The issue of the second approach is the velocity continuity over the panel that is not
mathematically satisfied due to the use of the rigid-walled acoustic modes. However,
the second approach is computationally more convenient. Hu et al.[250] have shown
that both techniques were converged to the same solution as long as a sufficient
number of modes were used in the second approach. In this appendix, the sound
pressure under a slab is calculated based on Refs.[237], [251] following the second
technique as a comparison for the nodal DG solution. The slab vibration is modelled
by the first shear deformation theory (FSDT).

H.1 Sound field
Consider the room in Figure 6.2a as V enclosed by surface A, where A = AR ∩ AC .
The AR and AC are the surfaces with rigid walls and the concrete slab, respectively.
The sound field in V satisfy the sound wave equation:

∇2φ = 1
c20

∂2φ

∂t2
, (H.1)

∂φ

∂n
= 0 onAR,

∂φ

∂n
= ẇa onAC ,

where φ is the velocity potential, c0 is the sound speed, and ẇa is the air particle
velocity on AC . The sound pressure inside V can be obtained as p = −ρ0

∂φ
∂t , with

ρ0 is the air density. Solutions of the Equation (H.1) with only rigid BCs are φ =
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Φnexp(iω̂nt) with n ∈ [0, 1, ...]. Φn are the room mode functions that satisfy:

∇2Φn = −
(
ω̂n
c0

)2
Φn, (H.2)

∂Φn
∂n

= 0,∫
V

ΦrΦn dV =
{

= 0, for, r 6= n,

= ΛAn , for r = n,

with ω̂n are the natural angular frequencies of the room with rigid BCs. Having the
room mode functions Φn, Equation (H.1) can be transformed following the second
Green’s identity as [237]:∫

V

Φn
c20

(
φ̈+ ω̂2

nφ
)

dV =
∫
AF

ΦnẇadS. (H.3)

To complete the interaction to the slab vibration on surface AF , the air particle
velocity (ẇa) should be equal to the velocity of the slab (ẇs) on surface AC .

H.1.1 Structure vibration
Following the first shear deformation theory (FSDT) [22], the slab displacement (ws)
in Figure 6.2a follows:

I0ẅ
s + L(ws, ϕx, ϕy) = U − ρ0φ̇, (H.4)

where L is a differential operator (see [207]), with ϕx and ϕy are the bending rotations
with respect to the x- and y -directions, respectively. I0 = ρch with ρc and h are
the slab’s density and thickness, and U is the excitation force. The homogeneous
solutions for Equation (H.4) can be written as ws = Ξm exp(iωmt), for m ∈ [1, 2, ...].
The slab mode functions Ξm satisfy:

L(Ξm,Υx
m,Υy

m) = I0ω
2
mΞm, (H.5)

with ωm are the angular natural frequencies of the slab. Ξm,Υx
m, and Υy

m are the
mode functions for the displacement, and the two bending rotations. They are or-
thogonal functions, and their exact expressions for the simply-supported BCs can be
found in Ref.[207].
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H.2 Modal interaction
To have the coupling conditions, the displacement, force excitation, and the velocity
potential can be expanded using the slab and room mode functions as:

ws =
∞∑
m=1

wsm(t)Ξm(xAF ), (H.6)

U =
∞∑
m=1

Um(t)Ξm(xAF ), (H.7)

φ =
∞∑
n=0

φn(t)Φn(x). (H.8)

Afterwards, Equations (H.6) and (H.7) are substituted to Equation (H.4). Equation
(H.4) then multiplied with ψq and integrated over the AF to obtain:

ẅsm + ω2
mw

s
m = Um

I0
− ρ0

I0ΛFm

∞∑
n=0

Lmnφ̇n, (H.9)

ΛFm =
∫
AF

Ξ2
m(xAF ) dS, (H.10)

Lmn =
∫
AF

Ξm(xAF )Φn(x) dS.

Equations (H.6) and (H.8) are substituted to Equation (H.3) to obtain:

φ̈n + ω2
nφn = c20

ΛAn

∞∑
m=1

Lnmẇ
s
m, (H.11)

ΛAn =
∫
V

Φ2
n(x) dV, (H.12)

Lnm =
∫
AF

Φn(x)Ξm(xAF ) dS.

