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for our regular, fruitful discussions about our research topics, and to Claudine, for

the administrative support and enjoyable conversations every now and then.

Since my research was supported by the Data Science Flagship framework, I had

viii



the opportunity to interact with people from Philips to learn about the intricacies of

maintenance optimization in practice, for which I am grateful. In particular I thank

Mauro Barbieri, Jan Korst, and Verus Pronk.

My research visits to the Luxembourg Centre for Logistics and Supply Chain

Management (LCL) would not have been as enjoyable as it has been without the

many coffee breaks, table tennis matches, lunches, dinners, and other interactions

with the LCL members. In particular I thank Joachim, Melvin, Benny, Çağil, Nils,
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Chapter 1

Introduction

Advanced technical systems are critical for the smooth operation of public services

such as public transport (e.g., aircraft, rolling stocks), utilities (e.g., power plants,

wind turbines), and health care (e.g., MRI scanners, interventional X-ray machines)

as well as for the primary processes of companies (e.g., assembly lines, lithography

machines). Unavailability – especially when unplanned – and failures of these systems

have severe consequences, both from a societal and financial point of view.

Recent examples that highlight the impact on society are manifold. For example, the

failure of a deteriorating propeller blade led to the crash of a KC-130T aircraft with

16 casualties in Mississippi in the summer of 2017 (Insinna and Ziezuliwicz, 2018).

Another example from the aircraft industry concerns the crash of Lion Air flight 610

in Indonesia resulting in 189 casualties, which was partly caused by poor maintenance

to the Boeing 737 (Austin and Muktita, 2019; Jasper, 2019). In January 2020, a train

of the Dutch Railways (NS in Dutch) derailed in one of the densest areas of the Dutch

rail network. Fortunately, as opposed to the examples with aircraft, there were no

casualties. Nonetheless, the rail infrastructure was heavily disrupted for several days.

Later that year an investigation concluded that poor maintenance was the root cause

of this derailment, specifically to deteriorated brake pads of the train (NOS, 2020).

When unplanned downtime does not lead to immediate disturbance of society, the

consequences can still be severe financially. One striking example comes from

the semiconductor industry that heavily relies on lithography equipment; systems

that are used for the production of chips that are built in virtually all electronic

devices that we use in our everyday lives. Recent estimates indicate that unplanned

downtime of such equipment can cost up to 72,000 euros per hour (Lamghari-Idrissi,

1
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2021). Estimates for the global manufacturing industry in general, of which the

semiconductor industry is a part, indicate that the cost of unplanned downtimes of

systems and their aftermaths is roughly $50 billion annually, with system failures

being the sole cause of almost half of this downtime (Wall Street Journal Custom

Studios, 2017; Coleman et al., 2017). The implication of these numbers is twofold.

First, unplanned downtime costs is a general problem faced by many industrial

companies, stretching far beyond the examples put forward above. Second, and

arguably more importantly, unplanned downtime costs can be reduced significantly

through minimizing equipment failures. This latter implication also seems to be well-

understood by executives in asset management. In a recent survey, they perceive

unplanned failures as the most important risk to manage (Pacquin, 2014).

Motivated by the preceding examples and cost figures, asset managers responsible

for these systems invest heavily in their maintenance operations to prevent failures

and otherwise mitigate their consequences. The playing field in which these

asset managers operate has been reshaped drastically over the years due to the

increasing and improved availability of real-time data stemming from ubiquitous

sensors installed in modern equipment, integrated in the so-called Internet-of-Things

(IoT) (Coopers, 2014; Blackwell et al., 2017). These sensors continuously measure

various conditions of components, thereby generating a real-time stream of data that

offers ample opportunities. Asset managers can monitor and interpret this real-

time data generated by each asset to assess their physical condition and intervene

with maintenance when appropriate; this so-called digital-physical marriage holds

the promise to revolutionize maintenance operations (Olsen and Tomlin, 2020).

Indeed, Manyika et al. (2015) estimated that, by 2025, such IoT-driven maintenance

applications have the potential to (i) reduce equipment downtime by up to 50%,

and (ii) decrease equipment capital investment by up to 5% through maximizing the

utilization of the useful lifetime of equipment. The way real-time data is leveraged

for decision making will ultimately determine the exact realized value. In order to

maximize this realized value, a smart framework and smart mathematical models are

needed as foundation to build such IoT-driven maintenance applications on.

The overarching objective of this thesis is to address this need by developing

mathematical models that leverage real-time data to improve decision making in

maintenance. The remainder of this chapter is organized as follows. In Section

1.1, we give an overview of maintenance operations and discuss the most commonly

applied maintenance policies. Section 1.2.1 discusses the conventional approach

to maintenance optimization that is generally adopted by both practitioners and

academics. This conventional approach, as we shall describe, does not allow for
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incorporating real-time data, and we therefore discuss an alternative approach that

does allow taking into account data in real-time (Section 1.2.2). This alternative

approach serves as the foundation of our developed mathematical models. In Section

1.3, we position the work in this thesis in the literature, and in Section 1.4 we give

an overview of our main contributions and provide an outline of this thesis.

1.1. Maintenance operations

Decision makers in asset management can resort to certain maintenance policies to

ensure high system availability and low unplanned downtime. For the purpose of

these policies, it is convenient to think of a system as a set of components. Figure 1.1

provides an overview of the maintenance policies that a decision maker can employ to

decide for each of these components when to perform maintenance. In the remainder

of this section we will describe these policies in more detail.

Figure 1.1 Classification of maintenance policies.

Maintenance
policy

Failure-based
maintenance

Preventive
maintenance

Age-based
maintenance

Condition-based
maintenance

The first distinction is between failure-based maintenance (FBM) and preventive

maintenance. The former policy is also called corrective maintenance and is usually

adopted in the case where components do not wear, are cheap, or when their failures

do not adversely affect the system’s availability. When maintenance of components

after failure is costly or such failures lead to very costly downtime (as is the case

for advanced technical systems such as MRI systems, lithography systems, and wind

turbines), a decision maker can choose to preventively maintain components before

they fail.

Failures can thus be prevented by performing preventive maintenance regularly.

However, early performance of preventive maintenance leads to high capital expen-

ditures as the useful lifetime of components is cut short. The challenge faced by

asset managers in preventive maintenance is therefore to optimize two conflicting
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objectives: (i) minimize the risk of failure and unplanned downtime with all its adverse

consequences and (ii) maximize the utilization of the useful lifetime of a component.

The traditional preventive maintenance policy is called the age-based maintenance

(ABM) policy. Essentially, in an ABM policy (and all its variations), the decision

to perform maintenance is based on the age of a component. That is, components

are replaced at failure, or at a planned time after installation, whichever occurs first.

We remark here that researchers sometimes make a further distinction between ABM

and so-called usage-based maintenance (UBM), where a component is replaced based

on the usage (e.g., number of kilometers or usage hours). However, since UBM

works the same as ABM – the component is replaced whenever it reaches a certain

amount of usage or failure, whichever occurs first – we only consider ABM. Although

ABM can reduce unplanned downtime and failures considerably compared to FBM

for components that do wear, the utilization of the useful lifetime is by default not

maximized when a component is preventively replaced based on its age.

When asset managers have real-time data at their disposal that indicates the condition

of a system, they can base their maintenance decision on that information. This policy,

which is called condition-based maintenance (CBM), can maximize the utilization of

the useful lifetime by ensuring that components are replaced early when necessary and

late when possible; in the former the condition indicates that failure is near, while

in the latter the opposite is the case. In CBM, an asset manager aims to predict,

based on the condition, when the component will fail, and for this reason, CBM is

also often called predictive maintenance. Due to the recent developments in sensor

technology that enable real-time measurements of systems’ conditions, as discussed

in the previous section, CBM has gained momentum in recent years.

Maintenance optimization – the topic of this thesis – focuses on the development

and analysis of mathematical models aimed at improving or optimizing maintenance

policies for single components that fit in the policies described above. In this thesis,

we mainly focus on CBM (Chapters 2, 3, 4, 5 and 7) and ABM (Chapter 6), though

in Chapter 7 we also investigate policies that can smartly leverage opportunities that

arise due to FBM. The latter policies are also sometimes referred to as opportunistic

maintenance policies and they can be both condition-based and age-based.

1.2. Maintenance optimization

In this section we first describe the conventional approach to obtaining optimal

maintenance policies for single components, and then contrast this approach with
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the approach we take in this thesis.

1.2.1 The conventional approach

The conventional approach to maintenance optimization comprises two sequential

steps, see Figure 1.2.

Figure 1.2 The conventional approach to maintenance optimization.

Data Statistical model Optimal decision
Estimation Optimization

The first step is the estimation of a statistical model of either the deterioration

process or time to failure of a system based on either condition or failure data,

respectively. Conceivably, the nature of the needed statistical model depends on

the policy that is adopted, where the former is usually needed for CBM while the

latter is needed for ABM. The second step is the optimization of the decision when

to perform maintenance based on the statistical model, thereby trading off costly

preventive maintenance with costly corrective maintenance. For this second step,

the general approach – since aging and the most common deterioration processes

satisfy the Markov property – is to formulate the problem as a Markov decision

process (MDP) to (i) get insights into the structure of the optimal policy, and/or (ii)

compute optimal policies. Before we move to the next subsection, where we discuss

MDPs in more detail, we already point out that there are two serious drawbacks with

this conventional approach:

1. it assumes a homogeneous population where all components are statistically

identical (i.e., they have the same statistical model) to any other component in

the population;

2. it is based on the assumption that there is sufficient data available to accurately

estimate the statistical model.

Note that these assumptions also enforce each other: Under the assumption of a

homogeneous population (i.e., all components are statistically indistinguishable), all

available data can be pooled together leading to sufficient data. Similarly, if the

first assumption is violated and each component is statistically distinguishable, then

there is immediately data scarcity on an individual component-level to estimate its

statistical model.
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In light of these drawbacks, this approach is not tenable when (i) a statistical model

needs to be learned on-the-fly from real-time data, and/or when (ii) components stem

from a heterogeneous population (i.e., all components are statistically distinguishable)

and maintenance decisions need to be tailored individually. Consequently, this

sequential approach cannot reap the benefits of all the opportunities that the advent

of sensor technology offers for maintenance operations as described in the beginning

of this chapter, and we need a different approach for that.

In the next section, we provide the necessary background information of the

prototypical framework often used for the optimization step when a statistical model

is readily available. It will then also become clear why such an approach indeed

suffers from the drawbacks described above, and particularly, why it is not able to

incorporate real-time data. In Section 1.2.2, we discuss how we can extend this

prototypical framework such that it can (i) incorporate learning from real-time data

and (ii) tailor decision making to each individual component.

Markov decision processes

When a statistical model is available, then the prototypical mathematical framework

to compute and/or obtain insights into structural properties of optimal maintenance

decisions is based on the theory of MDPs.

MDPs are models to analyze sequential decision making when uncertainty is involved –

such as, but certainly not limited to, maintenance decision making. The sequentiality

lies in that decisions are not made in isolation at a single point in time, but rather

have both immediate and long-term effects, and are made repeatedly over a certain

time horizon. We first informally discuss an MDP and then give a more rigorous

introduction. This section serves merely as a short introduction to MDPs to the

extent needed at this stage for this thesis; for a comprehensive treatment of MDPs

we refer the reader to Puterman (2005), Bertsekas (2007), Guo and Hernández-Lerma

(2009), Feinberg and Shwartz (2012), and Kallenberg (2020).

An MDP consists of decision epochs, states, actions, costs, and transition proba-

bilities. Informally speaking, a decision maker has to take an action based on the

current state (e.g., the system’s deterioration or age in the context of maintenance)

at a decision epoch, where such an action will (i) generate an immediate cost, and (ii)

determine the state at the next decision epoch according to some transition probability

function. This process repeats itself for either a finite or an infinite amount of time.

For this introductory section it suffices to consider the setting in which the decision

epochs are equidistant so that the resulting MDP is a so-called discrete-time MDP.
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However, it is good to mention that the amount of time between decision epochs may

also be a random variable, in which case the MDP is a so-called semi-MDP, or that

decisions can even be made in continuous time, in which case the MDP is called a

continuous-time MDP. In Chapter 7, where we consider semi-MDPs, and in Chapter

4, where we consider a continuous-time MDP, we shall discuss these in more detail.

A decision maker can employ a policy, which is essentially a prescription of which

action to take for any possible state at every decision epoch. Decision makers seek

policies that are optimal in some sense. In the context of maintenance, as we shall

frequently see in this thesis, this is usually the minimization of either (i) the total

expected (discounted) maintenance cost (both corrective and preventive), or (ii) the

average maintenance cost per time unit. Here, we would like to remark that the

optimal discounted policy need not be the same as the optimal average cost policy

(in fact, the latter might not even exist), see e.g., Arapostathis et al. (1993) and

Schäl (1993). Fortunately, in Chapter 3 we show that for archetypical maintenance

problems, like the ones treated in this thesis, the two are usually equivalent.

We shall now mathematically describe the standard discrete-time MDP in which

decision epochs are equidistant, with 1 time unit between epochs (w.l.o.g.), with the

total expected discounted cost (over an infinite horizon) as optimality criterion in

more detail. We do so because most maintenance optimization models, both in the

literature and in this thesis, are based on this setting. An MDP is a tuple of elements

〈S ,A ,C,p, γ〉. Here, S is a set of states, called the state space, A =
(
As

)
s∈S

is the action space, where As is a bounded set of actions available in state s ∈ S .

C =
(
C(a, s)

)
s∈S ,a∈As

is the collection of direct cost functions for taking action

a ∈ As in state s ∈ S , and p =
(
p(s′|s, a)

)
s,s′∈S ,a∈As

is the collection of transition

probabilities (i.e., p(s′|s, a) is the probability of moving from s to s′ when taking

action a). One could also let C and p depend on time, or let C also depend on the

future state s′, but in order to keep the formulation concise we refrain from discussing

those particular settings. Finally, γ ∈ (0, 1) is the discount factor.

Let τ ∈ N0 (N0 , N ∪ {0}) be a decision epoch. A decision rule πτ =
(
πτ (s)

)
s∈S

indicates for all states s ∈ S which action to choose at decision epoch τ . Let Π be

the set of all non-anticipatory policies. A policy π ∈ Π is a sequence {πτ}τ∈N0 of

decision rules for all decision epochs τ ∈ N0. Let the random variable St be the state

of the system at t ∈ N0. Given a policy π ∈ Π, the total expected γ-discounted cost

given that the process starts in state s ∈ S at τ = 0, denoted with Vπ(s), is given by

Vπ(s) = lim
T→∞

Eπ

[
T∑
τ=1

γτC
(
πτ , Sτ

)
| S0 = s

]
,
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where the evolution of St depends on both π and S0. The optimal total expected

γ-discounted cost given that the process starts in state s ∈ S at τ = 0, denoted with

V ∗(s) is given by

V ∗(s) = inf
π∈Π

Vπ(s),

which throughout this thesis we refer to as the value function.

Under suitable conditions – satisfied by all discrete-time MDPs in this thesis, and in

general for most archetypical maintenance problems – we know by Proposition 1.2.2

of Bertsekas (2007) that there exists an optimal Markov policy π∗ depending only on

the current state s independent of the decision epoch τ ∈ N0, and this policy satisfies

the following Bellman optimality equations:

V ∗(s) = min
a∈As

C(a, s) + γ
∑
s′∈S

p(s′|s, a) · V ∗(s′)

 . (1.1)

If S is continuous, then the summation is replaced by an integral (in Chapter 3 we

consider such a setting). The celebrated Bellman equation in (1.1) decomposes the

value of a decision problem at a certain point in time in both the immediate cost

C(a, s) and the expected value of future actions that results from the current action

a and continuing optimally according to the optimal policy (Bellman, 1952). This

equation can be used for both computational purposes (i.e., to compute optimal

policies via the value iteration algorithm or successive policy approximation) or

analytical purposes (i.e., to establish structural properties of the optimal policy).

We now describe a canonical CBM example to make the previous theory more tangible

from a maintenance optimization perspective.

Example 1.1. Consider a component whose condition deteriorates according to a

Poisson process {X(t), t ≥ 0} with rate λ per time unit. At equidistant decision epochs

(say with distance 1) we observe the condition X(t) and decide whether we apply

preventive maintenance at cost cp > 0 or continue without performing maintenance.

If we find that X(t) ≥ L (L is the failure threshold), the component has failed and

we maintain correctively at cost cu > cp. When the component is maintained, which

takes exactly 1 time unit, the deterioration level moves to 0 and the component

will start deteriorating from that level again. We can model this problem as an

MDP with S = {0, 1, . . . , L − 1, ξ} (ξ consists of all states greater than or equal to

state L), As = {maintain, continue} for s < ξ and Aξ = {maintain}, C(a, s) = 0 if

a = continue, C(a, s) = cp if s < ξ and a = maintain, and C(a, s) = cu if s = ξ
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and a = maintain. Since the deterioration increment between two decision epochs is

distributed as a Poisson random variable, we have

p(s′|s, a) =

λ(s′−s)e−λ

(s′−s)! , for s′ ∈ {s, s+ 1, . . . , L− 1},
1−

∑L−1
i=s

λ(i−s)e−λ

(i−s)! , for s′ = ξ,

for a = continue, and p(0|s, a) = 1 if a = maintain. 3

For the example above, it is optimal to perform maintenance if the deterioration

is larger than or equal to a certain control limit, say δ ≤ ξ, at a decision epoch,

and continue otherwise. This important result can be attributed to both Derman

(1963) and Kolesar (1966), who, in their seminal papers on CBM, established the

optimality of a control limit policy under mild conditions on the deterioration process.

Starting with this important result, there is a long and rich history of establishing the

optimality of control limit type CBM policies. The vast majority of this literature

assumes that the dynamics are fully known with certainty. The reason for this

assumption is also obvious at this stage; without the assumption it is much harder to

tractably model the problem as an MDP to analyze the maintenance problem. That

is, when the transition probabilities p =
(
p(s′|s, a)

)
s,s′∈S ,a∈As

in the general MDP

description, or the parameter λ in the example above, are not known.

One common way to overcome this, is by following the conventional approach that

we described at the start of this section (see Figure 1.2). Using deterioration

or aging data, one could estimate a statistical model that governs the transition

probabilities and use that as an input to solve the corresponding MDP to obtain

optimal maintenance policies. However, we already pointed out the shortcomings

and limitations that this sequential approach suffers from. We therefore propose an

integrated approach, which we discuss in the next section in more detail and that we

mostly adopt throughout this thesis.

1.2.2 An integrated approach

At the start of this chapter we already mentioned that recently built systems

usually have integrated sensor technology that allows deterioration data of individual

components to be gathered and relayed in real-time to decision makers. Such an

individual stream of real-time deterioration data can be used to integrate (i) learning

the deterioration process on a component-level, and (ii) tailoring the maintenance

decision to each component individually. In this section, we discuss the framework to

do this on a conceptual level (see Figure 1.3 for a representation).
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Figure 1.3 An integrated approach to maintenance optimization.

Data Optimal decision
Structured learning and decision making

Bayesian learning

In order to integrate learning with decision making, we use a tractable approach:

Bayesian inference, which enables us to sequentially learn unknown parameters

with increasing accuracy. Bayesian inference is a statistical approach to parameter

estimation based on Bayes’ theorem, where knowledge about parameters is updated

as more and more data is observed (Gelman et al., 1995; DeGroot, 2005).

We will now explain this process in more detail. Assume that in each period our

data (e.g., deterioration, lifetime), denoted with X, is generated by a probability

distribution with known probability density function f(x|θ) parametrized by an

unknown parameter θ with θ ∈ Θ, where Θ is the set of all possible values that

θ can take. In theory, Θ can be both discrete or continuous, and finite or infinite, but

from a practical point of view, the nature of the situation we aim to model determines

the choice of Θ. We will now clarify this as this is an important observation for the

rest of this thesis.

Θ effectively models heterogeneity in the population of components. With population

heterogeneity, we refer to the situation that components – belonging to a pool of

components – are heterogeneous with respect to the (unknown) parameters of their

underlying deterioration process or lifetime distribution. When Θ is a finite and

discrete set, its elements represent possible values that the unknown parameter can

take. In other words, there is a known, finite and discrete component population,

where the relevant parameters of each component are known, and the decision maker

is uncertain from which element of the component population a particular component

stems. When Θ is continuous, there is no notion of a discrete set with known values

that the unknown parameter can take. In this case, uncertainty in the parameter is

modeled directly through the probability distribution of Θ. The former setting, which

we refer to as population uncertainty, is applicable if a decision maker for instance

knows that a component can be either a fast or slow deteriorating component but

upon installment it is unknown which one of the two is installed. The latter setting,

which we refer to as parameter uncertainty, is applicable when the decision maker

has no knowledge regarding possible specific values an unknown parameter can take,

but there is data available to fit a probability distribution that models the parameter

uncertainty directly. In this thesis, the objective is to develop the general theory
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for mathematical models for maintenance optimization characterized by parameter

uncertainty. However, since the difference between the two settings is subtle and

the used approaches similar, the population uncertainty setting is relevant – both in

the context of ABM and CBM – and we shall therefore discuss works in this area

in our literature overview in the next section. We now proceed with describing the

general approach to Bayesian learning for the parameter uncertainty setting and we

will remark when the procedure differs from the population uncertainty setting.

Given a prior belief with probability density function ωn(θ) (probability mass function

in the population uncertainty setting) at decision epoch n and an observation Xn =

xn, the posterior density function ωn+1(θ|xn) is given by Bayes’ theorem:

ωn+1(θ|xn) =
f(xn|θ)ωn(θ)∫

Θ
f(xn|θ′)ωn(θ′)dθ′

. (1.2)

The recursive scheme in Equation (1.2) provides a sequential mechanism to learn an

unknown parameter with increasing accuracy as data becomes available. This method

does not require sufficient data to estimate a model but can rather be used on-the-fly.

When the observation xn in decision epoch n is observed, the prior belief ωn(θ) is

updated to the posterior belief ωn+1(θ|xn), which then becomes the prior belief for

decision epoch n + 1 (with slight abuse of notation, we drop the conditioning on xn
and write ωn+1(θ) for the prior at decision epoch n + 1). This process is known as

prior-to-posterior updating (Gelman et al., 1995; DeGroot, 2005).

Given a belief ωn(θ) of the uncertain parameter at decision epoch n (which is thus the

result of the data accumulation up to decision epoch n), we can also make a prediction

of the future data point (e.g., deterioration at the next decision epoch), encoded in

the posterior predictive distribution of Xn+1. One obtains this posterior predictive

by marginalizing the data point over its prior distribution:

fXn+1
(xn+1) =

∫
Θ

f(xn+1|θ)ωn(θ)dθ. (1.3)

In general, the probability distributions characterizing the uncertainty of the unknown

parameter – ωn(θ′) in Equation (1.2) – are continuous densities defined over

continuous domains. This means that performing the integrations (summations in the

population uncertainty setting) prescribed by Bayes’ theorem in Equation (1.2) can

be a computationally intensive and arduous process. Fortunately, there are so-called

conjugate families of distributions that considerably ease this process. A conjugate

pair is a pair such that the posterior is in the same family of distributions as the prior,

albeit with parameters updated based on some sufficient statistic of the observed data
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(e.g., the number of data points, the size of the deterioration increment).

Remark 1.1. Prior-to-posterior updating needs to be initialized with an initial prior

distribution at the first decision epoch. In practice, this initialization can be done

using so-called empirical Bayes methods, which are procedures for statistical inference

in which this prior distribution is estimated from some available data. In Chapter

2, we illustrate such an approach when we estimate the initial prior distribution

from a real-life data set. Further, although conjugate priors are usually chosen

because of their mathematical convenience, in practice, the prior distribution could

also be interpreted as the distribution that most likely models the heterogeneity of

the population. When some historical data is available from different components of

a population, empirical Bayes methods can be used to statistically judge whether the

conjugate prior distribution is indeed the correct distribution to model the population

heterogeneity. We refer the interested reader for a comprehensive treatment of this

topic to Carlin and Louis (2000) and Maritz and Lwin (2018). 3

In this thesis, we intensively use such conjugate pairs to tractably learn the

unknown parameters of the lifetime distribution (Chapter 6) or deterioration processes

(Chapters 2, 3, 4 and 5). We will treat this in more detail and with more rigor in

each individual chapter.

The next example is a continuation of Example 1.1. It illustrates a conjugate pair

for the case that the rate λ of a Poisson random variable is unknown, in which case

it is well-known that the Gamma distribution is a conjugate prior (Gelman et al.,

1995). This example thus falls in the parameter uncertainty setting. An analog of

this example for the population uncertainty setting would be if λ can only take two

values, say λhigh and λlow. In that case, the prior (and thus posterior) distribution

models the belief that the component has λhigh (or λlow) as true rate.

Example 1.2 (Continuation of Example 1.1). Suppose that the rate λ is unknown.

At decision epoch 0, upon installment of the component, we endow λ with a Gamma

prior with shape parameter α0 and rate parameter β0. Suppose that at the next

decision epoch 1, the component’s deterioration is x1. We can then update the

parameters of the Gamma prior as α1 = α0 + x1, and β1 = β0 + 1 to obtain the

posterior, which is again a Gamma distribution. More generally, at decision epoch n

if the deterioration is xn, the Gamma posterior has parameters αn = α0 + xn, and

βn = β0 + n. In this case, the sufficient statistics are the decision epoch, n, and the

deterioration level at that epoch, xn. 3
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Bayesian Markov decision processes

The use of conjugate pairs has one additional advantage that is imperative for

the integrated approach of learning and decision making. The sufficient statistics

needed for the prior-to-posterior updating generally retain a Markovian structure

(see Example 1.2 for an illustration). This implies that we can equip the standard

state space description of the standard MDP (see Section 1.2.1) with the sufficient

statistics needed for the learning, which results in a so-called Bayesian MDP. In

this Bayesian MDP, the state-dependent transition probabilities are governed by

the posterior predictive distribution that corresponds to each state. We illustrate

a Bayesian MDP in the following example, which builds further on Example 1.2.

Example 1.3 (Continuation of Example 1.2). The sufficient statistics are deteriora-

tion level x and decision epoch n (see Example 1.2). We thus need to extend the state

space description from Example 1.1 to account for the decision epoch n, which can take

values in N0. Hence we have for the Bayesian MDP, S = {0, 1, . . . , L − 1, ξ} × N0,

As = {maintain, continue} for s ∈ {(x, n) ∈ S |x < ξ} and As = {maintain} for

s ∈ {(x, n) ∈ S |x = ξ}, C(a, s) = 0 if a = continue for all s ∈ S , C(a, s) = cp if

s ∈ {(x, n) ∈ S |x < ξ} and a = maintain, and C(a, s) = cu if s ∈ {(x, n) ∈ S |x = ξ}
and a = maintain. The deterioration increment between two decision epochs is now

governed by the posterior predictive distribution, which in this case is a Poisson

distribution with Gamma-distributed mean for which it is known that it is a Negative

Binomial distribution. Specifically, when the current state is (x, n) ∈ S so that the

current Gamma prior has parameters α = α0 + x, and β = β0 + n, then the posterior

predictive distribution is a Negative Binomial distribution with success probability

p = β0+n
β0+n+1 and number of successes r = α0 +x (Gelman et al., 1995). The transition

probabilities p(s′|(x, n), a) for s′ ∈ {(x′, n + 1) ∈ S |x′ ≥ x} can easily be derived

for a = continue, and p((0, 0)|s, a) = 1 for all s ∈ S if a = maintain. Observe

that this latter probability implies that after maintenance, we start in state (0, 0),

meaning that (i) we install a new component, and (ii) we reset the learning process

and start again with our initial prior Gamma distribution, parametrized by α0 and β0.

We remark here that if components are statistically indistinguishable; that is, they all

have the same unknown parameter λ that needs to be learned on-the-fly, then one can

model this by continuing with the current parameters instead of resetting the learning

process. In this case, the sufficient statistic is the sum of all observed deterioration

increments of each installed component (see also Chapter 5, were we study such a

model). 3

A Bayesian MDP, as opposed to the standard MDP, allows distribution updating

and policy updating based on the real-time data that a component generates. For
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the example above, it is again optimal to perform preventive maintenance if the

deterioration is larger than or equal to a certain control limit, say δ(n) ≤ ξ, at a

decision epoch, and continue otherwise. The difference with Example 1.1 is that

this control limit now depends on the observed data through the sufficient statistic

(i.e., n). As data is gathered and incorporated via prior-to-posterior updating, a

decision maker can in real-time predict its future evolution through the posterior

predictive distribution, and by incorporating this distribution in an MDP, she is able

to make optimal decisions. In other words, a Bayesian MDP integrates learning and

decision making and tailors these decisions to each system individually based on its

own real-time data. The concept of Bayesian MDPs is not new; early applications

can be found in the literature on the sequential design of experiments and the related

theory on multi-armed bandits (cf. Bellman, 1956; Gittins and Glazebrook, 1977;

Gittins and Jones, 1979). Recently, with the advent of information technology and the

increasing availability of data, Bayesian MDPs have gained more popularity as a tool

to integrate learning and decision making in many areas of operations management

such as inventory management (e.g., Azoury, 1985; Lariviere and Porteus, 1999; Chen

and Plambeck, 2008; Chen, 2010; Li and Ryan, 2011), and revenue management

(Harrison et al., 2012; Afèche and Ata, 2013). In this thesis, we also use Bayesian

MDPs as the main tool to integrate learning and decision making.

1.3. Positioning in the literature

In this section, we position each individual chapter in the literature. As the literature

on maintenance optimization is very rich and extensive, we will mainly focus on the

intersection with Bayesian optimization and we refer the interested reader to Scarf

(1997), Wang (2002), and De Jonge and Scarf (2020) for comprehensive overviews of

the complete area. We first discuss the field that the majority of this thesis is focused

on: CBM. In Section 1.3.1, we position Chapters 2, 3, 7, and 5. We then continue

with ABM models, in Section 1.3.2, where we position Chapter 6. Subsequently, we

proceed with discussing two relevant areas in the literature that are strongly related

with maintenance optimization – process control and condition-based production –

and our contributions to these areas. Specifically, Chapter 3 and Chapter 4 will be

positioned in Section 1.3.3 and Section 1.3.4, respectively. It is noteworthy to mention

that a more extensive discussion of the literature related to the work in Chapter 7 –

which does not relate to Bayesian optimization – is deferred to a focused literature

review in that chapter (see Section 7.2).
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1.3.1 Condition-based maintenance

Starting with the aforementioned seminal papers of Derman (1963) and Kolesar

(1966), there is a long and rich history of establishing structural properties of optimal

maintenance policies. Especially results about the optimality of control limit policies

for the replacement of deteriorating components under many model variations have

appeared in the literature; see e.g., Ross (1969), Kao (1973), Rosenfield (1976), Makis

and Jardine (1992), Benyamini and Yechiali (1999), Makis and Jiang (2003), Maillart

(2006), Kurt and Kharoufeh (2010), and Drent et al. (2019) (see also Chapter 7).

A lot of research has been conducted in the area and most studies assume that the

deterioration process is known a-priori. The distinguishing feature of our developed

models is that we assume that the deterioration processes are a-priori unknown and

need to be inferred from real-time data. In the previous section we described two

different modeling approaches to use real-time data to learn an unknown parameter:

the parameter and population uncertainty setting. Although our thesis centers around

the parameter uncertainty setting, we will also discuss works adopting the second

approach. Finally, we will also discuss works in a third stream, called the state

uncertainty approach, which deals with settings in which the deterioration process

itself is not (fully) observable but must be learned from data.

Parameter uncertainty

The parameter uncertainty setting is pioneered by Gebraeel et al. (2005), who

developed a Bayesian framework to learn the a-priori unknown parameters of a

Brownian motion from real-time sensory data. Using the Bayesian framework

proposed in Gebraeel et al. (2005), Elwany et al. (2011) develop a Bayesian MDP

and establish the optimality of a control limit policy that is non-decreasing in the age

of the equipment. Similar to our research in Chapter 3, they model the deterioration

process as a Brownian motion in which the drift parameter is initially unknown, but,

unlike us, they assume this drift to be non-negative and their proofs rely explicitly on

this assumption. In Chapter 3, we build further on this work and generalize the result

of Elwany et al. (2011); their control limit policy can be viewed as the upper control

limit of our established bandwidth policy. The intuition behind this is as follows.

Since we do not impose a non-negativity assumption on the drift parameter of the

Brownian motion, the Brownian motion can go negative, leading to a bandwidth

policy that also prescribes what action to take whenever the Brownian motion takes

on negative values. Incorporating the deviation on the negative side is imperative

for modeling practical applications where it is the deviation from preferred operating
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conditions that causes the failure; for instance, when the component’s vibrations or

internal temperature should be centered around a target value. In such settings, the

Brownian motion models the deviation from the target value and then it is important

to take into account the negative side. In Chapter 3, we are the first that establish

structural results for CBM optimization characterized by parameter uncertainty in

which it is the absolute deviation from the perfect operational state that causes a

failure.

Since Elwany et al. (2011), some researchers have extended their idea and proved

the optimality of control limit policies for other deterioration processes including

the inverse Gaussian process (Chen et al., 2015) and the Gamma process (Zhang

et al., 2016). In Chapter 2, we contribute to this area by considering a component in

which the deterioration can be modeled by a compound Poisson process where there

is double parameter uncertainty (i.e., of both the arrival process and compounding

distribution). In this chapter, we consider the case where the deterioration is not only

measured during planned downtime but continuously in real time. This allows us to

learn not only the drift of the deterioration process (like the works mentioned above)

but also higher order properties, in particular the volatility.

All the existing literature on CBM optimization with parameter uncertainty focuses

exclusively on single components. In Chapter 5, we are the first to study the problem

of optimally maintaining multiple systems with a common, unknown parameter over a

finite horizon. When considering multiple systems, one can pool all data – stemming

from all systems – together to jointly learn the unknown parameter on-the-fly as

data becomes available. We show that this leads to substantial savings compared

to not pooling any data for those systems and learning the unknown parameter

independently from the other systems.

Population uncertainty

The previously mentioned works are focused on the parameter uncertainty setting

and hence assume a certain parametric deterioration process of which the parameters

are initially unknown but are inferred using Bayesian learning. This is also the

approach that we take in this thesis, though there are also other approaches. A

different modeling approach that researchers have used in the literature deals with

the population uncertainty setting. Two recent examples include Van Oosterom et al.

(2017) and Abdul-Malak et al. (2019). Van Oosterom et al. (2017) model deterioration

as a Markov chain with an a-priori unknown transition matrix. Each installed system

has a transition matrix that comes from a finite set of known transition matrices. By



1.3 Positioning in the literature 17

endowing a prior distribution on this finite number of possible transition matrices they

are able, using real-time data of the deterioration, to learn the transition matrix of

the currently installed system. Using this Bayesian framework, the authors establish

structural properties of the optimal policy. Abdul-Malak et al. (2019) take a similar

approach and endow a prior distribution on a finite number of possible, known

failure distributions. They too use a Bayesian framework to learn the current failure

distribution and establish structural properties of the optimal policy. In this modeling

approach, the uncertainty lies in not knowing which member of a finite population

with known parameters is governing the deterioration behavior.

State uncertainty

Another stream that integrates Bayesian learning with decision making for mainte-

nance optimization is focused on systems where the deterioration itself can only be

partially observed. Using real-time observations that are stochastically related to the

underlying deterioration state, one then needs to learn the true deterioration state.

In this approach, the prior distribution then models the belief that the component’s

current deterioration state takes a certain value. Kim and Makis (2013), Kim (2016)

and Van Staden and Boute (2021) all consider a continuous-time Markov chain for

the underlying deterioration process, while Khaleghei and Kim (2021) consider semi-

Markovian processes, and they all characterize the optimal policy using the theory of

partially observable MDPs (POMDPs). The optimal policy in this setting is usually

a control limit policy based on the posterior probability that the current state is close

to the failure state (as the true deterioration state is not observable). Throughout

this thesis we do not take such an approach; we always assume that data is perfect

and hence that the deterioration state is fully observable, though in Chapter 2 we

numerically assess the consequences if we relax this assumption.

1.3.2 Age-based maintenance

In the classical ABM problem, introduced in Barlow and Hunter (1960), a decision

maker determines the optimal age threshold to preventively replace a single-

component system subject to random failures to avoid high costs and/or low reliability

associated with corrective replacements. The key assumption in this canonical ABM

problem, and in many of its variations (we refer to De Jonge and Scarf (2020) for

a recent, comprehensive overview of the area), is that the lifetime distribution is

a-priori fully determined and known to the decision maker. When one relaxes this

assumption, and the parameter of a lifetime distribution needs to be inferred, we
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can again differentiate between the parameter uncertainty setting and the population

uncertainty setting. As an age of an installed component is always observable, there

is no analog in the ABM literature for the state uncertainty setting.

Parameter uncertainty

As described in the previous section, the concept of integrating Bayesian learning in

optimal decision making has recently gained momentum in the literature of CBM.

A crucial assumption in this literature, when incorporating Bayesian learning to

learn the parameters of the deterioration process, is that all observations of the

deterioration are uncensored. By contrast, in the study of ABM policies, the data

accumulation process consists, by definition of an ABM policy, of both censored (i.e.,

preventive maintenance) and uncensored (i.e., corrective maintenance) observations

of the underlying lifetime distribution.

We remark that these uncensored and censored observations should not be confused

with full and partial observability, respectively, that researchers deal with in the state

uncertainty setting in the CBM literature. In an ABM setting, a decision maker has

full knowledge regarding the age of a currently installed component, yet when she

replaces the component before failure, she only gets a censored observation of the

true lifetime (the lifetime at failure). In a CBM setting, partial observability implies

that a decision maker does not have full knowledge about the current deterioration

of a component, but that she only gets observations that are stochastically related to

the actual deterioration state. From a Bayesian perspective, the latter is much easier

to analyze than the former. In fact, if the state-observation matrix is fully known,

Bayesian learning can be done in a tractable way (see, e.g., Kim and Makis, 2013;

Kim, 2016; Van Staden and Boute, 2021). By contrast, when data (partly) consists

of censored observations, most lifetime distribution families immediately lose their

conjugate property leading to tractability issues.

As a result, only very few papers focused on ABM have studied the integration of

Bayesian learning in optimal decision making. Two important studies are Fox (1967)

and Dayanik and Gürler (2002), who both consider a sequence of components subject

to ABM with Weibull distributed lifetimes. In such a sequence, a component is

repeatedly installed, and a decision maker needs to choose for each component an

age threshold to preventively replace it. Fox (1967) assumes that only the scale

parameter is unknown (i.e., scale parameter uncertainty), and formulates a Bayesian

dynamic program (DP) to analyze the optimal policy of an infinite sequence of

ABM problems. Due to the infinite sequence assumption, the author is not able to
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investigate the so-called exploration-exploitation trade-off that is inherent to a finite

sequence. In a finite sequence, a decision maker might explore with early components

by deliberately using high age thresholds to acquire valuable, uncensored observations

of the lifetime distribution, which can then be exploited as she nears the end of the

sequence. This is commonly referred to as the exploration-exploitation trade-off.

Nonetheless, Fox (1967) shows that the Bayesian DP converges to the corresponding

DP of the setting in which the true scale parameter is known. The Bayesian DP is,

however, computationally intractable and therefore difficult to implement in practice.

Dayanik and Gürler (2002) therefore propose a myopic Bayesian policy that, at

least numerically, performs close to the setting in which there is full knowledge

of the unknown parameters. The authors do not, however, establish whether the

learning and/or decision making of this myopic policy converge to the setting with

full knowledge.

In Chapter 6, we focus on this gap in the literature. That is, we investigate the

optimal policy for a finite sequence of components governed by an ABM policy,

where there is an inherent exploration-exploitation trade-off. Additionally, we analyze

asymptotic properties of a myopic policy in case of an infinite sequence of components.

Throughout this chapter, we assume a particular class of distributions, the so-called

Newsboy distributions, of which the Weibull distribution (assumed in Fox (1967) and

Dayanik and Gürler (2002)) is a member, thereby making a direct link with the work

in these two papers.

Population uncertainty

One other direction in ABM that integrates Bayesian learning with decision making

can be found in De Jonge et al. (2015) and Dursun et al. (2022). They too consider

an ABM policy to preventively replace components before failure, but in contrast to

our work in Chapter 6 and the aforementioned papers, they adopt the population

uncertainty approach to model uncertainty. They assume that components that are

used for replacement come from either, what they call, a weak or a strong population.

For both populations, the lifetime distributions and their parameters are known; both

works assume a Weibull distribution for the two populations (with different, yet known

parameters). However, the true population type is unknown to the decision maker

and needs to be inferred from the observations. Dursun et al. (2022) build a POMDP

and establish structural properties of the optimal policy, while De Jonge et al. (2015)

consider a heuristic and numerically show that it performs quite well. Their approach

can also be applied in CBM; see the discussion of Van Oosterom et al. (2017) and

Abdul-Malak et al. (2019) in the previous section. As already discussed, in such an
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approach, there is uncertainty with respect to the population, which contrasts with

modeling uncertainty in the parameters of the underlying lifetime distribution.

1.3.3 Intersection with process control

Maintenance optimization models, like the ones discussed in the previous two sections,

are developed to ensure availability of systems. When systems are up and running,

they are usually responsible for production processes (for instance: lithography

machines produce chips, MRI systems produce medical images) where it is of crucial

importance for the output quality (e.g., quality of chips, medical image quality) that

the system operates in close to perfect operating conditions. Process control (PC)

of the production process is the most pivotal function to do so and has received

considerable attention by researchers in the past.

The main objective in papers on PC (we refer the reader to Tagaras (1998) for an

excellent overview) is to sequentially decide based on data samples of the system

whether a production process has shifted from an in-control state to an out-of-control

state associated with decreased quality, and if so, to inspect and potentially restore

the production process. Duncan (1956) pioneered the area by proposing an X̄-chart

that uses the sample mean to detect such a shift in quality and subsequently restore

the production process. Other charts have been proposed in the literature that use

different measures, such as the fraction of defects in an np-chart (Chiu, 1976). Taylor

(1965) and Taylor (1967) showed that such non-Bayesian approaches are in fact sub-

optimal and that the decision should be based on the posterior probability that the

process has shifted to an out-of-control state.

The focus in the area therefore shifted to the development of Bayesian control charts

(see e.g., Tagaras, 1994, 1996; Calabrese, 1995; Porteus and Angelus, 1997; Makis,

2008). In Chapter 3, we also adopt a Bayesian approach, but instead of inferring

the out-of-control probability, we directly learn the unknown drift of a system to

move away from perfect operating conditions. Additionally, both Bayesian and non-

Bayesian approaches typically assume only two operational states, whereas in Chapter

3, we assume a continuous set. Tagaras and Nikolaidis (2002) compare different

Bayesian control charts and show that the sampling interval has the most positive

impact on the economic performance, which is a rationale behind the continuous

monitoring framework assumed in this chapter.

Despite the large amount of research in the area of both CBM and PC in isolation,

there are relatively few studies focused on their joint optimization, and none of

them study structural properties. This is rather surprising since PC and CBM are
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conceivably related, especially if they utilize the same real-time data of the system

to base their decision on (e.g., vibrations, temperature). The few papers that jointly

consider PC and CBM all assume: (i) a discrete set of operational states, (ii) a

predefined policy for when to perform maintenance based on an X̄-chart for process

control activities, and (iii) an X̄-chart for inference of the operational state. By

contrast, in Chapter 3, we assume a continuous set of operational states and like

discussed before, we assume that there is parameter uncertainty surrounding the

unknown drift and learn it in a Bayesian framework. Moreover, instead of limiting

the analysis to a specific policy or a specific class of policies, we characterize the

structural form of the optimal joint real-time data-driven PC and CBM policy.

Tagaras (1988) studies a piece of manufacturing equipment used for production

processes with one failed state and several operational states that is subject to

Markovian deterioration. An X̄-chart is used to learn the operational state, while

preventive maintenance is performed based on the age of the equipment; the age

is thus the condition. Using reward-renewal theory, Tagaras (1988) computes the

optimal parameters of the control chart and the optimal preventive maintenance age.

Rahim and Banerjee (1993), Ben-Daya and Rahim (2000) Lee and Rahim (2001),

and Linderman et al. (2005), all study a similar setting, but assume non-Markovian

deterioration with two operational states, while the preventive maintenance policy is

also based on the equipment’s age.

Panagiotidou and Tagaras (2010) are the first, and to the best of our knowledge

the only ones, who consider joint optimization of CBM and PC where the decision

making is based on an actual condition – and not the age – of the equipment. Like

us, they assume a single process characteristic for both PC and CBM purposes,

but they propose a policy that relies on an X̄-chart to initiate inspection. If the

inspection reveals that the process is out-of-control, preventive maintenance takes

place, otherwise the operation is continued. They provide numerical expressions for

the average cost rate of the proposed policy, which are used to compute the optimal

parameters of the X̄-chart.

1.3.4 Intersection with condition-based production

Degradation behavior of components in advanced production systems is often affected

by adjustable settings of the system itself (e.g., the production rate). The natural

relationship between the two is that these settings have a direct impact on the

deterioration rate, implying that the deterioration rate of the system can be controlled

by adjusting the settings.
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This novel idea was first proposed by Uit het Broek et al. (2020) who coined the term

condition-based production. The authors introduce the use of condition monitoring to

dynamically adjust the production rate over a finite planning horizon that ends with

a maintenance moment. A higher production rate leads to more revenue, but also to

a faster deterioration rate and possibly a corrective maintenance at the end of the

planning horizon. The authors characterize the optimal condition-based production

policy under the assumption that deterioration is deterministic and its parameters

fully known. When deterioration is stochastic, the authors numerically explore the

optimal policy and show that it exhibits similar behavior as in the deterministic

case. In an extensive numerical study, they show that for such production-dependent

deterioration, condition-based production rate decisions may result in significant

revenue increases compared to policies that neglect this natural relationship. In

Uit het Broek et al. (2021), the authors build further on the work of Uit het Broek

et al. (2020) and combine the concept of condition-based production with CBM. The

model considered in Uit het Broek et al. (2020) only allows maintenance at prespecified

moments, and one can only influence the deterioration process in between by adjusting

the production rate, while in Uit het Broek et al. (2021) it is allowed to perform CBM

in between. The latter paper numerically evaluates a dynamic policy and shows that

making both the production and maintenance schedule condition-based, can lead to

high revenue increases compared to an isolated approach.

In Chapter 4, we generalize the model of Uit het Broek et al. (2020) considerably.

We first relax the assumption that deterioration is deterministic by considering

a stochastic deterioration process. For this model, when the parameter of the

deterioration process is known, we establish structural properties of the optimal

condition-based setting policy that are actually in line with the intuition built in the

numerical exploration of Uit het Broek et al. (2020). We then relax the assumption

that the parameter of the deterioration process is known. Specifically, we propose a

Bayesian framework to tractably learn (under any production policy) the parameter of

the deterioration process when it is a-priori unknown; that is, when there is parameter

uncertainty.

1.4. Main contributions and outline

The overarching topic of this thesis is the development of a general theory for a class

of maintenance problems characterized by parameter uncertainty. For this class of

problems, we develop mathematical models that integrate learning from real-time

data with decision making for scenarios in which components’ deterioration processes
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or lifetime distributions are characterized by an a-priori unknown parameter. This

approach, the structured learning and decision making approach, is able to leverage

the opportunities that arise due to the ongoing developments in sensor technology

and the IoT.

In each individual chapter, we consider stylized, yet representative models to analyze

the essential maintenance trade-off: costly premature preventive maintenance versus

costly tardy corrective maintenance in different scenarios that are prevalent in modern,

data-driven manufacturing industries. Moreover, all scenarios (except for the model

discussed in the last chapter) share one commonality: population heterogeneity

through parameter uncertainty. Although some work has been done in that area (see

previous section), we aim to provide a unified mathematical framework to analyze and

tackle these problems based on our main methodology: Bayesian learning, MDPs, and

their integration. Figure 1.4 provides a schematic representation of this structured

learning and decision making framework.

Figure 1.4 Schematic representation of structured learning and decision making framework.

Maintenance model characterized
by parameter uncertainty.

Identify conjugate pair for Bayesian inference.

Determine sufficient statistics.

Derive posterior predictive distribution
and construct Bayesian MDP.

Analyze structural properties
of the optimal policy.

Compute optimal policy.

The unified framework provides a structured road map to develop mathematical

models for the class of maintenance problems characterized by parameter uncertainty.

The first step is to identify the conjugate pair to which the uncertain parameter

belongs. This choice is largely determined by the underlying stochastic model assumed

in the maintenance model. The next step is to determine the sufficient statistics

required for the Bayesian inference of the uncertain parameter. This is usually a



24 Chapter 1. Introduction

function of the observed data, but it can also depend on certain actions that have

impacted the observed data (e.g., when deterioration is controlled through production

control). As a result, the sufficient statistics will also indicate what data is required

and how often data should be sampled to effectively implement the Bayesian learning.

Once you have determined the sufficient statistics, the next step is to derive the

posterior predictive distribution and construct a Bayesian MDP encoded on (i) the

sufficient statistics and (ii) the state(s) needed for maintenance purposes (e.g., the

age or deterioration level) with the posterior predictive distribution governing the

transition probabilities. In constructing this Bayesian MDP, one needs to take into

account certain characteristics of the maintenance problem such as the length of the

planning horizon (finite versus infinite) and the optimality criterion (discounted versus

average cost). Using the developed Bayesian MDP, one is able to analyze its structural

properties. For CBM, the optimal policy is usually a control limit that depends on

the sufficient statistics. The nature of the dependence itself (e.g., monotonicity)

can be proven by analyzing stochastic ordering properties of the posterior predictive

distributions with respect to the sufficient statistics combined with an inductive

argument on the value iteration algorithm. Insights into the structural properties

of the optimal maintenance policy are not only interesting from a theoretical point

of view, but they also aid the development of methods for computing the optimal

policy, which is the last step of our framework. The resulting optimal policy indeed

integrates learning and decision making and can thus utilize real-time data for better

maintenance decision making.

In this thesis, we demonstrate the wide applicability of the proposed framework

displayed in Figure 1.4 by adopting it for the analysis of scenarios that vary

significantly in terms of modeling characteristics commonly used in the maintenance

literature; see Table 1.1 for a classification of the model in each individual chapter

based on these characteristics.

The first distinction is based on the maintenance policy under study in each chapter

(see Section 1.1 for an explanation). Next, implementing such maintenance policies

can be done by performing maintenance interventions at instances in time that are

scheduled well in advance, or at unscheduled instances in time. The latter situation

arises naturally in opportunistic maintenance, where if a component of a system fails

and needs corrective maintenance, then this constitutes an unscheduled opportunity

to do preventive maintenance on other components that have not yet failed. Most

of the developed models in this thesis assume that when performing maintenance,

the repair is perfect and the newly installed component is as-good-as-new, but we

also model the situation that a repair does not restore the component to as-good-

as-new. Next, when modeling the deterioration process, we distinguish three states
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Table 1.1 Navigating the thesis by characteristics of developed model.

Chapter
2 3 4 5 6 7

Maintenance policy

Age-based x
Failure-based x
Condition-based x x x x x

Maintenance moments

Scheduled x x x x x x
Unscheduled x

Repair

Perfect x x x x x
Imperfect x

Deterioration state space (CBM)

Discrete (3 states) x
Discrete (>3 states) x x x
Continuous x

Time horizon

Finite x x x
Infinite x x x x

Monitoring (CBM)

Discrete x x
Continuous x x x

Interventions

Discrete x x x
Continuous x x x

Population

Homogeneous x x
Heterogeneous x x x x x

(perfect, satisfactory and failed), a discrete state space with more than three states,

and a continuous state space. The next classification is based on the length of the

planning horizon, which can be based either on an infinite time horizon or finite

time horizon. In obtaining condition data regarding the installed component, there

are two types of monitoring that can be distinguished: monitoring by performing

inspections at discrete time epochs, or continuously monitoring in real time. We

further make a distinction between models in which a decision maker can only interfere

with the system at equally spaced discrete decision epochs and models in which she

can continuously interfere with the system. Finally, the majority of the developed

models in this thesis are characterized by population heterogeneity in the components

through parameter uncertainty, though we also look at homogeneous populations.
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In studying these scenarios, we follow our structured approach and use various

operations research techniques to tractably model and analyze each problem. The

methodologies used to model each scenario in each individual chapter are summarized

in Table 1.2. The ultimate goal, when analyzing each problem, is to characterize

structural properties of the optimal policy. In establishing these structural properties,

we use various proof techniques such as stochastic ordering, induction, contradiction,

asymptotic convergence, and use various well-known theorems.

Table 1.2 Navigating the thesis by methodology.

Chapter
2 3 4 5 6 7

Main methodology

Discrete-time Markov decision process x x x
Semi-Markov decision process x
Continuous-time Markov decision process x
Dynamic programming x
Bayesian inference x x x x x
Renewal theory x x
Simulation x x x

We now provide a brief overview of the contributions of each individual chapter in

more detail, while we provide an outline of the thesis.

In Chapter 2, we consider a system whose condition deteriorates according to a

compound Poisson degradation with a fairly general compounding distribution (viz.,

a member of the non-negative exponential family), where the parameters of both the

Poisson process and the compounding distribution vary from one system to the next.

We propose a Bayesian framework to learn these unknown parameters independently

from each other and integrate this into an MDP. By doing so, we are the first that

consider double parameter uncertainty: Uncertainty with respect to two different

parameters which need to be inferred simultaneously from the same real-time data.

We hereby fill a gap in the literature where all works are characterized by parameter

uncertainty with respect to only a single parameter. By establishing new stochastic

ordering properties, we establish the optimality of a control limit policy that depends

on the entire deterioration path of the individual system. Another contribution in

this chapter lies in a case study performed on real-life data from interventional X-ray

machines to assess the value of integration of learning and decision making. We show

that this approach leads to cost reductions of up to 11% relative to approaches that

do not learn from real-time data and up to 4% relative to approaches that separate

learning and decision making. This chapter is based on Drent et al. (2020a).

In Chapter 3, we address the joint optimization of PC and CBM. The primary
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contributions of this chapter lie in (i) proposing and analyzing a novel real-time data-

driven PC and CBM model, and in (ii) characterizing the structural form of the

optimal policy under standard cost and operating assumptions. We are the first that

rigorously look at the intersection of two related, yet often independently studied

streams in the literature. We establish the optimality of an intuitive and easy-to-

implement bandwidth policy that is monotone in the age of the production process,

under both the discounted cost and the average cost criterion. With this bandwidth

policy, the production process is continued if the process is within a bandwidth that

is described by both an upper and a lower control limit. This bandwidth policy

thus has characteristics both of control charts often used in the PC literature and of

control limit policies typically established in the CBM literature. We again build a

Bayesian MDP like in the previous chapter, yet this Bayesian MDP suffers from non-

monotonic properties that render conventional proof techniques to establish structural

properties not applicable. We overcome this challenge by translating the original

Bayesian MDP into an alternative Bayesian MDP which does allow for establishing

structural properties of the optimal policy. We first consider the discounting cost

criterion and we then show that the optimal average cost criterion policy can be

obtained as a limit of the discounted cost model when the discount factor approaches

1 from below. This is generally speaking highly nontrivial and often an onerous

task that heavily depends on the context. Another important contribution of this

chapter is that for archetypal replacement problems, we show that there is actually

a straightforward road map to execute this onerous task. This chapter is based on

Drent and Kapodistria (2021).

Chapter 4 centers around the novel idea of condition-based production to control

deterioration when planned maintenance moments are fixed. In this chapter, we

are the first to establish structural properties of the optimal condition-based setting

policy (the production rate is essentially a setting) under stochastic deterioration.

We thereby fill a substantial gap as previous works have only characterized structural

properties for deterministic deterioration. Specifically, we consider a model in which

a decision maker can continuously adjust settings which lead to an instantaneous

change in both the revenue rate and the rate of a Poisson process. By employing such

a condition-based setting policy, the decision maker can steer the deterioration as

she nears the planned maintenance moment, at which a maintenance cost depending

on the deterioration state is incurred. We model this problem as a continuous-time

MDP and rigorously analyze both its Hamilton-Jacobi-Bellman equations and their

discretized equivalents to characterize the monotonic behavior of the optimal policy.

We also show that under optimal setting decisions, the length of the interval between

planned maintenance moments can be easily optimized, thereby addressing the trade-
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off that arises due to maintenance costs at such moments. We complement these

theoretical results by an extensive numerical study in which we demonstrate that:

(i) condition-based setting policies can lead to substantial profit increases relative

to static setting policies, and (ii) integrating maintenance and setting policies can

lead to significant profit increases compared to treating them sequentially (i.e., first

deciding upon an interval length, and then implementing the setting policy). The

intuitive behavior of the optimal condition-based setting policy – decrease the setting

if close to the failure threshold and increase the setting if the planned maintenance

moment is approaching – helps us to develop an easy-to-implement Bayesian heuristic

for the case that there is parameter uncertainty regarding the base rate, that mimics

this behavior. We provide two new technical results needed for this heuristic: (i) a

Bayesian inference framework that is tractable under any setting policy, and (ii) new

submodularity preservation properties that can also be useful in other application

areas. In an extensive simulation study we show that this heuristic performs close to

a clairvoyant Oracle policy. This chapter is based on Drent and Arts (2022).

In Chapter 5, we are the first that study optimal CBM policies for multiple systems,

where data stemming from each individual system can be pooled to jointly learn

an unknown parameter. We assume that each system has a critical component

whose condition deteriorates according to a Poisson process with a common, yet

unknown rate, and formulate this problem as a finite-horizon Bayesian MDP. The

formulation suffers from the well-known curse of dimensionality : The cardinality of

both the action and state space grow exponentially in the number of systems N . As a

remedy, we prove a new decomposition result that establishes the equivalence between

the original, high-dimensional MDP and N two-state MDPs with a binary action

space, each focused on an individual system. We further show that the structure

of the optimal policy of each individual system has a control limit structure. The

decomposition result is imperative as it allows us to numerically analyze the benefits

of data pooling for learning when N is relatively large. In a comprehensive numerical

study, we investigate the savings that can be attained by pooling data while optimally

maintaining the set of systems. We find that the savings can be significant, even for

small values of N , but that the exact magnitude of these savings largely depends on

the magnitude of the uncertainty in the parameter. This chapter is based on Drent

and Van Houtum (2022).

In Chapter 6, we revisit the canonical ABM model proposed by Barlow and

Hunter (1960), but assume that the systems lifetime distributions are parametrized

by an a-priori unknown parameter that needs to be learned. The optimal policy

for this relaxation has been an open problem since the introduction of its known

counterpart in 1960. This is mainly because the Bayesian inference in this scenario is
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complex: data is both censored (in case of a preventive maintenance) and uncensored

(in case of a corrective maintenance). We overcome this challenge by adopting a

certain family of lifetime distributions that is often used in inventory theory that

can accommodate censored learning. We first analyze the optimal policy for a finite

sequence of replacements. We formulate this problem as a Bayesian stochastic DP

and by establishing new stochastic orders, we are able to establish some properties.

This DP is unfortunately not tractable for practical purposes; hence we propose an

easy-to-implement myopic Bayesian policy. Using well-known inequalities, the law

of large numbers and epi-convergence results, we show that this myopic policy has

attractive asymptotic properties: It almost surely learns the unknown parameter and

converges to the optimal policy with full knowledge of the parameter. This chapter

is based on Drent et al. (2020b).

The models considered in all previous chapters are characterized by parameter

uncertainty. In Chapter 7, we model the deterioration behavior of systems as

stochastic processes of which the parameters can be fully determined by historical

data, and thus assume that the decision maker has no uncertainty regarding

parameters. We analyze a scenario with two types of preventive maintenance: Planned

maintenance at periodic, scheduled opportunities, and opportunistic maintenance at

unscheduled opportunities. The latter type of maintenance arises in application areas

with a network dimension (e.g., wind turbines in a wind farm), where if a system in

the network fails (e.g., due to FBM), this constitutes an opportunity for preventive

maintenance for the other systems. The structure of the optimal policy for this

problem has been a long-standing open question, mainly because integrating the two

types of maintenance results in decision epochs occurring at random points in time

so that the theory of standard MDPs does not apply anymore. We overcome this by

formulating the problem as a semi-MDP, which allows us to characterize the structure

of the optimal policy under the discounted cost criterion. This policy, depending on

the deterioration of the component and the remaining time until the next planned

maintenance, indicates when it is optimal to perform preventive maintenance at both

scheduled and unscheduled opportunities. We then show that the discounted cost

policy is also optimal under the average cost criterion. The existing theory, and

hence the usual approach to do this, fails to apply in our situation. We overcome

this challenge by extending the theory of semi-MDPs such that it does apply to our

scenario. This chapter is based on Drent et al. (2019).

Finally, in the last chapter, Chapter 8, we summarize our results by revisiting the

applicability of the proposed framework (see Figure 1.4) in each chapter focused on

parameter uncertainty. We also outline directions for future research.





Chapter 2

Condition-based maintenance

with double parameter

uncertainty

2.1. Introduction

In the introductory chapter, we already discussed that asset managers who are

responsible for the up-time of advanced technical systems, continuously seek to

minimize the risk of failure and unplanned downtime. Failures of these systems are

usually caused by deterioration from components exceeding a certain critical level. In

this chapter, we study a situation in which such deterioration is the result of random

amounts of damage (e.g., wear, fatigue) that accumulate through shocks that occur

randomly over time. For instance, certain metal and ceramic components in trains and

aircraft only degrade at events at which they are subjected to shocks (e.g., propagation

of cracks in a brake pad due to braking or in a propeller due to a heavy wind gust,

respectively) rather than in a continuous fashion. For such degradation processes, it

is natural to model them as so-called jump processes, i.e., stochastic processes that

have discrete movements at random times (cf. Sobczyk, 1987; Singpurwalla, 1995).

This chapter is based on Drent et al. (2020a).

31
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In this chapter, we study a condition-based maintenance (CBM) model for a single

component whose condition deteriorates according to a jump process often assumed

in the CBM literature (cf. Van Noortwijk, 2009). Specifically, we assume that the

sequence of random shocks arrives as a Poisson process with a randomly varying

shock size, that is, degradation is modeled as a compound Poisson process. The inter-

arrival times between two consecutive shocks are thus Exponentially distributed, and

we model the random amount of damage by a fairly general class of distribution which

we introduce later (see Section 2.2.1).

Components are subject to compound Poisson degradation, but the individual

parameters of both the Poisson process as well as the compounding distribution

vary from one component to the next. That is, the population of components

is heterogeneous with respect to two parameters resulting in double parameter

uncertainty. These two parameters cannot be observed directly and they therefore

need to be learned by observing the degradation signal that is relayed in real time

through sensors on the component. Although we observe the degradation level of a

component continuously through condition monitoring, we can only interfere with the

system at scheduled moments occurring at equally spaced discrete epochs.

Learning parameters from real-time sensory data has been done before, but only in

settings where measurements are only possible at planned downtimes; see Elwany

et al. (2011), Kim and Makis (2013), Chen et al. (2015), and Van Oosterom et al.

(2017). When the condition of a system can only be measured at planned downtimes,

the amount of information that can be learned from the degradation level is limited

compared to the situation with real-time data. Accordingly, attention in previous

literature is restricted to population heterogeneity within a finite set of possibilities or

heterogeneity in degradation drift only, with drift defined as the expected degradation

increment per unit of time. By contrast, this chapter uses the entire degradation path

of each component. This allows us to infer higher-order properties of the degradation

behavior of the individual component, in particular the volatility, defined as the

variance of a degradation increment per unit time.

The costs to replace a component after failure is much higher than before failure

because they include the costs of unplanned downtime, and the decision maker

is interested in minimizing the total expected discounted cost of corrective and

preventive replacements over an infinite horizon. Learning the parameters from real-

time data implies that the entire past degradation path of a component is relevant

state information, which can lead to tractability issues. We circumvent these issues by

using conjugate prior pairs to model the heterogeneity of the component population,

allowing us to tractably build an infinite-horizon Bayesian MDP to study the decision
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problem. We further collapse the state space by identifying structure in the prior to

posterior updating procedure. This enables us to tractably compute optimal policies

as well as prove structural results about optimal policies.

2.1.1 Contributions

This chapter makes the following contributions:

1. We tractably model the situation where components are heterogeneous in their

degradation processes with respect to two parameters by using conjugate prior

pairs. We collapse the high-dimensional state space to only 3 dimensions while

retaining all relevant information. This collapse gives insight into how all

relevant information in a real-time degradation signal can be parsimoniously

represented. Furthermore, this collapse makes the model both tractable

numerically and amenable to structural analysis.

2. We characterize the optimal replacement policy as a control limit policy where

the control limit is non-decreasing in the age of a component and additionally

depends on the volatility of the observed degradation signal.

3. In our first simulation study, we study (i) the benefits of explicitly modeling

heterogeneity, (ii) the benefits of integrating learning with decision making,

and (iii) the impact of the amount of available historical degradation data for

estimation of the population heterogeneity on their performance. The results

of this simulation study indicate that the integration of learning and decision

making leads to excellent results with gaps of only 0.6% on average relative to

an Oracle that knows the true population heterogeneity. By contrast, ignoring

heterogeneity altogether leads to average gaps of 15% relative to an Oracle

that knows the true population heterogeneity. Failing to integrate learning

with decision making leads to average gaps of 7% relative to that same Oracle.

Furthermore, we show that models that ignore population heterogeneity do not

perform appreciably better when the amount of historical degradation data for

model calibration increases.

4. In our second simulation study, we assess the performance of the optimal

policy (under real-time, perfect data) when applied in a setting where (i) the

degradation signal is not perfect, and (ii) the degradation signal is not relayed

in real time but only at planned downtimes. The results indicate that having

access to data in real time is valuable, while at the same time, this data need

not be perfect to achieve excellent performance.
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5. We demonstrate the efficacy of integrated learning and decision making on a real

data set of X-ray tube degradation in an interventional X-ray machine. We find

that integrated learning can save around 10% compared to approaches without

learning and around 4% compared to an approach where learning is separated

from decision making.

2.1.2 Organization

The remainder of this chapter is organized as follows. We first present the model

formulation in Section 2.2. In Section 2.3, we characterize the optimal replacement

policy. We then report on the results of a comprehensive simulation study in Section

2.4. We discuss the application of our approach to alternate settings in which the

degradation signal is imperfect or not relayed in real time in Section 2.5. We establish

the practical value of our model in Section 2.6, where we discuss a real life case study

on the X-ray tube degradation in an interventional X-ray machine. Finally, we provide

concluding remarks in Section 2.7.

2.2. Model formulation

This section describes the degradation model and the integrated learning problem of

learning the degradation behavior of a component and deciding when to replace it.

2.2.1 Compound Poisson degradation

We consider a component that degrades as random shocks arrive. Shocks arrive

as a Poisson process and the damage that accumulates during a shock is random

variable, i.e., degradation is a compound Poisson process. The Poisson intensity of

shock arrivals is denoted by λ. The compounding distribution is quite general; the

only restriction we impose is that this distribution belongs to the one-parameter, non-

negative exponential family. This family includes many well-known distributions such

as the Geometric distribution and the Poisson distribution. We let the one parameter

be denoted by φ ∈ R+, where R+ denotes the non-negative real line. Hence, the

probability density or mass function of this random amount can be expressed in the

form

f(x|φ) = h(x)eφT (x)−A(φ), (2.1)
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where T (x) is the sufficient statistic, and h(x) and A(φ) are known functions. We

assume that T (x) , x, which enables a state space collapse in our optimization

problem (see Section 2.2.3). In the literature, this family of distributions is often

referred to as the linear (due to the linear sufficient statistic) exponential family

or natural exponential family and was first introduced by Morris (1982). This

class encompasses many well-known distributions used in maintenance such as the

Geometric distribution, the Poisson distribution, the Gamma distribution with known

shape parameter, and the Binomial distribution with known number of trials (see

Morris (1982) for a complete overview). The following examples illustrate how

the Geometric distribution (with support N0 , {0, 1, . . .}) with unknown success

probability p ∈ (0, 1) and the Poisson distribution with unknown mean µ > 0 can be

expressed in the canonical form of the natural exponential family.

Example 2.1 (Geometric distribution). Let the damages be Geometrically dis-

tributed with (unknown) success probability p ∈ (0, 1). The probability mass function

of the random amount of damage, denoted by f(x|p), then takes the form

f(x|p) = (1− p)xp = ex ln(1−p)−ln(1/p). (2.2)

Comparing Equation (2.2) with Equation (2.1), we find that h(x) = 1, T (x) = x,

φ = ln(1− p), and A(φ) = ln(1/p) = ln(1/(1− eφ)) for the Geometric distribution. 3

Example 2.2 (Poisson distribution). Let the damages be Poisson random variables

with (unknown) mean µ > 0. The probability mass function of the random amount

of damage, denoted by f(x|µ), then takes the form

f(x|µ) =
µxe−µ

x!
=

1

x!
eln(µ)x−µ. (2.3)

Comparing Equation (2.3) with Equation (2.1), we find that h(x) = 1
x! , T (x) = x,

φ = ln(µ), and A(φ) = µ = eφ for the Poisson distribution. 3

For simplicity and due to its practical appeal (see Section 2.6), throughout this

chapter, we use the Geometric distribution with support N0 to illustrate further results

– building further on Example 2.1 – but we emphasize that all structural results hold

for any compounding distribution whose probability density or mass function can be

expressed in the form displayed in Equation (2.1) with T (x) = x.

The degradation level is observed continuously, but it is only possible to interfere

with the system at equally spaced decision epochs. These decision epochs correspond

to planned downtimes. For convenience, we rescale time such that the time between

two decision epochs equals 1. Furthermore, there exists a threshold ξ ∈ N+, where
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N+ , {1, 2, . . .}, such that a component has failed if its degradation is equal to or

exceeds ξ.

Let N(0,t] ≡ Nt denote the total number of shocks received by a component from

the start of its life (i.e., from the installation of the component) up to its age t.

The number of shocks that arrive between age t − 1 and t (t ∈ N+) is denoted by

K(t−1,t] , Nt−Nt−1. Observe that integer ages of components coincide with decision

epochs. Moreover, let Yi denote the damage incurred at the i−th shock since the

installation of the component. Letting X0 = N0 = 0, the compound Poisson process

at component age t ∈ N+ satisfies

Xt =

Nt∑
i=1

Yi = Xt−1 +

Nt∑
i=Nt−1+1

Yi, t ∈ N+,

with
∑0
i=1 · ≡ 0. We also use the notation Yt ,

(
YNt−1+1, YNt−1+2, . . . , YNt

)
and

Z(t−1,t] ,
∑Nt
i=Nt−1+1 Yi throughout this chapter.

2.2.2 Learning the degradation model

We assume that each component stems from a heterogeneous population of com-

ponents in which each component has different degradation parameters λ and φ,

which are unknown to the decision maker. Hence, the degradation parameters differ

from one component to the next. This reflects the fact that the degradation process

may be affected by the individual component’s endogenous conditions. We treat the

parameters λ and φ as random variables, denoted by Λ and Φ, which can be inferred

with increasing accuracy by observing the degradation signal of the component in a

Bayesian manner.

Λ has a Gamma distribution with shape α0 and scale β0 (i.e. Λ ∼ Gamma(α0, β0))

and Φ is distributed according to the general prior for a member of the exponential

family (parametrized by a0 and b0), with α0, β0, a0, b0 > 0, with prior density

distribution denoted by fΛ(λ|α0, β0) and fΦ(φ|a0, b0), respectively. We refer to α0,

β0, a0, and b0 as the hyperparameters. Upon the installation of a new component, the

parameters of the compound Poisson degradation process, λ and φ, are drawn from

these distributions. Let kt denote the observed number of shocks a component has

sustained between ages t− 1 and t, i.e., kt is the realization of K(t−1,t]. Furthermore

let yt ,
(
y1
t y

2
t . . . yktt

)
be the array of the observed amounts of damage of the

shocks sustained, i.e., yt is the realization of Yt. Finally, let zt ,
∑kt
i=1 y

i
t, be the

sustained damage between ages t− 1 and t, i.e., zt is the realization of Z(t−1,t]. The
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tuple θt , (kt,yt) is then the observed degradation signal of a component between

ages t− 1 and t.

The sequential Bayesian updating procedure – also referred to as prior-to-posterior

updating (Ghosh et al., 2007) – works as follows. When a new component is installed,

there is no observed degradation signal accumulated yet, and hence Λ and Φ follow

independent prior distributions, respectively. This joint prior density distribution,

denoted by f0
Λ,Φ(λ, φ) , fΛ(λ|α0, β0) · fΦ(φ|a0, b0), may be obtained from historical

or testing data. (In Section 2.B of the Appendix we discuss an appropriate estimation

procedure.) At component age t, we use the observed degradation signal θt and the

joint posterior density distribution of Λ and Φ updated at component age t − 1,

say f t−1
Λ,Φ (λ, φ) , fΛ,Φ(λ, φ|θ0, . . . ,θt−1), to derive the newly updated joint posterior

distribution of Λ and Φ, denoted by f tΛ,Φ(λ, φ) , fΛ,Φ(λ, φ|θ0, . . . ,θt).

For tractability purposes, so-called conjugate pairs, which have the appealing

computational property that the posterior is in the same family as the prior, are

often of interest in prior-to-posterior updating. It is well-known that the Gamma

distribution is a conjugate prior distribution for the Poisson distribution and that

a member of the exponential family has a conjugate prior whose density can be

expressed in the form (cf. Ghosh et al., 2007)

fΦ(φ|at, bt) = H(at, bt)e
atφ−btA(φ).

However, since we infer the joint distribution of Λ and Φ using the same observed

degradation signal, it is not evident which form the joint posterior distribution of Λ

and Φ takes. Proposition 2.1 shows that this joint posterior distribution at component

age t can be decomposed into two independent distributions of the same form with

updated parameters that only depend on the information obtained in the last period

(θt).

Proposition 2.1. Given the last observed degradation signal at component age

t, θt = (kt,yt), and the joint prior distribution f t−1
Λ,Φ (λ, φ) = fΛ(λ|αt−1, βt−1) ·

fΦ(φ|at−1, bt−1), the joint posterior distribution, f tΛ,Φ(λ, φ), is equal to fΛ(λ|αt−1 +

kt, βt−1 + 1) · fΦ(φ|at−1 + zt, bt−1 + kt).

Proof: The joint posterior distribution of Λ and Φ at component age t is

proportional to the product of the joint likelihood function and the joint prior

distributions on Λ and Φ at component age t − 1. The joint likelihood of observing
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θt given (λ, φ), denoted by L(θt|λ, φ), is equal to

L(θt|λ, φ) , P
[
K(t−1,t] = kt,Yt = yt|Λ = λ,Φ = φ

]
=
λkte−λ

kt!

kt∏
i=1

[
h(yit)e

φyit−A(φ)
]

=
λkte−λ

kt!
eφ

∑kt
i=1 y

i
t−kt·A(φ)

kt∏
i=1

h(yit).

where
0∏
i=1

· ≡ 1.

This yields

fΛ,Φ(λ, φ|θ0, . . . ,θt)

∝ L(θt|λ, φ) · fΛ(λ|αt−1, βt−1) · fΦ(φ|at−1, bt−1)

=
λkte−λ

kt!
eφ

∑kt
i=1 y

i
t−kt·A(φ)

kt∏
i=1

h(yit) ·
β
αt−1

t−1 λαt−1−1e−βt−1λ

Γ(αt−1)
×

H(at−1, bt−1)eat−1φ−bt−1A(φ)

∝ λαt−1+kt−1e−(βt−1+1)λH(at−1, bt−1)e

(
at−1+

∑kt
i=1 y

i
t

)
φ−
(
bt−1+kt

)
A(φ),

which is after normalization (over hyperparameters) equal to

(βt−1 + 1)(αt−1+kt)λαt−1+kt−1e−(βt−1+1)λ

Γ(αt−1 + kt)
×

H(at−1 +

kt∑
i=1

yit, bt−1 + kt)e

(
at−1+

∑kt
i=1 y

i
t

)
φ−
(
bt−1+kt

)
A(φ), (2.4)

where Γ(·) denotes the gamma function and H(at−1 +
∑kt
i=1 y

i
t, bt−1 + kt) is the

new normalization factor with the updated hyperparameters. Observe that the

joint posterior distribution of Λ and Φ in Equation (2.4) is equal to the product

of a Gamma(αt−1 + kt, βt−1 + 1) distribution and the general prior with updated

hyperparameters (at−1 +
∑kt
i=1 y

i
t, bt−1 + kt) for a member of the exponential family,

which completes the proof.

Proposition 2.1 induces a simple scheme to infer the true parameters of the

degradation process of a component with increasing accuracy. The following example

illustrates how the parameter of the compounding distribution can be inferred in the
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case of Geometrically distributed damages.

Example 2.3 (Continuation of Example 2.1). We endow a prior on the canonical

parameter φ with density

fΦ(φ|at, bt) = H(at, bt)e
btφ−atA(φ) = H(at, bt)e

φbt(1− eφ)at ,

or equivalently, parametrized in terms of p using p = 1− eφ,

fP (p|at, bt) = H(at, bt)p
at(1− p)bt ,

in which we recognize, after normalization, the Beta distribution with shape

parameter at − 1 and scale parameter bt − 1. Note also that at = a0 +
∑t
i=1 zi

and bt = b0 +
∑t
i=1 ki. 3

We now determine the posterior predictive distribution at component age t of the

random variable Z(t,t+1] given the learned information contained in αt, βt, at, and

bt.

Lemma 2.1. The posterior predictive distribution at component age t of the random

variable Z(t,t+1] given the joint posterior distribution of Λ and Φ, fΛ(λ|αt, βt) ·
fΦ(φ|at, bt), is equal to:

P
[
Z(t,t+1] = z|αt, βt, at, bt

]
=

∞∑
k=0

∫ +∞

−∞
f (k)(z|Φ = φ)fΦ(φ|at, bt)dφ

(
k + αt − 1

k

)(
1

βt + 1

)k (
βt

βt + 1

)αt
,

where f (k)(z|Φ = φ) denotes the k-fold convolution of the probability density (or

mass) function of the random variable {Y |Φ = φ}.

Proof: We first consider the posterior predictive distribution conditioned on

K(t,t+1],

P
[
Z(t,t+1] = z

∣∣K(t,t+1] = k, αt, βt, at, bt

]
=

∫ ∞
0

f (k)(z|Φ = φ)fΦ(φ|at, bt)dφ, (2.5)

where f (k)(z|Φ = φ) denotes the k-fold convolution of probability density (or mass)

function of the random variable {Y |Φ = φ}. The distribution of K(t,t+1] is a

continuous mixture of Poisson distributions where the mixing distribution of the

Poisson rate follows a Gamma(αt, βt) distribution, which is known to be the Negative
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Binomial distribution with p = 1
βt+1 and r = αt. Hence, we have

P
[
K(t,t+1] = k

∣∣αt, βt] =

(
k + αt − 1

k

)(
1

βt + 1

)k (
βt

βt + 1

)αt
. (2.6)

Unconditioning Equation (2.5) using Equation (2.6) yields the desired result.

Lemma 2.1 can be used to construct an updated posterior predictive distribution at

each component’s age t of the next observed damage increment in real time based on

the observed degradation signal. Hence, the posterior distribution of the degradation

parameters of the system is a Markov process whose evolution is induced by the

degradation trajectory of the current component.

At first sight, the posterior predictive distribution in Lemma 2.1 seems rather

intractable due to the convolution term involved. Fortunately, members of the natural

exponential family with a linear sufficient statistic are closed under convolution

with itself and hence possess a tractable form (Morris, 1982). Upon insertion of

the expression for this convolution term and the corresponding conjugate prior, the

posterior predictive distribution reduces to a closed-form expression that can be used

for computational purposes. This is illustrated in the example below.

Example 2.4 (Continuation of Example 2.3). In this example we use the parametriza-

tion in terms of unknown success probability p, which we treat as a random variable

denoted by P . Due to the discrete nature of the Geometric distribution and as

p ∈ (0, 1), we have by Lemma 2.1 that

P
[
Z(t,t+1] = z

∣∣K(t,t+1] =k, αt, βt, at, bt

]
=

∫ 1

0

P
[∑k

i=1
Yi = z

∣∣P = p
]
fP (p|at, bt)dp

=
1

B(at, bt)

(
z + k − 1

z

)∫ 1

0

pk(1− p)zpat−1(1− p)bt−1dp

=
B(k + at, z + bt)

B(at, bt)

(
z + k − 1

z

)
, (2.7)

where B(x, y) =
∫ 1

0
tx−1(1−t)y−1dt is the Beta function. Note that the distribution of

K(t,t+1] is a continuous mixture of Poisson distributions where the mixing distribution

of the Poisson rate follows a Gamma(αt, βt) distribution, which is known to be the

Negative Binomial distribution with success probability q = 1
βt+1 and r = αt number
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of required successes. Hence, we have

P
[
K(t,t+1] = k

∣∣αt, βt] =

(
k + αt − 1

k

)(
1

βt + 1

)k (
βt

βt + 1

)αt
. (2.8)

Unconditioning Equation (2.7) using Equation (2.8) yields the closed form expression

of the posterior predictive distribution:

P
[
Z(t,t+1] = z|αt, βt, at, bt

]
=

∞∑
k=0

B(k + at, z + bt)

B(at, bt)

(
z + k − 1

z

)(
k + αt − 1

k

)(
1

βt + 1

)k (
βt

βt + 1

)αt
.

3

2.2.3 Markov decision process formulation

Each component will incur a cost due to either corrective or preventive replacement.

If the degradation level at a decision epoch is greater than or equal to the failure

threshold ξ, then the failed component is replaced correctively at cost cu. If the

degradation level at a decision epoch does not exceed ξ, then we can either perform

preventive replacement at cost cp, or continue to the next decision epoch at no cost.

We assume that replacements take negligible time and that 0 < cp < cu <∞ to avoid

trivial cases.

Recall that each component stems from a heterogeneous population that includes

components with different degradation parameters λ and φ. Note that these

parameters cannot be observed; only the degradation signal θi for i = 1, · · · , t is

observable at component age t. We will therefore use a Bayesian MDP to model

the integrated problem of learning the degradation parameters of a component and

deciding when to replace.

We first observe that due to the results in the previous section, the information state of

a component at age t can be represented by (αt, βt, at, bt). Furthermore, the decision

maker knows the current degradation level x. The state at decision epoch τ is therefore

given by (x, α, β, a, b, τ) ∈ N6
0 where x denotes the degradation level of the component

that is in service (note that when the compounding distribution is continuous, then

x ∈ R≥0) and α, β, a, and b encode the most current degradation information of

the component that is in service. This six dimensional state representation can be

collapsed into an equivalent four dimensional state representation (x, n, t, τ) where n

denotes the number of shocks that the current component has sustained and t denotes
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its age. Indeed observe that by Proposition 2.1 we have α = α0 + n, β = β0 + t,

a = a0 + x, and b = b0 + n. This representation is insightful: All the information in

the degradation signal is encoded in the total degradation level, the number of shocks

sustained, and the age of the component. The crucial assumption for this collapse

is that the sufficient statistic T (x) for the damage distribution is equal to x, see

Equation (2.1). That is, all the relevant information for prior-to-posterior updating

is contained in only the total sum of the accumulated damage and the number of load

arrivals. If the sufficient statistic would not be linear in the damage, then the state

space would need to include all individual damage arrivals.

We are interested in finding the optimal replacement policy π∗ = {πτ}τ∈N0 that

minimizes the total expected discounted cost of corrective and preventive replacements

over an infinite horizon, where the costs are discounted by a factor γ ∈ (0, 1).

This policy is a sequence of decision rules that prescribe whether or not to perform

preventive maintenance if x < ξ. Since (i) the action space is finite, (ii) the costs per

decision epoch are uniformly bounded, and (iii) γ ∈ (0, 1), we know by Proposition

1.2.3 of Bertsekas (2007), that there exists an optimal Markov policy depending only

on state (x, n, t) independent of the decision epoch τ ∈ N0. Let

V (s) = inf
π∈Π

lim
T→∞

Es

[∑T
τ=1 γ

τC
(
Sτ , π(Sτ )

)]
denote the expected total discounted cost given that the process starts in state s =

(x, n, t) ∈ N3
0 where Sτ denotes the state of the component operating at decision

epoch τ , Π denotes the set of Markov policies, Es is the conditional expectation given

that the process starts in state s = (x, n, t), and C(s, π(s)) denotes the cost function

defined as

C(s, π(s)) =


cp if x < ξ and π(s) = replace,

0 if x < ξ and π(s) = continue,

cu if x ≥ ξ.

Due to this state space collapse, the posterior distribution of Z(t,t+1] is a function

of the state s = (x, n, t). Therefore we will use the shorthand notation Z(s) to

indicate the random variable Z(t,t+1] given the state s = (x, n, t). Similarly, we use

the shorthand notation K(s) and {Y (s)}i∈N for the random variable K(t,t+1] and the

random variables {Yi}i∈N, given state s = (x, n, t). Note that Z(s) and K(s) are

dependent random variables. This is intuitively clear as damage can only accumulate

when the component sustains shocks. It is convenient to define the random vector

A(s) = (Z(s),K(s), 1), where the probability distributions of each element of this

random vector can be determined with Proposition 2.1 and Lemma 2.1. Because (i)
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the action space is finite, (ii) the costs per decision epoch are uniformly bounded, and

(iii) γ ∈ (0, 1), we know that the optimal replacement policy π∗ satisfies the following

Bellman optimality equations (Bertsekas, 2007, Proposition 1.2.2):

V (s) =

cu + γE
[
V (s0 +A(s0))

]
, if x ≥ ξ,

min
{
cp + γE

[
V (s0 +A(s0))

]
; γEs

[
V (s+A(s))

] }
, if x < ξ,

(2.9)

where s0 , (0, 0, 0).

The first case in Equation (2.9) follows because failed components must be replaced

correctively at cost cu. If the component’s degradation level is less than ξ, we can

either perform a preventive replacement, which costs cp, or leave the component in

operation until the next decision epoch at no cost. Upon preventive or corrective

replacement, the parameters of the new component are unknown and need to be

learned as the replacement component ages. In the next section, we analyze the value

function defined in (2.9) and characterize the structure of the optimal replacement

policy.

2.3. Optimal replacement policy

This section presents structural results on the optimal replacement policy. First

we present two examples of optimal replacement policies that illustrate several

structural properties. Motivated by practice (see Section 2.6), we use the Geometric

compounding distribution (with support N0) in these illustrations.

2.3.1 Examples of optimal replacement policies

Figure 2.1 illustrates the optimal replacement policy for two different degradation

sample paths. In these examples, the solid black line depicts the observed degradation

path as the component ages, where a star denotes a shock arrival. The dashed line

depicts the optimal control limit, where at each decision epoch, the optimal action

is to carry out a preventive replacement if the degradation level is at or above the

optimal control limit. The failure level ξ is depicted with the dot-dashed line, so that

a corrective replacement has to be performed if the solid black line is at or above this

dot-dashed line.

We can state three properties that we consistently observe, which are best explained

by the illustrations in Figure 2.1.
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Figure 2.1 Two sample degradation paths and the optimal replacement policy, with α0 =
β0 = a0 = b0 = 1, cu = 4, cp = 1 and ξ = 10. For the compound Poisson processes that
generate the sample paths, we have λ = 0.25 and φ = 0.2 (left), and λ = 1.5 and φ = 0.8
(right).

1. The optimal replacement policy is a control limit policy where the control limit

depends on the past degradation signal.

2. The optimal control limit is non-decreasing in the age of the component, at least

for a fixed number of shock arrivals n.

3. If we compare two components whose degradation is identical at age t, then

the component with fewer shock arrivals has a lower control limit. This

is illustrated in Figure 2.1, where both components have accrued the same

cumulative degradation at age t = 12, yet the optimal policy prescribes to

preventively replace the component on the left, but not the component on the

right. Observe that the degradation path on the left may be described as more

volatile.

We remark that the monotonic behavior with respect to the number of arrived shocks

(property 3) is usually but not always observed. An example where this property is

violated is shown in Figure 2.2.
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Figure 2.2 Sample degradation path and the optimal replacement policy, with α0 = β0 = 1
and a0 = 60 and b0 = 10, cu = 4, cp = 1 and ξ = 10. For the compound Poisson process
that generates the sample path, we have λ = 1.75 and φ = 0.9.

2.3.2 Structural properties

In this section, we establish both the optimality of a control limit policy, as well as

the monotonic structure of this control limit (see observations above). Although

we illustrated the structural properties with the Geometric distribution as the

compounding distribution in the previous section, the results in this section generalize

to the complete class of distributions that we consider (see Section 2.2.1).

Lemma 2.1 shows how the decision maker can update the posterior predictive

distribution of the upcoming degradation increment by utilizing the observed

degradation signal s. Proposition 2.2 presents two properties that provide insight

into what the decision maker knows about the distribution of future degradation

increments. In this result, we use the following definition quantifying the concept of

one random variable being “larger” than another random variable:

Definition 2.1 (1.A.1 Definition, Shaked and Shanthikumar, 2007). A random

variable X is stochastically larger than a random variable Y in the usual stochastic

order, denoted by X ≥st Y , if and only if

P[X ≥ x] ≥ P[Y ≥ x], for all x ∈ R.

Definition 2.1 implies that random variable Y is less likely than random variable X
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to take on large values, where large means any value greater than x, and that this

holds for all x ∈ R.

Proposition 2.2 presents two stochastic ordering properties for the random variable

Z(s).

Proposition 2.2. The random variable Z(s) satisfies the following stochastic orders:

(i) Z(s) is stochastically decreasing in t in the usual stochastic order;

(ii) Z(s) is stochastically increasing in x in the usual stochastic order.

Proof: In proving the result, we use another stochastic order; the likelihood ratio

order.

Definition 2.2 (1.C.1 Definition, Shaked and Shanthikumar, 2007). Let X and Y be

continuous (discrete) random variables with probability densities f and g, respectively,

such that

g(t)

f(t)
increases in t over the union of the supports of X and Y

(here a/0 is taken to be equal to ∞ whenever a > 0), or, equivalently,

f(x)g(y) ≥ f(y)g(x), for all x ≤ y.

ThenX is said to be smaller than Y in the likelihood ratio order (denoted byX ≤lr Y ).

Note that the likelihood ratio order is stronger than the usual stochastic order, as such,

if X ≤lr Y then X ≤st Y , cf. (Shaked and Shanthikumar, 2007, Theorem 1.C.1).

We now proceed with the proofs of parts (i) and (ii) of Proposition 2.2:

(i) We consider two different component ages, t+ and t− (t+ > t−), with the

same degradation level x and the same total number of shocks, n, received

by the component. By Proposition 2.1, we have βt+ > βt− , whereas all other

hyperparameters (i.e., αt, at and bt) remain fixed when only t changes. Note

that

P[K(t,t+1] = u |Λ = λ] = e−λ
λu

u!
and P[Λ = λ |α, β] =

βα

Γ(α)
λα−1e−βλ.

We can then show that the random variables Λ(α, β) = {Λ |α, β} are

stochastically increasing in α and stochastically decreasing in β. This easily

follows from the appropriate likelihood ratio.
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We now show that the random variables K(λ) = {K(t,t+1] |Λ = λ} are

stochastically increasing in λ, i.e., λ ≤ λ′ implies K(λ) ≤st K(λ′). Consider

the likelihood ratio

P[K(λ′) = u]

P[K(λ) = u]
=

P[K(t,t+1] = u |Λ = λ′]

P[K(t,t+1] = u |Λ = λ]
= e−(λ′−λ)

(
λ′

λ

)u
.

It is immediately evident that for λ ≤ λ′, the ratio is increasing in u. This yields

the likelihood ratio order and as a consequence the usual stochastic order.

All in all, for t+ > t−, βt+ > βt− , thus Λ(α, βt+) ≤st Λ(α, βt−). From the

stochastic monotonicity of K(Λ), the above yields K(t+) := K(Λ(α, βt+)) ≤st

K(Λ(α, βt−)) := K(t−), cf. (Shaked and Shanthikumar, 2007, Theorem 1.A.2.).

Since the parameters of the random variables Yi remain fixed, we have

Z(t+,t++1] =

K(t+)∑
i=1

Yi ≤st

K(t−)∑
i=1

Yi = Z(t−,t−+1],

cf. (Shaked and Shanthikumar, 2007, Theorem 1.A.4.).

(ii) We consider two degradation levels x+ and x− (x+ > x−) at the same component

age t when we have observed the same total number of shocks n. By Proposition

2.1, we have ax+ > ax− , whereas all other hyperparameters are equivalent as

they remain fixed when only x changes.

It is well-known that a member of the one-parameter exponential family is

likelihood-ratio ordered (and thus stochastically ordered in the usual stochastic

order) according to its parameter (see e.g., Karlin and Rubin, 1956; Bapat and

Kochar, 1994). Hence, we know that (i) the random variables Y(φ) = {Y |Φ =

φ} are stochastically non-decreasing in φ, i.e., φ ≤ φ′ implies Y(φ) ≤st Y(φ′),

and (ii) the random variables Φ(a, b) = {Φ | a, b} are stochastically non-

decreasing in a, i.e., a ≤ a′ implies Φ(a, b) ≤st Φ(a′, b). Then, by Theorem 6 of

Huang and Mi (2020), which relates the stochastic order of a posterior predictive

distribution with the stochastic order of the posterior and the corresponding

conditional distribution, we can conclude that Y(x+) := Y(Φ(ax+ , b)) ≥st

Y(Φ(ax− , b)) =: Y(x−). The parameters of the random variables K(t,t+1] remain

fixed, hence

Z
(x+)
(t,t+1]

:=

K(t,t+1]∑
i=1

Y(x+)
i ≥st

K(t,t+1]∑
i=1

Y(x−)
i =: Z

(x+)
(t,t+1].
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Part (i) of Proposition 2.2 shows that older components will accumulate – in

expectation – less damage than younger components with the same deterioration

level. As a component ages without failing, the decision maker infers that large

increments are unlikely to happen for this component. The intuition behind Part

(ii) of Proposition 2.2 is that when more damage has accumulated already, then we

should expect more damage to accumulate in the future.

There is no monotone stochastic ordering of Z(s) in n in general as shown in the

following example.

Example 2.5 (Continuation of Example 2.4). Consider again the Geometric

compounding distribution with a Beta prior. Let b0−α0−1 > 0, then the expectation

of Z(s).

E[Z(s)] =
a(α0 + n)

β(b0 + n− 1)

increases in n. However, the second moment

E[Z(s)2] =
a(α0 + n)

β2(b0 + n− 1)2
×(

β3

(
2(a+ 1)

b0 + n− 2
+ β(b0 + n) + 2b0 + a− β + 2n

)
+ a(α0 + n)

)

is not monotonically increasing. (The derivation of these two moments is provided in

Appendix 2.A). For example, choosing b0 = 2.62, α0 = β = 1 and a = 10 yields that

the second moment is increasing for all n ≤ 15 and decreasing for all n ≥ 16. We

can therefore conclude that there is no monotone stochastic ordering of the random

variables Z(s) in n (cf. Shaked and Shanthikumar, 2007, Theorem 1.A.3). 3

The following two properties of the value function are essential to establish the

structure of the optimal replacement policy. Proposition 2.2 is pivotal to establish

these two properties. As such, here too there is no monotonic behavior of the value

function in n in general.

Lemma 2.2. The value function V (s) is

(i) non-increasing in t;

(ii) non-decreasing in x.
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Proof: We prove part (i) and omit the proof of part (ii) as its proof structure

follows verbatim.

For s = (x, n, t) ∈ N3
0, let V m(s) denote the value function at the m-th iteration

of the value iteration algorithm, so that the value iteration algorithm produces the

sequence {V m(s)}m∈N0
. We use induction on the steps of the value iteration algorithm

as a proof technique. Since (i) the action space is finite, (ii) the costs per decision

epoch are uniformly bounded, and (iii) γ ∈ (0, 1), we know that the value function

is guaranteed to converge to the optimal value function that satisfies Equation (2.9)

(i.e., V m(s) → V (s) for all s ∈ N3
0 as m → ∞) from any arbitrary starting position

through the value iteration algorithm (cf. Bertsekas, 2007, Proposition 1.2.1).

For s = (x, n, t) ∈ N3
0, we set V 0(s) = 0. Note that V 0(s) is non-increasing in t. We

assume that the theorem holds for the m-th iteration, i.e., V m(s) is non-increasing

in t. Then according to Equation (2.9), we have

V m+1(s) =cu + γE
[
V m(s0 +A(s0))

]
, if x ≥ ξ,

min
{
cp + γE

[
V m(s0 +A(s0))

]
; γEs

[
V m(s+A(s))

] }
, if x < ξ.

(2.10)

Since V m(s) is non-increasing in t by the induction hypothesis and the random

variable A(s) is stochastically decreasing in t in the usual stochastic order (cf.

Proposition 2.2 and the proof therein), the expectation Es

[
V m(s+A(s))

]
has this

property as well (cf. Shaked and Shanthikumar, 2007, Theorem 1.A.3). Because the

terms of the right-hand side of Equation (2.10) are non-increasing in t, V m+1(s) is

also non-increasing in t. Due to the convergence in which the structure of V m(s)

is preserved (cf. Bertsekas, 2007, Proposition 1.2.1), we conclude that V (s) is also

non-increasing in t .

We are now in the position to present the main result of this section.

Theorem 2.1. At each component age t ∈ N0, for a given number of shock arrivals

n ∈ N0, there exists a control limit δ(n,t), 0 < δ(n,t) ≤ ξ, such that the optimal action

is to carry out a preventive replacement if and only if x ≥ δ(n,t). The control limit

δ(n,t) is monotonically non-decreasing in t, for all n.

Proof: Preventive replacement is optimal when the following equation holds

cp + γE
[
V (A(s0))

]
≤ γEs

[
V (s+A(s))

]
. (2.11)
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Since the expectation E
[
V (A(s0))

]
is constant with respect to x, the left-hand side

of Inequality (2.11) is constant with respect to x. Based on part (ii) of Lemma 2.2,

the right-hand side of Inequality (2.11) is non-decreasing in x. Hence, if the optimal

decision is to carry out preventive replacement in state (δ(n,t), n, t), then the same

decision is optimal for any state (x, n, t) with x ≥ δ(n,t), which implies the control

limit policy.

Similarly, the right-hand side of Inequality (2.11) is non-increasing in t by part (i)

of Lemma 2.2. Hence, if it is optimal to carry out a preventive replacement in state

(δ(n,t), n, t), then it is optimal to carry out a preventive replacement in any state

(δ(n,t), n, t′) with t′ < t, which implies that δ(n,t) is monotonically non-decreasing in

t.

The optimal control limit is non-decreasing in t because as the component ages

without failing, the decision maker is increasingly assured that the currently installed

component degrades slowly relative to the general population of components.

The structural results are not only intuitive and convenient for the implementation

of an optimal policy in practice. They can also be exploited to decrease the

computational burden of finding the optimal policy by employing existing algorithms

that rely on these monotonicity properties such as the monotone policy iteration

algorithm (see Puterman, 2005, Section 6.11.2).

Remark 2.1. The structure of the optimal policy in Theorem 2.1 is characterized

under the discounted cost criterion. In Chapter 3, we show that for this type of

replacement problems, it can be shown that this structure is also optimal under the

average cost criterion. 3

2.4. Simulation study

This section reports the results of a comprehensive simulation study. Although the

established structural results hold for any one-parameter member of the exponential

family with positive support, we assume in this section, motivated by practice, that

the damages are Geometrically distributed. This simulation study starts from the

premise that the true hyperparameters of the degradation behavior are unknown

to the decision maker; they only have access to historical degradation data for

model calibration. This premise differs from previous contributions that use Bayesian

techniques to model real-time learning, where hyperparameters for prior distributions

are generally assumed to be given (see, e.g., Chen, 2010). This latter approach
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is, however, arguably not the case in practice. Indeed, decision makers only have

access to historical degradation data that they should leverage in order to estimate

hyperparameters. The main objective of this simulation study is, therefore, twofold:

1. To examine the value of integrating learning and decision making, which takes

into account explicitly that degradation of components is heterogeneous (value

of integration).