Lnm is the coupling coefficient between structure vibration and sound field mode
functions, notice that Lmn = LTnm. The mode functions are:

Ξm(xAF ) = sin
(
m1πx

Lx

)
sin
(
m2πy

Ly

)
,

Φn(x) = cos
(
n1πx

Lx

)
cos
(
n2πy

Ly

)
cos
(
n3πz

Lz

)
.

with m1,m2 ∈ [1, 2, ...] represent the anti-nodes of the mode functions in x and y
-directions of the slab, respectively. Lx,Ly,Lz are the length, width, and height of
the room. n1, n2, n3 ∈ [0, 1, ...] represents the number of nodes of mode functions in
x, y and z -directions of the room, respectively. The integration in Equations (H.10)
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and (H.12) are:

ΛFm = LxLy
4 ,

ΛAn =


LxLyLz ifn1 = n2 = n3 = 0,
LxLyLz

2 ifni = nj = 0, &nk > 0,
LxLyLz

4 ifni = 0, &nj , nk > 0,
LxLyLz

8 ifn1, n2, n3 > 0,

and the coupling coefficient can be obtained as:

Lmp = LxLy
4π2

[
1− (−1)(n1−m1)

(n1 −m1) − 1− (−1)(n1+m1)

(n1 +m1)

]
×[

1− (−1)(n2−m2)

(n2 −m2) − 1− (−1)(n2+m2)

(n2 +m2)

]
.

Remark that in case of (n1 + m1) or (n2 + m2) is even, the Lnm = 0. It means
that there is no interaction between the slab and the room. Afterwards, assuming
a steady-state condition at angular frequency ω, Equations (H.9) and H.11 can be
written as:

I0(ω2
m − ω2)wsm + iωρ0

ΛFm

∞∑
n=0

Lmnφn = Um (H.13)

(ω̂2
n − ω2)φn −

iωc20
ΛAn

∞∑
m=1

Lnmw
s
m = 0 (H.14)

These equations, can be written in matrix form as follows:[
IS CA

CS IA

] [
WS

ΦA

]
=
[
US

0

]
,

WS =


ws1
ws2
...
wsm

 ; ΦA =


φ1
φ2
...
φn

 ;US =


U1
U2
...
Up

 ,

CA = iωρ0



LT11
ΛF1

LT12
ΛF1

· · · LT1n
ΛF1

LT21
ΛF2

LT22
ΛF2

. . .
...

...
. . . . . .

...
LTm1
ΛFm

LTm2
ΛFm

· · · LTmn
ΛFm

 ,
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CS = −iωc20


L11
ΛA1

L12
ΛA1

· · · L1m
ΛA1

L21
ΛA2

L22
ΛA2

. . .
...

...
. . . . . .

...
Ln1
ΛAn

Ln2
ΛAn

· · · Lnm
ΛAn

 ,

IS = I0


(ω2

1 − ω2) 0 · · · 0

0 (ω2
2 − ω2)

. . .
...

...
. . . . . . 0

0 · · · 0 (ω2
m − ω2)

 ,

IA =


(ω̂2

1 − ω2) 0 · · · 0

0 (ω̂2
2 − ω2)

. . .
...

...
. . . . . . 0

0 · · · 0 (ω̂2
n − ω2)

 .
Using this matrix-form, each modal coefficient in Equations (H.1)-(H.6) can be ob-
tained using MATLAB to evaluate the sound pressure inside the room.
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The urban environment is increasingly exposed to excessive 
noise from environmental noise sources and neighbours. To 
address this problem, an acoustically high-quality built 
environment is needed to ensure health and comfort. In 
designing such an environment, the prediction of sound 
propagation and vibrations in buildings have a vital role. This 
research aims to develop an efficient yet detailed numerical 
model of sound propagation and vibration in building 
applications, especially in the low-frequency range. This 
research employs a wave-based method to solve these 
problems. The chosen wave-based method is the time-domain 
discontinuous Galerkin (DG) method due to its favourable 
features such as computational efficiency, high-order accuracy, 
geometric flexibility, and the potential for massive parallel 
computing.
This dissertation consists of three main parts. In the first part, 
the DG method is applied for sound propagation in air. The 
applications include room acoustics and outdoor sound 
propagation in the presence of wind flow. Examples include 
sound propagation in an experimental chamber and at an 
airport environment. In the second part, the DG method is 
developed for the structural vibrations of monolithic structures 
and structures with piece-wise constant properties. Examples 
include vibrations of rectangular plates, L- and T-shaped 
structures, and a scaled lightweight wooden floor. The third part 
expands the DG method to solve the sound and vibration 
interaction (vibroacoustic) problems. This part presents the 
impact sound radiation from a rectangular slab and sound 
transmissions of several walls as examples.  
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