2. To assess how the amount of available historical degradation data that is used

for model calibration affects the performance (value of data).

To assess the value of integration and data, we define three heuristic approaches, all

of which start from the same historical degradation data, but differ in how they

calibrate their models, learn from the degradation of components, and integrate

learning with decision making. We shall compare the performance of each approach

with the performance of an Oracle who does know the true hyperparameters of

the degradation behavior of different components. The Oracle thus follows the

replacement policy that solves the Bellman optimality equations in (2.9), calibrated

with the true hyperparameters. We denote the Oracle policy by πO.

For each instance of our simulation study, which we describe in detail later, the

true hyperparameters of the Gamma and Beta prior distribution of Λ and Φ that

model the population heterogeneity are denoted by α̃, β̃, ã, and b̃. These are known

only to the Oracle. The historical degradation data that serves as starting point for

the heuristic approaches of that same instance is obtained by simulating degradation

paths of components whose degradation parameters λ and φ are drawn from a Gamma

distribution with the true hyperparameters α̃ and β̃, and a Beta distribution with ã

and b̃, respectively. We now proceed with defining the three heuristic approaches,

after which we describe the simulation set-up and discuss the results.

2.4.1 Offline approach

The first heuristic approach ignores both the population heterogeneity and the real-

time degradation signal, which is the current state-of-the-art. This approach assumes

that the degradation of each component upon installation follows a compound Poisson

process with the same parameters λ and φ. Under this assumption, the decision

maker faces the classical replacement problem for which we know that the optimal

replacement policy is given by a stationary control limit (e.g., Derman, 1963; Kolesar,

1966). The optimal control limit can be readily found by solving the following one
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dimensional Bellman optimality equations:

V (x) =


cu + γE

[
V (Z̃(λ, φ))

]
, if x ≥ ξ,

min

{
cp + γE

[
V (Z̃(λ, φ))

]
; γE

[
V (x+ Z̃(λ, φ))

]}
, if x < ξ,

(2.12)

where Z̃(λ, φ) ,
∑K(λ)
i=1 Yi(φ) denotes the degradation increment in between two

consecutive decision epochs, K(λ) is a Poisson distributed random variable with

parameter λ and the Yi(φ)’s are Geometrically distributed with parameter φ.

Hence, under the first approach, the decision maker approximates the degradation

parameters by the corresponding point estimates λ̄ and φ̄, which are obtained using

Maximum Likelihood Estimation (MLE) based on the available historical degradation

data, and then solves the optimality equations (2.12) with those estimates to obtain a

single control limit, that is used for all components. In the remainder of this section,

we refer to this approach as the offline approach because it ignores both the population

heterogeneity and the real-time degradation signal. We denote this approach by πN
since it is the most naive heuristic approach of all three approaches.

2.4.2 Myopic online approach

The second heuristic approach does utilize the real-time degradation signal to update

the point estimates of the degradation parameters of an individual component.

As such, this approach takes into account that the population of components

is heterogeneous. This approach is calibrated as follows. Given the historical

degradation paths, we estimate the initial hyperparameters α0, β0, a0, and b0, by

maximizing the likelihood of those degradation paths being induced by components

stemming from a population whose heterogeneity is modeled through a Gamma and

Beta distribution with these hyperparameters. Thus, based on the available historical

degradation data, we estimate the initial hyperparameters α0, β0, a0, and b0, using

MLE (further details regarding this MLE procedure are relegated to Appendix 2.B).

After calibration, this heuristic approach works as follows: At component age t, the

decision maker updates the information state encoded in fΛ(λ|αt, βt) and fΦ(φ|at, bt)
in the same way as in the original Bayesian model (cf. Proposition 2.1). The decision

maker then updates the point estimates of the degradation increment based on the

minimum mean square error (MMSE) estimator. In a Bayesian setting, MMSE

estimates correspond to posterior means. Hence, at component age t, the MMSE

estimates for the degradation parameters are given by λ̄t ,
∫∞

0
ufΛ(u|αt, βt)du =
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αt/βt and φ̄t ,
∫ 1

0
ufΦ(u|at, bt)du = at/(at + bt). The decision maker then computes

a control limit by solving the optimality equations (2.12), where the parameters of the

Poisson and of the Geometric distribution of the degradation increment Z̃(λ, φ) are

now given by λ̄t and φ̄t, respectively. Although the second approach partly captures

the Bayesian learning benefits, it does not integrate learning with optimization but

rather solves a myopic optimization problem repeatedly with the latest point estimates

of the degradation parameters. In the remainder of this section, we therefore refer to

this approach as the myopic online approach, denoted by πM.

2.4.3 Integrated Bayesian approach

The third heuristic approach is the most sophisticated approach. It is similar to πO in

that it follows the replacement policy that solves the Bellman optimality equations in

(2.9). However, as we have argued before, the true hyperparameters that model the

population heterogeneity are unknown to the decision maker in practice. As such, this

approach differs from πO in that we calibrate this approach using MLE, in the same

way as how we calibrate πM. That is, we estimate the initial hyperparameters α0,

β0, a0, and b0, using MLE based on the available historical degradation data. These

estimated hyperparameters are then used as input for finding the optimal replacement

policy through solving the Bellman optimality equations in (2.9). We henceforth refer

to this approach as the integrated Bayesian approach, denoted by πI . It is important

to note that this approach is precisely how our model should be applied in practice,

where the hyperparameters describing the heterogeneity of the component population

should be estimated from historical degradation data.

2.4.4 Results

The main performance metric in this simulation study is the gap between the long

run average cost rate induced by the Oracle policy and the offline approach, the

myopic online approach, and the integrated Bayesian approach, where the latter three

models are calibrated based on MLE. More formally, we are interested in %GAPπ =

100 · (Cπ − CπO )/CπO , where Cπ is the long run average cost rate of approach π ∈
{πI , πM, πN }. Here we would like to point out that although we studied the structure

of the integrated Bayesian policy under the discounted cost criterion in the previous

section, this structure also holds for the average cost criterion; see Remark 2.1.

To achieve the two main objectives stated in the beginning of this section, we set

up a large test bed consisting of instances obtained through all combinations of the
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parameter values in Table 2.1, with ξ = 20 and cp = 1. To vary the heterogeneity

in the population of components, we naturally vary the coefficient of variation of the

Gamma and Beta prior distributions of Λ and Φ, respectively, while keeping their

respective means fixed at 1 and 0.5 for all instances.

Table 2.1 Input parameter values for simulation study.

Input parameter No. of choices Values

1 Coefficient of variation of prior Gamma distribution, cvΛ 2 0.3, 0.6
2 Coefficient of variation of prior Beta distribution, cvΦ 2 0.01, 0.02
3 Corrective maintenance cost, cu 2 5, 10
4 Number of simulated degradation paths, ν 2 10, 50

For each instance of the test bed, we determine the true hyperparameters α̃, β̃, ã,

and b̃, based on the coefficient of variation of the Gamma and Beta distribution of

that instance (and their fixed means). We use these hyperparameters to compute πO
and we also simulate a number of degradation paths, denoted ν, corresponding to

that instance. We subsequently use these simulated degradation paths to calibrate

approaches πI , πM and πN . That is, we use MLE to estimate α0, β0, a0, and

b0, in case of πI and πM, and point estimates λ̄ and φ̄, in case of πN . We

then simulate 15 · 103 components, where upon installation of a new component,

its degradation parameters are drawn from a Gamma and Beta distribution with

the true hyperparameters α̃, β̃, ã and b̃. For each simulated component, we keep

track of the relevant cost rates and subsequently calculate %GAPπ for each approach

π ∈ {πI , πM, πN }. We repeat this procedure 30 times for each instance of the test

bed to ensure that the confidence intervals of the cost rates are sufficiently small.

Throughout this simulation study, we use a discount factor of 0.99 in solving the

corresponding optimality equations of each approach, and we truncate both state

variables n and t at a sufficiently large value (i.e., 40) in computing the optimal

policy under both πI and πO.

The results of the simulation study are summarized in Table 2.2. In this table,

we present the minimum, average, and maximum %GAPπ for each approach π ∈
{πI , πM, πN }. We first distinguish between subsets of instances with the same value

for a specific input parameter of Table 2.1 (first eight rows) and then present the

results for all instances (last row).

The following main observations can be drawn from Table 2.2: First, πI yields

excellent results with a gap of only 0.60% on average relative to the Oracle. Both

heuristic approaches πM and πN perform poorly, with gaps of 7.08% and 15.02%

on average relative to the Oracle. Ignoring both the degradation signal and the

heterogeneity in the population can be quite detrimental, as gaps of up to 24.04%
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Table 2.2 Results of simulation study.

%GAPπ

πI πM πN

Input Value Min Mean Max Min Mean Max Min Mean Max

cvΛ
0.3 0.05 0.58 1.26 3.52 6.14 10.05 7.91 13.97 22.93
0.6 0.15 0.63 1.34 5.24 8.02 11.43 10.16 16.08 24.04

cvΦ
0.01 0.05 0.46 1.02 3.52 5.54 8.11 7.91 11.31 15.25
0.02 0.25 0.75 1.34 5.83 8.62 11.43 13.85 18.73 24.04

cu
5 0.05 0.48 1.16 3.52 5.66 7.74 7.91 12.01 15.73

10 0.24 0.72 1.34 5.21 8.50 11.43 10.83 18.03 24.04

ν
10 0.42 0.95 1.34 3.97 7.23 11.43 8.63 15.46 24.04
50 0.05 0.26 0.49 3.52 6.93 11.36 7.91 14.58 23.00

Total 0.05 0.60 1.34 3.52 7.08 11.43 7.91 15.02 24.04

relative to the Oracle do occur under πN . Although learning the degradation signal

is beneficial, failing to integrate this with decision making directly can still lead to

gaps with the Oracle of up to 11.43%. All three approaches πI , πM, and πN seem

to perform worse when the heterogeneity in the population increases, and when the

cost of performing corrective maintenance becomes higher.

Second, it is generally believed that increasing the amount of data available for model

calibration leads to better decisions. However, when the underlying assumptions of

the model are wrong, then this may not be true. Indeed, the performance of both

heuristic approaches πM and πN does not increase considerably in the number of

simulated degradation paths that serve as input to these models. The performance

of πI increases however significantly when this number increases. Furthermore, even

when the amount of available data for estimating the population heterogeneity is

limited, the integrated Bayesian approach, πI , still yields excellent results.

2.5. Alternate settings

We have so far assumed that the degradation signal is relayed in real time and that

it provides a perfect observation of the actual degradation level. These assumptions

are in line with what we have observed at our industrial partner who instigated this

research (see also the case study in the next section). We note that there may be

practical settings where such assumptions are not justified. It is however intractable

to relax these assumptions and consequently compute optimal policies within our

current modeling framework. In this section, we therefore study the performance of

our integrated Bayesian approach when it is applied to settings where the degradation
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signal is imperfect or relayed periodically. We do so in a simulation study that follows

the same procedure as in the previous section.

2.5.1 Imperfect degradation signal

In line with most of the research on imperfect condition monitoring (e.g., Maillart,

2006; Kim and Makis, 2013), we model an imperfect degradation signal by construct-

ing a state-observation matrix Q that captures the stochastic relationship between

the actual degradation level Xt and the (imperfect) observation, denoted with X̄t,

that the decision maker observes. More formally, let Q ,
(
qij
)
ξ×ξ, whose entry

qij , P
[
X̄t = j | Xt = i

]
is equal to

ϕi(j|σ)∑ξ−1
j=0 ϕi(j|σ)

, (2.13)

where ϕx(y|σ) is the density function of a normal random variable with mean x

and standard deviation σ evaluated at y. Recall that in our simulation study, we

assume that the damages are integer valued, so that we have ξ non-failed states,

i.e. 0, 1, . . . , ξ − 1, that are not observable, and one failed state that is observable.

The matrix Q applies to the ξ non-failed states. Constructing this matrix using the

parameterization in Equation (2.13) is an approach often used in literature (see, e.g.,

Maillart, 2006; Kim and Makis, 2013; Liu et al., 2021), where the standard deviation

σ is a measure of the noise (or imperfectness) of the observations when the system has

not failed yet. By varying the value of σ, we can thus investigate the robustness of

our approach to the level of imperfectness of the observations. Note that by setting σ

equal to zero, we are in the situation that we have a perfect observation of the actual

degradation level.

2.5.2 Intermittent degradation signal

When the degradation signal is relayed periodically at decision epochs, the decision

maker has only access to the degradation level of the current component xt (and its

age t). However, to apply the integrated Bayesian approach we require the number

of sustained loading epochs nt too. To resolve this, we rely on the following recursive

formula to estimate nt:

n̄t =
xt(a0 + xt−1 − 1)

b0 + n̄t−1
, t > 0,
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and n̄0 = 0. We round to the nearest integer in case n̄t is not integral. This estimation

procedure has intuitive appeal. To obtain an estimate for n1 at t = 1, we divide the

degradation level x1 by the expected damage per loading epoch given the initial

hyperparameters a0 and b0 that are obtained through the MLE procedure for model

calibration, i.e. b0
(a0−1) . (Observe that this is the expectation of a Geometric random

variable whose parameter is Beta distributed with parameters a0 and b0, see Appendix

2.A for the derivation.) We then apply the updating rules of Proposition 2.1 using

this estimate, that is a1 = a0 + x1 and b1 = b0 + n̄1, and consequently apply the

same logic at t = 2 to obtain an estimate for n2. This procedure repeats until the

component is replaced.

2.5.3 Results

The long run average cost rate of the integrated Bayesian approach applied to the

imperfect degradation signal setting and the intermittent degradation signal setting

are denoted C imp
πI and C int

πI , respectively. We are interested in how the integrated

Bayesian approach performs in these alternate settings, and we therefore compare

said costs rates with the cost rate of the integrated Bayesian approach that does have

access to the true degradation signal in real time. That is, we compute %V ALint =

100 · (C int
πI − CπI )/CπI and %V ALimp = 100 · (C imp

πI − CπI )/CπI for each instance

of the test bed. The instances of our test bed are identical to the test bed of the

previous section, see Table 2.1. In the test bed of the imperfect degradation signal,

we additionally vary σ over 5 different levels, i.e. σ ∈ {0.25, 0.5, 0.75, 1, 1.25}. Note

that CπI is a lower bound on the cost rate of the optimal policy for both alternate

settings.

The average %V ALint and average %V ALimp are presented in Table 2.3 and Table

2.4, respectively. As before, we first distinguish between subsets of instances with the

same value for a specific input parameter and then present the results for all instances.

From Table 2.3 we see that when the degradation signal is not relayed in real time, our

integrated Bayesian approach performs relatively poorly with an %V ALint of almost

9 percent on average. This also implies that relaying a degradation signal in real time

rather than only periodically has considerable value. Indeed, it allows the decision

maker to not only learn the drift of a degradation signal (encoded in the degradation

level and the age) but also the volatility of the degradation signal; the latter can only

be inferred if one has access to the individual arrivals of loading epochs and their

corresponding damages in between decision epochs.

By contrast, our integrated Bayesian approach performs quite well when the
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Table 2.3 Results for intermittent degradation signals.

Input parameter Value %V ALint

Coefficient of variation of prior Gamma distribution, cvΛ
0.3 6.51
0.6 11.40

Coefficient of variation of prior Beta distribution, cvΦ
0.01 10.37
0.02 7.54

Number of simulated paths, ν
10 9.89
50 8.02

Total 8.95

Table 2.4 Results for imperfect degradation signals.

Input parameter Value %V ALimp

Coefficient of variation of prior Gamma distribution, cvΛ
0.3 3.29
0.6 5.95

Coefficient of variation of prior Beta distribution, cvΦ
0.01 4.59
0.02 4.65

Number of simulated paths, ν
10 4.66
50 4.58

Standard deviation of the noise, σ

0.25 0.01
0.5 1.67
0.75 3.50
1 6.70
1.25 11.23

Total 4.62

degradation signal is imperfect. Indeed, from Table 2.4 we see that %V ALimp is

less than 5 percent on average, and even remains below 3.5 percent for moderate

levels of noisiness.

2.6. Case study

Interventional X-ray (IXR) systems are used by physicians for minimally-invasive

image-guided procedures to diagnose and treat diseases in nearly every organ system.

X-ray tubes (denoted by the rectangle in Figure 2.3) are the most expensive

replacement components of an IXR system and therefore of major concern. Philips

Healthcare produces the IXR system and does maintenance and service for many
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hospitals that use the IXR system.

X-ray tube

Figure 2.3 Example of IXR system with X-ray tube denoted by rectangle. (Philips, 2020)

Unexpected downtime incidents have a major impact, especially for the patients whose

medical procedure is cut short or postponed. The cost of premature maintenance

is also substantial. Medical imaging equipment have list-prices on the order of one

million US dollars and the annual maintenance expenses of such equipment are around

10% of the list-price (ECRI, 2013). Since these medical imaging systems generally last

up to 10 years, roughly half of the total cost of ownership of such a system (excluding

downtime costs) consists of maintenance costs.

Philips healthcare faces the challenge of replacing the expensive X-ray tube before

failures occur but also to maximize the utilization of their useful lifetime. Below we

describe a case study on the most critical component of an IXR system: the X-ray

tube.

This section is organized as follows: We describe the dominant failure mechanism

of the X-ray tube (Section 2.6.1), give a description of the data set (Section

2.6.2), illustrate the operation of the optimal policy with real data (Section 2.6.3)

and compare the three approaches outlined in Section 2.4 on real data with a

bootstrapping study (Section 2.6.4).
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2.6.1 IXR Filaments

A failure analysis performed by Philips Healthcare indicates that X-ray tube failures

are predominantly caused by worn out filaments (Albano et al., 2019, Section 5.3.3.4).

These tungsten filaments are heated to a high temperature by a voltage differential

such that they emit electrons. These electrons are then accelerated by a high voltage

potential differential towards the target so that they emit X-rays when they hit the

target. The X-rays are then used to produce the desired image during image guided

medical procedures. This process is depicted in Figure 2.4.

The tungsten evaporates slowly when the filament heats up. This filament usually

develops a “hot-spot” at the thinnest location. The evaporation causes the hotspot

to become thinner with every image taken. This continues until the tungsten melts

at the hot-spot and the filament fails, see Covington (1973). The degradation

Electrons

Cooling 
liguid

Anode Target

CathodeFilament Window X-rays

High potential 
differential

Lead 
chamber

Potential 
differential

Figure 2.4 Simplified X-ray tube schematic.

state of a filament can be inferred from the resistance of the filament. Philips

Healthcare performed a statistical analysis to derive a single-dimensional health

indicator that governs the degradation state over time of a filament (Albano et al.,

2019, Section 7.9.7.12). This single-dimensional health indicator, the degradation, is

recorded in a database each time that an IXR system is used for an image-guided

procedure.
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2.6.2 Degradation data of IXR X-ray tubes

The data set of X-ray tube degradation consist of 52 time-series of degradation levels.

Let I be the set of all X-ray tubes for which there is available data; |I| = 52. The

time-series of a single X-ray tube i ∈ I is denoted Ji. Each datum j ∈ Ji in such

a time-series is a tuple (tj , xj)i of the age of the X-ray tube tj and the degradation

level xj at that age. Each tuple (tj , xj)i of X-ray tube i is generated when an IXR

system is used and each time-series consists of 20.000-300.000 data points originating

from a time period of 2-5 years. Due to confidentiality reasons we have left-truncated

the data and normalized the data. That is, all time-series start with x0 = 0 for

t0 = 0, and end at x|Ji| = 50 (i.e., ξ = 50) for all i ∈ I. For each time-series, we

computed the inter-arrival times (i.e., tj − tj−1) between succeeding data points and

damage increments per data point (i.e., xj − xj−1). After removing outliers in the

inter-arrival times due to either weekend or other prolonged non-operational periods

and removing data points for which the image-guided procedure was considered too

short to wear out the X-ray tube (i.e., shock arrival is regarded as non-critical), the

assumption that shocks arrive as a Poisson process was not rejected based on the

Kolmogorov-Smirnov test. Additionally, we normalized the time such that one unit

of time corresponds to roughly the operational time that is considered as minimally

achievable for performing maintenance practices from a practical perspective (e.g.,

sending a service engineer to the location of the hospital). Furthermore, based on the

Akaike information criterion, the damage size distribution is within the class of the

applicable probability distributions best represented by the Geometric distribution.

Finally, pair-wise Kolmogorov-Smirnov tests in our data set show that the parameters

of the distributions for the inter-arrival time and damage size, differed from one

component to another (i.e., there is heterogeneity).

2.6.3 Illustration of optimal replacement policy

Figure 2.5 shows two examples of the optimal replacement policy, applied a-posteriori

to two time-series of the filament data set. In these examples, and also throughout

the rest of this section, the ratio cu
cp

is set to 5 based on discussions with Philips

Healthcare. Furthermore, the prior values of the hyperparameters are estimated using

the MLE method described in Appendix 2.B applied on the remaining time-series,

which resulted in α0 = 44.88, β0 = 32.43, a0 = 4.29, and b0 = 4.76 for this example.

Figure 2.5 visually confirms that there is heterogeneity in both the shock arrival

process and damage size distribution. In this example, the optimal replacement policy

prescribes to preventively replace the X-ray tube at x = 29 and n = 14 at t = 12 (left)
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(a) Replacement when (x, n, t) = (29, 14, 12)
with δ(14,12) = 29.
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(b) Replacement when (x, n, t) = (39, 28, 31)
with δ(28,31) = 39.

Figure 2.5 Two examples of the optimal replacement policy applied to IXR filament
degradation paths.

and x = 39 and n = 28 at t = 31 (right), respectively, such that the useful lifetime of

the X-ray tube is best utilized. The examples illustrate how integration of learning

and decision making allows for the X-ray tube to be replaced early when necessary

and late when possible.

2.6.4 Bootstrapping study

The goal of this section is to illustrate the optimal replacement policy, and to assess

the performance of the integrated Bayesian approach compared to both the offline

and myopic online approach described in Section 2.4 on real-life data. The main

performance metric is therefore the relative cost savings that can be attained by using

the integrated Bayesian approach instead of the two heuristic approaches commonly

used in practice and described in Section 2.4. More formally, we are interested in

%SAVπ = 100 · (Cπ − CπI )/Cπ,
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where Cπ is the average cost rate of approach π ∈ {πM, πN }. In addition, we are

interested in the impact of the amount of available historical degradation data on the

%SAVπ of the two heuristic approaches.

We evaluate the performance metric %SAVπ retroactively on the data set described

in Section 2.6.2. To evaluate the impact of the amount of historical data available we

bootstrap the amount of available data. That is, we first sample with replacement

s ∈ {5, 10, 15} time-series from the data set I. We then use these time-series to

estimate the required parameters for the integrated Bayesian approach as well as for

the heuristic approaches using MLE (see Appendix 2.B for further details regarding

the MLE procedure). We then implement and evaluate both the integrated Bayesian

approach and the heuristic approaches on the remaining time-series that were not

used for the estimation. This procedure is repeated 150 times per choice of s, such

that the confidence intervals on the average cost rates are sufficiently small, resulting

in 450 bootstrap instances. The resulting average values for %SAVπ are reported in

Table 2.5. Observe that this bootstrapping study indicates the induced savings when

the integrated Bayesian approach is implemented instead of the offline approach or

the myopic online approach in a real-life setting.

Table 2.5 Results of bootstrapping study.

%SAVπ

Number of time-series πM πN

5 4.68 10.46
10 4.08 10.35
15 4.07 10.70

Total 4.28 10.50

Table 2.5 shows that the integrated Bayesian approach reduces the average cost rate

with 10.50% on average compared to the state-of-the-art approach. Moreover, cost

savings of 4.28% can be attained by integrating the learning with the decision making

instead of using a data-driven approach that does not integrate the two. Moreover,

the attainable savings are not significantly influenced by the amount of available

historical degradation data. Hence, the integrated Bayesian approach does not need

a large amount of historical data to perform well. These results highlight the value of

the proposed method to integrate learning and decision making in a real-life setting.
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2.7. Conclusion

We have studied CBM of components that are subject to compound Poisson

degradation, where the compounding distribution is a member of the one-parameter

non-negative exponential family, with uncertainty in both degradation parameters of

components. Using conjugate prior pairs to model this double parameter uncertainty,

we have proposed a Bayesian MDP to analyze this decision problem. We have

characterized the optimal replacement policy as a control limit policy, where the

control limit is non-decreasing in the age of a component. Furthermore, we have

shown that the control limit also depends on the volatility of the observed degradation

signal of a component. This volatility can only be captured by observing the entire

degradation signal in real time.

In an extensive numerical study, we have shown that the integration of learning and

decision making performs close to an Oracle. By contrast, ignoring heterogeneity or

failing to integrate learning with decision making performs much worse. Furthermore,

we have shown that models that ignore population heterogeneity do not perform

appreciably better when the amount of historical degradation data for model

calibration increases. We have also assessed the performance of the optimal policy

when applied in a setting where (i) the degradation signal is not perfect, and (ii)

the degradation signal is not relayed in real time. The results indicated that having

access to data in real time is valuable, while at the same time, this data need not be

perfect to achieve excellent performance.

Finally, we have established the practical value of integrated learning and decision

making based on a real-life data set of filament wear in an interventional X-ray

machine. We find that integrated learning can save up to 10.50% compared to

approaches without learning and up to 4.28% compared to an approach where learning

is separated from decision making.

For further research, it would be interesting to study the following extension. In

our modeling approach, we have assumed that the underlying degradation state can

be observed with certainty. It would be interesting to study the case with partially

observable degradation, in which case a partially observable MDP can be used to

tractably model the problem and analyze its structural properties.

The cost structure assumed in this chapter only deals with the trade-off between

costly failures and expensive preventive maintenance activities. One important factor

that this cost structure neglects is that deterioration can also have an impact on the

output of the production process that the system is used for. For instance, the quality

of the medical images that the X-ray machine of our case study produces can become
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worse as the filament wears, possibly to the point that the images cannot be used

anymore. In the next chapter, we shall take this so-called deterioration dependent

quality into account.
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2.A. Deriving moments for the compound Poisson pro-

cess

We first repeat some notation. Let s = (x, n, t) ∈ N3
0 and let Z(s) =

∑K(s)
i=1 Yi(s),

where K(s) is a Poisson random variable unknown rate λ, and {Yi(s)}i∈N is a sequence

of independent and (identically) Geometrically distributed random variables with

unknown success probability p, independent from K(s). We endow p and λ with

prior Beta and Gamma distributions, denoted by P and Λ, respectively. We can then

find the first and second moment of Z(s) by repeatedly using the tower property of

expectations and the law of total variance.

We have

E[Yi(s)] = E
[
E[Yi(s) | P ]

]
= E

[ P

1− P
]

=

∫ 1

0
p

1−pp
at−1(1− p)bt−1dp

B(at, bt)

=
B(at + 1, bt − 1)

B(at, bt)

=
at

bt − 1
, (2.14)

where the fourth equality follows from manipulating the term inside the integral to

the density of another Beta distribution.

Proceeding with E[K(s)], we have

E[K(s)] = E
[
E[K(s) | Λ]

]
= E[Λ]

=
αt
βt
. (2.15)

Combining (2.14) and (2.15) and using the updating rules of Proposition 2.1 for
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s = (x, n, t), we have

E[Z(s)] = E
[∑K(s)

i=1
Yi(s)

]
= E[K(s)]E[Yi(s)]

=
a0 + x

b0 + n− 1

α0 + n

β0 + t
.

For the second moment, we first compute the variance. We have

Var[Z(s)] = Var
[∑K(s)

i=1
Yi(s)

]
= E

[
Var
[∑K(s)

i=1
Yi(s) | K(s)

]]
+ Var

[
E
∑K(s)

i=1
Yi(s) | K(s)

]]
= E

[
K(s)

]
Var
[
Yi(s)

]
+ Var

[
K(s)

]
E
[
Yi(s)

]
=
αt
βt

Var
[
Yi(s)

]
+

at
bt − 1

Var
[
K(s)

]
, (2.16)

where E
[
Yi(s)] and E

[
K(s)

]
are computed in (2.14) and (2.15), respectively. We now

proceed with the two variances in (2.16). For Var
[
Yi(s)

]
we have

Var
[
Yi(s)

]
= E

[
Var
[
Yi(s) | P

]]
+ Var

[
E
[
Yi(s) | P

]]
= E

[ P

(1− P )2

]
+ Var

[ P

1− P
]. (2.17)

For E
[

P
(1−P )2

]
, we have

E
[ P

(1− P )2

]
=

∫ 1

0
p

(1−p)2 p
at−1(1− p)bt−1dp

B(at, bt)

=
B(at + 1, bt − 2)

B(at, bt)

=
at(at + bt − 1)

(bt − 2)(bt − 1)
, (2.18)

where the second equality follows from manipulating the term inside the integral to
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the density of another Beta distribution. Similarly, we can write

Var
[ P

1− P

]
= E

[ P 2

(1− P )2

]
− E2

[ P

(1− P )

]
=

B(at + 2, bt − 2)

B(at, bt)
−
( at
bt − 1

)2

=
at(at + 1)

(bt − 2)(bt − 1)
−
( at
bt − 1

)2

, (2.19)

which completes all the ingredients for Var
[
Yi(s)

]
. Using again the law of total

variance, we can compute Var
[
K(s)

]
as follows

Var
[
K(s)

]
= E

[
Var
[
K(s) | Λ

]]
+ Var

[
E
[
K(s) | Λ

]]
= E

[
Λ
]

+ Var
[
Λ
]

=
αt
βt

+
αt
β2
t

. (2.20)

Plugging (2.18) and (2.19) in (2.17), and combining this with (2.20) in (2.16) gives us

Var[Z(s)]. We can then use the variance expansion Var[Z(s)] = E[Z(s)2]−E2[Z(s)] to

obtain an explicit expression for the second moment in terms of the hyperparameters

associated with state s = (x, n, t).

2.B. Maximum likelihood estimation

Let I denote the set containing all simulated sample paths (without maintenance).

For each sample path i ∈ I, we let xi, ni, and ti, denote, respectively, the total damage

accumulated by the component, the number of critical loading epochs sustained by

the component, and the number of decision epochs that the component was operated

until its failure. Thus the tuple si = (xi, ni, ti) contains all relevant information for

sample path i. Because the prior distributions of Φ and Λ are independent, we next

look at their respective likelihoods given the set of simulated degradation paths I
separately.

From Equation (2.5) we know that the likelihood of the degradation paths in I being

induced by components stemming from a population whose degradation parameter Φ
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follows a Beta prior distribution with parameters a0 and b0 is given by

LΦ(s1, . . . , s|I| | a0, b0) =

|I|∏
i=1

[
B(ni + a0, xi + b0)

B(a0, b0)

(
xi + ni − 1

xi

)]
.

Observe that the number of critical loading epochs sustained by the i-th component

of age ti has a Poisson distribution with parameter tiΛ, where Λ ∼ Γ(α0, β0). By the

scaling property of the Gamma distribution, this number is therefore a continuous

mixture of Poisson distributions where the mixing distribution of the Poisson rate

follows a Γ(α0, β0/ti) distribution, which is known to be a Negative Binomial (or

Pascal) distribution with parameters r = α0 and p = ti
β0+ti

. Hence, the likelihood of

the degradation paths in I being induced by components stemming from a population

whose degradation parameter Λ follows a Gamma prior distribution with parameters

α0 and β0 is given by

LΛ(s1, . . . , s|I| |α0, β0) =

|I|∏
i=1

[(
ni + α0 − 1

ni

)(
ti

β0 + ti

)ni ( β0

β0 + ti

)α0
]
.

We are interested in maximizing both likelihoods. For convenience, we maximize the

log likelihoods. That is,

arg max
α0,β0,a0,b0

lnLΛ(s1, . . . , s|I| |α0, β0) + lnLφ(s1, . . . , s|I| | a0, b0),

which is a nonlinear multidimensional maximization problem that can be solved using

standard numerical methods (e.g., the Nelder-Mead method).





Chapter 3

Joint optimization of

condition-based maintenance

and process control with drift

uncertainty

3.1. Introduction

In the previous chapter, we developed and analyzed a mathematical model to

study the essential condition-based maintenance (CBM) trade-off between preventive

maintenance versus corrective maintenance to improve the availability of technical

systems. In practice, however, it is not only the availability, but also the conditions

under which these systems operate when they are up and running that are of crucial

importance. The latter is the case because these systems are often used for production

processes, so that poor operating conditions can be detrimental for the output quality

of the system. For instance, lithography machines in semiconductor fabrication plants

can only produce microcircuits when up and running, while if they are running, even

the slightest deviations in machine-related characteristics (e.g., internal pressure,

This chapter is based on Drent and Kapodistria (2021).
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temperature) from good operating conditions can have a huge detrimental impact

on the quality of the produced microcircuits (Senoner et al., 2021). The cost of

poor quality can be significant. In the manufacturing industry, poor quality typically

amounts to 10% to 30% of annual revenues (Bell, 2020). Motivated by such cost

estimates, manufacturers continuously seek to achieve two goals: (i) improve system

availability, and (ii) guarantee high production output quality. The first goal, as seen

already in the previous chapters, can be achieved by using smart CBM models (such

as the one developed in the previous chapter). To achieve the second goal, (statistical)

process control (PC) of the production process is arguably the most pivotal function

to resort to.

CBM and PC are conceivably related, especially if they utilize real-time data

generated from the same process characteristic, yet most researchers have so far

treated them independently. In practice they have also been treated predominantly

in isolation, although the necessity of their joint treatment has been recognized as

imperative for potential cost reductions by current best-in-class decision makers in

asset management (Coleman et al., 2017; Blackwell et al., 2017). Consequently, there

is an urgent need for methods that both manage CBM and PC in an integrated way

and better incorporate real-time data. The objective of the present chapter is to

address this need by developing a unified data-driven model that treats CBM and PC

as a joint optimization problem and establishing the structural form of the optimal

policy.

One of the tenets of PC is that there is a relationship between the production process’

operating conditions and its output quality, which can be monitored through real-

time data of a process characteristic (e.g., temperature, vibrations, pressure). CBM

is more prescriptive in nature and prescribes maintenance actions based on data

collected about a critical characteristic indicative of the equipment’s degradation and

hence proneness to imminent failure. In order to integrate the two, in this chapter we

assume that there is a single characteristic suitable for both PC and CBM purposes,

henceforth referred to as the process characteristic.

In this chapter, we model this process characteristic as a Brownian motion with

constant drift and constant volatility. The Brownian motion falls into a different class

of deterioration processes than the jump process considered in the previous chapter.

For a jump process, damage accumulates at discrete epochs, while for the Brownian

motion considered in this chapter, damage accumulates in a continuous fashion. A

Brownian motion has often been used for degradation behavior modeling in the CBM

literature (see e.g., Elwany et al., 2011; Liu et al., 2017; Si et al., 2018), but it is rather

unconventional in PC literature. Traditionally, in PC, one or multiple samples of the
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production output are sequentially taken to infer whether the production process has

shifted from an in-control to an out-of-control state. The advent of technology –

specifically the IoT that allows the equipment and the production process itself to

be accurately monitored in real-time – makes such an approach outdated (Blackwell

et al., 2017; Olsen and Tomlin, 2020). We therefore instead assume that the drift

of the process characteristic is unknown, which we infer directly from real-time data.

This drift term can be interpreted as the tendency to move away from the perfect

operational state over time (in Section 3.2.1, we discuss this in more detail). We

remark that since samples in traditional PC are usually modeled as Normal random

variables (see, e.g., Tagaras and Nikolaidis, 2002; Panagiotidou and Tagaras, 2010),

these conventional models can be seen as time-invariant cases of our model.

We model this problem as a sequential decision problem similar to the approach in the

previous chapter. At scheduled, discrete epochs, the decision maker acquires data of

the process characteristic and processes this data using Bayesian learning to obtain a

posterior distribution over the future evolution of the process. Unlike the model in the

previous chapter, the process characteristic need not be monitored continuously but

only at these discrete epochs. A decision is then made to either perform preventive

maintenance (and restore the production process) or to continue the production

process – with (i) the risk of sudden failure of the manufacturing equipment, and (ii)

possibly poor output quality – until the next decision epoch. We build an infinite-

horizon Bayesian Markov decision problem (MDP) where the dynamics are governed

by the posterior predictive distribution of the process characteristic, so that learning

and optimization are integrated.

We assume the same cost structure as in the previous chapter: corrective maintenance

upon failure is more expensive than performing preventive maintenance, but we

additionally impose costs that relate to quality. To model the increased operational

cost and/or decreased product quality, we assume that operational costs increase in

the deviation of the process characteristic from the perfect operational state. By

adopting this cost structure, we incentivize that the process remains close to good

operating conditions. We further make the novel assumption that equipment fails

if the process characteristic deviates more than a certain threshold from the perfect

operational state. Virtually all research in the area of CBM assumes that equipment

failure results from a gradual accumulation of damage that at some point exceeds

a threshold (see Jardine et al. (2006) and Alaswad and Xiang (2017) for excellent

overviews). However, in many practical applications, it is not per se the amount of

accumulated damage itself, but rather the absolute deviation from normal operating

conditions – of which an accumulation of damage is an example – that is instrumental

in the failure. This is a subtle difference, yet this technicality renders conventional
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proof techniques to establish structural properties not applicable. We overcome this

challenge by translating the original MDP into an alternative MDP which does allow

for establishing structural properties of the optimal policy.

3.1.1 Contributions

The main contributions of this chapter can be summarized as follows:

1. We propose and analyze a novel joint CBM and PC model and characterize

the structural form of the optimal policy under standard cost and operating

assumptions. We establish the optimality of an intuitive and easy-to-implement

bandwidth policy that is monotone in the age of the production process, under

both the discounted cost and the average cost criterion. With this bandwidth

policy, the production process is continued as long as the process characteristic

is within a bandwidth that is described by both an upper and a lower control

limit. This bandwidth policy thus has characteristics both of control charts

often used in the PC literature and of control limit policies typically established

in the CBM literature.

2. We show that for archetypal replacement problems similar to the one treated

in this chapter (and also in Chapter 2), there is a straightforward road map

to show that the optimal average cost criterion policy can be obtained as a

limit of the discounted cost model when the discount factor approaches 1 from

below. This is generally speaking highly nontrivial and often an onerous task

that heavily depends on the context. We believe that this proof can also be used

to characterize structural properties under the average cost criterion in other

replacement problems.

3. From a CBM perspective, we are the first to report structural results for

CBM optimization when failures occur if the absolute deviation exceeds a

threshold. From a PC perspective, we make two novel contributions. First,

we adopt a continuous set of operational states instead of only an in- and out-

of-control-state. Secondly, we model the process characteristic directly by a

non-stationary stochastic process characterized by an unknown parameter –

as opposed to computing latent variables (e.g., proportions, means, variances)

based on samples of a stationary process – to guide decision making.

4. In an extensive simulation study, we numerically show that the optimal policy

performs excellently compared to a clairvoyant policy that a-priori knows the

true drift – with relative cost gaps of 2.1% on average. The results also suggest
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that the data-driven policy is robust against misspecification of the initial (prior)

parameters, which is appealing for practitioners who would like to implement the

policy but do not (yet) have data to accurately estimate the initial parameters.

3.1.2 Organization

The remainder of this chapter is organized as follows. In Section 3.2, we present the

problem formulation. We discuss the model in Section 3.2.1, the Bayesian framework

in Section 3.2.2, and the optimization problem the decision maker faces in Section

3.2.3. Section 3.3 contains the main results. We present examples of the optimal

joint PC and CBM policy in Section 3.3.1, and analytically establish the structural

form in Sections 3.3.2 and 3.3.3 under the discounted cost criterion. In Section 3.3.4,

we extend these results to the average cost setting. In Section 3.4, we benchmark

the optimal policy when the drift is unknown with the performance of a clairvoyant

policy that has access to the true value of the drift. Section 3.5 provides concluding

remarks.

3.2. Problem formulation

In this section, we subsequently introduce the model, describe the process character-

istics and discuss how its unknown parameter can be inferred from real-time data.

We conclude with a formal description of the optimization problem that the decision

maker wishes to solve.

3.2.1 Model description

Consider manufacturing equipment that is used for production processes and which

may operate in different operational states. We observe real-time data of a process

characteristic statistic (e.g., vibrations, temperature, pressure et cetera) at equally

spaced discrete time epochs t ∈ {0, 1, . . .}, where we assume, without loss of generality,

1 time unit between two consecutive observations. Each time the decision maker

observes the signal, the process characteristic indicates the operational state of the

system. We henceforth use the wording operational state and process characteristic

interchangeably, as they refer to the same entity. We model the process characteristic
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{Xt : t ≥ 0} as a Brownian motion with unknown drift α:

Xt = αt+ σ̄Wt, (3.1)

where σ̄ is the known volatility of the process characteristic, and {Wt : t ≥ 0} is a

standard Wiener process which can be interpreted as the randomness of the process

characteristic. We thus use a continuous-time model for the process characteristic,

while the decision maker can only interfere with the equipment at equally spaced

decision epochs. We assume that the perfect operational state is 0, and that X0 = 0,

so that a new equipment starts in the perfect operational state. The unknown drift

α thus models the mean tendency, per unit time, of the process characteristic to

drift away from the perfect operational state over time. We shall henceforth call this

process deterioration of the equipment and of the production process.

Let ξ > 0 denote the failure threshold, so that the equipment fails if the absolute value

of the process characteristic is greater than or equal to ξ at a decision epoch (recall that

the perfect operational state is 0 by convention). We assume that the set of operational

states of the equipment is a bounded, open, and symmetric interval centered around

the perfect operational state, viz. (−ξ, ξ). At each decision epoch, the equipment can

reside in one of the failed states, i.e. (−∞,−ξ] or [ξ,∞), or in an operational state.

If the equipment is operational, which occurs when |Xt| < ξ, the decision maker has

to decide whether to instantaneously perform preventive maintenance, or continue to

the next epoch risking sudden failure of the equipment. If the equipment fails, which

occurs when |Xt| ≥ ξ, the system needs to be correctively maintained. Here, we make

the common assumption (see, e.g., Elwany et al., 2011; Liu et al., 2017) that if the

process characteristic crosses the failure threshold in between decision epochs and

then returns to an operational state at the next decision epoch, that this does not

constitute a failure. It is important to note that after a maintenance activity, either

corrective or preventive, the newly installed system has a new drift term – which need

not be the same as in the replaced system – that the decision maker needs to infer

again, and that the stochastic process Xt is reset to t = 0. In the remainder, we shall

therefore also refer to t as the age of a piece of equipment, which can thus also be

interpreted as the time since the last maintenance activity.

Two kinds of costs are incurred: operating costs and maintenance costs. The per

period operating cost and the preventive maintenance cost for a piece of equipment

that is in operational state x at an epoch are given by the functions l : (−ξ, ξ)→ R≥0

and cp : (−ξ, ξ)→ R≥0, respectively, and the corrective maintenance cost is cu <∞.

We make three assumptions regarding these cost functions.

Assumption 3.1. l(x) and cp(x) are even, bounded, and non-decreasing in |x|.
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Assumption 3.2. l(x)− cp(x) is non-decreasing in |x|.

Assumption 3.3. cu > max
{

supx{cp(x)}, supx{l(x)}
}

.

Assumption 3.1 ensures that the higher the deviation of the process is from the perfect

operational state, the higher the operational costs are. This reflects for instance

decreased product quality when the equipment is operating under deteriorated

conditions. Assumption 3.1 ensures that a preventive maintenance activity (e.g.,

calibration, lubrication) costs more when the restoration is from a more deteriorated

state. Assumption 3.2, often made in the literature (see e.g., Kawai et al., 2002;

Van Oosterom et al., 2017), implies that an increase in the deviation from the

perfect operational state leads to a more significant increase in operating costs than

in preventive maintenance costs. Assumption 3.3 avoids trivial analysis. These

assumptions are very general and allow a variety of settings, including the canonical

CBM and PC cost structures (see Remark 3.1).

Remark 3.1. The cost structure addresses the trade-off between quality costs

associated with deteriorated operational states and maintaining the equipment

(objective of PC), and the trade-off between early preventive maintenance that

potentially leads to high capital expenditures and the risk of failures (objective of

CBM). The cost structure extends the canonical settings typically assumed in the

CBM and PC literature. A single preventive maintenance cost, cp(x) , cp < cu, and

no operating costs, l(x) , 0, is often assumed in CBM models. Conventional PC

models only assume two states, in-control and out-of-control, which can be obtained

by constructing l(x) accordingly. 3

The objective is to find the policy that achieves the minimal expected cost over an

infinite horizon. We treat both the discounted cost – where costs are discounted at

rate γ ∈ (0, 1) – and the average cost criterion.

3.2.2 Learning the unknown drift

We assume that the drift α is a-priori unknown to the decision maker and can only

be inferred using data obtained through monitoring of the process characteristic. To

this end, we take a Bayesian approach and treat α as a random variable denoted

by Θ. For the initial prior distribution on this random variable Θ, we assume a

(univariate) Normal distribution with mean µ0 = 0 and variance σ2
0 . This assumption

is often made in the OM/OR literature when Bayesian inference involves a Gaussian

random variable due to the conjugacy of the Normal distribution (see e.g., Azoury
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and Miyaoka, 2009; Elwany et al., 2011; Russo, 2021). More importantly, it is also a

very natural and intuitive assumption for the application at hand. The initial prior

distribution models the decision maker’s belief about the drift before any data is

obtained after a new equipment is installed (either because of corrective or preventive

maintenance). At that stage, the decision maker has no reason to believe that the

likelihood of the drift being positive is larger than it being negative and vice versa, so

that the Normal distribution with mean 0 is the perfect candidate to model this initial

belief. Hence, upon installment of a new equipment, at t = 0, we have Θ0 ∼ N (0, σ2
0).

Recall that the process characteristic Xt satisfies Equation (3.1). Since the error

term follows a standard Wiener process, it is convenient to work with the observed

process characteristic increments which are independent and identically distributed

(due to the Wiener process’ properties). Let X̄t , [X1, X2 − X1, . . . , Xt − Xt−1]>

be the observed process characteristic increments up to time t, with > denoting the

transpose operator. We can then write the available data at time t in matrix form as

follows:

X̄t = Atα+ εt, (3.2)

where εt is a column vector with t independent Normally distributed random variables

with mean 0 and variance σ̄2, and At is the (t× 1) design matrix at time t:

At =
[
1 1 · · · 1

]>
. (3.3)

We now state a result from Bayesian regression theory (see e.g., Bishop, 2006, Section

3.3). At time t, conditional on the observed process characteristic increments, we

have Θt ∼ N
(
µt
(
X̄t

)
, σ2
t

(
X̄t

))
with:

σ2
t

(
X̄t

)
=
( 1

σ2
0

+
1

σ̄2
A>t At

)−1

, and µt
(
X̄t

)
= σ2

t

(
X̄t

) (µ0

σ2
0

+
1

σ̄2
A>t X̄t

)
. (3.4)

Combining (3.2) and (3.3), we have A>t At = t and A>t X̄t = Xt, from which it is

clear that the Bayesian inference only depends on the current process characteristic

Xt and the equipment’s age t. We use the notation µΘ(x, t) and σ2
Θ(t) to denote

the updated hyperparameters of the density of Θt when Xt = x is the last observed

signal at time t since the installation of the equipment (time and age are equivalent).
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Equation (3.4) reduces then to:

σ2
Θ(t) =

( 1

σ2
0

+
t

σ̄2

)−1

, and µΘ(x, t) = σ2
Θ(t)

x

σ̄2
, (3.5)

where σ2
0 is the initial prior parameter (recall that we assume that µ0 = 0), and σ̄2 is

the known variance of the error process.

At each decision epoch, the decision maker wishes to predict the operational state of

the process at the next decision epoch based on the observed data, so that one can

utilize this to ascertain the optimal course of action. Specifically, we are interested

in the posterior predictive distribution of Xt+1 conditional on the current process

characteristic Xt = x at time t, denoted with Xt+1(x, t). We then have the following

recursive formula for the distribution of the next deterioration signal:

Xt+1(x, t)
d
= x+ Θt + ε, (3.6)

where ε is a Normally distributed random variable with mean 0 and variance σ̄2

and
d
= denotes equality in distribution. It follows that Xt+1(x, t) is also Normally

distributed, that is:

Xt+1(x, t) ∼ N
(
µXt+1

(x, t), σ2
Xt+1

(t)
)
, (3.7)

with

µXt+1(x, t) , x+ µΘ(x, t) = x+
( 1

σ2
0

+
t

σ̄2

)−1 x

σ̄2
, (3.8)

σ2
Xt+1

(t) , σ2
Θ(t) + σ̄2 =

( 1

σ2
0

+
t

σ̄2

)−1

+ σ̄2. (3.9)

For notational brevity, we drop the conditioning on (x, t) when it is clear from the

context, and we use the notation φ(y|x, t) to represent the posterior predictive density

function of the next process characteristic when the current operational state is x at

time t.

Equation (3.6) together with the updating schemes in (3.5) can be used to construct

an updated posterior predictive distribution at each equipments age t of the next

operational state in real-time based on the observed data. Since the posterior

distribution of the signal process of the system is fully described by only the current

operational state x and the equipment’s age t, it is a Markov process. This allows us

to formulate the optimization problem as an MDP encoded on state variables x and

t, which is the objective of the next section.
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3.2.3 Markov decision process formulation

In this section, we formulate the optimization problem for the discounted cost model,

referred to as the γ-discounted cost model (in Section 3.3.4 we shall consider the

average cost model).

At each decision epoch τ ∈ N0 (N0 , N ∪ {0}), the decision maker can decide to do

maintenance (which is preventive if the process is in a non-failed state and corrective

otherwise) or continue if the system has not failed. Hence, if the operational state is

x, then the action space Ax can be written as

Ax =

{maintain, continue}, if |x| < ξ,

{maintain}, if |x| ≥ ξ.
(3.10)

Let Π be the set of all non-anticipatory policies. A policy π ∈ Π is a sequence

{πτ (x, t)}τ∈N0
that prescribes which feasible action πτ (x, t) ∈ Ax (cf. Equation

(3.10)) to take at all decision epochs τ ∈ N0. If at decision epoch τ , the state

is (xτ , tτ ) ∈ R × N0, with xτ the current operational state and tτ the age of the

equipment, and action πτ (xτ , tτ ) is followed, then the controlled dynamics of the

discrete-time system {(Xτ , Tτ )}τ∈N0 can be described as

(Xτ+1, Tτ+1) =
(
Xtτ+1(xτ , tτ ), tτ + 1

)
, if |xτ | < ξ and πτ (xτ , tτ ) = continue,

(0, 0), if πτ (xτ , tτ ) = maintain.
(3.11)

Note that from these dynamics, it is clear that if maintenance is performed – either

preventive or corrective – then a new equipment is installed with age t = 0, starting

in the perfect state x = 0.

Let

Vγ(x, t) = inf
π∈Π

lim
T→∞

E

[
T∑
τ=1

γτC
( (
Xτ , Tτ ), π(Xτ , Tτ

) )
| (X0, T0) = (x, t)

]
(3.12)

denote the optimal total expected discounted cost given that the process starts in

state (x, t) ∈ R × N0 at τ = 0, where (Xτ , Tτ ) denotes the state of the discrete-time
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system at decision epoch τ , and C(·, ·) denotes the cost function defined as

C
(
(x, t), π(x, t)

)
=


l(x), if |x| < ξ and π(x, t) = continue,

cp(x), if |x| < ξ and π(x, t) = maintain,

cu, if |x| ≥ ξ and π(x, t) = maintain.

(3.13)

The cost function thus makes the distinction between a preventive and corrective

maintenance action by assigning the corresponding cost to that specific action.

We are interested in finding the optimal policy π∗ = {πτ}τ∈N0 that attains the

infimum in (3.12). Since (i) the action space is finite, (ii) the costs per decision

epoch are uniformly bounded, and (iii) γ ∈ (0, 1), we know by Proposition 1.2.3 of

Bertsekas (2007), that there exists an optimal Markov policy π∗ depending only on

state (x, t) independent of the decision epoch τ ∈ N0. Because of (i)-(iii), we know by

Proposition 1.2.2 of Bertsekas (2007), that this optimal policy satisfies the following

Bellman optimality equations:

Vγ(x, t) =
cu + Vγ

(
0, 0
)
, if |x| ≥ ξ,

min
{
cp(x) + Vγ

(
0, 0
)

; l(x) + γ

∫
R
Vγ
(
y, t+ 1

)
φ(y|x, t)dy

}
, if |x| < ξ.

(3.14)

The first case in Equation (3.14) follows because equipment in the failed state must

be maintained correctively at a cost of cu. If the equipment’s process characteristic is

within the (−ξ, ξ) bandwidth, and hence the system is in an operational state, we can

either perform preventive maintenance, which costs cp(x), or leave the equipment in

operation until the next decision epoch, which costs l(x). The next operational state

is then a Normal random variable with mean x+µΘ(x, t) and variance σ2
Θ(t)+ σ̄2, see

Equation (3.6), which has density φ(y|x, t). Upon maintenance, the new equipment

with age t = 0 starts in the perfect operational state x = 0, and the drift parameter of

the stochastic process {Xt, t ≥ 0} is unknown again so that we start with the initial

prior, encoded in φ(y|0, 0) for Vγ(0, 0). Note that this evolution is in accordance with

the described dynamics of Equation (3.11), and the costs are incurred according to

Equation (3.13).

In the remainder, when we treat the discounted cost criterion, we drop the index γ

in the value function and write V (x, t) instead of Vγ(x, t). In Section 3.3.4, where we

show that the optimal policy under the average cost criterion can be obtained as a

limit of the γ-discounted cost model when γ ↑ 1, we shall re-use the notation Vγ(x, t)
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to explicitly write the dependence on γ.

We refer to the setting described above as the original MDP. In the next section, we

analyze the value function defined in Equation (3.14) and determine the structure of

the optimal joint PC and CBM policy.

3.3. Optimal policy

This section presents structural results on the optimal joint PC and CBM policy.

First, we present numerical examples of the optimal policy obtained via the value

iteration algorithm that illustrate several structural properties. We then analytically

establish these properties under both the discounted and average cost criterion.

3.3.1 Examples of the optimal policy

Figure 3.1 illustrates the optimal joint PC and CBM policy for two different sample

paths of the process characteristic Xt. In these examples, the dashed line with circles

depicts the observed process characteristic as the system ages (Xt) where the circles

represent the observations at discrete epochs. The solid lines depict the optimal lower

(LCL) and upper control limits (UCL), where at each decision epoch, the optimal

action is to carry out a preventive maintenance if the observed process characteristic

is at or below the LCL or at or above the UCL, otherwise the optimal action is to

continue. In these examples, ξ = 5, l(x) = |x|
ξ and cp(x) = max(1, |x|)

1
ξ , cu = 8,

γ = 0.99, σ̄2 = 1, and σ2
0 = 1. The sample path on the left is simulated with

drift term α = 0.25, while the sample path on the right is simulated with drift term

α = −0.25. In the example on the left, we perform preventive maintenance at t = 15,

while on the right we do so at t = 14 (both are marked with an arrow).

We can state two observations regarding the structure of the optimal policy that

consistently arise, which are best explained by the illustrations in Figure 3.1.

1. The optimal joint PC and CBM policy is a bandwidth policy characterized by

two control limits, referred to as LCL and UCL, such that we continue if the

observed process characteristic is within the bandwidth, and perform preventive

maintenance otherwise.

2. The LCL and the UCL are non-increasing and non-decreasing, respectively, in

the age of the equipment.
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Figure 3.1 Two examples of the optimal joint PC and CBM policy.

3.3.2 Structural results for the optimal policy

In the two theorems that follow, we establish that observations 1 and 2 are in fact

structural properties of the optimal data-driven joint PC and CBM policy. The proofs

of these results rely on Propositions 3.1 and 3.3, and Theorem 3.3, which we shall

formulate in Section 3.3.3.

The first theorem characterizes the monotonicity of the value function V (x, t) in both

x and t (see Figure 3.3 for an illustration of the result).

Theorem 3.1. The value function V (x, t) is:

(i) non-increasing in t for all x ∈ R;

(ii) even in x, and non-decreasing in |x| for all t ∈ N0.

Proof: The result follows directly from Proposition 3.3 and Proposition 3.1.

The following theorem establishes the optimality of a monotonic bandwidth policy.

Under a monotonic bandwidth policy, the equipment is kept operating until the ob-

served process characteristic exits a certain bandwidth (see Figure 3.1 for illustrations
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of the optimal policy). Since the optimal policy is even in x, we can denote this

bandwidth with one parameter; δ(t). The equipment is thus kept operating until the

observed process characteristic exceeds δ(t) or subceeds −δ(t). While control limit

policies, where the equipment operates until the deterioration exceeds a control limit,

have a longstanding and rich history in the CBM literature, this is the first result

that establishes the optimality of a bandwidth policy.

Theorem 3.2. At each equipment age t, there exists a bandwidth δ(t), 0 < δ(t) ≤ ξ,

such that the optimal action is to carry out preventive maintenance if and only if

|x| ≥ δ(t). The bandwidth δ(t) is monotonically non-decreasing in t.

Proof: The result follows directly from Theorem 3.3 and Proposition 3.1.

Theorem 3.2 thus allows practitioners to monitor the process characteristic and

interfere with the equipment when deemed necessary. The intuitive interpretation

of the monotonicity in the age of the equipment is explained by the artificial example

in Figure 3.2. In this example, we omit the sample paths as they obscure the message

Figure 3.2 Illustration of the monotone behavior of the bandwidth policy in the equipment’s
age.

it needs to convey, and only focus on two pairs of process characteristic observations

at two time epochs. If the process characteristic is at A (B) at time t = 4, then the
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decision maker believes that the drift is much larger in absolute value than when she

would observe the same value at time t = 14, i.e. A′ (B′). Moreover, the prediction

of the next process characteristic at t = 14 is not only smaller in expectation, it is

also more accurate (i.e., less variable) compared to t = 4. This can be readily verified

in Equation (3.5), which shows that the absolute value of the mean and variance of

the posterior belief of the unknown drift decrease in time. Since the prediction is

both smaller and less variable, the decision maker is conceivably less conservative in

decision making – that is, the preventive maintenance threshold is closer to the failure

threshold – at A′ (B′) than at A (B) where the prediction is both larger and more

variable.

The policy thus ensures that the equipment is replaced early when necessary and

late when possible, thereby maximizing the utilization of the useful lifetime. This

bandwidth policy is not only intuitive and easy to implement in practice, it can also

be exploited to decrease the computational time complexity of finding the optimal

policy by employing existing algorithms that rely on such monotonic properties (e.g.,

the monotone policy iteration algorithm, see Puterman, 2005, Section 6.11.2).

3.3.3 Proofs of the structural results for the optimal policy

Establishing the structural properties via analyzing the original optimality equations

as presented in Equation (3.14) is inherently complex due to the absolute value

operator: it renders the common methodological approach via an inductive argument

on the value iteration algorithm inapplicable. Such an argument relies on the

monotonic behavior of actions and costs, and the stochastic monotonicity in the state

variables, which all do not apply here.

Instead, we first introduce the so-called folded representation of the original MDP and

establish its structural properties. We then discuss how these properties translate to

the original MDP.

Chakravorty and Mahajan (2018) introduced the concept of the so-called folded MDPs

(in discrete-time). We refer the interested reader to Chakravorty and Mahajan (2018)

for a detailed discussion on this method and we discuss only the details that are

relevant to the work in this chapter. To formalize this, we first need some definitions

(taken from Chakravorty and Mahajan (2018) and adapted to our model).

Definition 3.1 (Even transition density). For a given action a ∈ Ax at time t, we

say that the controlled transition density pa(Xt+1 = y|Xt = x) , pa(y|x, t) on R×R
is even if for all x, y ∈ R, pa(y|x, t) = pa(−y| − x, t).
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Definition 3.2 (Even cost function). For a given action a ∈ Ax, we say that the cost

function ca(x, t) is even if for all (x, t) ∈ R× N0, ca(x, t) = ca(−x, t).

Definition 3.3 (Even MDP). We say that an MDP is even if for all state-action

pairs (x, t, a) ∈ R×N0 ×Ax, the cost function ca(x) and transition density pa(y|x, t)
are even.

Chakravorty and Mahajan (2018) show that if an MDP is even then one can construct

a folded MDP defined only on the non-negative values of the state space. One can

then analyze the structural properties of this folded MDP, which can then be unfolded

to the original MDP. We shall proceed with formalizing this idea in the remainder of

this subsection.

First of all, it is easy to see that the original MDP is even. To see this, first note that

the cost function C
(
(x, t), π(x, t)

)
is even for all actions, see Equation (3.13) together

with Assumption 3.1. Next, recall that in state (x, t), the process characteristic at

the next epoch, Xt+1(x, t), is Normal with mean µXt+1(x, t) = x + σ2
Θ(t)

(
x
σ̄2

)
and

variance σ2
Xt+1

(t) (see (3.7)). Then, for all t ∈ N0, we have for all x, y ∈ R that

φ(−y| − x, t) =
1√

2πσ2
Xt+1

(t)
exp

−(− y − µXt+1(−x, t)
)2

2σ2
Xt+1

(t)



=
1√

2πσ2
Xt+1

(t)
exp

−
(
− y + x+ σ2

Θ(t)
(
x
σ̄2

))2

2σ2
Xt+1

(t)



=
1√

2πσ2
Xt+1

(t)
exp

−
(
y − µXt+1(x, t)

)2

2σ2
Xt+1

(t)

 = φ(y|x, t).

Hence, based on Definition 3.1, the controlled transition density is even. Informally

speaking, this means that there is a symmetry in the posterior predictive density

with respect to the current observation of the process characteristic. That is, if one

observes a positive process characteristic x at some time t, then one believes that at

the next observation t + 1, the probability of observing some other positive value y

is the same as the probability of observing −y conditional on the observation −x at

time t. Observe that for this controlled density, we only need to consider the action

‘continue’, since it is the only action that involves stochasticity. Based on Definition
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3.3, we can conclude that the original MDP is even and we shall now construct the

folded MDP.

The folded MDP acts on (x, t) ∈ R≥0 × N0 with an adapted transition density, and

with the same cost structure. The adapted transition density is given by: φ̃(y|x, t) ,
φ(y|x, t) + φ(−y|x, t) for all t ∈ N0 and y ≥ 0. We denote the optimal expected

discounted cost and the optimal policy of the folded MDP with Ṽ (x, t) and π̃∗(x, t),

respectively. The folded MDP satisfies the following Bellman optimality equations:

Ṽ (x, t) =
cu + Ṽ

(
0, 0
)
, if x ≥ ξ,

min
{
cp(x) + Ṽ

(
0, 0
)

; l(x) + γ

∫
R≥0

Ṽ
(
y, t+ 1

)
φ̃(y|x, t)dy

}
, if x < ξ.

(3.15)

Since the original MDP is even, we can present the first result. This result establishes

the connection between the value function and the optimal policy of the original MDP

and its folded counterpart. This connection is pivotal to the analysis in the rest of

this section.

Proposition 3.1. For all t ∈ N0, the value function V (x, t) and the optimal policy

π∗(x, t) are even in x, and

(i) V (x, t) = V (−x, t) = Ṽ (|x|, t);

(ii) π∗(x, t) = π∗(−x, t) = π̃∗(|x|, t).

Proof: Since the original MDP is even, the result follows directly by applying

Proposition 2 of Chakravorty and Mahajan (2018) and Corollary 3 of Chakravorty

and Mahajan (2018).

Proposition 3.1 is illustrated in Figure 3.3 and Figure 3.4.

Figure 3.3 shows the value functions and Figure 3.4 shows the optimal policy of both

the original MDP and the folded MDP. The same settings as in the example from

Figure 3.1 are used, and we obtained these graphs by numerically computing the

solution to (3.14) and (3.15), respectively, using the value iteration algorithm. We

indeed observe that V (x, t) = V (−x, t) = Ṽ (|x|, t), and that π∗(x, t) = π∗(−x, t) =

π̃∗(|x|, t). The discontinuities at x = −5 and x = 5 are due to the high expected

cost associated with starting in the failed state while the kinks in the value functions

correspond to where the optimal action changes from continue to perform preventive



88 Chapter 3. Joint CBM and PC with drift uncertainty

(a) Original MDP (b) Folded MDP

Figure 3.3 Graphs of the value function of the original MDP (a) and the folded MDP (b)
as function of x for t ∈ {1, 5, 20}.

maintenance. Figure 3.3 further suggests that Ṽ (x, t) is non-decreasing in x, and

non-increasing in t, while Figure 3.4 suggests that the threshold induced by π̃(x, t) is

non-decreasing in t.

In the remainder of this subsection, we establish that these are in fact structural

properties of Ṽ (x, t) and π̃(x, t). We can then, based on Proposition 3.1, characterize

structural properties of the original MDP (both of the value function (3.14) and

optimal policy). Let X̃t+1(x, t) denote the posterior predictive random variable when

the state is (x, t) in the folded MDP. We first analyze the stochastic monotonicity of

X̃t+1(x, t) in x and t, which are instrumental in characterizing the optimal policy of

the folded MDP.

First, recall that in the original MDP, the posterior predictive random variable when

the state is (x, t) ∈ R × N0, Xt+1(x, t), is Normal with mean µXt+1
(x, t) = x +

µΘ(x, t) and variance σ2
Xt+1

(t) = σ2
Θ(t) + σ̄2. The folded posterior predictive random

variable X̃t+1(x, t) in state (x, t) ∈ R≥0 × N0 then has a Folded Normal distribution

with location µXt+1 and scale σ2
Xt+1

(i.e., the distribution of the absolute value of a

Normally distributed random variable with mean µXt+1 and variance σ2
Xt+1

). To see
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(a) Original MDP (b) Folded MDP

Figure 3.4 Graphs of the optimal policy of the original MDP (a) and the folded MPD (b).

this, note that:

φ̃(y|x, t) = φ(y|x, t) + φ(−y|x, t)

=
1√

2πσ2
Xt+1

exp

(
−

(y − µXt+1)2

2σ2
Xt+1

)
+

1√
2πσ2

Xt+1

exp

(
−

(y + µXt+1)2

2σ2
Xt+1

)
,

which is the density of a Folded Normal random variable with location µXt+1 and scale

σ2
Xt+1

. There is thus an intuitive connection between the posterior predictive random

variable in the original MDP which acts on the reals and its folded counterpart that

acts only on the non-negative part of the reals, namely X̃t+1(x, t)
d
= |Xt+1(x, t)|.

The following result, which is due to Wang and Wang (2011), presents stochastic

ordering properties (see Definition 2.1 in Chapter 2 for the definition of ≤st) of

the Folded Normal distribution which are instrumental in establishing the stochastic

monotonicity of X̃t+1(x, t) in x and t.

Lemma 3.1 (Theorem 1, Wang and Wang, 2011). Let X be a Normal random

variable with mean µX , variance σ2
X and probability density function φX(·), and let

Y be a Normal random variable with mean µY , variance σ2
Y and probability density
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function φY (·). Then,

|X| ≤st |Y | if and only if φX(0) ≥ φY (0) and σX ≤ σY .

Lemma 3.1 is quite remarkable if one compares this result to the stochastic ordering

properties of regular Normal random variables. It is well-known that Normal random

variables are ordered in the usual stochastic order if and only if their variances are

equal. Then, a smaller mean implies that it is smaller in the usual stochastic order

than one with a larger mean (see, e.g., Müller, 2001). For the setting with unequal

variances, there is no stochastic monotonicity in the usual stochastic order, even with

additional conditions on the order of the means. Lemma 3.1 establishes that this

is not the case if one looks at absolute Normal random variables, where the usual

stochastic order is established under additional conditions on the ordering of their

densities at 0.

The following result establishes the stochastic monotonicity of X̃t+1(x, t) in x and t,

which will be used to establish the structural properties of the value function of the

folded MDP.

Proposition 3.2. The random variable X̃t+1(x, t) satisfies the following stochastic

orders:

(i) for x+ ≥ x− ≥ 0, we have X̃t+1(x−, t) ≤st X̃t+1(x+, t) for all t ∈ N0;

(ii) for t+ ≥ t− ≥ 0 we have X̃t−+1(x, t−) ≥st X̃t++1(x, t+) for all x ∈ R≥0.

Proof: We first prove Assertion (i) and then Assertion (ii) of Proposition 3.2:

(i) For fixed t and for x− ≤ x+, only µXt+1
(x, t) changes, while σ2

Xt+1
(t) does not

change (cf. Equation (3.8) and Equation (3.9), respectively). Hence, in light

of Lemma 3.1, we only need to show that φ(0|x, t) is non-increasing in x. For

notational clarity, we write σ2 instead of σ2
Xt+1

(t) in the remainder of the proof

of Assertion (i). We have for φ(0|x, t),

φ(0|x, t) =
1√

2πσ2
exp

−(µXt+1
(x, t)

)2
2σ2

 . (3.16)

Taking the derivative of (3.16) with respect to x yields

∂φ(0|x, t)
∂x

=
−2µXt+1

(x, t)φ(0|x, t)
2σ2

∂µXt+1
(x, t)

∂x
.
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Since t ≥ 0, and σ0, σ̄, σ > 0, and µXt+1
(x, t) = x+

(
1
σ2

0
+ t
σ̄2

)−1
x
σ̄2 (cf. Equation

(3.8)), it is easy to see that µXt+1
(x, t) ≥ 0 and

∂µXt+1
(x,t)

∂x ≥ 0 for all x ≥ 0.

As φ(0|x, t) is non-negative (property of a density function), we conclude that
∂φ(0|x,t)

∂x ≤ 0 for all x ≥ 0, so that φ(0|x, t) is non-increasing in x. This completes

the proof of Assertion (i).

(ii) In light of Lemma 3.1, we need to show that, for fixed x ≥ 0, φ(0|x, t) is non-

decreasing in t and that, for t− ≤ t+, σ2
Xt++1

(t+) ≤ σ2
Xt−+1

(t−). Starting with

the latter, it is easy to see from Equation (3.9) that this inequality trivially

holds as the variance is inversely related to t. We now proceed with showing

that φ(0|x, t) is non-decreasing in t for t ≥ 0.

For notational clarity, define, using Equations (3.8) and (3.9), the auxiliary

function

f(x, t) ,
−1

2

(
µXt+1(x, t)

σXt+1(t)

)2

=
−x2

(
σ2

0(t+ 1) + σ̄2
)

2σ̄2
(
σ2

0t+ σ̄2
) .

Taking the partial derivative of f(x, t) with respect to t yields

∂f(x, t)

∂t
= − σ2

0x
2

2σ̄2
(
σ2

0t+ σ̄2
) +

σ2
0

(
σ2

0(t+ 1) + σ̄2
)
x2

2σ̄2
(
σ2

0t+ σ̄2
)2

=
σ4

0x
2

2σ̄2
(
σ2

0t+ σ̄2
)2 . (3.17)

We can then write φ(0|x, t) as

φ(0|x, t) =
1√

2πσXt+1
(t)

ef(x,t). (3.18)

Taking the derivative of (3.18) with respect to t yields

∂φ(0|x, t)
∂t

=
ef(x,t)

√
2π

(
1

σXt+1(t)

∂f(x, t)

∂t
− 1

σ2
Xt+1

(t)

∂σXt+1(t)

∂t

)
. (3.19)



92 Chapter 3. Joint CBM and PC with drift uncertainty

For the partial derivative of σXt+1
(t) with respect to t, we have

∂σXt+1
(t)

∂t
=

∂

∂t

√( 1

σ2
0

+
t

σ̄2

)−1

+ σ̄2

= −

(
2
( 1

σ2
0

+
t

σ̄2

)2

σ̄2σXt+1(t)

)−1

. (3.20)

Observe that since t ≥ 0, x ≥ 0, and σ0, σ̄, σ > 0, the partial derivative in (3.17)

is non-negative, while the partial derivative in (3.20) is non-positive. It is then

easy to see that (3.19) is non-negative. Hence, ∂φ(0|x,t)
∂t ≥ 0 for all t ≥ 0, so that

φ(0|x, t) is non-decreasing in t. This completes the proof of Assertion (ii).

The next result, building on the results of Proposition 3.2, shows that the value

function of the folded MDP, Ṽ (x, t), is monotone in both the age of the equipment and

the current position of the process characteristic (see Figure 3.3 for an illustration).

This result is instrumental in characterizing the optimal policy of the folded MDP.

Proposition 3.3. The value function Ṽ (x, t) is:

(i) non-decreasing in x for all t ∈ N0;

(ii) non-increasing in t for all x ∈ R≥0.

Proof: We prove these assertions using induction on the n-th step of the value

iteration algorithm. Let Ṽ n(x, t) denote the value function at the n-th iteration

of the value iteration algorithm. Since (i) the action space is finite, (ii) the costs

per decision epoch are uniformly bounded, and (iii) γ ∈ (0, 1), we know that the

value function is guaranteed to converge to the optimal value function that satisfies

Equation (3.15) (i.e., Ṽ n(x, t)→ Ṽ (x, t) for all x ∈ R≥0 and t ∈ N0 as n→∞) from

any arbitrary starting position through the value iteration algorithm (Bertsekas, 2007,

Proposition 1.2.1). We set Ṽ 0(x, t) = 0 for all x ∈ R≥0 and t ∈ N0, so that Ṽ 0(x, t) is

non-decreasing in x and non-increasing in t. Then according to Equation (3.15) (in

expectation form), we have

Ṽ n+1(x, t) =cu + Ṽ n(0, 0), if x ≥ ξ,
min

{
cp(x) + Ṽ n(0, 0) ; l(x) + γE

[
Ṽ n
(
X̃t+1(x, t), t+ 1

)]}
, if x < ξ.

(3.21)
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We now proceed with the proofs of Assertion (i) and (ii) of Proposition 3.3:

(i) We inductively assume that Ṽ n(x, t) is non-decreasing in x for all t ∈ N0. The

random variable X̃t+1(x, t) is stochastically non-decreasing in x in the usual

stochastic order (cf. Assertion (i) of Proposition 3.2), which together with the

induction hypothesis implies that the expectation E
[
Ṽ n
(
X̃t+1(x, t), t+ 1

)]
is

non-decreasing in x for all t ∈ N0 (cf. Shaked and Shanthikumar, 2007, Theorem

1.A.3). Since cp(x) and l(x) are non-decreasing in x (see Assumption 3.1), all

terms of the right-hand side of Equation (3.21) are non-decreasing in x and

hence Ṽ n+1(x, t) is also non-decreasing in x. Due to the convergence in which

the structure of Ṽ n(x, t) is preserved (cf. Bertsekas, 2007, Proposition 1.2.1),

we conclude that Ṽ (x, t) is also non-decreasing in x for all t ∈ N0.

(ii) The proof is similar to the proof of Assertion (i). Let us assume that Ṽ n(x, t)

(and hence Ṽ n(x, t + 1)) is non-increasing in t for all x ∈ R≥0. Since

the random variable X̃t+1(x, t) is stochastically non-increasing in t in the

usual stochastic order (cf. Assertion (ii) of Proposition 3.2), the expectation

E
[
Ṽ n
(
X̃t+1(x, t), t+ 1

)]
is non-increasing in t for all x ∈ R≥0 (cf. Shaked and

Shanthikumar, 2007, Theorem 1.A.3). Because the right-hand side of Equation

(3.21) is non-increasing in t, Ṽ n+1(x, t) is also non-increasing in t. Due to the

convergence in which the structure of Ṽ n(x, t) is preserved (cf. Bertsekas, 2007,

Proposition 1.2.1), we conclude that Ṽ (x, t) is also non-increasing in t for all

x ∈ R≥0.

The next result, the main result for the folded MDP, characterizes the structural

form of the optimal policy of the folded MDP (see Figure 3.4 for an illustration of the

result).

Theorem 3.3. Given the equipment’s age t, the optimal policy is an age-dependent

control limit policy with control limit δ̃(t), 0 < δ̃(t) ≤ ξ: the optimal action is to

carry out preventive maintenance if and only if x ≥ δ̃(t). The control limit δ̃(t) is

non-decreasing in t.

Proof: Preventive maintenance is optimal when the following equation holds

cp(x) + Ṽ (0, 0) ≤ l(x) + γE
[
Ṽ
(
X̃t+1(x, t), t+ 1

)]
,
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or equivalently when,

Ṽ (0, 0) ≤ l(x)− cp(x) + γE
[
Ṽ
(
X̃t+1(x, t), t+ 1

)]
. (3.22)

The left-hand side of Inequality (3.22) is constant with respect to x. Since the value

function Ṽ (x, t) is non-decreasing in x (cf. Assertion (i) of Proposition 3.3) and the

random variable X̃t+1(x, t) is stochastically non-decreasing in x in the usual stochastic

order (cf. Assertion (i) of Proposition 3.2), the expectation E
[
Ṽ
(
X̃t+1(x, t), t+ 1

)]
is non-decreasing in x (cf. Shaked and Shanthikumar, 2007, Theorem 1.A.3). Hence,

since l(x)− cp(x) is non-decreasing in x (see Assumption 3.2), we find that the right-

hand side of Inequality (3.22) is non-decreasing in x. Hence, if the optimal decision

is to carry out preventive maintenance in state (δ̃(t), t), then the same decision is

optimal for any state (x, t) with x ≥ δ̃(t), which implies the control limit policy.

Similarly, since the value function Ṽ (x, t) is non-increasing in t (cf. Assertion (ii) of

Proposition 3.3) and the random variable X̃t+1(x, t) is stochastically non-increasing in

t in the usual stochastic order (cf. Assertion (ii) of Proposition 3.2), the expectation

E
[
Ṽ
(
X̃t+1(x, t), t+ 1

)]
is non-increasing in t (cf. Shaked and Shanthikumar, 2007,

Theorem 1.A.3). Hence, the right-hand side of Inequality (3.22) is non-increasing in

t. Thus, if it is optimal to carry out preventive maintenance in state (δ̃(t), t), then

it is optimal to carry out preventive maintenance in any state (δ̃(t), t′) with t′ < t,

which implies that δ̃(t) is monotonically non-decreasing in t.

Theorem 3.3 establishes the optimality of a control limit policy, which is an archetypal

result in the CBM literature. The monotonicity of the control limit in the age has

also been established, albeit in different settings, by Elwany et al. (2011), Si et al.

(2018), Liu et al. (2017), and in Drent et al. (2020a) which is based on Chapter 2. The

intuition behind this monotonicity is that if the equipment ages, whilst everything else

is kept fixed, the next process characteristic is stochastically smaller (see Proposition

3.2) thereby allowing a control limit that is closer to the failure threshold.

These results complete the analysis of the folded MDP. Using these results for the

folded MDP, we can immediately establish the results in Theorems 3.1 and 3.2 for

the characterization of the optimal policy of the original MDP.

3.3.4 Average cost criterion

In this subsection, we shall demonstrate that the bandwidth policy (see Theorem 3.2),

which is optimal for the γ-discounted cost model, is also optimal under the expected
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average cost criterion, and can be obtained as a limit of the γ-discounted cost model

when γ ↑ 1. In the literature, there exist several versions of sufficient conditions that

guarantee this convergence for the average cost criterion (see Arapostathis et al. (1993)

for an overview). In the present chapter, we follow the conditions of Schäl (1993), who

considered general infinite-state MDPs with compact actions spaces. Before stating

Schäls conditions in the context of our setting, we first need to introduce two cost

quantities. Given a policy π and initial state (x, t), the expected total T-period cost

is

JTπ (x, t) = E
[∑T

τ=1 C
(
(Xτ , Tτ ), π(Xτ , Tτ )

)
| (X0, T0) = (x, t)

]
,

and the expected average cost per unit time is

Φπ(x, t) = lim sup
T→∞

JTπ (x, t)

T
,

where we use the same notation as in Section 3.2.3.

Schäl (1993) established a set of three sufficient conditions, but since our action space

is finite for each (x, t), i.e. continue or maintain, we only need to verify two of these.

The first condition ensures that there exists a policy for which the average cost is

finite.

Condition (G). There exists a policy π and an initial state (x, t) such that

Φπ(x, t) <∞.

The next condition ensures that the optimal discounted cost function Vγ(x, t) behaves

well as γ ↑ 1. It states that for any starting state (x, t) and any discount factor

γ ∈ (0, 1), the extra cost for not starting from some reference state is upper bounded,

and that this bound does not depend on the discount factor.

Condition (B). For each (x, t), we have that for some reference state (x0, t0),

sup
γ∈(0,1)

(
Vγ(x, t)− Vγ(x0, t0)

)
<∞.

The next result establishes that the optimal average cost policy can be obtained as

a limiting case of the γ-discounted optimal policy, denoted with πγ(x, t), when γ ↑ 1.

Theorem 3.4. There exists a stationary policy π∗ which is average cost optimal in
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the sense that, for all (x, t) ∈ R× N0,

Φπ∗ = inf
(x,t)∈R×N0

inf
π∈Π

Φπ(x, t) =: g,

and π∗ is limit discount optimal in the sense that for any (x, t) ∈ R× N0,

π∗(x, t) = lim
γ↑1

πγ(x, t).

Furthermore,

g = lim
γ↑1

(1− γ) inf
(x,t)∈R×N0

Vγ(x, t),

is the optimal average cost.

Proof: By Theorem 3.8 of Schäl (1993), we need to verify Condition (G) and (B).

We verify Condition (G) by constructing a policy for which the average cost per time

unit is bounded from above. We consider the failure-based policy, denoted with πCM ,

in which the decision maker only replaces the equipment upon failure and we compute

the long-run average cost rate using renewal reward theory. The installments of new

equipment constitute the renewal epochs, and we are interested in the expected cost

per cycle, as well as the expected cycle length.

For t ≥ 1, let X̄t , Xt − Xt−1 denote the random deterioration increment during

interval (t − 1, t], so that Xt =
∑t
i=1 X̄i with X0 = 0. Let τξ be the stopping time

τξ , inft∈N0{|Xt| ≥ ξ}, which is the decision epoch at which the equipment fails and

has to be replaced correctively. Since the X̄i’s are not identically zero and ξ <∞, we

know that E
[
τξ
]
<∞. Moreover, since X0 = 0, we also know that E

[
τξ
]
≥ 1. Since

supx{l(x)} < cu, we further know that the operating cost per time unit is at most cu,

so that the expected operating costs per cycle are bounded from above by E
[
τξ
]
· cu.

Thus, we can conclude that

ΦπCM (0, 0) =
E[expected operating costs per cycle] + cu

E[expected cycle length]
<

(
E
[
τξ
]

+ 1
)
· cu

1
<∞.

So Condition (G) holds.

We next verify Condition (B). Recall that the Bellman optimality equations are given

by (3.14). Since supx{cp(x)} < cu (see Assumption 3.3), we can rewrite (3.14) and
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bound the second branch using the inequality for the minimum operator as follows

Vγ(x, t) = cu + Vγ
(
0, 0
)
, if |x| ≥ ξ, and

Vγ(x, t) ≤ cp(x) + Vγ
(
0, 0
)
≤ cu + Vγ

(
0, 0
)
, if |x| < ξ.

All in all, Vγ(x, t) ≤ cu + Vγ
(
0, 0
)

for all (x, t) ∈ R×N0. Now, set (x0, t0) , (0, 0) as

the reference state, so that for all γ ∈ (0, 1), we have that, for all (x, t) ∈ R× N0,

Vγ(x, t)− Vγ
(
x0, t0

)
≤ cu.

Since cu <∞, Condition (B) holds, and the proof is completed.

Remark 3.2. Generally speaking, verifying Condition (G) and (B) is highly

nontrivial and often an onerous task that heavily depends on the context. However, in

archetypal replacement problems similar to the one in this chapter (where the action

space is usually finite), Condition (G) will be satisfied by a failure-based policy, and

Condition (B) can be verified since there is often a state that you can always enter

by paying a cost that is bounded from above by the corrective maintenance cost cu.

We therefore believe that the proof of Theorem 3.4 can be used for characterizing

the structural form of the optimal average cost policy in other replacement problems

(including the problem studied in Chapter 2). 3

3.4. Simulation study

In the previous section, we analytically established the structural properties of the

optimal joint real-time data-driven PC and CBM policy under both the discounted,

as well as the average cost criterion. This policy, henceforth denoted with πJ , can be

applied in practice when the drift is a-priori unknown and needs to be learned from

real-time observations of the process characteristic. A natural question to ask then

is: How well does the optimal policy perform compared to the optimal policy in the

case without uncertainty regarding the drift? In this section, we numerically evaluate

the answer to this question. Specifically, we report the results of a simulation study

in which we benchmark the performance of policy πJ against the best achievable

performance corresponding to a clairvoyant Oracle that knows the true value of the

drift of each newly installed equipment.

We first discuss the Oracle approach, after which we describe the simulation set-up

and discuss the results.
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3.4.1 Oracle policy

If at the installment of a new equipment, the value of the drift α is known to the

decision maker, then the optimal policy can be readily obtained by solving an MDP

with only one state: the process characteristic. This MDP satisfies the following

Bellman optimality equations:

V α(x) =

cu + V α
(
0
)
, if |x| ≥ ξ,

min
{
cp(x) + V α

(
0
)

; l(x) + γE
[
V α
(
x+ α+ Z

)]}
, if |x| < ξ,

(3.23)

where Z is Normally distributed with mean 0 and variance σ̄2, and V α(x) is the

minimal total expected discounted cost when the equipment with drift α starts with

process characteristic x. In this case, the only randomness stems from the noise/error

in the observations, modeled by the Wiener process. Since this policy is clairvoyant

by having access to the true value of α, we refer to it as the Oracle policy and denote

it with πO. From (3.23) it is easy to see that this policy is time independent and will

only depend on the process characteristic x.

We observed numerically that πO is also of a bandwidth type, but the UCL and LCL

need not be of the same absolute value. The reason for this is that if α < 0 (> 0), then

πO has a more conservative – closer to the perfect operational state – LCL (UCL)

and a less conservative – further from the perfect operational state – UCL (LCL).

Establishing this property analytically is complex since the MDP that satisfies (3.23)

is not even (see Definition 3.3), which renders the framework used in the previous

section not applicable. Nevertheless, we can still numerically obtain πO using the

value iteration algorithm and use the policy in our simulation study.

3.4.2 Simulation set-up

We perform a numerical experiment in which we vary five different input parameters

(see Table 3.1 for a summary) and assess all possible combinations of these five input

parameters (i.e. a full factorial numerical experiment). We use the cost functions

l(x) = |x|
β and cp(x) = max(1, |x|)

1
β , and let β ∈ {2, 4, 6}. We use three values

for the known volatility of the error process σ̄2 ∈ {1, 1.5, 2}, three values for the

corrective maintenance cost cu ∈ {6, 8, 12}, and four values for the failure threshold

ξ ∈ {8, 10, 12, 14}. Finally, in a simulation instance (we shortly describe the simulation

procedure), the drifts are sampled from a Normal distribution with true mean µ∗Θ and

variance σ2
0 = 1, and we use four values for µ∗Θ ∈ {0, 0.5, 1, 1.5}. These choices lead

to a total of 432 instances.
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Table 3.1 Input parameter values for simulation study.

Input parameter No. of choices Values

1 Volatility of process characteristic, σ̄2 3 1, 1.5, 2
2 True mean of Θ, µ∗Θ 4 0, 0.5, 1, 1.5
3 Corrective maintenance cost, cu 3 6, 8, 12
4 Failure threshold, ξ 4 8, 10, 12, 14
5 Cost parameter, β 3 2, 4, 6

The simulation procedure is as follows. For each instance,

Step 1: Compute policy πJ by numerically solving (3.14) using the value iteration

algorithm;

Step 2: Sample a drift, say α̂, from N (µ∗Θ, 1), and compute policy πO based on α̂

by numerically solving V α̂(x) using the value iteration algorithm;

Step 3: Simulate Nmax sample paths of the process characteristic {Xt, t ≥ 0} with

drift α̂ from t = 0 to failure, or until both policy πJ and πO have prescribed

maintenance, and record realized costs and lifetimes for both policies;

Step 4a: Compute the average cost per cycle for policy πJ and πO based on the

results of Step 3;

Step 4b: Compute the average cycle length for policy πJ and πO based on the results

of Step 3;

Step 5: Repeat Steps 2-4 smax times and compute the average of the cost rates

obtained at Step 4 to estimate the long-run average cost rate of policy πJ and

πO as the ratio of the sample average of the average cost per cycle (step 4a)

over the sample average of the average cycle length (step 4b).

We choose Nmax = 20 · 103 and smax = 3 · 103 so that the 95% confidence intervals

of the average cost rates computed in Step 5 are sufficiently small (max ≤ ±1%).

Note that in the simulation, the drift is sampled from a Normal distribution with

mean µ∗Θ and variance σ2
0 , while policy πJ initially assumes that the drift is Normally

distributed with mean 0 and variance σ2
0 . Hence by varying the value of µ∗Θ, we can

evaluate how robust the relative regret is with respect to the decision maker’s initial

belief. Finally, we use a discount factor that is close to 1, i.e. γ = 0.999, so that the

resulting policies are also optimal according to the average cost criterion (see Theorem

3.4).
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3.4.3 Results

We benchmark the performance of policy πJ by the notion of relative regret, i.e. the

percentage of expected additional cost relative to the clairvoyant Oracle policy πO.

We compute this relative regret as R = 100 · (CπJ − CπO )/CπO , where Cπ is the

long-run average cost rate (obtained via simulation) of policy π ∈ {πJ , πO}. Note

that as πO is unattainable in practice, the only purpose of R is to serve as an upper

bound on the relative regret with the best achievable performance.

The results of the simulation study are summarized in Table 3.2. In this table, we

present the minimum, average, and maximum R, where we first distinguish between

subsets of instances with the same value for a specific input parameter of Table 3.1,

and then present the results for all instances.

Table 3.2 Results of simulation study: Relative regret (in %) with Oracle performance.

Relative regret R

Input parameter Value Min Mean Max

Volatility of process characteristic, σ̄2
1 1.42 2.86 5.96
1.5 1.40 1.86 3.51
2 0.94 1.50 2.20

True mean of Θ, µ∗Θ

0 1.20 1.84 2.51
0.5 1.23 1.90 2.81
1 1.13 2.11 3.94
1.5 0.94 2.45 5.96

Corrective maintenance cost, cu

6 0.99 2.08 5.86
8 0.94 2.07 5.96
12 0.97 2.07 5.91

Failure threshold, ξ

8 0.94 1.94 4.94
10 1.21 2.09 5.74
12 1.22 2.13 5.96
14 1.20 2.13 5.86

Cost parameter, β

2 1.40 1.90 2.51
4 0.94 1.94 4.22
6 0.98 2.37 5.96

Total 0.94 2.07 5.96

The following main observations can be drawn from Table 3.2. Firstly, policy πJ
yields excellent results with a relative regret of only 2.07% on average, and a maximum

relative regret over all instances of 5.96%. Secondly, the relative regret increases as

the mean of the true generating distribution starts to deviate from what the decision

maker initially believes. This is not surprising, as one can conceivably expect that

the performance decreases when the initial hyperparameters of the prior distribution

are misspecified by the decision maker (recall that µ0 = 0). Nevertheless, even in
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this regime, when µ∗Θ is large, the relative regret of πJ is still only 2.45% on average,

suggesting that the policy corrects for the misspecification on-the-go and is thus robust

in that sense. Thirdly, we see that the relative regret decreases as the volatility of the

process characteristic increases. The intuition behind this is as follows. We observed

that both policies become more conservative when the volatility increases – recall that

both policies are computed with the same, known volatility σ̄ as input – and in this

case, the UCLs and LCLs of πJ and πO are relatively close to each other, leading to

a small relative regret. By contrast, in the low volatility case, the difference between

the policies is relatively large, leading to a larger relative regret.

3.5. Conclusion

In this chapter, we have studied the joint optimization of CBM and PC of critical

manufacturing equipment used for production processes. We have modeled this

problem jointly by assuming a single process characteristic that is indicative of both

the production output quality and the state of the manufacturing equipment. The

evolution of this process characteristic is modeled as a Brownian motion with unknown

drift that needs to be inferred from observations of the process characteristic. We

have presented an MDP formulation encoded on the sufficient statistics needed for

this inference, but due to its non-monotonicity properties, commonly used proof

techniques to establish structural properties are not applicable. Instead, we have

employed a novel approach and showed that the MDP can be translated into an

alternative MDP which allowed us to establish structural properties. Using this

approach, we showed that the optimal policy has an intuitive bandwidth structure

with monotonic control limits, under both the average and discounted cost criterion.

An extensive numerical study suggests that the Bayesian policy performs excellently

compared to a clairvoyant policy that a-priori knows the true drift, and that it is

robust against misspecification of the initial hyperparameters of the prior distribution.

As our work in this chapter is a first step in studying the joint optimization of

CBM and PC, it has some limitations, and addressing these limitations are possible

directions for future research.

First, although the operational and maintenance cost functions are quite general,

we do assume that they are even, while in practice it could be the case that a

positive deviation has a different cost structure than a negative deviation of the same

magnitude. Similarly, we assume that equipment failure is due to a positive or negative

deviation exceeding a certain threshold. In practical applications, however, it could

be that the equipment is less prone to failure on either the positive or negative side,
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meaning that there is not a single failure threshold but one for each side. Future

research could investigate such generalizations, but they require different approaches

as the resulting MDPs will likely not be even, deeming the framework used in this

chapter not applicable.

Second, we assume that the volatility of the Brownian motion is known to the decision

maker. One can relax this assumption by treating it as a random variable that needs

to be inferred from the data in a Bayesian fashion (in addition to the unknown drift).

The sample variance of the past observations is then additionally needed as sufficient

statistic, and the resulting posterior predictive distribution will then be a non-central

t-distribution (Gelman et al., 1995). As a non-central t-distribution is asymmetric

(unless its non-centrality parameter is 0) there is little hope that the resulting MDP

will be even.

In this chapter – and also in the previous chapter – we have assumed that the

deterioration process itself behaves completely independently. Specifically, a decision

maker can only reset the deterioration of a component by replacing it, but she cannot

influence the evolution of the deterioration process. In practice, however, it might be

reasonable that deterioration behavior of a component can be influenced by changing

certain variables of the system. For instance, if a lithography machine deteriorates

faster or produces worse quality in high environmental temperatures, then a simple

solution would be to lower the environmental temperature. This gives rise to so-called

controllable deterioration as another strategy to efficiently reduce system failures. In

the next chapter, we shall study a CBM model that allows for such controllable

deterioration.



Chapter 4

Optimal condition-based

production policies with base

rate (un)certainty

4.1. Introduction

In the two previous chapters, we studied mathematical models for condition-based

maintenance (CBM) in which the degradation behavior is not influenced by other

factors than by its own randomness. For many advanced technical systems, however,

the random degradation behavior of components is often affected (to a certain degree)

by adjustable settings of the system itself. Examples illustrating this relationship

are manifold and can be found in various industries and application domains. For

example, gearboxes and generators in a wind turbine deteriorate faster under higher

rotational speeds (Feng et al., 2013; Macquart and Maheri, 2019) which can be

adjusted by controlling the wind turbine’s pitch (Spinato et al., 2009; Zhang et al.,

2015). In the manufacturing industry, examples include cutting tools in high-speed

cutting machinery that wear faster under higher speeds (Dolinšek et al., 2001), and

conveyor belts in production lines that are increasingly more likely to fail when their

This chapter is based on Drent and Arts (2022).
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rotational speeds are increased (Nourelfath and Yalaoui, 2012). The flip side of this

coin is that settings that generally speaking lead to a lower deterioration rate, also

lead to a system that generates less revenue. For instance (using some of the examples

from above), wind turbines generate less wind energy when their rotational speeds are

lower, and production lines and cutting tools have less output when conveyor belts

and cutting speeds are slowed down, respectively.

As explained in the previous chapters, failures of these systems are usually the result

of deterioration of components exceeding a critical level, and as such, they can be

prevented before they occur by making instant maintenance decisions based on the

component’s deterioration level. However, in practice, maintenance planning has

limited flexibility and cannot be done last minute because arranging the logistic

support takes time, particularly for remotely located systems (e.g., wind farms).

Moreover, it is inconvenient and costly to shut down an entire system each time an

individual component needs maintenance. For these reasons, in practice, maintenance

activities are usually performed at planned maintenance moments that are scheduled

periodically and well in advance. At such planned maintenance moments, the entire

system is deliberately shut down and components that require maintenance are

maintained. In the previous two chapters, we analyzed the decision as to when

maintenance should be performed at such a planned maintenance moment by allowing

only interference with the system at equidistant epochs (i.e., planned maintenance

moments).

When these planned maintenance moments are scheduled well in advance, another

strategy that decision makers can employ to reduce maintenance costs and increase

revenues, is to control the deterioration behavior in between such planned main-

tenance moments. Specifically, slowing down the deterioration rate (through the

choice of corresponding settings) when a component is close to its failure threshold

leads to less failures between consecutive maintenance moments. On the other side,

if components degrade more slowly, decision makers can increase the revenue rate

(through the choice of corresponding settings) without running the risk of system

failure before the planned maintenance moment.

This operational strategy has become a viable option due to recent technological

advances. Specifically, the advent of sensor technology integrated in the Internet of

Things (IoT) enables both remote accrual of deterioration data and remote control

of physical settings of components at near-zero costs and in real-time (Coopers,

2014; Manyika et al., 2015; Blackwell et al., 2017). The novel idea of controlling

deterioration behavior was first proposed by Uit het Broek et al. (2020) who coined the

term condition-based production for this operational strategy. The authors consider
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condition-based production rate decisions for systems with an adjustable production

rate (essentially a setting) that directly affects the deterioration rate. Inherent to

this concept is a trade-off – as alluded to in the beginning of this section: a lower

production rate has both a lower deterioration and revenue rate, while a higher

production rate has both a higher deterioration and revenue rate. By formulating

a continuous-time optimal control problem, they are able to study this trade-off,

and establish structural insights and exact analytical solutions when deterioration

is deterministic. Although they show that the optimal policy under stochastic

deterioration exhibits similar properties as when deterioration is deterministic, they

do not analytically study such a scenario.

In this chapter, we study such optimal condition-based setting policies (the production

rate is essentially a setting), but in the context of stochastically deteriorating systems,

and our goal is to characterize the structure of the optimal policy. To this end, we

model the stochastic deterioration as a Poisson process whose uncontrolled intensity

is equal to a certain base rate. This deterioration process is thus in the same class of

deterioration process (i.e. jump processes) as the one considered in Chapter 2 and, as

we shall later see, Chapter 5. The base rate represents the rate at which the system

deteriorates under normal, uncontrolled operating conditions. A decision maker can

continuously adjust settings which leads (via general functions) to an instantaneous

change in the revenue rate and the rate of the Poisson process (proportional to the

base rate). We shall discuss this in more detail in Section 4.2, but conceptually, we

have that higher (lower) settings lead to higher (lower) revenue and deterioration

rates. By employing such a condition-based setting policy, the decision maker can

steer the deterioration as she nears the planned maintenance moment, at which a

maintenance cost depending on the deterioration state is incurred.

We first consider the case that the base rate is a-priori known to the decision

maker. We model this problem – essentially a Poisson intensity control problem –

as a continuous-time MDP and rigorously analyze both its Hamilton-Jacobi-Bellman

(HJB) equations and its discretized equivalent to characterize the monotonic behavior

of the optimal policy. We then relax the assumption that the base rate is known a-

priori and include parameter uncertainty regarding this base rate. For this case, we

develop an easy-to-implement Bayesian heuristic, that mimics the structure of the

optimal policy for the case that the base rate is known. In this scenario, a decision

maker needs to learn the a-priori unknown base rate through the chosen settings and

the deterioration she observes as a consequence of those chosen settings.

Next to the optimal condition-based setting policy, we also consider the trade-off that

arises due to the maintenance cost at a planned maintenance moment. Specifically,
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scheduling planned maintenance moments too frequently leads to unnecessary

maintenance activities and associated costs, while a very long maintenance interval

both increases the risk of a failed system and decreases the revenue accumulation as

the decision maker is then forced to choose lower settings. In this chapter, we also

study the optimization of the length of this interval given that an optimal condition-

based setting policy is employed in between maintenance moments.

4.1.1 Contributions

In this chapter, we make the following contributions:

1. We are the first to analytically establish the structure of the optimal condition-

based setting policy under stochastic deterioration. The structure of the optimal

policy is remarkably intuitive: Decrease the setting if closer to the failure

threshold and increase the setting if closer to the planned maintenance moment.

In establishing these structural properties, we also provide new submodularity

preservation properties that can be useful in other application areas.

2. We show that under these optimal setting decisions, the length of the interval

between planned maintenance moments can be easily optimized. This allows

for the optimal integration of setting policies on an operational level and

maintenance decisions on a tactical level.

3. We complement these theoretical results by an extensive numerical study in

which we demonstrate that: (i) condition-based setting policies can lead to

profit increases of up to 50% on average compared to static setting policies, and

(ii) integrating maintenance and setting policies can lead to profit increases of

up to 21% on average compared to not integrating them.

4. For the case with parameter uncertainty, we propose a Bayesian framework that

can tractably learn the unknown base rate under any setting policy, and use it

to build a heuristic policy. In an extensive simulation study, we show that this

heuristic performs close to a clairvoyant Oracle policy that knows the base rate

a-priori.

4.1.2 Organization

The remainder of this chapter is organized as follows. We present the problem

formulation in Section 4.2. Section 4.3 contains the main analytical results for the
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case that the base rate is known. In Section 4.4, we report on an extensive numerical

study that highlights the practical value of our theoretical results. Section 4.5 is

devoted to the case in which there is uncertainty regarding the base rate. Finally,

Section 4.6 provides concluding remarks.

4.2. Problem formulation

We consider a single-unit production system whose deterioration can be represented

by a single variable. The deterioration process of the system is continuously monitored

and described by a Poisson process Y = (Yt)t≥0, with Y0 = 0. Deterioration level 0

indicates that the system is as-good-as-new, and failure occurs when the deterioration

level is equal to a fixed failure level ξ. We denote the set of all deterioration levels

with X , {0, 1, . . . , ξ}. We assume that we can adjust a univariate setting of the

system (e.g., the production rate), that will both impact the deterioration process and

the rate at which the production system generates revenue. That is, if the decision

maker selects setting s ∈ S , [0, smax] (where 0 < smax < ∞ is the maximum

setting), then the rate of the Poisson process is instantaneously governed by the base

rate λ multiplied by the deterioration function f : S → R+ (R+ , [0,∞)), and

the revenue rate is instantaneously governed by the revenue function r : S → R+.

In practice, one can view the base rate as the rate at which the system deteriorates

under normal operating conditions which can be adjusted by settings via the function

f . For now we shall assume that the base rate λ is fully known to the decision

maker and that each system upon replacement has the same rate; that is, the systems

stem from a homogeneous population where all systems are statistically identical.

The formulation in this section and the analysis in the next section – focused on a

homogeneous population – are novel and insightful in their own right. They also

help us to develop and benchmark a heuristic for the setting in which newly installed

systems stem from a heterogeneous population, where each system has an a-priori

unknown base rate (we discuss this setting in Section 4.5).

In what follows (and in the remainder of this chapter), we use increasing and

decreasing in the weak sense. We assume that f(s) and r(s) are continuous and

increasing in s, and that f(0) = 0 and r(0) = 0. Note that due to this assumption

and the fact that S is compact, we are also guaranteed that f and r are bounded. The

increasing assumption is reasonable in practice as a higher production rate generally

leads to both a higher revenue rate and a faster deterioration rate. We remark that we

do not use the assumption that r(s) is increasing in our analysis, and in fact, all results

also hold true if r(s) is decreasing. However, if r(s) is decreasing then this will result
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in a practically meaningless policy in which the system is always turned off (turning

on the machine will lead to a negative revenue since r(s) = 0). Maintenance is only

performed at scheduled maintenance moments, and the next maintenance action is

scheduled at time T (e.g., each half year a maintenance team is sent to an offshore

wind farm to perform maintenance activities). The maintenance cost at the scheduled

maintenance moment is governed by an increasing convex maintenance cost function

cm : X → R+, which maps the deterioration level at the maintenance moment to

the cost of performing maintenance. Observe that the canonical cost structure with

a single corrective maintenance cost cu and a single preventive maintenance cost cp
(0 < cp < cu) typically assumed in the maintenance literature is a special case of this

assumption.

The decision maker’s problem is to dynamically adjust the settings with the goal of

maximizing the expected profit: the expected cumulative revenue minus the expected

maintenance cost. We formulate this optimization problem using the deterioration

level when the time until the next maintenance moment is t. To this end, let Xt =

{Yt̃ | 0 ≤ t̃ ≤ T} be the deterioration level at time t = T − t̃ before the next

maintenance moment. Since Yt̃ is the number of degradation increments up to time

t̃, dYt̃ = 1 if a degradation increment is realized at time t̃. Let U be the set of

all admissible non-anticipating setting policies satisfying
∫ t
k=0

dYk ≤ ξ −Xt (almost

surely). This constraint ensures that whenever the system fails (i.e. when Yt = ξ), the

system is turned off. The existence of setting 0 with λ(0) = 0 in the set S guarantees

that it can always be satisfied. For a given setting policy u ∈ U , let suλ(x, k) denote

the induced setting when the deterioration level is x, the time to planned maintenance

moment is k ∈ [t, 0) and the base rate is λ. The expected profit, starting from state

(x, t) under a policy u ∈ U is then denoted by

Juλ (x, t) , Eu

[∫ t

0

r
(
suλ(Xk, k)

)
dk

]
,

where Eu denotes that the expectation is taken with respect to policy u, and with

Juλ (x, 0) , −cm(x) to incorporate the maintenance costs at the scheduled maintenance

moment. We make the dependence of the total expected profit on the base rate λ,

and hence the correspondence to a homogeneous population, explicit by using the

subscript. The goal of the decision maker is to find the optimal setting policy u∗λ that

maximizes the expected profit generated over [t, 0], denoted with

J∗λ(x, t) , sup
u∈U

Juλ (x, t).
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In our first result, we present the Hamilton-Jacobi-Bellman (HJB) equations for the

optimal expected profit J∗λ(x, t). In the proof, we use a standard argument in which

we consider the dynamics of the deterioration under a chosen setting – essentially an

inhomogeneous Poisson process – over a very small time interval.

Lemma 4.1. J∗λ(x, t) is the solution of

∂J∗λ(x, t)

∂t
=

maxs∈S

[
r(s)− λf(s)∆λ(x, t)

]
, if x ∈X \ ξ,

0, if x = ξ,
(4.1)

with ∆λ(x, t) , J∗λ(x, t) − J∗λ(x + 1, t), and boundary conditions J∗λ(x, 0) = −cm(x)

for all x ∈X .

Proof: Consider the dynamics over a small interval δt (that is, when the time until

the next maintenance moment changes from t to t − δt) when t > 0. Let x < ξ. If

the decision maker selects setting s ∈ S , then with probability δtλf(s) + o(δt), x

changes to x+1, and with probability 1−δtλf(s)+o(δt), x stays the same. Secondly,

if x = ξ, then the only admissible action is s = 0, so that with probability 1, x stays

ξ. In all cases, t changes to t− δt. By the principle of optimality, for t > 0, we have

J∗λ(x, t) =

max
s∈S

[
r(s)δt+ δtλf(s)J∗λ(x+ 1, t− δt) +

(
1− δtλf(s)

)
J∗λ(x, t− δt) + o(δt)

]
, (4.2)

when x < ξ, and,

J∗λ(ξ, t) = J∗λ(ξ, t− δt) + o(δt), (4.3)

when x = ξ. Rearranging Equations (4.2) and (4.3), dividing by δt, and taking the

limit δt → 0, leads to the desired result. The boundary conditions follow from the

maintenance cost that is incurred when the system has deterioration level x at the

scheduled maintenance moment.

The formulation in Lemma 4.1 falls under the scope of Markovian intensity control

problems, and we refer the reader to Bremaud (1980) for an excellent treatment of

the general theory on this subject. Since f and r are continuous and bounded (by

assumption), and S is a compact subset of R, we are guaranteed by Theorem III

of Bremaud (1980) that there exists a solution to (4.1), which we denote by s∗λ(x, t);

that is, s∗λ(x, t) is the optimal setting for state (x, t) when the base rate is λ.
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From a methodological point of view, it is noteworthy to mention that the problem

formulation in Lemma 4.1 shares similarities with the canonical pricing problem in

revenue management, where a decision maker seeks a revenue-maximizing pricing

strategy when one is selling a finite number of products during a limited planning

horizon. In this problem, first introduced and characterized in the seminal paper by

Gallego and Van Ryzin (1994), customers arrive according to a Poisson process whose

intensity depends on the chosen price. Gallego and Van Ryzin (1994) formulate this

problem as an intensity control problem, also leading to a set of HJB equations. Their

work initiated a large stream of literature in which various properties and extensions

are studied, such as multiple products (Gallego and Van Ryzin, 1997), unknown

market responses (Araman and Caldentey, 2009; Farias and Van Roy, 2010), multiple

offered prices (Aydin and Ziya, 2009), discounted criterion with time-varying demand

(Cao et al., 2012), with discounts and rebates on products (Aydin and Ziya, 2008; Hu

et al., 2017), and sales target constraints (Du et al., 2021). Since demand for products

is modeled as a controlled Poisson process in the works in this stream of literature,

they all model their problem as Markovian intensity control problems and study the

corresponding HJB equations (or the equivalent finite difference equation) to establish

structural properties of the optimal policy. There are two major differences between

our formulation and the formulations in that field. First, a chosen price impacts both

the revenue accumulation and demand process in a different way than a chosen setting

impacts the revenue accumulation and deterioration process in our problem. In the

pricing problem, revenue only accumulates at discrete demand epochs (i.e., at the

Poisson arrivals) while in our setting, revenue is accumulated continuously. In the

former, choosing a higher price leads to a lower demand rate but potentially a higher

revenue rate if demand occurs, while in our problem, choosing a higher setting leads

to a higher deterioration rate and instantaneously to a higher revenue rate. Second,

in our problem, there is a boundary condition – the cost function cm(x) – that models

the preventive maintenance cost incurred at the end of the planning horizon. This

boundary condition needs to be taken into account when adopting a setting policy

throughout the planning horizon to prevent high maintenance costs at the end, while

in the literature on revenue management there are no such boundary conditions.

In the next section, we study the HJB equation in (4.1) to characterize structural

properties of both the expected profit and the optimal setting policy.
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4.3. Structural properties

In this section, we shed light on the optimal setting policy when the decision maker

knows the base rate λ, or equivalently, when the population is homogeneous. We

first prove that the optimal expected profit function J∗λ(x, t) behaves monotonically

in its state variables, which we then use to prove that the optimal setting also has

certain monotonicity properties. We highlight these theoretical results with numerical

examples.

The lemma below establishes first order monotonic properties of J∗λ(x, t) with respect

to x, t, and λ. These properties are not only very intuitive but also imperative for

subsequent analysis in this section.

Lemma 4.2. The optimal expected profit J∗λ(x, t) is decreasing in the deterioration

level x, increasing in the time to the next maintenance moment t, and decreasing in

the base rate λ.

Proof: We use sample path arguments to prove the result. For the monotonicity

in x, consider a sample path where the system with deterioration level x uses the

optimal policy for the system with deterioration level x+1 until either the system with

deterioration level x + 1 breaks down, or until the scheduled maintenance moment,

whichever happens first. As they use the same policy, both systems face the same

sample path. If the system with deterioration level x + 1 breaks down at time τ

before the scheduled maintenance moment, then the system with deterioration level

x can still generate revenue over (T − τ, 0], possibly even with less maintenance costs

if the system does not break down. On the other hand, if the scheduled maintenance

moment arrives first, the two systems will have generated the same revenue and will

have the same maintenance cost. Consequently, the system with deterioration level x

generates at least as much revenue and incurs at most the same maintenance costs.

Hence, for their expected profits, we have that J∗λ(x, t) ≥ J∗λ(x+ 1, t). Using similar

arguments one can also prove the monotonicity in t and λ.

Everything else fixed, Lemma 4.2 states that for a more deteriorated system, the

expected profit will be lower than for a system that is less deteriorated. Similarly,

everything else fixed, the expected profit is higher when the time to planned

maintenance is higher, because there is more time to generate revenue. Finally, a

system whose base rate is higher, deteriorates faster under any setting which leads to

a lower expected profit.

We now turn our attention to higher order monotonic properties of the expected
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profit with respect to its parameters, which are needed to prove structural properties

of the optimal policy. We first introduce some additional notation. Let ∆2
λ(x, t) ,

∆λ(x, t)−∆λ(x+ 1, t) for x ≤ ξ − 2. The next result shows that the expected profit

J∗λ(x, t) is concave in x for all t ≥ 0 and each base rate, i.e. that ∆2
λ(x, t) ≤ 0 for all

x ≤ ξ − 2 and t, λ ≥ 0.

Proposition 4.1. The expected profit J∗λ(x, t) is concave in x for all t ≥ 0 and λ ≥ 0.

Proof: For t = 0, it is easy to verify that ∆2
λ(x, 0) ≤ 0 for all x ≤ ξ − 2 and λ ≥ 0,

because −cm(x) is concave in x by assumption.

We now consider t > 0. We first construct some useful inequalities that we will use

in an inductive proof to establish the result. Let x ≤ ξ − 2, using (4.1), we have

∂J∗λ(x, t)

∂t
= r
(
s∗λ(x, t)

)
− λf

(
s∗λ(x, t)

)
∆λ(x, t), (4.4)

and since s∗λ(x, t) is also admissible, but not necessarily optimal, for state (x + 1, t)

with base rate λ, we have

∂J∗λ(x+ 1, t)

∂t
≥ r
(
s∗λ(x, t)

)
− λf

(
s∗λ(x, t)

)
∆λ(x+ 1, t). (4.5)

Then, subtracting (4.5) from (4.4) leads to

∂∆λ(x, t)

∂t
≤ −λf

(
s∗λ(x, t)

)
∆2
λ(x, t). (4.6)

Similarly, we have

∂J∗λ(x+ 2, t)

∂t
= r
(
s∗λ(x+ 2, t)

)
− λf

(
s∗λ(x+ 2, t)

)
∆λ(x+ 2, t), (4.7)

and since s∗λ(x+2, t) is also admissible, but not necessarily optimal, for state (x+1, t)

with base rate λ, we have

∂J∗λ(x+ 1, t)

∂t
≥ r
(
s∗λ(x+ 2, t)

)
− λf

(
s∗λ(x+ 2, t)

)
∆λ(x+ 1, t). (4.8)

Then, subtracting (4.7) from (4.8) gives

∂∆λ(x+ 1, t)

∂t
≥ −λf

(
s∗λ(x+ 2, t)

)
∆2
λ(x+ 1, t). (4.9)
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Next, subtracting (4.9) from (4.6) leads to

∂∆2
λ(x, t)

∂t
≤ −λf

(
s∗λ(x, t)

)
∆2
λ(x, t) + λf

(
s∗λ(x+ 2, t)

)
∆2
λ(x+ 1, t). (4.10)

We now proceed with our inductive proof. We first prove the base case, i.e. ∆2
λ(ξ −

2, t) ≤ 0 for all t > 0 and λ ≥ 0. By (4.6) we have that

∂∆λ(ξ − 2, t)

∂t
≤ −λf

(
s∗λ(ξ − 2, t)

)
∆2
λ(ξ − 2, t). (4.11)

Note that due to the linearity of the derivative, we have

∂∆λ(ξ − 1, t)

∂t
=
∂J∗λ(ξ − 1, t)

∂t
− ∂J∗λ(ξ, t)

∂t
=
∂J∗λ(ξ − 1, t)

∂t
≥ 0, (4.12)

where the second equality follows from (4.1) for x = ξ and the inequality follows from

Lemma 4.2. Subtracting ∂∆λ(ξ−1,t)
∂t from both sides of (4.11) and combining this with

Inequality (4.12) leads to

∂∆2
λ(ξ − 2, t)

∂t
≤ −λf

(
s∗λ(ξ − 2, t)

)
∆2
λ(ξ − 2, t). (4.13)

Applying Grönwall’s Lemma to Inequality (4.13) leads to

∆2
λ(ξ − 2, t) ≤ ∆2

λ(ξ − 2, 0) · exp

(∫ t

0

−λf(s∗λ(ξ − 2, u))du

)
.

Since ∆2
λ(ξ− 2, 0) ≤ 0, (recall that −cm(x) is concave in x by assumption), and since

exp
(∫ t

0
−λf(s∗λ(ξ − 2, u))du

)
> 0 for all t > 0 and λ ≥ 0, we have that ∆2

λ(ξ−2, t) ≤
0, which proves the base case.

Assume now inductively that ∆2
λ(x, t) ≤ 0 for an x ≤ ξ − 2. We will show that this

implies that ∆2
λ(x− 1, t) ≤ 0 for all t > 0 and λ ≥ 0.

For (x− 1, t), we have

∂∆2
λ(x− 1, t)

∂t
≤ −λf

(
s∗λ(x− 1, t)

)
∆2
λ(x− 1, t) + λf

(
s∗λ(x+ 1, t)

)
∆2
λ(x, t)

≤ −λf
(
s∗λ(x− 1, t)

)
∆2
λ(x− 1, t). (4.14)

The first inequality is Equation (4.10), and the second inequality is due to the
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induction hypothesis. Applying Grönwall’s Lemma to Inequality (4.14) leads to

∆2
λ(x− 1, t) ≤ ∆2

λ(x− 1, 0) · exp

(∫ t

0

−λf(s∗λ(x− 1, u))du

)
.

Since ∆2
λ(x−1, 0) ≤ 0 for all x ≤ ξ−2 (again by the concavity assumption of −cm(x)

in x) and since exp
(∫ t

0
−λf(s∗λ(x− 1, u))du

)
> 0 for all t > 0 and λ ≥ 0, we have

that ∆2
λ(x− 1, t) ≤ 0 for all t > 0 and λ ≥ 0.

The concavity of the optimal expected profit in the deterioration level implies that

the expected profit drops ever steeper as system deterioration is closer to the failure

threshold for any fixed time. This is intuitive as for a system that is approaching the

failure threshold, there is less and less room (in terms of remaining useful condition)

to control the deterioration, and hence for generating revenue.

The next result establishes that the marginal value of less deterioration, increases

in the remaining time until the next planned maintenance. In the proof, and also

in other proofs in this chapter, we employ a commonly used transformation of the

continuous model into a discrete model (see e.g., Bitran and Mondschein, 1997; Aydin

and Ziya, 2008; Hu et al., 2017). We are allowed to do so because it is known that

this discrete model is guaranteed to converge uniformly to the continuous model (cf.

Kleywegt and Papastavrou, 2001).

Proposition 4.2. ∆λ(x, t) is increasing in t.

Proof: We divide the entire planning horizon into T̂ = T
δt periods, each of which is

short enough that the probability of more than one degradation increment during an

interval of length δt is negligible. Indeed, note that since the function f is bounded,

we have that for each choice of s, the probability that more than 1 arrival will occur

in an interval of δt is of o(δt). Let J∗λ(x, k) denote the maximum expected revenue

when the deterioration level is x and there are k periods to go until the planned

maintenance moment, and the base rate is λ. We then need to show that

J∗λ(x− 1, k)− J∗λ(x, k) ≥ J∗λ(x− 1, k − 1)− J∗λ(x, k − 1), for all k ≥ 1. (4.15)

The dynamic program for the revenue maximization problem over the T̂ -period

horizon is given by

J∗λ(x, k) = max
s∈S

[
r(s)δt+ λf(s)δtJ∗λ(x+ 1, k − 1) +

(
1− λf(s)δt

)
J∗λ(x, k − 1)

]
,
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with boundary conditions J∗λ(x, 0) = −cm(x) for all x ∈X .

Let s∗λ(x, k) denote the optimal setting for state (x, k) when the base rate is λ. We

then have

J∗λ(x, k) =r
(
s∗λ(x, k)

)
δt+ λf

(
s∗λ(x, k)

)
δtJ∗λ(x+ 1, k − 1)

+
(
1− λf

(
s∗λ(x, k)

)
δt
)
J∗λ(x, k − 1). (4.16)

Subtracting J∗λ(x, k − 1) from both sides of (4.16) leads to

J∗λ(x, k)− J∗λ(x, k − 1) =r
(
s∗λ(x, k)

)
δt

+ λf
(
s∗λ(x, k)

)
δt
(
J∗λ(x+ 1, k − 1)− J∗λ(x, k − 1)

)
. (4.17)

Since s∗λ(x, k) is admissible in state (x−1, k) when the base rate is λ but not necessarily

optimal, we have

J∗λ(x− 1, k) ≥r
(
s∗λ(x, k)

)
δt+ λf

(
s∗λ(x, k)

)
δtJ∗λ(x, k − 1)

+
(
1− λf

(
s∗λ(x, k)

)
δt
)
J∗λ(x− 1, k − 1). (4.18)

Subtracting J∗λ(x − 1, k − 1) from both sides of (4.18) and then using the concavity

of J∗λ(x, k) in x (see Proposition 4.1) yields

J∗λ(x− 1, k)− J∗λ(x− 1, k − 1)

≥
r
(
s∗λ(x, k)

)
δt+ λf

(
s∗λ(x, k)

)
δt
(
J∗λ(x, k − 1)− J∗λ(x− 1, k − 1)

)
≥

r
(
s∗λ(x, k)

)
δt+ λf

(
s∗λ(x, k)

)
δt
(
J∗λ(x+ 1, k − 1)− J∗λ(x, k − 1)

)
. (4.19)

Observe that the right hand side of (4.19) can be replaced by (4.17), which yields the

following inequality

J∗λ(x− 1, k)− J∗λ(x− 1, k − 1) ≥ J∗λ(x, k)− J∗λ(x, k − 1),

which, after rearranging terms, equals (4.15).

The intuition behind Proposition 4.2 is as follows. Consider a system with a better

condition (i.e., with one deterioration level less) than another system. The former

generates more revenue than the latter, see Lemma 4.2. Now, if the scheduled

maintenance moment is further away, then for the former system, there is a longer
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planning horizon to exploit this better condition – for generating revenue – than when

there is less time to do so. This leads to a higher additional revenue.

Using a similar intuition one can also reason that the optimal expected profit must be

concave in the time to the next scheduled maintenance moment for all deterioration

levels and each base rate. This is indeed true and we present this result in the next

proposition.

Proposition 4.3. The optimal expected profit J∗λ(x, t) is concave in t for all x ∈X

and λ ≥ 0.

Proof: We need to show that
∂J∗λ(x,t)

∂t is decreasing in t. Let u > t. We have

∂J∗λ(x, u)

∂u
= r
(
s∗λ(x, u)

)
− λf

(
s∗λ(x, u)

)
∆λ(x, u), (4.20)

and since s∗λ(x, u) is also admissible, but not necessarily optimal, for state (x, t) when

the base rate is λ, we have

∂J∗λ(x, t)

∂t
≥ r
(
s∗λ(x, u)

)
− λf

(
s∗λ(x, u)

)
∆λ(x, t). (4.21)

Subtracting (4.21) from (4.20) yields

∂J∗λ(x, t)

∂t
− ∂J∗λ(x, u)

∂u
≥ λf

(
s∗λ(x, u)

)(
∆λ(x, u)−∆λ(x, t)

)
≥ 0,

where the last inequality follows from ∆λ(x, u) ≥ ∆λ(x, t) for u > t. (see Proposition

4.2).

We now proceed with proving that the optimal expected profit is submodular in (x, λ),

which enables us to establish the monotonic behavior of the optimal policy in the base

rate λ. We first provide a formal definition of submodularity in the definition below.

Definition 4.1 (Submodularity). A bivariate function, g(x, y), is submodular if for

all x1 ≥ x2 and y1 ≥ y2, we have[
g(x1, y2) + g(x2, y1)

]
−
[
g(x1, y1) + g(x2, y2)

]
≥ 0.

We now state two technical results that relate to preservation of submodularity.

Lemma 4.3. Suppose f(x, θ) is submodular in (x, θ) and concave in x and the non-

negative random variable Z(θ) is stochastically increasing in θ, then E[f(x+Z(θ), θ)]

is submodular in (x, θ) and concave in x.
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Proof: Let x1 ≤ x2 and θ1 ≤ θ2. Since Z(θ1) ≤st Z(θ2), there exist two random

variables, Z̃(θ1) and Z̃(θ2), on the same probability space, such that Z̃(θ1) =st Z(θ1),

Z̃(θ2) =st Z(θ2), and Z̃(θ1) ≤ Z̃(θ2) almost surely (here, =st denotes equality in law)

(see, e.g., Shaked and Shanthikumar, 2007, Theorem 1.A.1.). We therefore have:

E[f(x1 + Z(θ1), θ1)]−E[f(x2 + Z(θ1), θ1)]

= E[f(x1 + Z̃(θ1), θ1)− f(x2 + Z̃(θ1), θ1)]

≤ E[f(x1 + Z̃(θ1), θ2)− f(x2 + Z̃(θ1), θ2)]

≤ E[f(x1 + Z̃(θ2), θ2)− f(x2 + Z̃(θ2), θ2)]

= E[f(x1 + Z(θ2), θ2)]− E[f(x2 + Z(θ2), θ2)],

where the first inequality is from the submodularity of f(x, θ), and the second

inequality is from the concavity in x of f(x, θ). Hence, E[f(x+Z(θ), θ)] is submodular

in (x, θ). The preservation of concavity under expectation is a well-known result. For

completeness, we provide a short proof here. Let x1, x2 ∈ R and α ∈ [0, 1]. We then

have

E[f(αx1 + (1− α)x2 + Z(θ), θ)] = E[f(αx1 + (1− α)x2 + αZ(θ) + (1− α)Z(θ), θ)]

= E[f(α
(
x1 + Z(θ)

)
+ (1− α)

(
x2 + Z(θ)

)
, θ)]

≥ E[αf
(
x1 + Z(θ), θ

)
+ (1− α)f

(
x2 + Z(θ), θ

)
]

= αE[f
(
x1 + Z(θ), θ

)
] + (1− α)E[f

(
x2 + Z(θ), θ

)
],

where the inequality follows from the concavity of f(x, θ) in x.

Lemma 4.3 complements other preservation results – usually needed for establishing

structural properties in optimization problems – that can be found in the literature,

for instance a closely related result by Chao et al. (2009) that focuses on E[f
(
x, Z(θ)

)
]

(in our notation).

Lemma 4.4. Suppose g(y) is non-negative, and increasing in y, and f(x, y) is non-

negative, submodular in (x, y), and decreasing in x, then g(y)f(x, y) is submodular in

(x, y).
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Proof: Let x1 ≤ x2 and y1 ≤ y2, we then have

g(y1)f(x1, y1)− g(y2)f(x1, y2)− g(y1)f(x2, y1) + g(y2)f(x2, y2)

= g(y1)
(
f(x1, y1)− f(x2, y1)

)
− g(y2)

(
f(x1, y2)− f(x2, y2)

)
≤ g(y2)

(
f(x1, y1)− f(x2, y1)− f(x1, y2) + f(x2, y2)

)
≤ 0.

The first inequality holds because g(y1) ≤ g(y2) and f(x1, y1) ≥ f(x2, y1), and the

second inequality follows from the submodularity of f(x, y) in (x, y).

Proposition 4.4. For all t ≥ 0, Jλ(x, t) is submodular in (x, λ).

Proof: Again, we use the dynamic program for the revenue maximization problem

over the T̂ -period horizon and rewrite it in expectation form:

J∗λ(x, k) = max
s∈S

[
r(s)δt+ E[J∗λ(x+ Z(λ, s), k − 1)]

]
,

with boundary conditions J∗λ(x, 0) = −cm(x) for all x ∈ X , and where Z(λ, s) is a

Bernoulli random variable with success probability p = δtλf(s).

We need to show that for all k ≥ 0, J∗λ(x, k) is submodular in (x, λ). We prove this

by induction on k. Note that for the base case k = 0, J∗λ(x, 0) = −cm(x) is evidently

submodular in (x, λ). Assume that for some k − 1, Jλ(x, k − 1) is submodular in

(x, λ), we will now show that Jλ(x, k) is submodular in (x, λ).

Let gλ(s, x, k) , r(s)δt + E[J∗λ(x + Z(λ, s), k − 1)]. Since Z(λ, s) is stochastically

increasing in λ, the induction hypothesis and the fact that J∗λ(x, k − 1) is concave

in x (see Proposition 4.1), we can employ Lemma 4.3 to conclude that gλ(s, x, k) is

submodular in (x, λ) for all s.

Now, let s∗λ(x, k) ∈ arg maxs∈S {gλ(s, x, k)}, and let x1 < x2, and λ1 < λ2, we then

have:

J∗λ1
(x1, k) + J∗λ2

(x2, k) = gλ1

(
s∗λ1

(x1, k), x1, k
)

+ gλ2

(
s∗λ2

(x2, k), x2, k
)

≤ gλ2

(
s∗λ1

(x1, k), x1, k
)

+ gλ1

(
s∗λ2

(x2, k), x2, k
)

≤ gλ2

(
s∗λ2

(x1, k), x1, k
)

+ gλ1

(
s∗λ1

(x2, k), x2, k
)

= J∗λ2
(x1, k) + J∗λ1

(x2, k),

where the first inequality holds because of the submodularity of gλ(s, x, k) in (x, λ)

for all s, and the second inequality follows from the suboptimality of s∗λ1
(x1, k) for
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(x1, λ2) and s∗λ2
(x2, k) for (x2, λ1), respectively. Hence J∗λ(x, k) is submodular in

(x, λ).

The next result, the main result of this section, establishes the monotonicity of the

optimal setting in the deterioration level x, the time to maintenance t, and the base

rate λ.

Theorem 4.1. The optimal setting when the deterioration level is x, the time until

planned maintenance is t, and the base rate is λ, denoted with s∗λ(x, t), is decreasing

in x, t, and λ.

Proof: The proof is divided into three parts, focused on the monotonicity in x, t,

and λ, respectively. In each part we use the notation gλ(s, x, t) = r(s)−λf(s)∆λ(x, t),

that we previously introduced.

Proof of monotonicity in x: For notational clarity we drop the subscript λ. Let

s̄ , s∗(x, t) and consider s > s̄, we have that

g(s̄, x+ 1, t)− g(s̄, x, t) + g(s, x, t)− g(s, x+ 1, t)

= −λf(s̄)∆(x+ 1, t) + λf(s̄)∆(x, t)− λf(s)∆(x, t) + λf(s)∆(x+ 1, t)

= λf(s̄)∆2(x, t)− λf(s)∆2(x, t)

= λ
(
f(s̄)− f(s)

)
∆2(x, t)

≥ 0. (4.22)

The inequality follows from the increasing property of f(s) with s > s̄, and

since ∆2(x, t) ≤ 0 (see Proposition 4.1). Rearranging Inequality (4.22) leads to

g(s̄, x+ 1, t)− g(s, x+ 1, t) ≥ g(s̄, x, t)− g(s, x, t) ≥ 0, (4.23)

where the second inequality holds because s̄ , s∗(x, t). We can therefore

conclude from (4.23), that any s > s̄ cannot be optimal for (x + 1, t); hence

s∗(x+ 1, t) ≤ s∗(x, t).

Proof of monotonicity in t: For notational clarity we again drop the subscript λ.
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Let u < t and s̄ , s∗(x, u), and consider s > s̄. We have that

g(s̄, x, t)− g(s̄, x, u) + g(s, x, u)− g(s, x, t)

= −λf(s̄)∆(x, t) + λf(s̄)∆(x, u)− λf(s)∆(x, u) + λf(s)∆(x, t)

= λ
(
f(s̄)− f(s)

)(
∆(x, u)−∆(x, t)

)
≥ 0. (4.24)

The inequality follows from the increasing property of f(s) and s > s̄, and since

∆(x, u) ≤ ∆(x, t) for u < t (see Proposition 4.2). Rearranging Inequality (4.24)

leads to

g(s̄, x, t)− g(s, x, t) ≥ g(s̄, x, u)− g(s, x, u) ≥ 0, (4.25)

where the second inequality holds because s̄ , s∗(x, u). We can therefore

conclude from (4.25), that any s > s̄ cannot be optimal for (x, t); hence

s∗(x, t) ≤ s∗(x, u) for u < t.

Proof of monotonicity in λ: In this part, we use the analog discrete dynamic

program. In light of the well-known Topkis’ Theorem (see, for instance, Topkis,

1998, Theorem 2.8.1), we need to show that gλ(s, x, k) = r(s)δt+λf(s)δtJ∗λ(x+

1, k − 1) + (1 − λf(s)δt)J∗λ(x, k − 1) is submodular in (s, λ) to conclude that

s∗λ(x, k) is decreasing in λ.

Let s1 ≤ s2 and λ1 ≤ λ2. We then need to show that

gλ1(s1, x, k)− gλ2(s1, x, k)− gλ1(s2, x, k) + gλ2(s2, x, k) ≤ 0.

We have (after some algebraic manipulations):

gλ1
(s1, x, k)− gλ2

(s1, x, k)− gλ1
(s2, x, k) + gλ2

(s2, x, k)

= λ1f(s1)J∗λ1
(x+ 1, k − 1)− λ1f(s1)J∗λ1

(x, k − 1)

− λ2f(s1)J∗λ2
(x+ 1, k − 1) + λ2f(s1)J∗λ2

(x, k − 1)

− λ1f(s2)J∗λ1
(x+ 1, k − 1) + λ1f(s2)J∗λ1

(x, k − 1)

+ λ2f(s2)J∗λ2
(x+ 1, k − 1)− λ2f(s2)J∗λ2

(x, k − 1)

=
(
f(s1)− f(s2)

)(
λ1J

∗
λ1

(x+ 1, k − 1)− λ1J
∗
λ1

(x, k − 1)

− λ2J
∗
λ2

(x+ 1, k − 1) + λ2J
∗
λ2

(x, k − 1)
)
.

Since f(s1)− f(s2) ≤ 0 (f is increasing and s2 ≥ s1), gλ(s, x, k) is submodular
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in (s, λ) if

λ1J
∗
λ1

(x+ 1, k− 1)−λ1J
∗
λ1

(x, k− 1)−λ2J
∗
λ2

(x+ 1, k− 1) +λ2J
∗
λ2

(x, k− 1) ≥ 0,

that is, if λJ∗λ(x, k − 1) is submodular in (x, λ).

Note that J∗λ(x, k − 1) is submodular in (x, λ) (see Proposition 4.4) and

decreasing in x (see Lemma 4.2), hence by applying Lemma 4.4 with g(λ) , λ

and f(x, λ) , J∗λ(x, k − 1), we conclude that λJ∗λ(x, k − 1) is submodular in

(x, λ).

The intuition behind Theorem 4.1 is as follows. For a fixed deterioration level, a

decision maker would decrease (increase) the setting if the remaining time to the

scheduled maintenance moment increases (decreases). Likewise, for a fixed remaining

time, a decision maker would decrease (increase) the setting if the degradation level

increases (decreases). This ensures that the system deteriorates more slowly (faster),

thereby reducing the expected maintenance cost at the scheduled maintenance

moment (increasing the accumulated revenue). If a system deteriorates faster under

any setting (i.e. the base rate is higher), then we would naturally use lower settings

for all deterioration levels and remaining times than for a system that deteriorates

more slowly.

Remark 4.1. The established structure of the optimal policy is inherently different

from that of the optimal policy under deterministic degradation. For the latter

setting, Uit het Broek et al. (2020) establish that the optimal policy may prescribe

to break down the system on purpose when a failure is unavoidable, breaking down

any monotonic properties of the optimal policy. This is in sharp contrast with our

result, where a decision maker would gradually slow down the deterioration when

a potential failure is nearing. However, Theorem 4.1 does formally confirm their

reported intuitions – based on numerical explorations – on the structure of the optimal

policy for the stochastic setting (see Uit het Broek et al., 2020, Section 5.3). 3

The monotonic behavior of the optimal setting policy is illustrated by Figure 4.1 and

Figure 4.2. In both figures, we use ξ = 10 (failure threshold), cm(ξ) = 5 (corrective

maintenance cost), and cm(·) = 1 for all non-failed states (preventive maintenance

cost). The planning horizon T is equal to 15 and the setting space is equal to the

unit interval, i.e. S = [0, 1]. For the revenue and degradation functions, we use

r(s) = s1/2 and f(s) = s2. We obtained the optimal policy in these illustrations,
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and elsewhere in this chapter, using the standard approach for solving continuous

time dynamic programs. In this approach, we discretize the planning horizon [T, 0]

into N , T/∆t time intervals of length ∆t and use a finite difference equation to

approximate the optimality equation in (4.1) (see, e.g., Kushner and Dupuis, 1992).

Specifically, we replace the partial derivative in Equation (4.1) by the finite difference(
J∗λ(x, t+ ∆t)− J∗λ(x, t)

)
/∆t, after which we obtain the finite difference equation:

J∗λ(x, t+ ∆t) =J∗λ(x, t) + ∆t ·maxs∈S

[
r(s)− λf(s)

(
J∗λ(x, t)− J∗λ(x+ 1, t)

)]
, if x ∈X \ ξ,

J∗λ(x, t), if x = ξ,

which can be solved by a backward recursion on the discrete time set n∆t, with

n ∈ {0, 1, . . . , N}, starting from the boundary condition J∗λ(x, 0) = −cm(x) for all

x ∈X . In all our numerical experiments and illustrations we use a sufficiently small

∆t, such that the approximation is sufficiently accurate.
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Figure 4.1 Illustration of monotonic behavior of the optimal policy with base rate λ = 1
(left) and base rate λ = 4 (right). The y-axis and x-axis represent the deterioration level and
the time to scheduled maintenance, respectively, while the color-bar indicates the optimal
setting.

In the left subfigure of Figure 4.1 the base rate is 1, while in the right subfigure, the

base rate is 4. In each subfigure, we clearly observe that the optimal setting increases

as the time to scheduled maintenance decreases for a fixed deterioration level (moving

right horizontally), and that the optimal setting decreases as the condition deteriorates

(moving up vertically). If we compare the left subfigure (base rate is 1) with the right

subfigure (base rate is 4), we clearly see that lower settings are prescribed for all

deterioration levels at all times in the situation displayed in the right subfigure.

Figure 4.2 depicts sample path illustrations of both the optimal setting policy
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Figure 4.2 Sample path illustrations of both the optimal policy and the controlled
deterioration process, when the base rate λ is 1.

(bottom) and the corresponding controlled deterioration (top). Since the downward

jumps in the settings (bottom subfigure) correspond one-to-one to deterioration

increments (top subfigure), we can state two interesting observations that demonstrate

Theorem 4.1:

1. When the system’s condition deteriorates (i.e., at the jump epochs of the

controlled deterioration), the setting is immediately lowered, which highlights

the monotonicity of the optimal setting in the deterioration level when the time

to scheduled maintenance is kept fixed.

2. The upward creeping nature of the chosen setting between deterioration

increments corresponds to the monotonic behavior of the optimal setting in the

time to scheduled maintenance when the deterioration level is kept constant.

Theorem 4.1 characterizes the structure of the optimal policy for dealing with the
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operational trade-off between revenue accumulation and deterioration. In practice,

a decision maker also needs to decide on the planned maintenance interval T in

which she deals with another trade-off that is more on a tactical level. Specifically,

doing planned maintenance too often (a small T ) leads to unnecessary maintenance

activities and associated costs, while a very long maintenance interval (a large T )

both increases the risk of a failed system and decreases the revenue accumulation as

the decision maker is then forced to choose lower settings. In deciding on the length of

this maintenance interval, a decision maker seeks to maximize the expected profit, by

incorporating both the operational and tactical trade-off. The next result establishes

that if an optimal setting policy is followed on an operational level, and T ∗ is a local

maximizer of the average revenue per time unit, then we are guaranteed that this T ∗

is the global maximizer.

Theorem 4.2. Let g(T ) , 1
T J
∗
λ(0, T ) be the expected profit per time unit if the

planned maintenance interval is set to T . If T ∗ is a local maximizer of g(T ), then T ∗

is the global maximizer.

Proof: We use the shorthand notation J(T ) , J∗λ(0, T ). Taking the first and

second derivative of g(T ) with respect to T yields

g′(T ) =
TJ ′(T )− J(T )

T 2
, (4.26)

and, after some algebraic simplifications,

g′′(T ) =
T 2J ′′(T )− 2 ·

(
TJ ′(T )− J(T )

)
T 3

. (4.27)

Now observe that for any t with g′(t) = 0, we have that tJ ′(t)−J(t) = 0 (see Equation

(4.26)), and hence that g′′(t) = t2J′′(t)−2·0
t3 = J′′(t)

t (see Equation (4.27)). We further

know that J(t) is concave in t, i.e. J ′′(t) ≤ 0 for all t ≥ 0 (see Proposition 4.3), so

that the following condition holds

g′′(t) ≤ 0, for all t ≥ 0 such that g′(t) = 0. (4.28)

We now proceed with the proof. Let T ∗ be a local maximizer of g(T ). Let us assume

the contrary of the result, i.e. that T ∗ is not a global maximizer. We will show that

this leads to a contradiction with Condition (4.28) and conclude that T ∗ must be a

global maximizer of g(T ).

Let T ′ denote the global maximizer and consider the case that T ′ > T ∗ (the proof

follows verbatim for the case that T ′ < T ∗). By the mean value theorem, we know
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that there exists a t0 ∈ (T ∗, T ′] with

g′(t0) =
g(T ′)− g(T ∗)

T ′ − T ∗
> 0, (4.29)

where the inequality holds because g(T ′) > g(T ∗) since T ′ is the global maximizer

and T ′ > T ∗. As T ∗ is a local maximizer, we know that for small ε > 0, we have

g′(T ∗+ε) < 0. Hence, by Darboux’s theorem (the mean value theorem for derivatives),

we know that since g′(T ∗ + ε) < 0 and g′(t0) > 0 with T ∗ + ε < t0 (see Equation

(4.29)), that there exists a t1 ∈ [T ∗ + ε, t0] with g′(t1) = 0, g′(t1 − ε) < 0, and

g′(t1 + ε) > 0 and hence that g′′(t1) > 0. This contradicts with Condition (4.28), and

we can therefore conclude that T ∗ must be a global maximizer.

Setting choices on an operational level and maintenance decisions on a tactical level

should be made in conjunction rather than in isolation, and Theorem 4.2 provides

us with a way to do so. Specifically, readily available methods that make use of

the property established in Theorem 4.2 (e.g., the well-known golden-section search

proposed by Kiefer (1953)) can be used to efficiently find the optimal length of the

maintenance interval.

Figure 4.3 Expected profit per time unit as function of the maintenance interval length when
the base rate is 1. The optimal maintenance interval is depicted with the dashed line.

Figure 4.3 provides an illustration of this. In this example, where we use the

same settings as in Figures 4.1 and 4.2 with the base rate equal to 1, the optimal

maintenance interval length is equal to 8.6 with an expected profit rate of 0.84.



126 Chapter 4. Condition-based production with rate (un)certainty

4.4. Numerical study

In this section, we summarize the findings of two comprehensive numerical studies

that highlight the practical value of our theoretical results. Specifically, the goal

is twofold. Firstly, to assess the value of dynamically adjusting the settings based

on the system’s deterioration and time to scheduled maintenance (i.e. the optimal

condition-based setting policy) by comparing it to the best static policy. Secondly,

to investigate the value of integrating maintenance and setting decisions as opposed

to treating the two problems independently. In both numerical studies, we choose

the canonical maintenance cost structure with a fixed preventive maintenance cost

cm(·) , cp for all non-failed states, and a corrective maintenance cost cm(ξ) , cu for

the failed state.

4.4.1 Value of condition-based setting policies

We assess the value of employing the optimal condition-based setting policy by

comparing it to a static policy. In this static policy, the decision maker needs

to decide on a fixed setting, which is employed throughout the whole planning

horizon. Specifically, the system runs on the fixed setting until either failure or the

moment of planned maintenance, whichever comes first. We call this static policy

the fixed-setting policy, denoted by πFS , and it can be found by solving the following

maximization problem:

πFS ∈ arg max
s∈S

[
E
[
r(s) ·min{Tξ, T}

]
− cp

]
,

where Tξ is an Erlang random variable with shape ξ and rate λf(s), and T is the

length of the maintenance interval. The first part of the objective function is the

expected accumulated revenue, while the second part is the maintenance cost at time

T . The maximization problem can be easily solved numerically to obtain πFS using

readily available software packages.

As indicated, we would like to assess the value of using the optimal condition-based

setting policy, denoted by πDS , instead of the static fixed-setting policy πFS . We

do so by using the relative profit increase, denoted with R, which we compute as

R = 100 · (PπDS − PπFS )/PπFS , where Pπ is the expected profit (over the planning

horizon) of policy π ∈ {πDS , πFS}.

We perform an extensive numerical study with the following parameter settings. We

use base rates λ ∈ {0.5, 0.75, 1, 1.25, 1.5}, failure thresholds ξ ∈ {10, 12, 14, 18, 20},
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and planning horizons T ∈ {10, 20}. We use the functions f = sγ and r = sν , for

the degradation and revenue function, respectively, and use the interval S = [0, 2]

for the settings to choose from. By using the values {0.5, 0.75, 1, 1.33, 2} for γ

and ν, we model concave, linear, and convex functions, respectively. We vary the

preventive maintenance cost cp between {1, 2, 3}, and choose cm(ξ) = 10 as corrective

maintenance cost for the failed state. The complete set of parameter values is

summarized in Table 4.1. We perform a full factorial numerical study, which results

in 3750 instances.

Table 4.1 Input parameter values for numerical study.

Input parameter No. of choices Values

1 Base rate, λ 5 0.5, 0.75, 1, 1.25, 1.5
2 Preventive maintenance cost, cp 3 1, 2, 3
3 Failure threshold, ξ 5 10, 12, 14, 18, 20
4 Length of planning horizon, T 2 10, 20
5 Parameter of degradation function, γ 5 0.5, 0.75, 1, 1.33, 2
6 Parameter of revenue function, ν 5 0.5, 0.75, 1, 1.33, 2

The results of the numerical study are summarized in Table 4.2. In this table, we

present the average and standard deviation of R, and the PπDS , where we first

distinguish between subsets of instances with the same value for a specific input

parameter of Table 4.1, and then present the results for all instances.

From the results in Table 4.2, we can state the following main observation. Condition-

based settings based on the system’s deterioration and time to maintenance, instead

of using the best fixed-setting policy, can lead to significant profit increases, with an

average increase of 50.42%. The huge financial advantage is mainly because of two

mechanisms. First, the condition-based setting policy is able to prevent failures by

slowing down the deterioration when the failure threshold is nearing, thereby saving

on high maintenance costs. This is in sharp contrast with the fixed-setting policy,

which would just continue operating on the fixed setting until failure. Second, when

the scheduled maintenance moment is nearing and the system is still in good condition,

the condition-based setting policy would exploit the remaining useful condition for

accumulating revenue by setting a higher setting. Such an opportunity is completely

ignored by the fixed-setting policy. Based on the results in Table 4.2, we can conclude

that these two mechanisms are especially important for systems that have a low

expected time to failure, either through a high base rate or a low failure threshold.
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Table 4.2 Relative profit increase (in %) of condition-based compared to static setting
policies.

R

Input parameter Value Mean SD PπDS

Base rate, λ

0.5 15.18 11.46 33.74
0.75 26.82 18.26 24.89
1 41.58 34.97 19.39
1.25 72.31 133.78 15.73
1.5 96.23 425.59 13.16

Preventive maintenance cost, cp

1 55.94 262.30 22.38
2 46.11 188.32 21.38
3 49.23 136.83 20.39

Failure threshold, ξ

10 92.22 427.09 14.65
12 66.07 129.02 17.70
14 42.56 44.98 20.59
18 27.65 21.93 25.81
20 23.63 17.87 28.16

Length of planning horizon, T
10 47.94 151.18 19.47
20 52.91 243.17 23.29

Parameter of degradation function, γ

0.5 67.08 376.91 31.59
0.75 61.19 173.84 25.54
1 48.59 168.19 20.75
1.33 41.02 45.08 16.42
2 34.25 42.68 12.60

Parameter of revenue function, ν

0.5 28.95 48.01 12.14
0.75 32.31 43.44 13.35
1 53.79 169.41 15.83
1.33 67.49 175.60 21.49
2 69.58 374.14 44.09

Total 50.42 202.46 21.38

4.4.2 Value of integrating maintenance and setting policies

In Theorem 4.2 we show that one can optimize the length of the maintenance

interval when the optimal condition-based setting policy is followed in between those

maintenance moments. This allows decision makers to jointly decide on the two

policies (i.e., maintenance and setting policies) in an integrated manner. In practice

however, these two decisions are often made sequentially; that is, first the tactical

decision of choosing a maintenance interval is made and then, given that maintenance

interval, operational choices pertaining to settings of the system are made. We now

describe how this approach is usually carried out.

First, the problem of selecting the optimal maintenance interval without taking into

account the setting policy and using only the knowledge of the base rate falls in the

class of the classical age-based maintenance problem (Barlow and Hunter, 1960). Note
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that the lifetime distribution under the base rate is an Erlang random variable with

shape ξ and rate λ. Hence, if a maintenance interval of length t is selected, then this

results in an average maintenance cost rate, denoted with gm(t), of

gm(t) =
cp + (cu − cp) · P

[
Tξ ≤ t

]
E
[

min{Tξ, t}
] , (4.30)

where the numerator is the expected maintenance cost, and the denominator is the

expected time to maintenance (either preventive or corrective). It is well-known that

in this setting, the function gm(t) has a unique minimizer that we can easily compute

(Barlow and Hunter, 1960).

Next, given this optimal maintenance interval length, we can then use the optimal

setting policy to control the system’s deterioration in between those maintenance

moments, which yields an expected profit rate per time unit. We call this approach

the sequential approach, denoted with πS , and denote its resulting average profit rate

with P̂πS . Note that if t∗ is the minimizer of Equation (4.30), then P̂πS is equal to

J∗λ(0, t∗)/t∗.

Alternatively we can use Theorem 4.2 and determine the optimal length of the

maintenance interval when taking into account that the optimal condition-based

setting policy is followed in between those maintenance moments. We call this

approach the integrated approach, denoted with πI , and denote its resulting average

profit rate with P̂πI .

Since we would like to assess the value of integrating maintenance and setting policies,

we report on its relative profit rate increase, denoted with R̂, which we compute as

R̂ = 100 · (P̂πI − P̂πS )/P̂πS , where P̂π is the expected profit rate per time unit of

approach π ∈ {πS , πI}. We perform a full factorial numerical study using the same

parameters of the previous numerical study as displayed in Table 4.1 (excluding the

parameter T for obvious reasons), which results in 1875 instances. We summarize

the results of this numerical study in Table 4.3. Again, we present the average and

standard deviation of R̂, and the P̂πI , where we first distinguish between subsets of

instances with the same value for a specific input parameter of Table 4.1, and then

present the results for all instances.

The following main observations can be drawn from the results in Table 4.3. First,

integrating maintenance and setting decisions leads to significant profit rate increases

as opposed to treating them sequentially, with an average increase of 21.39%. We

emphasize that this increase is solely due to this integrated approach since the optimal

condition-based setting policy is applied on an operational level in both approaches.
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Table 4.3 Relative profit rate increase (in %) of integrating maintenance and setting decisions
compared to treating them sequentially.

R̂

Input parameter Value Mean SD P̂πI

Base rate, λ

0.5 26.18 30.00 2.04
0.75 23.22 28.99 1.92
1 20.80 28.09 1.82
1.25 19.04 27.29 1.73
1.5 17.70 26.59 1.64

Preventive maintenance cost, cp

1 18.74 24.84 2.04
2 21.44 28.38 1.82
3 23.99 31.25 1.63

Failure threshold, ξ

10 15.95 23.72 1.63
12 18.39 25.87 1.75
14 20.80 27.75 1.83
18 25.05 30.62 1.95
20 26.76 31.70 1.99

Parameter of degradation function, γ

0.5 2.73 1.98 1.98
0.75 8.46 4.56 1.92
1 17.40 8.99 1.87
1.33 30.52 18.88 1.78
2 47.84 47.40 1.60

Parameter of revenue function, ν

0.5 5.70 6.25 1.00
0.75 11.25 8.79 1.22
1 18.23 14.24 1.50
1.33 27.73 23.56 1.99
2 44.04 47.30 3.43

Total 21.39 28.35 1.83

Secondly, an integrated approach is especially more profitable for systems that have

a large expected time to failure under normal deterioration, either through a larger

failure threshold or a lower base rate. This is because for such systems, the revenue is

relatively a higher contributor to the profit than for systems with low lifetimes. In an

integrated approach, setting the maintenance interval takes into account that more

revenue can be realized relative to maintenance costs, while in a sequential approach,

this accumulation of revenue is not taken into account when choosing the maintenance

interval. Thirdly, the form of both the degradation and revenue function has a huge

impact on the profit increase; concave functions lead to small profit increases, while

convex functions lead to high profit increases.
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4.5. Heterogeneous systems: Learning the base rate

The previous sections focused on the situation in which the base rate is fully known to

the decision maker and where each newly installed system has this base rate. In this

section, our attention is focused on the situation in which the base rate is not a-priori

known to the decision maker and where each newly installed system has a different

base rate. For this case, where systems stem from a heterogeneous population with

parameter uncertainty, a decision maker needs to learn the individual base rate based

on both the system’s deterioration path and the chosen settings. We first propose a

Bayesian framework that is able to do so, which we then use to develop a heuristic

policy. This heuristic policy is based on the optimal policy for the known case that

we extensively analyzed in the previous section. We conclude this section with a

simulation study in which we compare the performance of the heuristic policy with a

clairvoyant policy that knows the true base rate upon installation.

4.5.1 Bayesian inference under setting policies

We assume that the heterogeneity of the systems’ base rates, denoted by Λ, can

be modeled by a Gamma distribution with known shape α0 and rate β0; that is,

Λ ∼ Γ(α0, β0). Each newly installed system has a realization of Λ as base rate which

is unknown to the decision maker. Hence at t = 0 (which is T time units before

the planned maintenance), upon installation of a new system, the decision maker’s

knowledge regarding the unknown base rate can be modeled by a prior distribution

with density function:

π0(λ|α0, β0) =
βα0

0 λα0−1e−β0λ

Γ(α0)
,

where the subscript 0 indicates that this represents the decision maker’s knowledge

at t = 0. Recall that the deterioration level at t = 0 is denoted with Y0 = 0. Suppose

now that the decision maker adopts a setting policy in which she chooses setting

s ∈ S for the period [0, u] and we observe deterioration level Yu = y at t = u. We

can then obtain the posterior distribution at t = u using Bayesian statistics (i.e. that

the posterior distribution is proportional to the likelihood function times the prior
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distribution) as follows:

πu(λ|s, y, α0, β0) ∝ P[Yu = y|λ, s] · π0(λ|α0, β0)

=

(
uλf(s)

)y
e−uλf(s)

y!

βα0
0 λα0−1e−β0λ

Γ(α0)

=

(
uf(s)

)y
y!

βα0
0 λy+α0−1e−λ

(
β0+uf(s)

)
Γ(α0)

∝ λα0+y−1e−λ
(
β0+uf(s)

)
.

Note that this is again a Gamma distribution with parameters α0+y and β0+uf(s). It

is well-known that the Gamma distribution is a conjugate for the Poisson distribution

(see, e.g., Gelman et al., 1995), and we have now shown that this also holds under

setting policies. This also implies that for the inference of the unknown base rate,

we only need to keep track of the settings used and the current deterioration. That

is, let si be the setting used in period i lasting from [ti−1, ti−1 + u], with t0 = 0,

and let ŝt , u ·
∑ t

u
i=1 f(si) be the aggregate sum of settings used until time t, and

suppose that the system has deterioration level y, then the decision maker’s knowledge

regarding the unknown base rate is represented by the (updated) Gamma distribution

Λ ∼ Γ(α0 + y, β0 + ŝt). The mean of this Gamma distribution is equal to E[Λ|y, ŝt] =
α0+y
β0+ŝt

, which is intuitive for the following reason. If a system has been controlled by

a policy with a higher aggregate sum of settings (recall that f(s) is increasing in s)

than another, but both systems have the same deterioration level, then we expect the

base rate of the former to be smaller. Similarly, if a policy has been employed with

the same aggregate sum of settings, but one system has a higher deterioration level

than another, then we expect the system with the higher deterioration level to have

a larger base rate.

4.5.2 A certainty-equivalent policy

We now propose an intuitive heuristic policy called the certainty-equivalent policy

to deal with the situation of heterogeneous systems that makes use of the Bayesian

framework described in the previous section. Under this policy, the decision maker

estimates the base rate based on her current knowledge and assumes that the true

base rate is equal to her estimation with certainty. The certainty-equivalent policy is

parametrized by a positive integerN re-opt ∈ Z>0, which denotes how often the decision

maker re-optimizes the policy based on the accrued knowledge. In the certainty-

equivalent policy, we divide the planning horizon in N re-opt + 1 phases, each of equal
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length.

At the start of the planning horizon, upon installation of the system, the decision

maker’s estimate for the base rate, denoted with λ̂0, is equal to the mean of the

initial prior distribution: λ̂0 = α0

β0
. Using this estimate, we obtain the optimal policy

for the known case with λ̂0 as base rate, and implement this policy until the first re-

optimization epoch at t1 = T
Nre-opt+1 . At this point, the decision maker updates the

estimate of the base rate based on the current deterioration level, denoted with x1, and

the aggregate sum of settings used, denoted with ŝt1 , to λ̂1 = α0+x1

β0+ŝt
and computes

the optimal policy as if λ̂1 is the true base rate. This policy is then implemented

until the next re-optimization epoch, after which the procedure is repeated until the

scheduled maintenance moment. A schematic illustration of the certainty-equivalent

policy with N re-opt = 1 is provided in Figure 4.4. Recall that u∗λ denotes the optimal

policy for a system with known base rate λ.

Use policy u∗
λ̂0

Use policy u∗
λ̂1

t = T t1 = T
2

t = 0

Compute λ̂1 = α0+x1
β0+ŝt1

, and obtain policy u∗
λ̂1

Figure 4.4 Schematic illustration of certainty-equivalent policy with N re-opt = 1.

The certainty-equivalent policy is easy to implement and, based on the structural

properties that we established in Theorem 4.1, we have a good understanding of how

this policy behaves. Specifically, if the decision maker learns that a system has a high

base rate, she will impose lower settings for all times and deterioration levels, while

if she learns that the system has a low base rate, she will impose higher settings.

The policy thus learns when it is possible to impose higher settings to accumulate

more revenue, but also when lower settings are needed to prevent failures and high

associated maintenance costs.

4.5.3 Simulation study

In the numerical studies in Section 4.4 we computed the performance measures needed

for the comparisons in those studies. The performance of the certainty-equivalent

policy, however, can only be evaluated through simulation. In this section, we

report on the results of a comprehensive simulation study in which we compare the
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performance of the certainty-equivalent policy with a clairvoyant policy that knows

the true base rate at installation.

We use a full factorial design in which we vary five different input parameters (see

Table 4.4 for a summary). We use failure thresholds ξ ∈ {10, 15, 20} and planning

horizons T ∈ {10, 15, 20}. Again, we use a single corrective maintenance cost equal

to 10 and a single preventive maintenance cost for all non-failed states, denoted

with cp, where we use either cp = 1 or cp = 3. We use the functions f = sγ and

r = sν , for the degradation and revenue function, respectively, and use the same

interval for the settings to choose from as in the previous numerical studies, i.e.

S = [0, 2]. By using the values {0.5, 1, 2} for γ and ν, we model concave, linear,

and convex functions, respectively. The certainty-equivalent policy is characterized

by the parameter N re-opt, which we vary between 5 values. In a simulation instance

(we shortly describe the simulation procedure), the base rates are sampled from a

Gamma distribution in which we fix the mean to 1, and vary its coefficient of variation,

denoted with cvΛ. This coefficient of variation is thus a measure for the population

heterogeneity of the systems. These choices lead to a total of 4050 instances.

Table 4.4 Input parameter values for simulation study.

Input parameter No. of choices Values

1 Coefficient of variation of prior Gamma distribu-
tion, cvΛ

3 0.71, 1, 1.41

2 Preventive maintenance cost, cp 2 1, 3
3 Length of planning horizon, T 3 10, 15, 20
4 Failure threshold, ξ 5 10, 12, 15, 18, 20
5 Parameter of degradation function, γ 3 0.5, 1, 2
6 Parameter of revenue function, ν 3 0.5, 1, 2
7 Number of re-optimizations, Nre-opt 5 1, 2, 4, 6, 8

We benchmark the performance of the certainty-equivalent policy, denoted with

πCEP , by the notion of relative regret, i.e. the percentage of expected profit loss

(over a planning horizon) relative to the clairvoyant Oracle policy πO. We compute

this relative regret as R̄ = −100 · (P̄πCEP − P̄πO )/P̄πO , where P̄π is the average profit

of policy π ∈ {πCEP , πO}. Note that as πO is unattainable in practice, R̄ serves as

an upper bound on the relative regret with the best achievable performance.

The simulation procedure is as follows. For each instance, we first sample a base

rate, say λ∗, from the Gamma distribution Λ ∼ Γ(α0, β0). Then we compute the

expected optimal profit of the Oracle policy using base rate λ∗: J∗λ∗(0, T ). We then

simulate a sample path of an inhomogeneous Poisson process with base rate λ∗ that

is controlled by the certainty-equivalent policy using the thinning algorithm proposed

by Lewis and Shedler (1979) and obtain the resulting profit. We repeat this Smax
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times to obtain estimates for both P̄πO and P̄πCEP , respectively. Here, we choose

Smax sufficiently large such that the confidence intervals of the estimated P̄πO and

P̄πCEP are sufficiently small. We then use P̄πO and P̄πCEP to compute R̄.

The results of the simulation study are summarized in Table 4.5. In this table, we

present the average and maximum R̄, and the P̄πO , where we first distinguish between

subsets of instances with the same value for a specific input parameter of Table 4.4,

and then present the results for all instances.

Table 4.5 Results of simulation study: Relative profit loss (in %) compared with Oracle
performance.

R̄

Input parameter Value Mean Max P̄πO

Coefficient of variation of prior Gamma distribution, cvΛ

0.71 0.59 7.29 10.32
1 0.72 9.75 10.33
1.41 0.84 11.63 10.33

Preventive maintenance cost, cp
1 0.65 10.06 11.33
3 0.78 11.63 9.33

Length of planning horizon, T

10 0.38 3.10 7.03
15 0.70 7.16 10.51
20 1.08 11.63 13.46

Failure threshold, ξ

10 1.37 11.63 9.03
12 0.94 7.98 9.75
15 0.64 4.98 10.32
18 0.34 2.33 11.14
20 0.28 2.09 11.43

Parameter of degradation function, γ

0.5 0.01 0.07 9.93
1 0.78 11.63 10.24
2 1.39 11.63 10.83

Parameter of revenue function, ν
0.5 1.39 11.63 10.83
1 0.77 11.63 10.24
2 0.01 0.05 9.93

Number of re-optimizations, Nre-opt

1 0.91 11.63 10.32
2 0.79 10.21 10.33
4 0.68 8.64 10.33
6 0.62 7.90 10.33
8 0.59 7.55 10.33

Total 0.72 11.63 10.33

The results in Table 4.5 indicate that the certainty-equivalent policy performs

excellently with average profit losses of only 0.72% compared to the Oracle policy that

knows the true base rate. Additionally, with a maximum profit loss of only 11.63%

over all 4050 instances, the certainty-equivalent policy is also robust in providing

good performance under varying conditions. We find that this profit loss is inversely

related to the number of re-optimizations and the failure threshold. The decrease
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in the number of re-optimizations is intuitive; the certainty-equivalent policy adapts

more frequently to the accrued knowledge of the current system’s base rate yielding

a lower profit loss with respect to the optimal policy for that base rate. When the

failure threshold increases, there is less need for controlled deterioration as the system

can, on average, be set to its maximum setting more often. This holds for both the

Oracle policy and the certainty-equivalent policy resulting in comparable performance.

Finally, we see that the form of both the degradation and revenue function has a large

impact on the relative profit loss; a concave degradation function and/or a convex

revenue function lead to small profit losses.

We would like to emphasize that we have assumed that the decision maker has

access to the true hyperparameters of the Gamma distributions from which the base

rates are sampled. Hence, the certainty-equivalent policy already starts with a good

understanding (in expectation) of the underlying heterogeneity, which might be a

contributing factor to the excellent results. Nonetheless, in practice, decision makers

often have access to data that can be used to provide a good estimate of these initial

prior parameters, which makes this assumption reasonable.

4.6. Conclusion

In this chapter, we have studied optimal condition-based setting policies for stochasti-

cally deteriorating production systems when planned maintenance moments are given.

First, we considered the case that the base rate is a-priori known to the decision maker.

For this case, we modeled the problem as a continuous-time MDP and characterized

the monotonic behavior of the optimal policy. We have shown that this structure is

remarkably intuitive: decrease the setting if closer to the failure threshold and increase

the setting if closer to the planned maintenance moment. We have further shown

that under these optimal setting decisions, the length of the interval between planned

maintenance moments can be easily optimized, thereby addressing the trade-off that

arises due to maintenance costs at such moments. We have complemented these

theoretical results by an extensive numerical study in which we demonstrate that:

(i) condition-based setting policies can lead to substantial profit increases relative to

static setting policies, and (ii) integrating maintenance and setting policies can lead to

significant profit increases compared to treating them sequentially (i.e. first deciding

on an interval length, and then implementing the setting policy, see Section 4.4.2).

We then relaxed the assumption that the base rate is known a-priori by assuming

that there is parameter uncertainty regarding this base rate. For this case, we

have developed an easy-to-implement Bayesian heuristic, that mimics the structure
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of the optimal policy for the case that the base rate is known. In an extensive

simulation study, we have shown that this heuristic performs excellently compared to

a clairvoyant Oracle policy that knows the base rate a-priori.

Two immediate directions for further research are (i) extending the analysis to

stochastic processes other than the Poisson process, and (ii) integrating Bayesian

learning in the optimization problem directly instead of myopically like we proposed

in this chapter. For the former, it is perhaps most promising to consider other point

processes so that the resulting optimization problem still remains in the class of

intensity control problems (see, e.g., Bremaud, 1980, Chapter VII). For the latter,

one could embed the optimization problem with (in addition to state variables) a

belief variable needed for the Bayesian learning. In a discrete-time setting, this gives

rise to a tractable Bayesian MDP (see Chapter 1), but in a continuous-time setting

– like the one discussed in this chapter – the evolution process of this belief variable

is usually a martingale satisfying a certain stochastic differential equation (see, e.g.,

Araman and Caldentey, 2009; Kwon and Lippman, 2011; Kwon et al., 2012), which

is likely much harder to tackle.

This chapter is the final of three chapters on CBM for single-component systems with

parameter uncertainty. In the next chapter, we shall look at a set of multiple systems,

where each system degrades according to the deterioration process considered in this

chapter: a Poisson process. We shall study the case where the rate of the Poisson

process is unknown a-priori, similar to the setting studied in Section 4.5.1 in this

chapter. When studying a set of multiple systems, where each system is generating a

real-time stream of data, a natural question to ask is whether combining these multiple

streams of data can lead to savings compared to not combining them. Answering this

question will be the main objective of the next chapter.





Chapter 5

Pooling data for joint learning in

condition-based maintenance

with rate uncertainty

5.1. Introduction

The condition-based maintenance (CBM) models that we studied in the three

previous chapters all have two assumptions in common. The first assumption deals

with modeling the parameter uncertainty, where we assume that each time upon

replacement of a component a new – again unknown – parameter is drawn from

some distribution describing the uncertainty. This new realization is different from

the parameter of the replaced component, so that all components are statistically

distinguishable. This is reflected in the corresponding optimizations problems in each

chapter, where learning is reset (through resetting the sufficient statistic) once a

component is replaced. The second assumption deals with the number of systems. In

each model we focused on a single-component system in isolation, which is a logical

consequence of the first assumption. Indeed, there is no incentive to look at multiple

systems if the individual systems are in fact statistically distinguishable. In this

This chapter is based on Drent and Van Houtum (2022).
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chapter, which is the last chapter on parameter uncertainty in CBM, we depart from

both assumptions.

Specifically, we consider a set of systems where each system has a critical component

whose condition deteriorates according to a Poisson process (similar to the model

considered in Chapter 4) with an a-priori unknown rate. In contrast to the previous

chapters, we assume that this unknown rate is identical for all systems and remains

the same whenever a component of a system is replaced. Although all systems have

the same rate, all other characteristics (preventive and corrective maintenance costs,

and failure thresholds) differ for each system. When treating parameter uncertainty in

this way, where all systems are now statistically indistinguishable, there is an incentive

to look at all systems together. That is, one could pool all data – stemming from all

systems – together to jointly learn the unknown parameter on-the-fly as data becomes

available. In this chapter we study this data pooling and investigate the benefits of

shared learning in CBM.

The benefit of pooling resources has been extensively studied in many application

domains, yet almost exclusively related to pooling of physical resources. For instance,

inventory pooling, where multiple inventory locations are consolidated into a single

one, leads consistently to lower costs than having a set of distributed inventory

locations (see, e.g., Eppen, 1979; Benjaafar et al., 2005; Berman et al., 2011). Pooling

of server capacity in queuing networks – frequently used to model applications in

service industries – is another example where pooling of physical resources can lead

to lower costs or higher efficiency when compared to its unpooled equivalent (see, e.g.,

Smith and Whitt, 1981; Calabrese, 1992; Mandelbaum and Reiman, 1998).

Due to recent developments in information technology, many applications are

characterized by (i) multiple sources of data, but at the same time, (ii) limited data

per source because each of them has not yet generated a sufficient amount of data

to accurately estimate values of relevant parameters needed for decision making. To

alleviate the insufficiency of data per source, some researchers have recently started

to investigate the possibility of pooling data from many sources to improve decision

making that uses that data as input, mainly motivated by the proven benefits of

pooling physical resources.

Bastani et al. (2022) consider a set of dynamic pricing problems where demand in

each problem is parametrized by a common yet unknown parameter. They propose a

meta dynamic pricing algorithm that learns the unknown parameter using Thompson

sampling, and they show that pooling data speeds up learning significantly. Gupta

and Kallus (2022) propose a sample average approximation algorithm for a set of

stochastic optimization problems – each with limited data – and prove that combining
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data across these problems can outperform the unpooled equivalents. Finally, Deprez

et al. (2022) investigate the benefits of combining data from a set of heterogeneous

systems in the context of preventive maintenance. In their work, Deprez et al. (2022)

assume that a system’s failure time follows a Cox proportional hazards model, where

the intensity function can be decomposed in both a factor that is identical for all

systems and a system specific factor. The authors propose a method in which limited

data stemming from the statistically distinguishable (due to the system specific

factor) systems can be aggregated and adapted such that it can be utilized for better

maintenance decisions on each individual system. In this chapter, we contribute to

this novel stream of literature by investigating the benefits of data pooling in the

context of CBM.

5.1.1 Contributions

The main contributions of this chapter are as follows:

1. We formulate the problem of optimally maintaining N systems with a common,

unknown deterioration rate over a finite lifespan T as a finite-horizon Bayesian

Markov decision process (MDP) in which data is pooled for joint learning. This

formulation suffers from the well-known curse of dimensionality: The cardinality

of both the action and state space grow exponentially in N . As a remedy, we

provide a new decomposition result that establishes the equivalence between the

original MDP and N two-state MDPs with a binary action space, each focused

on an individual system.

2. We show that the structure of the optimal policy of each individual system has

a control limit structure.

3. In a comprehensive numerical study, we investigate the savings that can be

attained by pooling data to learn the a-priori unknown deterioration rate, while

optimally maintaining the systems. We find that the savings can be significant,

even for small values of N , and that the exact magnitude of these savings largely

depends on the magnitude of the uncertainty in the parameter. When there is

high uncertainty, huge savings of close to 57% can be realized on average, while

these savings become almost negligible when uncertainty decreases.
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5.1.2 Organization

The rest of this chapter is organized as follows. We describe the model in more detail in

Section 5.2. In Section 5.3, we formulate the problem as an MDP and we show that it

can be decomposed into N alternative MDPs. We present some structural properties

of both the expected cost and the optimal policy of the alternative MDP in Section

5.4. In Section 5.5, we report on an extensive numerical study that highlights the

benefit of pooling data. Finally, Section 5.6 provides concluding remarks.

5.2. Model description

We consider a set of N ≥ 1 systems subject to damage accumulation due to random

shocks that arrive over time. We remark that although pooling has only value when

N > 1, the analysis in this chapter also holds if N = 1. The set of all systems is

denoted by N , i.e. N = {1, . . . , N}. We assume that each system has a critical

component such that the system breaks down whenever this component fails. The

deterioration processes of these components are modeled as independent Poisson

processes with the same rate λ, denoted by {Xi(t), t ≥ 0}, with Xi(0) = 0, for

i ∈ N . A component of system i ∈ N deteriorates until its deterioration level

reaches or crosses a deterministic failure threshold, denoted with ξi ∈ N+, where

N+ , {1, 2, . . .}, after which the component is considered to have failed.

The deterioration levels are monitored at equally spaced decision epochs, though

failure moments can happen at any point in time (i.e. not only at decision epochs).

These decision epochs also correspond to planned maintenance moments at which the

decision maker can interfere with the components, which implies that if a component

fails, corrective maintenance is executed at the subsequent decision epoch. In practice

though, a failed component may be replaced immediately upon failure. If we assume

that the time between two subsequent decision epochs is small compared to their

deterioration rate, then replacing only at decision epochs is a reasonable assumption.

For convenience, we rescale time such that the time between two decision epochs

equals 1. If at a decision epoch, a component of system i ∈ N has failed, it needs to be

replaced correctively which takes a negligible amount of time and costs ciu > 0. Such

a failure can be prevented by performing an instantaneous preventive replacement

at a decision epoch, which costs cip > 0, with cip < ciu for all i ∈ N . Corrective

maintenance is more expensive because it includes costs caused by a component failure

in addition to the costs related to the replacement. Both replacements lead to a

newly installed component that is as-good-as-new which starts deteriorating again
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from level 0 according to a Poisson process with rate λ, that is, {Xi(t), t ≥ 0} is reset

to Xi(0) = 0.

The systems have a common, finite lifespan, with length T (<∞) time units, which

represents the time from the beginning of operating the systems until they are taken

out of service. We let this lifespan consist of T discrete time steps corresponding to the

intervals between consecutive decision epochs. That is, the systems start operating

at t = 0 which coincides with the first decision epoch, while the last decision epoch is

at t = T which coincides with the end of the lifespan.

The decision maker, responsible for maintaining the set of N systems, seeks to

minimize the total expected maintenance costs – due to both corrective and preventive

replacements of components – over their lifespan. In dealing with this optimization

problem, the decision maker faces another layer of uncertainty in addition to the

random shock arrivals. That is, the components used for all replacements always

have the same rate but this rate is a-priori unknown and needs to be inferred based

on the observations of the deterioration processes throughout their lifespan. Since

all components have the same rate, the decision maker can pool and utilize all

accumulated data together when inferring this unknown rate.

To this end, we adopt a Bayesian approach and treat the unknown rate λ as a random

variable denoted with Λ. Upon the start of operating all systems, at t = 0, Λ

has a Gamma distribution with shape parameter α0 and rate parameter β0. The

subscript notation reflects that this corresponds to t = 0; we adopt this notation in

the remainder of this chapter. Thus, at t = 0, the density function of Λ is equal to

fΛ(λ;α0, β0) =
λα0−1e−β0λβα0

0

Γ(α0)
for λ > 0, α0, β0 > 0,

where Γ(·) denotes the Gamma function. Suppose that at decision epoch t ∈ N+,

we observed a cumulative amount of k deterioration increments from all installed

components. It is well-known that the Gamma distribution is a conjugate prior for the

Poisson distribution. We can therefore readily obtain the new posterior distribution

describing our belief of Λ, which is again a Gamma distribution but with updated

parameters (see, e.g., Gelman et al., 1995, Chapter 2):

αt = α0 + k and βt = β0 +N · t. (5.1)

Observe that from the updating scheme in Equation (5.1), it is immediately clear that

the data stemming from all N systems is pooled for learning the unknown rate λ that

the systems have in common. At each decision epoch, based on her current belief of
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Λ, the decision maker wishes to predict the future evolution of the deterioration of

each component so that she can decide on potential replacements. This prediction

is encoded in the posterior predictive distribution. For this Gamma-Poisson model,

it is well-known that the posterior predictive distribution is a Negative Binomial

distribution (see, e.g., Gelman et al., 1995, Chapter 2). Specifically, given parameters

αt and βt, the deterioration increment of a component at system i at the next decision

epoch, denoted with Xi, is Negative Binomially distributed with parameters

r = αt and p =
βt

βt + 1
, (5.2)

where r is the number of successes and p is the success probability, so that Xi can be

interpreted as the number of failures until the rth success. In the remainder we use

the notation X ∼ NB(r, p) to denote that X is a Negative Binomially distributed

random variable with parameters r and p.

Equation (5.2) together with the updating scheme in (5.1) can be used to construct

an updated posterior predictive distribution at each decision epoch of the next

deterioration increments in real-time based on the observed data. Since the posterior

predictive distributions of the deterioration increments of each system are fully

described by only the current decision epoch t and cumulative amount of deterioration

increments k, it is a Markov process. This allows us to formulate the optimization

problem as a finite-horizon (with length T ) MDP equipped with the state variable k

for Bayesian inference of the unknown rate, which is the objective of the next section.

5.3. Markov decision process formulation

In this section, we formulate the problem described in the previous section as an

MDP.

The state space of the MDP is the set S , NN+1
0 where N0 , N+ ∪ {0}. For a given

state (x, k) ∈ S , x = (x1, x2, . . . , xN ) represents the vector of all deterioration levels,

and k denotes the sum of all deterioration increments. For a given state (x, k) ∈ S ,

let A (x) denote the action space, with A (x) = {(ai)i∈N } with

ai =

{0, 1} if xi < ξi,

{1} if xi ≥ ξi,

where ai = 0 corresponds to taking no action and ai = 1 corresponds to performing
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maintenance on the component of system i, respectively. This implies that if the

critical component of system i has failed (i.e. xi ≥ ξi), then the decision maker must

(correctively) replace it. For all components that have not failed, the decision maker

can choose to either preventively replace it, or do nothing and continue to the next

decision epoch.

Given the state (x, k) ∈ S and an action a ∈ A (x), the decision maker incurs a

direct cost, denoted by C(x,a), equal to

C(x,a) ,
∑
i∈N

(
ai
(
1− Ii(x)

)
cip + Ii(x)ciu

)
, (5.3)

where Ii(x) is an indicator function that indicates whether the component of system

i has failed in the deterioration vector x; that is,

Ii(x) =

0 if xi < ξi,

1 if xi ≥ ξi.

Let V Nt (x, k) denote the optimal expected total cost over decision epochs t, t+1, . . . , T ,

starting from state (x, k) ∈ S , and let the terminal cost, V NT (x, k), be equal to the

function C(x) ,
∑
i∈N Ii(x)ciu for all k. Then, for all t ∈ {0, 1, . . . , T − 1}, V Nt (x, k)

satisfies the following recursive Bellman optimality equations

V Nt (x, k) =

min
a∈A (x)

{
C(x,a) + Ea

[
V Nt+1

(
x′ +X, k +

∑
i∈N

Xi

)]}
, for all (x, k) ∈ S , (5.4)

where X = (X1, X2, . . . , XN ) is an N -dimensional random vector with Xi ∼
NB

(
α0 + k, β0+N ·t

β0+N ·t+1

)
(all Xi’s are independent and identically distributed), and

x′ = (x′1, x
′
2, . . . , x

′
N ) with

x′i =

xi if ai = 0,

0 if ai = 1.
(5.5)

We also refer to V Nt (x, k) as the value function. The first part between the brackets

is the direct costs while the second part is the expected future costs of taking action

a in state (x, k). Specifically, each component’s deterioration accumulates further

according to the posterior predictive distribution that corresponds to state (x, k)

that we described in the previous section, while k increases with the sum of all those
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increments. Systems that are maintained start with an as-good-as-new component,

which is governed by the auxiliary vector x′ which ensures that x′i = 0 when ai = 1,

see (5.5). The formulation in (5.4) shows that the learning process about the unknown

rate λ is pooled through the evolution of the common state variable k, while the future

evolution of all individual deterioration processes depends on all pooled information

and the parameter N .

Because (i) the action space is finite, and (ii) the state space is countable, the existence

of an optimal policy for this finite-horizon MDP is guaranteed, see e.g., Proposition

4.4.3 of Puterman (2005). Observe that over the complete lifespan of length T , the

minimum total expected cost for N systems is given by V N0 (0, 0) (0 denotes the N-

dimensional zero vector) which can be found by solving Equation (5.4) via backward

induction. It is however clear from the formulation in (5.4), that as the number of

systems grows, the problem will increasingly suffer from the curse of dimensionality:

The cardinality of both the action and state space grow exponentially in N .

Instead of solving (5.4) (referred to as the original MDP) directly, we will now

construct an alternative MDP and show that the original MDP can be decomposed

into N of these alternative MDPs: One for each system i ∈ N . This decomposition

is imperative as it allows us to analyze the benefits of pooling of learning when N is

relatively large without suffering from the curse of dimensionality.

To this end, for each i ∈ N , let Ṽ N,it (x, k) denote the optimal expected total cost over

decision epochs t, t + 1, . . . , T , starting from state (x, k) ∈ N2
0, and let the terminal

cost, Ṽ N,iT (x, k), be equal to the function Ci(x) , Ii(x)ciu for all k. Then, for all

t ∈ {0, 1, . . . , T − 1} and all (x, k) ∈ N2
0, Ṽ N,it (x, k) satisfies the following recursive

Bellman optimality equations

Ṽ N,it (x, k) = min
a∈A (x)

{
Ci(x, a) + E

[
Ṽ N,it+1

(
x · (1− a) +X, k +X +K

)]}
, (5.6)

where X ∼ NB
(
α0 + k, β0+N ·t

β0+N ·t+1

)
, K ∼ NB

(
(N − 1) · (α0 + k), β0+N ·t

β0+N ·t+1

)
(i.e.,

the probability distribution of K is the (N − 1)-fold convolution of the probability

distribution of X), and

Ci(x, a) , a
(
1− Ii(x)

)
cip + Ii(x)ciu. (5.7)

The indicator functions and actions (spaces) are as defined before. It is noteworthy

to mention that the formulation in (5.6) in fact resembles a single component

optimization problem in isolation, where the transition probabilities depend on both
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parameter N and the state variable k. The evolution of the state variable k depends

on the random deterioration increment of the component (X) but it also accounts

for the evolution of the other components through the random variable K. Below

we present the decomposition result, which establishes that the value function of the

original MDP is the sum of all N value functions of the alternative MDPs.

Proposition 5.1. For each t ∈ {0, 1, . . . , T}, we have:

V Nt (x, k) =
∑
i∈N

Ṽ N,it (xi, k).

Proof: We prove the statement using induction on t. Note that the terminal values

can be decomposed:

V NT (x, k) = C(x) =
∑
i∈N

Ii(x)ciu =
∑
i∈N

Ii(xi)ciu =
∑
i∈N

Ṽ N,iT (xi, k),

so that the statement trivially holds for the base case T . Assume that the statement

holds for some t+ 1, 0 < t+ 1 ≤ T , we will show that the statement then also holds

for t.

We have, by Equation (5.4),

V Nt (x, k) = min
a∈A (x)

{
C(x,a) + Ea

[
V Nt+1

(
x′ +X, k +

∑
j∈N

Xj

)]}
(a)
= min

a∈A (x)

{∑
i∈N

Ci(xi, ai) + Ea

[
V Nt+1

(
x′ +X, k +

∑
j∈N

Xj

)]}
(b)
= min

a∈A (x)

{∑
i∈N

Ci(xi, ai) + Ea

[ ∑
i∈N

Ṽ N,it+1

(
x′i +Xi, k +

∑
j∈N

Xj

)]}
(c)
= min

a∈A (x)

{∑
i∈N

Ci(xi, ai) +
∑
i∈N

Ea

[
Ṽ N,it+1

(
x′i +Xi, k +Xi +

∑
j∈N \i

Xj

)]}

(d)
=
∑
i∈N

min
ai∈A (xi)

{
Ci(xi, ai) + E

[
Ṽ N,it+1

(
xi(1− ai) +Xi, k +Xi +K

)]}
=
∑
i∈N

Ṽ N,it (xi, k),

where (a) holds because the direct costs can be decomposed (see (5.3) and (5.7)),

(b) holds due to the induction hypothesis, (c) holds because of the linearity of an

expectation and extracting Xi from the summation, (d) holds because the sum of
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N −1 independent Negative Binomially distributed random variables with r = α0 +k

and p = β0+N ·t
β0+N ·t+1 is again Negative Binomially distributed with the same p but with

r = (N − 1) · (α0 + k) (see, e.g., DasGupta, 2010, Chapter 6), and the last equality

follows from using Equation (5.6).

The decomposition in Proposition 5.1 reduces the computational burden of solving

(5.4) significantly. It collapses the original, high-dimensional MDP into N 2-

dimensional MDPs with a binary action space, each with their own cost structure

and failure threshold, while still taking into account pooled learning across the

N systems. As already pointed out, the alternative MDP is in fact a single

component optimization problem with an adapted state space and adapted transition

probabilities. This also eases the process of establishing some of its structural

properties, which is the topic of the next section.

5.4. Structural properties

In this section, we establish some structural properties of the alternative MDP that

can be exploited to decrease the computational complexity of solving the MDP.

We first rewrite (5.6) into the conventional formulation for single component

optimization problems:

Ṽ N,it (x, k) = (5.8)
ciu + E

[
Ṽ N,it+1

(
X, k +X +K

)]
, if x ≥ ξi,

min

{
cip + E

[
Ṽ N,it+1

(
X, k +X +K

)]
;E
[
Ṽ N,it+1

(
x+X, k +X +K

)]}
, if x < ξi.

The first case in Equation (5.8) holds because failed components must be replaced

correctively at cost ciu. If the components deterioration level is less than ξi, we can

either perform a preventive replacement, which costs cip, or leave the component

in operation until the next decision epoch at no cost. The terminal costs are as

introduced before. The next result establishes the monotonicity of the value function

Ṽ N,it (x, k) in x.

Proposition 5.2. For each t ∈ {0, 1, . . . , T} and k ∈ N0, the value function

Ṽ N,it (x, k) is non-decreasing in x.

Proof: We prove the statement using induction on t. Note that the terminal costs
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are non-decreasing in x since Ṽ N,iT (x, k) = 0 when x < ξi and ciu when x ≥ ξi, and

ciu > 0, so that the statement holds for the base case T . Assume that the statement

holds for some 0 < t + 1 ≤ T , we will show that the statement then also holds for

t. Consider Ṽ N,it (x, k). Since all terms, except the action of leaving the component

in operation, on the right of (5.8) are constant with respect to x, we only need to

consider E
[
Ṽ N,it+1

(
x+X, k+X +K

)]
. Observe that, since the random variable X is

constant with respect to x, the following stochastic order holds for x+ ≥ x− ≥ 0 (see

Definition 2.1 in Chapter 2 for the definition of ≥st):

x+ +X ≥st x
− +X.

Hence, together with the induction hypothesis, we conclude that the expectation

E
[
Ṽ N,it+1

(
x + X, k + X + K

)]
is non-decreasing in x (cf. Shaked and Shanthikumar,

2007, Theorem 1.A.3). Since the other terms are constant with respect to x, we may

conclude that Ṽ N,it (x, k) is non-decreasing in x.

Proposition 5.2 implies that if deterioration states increase, we expect to incur higher

costs. This is quite intuitive as a higher level of deterioration also increases (i) the

probability of a costly failure and/or (ii) the need for a preventive maintenance to

replace the deteriorated component with an as-good-as-new one.

By Proposition 5.1, we may also conclude that the value function V Nt (x, k) is non-

decreasing in the standard component-wise order. That is, for any deterioration

vectors x and x′ such that xi ≤ x′i for all i ∈ N , we have that V Nt (x, k) ≤
V Nt (x′, k). The intuition behind this is similar to the intuition behind Proposition

5.2: Deterioration vectors with higher deterioration levels lead to higher expected

costs than deterioration vectors with lower deterioration levels.

The next result, which builds further on Proposition 5.2, establishes the optimality

of a control limit policy for the alternative MDP.

Proposition 5.3. For each t ∈ {0, 1, . . . , T − 1} and k ∈ N0, there exists a control

limit δ
(k,t)
i , 0 < δ

(k,t)
i ≤ ξi, such that the optimal action is to carry out a preventive

replacement if and only if x ≥ δ(k,t)
i .

Proof: Preventive maintenance at decision epoch t ∈ {0, 1, . . . , T − 1} is optimal

when the following equation holds:

cip + E
[
Ṽ N,it+1

(
X, k +X +K

)]
≤ E

[
Ṽ N,it+1

(
x+X, k +X +K

)]
. (5.9)
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The left-hand side of Inequality (5.9) is constant with respect to x. Since E
[
Ṽ N,it+1

(
x+

X, k + X + K
)]

is non-decreasing in x (cf. proof of Proposition 5.2), we find that

the right-hand side of Inequality (5.9) is non-decreasing in x. Hence, if the optimal

decision is to carry out preventive maintenance in state (δ
(k,t)
i , k) at decision epoch

t ∈ {1, 2, . . . , T − 1}, then the same decision is optimal for any state (x, k) at decision

epoch t with x ≥ δ(k,t)
i , which implies the control limit policy.

The optimality of a control limit policy is not only intuitive and convenient for the

implementation of this optimal policy in practice, it can also be exploited to further

decrease the computational burden of solving the original MDP. That is, existing

algorithms that rely on these monotonicity properties such as Monotone Backward

Induction (see Puterman, 2005, Section 4.7.6) can be used to efficiently solve the

alternative MDP, and hence the original MDP.

5.5. Numerical study

This section reports the results of a comprehensive numerical study in which we assess

the benefits of pooling data to learn an a-priori unknown parameter, while optimally

maintaining N systems over a finite lifespan T . Although the results in the previous

sections hold for asymmetric – in terms of costs and failure thresholds – systems, we

shall focus on symmetric systems in this numerical study. By doing so, the value

function Ṽ N0 (0, 0) (we drop the index i as we consider symmetric systems) gives us

the cost per system over its lifespan when the data of N systems is pooled. We can

use this cost per system to compute a suitable performance metric that allows us to

assess the value of pooling learning as a function of N compared to not pooling. To

this end, we define the following measure:

%∆ = 100

[
1− Ṽ N0 (0, 0)

Ṽ 1
0 (0, 0)

]
,

which is the percentage savings per system over the lifespan when the learning of N

systems is pooled compared to not pooling any data for those systems and learning

the unknown rate independently from the other systems.

We first perform an extensive numerical study with the following parameter settings.

We use failure thresholds ξ ∈ {7, 10}, lifespan lengths T ∈ {50, 70, 90}, and preventive

maintenance costs cp ∈ {0.5, 1, 1.5} and set the corrective maintenance cost cu equal
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to 10. We remark that the choices for the cost ratio cu
cp

are of the same order as is

usually assumed in the maintenance literature (see, e.g., Van Oosterom et al., 2017;

Dursun et al., 2022). Recall that the initial parameter uncertainty is modeled by the

random variable Λ which has a Gamma distribution with shape α0 and rate β0. We

can thus fix the mean of Λ to a certain value and vary its coefficient of variation to

increase or decrease the uncertainty. We do so by solving the following set of equations

for α0 and β0:

E[Λ] =
α0

β0
, and cvΛ =

1
√
α0
,

where cvΛ is the coefficient of variation of Λ. This allows us to explicitly study the

impact of the uncertainty (in terms of its mean and coefficient of variation) on the

pooling effects. We use means E[Λ] ∈ {0.5, 0.75, 1} and vary the coefficient of variation

between 6 values, that is cvΛ ∈ {0.1, 0.25, 0.5, 1, 2, 4}. We further consider 7 values for

N , N ∈ {1, 2, 4, 6, 8, 10, 20}. The choices for these means and coefficient of variations

model a wide variety of mean-variability combinations in the parameter uncertainty of

the deterioration rate. We further remark that the chosen values for the coefficient of

variations are in line with previous work where rate uncertainty of a Poisson process

is modeled by a Gamma distribution (see, e.g., Baker, 2001; Van Wingerden et al.,

2017). The complete set of parameter values is summarized in Table 5.1. We perform

a full factorial numerical study, which results in 324 instances per value of N and for

each instance we compute the relative savings %∆.

Table 5.1 Input parameter values for numerical study.

Input parameter No. of choices Values

1 Number of systems, N 7 1, 2, 4, 6, 8, 10, 20
2 Failure threshold, ξ 2 7, 10
3 Length of lifespan, T 3 50, 70, 90
4 Preventive maintenance cost, cp 3 0.5, 1, 1.5
5 Mean of Λ, E[Λ] 3 0.5, 0.75, 1
6 Coefficient of variation of Λ, cvΛ 6 0.1, 0.25, 0.5, 1, 2, 4

The results of the numerical study are summarized in Table 5.2. In this table, we

present the average and maximum relative savings %∆. For each value of N , we first

present the average relative savings for subsets of instances with the same value for a

specific input parameter of Table 5.1 (row wise), and then present the average results

for all instances with that fixed value of N (bottom row), where each average value

is accompanied with the maximum value in brackets.

Based on the results in Table 5.2, we can state the following main observations:
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Table 5.2 Relative savings (%∆) due to pooled learning.

Input N

parameter Value 2 4 6 8 10 20

ξ
7 2.7 (16.4) 9.8 (37.2) 14.8 (59.2) 18.0 (71.2) 19.7 (77.2) 24.5 (88.5)
10 3.4 (19.7) 9.9 (36.8) 14.5 (59.4) 17.1 (71.8) 19.1 (79.7) 22.7 (89.2)

T

50 3.0 (19.7) 9.7 (36.3) 14.5 (57.3) 17.4 (70.2) 19.3 (78.4) 23.6 (88.4)
70 3.1 (19.7) 9.8 (36.6) 14.7 (58.6) 17.6 (71.2) 19.4 (79.2) 23.6 (88.9)
90 3.1 (19.7) 10.0 (37.2) 14.8 (59.4) 17.6 (71.8) 19.5 (79.7) 23.6 (89.2)

cp

0.5 4.4 (19.7) 12.7 (37.2) 18.3 (59.4) 21.6 (71.8) 23.7 (79.7) 28.0 (89.2)
1 2.9 (12.7) 9.5 (33.5) 14.2 (53.9) 17.1 (65.1) 18.9 (72.5) 22.9 (82.8)
1.5 1.9 (8.7) 7.4 (29.9) 11.5 (48.9) 14.0 (59.4) 15.6 (65.8) 19.9 (77.6)

E[Λ]

0.5 3.0 (19.7) 8.3 (33.5) 12.1 (47.5) 14.6 (60.1) 16.2 (69.1) 19.6 (83.6)
0.75 3.0 (18.7) 10.0 (36.8) 14.9 (54.6) 17.8 (67.6) 19.7 (76.3) 23.8 (87.5)
1 3.1 (14.3) 11.2 (37.2) 16.9 (59.4) 20.3 (71.8) 22.4 (79.7) 27.3 (89.2)

cvΛ

0.1 0.0 (0.1) 0.0 (0.2) 0.1 (0.2) 0.1 (0.3) 0.1 (0.3) 0.2 (0.4)
0.25 0.2 (0.5) 0.4 (0.8) 0.5 (1.0) 0.5 (1.1) 0.6 (1.2) 0.8 (1.4)
0.5 0.6 (1.3) 1.3 (2.7) 1.8 (3.5) 2.1 (4.1) 2.4 (5.3) 3.1 (6.4)
1 4.1 (12.0) 7.8 (22.5) 9.4 (26.3) 10.4 (28.3) 11.0 (31.1) 12.4 (35.7)
2 10.3 (19.7) 22.7 (36.8) 29.5 (44.8) 33.8 (51.5) 36.7 (57.3) 46.0 (73.9)
4 13.0 (24.6) 27.2 (37.2) 35.3 (59.4) 40.8 (71.8) 44.9 (79.7) 56.9 (89.2)

Total 3.6 (24.6) 9.8 (37.2) 14.0 (59.4) 16.5 (71.8) 18.2 (79.7) 22.3 (89.2)

1. Pooling of data for learning a common, unknown parameter can lead to

significant savings compared to not pooling data and learning it independently.

2. The magnitude of the savings seems to be inextricably linked with the magnitude

of uncertainty in the parameter measured by its coefficient of variation. When

the coefficient of variation is high, savings of up to 56.9% on average (over all

instances with cvΛ = 4 and N = 20) can be achieved, while if the coefficient of

variation is low, savings become almost negligible (≤ 0.2% on average). This

can be explained as follows. When there is high uncertainty in the unknown

parameter, pooling data allows the decision maker to faster learn the unknown

parameter compared to learning it from data generated by a single system.

When there is little uncertainty in the unknown parameter, the benefit of

this vanishes; a decision maker already has an accurate belief of the unknown

parameter that needs little updating.

3. When comparing the average savings for increasing values of N , we find that

pooling has already a significant impact for small values of N , and that the

marginal savings gradually decrease when N increases.

4. The savings for each value of N tend to increase as the mean of Λ increases.

When E[Λ] increases and N is fixed, the expected deterioration increment

between two consecutive decision epochs is larger and, as a result, the optimal



5.6 Conclusion 153

control limit will be more conservative (i.e., further from the failure threshold).

The results suggest that in that regime, the choice of the control limit has a

higher impact on the resulting costs than when E[Λ] is low and a less conservative

control limit is chosen. By pooled learning, one is able to better choose this

control limit, and as a result, the relative savings of pooled learning also increase

when E[Λ] increases.

5. The savings for each value of N tend to decrease as the ratio cu
cp

decreases (recall

that we keep cu fixed and vary cp). When this ratio decreases and N is fixed,

maintenance decisions have less impact on the resulting costs – simply because

their cost difference decreases – than when cu
cp

is larger. Consequently, the

benefits of utilizing pooled learning in such maintenance decisions also decrease

when cu
cp

decreases.

6. The relative savings per value of N are not so much affected by the length of

the lifespan. This suggests that the absolute savings increase close to linearly

in the lifespan T , so that the relative savings remain largely unaffected.

Observations 1-4 are also illustrated by Figure 5.1. In this figure we plot the relative

savings (%∆) as a function of N for various values of cvΛ when E[Λ] is 0.75 (top) and

1 (bottom). In both figures, we used ξ = 10, cp = 0.5, cu = 10, and T = 90.

The plots show that for a given level of parameter uncertainty, pooling data across a

larger number of systems increases the relative savings. The rate at which the savings

increase in N increases significantly in the coefficient of variation. This confirms that

pooling data can lead to significant cost reductions, especially when the uncertainty

surrounding an unknown parameter is high. We further clearly see the decreasing

marginal savings, since the marginal savings due to adding an extra system to the

pooled systems decreases as N increases. Finally, when comparing the top figure with

the bottom figure, we see that, in general, the savings for each value of N and cvΛ

tend to be larger in the bottom figure, where the mean of Λ is larger.

5.6. Conclusion

In this chapter, we have studied the benefits of data pooling when an unknown

deterioration rate that multiple systems have in common needs to be learned over

a finite lifespan. We formulated this problem as a finite-horizon Bayesian MDP

in which learning is pooled. This formulation suffers from the well-known curse of

dimensionality, even for small problem instances. As a remedy to this curse, we
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Figure 5.1 Relative savings (%∆) as function of N for various values of cvΛ for E[Λ] = 0.75
(top) and E[Λ] = 1 (bottom), respectively.

have proven a new decomposition result that establishes the equivalence between the

original, highly dimensional MDP and multiple low-dimensional MDPs. For these

smaller MDPs, we showed that the structure of the optimal policy has a control limit

structure.

The results of a comprehensive numerical study indicated that significant savings

can be attained by pooling data to learn the a-priori unknown parameter. We have

shown that the exact magnitude of these savings largely depends on the magnitude

of the uncertainty in the parameter. When there is high uncertainty, huge savings of

close to 57% on average can be realized, while savings become almost negligible when

uncertainty decreases.

For further research, it would be interesting to investigate the applicability of our

decomposition result in other application areas, and its generalizability to other

deterioration processes. For the former, one area that seems particularly promising

is a set of inventory stock points; each with Poisson demand with a common but
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unknown rate and each stock point with their own cost structures. Jointly learning

the unknown demand rate by pooling sales data shares many similarities with the

problem treated in this chapter, and our decomposition result might therefore be

useful in analyzing that situation. For the latter, we believe that investigating which

posterior predictive distributions are closed under convolutions – a crucial step in our

proof – is an important direction.

This chapter is the final chapter on CBM with parameter uncertainty. In the next

chapter, the attention will shift towards a different maintenance policy: the age-based

maintenance policy. Similar to the models on condition-based maintenance, we shall

focus on an age-based maintenance problem characterized by parameter uncertainty.





Chapter 6

Optimal age-based maintenance

policies with censored learning

6.1. Introduction

In the previous chapters, we looked at condition-based maintenance (CBM) models

characterized by parameter uncertainty. In this chapter, we depart from the stream

of condition-based maintenance and look at an age-based maintenance (ABM)

problem. In the classical ABM problem, introduced in Barlow and Hunter (1960), a

decision maker determines the optimal age threshold to preventively replace a single-

component system subject to random failures to avoid high costs and/or low reliability

associated with corrective replacements. The key assumption in this canonical ABM

problem, and in many of its variations (we refer to De Jonge and Scarf (2020) for

a recent, comprehensive overview of the area), is that the lifetime distribution is a-

priori fully determined and known to the decision maker. However, in many real-life

applications, especially when a component has not yet generated (sufficient) data to

estimate the lifetime distribution, this assumption is unfounded and necessitates an

ABM policy that integrates learning and decision making.

In this chapter, we relax this assumption and revisit the classical ABM problem taking

This chapter is based on Drent et al. (2020b).
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into account parameter uncertainty. The main difficulty in analyzing this model is that

the data accumulation process consists of both censored and uncensored observations

of the underlying lifetime distribution. That is, when a decision maker replaces the

component before failure, she only gets a censored observation of the true lifetime

(the lifetime if the component would have been kept in operation until failure). This

difficulty is typical for ABM models characterized by parameter uncertainty and was

not present in the CBM models that we studied in the previous chapters. We overcome

this challenge by adopting a parametric distribution that allows for Bayesian learning

when data consists of such censoring characteristics. Using this Bayesian framework,

we build a finite horizon Bayesian dynamic program (DP) to investigate the optimal

policy for a finite sequence of components. Since this optimal policy is analytically

intractable, we propose a computationally appealing Bayesian policy and establish its

asymptotic optimality.

6.1.1 Contributions

The main contributions of this chapter can be summarized as follows:

1. We build a Bayesian DP to analyze a sequence of ABM problems with parameter

uncertainty for a fairly general lifetime distribution, and establish some of its

structural properties.

2. We propose a myopic Bayesian policy that allows for learning from censored

observations, and that is easy to implement.

3. We show that this myopic policy has asymptotic properties that are desirable.

Specifically, we establish that (i) it almost surely learns the unknown parameter,

and (ii) it converges to the optimal decision one would have taken with full

knowledge of the unknown parameter.

6.1.2 Organization

The remainder of this chapter is organized as follows: We introduce our notation and

the problem formulation in Section 6.2. In Section 6.3, we provide some background

on censored learning in the parametric Bayesian framework for Newsboy distributions,

and establish a new stochastic order result for this class of distributions. We

investigate the optimal policy when the sequence of components is finite in Section

6.4. In Section 6.5, we propose a myopic Bayesian policy and establish its asymptotic

properties. Finally, Section 6.6 contains concluding remarks.
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6.2. Problem formulation

We consider a sequence of N components, where the components are indexed by

n = 1, 2, . . . , N . Each component is controlled by the classical ABM policy. That is,

component n is either replaced preventively when it has been in operation for a fixed

amount of time τn (at cost cp > 0), or it is replaced correctively if it fails before this

time (at cost cu > cp). We refer to τn as the age-replacement threshold.

We assume that the lifetimes of the components are independent and identically

distributed, belonging to a family of distributions parametrized by an unknown

parameter θ > 0 with true value θ0. Given parameter θ, the lifetime distribution

has a probability density function denoted by fX(x | θ) and a cumulative distribution

function denoted by FX(x | θ). To preserve the conjugate property under censored

learning, we assume that the underlying lifetime distribution is from the class of

Newsboy distributions, so that FX(x | θ) has the form

FX(x | θ) = 1− e−θ`(x), (6.1)

where `(x) : [0,∞) → [0,∞) is a differentiable, non-decreasing and unbounded

function with `(0) = 0 that is known to the decision maker (Braden and Freimer,

1991). Note for instance that the Weibull distribution with known shape parameter

β > 0 and unknown scale parameter θ can be expressed as a Newsboy distribution by

setting `(x) , xβ . The Weibull distribution has been extensively used in modeling

lifetimes due to its ability to model various aging classes of lifetime distributions (see,

e.g., Ahmad and Kamaruddin, 2012). The following remark discusses the connection

between the form of Newsboy distributions displayed in (6.1) and the hazard rate

function of a lifetime distribution.

Remark 6.1. It is well-known that the distribution function of a positive continuous

random variable X, denoted with FX(x), can be specified by its hazard rate function,

denoted with hX(x), as follows (see, e.g., Ross, 2020, Chapter 14):

FX(x) = 1− exp

(
−
∫ x

0

hX(t)dt

)
. (6.2)

Comparing Equation (6.2) with Equation (6.1), we find that for a Newsboy

distribution, it holds that its hazard rate function can be decomposed in the product

of (a function of) the unknown parameter, say f(θ), and a function independent of
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the unknown parameter, say ĥ(t). We can then namely write

−
∫ x

0

hX(t)dt = −
∫ x

0

f(θ)h′(t)dt = −f(θ)

∫ x

0

ĥ(t)dt,

such that
∫ x

0
ĥ(t)dt , `(x). As the hazard rate function is often used in maintenance

and reliability applications (see, e.g., Boland et al., 1994), this characterization of

Newsboy distributions might be useful as well. 3

Newsboy distributions, introduced by Braden and Freimer (1991), received much

attention from the inventory research community as they are used in the modeling

of excess demand of the inventory level that is lost and thus unobserved. Lariviere

and Porteus (1999), Ding et al. (2002), Chen and Plambeck (2008), Lu et al. (2008),

Bensoussan et al. (2009), Chen (2010), Bisi et al. (2011), and Mersereau (2015) all

assume a Newsboy distribution with unknown parameter, which permits an exact

analysis of the optimal policy under different variations of this lost sales inventory

control problem with censored demand learning. Despite the similarities between

these inventory control problems and maintenance under lifetime censoring, the

parametric Bayesian framework for censored learning assumed in these papers has

not found its way to the maintenance community. Specifically, the inventory level

and the age-replacement threshold influence the information accumulation process

of the unknown demand and lifetime distribution, respectively, in the same way.

That is, if all inventory is sold during a period, then the decision maker obtains a

censored observation of the true demand in that period (it is at least as large as the

inventory level), while if a decision maker does not sell out all inventory, she obtains

an uncensored observation of the demand.

The decision maker can only observe censored observations, rather than lifetime

realizations. For component n, the censored observation is given by Xn ∧ τn ,
min{Xn, τn}, where Xn is the realized lifetime and τn the imposed age-replacement

threshold. Let Fn be the filtration generated by this censored lifetime process. Hence,

for n ≥ 1, we have the σ-algebra

Fn , σ
(
X1 ∧ τ1, τ1, X2 ∧ τ2, τ2, . . . , Xn ∧ τn, τn

)
,

and let F0 be the trivial σ-algebra. It is thus evident that the accumulated information

about the lifetime up to the nth component is impacted by all past replacements

decisions.

The decision maker wishes to minimize the total expected discounted cost due to

both corrective and preventive replacements, where costs are discounted with rate
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α ∈ (0, 1), over an N component horizon. This optimality criterion is often employed

in finite-horizon problems in the ABM literature (De Jonge and Scarf, 2020). We

are interested in finding the optimal non-anticipatory policy (i.e. the decision τn is

Fn−1-measurable for all n ≥ 1) that attains this minimum.

Observe that when deciding on the age-replacement threshold for the nth component,

there is an inherent trade-off between the direct expected cost of the nth component

and the impact the decision has on future costs through the information accumulation

process. Specifically, exploration (i.e., a higher value of the age-replacement threshold)

increases the probability of a corrective replacement, but at the same time leads to

accumulating more, valuable information. This phenomenon is often referred to as

the exploration-exploitation trade-off.

6.3. Censored lifetime learning

In this section, we describe how the unknown parameter θ of the lifetime distribution

of components can be inferred with increasing accuracy as information is accumulated.

The approach is based on Braden and Freimer (1991), who show that the Gamma

distribution is the conjugate prior for all Newsboy distributions.

Following a Bayesian approach, we treat the unknown parameter as a random variable,

denoted with Θ, and assume that the decision maker has a prior density for the

unknown parameter θ, denoted by pΘ(θ). This density captures the information

about the unknown parameter of the lifetime distribution.

Let m and k denote the shape and rate parameter, respectively, of the Gamma

distribution. The prior density is then given by

pΘ(θ |m, k) ,
kmθm−1e−kθ

Γ(m)
, for all θ > 0, (6.3)

where Γ(·) denotes the gamma function. Using (cf. Equation (6.1))

fX(x | θ) =
d

dx
FX(x | θ) = θ`′(x)e−θ`(x),

and unconditioning on θ using Equation (6.3), we obtain the posterior predictive
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lifetime density and distribution function, respectively;

fX(x|m, k) =
mkm`′(x)

[k + `(x)]m+1
, and,

FX(x|m, k) = 1−
[

k

k + `(x)

]m
.

We use the shorthand notation mn and kn to denote the updated shape and rate

parameter conditional on Fn. Here, we omit the dependence on Fn as there is

a mapping between Fn and (mn, kn), which we explain henceforth. Let (m0, k0)

denote the parameters before the installation of the first component. Then for n ≥ 1,

conditional on Fn, the prior hyperparameters are computed as (see Section 5 of Braden

and Freimer (1991)):

mn = m0 +

n∑
i=1

1{Xi<τi} = mn−1 + 1{Xn<τn}, and,

kn = k0 +

n∑
i=1

`(Xi ∧ τi) = kn−1 + `(Xn ∧ τn), (6.4)

where 1{a} denotes the indicator function taking value 1 if event a occurs and value

0 otherwise. Here, we assume that m0 · k0 > 1, and thus mn · kn > 1 for all

n ≥ 1 through the update rules, so that the posterior predictive lifetime distribution

of each component has a finite expectation. Observe that the rate parameter kn
is an aggregate of all observations. The shape parameter mn counts the number

of uncensored observations (corresponding to corrective replacements), and, as the

coefficient of variation for the Gamma prior is equal to
√

1/mn, it is also a measure

for the precision of the accrued information on the unknown parameter θ.

Equation (6.4) induces a simple, Markovian scheme for sequentially inferring the

lifetime distribution conditional on Fn. In what follows, for notational simplicity

and in order to enhance the readability of the chapter, we write, depending on our

objective, either Fn or (mn, kn).

In order to derive structural properties of the conditional posterior predictive lifetime

random variable given (mn, kn), denoted with X(mn, kn) , {X |mn, kn}, and in

order to make comparisons between different conditional posterior predictive lifetime

random variables, we use the hazard rate ordering:

Definition 6.1 (1.B.1 Definition, Shaked and Shanthikumar, 2007). Let Y and Z be

two non-negative random variables with absolutely continuous distribution functions

and with hazard rate functions hY (x) and hZ(x), respectively, such that hY (x) ≥
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hZ(x) for all x > 0. Then Y is said to be smaller than Z in the hazard rate order.

We now present an important proposition that indicates how the accrued information,

encoded in (m, k), affects the stochastic ordering of the conditional posterior predictive

lifetime distribution.

Proposition 6.1. The conditional posterior predictive lifetime random variable

X(m, k) is:

(i) stochastically increasing in the hazard rate order in the rate parameter k, and

(ii) stochastically decreasing in the hazard rate order in the shape parameter m.

Proof: Let hX(x |m, k) denote the hazard rate function of the conditional posterior

predictive lifetime when the shape and rate parameters are m and k, respectively. We

then have

hX(x |m, k) ,
fX(x |m, k)

1− FX(x |m, k)
=

mkm`′(x)
[k+`(x)]m+1[

k
k+`(x)

]m =
m`′(x)

k + `(x)
.

Observe that since `(x) is non-negative and non-decreasing by assumption, we have

the following. If M > m > 0 then hX(x |M,k) ≥ hX(x |m, k) for all x > 0, which

establishes the hazard rate order in m. Finally, if K > k > 0 then hX(x |m,K) ≤
hX(x |m, k) for all x > 0, which establishes the hazard rate order in k.

Assertion (i) establishes the monotonic increase in the expected conditional posterior

predictive lifetime when the aggregate of observations increases for a fixed number

of uncensored observations. This implies that if the aggregate of all observations is

high, then past components have had a relatively long lifetime on average. Hence,

the decision maker predicts that the next component will have a longer lifetime than

in the case where the accrued information has a lower aggregate of observations.

Assertion (ii) establishes the stochastic-ordering property of lifetime distributions that

are updated using censored observations and uncensored observations, respectively.

It states that a censored lifetime observation results in a lifetime distribution that

is stochastically greater than that from an uncensored observation. An intuitive

explanation is as follows. With a censored observation, the true lifetime is at least as

large as the censored observation, as opposed to the uncensored observation, where

the true lifetime is equal to the uncensored observation.
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As the usual stochastic order is implied by the hazard rate order (see e.g., Theorem

1.B.1. of Shaked and Shanthikumar (2007)), Proposition 6.2 and 6.3 of Braden and

Freimer (1991), which state the usual stochastic order of the conditional posterior

predictive lifetime, directly follow from Proposition 6.1. The hazard rate order is

particularly useful in maintenance and reliability theory due to the importance of the

hazard rate function in these areas (cf. Boland et al., 1994).

6.4. Optimal policy for a finite sequence

In this section, we explore both analytically and numerically the structure of the

optimal policy when N is finite. In a finite sequence of components, the exploration-

exploitation trade-off urges the decision maker to explicitly recognize the impact that

current decisions have on both the direct expected costs and the future expected costs

through the information accumulation process. This interdependence is made explicit

by formulating the optimization problem as a DP. As we will see, in this DP, it is

more convenient to work with the hyperparameters (m, k) to capture the dynamics

of the information accumulation process, rather than directly with {Fn}1≤n≤N itself.

To this end, let the value function Vn(m, k) denote the minimum total expected

discounted cost over components n, n + 1, . . . , N , starting with component n, when

the updated hyperparameters are (m, k), respectively. We assume the terminal cost

to be zero, hence VN+1(m, k) , 0 for all (m, k). The optimality equations, for n =

1, 2, . . . , N , are:

Vn(m, k) = min
τn≥0

{
Cn(τn |m, k) +

∫ ∞
0

Gn(τn, x |m, k)fX(x |m, k)dx

}
, (6.5)

where

Cn(τn |m, k) = cu

∫ τn

0

e−αxfX(x |m, k)dx+ cpe
−ατn

(
1− FX(τn |m, k)

)
, (6.6)

denotes the direct expected discounted cost function of component n when the age-

replacement threshold is τn (the first part is due to corrective replacement and the

second part is due to preventive replacement) and

Gn(τn, x |m, k) ,

e−αxVn+1(m+ 1, k + `(x)), if x < τn,

e−ατnVn+1(m, k + `(τn)), if x ≥ τn,

denotes the discounted cost function over the remaining components n+1, . . . , N when
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the age-replacement threshold of the nth component is τn and the lifetime realization

equals x.

Since the costs cp and cu are uniformly bounded, the existence of an optimal

policy in this setting is guaranteed and this policy satisfies the optimality equations

displayed in (6.5) (see, e.g., Bertsekas, 2012, Proposition 1.3.1). Observe that over

an N component horizon, the minimum total expected discounted cost is given by

V1(m0, k0) which can be found by solving Equation (6.5) via backward induction.

As the age-replacement threshold affects not only the direct expected discounted

costs, but also the posterior distribution of the future components it is difficult to

analytically establish structural properties of the optimal policy {τn}n∈{1,...,N}. This

is a complexity that this type of Bayesian DP generally suffers from, see e.g., Ding

et al. (2002); Chen and Plambeck (2008); Chen (2010). In the remainder of this

section, we establish some structural properties of the value function and numerically

investigate {τn}n∈{1,...,N}.

We first state two properties regarding the direct expected discounted cost function

that are instrumental in characterizing the behavior of Vn(m, k) with respect to its

parameters.

Lemma 6.1. For all τn ≥ 0 and n ∈ {1, 2, . . . , N}, Cn(τn |m, k) is

(i) non-increasing in k, and

(ii) non-decreasing in m.

Proof: Note that Equation (6.6) can be rewritten as

Cn(τn |m, k) =− cu
∫ τn

0

e−αxd
(

(1− FX(x |m, k)
)

+ cpe
−ατn

(
1− FX(τn |m, k)

)
=(cp − cu)e−ατn

(
1− FX(τn |m, k)

)
+ cu

− cuα
∫ τn

0

e−αx
(

1− FX(τn |m, k)
)

dx. (6.7)

Since cp < cu, α ∈ (0, 1), and because of Assertion (i) (Assertion (ii)) of Proposition

6.1, both terms involving FX(τn |m, k) in the last two lines of (6.7) are non-increasing

(non-decreasing) in k (m), which establishes the result.

We now proceed with two properties regarding the value function.

Theorem 6.1. For all n ∈ {1, 2, . . . , N + 1}, Vn(m, k) is
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(i) non-increasing in k, and

(ii) non-decreasing in m.

Proof: We first prove Assertion (i) by backward induction. The base case, i.e.

VN+1(m, k), holds trivially as terminal costs VN+1(m, k) = 0 for all (m, k). Let

K > k and assume inductively that Vn+1(m,K) ≤ Vn+1(m, k), and let τnm,j denote

the optimal age-replacement threshold for the nth component, when the shape and

rate parameters are m and j, respectively. We have

Vn(m,K)− Vn(m, k)

= Cn(τnm,K |m,K) +

∫ ∞
0

Gn(τnm,K , x |m,K)fX(x |m,K)dx

− Cn(τnm,k |m, k)−
∫ ∞

0

Gn(τnm,k, x |m, k)fX(x |m, k)dx

≤ Cn(τnm,K |m,K) +

∫ ∞
0

Gn(τnm,K , x |m,K)fX(x |m,K)dx

− Cn(τnm,K |m, k)−
∫ ∞

0

Gn(τnm,K , x |m, k)fX(x |m, k)dx

≤
∫ ∞

0

Gn(τnm,K , x |m,K)fX(x |m,K)dx−
∫ ∞

0

Gn(τnm,K , x |m, k)fX(x |m, k)dx

≤
∫ ∞

0

Gn(τnm,K , x |m, k)fX(x |m,K)dx−
∫ ∞

0

Gn(τnm,K , x |m, k)fX(x |m, k)dx

= E
[
Gn(τnm,K , X |m, k) |m,K

]
− E

[
Gn(τnm,K , X |m, k) |m, k

]
≤ 0.

The first inequality holds because τnm,K is a feasible policy for m and k but not

necessarily optimal. The second inequality holds by Assertion (i) of Lemma 6.1.

The third inequality follows from the induction hypothesis. That is, Vn+1(m,K) ≤
Vn+1(m, k) implies that

Gn(τnm,K , x |m,K)−Gn(τnm,K , x |m, k)

=

e
−αx

(
Vn+1(m+ 1,K + `(x))− Vn+1(m+ 1, k + `(x))

)
≤ 0,

e−ατ
n
m,K

(
Vn+1(m,K + `(τnm,K))− Vn+1(m, k + `(τnm,K))

)
≤ 0,

where the first branch corresponds to x < τnm,K and the second branch to x ≥ τnm,K .

Hence, Gn(τnm,K , x |m,K) ≤ Gn(τnm,K , x |m, k) for all x ≥ 0, which implies the third

inequality. Then, following a similar reasoning, Gn(τnm,K , x |m, k) is non-increasing

in x by the induction hypothesis and since e−αx is decreasing in x for α > 0. We

then have the expectation of a decreasing function Gn(τnm,K , x |m, k), so that the
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last inequality is implied by the stochastic order of Assertion (i) of Proposition 6.1

between fX(x |m,K) and fX(x |m, k) (see e.g., Proposition 9.1.2 of Ross (1996)).

The proof of Assertion (ii) follows verbatim the proof of Assertion (i), starting with

M > m, looking at the difference Vn(m, k)−Vn(M,k), and assuming inductively that

Vn+1(m, k) ≤ Vn+1(M,k) with M > m.

Theorem 6.1 establishes the monotonicity of the value function in both the aggregate

of all observations k and the number of exact observations m. The intuition behind

both parts (and their individual counterparts in Lemma 6.1) is as follows: If the

aggregate of all observations increases and everything else is held fixed, it means

that on average, each component has had a longer lifetime and is thus discounted

at a higher rate. This leads to a lower total expected discounted cost. A similar

reasoning holds if the number of exact observations increases and the aggregate of

all observations is held fixed. Both preventive and corrective replacement costs are

then, on average, discounted at an equal rate, but there are more exact observations

so that cu is incurred more often. This leads to a higher total expected discounted

cost.

In extensive numerical experiments (see Appendix 6.A more results), with N = 20

components with Weibull distributed lifetimes with various shape values β and

unknown scale parameter θ, for various cost ratios of cu
cp

, we consistently observed

three features of the optimal decisions that we state in the following conjecture.

Conjecture 6.1. The optimal age-replacement threshold τnm,k is:

(i) non-decreasing in k,

(ii) non-increasing in m, and

(iii) non-increasing in n.

These observations are illustrated by Figures 6.1a and 6.1b. In Figure 6.1a we observe

that τnm,k is non-increasing in n and non-decreasing in k (if we compare the different

curves). In Figure 6.1b we observe that τnm,k is non-increasing in n and, non-increasing

in m (if we compare the different curves).

The intuition behind Assertions (i) and (ii) is the following. Everything else fixed, a

higher k (lower m) (see Proposition 6.1) implies a higher (lower) component’s lifetime

on average, so that it is better to impose a higher (lower) age-replacement threshold.

The intuition behind Assertion (iii) is precisely the exploration-exploitation trade-

off. Indeed, if the information state (encoded in m and k) is equal, the exploratory
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(a) τnm,k as function of n for various values of k, with m = 5.

(b) τnm,k as function of n for various values of m, with k = 1.

Figure 6.1 Illustration of observed behavior of optimal age-replacement threshold τnm,k, with
cp = 1, cu = 4, `(x) = x3 and α = 0.9.

benefits of setting a higher age-replacement threshold are greater at the beginning of

the sequence. There are then namely more remaining components that benefit from

the accumulated information than when imposing the same age-replacement threshold

later in the sequence.
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6.5. An asymptotically optimal policy

In the previous section we investigated both analytically and numerically the structure

of the optimal policy for a finite sequence of components (i.e. N < ∞). However,

obtaining this optimal policy via the proposed DP is analytically intractable and

computationally challenging for large instances. Therefore, in this section, we

investigate asymptotic properties (as N → ∞) of the information accumulation

process and of a computationally tractable myopic policy.

We proceed in two steps. First we show that under any reasonable policy, the learning

converges in the Bayesian sense. We then propose a myopic policy and prove its

asymptotic optimality. It turns out that for this analysis, it is more convenient to

work directly with Fn rather than the corresponding hyperparameters (mn, kn).

6.5.1 Convergence of learning

Recall that {Θ | Fn}n=1,2,...,N denotes our posterior belief regarding the unknown

parameter θ and that the hyperparameters are updated according to Equation (6.4).

In the next result, we show that this posterior expectation, denoted with E
[
Θ | FN

]
converges (a.s.) to the true value θ0, as N →∞, and that the variance, denoted with

Var
[
Θ | FN

]
, converges (a.s.) to 0, as N →∞. This convergence is guaranteed under

any policy in which the limiting age-replacement threshold is strictly positive. We

believe that this assumption is justified as it is not natural to replace a component

immediately after installation.

Theorem 6.2. Under any policy for which limN→∞ τN = τ > 0, we have

E
[
Θ | FN

] a.s.−−−−→ θ0 and Var
[
Θ | FN

] a.s.−−−−→ 0 as N →∞.

Proof: By the updating scheme of the posterior density, see Equation (6.4),

E
[
Θ | FN

]
can be written as (cf. Equation (6.3)):

E
[
Θ | FN

]
=
mN

kN

=
m0 +

∑N
n=1 1{Xn<τn}

k0 +
∑N
n=1 `(Xn ∧ τn)

=
m0

N +
∑N
n=1 1{Xn<τn}

N

k0

N +
∑N
n=1 `(Xn∧τn)

N

.
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Then, when N → ∞, given limN→∞ τN = τ , we have by the strong law of large

numbers, almost surely,

lim
N→∞

E
[
Θ | FN

]
= lim
N→∞

m0

N +
∑N
n=1 1{Xn<τn}

N

k0

N +
∑N
n=1 `(Xn∧τn)

N

=
FX(τ | θ0)

E[`(X ∧ τ)]
.

Using straightforward calculus yields, for τ > 0,

FX(τ | θ0)

E[`(X ∧ τ)]
=

FX(τ | θ0)∫∞
0

P
(
`(X ∧ τ) > y

)
dy

=
FX(τ | θ0)∫ `(τ)

0
P
(
X > `−1(y)

)
dy

=
FX(τ | θ0)∫ `(τ)

0
e−θ0ydy

=
FX(τ | θ0)
1
θ0
FX(τ | θ0)

= θ0.

The second equality follows from the non-decreasing property of the function `(·).
The third and fourth equality follow using the cumulative distribution function of a

Newsboy distribution, see Equation (6.1).

For the second part, note that

Var
[
Θ | FN

]
=

m0 +
∑N
n=1 1{Xn<τn}(

k0 +
∑N
n=1 `(Xn ∧ τn)

)2

= E
[
Θ | FN

]
· 1

k0 +
∑N
n=1 `(Xn ∧ τn)

.

Using

E
[
Θ | FN

] a.s.−−−−→ θ0 and
1

k0 +
∑N
n=1 `(Xn ∧ τn)

a.s.−−−−→ 0,

when N →∞ leads to the desired result.

Observe that the crucial part of the proof, i.e. the equality FX(τ | θ0)
E[`(X∧τ)] = θ0 for all τ > 0,

relies explicitly on the form of the cumulative distribution function of a Newsboy

distribution. As such, this is a distinctive feature of this class of distributions.
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Theorem 6.2 establishes the Bayesian consistency of the posterior distribution

{Θ | FN} at the true value θ0 (DeGroot, 2005). This implies that the true value

will be learned with certainty as information is accumulated.

6.5.2 Convergence of myopic policy

Given full knowledge of the true value θ0, the optimal age-replacement threshold for

each component can be computed by minimizing the direct expected discounted cost

function, that is,

τ∗(θ0) , argminτ≥0 C(τ | θ0) (6.8)

= argminτ≥0

{
cu

∫ τ

0

e−αxfX(x | θ0)dx+ cpe
−ατ(1− FX(τ | θ0)

)}
,

where we use the notation C(τ | θ0) to denote the direct expected discounted cost

function when θ0 is known. We refer to τ∗(θ0) as the Oracle as this decision requires

full knowledge about the unknown parameter and is hence not attainable in practice.

The following remark relates the uniqueness and finiteness of τ∗(θ0) to properties of

`(x).

Remark 6.2. It has been shown in Fox (1966) that τ∗(θ0) is unique and finite if and

only if X has a strictly increasing hazard rate. An increasing hazard rate implies that

the component degrades over time so that there is an incentive to perform preventive

maintenance. Given full knowledge about θ0, the hazard rate, denoted with hX(x | θ0),

is equal to

hX(x | θ0) =
d
dxFX(x | θ0)

1− FX(x | θ0)
=
θ0`
′(x)e−θ0`(x)

e−θ0`(x)
= θ0`

′(x).

It is then obvious (recall that θ0 > 0) that h(x | θ0) is strictly increasing if and

only if `′(x) is strictly increasing. Hence, τ∗(θ0) is unique and finite if and only if

`′′(x) > 0. This statement can thus be verified a-priori without any knowledge about

the unknown parameter θ0. 3

A policy that is attainable in the absence of knowledge on the true value θ0 is to, upon

installation of the nth component, implement the age-replacement threshold that only

minimizes the direct expected discounted costs given the accumulated information.

Recall that we used this function also in the DP formulation, where (m, k) captured

the accumulated information, see Equation (6.6). In other words, this myopic policy

does not integrate learning with decision making, and solely focuses on exploitation.
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For n = 1, 2, . . . , N , we denote the optimal age-replacement threshold of this myopic

Bayesian policy with τmb(Fn), so that

τmb(Fn) , argminτ≥0

{
cu

∫ τ

0

e−αxfX(x | Fn)dx+ cpe
−ατ(1− FX(τ | Fn)

)}
= argminτ≥0 Cn(τ | Fn).

The following result establishes the asymptotic optimality of this myopic Bayesian

policy in the sense that the induced decision converges to the Oracle. It relies on the

condition that the Oracle is unique and finite, which, as stated before, can be easily

verified before any information is accrued, see Remark 6.2.

Theorem 6.3. Suppose τ∗(θ0) is unique and finite. Then the myopic Bayesian policy

is asymptotically optimal; that is,

lim
N→∞

τmb(FN ) = τ∗(θ0).

Proof: We first prove that CN (τ | FN ) converges uniformly to C(τ | θ0) when

N → ∞. We then show that this uniform convergence together with properties of

CN (τ | FN ) implies a stronger notion of convergence, namely epi-convergence, which

leads directly to the desired result. We have

sup
τ≥0

∣∣∣∣CN (τ | FN )− C(τ | θ0)

∣∣∣∣
= sup

τ≥0

∣∣∣∣cu ∫ τ

0

e−αxfX(x | FN )dx+ cpe
−ατ(1− FX(τ | FN )

)
− cu

∫ τ

0

e−αxfX(x | θ0)dx− cpe−ατ
(
1− FX(τ | θ0)

)∣∣∣∣
= sup

τ≥0

∣∣∣∣cu ∫ τ

0

e−αx
(
fX(x | FN )− fX(x | θ0)

)
dx

+ cpe
−ατ

∫ ∞
τ

(
fX(x | FN )− fX(x | θ0)

)
dx

∣∣∣∣
≤ sup

τ≥0

(
cu

∫ τ

0

e−αx
∣∣∣∣fX(x | FN )− fX(x | θ0)

∣∣∣∣dx (6.9)

+ cpe
−ατ

∫ ∞
τ

∣∣∣∣fX(x | FN )− fX(x | θ0)

∣∣∣∣dx)
≤ sup

τ≥0

(
cu

∫ τ

0

e−αx
∣∣∣∣fX(x | FN )− fX(x | θ0)

∣∣∣∣dx) (6.10)
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+ sup
τ≥0

(
cpe
−ατ

∫ ∞
τ

∣∣∣∣fX(x | FN )− fX(x | θ0)

∣∣∣∣dx)
= cu

∫ ∞
0

e−αx
∣∣∣∣fX(x | FN )− fX(x | θ0)

∣∣∣∣dx
+ cp

∫ ∞
0

∣∣∣∣fX(x | FN )− fX(x | θ0)

∣∣∣∣dx). (6.11)

Inequality (6.9) follows from the Triangle inequality and Hölder’s inequality, and

finally, Inequality (6.10) is a Triangle-like inequality for the supremum operator.

Note that

fX(x | FN ) =

∫ ∞
0

fX(x | θ)pΘ(θ | FN )dθ.

Since fX(x | θ) is a bounded, continuous function, we have by Theorem 6.2 and the

weak convergence of measures that

fX(x | FN )→ fX(x | θ0), when N →∞.

Using this weak convergence of measures, we have by Scheffé’s Theorem (see e.g.,

Theorem 16.11 of Billingsley (1995)) that

lim
N→∞

∫ ∞
0

∣∣∣∣fX(x | FN )− fX(x | θ0)

∣∣∣∣dx = 0, (6.12)

lim
N→∞

∫ ∞
0

e−αx
∣∣∣∣fX(x | FN )− fX(x | θ0)

∣∣∣∣dx = 0. (6.13)

Using the established bound in (6.11) in combination with (6.12) and (6.13), we have

lim
N→∞

sup
τ≥0

∣∣∣∣CN (τ | FN )− C(τ | θ0)

∣∣∣∣ = 0,

which establishes the uniform convergence of the direct expected cost functions.

Since CN (τ | FN ) converges uniformly to C(τ | θ0), and CN (τ | FN ) is finite (i.e. 0 <

CN (τ | FN ) ≤ cu) and continuous for all τ ≥ 0 and N ≥ 0, we have by Proposition

7.15 of Rockafellar and Wets (2009) that CN (τ | FN ) epi-converges to C(τ | θ0) when

N →∞.

Note that the sequence CN (τ | FN ) is eventually level-bounded since we assume that

τ∗(θ0) is unique and finite (hence the argmin set will eventually be bounded and

nonempty). Then, as C(τ | θ0) is a proper and left semi-continuous function, we have
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by Theorem 7.33 of Rockafellar and Wets (2009) that

lim
N→∞

argminτ≥0 CN (τ | FN ) = argminτ≥0 C(τ | θ0),

which establishes the result.

As noted before, computing the optimal policy via the proposed DP is analytically

intractable and computationally challenging. As such, decision makers can resort to

the myopic Bayesian policy. This policy is not only computationally appealing, but

also, as is established in Theorem 6.3, asymptotically optimal.

6.5.3 Illustrative example

Figure 6.2 provides an illustrative example of the established asymptotic properties

for the case when the lifetimes are Weibull distributed random variables with known

shape β = 3 and unknown scale. Since β > 1, the lifetime distribution has an

increasing hazard rate so that the assumption of a unique and finite τ∗(θ0) is justified.

The value of τ∗(θ0) is computed using Equation (6.8) with α = 0.9.

(a) Sequence of posterior mean (left scale)
versus the true value θ0, and sequence of
posterior variance (right scale).

0.6 

0.55 

0.5 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

200 400 

- - - -Oracle, T*(0o )
--Myopic Bayesian, Tmb (Fn)

600 800 1000 1200 

Component n

(b) Sequence of decisions induced by my-
opic Bayesian policy versus the decision
induced by the Oracle τ∗(θ0).

Figure 6.2 Illustration of asymptotic properties for the consistency (a) and the decision
making (b) when cp = 1, cu = 4, `(x) = x3, θ0 = 1.3 and τ∗(θ0) ≈ 0.34. The data points
in both sub-figures are obtained from the same sample path.

These two subfigures are generated using the same sample path, so that there is a

one-to-one correspondence between the paths displayed in the sub-figures. Subfigure

(a) shows that the posterior mean converges to the true value θ0, while the posterior
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variance converges to 0 at the same time. Subfigure (b) shows the corresponding

sequence of decisions induced by the myopic Bayesian policy, and its convergence

to τ∗(θ0). The posterior mean in Subfigure (a) and the myopic Bayesian policy in

Subfigure (b) appear to be closely linked. The coupling between the evolution of

the posterior mean and the myopic Bayesian policy can be explained intuitively. For

instance, the jump in the myopic Bayesian policy starting at n ≈ 80 can be explained

as follows. If the posterior mean of Θ decreases based on the accumulated information,

the decision maker expects that the posterior predictive lifetime is becoming larger

in expectation (see Proposition 6.1), hence, a higher age-replacement threshold is

imposed. The reverse holds true as well, as is nicely illustrated when the posterior

mean starts to increase again after n ≈ 200.

6.6. Conclusion

In this chapter, we have considered a sequence of ABM problems with a general

lifetime distribution parametrized by an a-priori unknown parameter. By adopting

a parametric Bayesian framework often used in the inventory research community,

we have been able to investigate the exploration-exploitation trade-off that naturally

arises when age-based decisions are integrated with learning from both censored and

uncensored observations.

A new stochastic order for this parametric Bayesian framework is established that is

particularly useful in maintenance problems. We have investigated the optimal policy

for a finite sequence of components, and established some structural properties. For

the infinite case, we have proposed a computationally appealing myopic policy and

established its asymptotic optimality.

Three immediate directions for future research are (i) to investigate the – practically

important – rate of convergence of the asymptotic properties, (ii) to analytically

prove or disprove our posed conjecture, and (iii) to study how the myopic decision

relates to the optimal decision in the finite sequence when the information state is

the same. The latter direction is a special case of the third assertion of our posed

conjecture as the decision for the age-replacement threshold of the last component in

every sequence only exploits the current information in the same way as the proposed

myopic Bayesian policy.

This chapter is the last chapter in which we considered a model facing parameter

uncertainty. In the next chapter, we shall study a model in which we assume that

there is full knowledge regarding the relevant parameters.
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6.A. Numerical exploration of optimal age-replacement

thresholds

In this section we report on our extensive numerical experiments in which we

investigate properties of the optimal age-replacement threshold. Recall that τnm,k
denotes the optimal age-replacement threshold for component n when the shape

parameter is m and the rate parameter is k. Due to the computational difficulty

of solving Equation (4) for large instances, we consider only a small instance, that is,

we consider a sequence of N = 20 components and we set α = 0.9. We consider three

cost ratios, namely cu
cp
∈ {2, 4, 6}. Due to its application in maintenance, we consider

Weibull distributed lifetimes with known shape β and unknown scale, i.e. `(x) = xβ ,

for two values of β ∈ {3, 5}.

In the remainder of this section, we first describe the observed behavior of τnm,k in n for

(m, k) fixed. Here we can observe how the optimal age-replacement threshold behaves

for the same information state, but for different positions in the sequence. We then

describe the observed behavior of τnm,k in the hyperparameters m and k respectively,

while keeping the other two parameters fixed. Here we can observe how τnm,k changes

when part of the information state changes. It is noteworthy to mention that the

results displayed in this document are by no means a complete enumeration of all the

results, but since we consistently observed the described observations throughout our

numerical experiments (i.e. for all parameter settings), we only discuss parts of these

results in this document to convey the message.

Note that in some figures, plots overlap where optimal policies coincide. Here, to

prevent any confusion, we only show one colored line in the figure and one can then

deduce that the colored line that is not plotted has the same value.

6.A.1 Monotonic behavior

The subfigures in Figures 6.3 and 6.4 clearly suggest that τnm,k is non-increasing in n,

if we keep m and k fixed.

The subfigures in Figures 6.5 and 6.6 clearly suggest that τnm,k is non-increasing in

m, if we keep n and k fixed.

The subfigures in Figures 6.7 and 6.8 clearly suggest that τnm,k is non-decreasing in k,

if we keep n and m fixed.
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(a) τnm,k as function of n for various values of (m, k) for cu
cp

= 2,

and β = 3.

(b) τnm,k as function of n for various values of (m, k) for cu
cp

= 4,

and β = 3.

(c) τnm,k as function of n for various values of (m, k) for cu
cp

= 6,

and β = 3.

Figure 6.3 Illustration of behavior of τnm,k in n for β = 3.
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(a) τnm,k as function of n for various values of (m, k) for cu
cp

= 2,

and β = 5.

(b) τnm,k as function of n for various values of (m, k) for cu
cp

= 4,

and β = 5.

(c) τnm,k as function of n for various values of (m, k) for cu
cp

= 6,

and β = 5.

Figure 6.4 Illustration of behavior of τnm,k in n for β = 5.
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(a) τnm,k as function of m for various values of n for k = 2, cu
cp

= 2,

and β = 3.

(b) τnm,k as function of m for various values of n for k = 2, cu
cp

= 4,

and β = 3.

(c) τnm,k as function of m for various values of n for k = 2, cu
cp

= 6,

and β = 3.

Figure 6.5 Illustration of behavior of τnm,k in m for β = 3.
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(a) τnm,k as function of m for various values of n for k = 2, cu
cp

= 2,

and β = 5.

(b) τnm,k as function of m for various values of n for k = 2, cu
cp

= 4,

and β = 5.

(c) τnm,k as function of m for various values of n for k = 2, cu
cp

= 6,

and β = 5.

Figure 6.6 Illustration of behavior of τnm,k in m for β = 5.
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(a) τnm,k as function of k for various values of m for n = 16,
cu
cp

= 2, and β = 3.

(b) τnm,k as function of k for various values of m for n = 16,
cu
cp

= 4, and β = 3.

(c) τnm,k as function of k for various values of m for n = 16,
cu
cp

= 6, and β = 3.

Figure 6.7 Illustration of behavior of τnm,k in k for β = 3.
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(a) τnm,k as function of k for various values of m for n = 16,
cu
cp

= 2, and β = 5.

(b) τnm,k as function of k for various values of m for n = 16,
cu
cp

= 4, and β = 5.

(c) τnm,k as function of k for various values of m for n = 16,
cu
cp

= 6, and β = 5.

Figure 6.8 Illustration of behavior of τnm,k in k for β = 5.



Chapter 7

Optimal opportunistic

condition-based maintenance

policies with parameter

certainty and imperfect repairs

7.1. Introduction

Up to this point, we have studied mathematical models for condition-based main-

tenance (CBM) and age-based maintenance (ABM) characterized by parameter

uncertainty, either in the deterioration process or in the lifetime distribution. In

this last chapter, we depart from this modeling choice and focus on a setting in which

we have full knowledge of all relevant parameters; that is, there is parameter certainty.

In the previous chapters, we generally assumed that maintenance is so-called planned

maintenance. That is, in most models that we studied, we assumed that a decision

maker can only replace a component at discrete epochs, i.e. at scheduled opportunities

that are planned at equidistant moments in time, say at instances τ, 2τ, 3τ, . . ., (e.g., τ

This chapter is based on Drent et al. (2019).

183
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= 6 months). In the context of a network of assets, such as a wind park or a network

of hospitals in close geographic proximity (from the viewpoint of the service provider),

there is a second type (in addition to the above scheduled instances) of opportunities

to perform preventive maintenance. In the event that a failure occurs, its corrective

maintenance instance can be viewed as an unscheduled opportunity for preventive

maintenance for the other assets in the network. In these instances, opportunistic

maintenance can take place, with the respective instances constituting the unscheduled

opportunities of preventive maintenance. This form of network dependency can be

viewed on two levels: (i) the economic dependency between the various systems of a

network, and (ii) the structural degradation and failure dependencies.

Incorporating opportunistic maintenance may also affect the scheduling of planned

maintenance, as it might be beneficial to defer the planned maintenance opportunity

to take place after a period of length τ after the occurrence of an opportunistic

maintenance. This decision of deferring or not the scheduling of planned maintenance

after the occurrence of opportunistic maintenance may have a positive or negative

effect on the total costs.

Up to this point, we have consistently assumed that a maintenance activity is perfect,

i.e. it restores the system to a state of ‘as good as new’. However, this assumption

may not be true in practice. For instance, a misidentification of the root cause of

the (imminent) failure can lead to an erroneous repair not resolving the actual issue,

or some minor repair activity (such as exchange of parts, changes or adjustment of

the settings, software update, lubrication or cleaning, see e.g., Spinato et al. (2009))

may not restore the system to a state of ‘as good as new’. In that case, it is more

reasonable to assume that the system is restored to a state in between ‘as bad as

old’ and ‘as good as new’. This concept will be referred to as imperfect maintenance.

Evidently, this assumption impacts the resulting cost. Hence, knowledge regarding

the degree of how successful a maintenance activity is should not be ignored in the

maintenance planning.

In conclusion, asset owners are oftentimes faced with the following questions:

(i) What is the advantage of incorporating planned maintenance in comparison to

exercising only corrective maintenance?

(ii) What is the benefit of sharing resources in the network (in the form of incorpo-

rating opportunistic maintenance in addition to the planned maintenance)?

(iii) What is the influence of deferring the planned maintenance after the occurrence

of opportunistic maintenance?



7.1 Introduction 185

(iv) What is the influence of imperfect maintenance on the maintenance planning

and on the costs (long-run rate of cost)?

(v) When should preventive maintenance be performed (so as to minimize the long-

run rate of cost)?

7.1.1 Contributions

The contributions of this chapter are threefold:

1. We consider a stylized, yet representative model that incorporates planned and

opportunistic maintenance, as well as imperfect maintenance. We build a semi-

Markov decision process (semi-MDP), which we use to (i) prove the existence

of an optimal maintenance policy, and (ii) establish its structural properties.

The optimal policy has an intuitive control limit structure where the control

limit depends on the time until the next planned maintenance opportunity.

Moreover, using this approach, we are able to derive a closed-form expression

for this control limit.

2. Considering the class of control limit policies (depending on the remaining time

until the next planned maintenance), we derive, using the theory of regenerative

processes, an explicit expression for the long-run rate of cost.

3. We consider data from the wind energy industry and provide, based on

these values, concrete answers to questions (i)–(v) mentioned above. More

specifically, we analyze the benefit of using planned and opportunistic main-

tenance compared to only corrective maintenance. We also analyze the

influence of deferring planned maintenance after the occurrence of opportunistic

maintenance. Finally, we also highlight the cost savings that can be attained

by reducing the probability of an imperfect maintenance.

7.1.2 Organization

The remainder of this chapter is structured as follows. In Section 7.2, we review the

related literature. In Section 7.3, we describe in detail the model at hand, which

captures the condition of the asset and which incorporates imperfect maintenance

at scheduled and unscheduled maintenance opportunities. Subsequently, in Section

7.4, we characterize the structure of the optimal policy for CBM using the average

cost criterion, see Section 7.4.1, and we compute the long-run rate of cost for any
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policy with the same structure as the optimal policy (i.e. the class of control limit

policies depending on the remaining time until the next planned maintenance), see

Section 7.4.2. In Section 7.5, we permit the deferral of planned maintenance after the

occurrence of opportunistic maintenance, and we compute the long-run rate of cost. A

numerical illustration is provided in Section 7.6, where, based on data from the wind

energy industry, we compare the long-run rate of cost for various policies, we show

the effect of imperfect maintenance, and the effect of deferring planned maintenance.

Finally, Section 7.7 contains concluding remarks.

7.2. Literature review

Maintenance optimization models have been extensively studied in the literature.

Optimal maintenance policies aim to provide optimal system reliability/availability

and safety performance at lowest possible maintenance costs (Pham and Wang, 1996).

Due to the fast development of sensing techniques in recent years, the state of a capital

asset can be monitored or inspected at a much lower cost and in a continuous fashion,

which facilitates CBM. CBM recommends maintenance actions based on information

collected through online monitoring of the capital asset and it can significantly reduce

maintenance costs by decreasing the number of unnecessary maintenance operations

(see e.g., Jardine et al., 2006; Peng et al., 2010; Lam and Banjevic, 2015). The CBM

model that we propose builds on the delay time model proposed by Christer (1982)

and Christer and Waller (1984). We refer the reader to Baker and Christer (1994),

Christer (1999), Wang (2008), and Wang (2012) for excellent overviews of delay time

models, and their use in maintenance modeling and optimization.

Not only are delay time models well-known in literature, but they are also very

frequently appearing in practice. Practice-based research with real diagnostic data,

such as data related to the spectrometry of oil (see, e.g., Makis et al., 2006; Kim

et al., 2011) and data related to vibrations (see, e.g., Yang and Makis, 2010), showed

that it is usually sufficient, and even preferable from a modeling and decision making

perspective, to consider only two operational states. The first state is the perfect

state, in which the system lasts from newly installed to the point that a hidden

defect has been identified. After the occurrence of a hidden defect in the system

until the occurrence of a failure (which is typically referred to as the delay time),

the system resides in the second state also referred to as the satisfactory state. Such

a classification of the operational states has the property that maintenance actions

are initiated only when the system is degraded to the state that can actually lead to

a direct failure, i.e. the satisfactory state, but not when the system is functioning
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perfectly, i.e. the perfect state. The vast majority of the literature on delay time

models is restricted to numerical methods or approximations to solve the models at

hand, due to their underlying complexity. Few recent exceptions are Maillart and

Pollock (2002), Kim and Makis (2013) and Van Oosterom et al. (2014), who study

two-state systems under periodic inspection, partial observability, and postponed

replacement, respectively, and provide analytical results regarding the structure of the

optimal policy. However, all of them do not consider the option of resource sharing

in the network (in the form of opportunistic maintenance), nor do they incorporate

the notion of imperfect repair.

Most delay time model analyses assume that the system after a maintenance action

is restored to a state of ‘as good as new’. Contrary to this assumption, in imperfect

maintenance it is assumed that upon preventive maintenance, the system lies in a state

somewhere between ‘as good as new’ and ‘as bad as old’. This is first introduced by

Nakagawa (1979a) and Nakagawa (1979b) and is called the (p, q)-rule. Under the

(p, q)-rule, the system is returned to an ‘as good as new’ state (perfect preventive

maintenance) with probability p and it is returned to the ‘as bad as old’ state (minimal

preventive maintenance) with probability q = 1 − p after preventive maintenance.

Clearly, the case p = 0 corresponds to having no preventive maintenance. Also, from

a practical point of view, imperfect maintenance can describe a large set of realistic

maintenance actions (Pham and Wang, 1996).

When planning CBM strategies, see, e.g., Jardine et al. (2006), Jardine and Tsang

(2005) and Prajapati et al. (2012), a typical assumption in the literature is that

the system at hand is monitored continuously and one can intervene and maintain

the system at any given moment. However, due to accessibility reasons (e.g., in the

case of off-shore wind parks) or for cost reduction purposes, it is cost optimal and

more practical to allow only for discrete time opportunities. The simplest amongst

the discrete time opportunities are the periodic planned maintenance instances (also

referred to as scheduled downs), with period say τ , that serve as a scheduled

opportunity to do maintenance for a network of systems. Furthermore, unplanned

maintenance instances (due to opportunistic maintenance) can be modeled as discrete

instances occurring according to a multi-dimensional counting process.

For recent works related to opportunistic maintenance, the interested reader is referred

to Zhu et al. (2016, 2017), Kalosi et al. (2016), and Arts and Basten (2018). In

Zhu et al. (2016, 2017), the authors consider a single-unit system and account

for both scheduled and unscheduled opportunities. In these analyzes, the authors

model the age and the condition, respectively, of the system and derive, based on

approximations, the long-run rate of cost under a given policy. In both papers,
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the arrivals of unscheduled opportunities are modeled according to a homogeneous

Poisson process. This approximation is justified by the Palm-Khintchine theorem

(Khinchin, 1956), which states that even if the failure times of some systems do

not follow Exponential distributions, the superposition of a sufficiently large number

of independent renewal processes behaves asymptotically like a Poisson process.

Arts and Basten (2018) build further on Zhu et al. (2016, 2017), but they only

consider scheduled maintenance opportunities (excluding unscheduled opportunities).

Furthermore, Arts and Basten (2018) assume that at a scheduled opportunity, the

system is restored to a perfect condition (i.e. p = 1), while at a failure they assume

that the system is restored to a state which is stochastically identical to the state

just prior to the system’s failure. In a recent conference paper, Kalosi et al. (2016)

looked at a model with both planned and unplanned maintenance opportunities, at

which the system is restored to a perfect condition, showing some preliminary results

that a control limit policy (depending on the remaining time until the next planned

maintenance) is optimal.

In contrast to Arts and Basten (2018) and to Zhu et al. (2016, 2017), in which the

long-run rate of cost is computed for a given policy, we first characterize the structure

of the optimal policy explicitly and thereafter, for the optimal policy class, we compute

the long-run rate of cost. Furthermore, we include both scheduled and unscheduled

maintenance opportunities. In contrast to Kalosi et al. (2016), we extend the model

by incorporating the (p, q)-rule, making it more generic and realistic. Moreover,

we are the first to analyze the influence of deferring planned maintenance and we

illustrate the financial effects of the maintenance policy in a realistic context using

data stemming from the wind industry.

7.3. Model description

We consider a single unit system (equivalently, a component or asset) that is

monitored continuously and whose condition is fully observable. We assume that the

condition of the system degrades over time and that it can be modeled according to a

delay time model. That is, the states are classified as perfect, satisfactory and failed.

We shall refer to the state of perfect condition as state 2, the state of satisfactory

condition as state 1 and the failure state as state 0. Furthermore, we assume that as

soon as a system failure occurs, the system is instantaneously replaced by an ‘as good

as new’ system. So, in the mathematical formulation of the model, we may assume,

due to the instantaneous replacement at failure, that the model evolves between only

states 1 and 2. The system spends an exponential amount of time with rate µi in state
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i, i ∈ {1, 2}. The above model formulation implies that initially the system starts

in state 2 (perfect state), then after an exponential amount of time with rate µ2,

the system deteriorates and the condition of the system goes to state 1 (satisfactory

state). The system spends an exponential amount of time with rate µ1 in state 1,

after which a failure occurs. At a failure the system is instantaneously replaced by

an ‘as good as new’ system and the condition is restored to 2 (perfect state). A

schematic evolution of the condition of the component and the corresponding times

of transitions are depicted in Figure 7.1.

2

Exp(µ2)

%%
1

Exp(µ1)

%%
2

Exp(µ2)

((
· · ·

Figure 7.1 Schematic evolution of the condition of the component and the corresponding
times of transitions.

We assume that we have two types of opportunities in which we can perform

preventive maintenance (PM) before failure: the scheduled and the unscheduled

opportunities. The scheduled opportunities correspond to pre-arranged opportunities

occurring according to a fixed schedule. These opportunities can be attributed to

either service/maintenance agreements or to regulation imposition checks. We assume

that the scheduled opportunities occur at epochs τ, 2τ, 3τ, . . ., with τ > 0. This is also

in accordance with what happens in practice as maintenance actions once planned

are typically not rescheduled. The unscheduled opportunities correspond to random

opportunities triggered by failures of other systems in close proximity. We assume

that these unscheduled opportunities occur according to a Poisson process at rate λ.

The unscheduled and scheduled opportunities, abbreviated by USO and SO, respec-

tively, serve as opportunities to perform preventive maintenance. Such a preventive

maintenance is assumed to cost less than a corrective maintenance (CM) upon failure,

which costs ccm. Moreover, incorporating a planning perspective, we may assume

that the preventive maintenance cost at an SO, csopm, is less than or equal to the

corresponding cost at a USO, say cuso
pm , that is 0 < csopm ≤ cuso

pm < ccm (however, we also

extend our analysis to the case csopm > cuso
pm). Following the (p, q)-rule of Nakagawa

(1979a) and Nakagawa (1979b), we assume that after preventive maintenance a system

is returned to the ‘as good as new’ state with probability p ∈ (0, 1] and returned to

the ‘as bad as old’ state (i.e. the amount of time left until the failure has not altered)

with probability q = 1− p.

Our aim is to determine a policy when to perform preventive maintenance on the

system based on its condition and the opportunity type, i.e. scheduled or unscheduled.
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More explicitly, we will need to formally define the state space, which refers to the

condition of the system, the action space and the decision epochs. The state space is

governed by the process depicting the condition of the system, i.e. the Markov chain

evolving between the states {1, 2}. The action space consists of only two actions:

perform preventive maintenance or do nothing. Lastly, the decision epochs are the

SO and USO epochs. In Figure 7.2, we depict the SO epochs by (∗) and the USO

epochs by (o).

Condition of the
component

2

1

time
∗
τ

∗
2τ SC

∗
3τ

∗
4τ

∗
5τ SC

∗
6τ

∗
7τ

∗
8τ SC

Exp (µ2) Exp (µ1) Exp (µ2)

∗ Scheduled opportunities {τ, 2τ, 3τ, . . . }
Unscheduled opportunities Poisson process (λ)

R State change (SC)

Figure 7.2 A sample path of the model.

7.4. Optimal policy

The goal of this section is twofold: We first characterize the structure of the optimal

average cost CBM policy. We then derive an explicit form for the long-run rate of

cost per time unit for any given policy that has the same structure as the optimal

policy.

7.4.1 Average cost criterion

This section is devoted to the derivation of the optimal policy on when to perform

preventive maintenance for the system at hand using the average cost criterion. To

this purpose, we set up our problem as a (controlled) semi-MDP. Due to the stochastic

nature of the problem, it does not suffice to know the type of the decision epoch (SO

or USO), but it is also required to keep track of the remaining time till the next

SO. That time may impact our decision, i.e. the optimal policy may depend on the

residual time till the next SO. Thus, for the full description of the condition (state)
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of the system, we use a triplet descriptor

S =
{

(i, j, t) : i ∈ {1, 2}, j ∈ {SC,USO}, t ∈ (0, τ)
}
∪
{

(i,SO, 0) : i ∈ {1, 2}
}
,

where i indicates the condition of the system. If j = SC, then this means that the

condition of the system is about to change and there is no decision associated with

this epoch, while if j = SO or j = USO, this means that this is a decision moment

at either a scheduled (SO) or unscheduled opportunity (USO), respectively. Finally,

the third element indicates the remaining time until the SO. Note that if j = SO

then t = 0. The introduction of the remaining time until the upcoming SO in the

full description of the condition of the system renders the model inhomogeneous,

and for this reason we use techniques that stem from semi-MDPs. Note here that

the inclusion of the remaining time until the upcoming SO in the state, although it

complicates the analysis, permits us to prove that there is an optimal policy in the

class of deterministic stationary policies, cf. Propositions 7.1 and 7.3. At each decision

epoch (depending on the values of (i, j, t) ∈ S), we can choose to perform preventive

maintenance or do nothing or in case of a failure to do corrective maintenance (CM),

that is A = {perform PM, do nothing, perform CM}, where A represents the overall

action space.

Proposition 7.1. For the model at hand, the deterministic stationary policy is

optimal for the average cost criterion.

A formal version of the above proposition, cf. Proposition 7.3, and its proof can

be found in Appendix 7.A, together with a full formal definition of the model in

the context of semi-MDPs. In addition to the theoretical validation that the above

proposition offers on the existence and nature of the optimal maintenance policy, in

the following theorem we compute the optimal policy.

Theorem 7.1. Under the assumption that csopm < cusopm and given the imperfect

preventive maintenance probability 1 − p ∈ (0, 1], the optimal policy under the

average cost criterion is: For state 2 to do nothing. For state 1 to perform

preventive maintenance at scheduled opportunities, if µ1ccm > (µ1 + µ2)
csopm
p , and

to do nothing otherwise, and to perform preventive maintenance at unscheduled

opportunities for which the residual time until the next scheduled opportunity is in

[t̂, τ), if µ1ccm >
(
cusopm

p −
cusopm−c

so
pm

e(µ1+µ2)τ−1

)
(µ1 +µ2), and to do nothing otherwise. Where,
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t̂ = min{τ,max{0, t∗}}, with t∗ satisfying

cusopm

p
=
µ1ccm + λcusopm

µ1 + µ2 + λp
+−csopm + µ1ccm

µ1+µ2
+
(
cusopm

p −
µ1ccm
µ1+µ2

)
e(µ1+µ2)t∗

1− p
−
µ1ccm + λcusopm

µ1 + µ2 + λp

 e(µ1+µ2+λp)(τ−t∗).

(7.1)

Proof: See Appendices 7.B and 7.C.

For USOs, Theorem 7.1 establishes a control limit policy depending on the remaining

time until the next SO: if the residual time until the next SO is smaller than t̂, then

it is optimal to not take the opportunity to perform preventive maintenance in state

1. This is intuitive in the sense that the urgency for preventive maintenance in state

1 at a USO should decrease as the cheaper opportunity at an SO is approaching.

Note that in the special case when preventive maintenance costs at SOs and USOs

are equal, the optimal policy reduces to a stationary control limit policy, which is

shown in Proposition 7.2.

Proposition 7.2. Under the assumption that csopm = cusopm = cpm > 0 and given the

imperfect preventive maintenance probability 1−p ∈ (0, 1], the optimal policy under the

average cost criterion is: For state 2 to do nothing. For state 1 to perform preventive

maintenance at both SOs and USOs, if µ1ccm > (µ1 + µ2)
cpm
p , and to do nothing

otherwise.

Proof: The proof of this proposition is identical in structure to the proof of Case

(i) in Theorem 7.1 and for this reason it is omitted.

One could also argue that the cost for preventive maintenance at a USO is actually

less than the cost at an SO since there is already a cost attached to the opportunity

at hand (e.g., service engineers are already at a wind park and they can at a small

extra cost repair other systems in close proximity as well). In this case, the optimal

control policy also reduces to a stationary control limit policy, which is described in

Theorem 7.2.

Theorem 7.2. Under the assumption that csopm > cusopm and given the imperfect

preventive maintenance probability 1−p ∈ (0, 1], the optimal policy under the average
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cost criterion is: For state 2 to do nothing. For state 1 to perform preventive

maintenance at an unscheduled opportunity if µ1ccm > (µ1 + µ2)
cusopm

p , and to do

nothing otherwise, and to perform preventive maintenance at an SO if µ1ccm >

(µ1 + µ2)
csopm
p + λ(csopm − cusopm ), and to do nothing otherwise.

Proof: See Appendix 7.D.

7.4.2 Long-run rate of cost per time unit

In the previous section, we characterized the structure of the optimal policy using the

average cost criterion. This policy can be viewed as a control limit policy, with the

control limit depending on the time until the next SO. In this section, we consider such

a policy and we compute the long-run rate of cost per time unit. More concretely, we

consider a policy under which in state 2 we do not perform preventive maintenance

(i.e. we do nothing), and in state 1 we always perform preventive maintenance at

SOs and we perform preventive maintenance at USOs if the remaining time till the

next SO is greater than t̃, for some given value t̃ ∈ (0, τ). The results obtained in

this section are directly applicable to the results of Section 7.4.1, by setting t̃ = t∗,

cf. Theorem 7.1.

For the computation of the long-run rate of cost per time unit, we employ the theory of

regenerative-like processes, also called stationary-cycle processes, described in Section

2.19 of Serfozo (2009). To this purpose, we consider the inter-regeneration times

created by the SOs {τ, 2τ, 3τ, . . .}. For the cost computation, we assume that, at

the SOs, the system is in state 1 or 2 according to a stationary probability p1(0)

and p2(0), respectively. The long-run rate of cost per time unit is calculated as the

expected total cost incurred between consecutive SOs divided by τ .

Let pi(t) be the probability that the system is in state i ∈ {1, 2} given that the

time until the next SO is t ∈ [0, τ), then the long-run rate of cost per time unit for

this control limit policy (depending on the remaining time until the next planned

maintenance) for any given time threshold is given in the next theorem.

Theorem 7.3. Consider a given policy under which in state 2 we opt for the action

do nothing, and in state 1 we repair at scheduled opportunities and at unscheduled

opportunities for which the remaining time until the next scheduled opportunity is

greater than t̃ ∈ (0, τ), and we do nothing otherwise. Under this policy, the long-run
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rate of cost per time unit equals

csopmp1(0) + cusopmλ
∫ τ
t̃
p1(t) dt+ ccmµ1

∫ τ
0
p1(t) dt

τ
, (7.2)

with

p1(t) =


µ2

µ1 + µ2
+ C1 e

(µ1+µ2)t, t ∈ [0, t̃), (7.3)

µ2

µ1 + µ2 + λp
+ C2 e

(µ1+µ2+λp)t, t ∈ [t̃, τ), (7.4)

where the constants C1 and C2 are obtained as follows

C1 = C2 e
λpt̃ − µ2

µ1 + µ2

λp

µ1 + µ2 + λp
e−(µ1+µ2)t̃,

C2 =

µ2

µ1+µ2

(
1− e−(µ1+µ2)t̃

)
+ µ2

µ1+µ2+λp

(
1

1−p − e
−(µ1+µ2)t̃

)
1

1−pe
(µ1+µ2+λp)τ − eλpt̃

.

Proof: The expected total cost incurred in one cycle consists of three parts (cf.

Equation (7.2)), which are related to the expected cost associated with preventive

maintenance at SOs, with preventive maintenance at USOs and with corrective

maintenance, respectively. It is now sufficient to derive pi(t) for t ∈ [0, τ), i ∈ {1, 2}.

For t ∈ [t̃, τ), the time-dependent behavior of p1(t) is governed by

p1(t) = p1(t+ dt)(1− (µ1 + λp) dt) + p2(t+ dt)µ2 dt. (7.5)

Equation (7.5) is easily obtained by considering a small time interval of length dt,

and noticing that at time t we are in state 1 either due to a transition from state 2

with infinitesimal probability µ2 dt or we have remained in state 1 with infinitesimal

probability 1− (µ1 +λp) dt. Subtracting p1(t+ dt) from both sides of Equation (7.5),

after some straightforward computations, yields

p1(t+ dt)− p1(t) = p1(t+ dt)(µ1 + λp) dt− p2(t+ dt)µ2 dt.

Dividing this expression by dt and letting dt→ 0 results in

p
′

1(t) = p1(t)(µ1 + λp)− p2(t)µ2.

Following a similar analysis for p2(t), yields the following system of differential
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equations, for t ∈ [t̃, τ),[
p′1(t)

p′2(t)

]
=

[
µ1 + λp −µ2

−(µ1 + λp) µ2

]
×

[
p1(t)

p2(t)

]
, t ∈ [t̃, τ). (7.6)

Similarly, for t ∈ [0, t̃), we have[
p′1(t)

p′2(t)

]
=

[
µ1 −µ2

−µ1 µ2

]
×

[
p1(t)

p2(t)

]
, t ∈ [0, t̃). (7.7)

Solving the system of differential Equations (7.6) and (7.7) leads to the desired

solutions (7.3) and (7.4), respectively. In this process, we would need to compute

four unknown constants. This is achieved by using: (i) the normalizing condition, i.e.

p1(t) + p2(t) = 1 for all t ∈ [0, τ), (ii) the continuity condition at t̃, i.e. lim
t→t̃−

pi(t) =

pi(t̃) for i ∈ {1, 2}, and (iii) the boundary condition at the SOs imposed by the policy

and the imperfect maintenance probability, i.e. (1− p)p1(0) = lim
t→τ−

p1(t).

7.4.2.1 Special cases

In case of only scheduled opportunities, which corresponds to the case t̃ → τ or,

equivalently, to the case λ→ 0, the probabilities pi(t) for i ∈ {1, 2} are derived from

the system of linear equations in (7.7) plus the normalizing condition, i.e. p1(t) +

p2(t) = 1 for all t ∈ [0, τ). This yields

p1(t) =
µ2

µ1 + µ2

(
1− pe(µ1+µ2)t

e(µ1+µ2)τ − 1 + p

)
, t ∈ [0, τ).

Plugging the above result into Equation (7.2), after appropriately considering in

Equation (7.2) only the costs related to preventive maintenance at SOs and corrective

maintenance
csopmp1(0) + ccmµ1

∫ τ
0
p1(t) dt

τ
,

leads to the long-run rate of cost per time unit in the case of only SOs.

In case of perfect maintenance, i.e. in case p = 1, the boundary condition at the SOs

imposed by the policy and the imperfect maintenance in the proof of Theorem 7.3

reduces to lim
t→τ−

p1(t) = 0, as immediately after an SO, the system is restored to state

2 with probability 1. This enables us to explicitly solve the system of linear Equations
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(7.6) and (7.7), yielding

p1(t) =
µ2

µ1 + µ2
+ e

λ−Λ(t)
λ (µ1+µ2)(t−t̃)

·
(

µ2

λ+ µ1 + µ2
− µ2

µ1 + µ2
− µ2

λ+ µ1 + µ2
e(λ+µ1+µ2)(t̃−τ+

Λ(t)
λ (t−t̃))

)
,

where

Λ(t) =

0, if 0 ≤ t < t̃,

λ, if t̃ ≤ t < τ.

Combining this expression with Equation (7.2), results in the long-run rate of cost

per time unit in the case of perfect maintenance.

In case of only unscheduled opportunities, which is equivalent to considering τ →∞,

the condition of the system can be fully described using a double descriptor S ={
(i, j) : i ∈ {1, 2}, j ∈ {SC,USO}

}
which is independent of time, and thus the new

model formulation falls into the framework of regular MDPs. It can be easily shown

that: For state 2, the optimal policy is to do nothing, and, for state 1, the optimal

policy is to repair if
(µ1+µ2)cuso

pm

p < µ1ccm and to do nothing otherwise. Furthermore,

under the optimal policy the average long-run rate of cost is equal to

cuso
pmλµ2 + ccmµ1µ2

λp+ µ1 + µ2
.

In case of only corrective replacements, the long-run rate of cost is equal to

ccm
µ1µ2

µ2 + µ1
.

7.5. Deferring planned maintenance

In this section, we consider that upon a successful maintenance activity (preventively,

at an SO or at a USO, or correctively), the upcoming planned maintenance is deferred

for a period of length τ , i.e. at the instances of successful maintenance the remaining

time till the next SO is set equal to τ . We are interested in computing the long-run

rate of cost under deferred maintenance and, in Section 7.6.3, using the results of

this section and of the previous sections, in investigating the economical benefits of

deferring planned maintenance.
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Analogously to the analysis of Section 7.4.2, we derive the long-run rate of cost

using renewal theory, see, e.g., (Ross, 2014, Proposition 7.3, page 433). In this case,

we consider the renewal points to be the instances at which there was a successful

maintenance activity, i.e. the SOs or USOs at which the preventive maintenance was

perfect, or the epochs at which corrective maintenance is performed. Note that the

underlying stochastic process that governs the condition of the system, regenerates

after each successful maintenance activity. That is, after each successful maintenance

activity the underlying stochastic process is in state 2 with probability 1. The long-

run rate of cost per time unit for a policy in the class of optimal policies is given

in the next theorem. As the expressions appearing in the theorem do not simplify

upon further computations, we choose to present them in the form of probabilities

and expectations associated with the Exponential distribution, as these expressions

are straightforward (though cumbersome to compute) and shed insight on each of the

individual events participating in the final expression, cf. Equation (7.8).

Theorem 7.4. Consider a given policy under which in state 2 we do nothing, and in

state 1 we repair at scheduled opportunities and at unscheduled opportunities for which

the remaining time until the next scheduled opportunity is greater than t̃ ∈ (0, τ), and

we do nothing otherwise. Furthermore, consider that planned maintenance is deferred

after a successful maintenance. Under this setting, the long-run rate of cost per time

unit equals

E [Total cycle cost]

E [Total cycle length]
=

E [CC]
1
µ2

+ E [CL]

=
E
[
CC 1{CL≤Y }

]
+ E

[
CC 1{CL>Y }

]
1
µ2

+ E
[
CL1{CL≤Y }

]
+ E

[
CL1{CL>Y }

] , (7.8)



198 Chapter 7. Opportunistic CBM policies with parameter certainty

with

E
[
CL1{CL≤Y }

]
= E

[
CL1{USO[τ−Y,τ−t̃]}

]
+ E

[
CL1{SO[τ−Y,τ ]}

]
+ E

[
CL1{CM[τ−Y,τ ]}

]
, (7.9)

E
[
CL1{CL>Y }

]
= (1− p)P

[
SO[τ − Y, τ ]

](
E[Y ] +

τ(1− p)P
[
SO[0, τ ]

]
1− (1− p)P

[
SO[0, τ ]

]
+ E

[
CL′ 1{CL′≤Y } |Y = τ

])
, (7.10)

E
[
CC 1{CL≤Y }

]
= E

[
CC 1{USO[τ−Y,τ−t̃]}

]
+ E

[
CC 1{SO[τ−Y,τ ]}

]
+ E

[
CC 1{CM[τ−Y,τ ]}

]
, (7.11)

E
[
CC 1{CL>Y }

]
= (1− p)P

[
SO[τ − Y, τ ]

](
E
[
CC 1{SO[τ−Y,τ ]}

]
+

(λ(1− p)(τ − t̃)cusopm + csopm)(1− p)P
[
SO[0, τ ]

]
1− (1− p)P

[
SO[0, τ ]

]
+ E

[
CC 1{CL′≤Y } |Y = τ

])
, (7.12)

where the density of the Truncated Exponential random variable Y is given by

fY (y) = µ2
e−µ2(τ−y)

1− e−µ2τ
, y ∈ [0, τ), (7.13)
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and with, for 0 ≤ y ≤ τ ,

1{SO[τ−y,τ ]}
d
= 1{y<min{Tλp,Tµ1}} + 1{Tλp<y<min{Tµ1 ,t̃}}

1{y<t̃}

+ 1{y−t̃≤Tλp<y,y≤Tµ1}
1{y≥t̃}, (7.14)

1{USO[τ−y,τ−t̃]}
d
= 1{Tλp<min{Tµ1

,y−t̃}}1{y≥t̃}, (7.15)

1{CM[τ−y,τ ]}
d
= 1{Tµ1<min{y,Tλp}} + 1{Tλp<Tµ1<y}1{y<t̃}

+ 1{Tλp<Tµ1<y, Tλp≥y−t̃}
1{y≥t̃}, (7.16)

E
[
CL1{USO[τ−y,τ−t̃]}

]
= E

[
Tλp1{USO[τ−y,τ−t̃]}

]
, (7.17)

E
[
CL1{SO[τ−y,τ ]}

]
= ypP

[
SO[τ − y, τ ]

]
, (7.18)

E
[
CL1{CM[τ−y,τ ]}

]
= E[Tµ11{CM[τ−y,τ ]}], (7.19)

E
[
CC 1{USO[τ−y,τ−t̃]}

]
= cusopm P

[
USO[τ − y, τ − t̃]

]
+ λ(1− p)cusopmE

[
Tλp1{USO[τ−y,τ−t̃]}

]
, (7.20)

E
[
CC 1{SO[τ−y,τ ]}

]
=
(
csopm + λ(1− p)cusopm max

{
y − t̃, 0

})
P
[
SO[τ − y, τ ]

]
,

(7.21)

E
[
CC 1{CM[τ−y,τ ]}

]
= ccmP

[
CM[τ − y, τ ]

]
+ λ(1− p)cusopmE

[
min

{
Tµ1

,max
{
y − t̃, 0

}}
1{CM[τ−y,τ ]}

]
,

(7.22)

where 1{x} is an indicator function taking value 1 if event x occurs, and it is zero

otherwise, Tµ1
∼ Exp(µ1), Tλp ∼ Exp(λp), P [ · ] = E[1{·}] for all events in Equations

(7.14)–(7.16), and CL
d
= CL′.

Proof: See Appendix 7.E.

7.6. Numerical results

Using the results and the analyzes of the previous sections, in this section, we illustrate

through a few well chosen examples the effect of the various parameters in the long-run

rate of cost. In these examples, we investigate the financial advantage of the optimal

policy, when compared to other (suboptimal) policies. Furthermore, we highlight
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the financial benefit of perfect maintenance by comparing the long-run rate of cost

for the perfect maintenance model (p = 1) to that of the imperfect maintenance

model (p ∈ (0, 1)). Here, we also show the influence of imperfect maintenance on the

maintenance planning. In addition, we illustrate the change introduced by the action

of deferring planned maintenance after the occurrence of a successful maintenance.

To illustrate the financial effects in a realistic context and to connect our analysis

with the practice, we use values and data stemming from the wind industry.

7.6.1 Comparison of the optimal policy to suboptimal policies

In this section, we compute, in the context of the wind industry example, the long-run

rate of cost under the optimal policy and we examine how it is affected by varying one

by one the parameters τ , λ and cuso
pm , while keeping all other parameters fixed. For

the determination of the values used in the numerical computations of this section,

we consider the gearbox of a wind turbine. Statistics from a recent field study by

Ribrant and Bertling (2007) on Swedish wind parks in the period 1997-2005 showed

that the gearbox is the most critical unit of a wind turbine. The notion of criticality

is determined by the fact that a failure of the gearbox leads to the highest downtime

when compared to all other wind turbine components, but also by the fact that this

component has the highest failure rate among all wind turbine components (Ribrant

and Bertling, 2007; Tavner et al., 2007; Spinato et al., 2009). Due to its extended

downtime after a failure (which is captured in the corresponding maintenance cost),

the corrective cost of a gearbox is relatively high compared to preventive maintenance

costs, see, e.g., Nilsson and Bertling (2007). Based on the values reported in the

aforementioned studies, we set ccm = 300000, csopm = 1000, µ2 = 0.31, µ1 = 0.31

and p = 0.6. In this case, the long-run rate of cost (in euros per year) in case of

only corrective replacements is equal to 46500. Furthermore, motivated by the wind

industry practice, we choose three different values for τ , that is τ ∈ {0.25, 0.5, 1}
(years). Next, we consider three different values for cuso

pm , i.e. cuso
pm ∈ {2000, 3000, 4000}.

Finally, with regard to λ, we consider four different values, i.e. λ ∈ {0.5, 1, 2, 4}.

In Table 7.1, we depict the long-run rate of cost for the above mentioned values

under four different policies: The first policy corresponds to replacements only at

USOs (πuso). The second policy corresponds to replacements only at SOs (πso). The

third policy is the optimal policy (πopt), which is derived in Theorem 7.1. Note,

that it is numerically easier to obtain the optimal t̃ by minimizing the long-run rate

of cost in Theorem 7.3, instead of the closed-form expression in Theorem 7.1, as

the latter requires the derivation of a root solution. The fourth policy concerns the

optimal policy, but for p = 1. This assumption is motivated from the practice, as it
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is oftentimes difficult to exactly determine the value of p and it is typically assumed

that after a maintenance the component is restored to a perfect state. This policy is

denoted by π′opt.

In Table 7.1, we observe, across all instances, that incorporating planned maintenance

can significantly reduce costs compared to only corrective maintenance, which can

be reduced even further by adding opportunistic maintenance. Intuitively, due to

the cost structure, only planned maintenance at SOs can considerably improve the

long-term rate of cost when compared to performing only opportunistic maintenance

at USOs. Finally, if we compare πopt with π′opt we do not, despite the low value

for p, observe significant differences. From an operational management perspective,

this clearly implies that, if decision makers do not have any knowledge about the

value of p and given a similar cost structure as in the gearbox case, assuming perfect

maintenance will result in a long-run rate of cost that is close to optimal regardless of

the true value of p. This will be valid as long as the preventive maintenance cost (at

both opportunities) is very small in comparison to the corrective maintenance cost,

as is the case of the gearbox costs. As a rule of thumb, one can easily compute the

expected number of maintenance activities (planned or opportunistic) required for a

successful preventive maintenance and based on this compute the long-run rate of

preventive maintenance cost (approximately in the order of max{csopm, c
uso
pm}/p) and

compare it with the corrective cost. If the corrective cost is significantly higher, then

one may assume that there is no significant difference between πopt and π′opt, and as

a consequence there is no significant difference in the values of the optimal policies

under the imperfect and perfect maintenance. In the next section, we investigate

the savings that can be obtained by improving the performance of a repair when a

decision maker has some knowledge regarding the value of p.

7.6.2 Influence of imperfect maintenance

Let π
(p)
opt represent the optimal policy as a function of the successful preventive

maintenance probability p and let C(π
(p)
opt) denote the long-run rate of cost when

the policy is π
(p)
opt. To demonstrate the effect of p in the rate of cost, we compute

the relative difference in the cost of not having a perfect preventive maintenance as a

function of p. This relative difference is denoted by δ(p) and it is equal to

δ(p) =
C(πpopt)− C(π1

opt)

C(π1
opt)

· 100%.
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δ(p) indicates how much extra cost is incurred due to imperfect maintenance, and thus

shows the benefit of improving the probability of executing a perfect maintenance.

In this numerical example, similarly to before we choose µ2 = 0.31, and µ1 = 0.31.

Furthermore, we set λ = 4 and τ = 1. Figure 7.3 shows δ(p) for p ∈ [0.5, 1] under

two different cost structures (denoted by δ(p)1 and δ(p)2, respectively). Figure 7.4

depicts the corresponding optimal values for t̃ for both cost structures, denoted by t1

and t2, respectively. We use the same cost structure as in the previous section, i.e. for

δ(p)1, we consider csopm = 1000, cuso
pm = 2000 and ccm = 300000, whereas, for δ(p)2, we

consider csopm = 26500, cuso
pm = 28800 and ccm = 75500. The choice for the preventive

maintenance cost at SOs and USOs in the second cost structure is common in the

lithography industry (see Zhu et al. (2017)). Based on Figure 7.3, we can conclude

that, under both cost structures, significant costs can be saved by improving the

probability of executing a perfect preventive maintenance (e.g., by training).

Figure 7.3 Plot of δ(p)1 and δ(p)2 for p ∈ [0.5, 1] with csopm = 1000, cusopm = 2000 and
ccm = 300000 for δ(p)1, and csopm = 26500, cusopm = 28800 and ccm = 75500 for δ(p)2.

The optimal policy (t̃), denoted by t1 and t2, under the first and second cost

structure, respectively, is equal to t1 ≈ 0.08 and t2 ≈ 0.39 in case of perfect

repairs. In Figure 7.4, where we plot t1 and t2 as a function of p, we observe the

following regarding the influence of p on the maintenance planning: If the preventive

maintenance cost (at both opportunities) is very small compared to the cost of

corrective maintenance, the order of the total preventive maintenance cost incurred

until a successful preventive maintenance compared to the corrective maintenance cost

is still maintained. Therefore, the maintenance planning does not alter that much

regardless of the value of p, where the optimal policy is to almost always perform

preventive maintenance at USOs for all values of p ∈ [0.5, 1]. This also explains the

small discrepancy between πopt and π′opt in Table 7.1. This is different in the case of
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the second cost structure, where the maintenance planning changes substantially as a

function of p. Whereas in the perfect case, the optimal policy is to perform preventive

maintenance at a USO if the residual time until the next SO is larger than 0.39, for

p / 0.83, it is optimal to never perform preventive maintenance at a USO. Here, the

order of the total preventive maintenance cost incurred until a successful preventive

maintenance compared to the corrective maintenance cost is not maintained.

Figure 7.4 Plot of t1 and t2 for p ∈ [0.5, 1] with csopm = 1000, cusopm = 2000 and ccm = 300000
for t1, and csopm = 26500, cusopm = 28800 and ccm = 75500 for t2.

Also in the opposite cost structure, i.e. cuso
pm < csopm (similar examples can be found for

cuso
pm = csopm), the maintenance planning can be influenced significantly by the imperfect

repair probability. For instance, consider the setting with µ1 = 1.1, µ2 = 0.9, csopm =

4500, cuso
pm = 4000, ccm = 10000, and λ = 0.5. In case of perfect repairs (i.e. p = 1),

the optimal policy is to perform preventive maintenance in state 1 at both SOs and

USOs, and to do nothing otherwise (cf. Theorem 7.2). However, if 0.72 / p / 0.83,

the optimal policy is to only perform preventive maintenance at USOs and if p / 0.72,

then the optimal policy is to never perform PM. This example illustrates the influence

of the imperfect repair probability on the maintenance planning.

7.6.3 Deferring of planned maintenance

In this section, we illustrate the change introduced by the action of deferring planned

maintenance after the occurrence of a successful maintenance in three numerical

examples that relate to the wind industry, the lithography industry, and to an

artificially created example.

Figure 7.5 shows the long-run rate of cost for both the deferral and no deferral case

for the example with data stemming from the wind industry. Again, with regard to
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the cost parameters, we used csopm = 1000, cuso
pm = 2000 and ccm = 300000. With regard

to the other parameters, we set λ = 4, τ = 1, µ1 = 0.31, µ2 = 0.31 and p = 0.6. We

can observe that deferring the planned maintenance both significantly increases the

long-run rate of cost under the optimal policy (an increase of 28.14% from 8468.87 to

10852.15) and changes the value connected to the optimal policy, t̃ from 0.112 to 0.

Figure 7.5 Cost rate in case of deferral and of no deferral for wind industry example. Optimal
t̃ is equal to 0.112 and 0 for deferral and no deferral, respectively.

Figure 7.6a and Figure 7.6b depict the long-run rate of cost for both the deferral and

the no deferral case, respectively, based on the values of the lithography industry

example. We use the same cost parameters as in Section 7.6.2, that is csopm =

26500, cuso
pm = 28800 and ccm = 75500. The other parameters remain unchanged,

i.e. λ = 4, τ = 1, µ1 = 0.31, µ2 = 0.31 and p = 0.6. Again, we observe the same

influence of deferring the planned maintenance on both the long-run rate of cost

under the optimal policy (an increase of 6533.3 % from 12840.12 to 851727.53) and

on the value of t̃ associated with the optimal policy (from 1 to 0.175) , similarly to

the numerical example for the wind industry. The drastic increase is due to the cost

structure, and more explicitly, it is due to the preventive maintenance costs values

(both at scheduled and unscheduled opportunities), which are relatively much closer

to the corrective maintenance cost in comparison to the wind industry example.

To illustrate that the opposite effect (albeit to a much lesser degree than in the

previous two examples) can also hold, we create an artificial example where we set

csopm = 5000, cuso
pm = 10000 and ccm = 19000, and λ = 4,τ = 4,µ1 = 1, µ2 = 0.4 and

p = 0.5. Figure 7.7 depicts the long-run rate of cost for both the deferral and the no

deferral case for this example. Here we observe that for all values of t̃, cost savings

can be obtained by deferring planned maintenance after the occurrence of a successful
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(a) Cost rate in case of deferral. Optimal t̃
is equal to 0.175.

(b) Cost rate in case of no deferral. Optimal
t̃ is equal to 1.

Figure 7.6 Cost rate for lithography industry example with deferral (a) and no deferral (b).

opportunistic maintenance. More specifically, whereas the optimal value of t̃ is equal

to 1 for both cases, the long-run rate of cost under the optimal policy decreases with

0.88% from 6458.97 to 6402.44, when deferring planned maintenance.

Figure 7.7 Cost rate in case of deferral and no deferral for artificial example. Optimal t̃ is
equal to 1 for both deferral and no deferral.

7.7. Conclusion

In this chapter, we have considered the maintenance policy for a 3-state component

degrading over time with corrective replacements at failures and preventive replace-

ments at both scheduled and unscheduled opportunities under imperfect repair. By

formulating this problem as a semi-MDP, we were able to characterize the structure

of the optimal maintenance policy as a control limit policy, where the control limit

depends on the time until the next planned maintenance opportunity. Using this

approach, a closed-form expression for the optimal control limit has been derived.
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Within this class of control limit policies, we have derived, using the theory of

regenerative processes, an explicit expression for the long-run rate of cost. Using

a similar approach based on renewal theory, we have derived an expression for the

long-run rate of cost in the case when planned maintenance is deferred after the

occurrence of a successful opportunistic maintenance.

A cost comparison with other suboptimal policies was made, which illustrated

the benefits of optimizing the maintenance policy. Specifically, it was found that

incorporating planned maintenance can significantly reduce costs compared to only

corrective maintenance, which can be reduced even further by adding opportunistic

maintenance. Moreover, numerical results indicate that the extent of the impact

of the perfect repair probability on the optimal policy depends on the underlying

cost structure. It was also shown that substantial cost savings can be obtained by

improving the perfect repair probability. Finally, our numerical examples indicate that

the deferral of planned maintenance after the occurrence of a successful opportunistic

maintenance may impact the total cost in both a negative and positive way.

There is a number of extensions and topics for future research. The most important

direction, and perhaps most obvious in light of the previous five chapters, is to

include parameter uncertainty. Another interesting direction is to include network

dependency on the level of degradation and failure dependencies, i.e. to consider a

multi-dimensional process that captures the degradation of the various assets in the

network. Such a future direction would be particularly interesting in the case of a

small number of assets for which the Poisson approximation for the opportunistic

maintenance may not be accurate. In addition, another very interesting research

direction would be to consider a more general model in which the condition of the

system degrades through N > 2 states. Next, in this analysis, we have assumed that

the condition of the system is fully observable. However, in many real applications,

condition monitoring data such as spectrometric oil data or vibration data gives only

partial information about the underlying state of the system. From this perspective,

it would be interesting to extend the model at hand to a partially observable

model in which the condition monitoring data are stochastically related to the true

system state. Finally, the results in this chapter are valid for systems with Hypo-

Exponentially distributed lifetimes. Future research could relax this assumption by

considering a phase-type lifetime distribution.



208 Chapter 7. Opportunistic CBM policies with parameter certainty

7.A. Optimality equations for semi-Markov decision

process

We consider the so-called ratio-average cost for a controlled semi-MDP, which

corresponds to the limes superior of the expected total cost over a finite number

of jumps divided by the expected cumulative time of these jumps, see Ross (1970);

Feinberg (1994); Schäl (1992), for instance.

We shall use here the definition of a controlled semi-MDP from Lippman (1975);

Yushkevich (1982); Jaśkiewicz (2004). A controlled semi-MDP is specified by five

objects: a Borel state space S, a Borel action space A, a law of motion – a measurable

projection determining the state as a function of an action, a transition function

(transition law) P – a probability measure depending measurably on the state and

the action, and a reward (or cost) function c.

The process is observed at time t = 0 to be in some state x0 ∈ S. At that time an

action a0 ∈ Ax0
is chosen, where Ax0

is a compact set of actions available in state

x0. The set of all actions is A and is also assumed to be a Borel state space.

For the problem at hand, the state space is

S =
{

(i, j, t) : i ∈ {1, 2}, j ∈ {SC,USO}, t ∈ (0, τ)
}
∪
{

(i,SO, 0) : i ∈ {1, 2}}
}

and the action space is A = {perform PM, do nothing, perform CM}, cf. Section

7.4.1.

If the current state is x0 and action a0 is selected, then the immediate cost c(x0; a0) is

incurred, and the system remains in state x0 for a random time t1, with the cumulative

distribution depending only on x0 and a0. Afterward, the system jumps to the state x1

according to the probability measure (transition law) P(· |x0, a0, t1). This procedure

yields a trajectory (x0, a0, t1, x1, a1, t2, . . .) of some stochastic process, where xn is the

state, an is the control variable and tn is the time of the n-th transition, n = 0, 1, . . ..

In the sequel, we shall refer to the corresponding random variables by means of their

capital letters: Tn – the random time of n-th transition, for n = 1, 2, . . . with T0 , 0,

Xn – the state at time Tn, and An – the action at time Tn.

Let Hn be the space of admissible histories up to the n-th transition, Hn , (S ×A×
[0,∞))n × S and H0 , S. An element hn of Hn is called a partial history of the

process and is of the form hn = (x0, a0, t1, . . . , xn−1, an−1, tn, xn). A control policy

(or policy) is a sequence {πn}, where each πn is a conditional probability πn(· |hn)

on the control set Axn , given the entire history hn such that πn(Axn |hn) = 1, for
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all hn, n = 1, 2, . . .. The class of all policies is denoted by Π and let ΠDS denote the

class of all deterministic stationary policies.

For each initial state x0 ∈ S and for each policy π ∈ Π, there exists a unique

probability measure Pπx0
such that

Pπx0
[An ∈ A |hn] = πn[A |hn], for a Borel set A ⊂ A,

Pπx0
[Tn+1 − Tn ∈ S,Xn+1 ∈ X |hn, an] = Panxn [S,X], for Borel sets X ⊂ S, S ⊂ R,

Pπx0
[Xn+1 ∈ X |hn, an, Tn+1 − Tn = s] = Panxn [X | s], for a Borel set X ⊂ S,

Pπx0
[Tn+1 − Tn ≤ s |hn, an] = F anxn (s), s ∈ R.

Further, let τ(x, a) denote the conditional mean sojourn (holding) time spent in state

x under action a, i.e.

τ(x; a) ,
∫ ∞

0

sdF ax (s),

and let F̃ ax (α) denote the Laplace-Stieltjes transform of the sojourn time spent in

state x under action a, i.e.

F̃ ax (α) ,
∫ ∞

0

e−αsdF ax (s).

For the problem at hand, the cost function is defined as follows

c(x; a) =


0, if x ∈ S, a = {do nothing},
ccm, if x = (1,SC, t), t ∈ (0, τ), a = {perform CM},
cuso
pm , if x = (i,USO, t), i = 1, 2, t ∈ (0, τ), a = {perform PM},
csopm, if x = (i,SO, 0), i = 1, 2, a = {perform PM}.

Let Panxn (s, xn+1) denote the joint density/mass distribution of the transition time

Tn+1−Tn and the allowed next state Xn+1, given the current state Xn = xn and the

allowed action an. For xn = (1,SC, t), t ∈ (0, τ), and an = {perform CM},

Panxn
(
s, (2,SC, t− s)

)
=

µ2

λ+ µ2
(λ+ µ2)e−(λ+µ2)s = µ2 e

−(λ+µ2)s, s ∈ [0, t)

Panxn
(
s, (2,USO, t− s)

)
= λ e−(λ+µ2)s, s ∈ [0, t)

Panxn
(
t, (2,SO, 0)

)
= e−(λ+µ2)t.

For the derivation of the above probabilities, it suffices to note that there are three

possible evolutions in terms of the state of the system: either an SO or an SC or
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a USO, where the time till the SO is equal to t, while the times till the next SC

and the USO are Exponentially distributed with rates µ2 and λ, respectively. The

probabilities for xn = (2,USO, t) and an = {do nothing} or an = {perform PM} are

identical. The remaining probabilities are obtained using very similar arguments. For

xn = (2,SC, t) or xn = (1,USO, t) and an = {do nothing},

Panxn (s, 1,SC, t− s) = µ1 e
−(λ+µ1)s, s ∈ [0, t)

Panxn (s, 1,USO, t− s) = λ e−(λ+µ1)s, s ∈ [0, t)

Panxn (t, 1,SO, 0) = e−(λ+µ1)t.

For xn = (1,SO, 0) and an = {do nothing},

Panxn (s, 1,SC, τ − s) = µ1 e
−(λ+µ1)s, s ∈ [0, τ)

Panxn (s, 1,USO, τ − s) = λ e−(λ+µ1)s, s ∈ [0, τ)

Panxn (τ, 1,SO, 0) = e−(λ+µ1)τ .

For xn = (2,SO, 0) and an = {do nothing} or an = {perform PM},

Panxn (s, 2,SC, τ − s) = µ2 e
−(λ+µ2)s, s ∈ [0, τ)

Panxn (s, 2,USO, τ − s) = λ e−(λ+µ2)s, s ∈ [0, τ)

Panxn (τ, 2,SO, 0) = e−(λ+µ2)τ .

For xn = (1,USO, t) and an = {perform PM},

Panxn (s, 2,SC, t− s) = p µ2 e
−(λ+µ2)s, s ∈ [0, t)

Panxn (s, 2,USO, t− s) = p λ e−(λ+µ2)s, s ∈ [0, t)

Panxn (t, 2,SO, 0) = p e−(λ+µ1)t

Panxn (s, 1,SC, t− s) = q µ2 e
−(λ+µ2)s, s ∈ [0, t)

Panxn (s, 1,USO, t− s) = q λ e−(λ+µ2)s, s ∈ [0, t)

Panxn (t, 1,SO, 0) = q e−(λ+µ1)t.
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For xn = (1,SO, 0) and an = {perform PM},

Panxn (s, 2,SC, τ − s) = p µ2 e
−(λ+µ2)s, s ∈ [0, τ)

Panxn (s, 2,USO, τ − s) = p λ e−(λ+µ2)s, s ∈ [0, τ)

Panxn (τ, 2,SO, 0) = p e−(λ+µ1)τ

Panxn (s, 1,SC, τ − s) = q µ2 e
−(λ+µ2)s, s ∈ [0, τ)

Panxn (s, 1,USO, τ − s) = q λ e−(λ+µ2)s, s ∈ [0, τ)

Panxn (τ, 1,SO, 0) = q e−(λ+µ1)τ .

From the joint distributions, the marginal cumulative distribution of the transition

time Tn+1 − Tn can be immediately derived as follows, for xn = (1,SC, t) and an =

{perform CM},

F anxn (s) = 1− e−(λ+µ2)s, s ∈ (0, t),

F anxn (s) = 1, s ≥ t.

The distribution of the transition time from state xn = (2,USO, t) under actions

an = {do nothing} or an = {perform PM} are identical. The rest of the marginal

cumulative distributions for the other states and actions follow analogously. For

xn = (2,SC, t) or xn = (1,USO, t) and an = {do nothing},

Panxn [(1,SC, t− s) |Tn+1 − Tn = s] =
µ1

λ+ µ1
, s ∈ (0, t),

Panxn [(1,USO, t− s) |Tn+1 − Tn = s] =
λ

λ+ µ1
, s ∈ (0, t),

Panxn [(1,SO, 0) |Tn+1 − Tn = t] = 1,

and

Panxn (s) = 1− e−(λ+µ1)s, s ∈ (0, t),

Panxn (s) = 1, s ≥ t.
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For xn = (1,USO, t) and an = {perform PM},

Panxn [(2,SC, t− s) |Tn+1 − Tn = s,1{successful PM}] =
µ2

λ+ µ2
, s ∈ (0, t),

Panxn [(2,USO, t− s) |Tn+1 − Tn = s,1{successful PM}] =
λ

λ+ µ2
, s ∈ (0, t),

Panxn [(2,SO, 0) |Tn+1 − Tn = t,1{successful PM}] = 1,

Panxn [(1,SC, t− s) |Tn+1 − Tn = s,1{unsuccessful PM}] =
µ1

λ+ µ1
, s ∈ (0, t),

Panxn [(1,USO, t− s) |Tn+1 − Tn = s,1{unsuccessful PM}] =
λ

λ+ µ1
, s ∈ (0, t),

Panxn [(1,SO, 0) |Tn+1 − Tn = t,1{unsuccessful PM}] = 1,

and

Panxn (s | successful PM) = 1− e−(λ+µ2)s, s ∈ (0, t),

Panxn (s | successful PM) = 1, s ≥ t,
Panxn (s |unsuccessful PM) = 1− e−(λ+µ1)s, s ∈ (0, t),

Panxn (s |unsuccessful PM) = 1, s ≥ t,

where

P[1{successful PM} |Xn = (1,USO, t), an = {perform PM}]
= P[1{successful PM} |Xn = (1,SO, t), an = {perform PM}] = p.

For xn = (1,SO, 0) and an = {perform PM},

Panxn [(2,SC, τ − s) |Tn+1 − Tn = s,1{successful PM}] =
µ2

λ+ µ2
, s ∈ (0, τ),

Panxn [(2,USO, τ − s) |Tn+1 − Tn = s,1{successful PM}] =
λ

λ+ µ2
, s ∈ (0, τ),

Panxn [(2,SO, 0) |Tn+1 − Tn = τ,1{successful PM}] = 1,

Panxn [(1,SC, τ − s) |Tn+1 − Tn = s,1{unsuccessful PM}] =
µ1

λ+ µ1
, s ∈ (0, τ),

Panxn [(1,USO, τ − s) |Tn+1 − Tn = s,1{unsuccessful PM}] =
λ

λ+ µ1
, s ∈ (0, τ),

Panxn [(1,SO, 0) |Tn+1 − Tn = τ,1{unsuccessful PM}] = 1,
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and

Panxn (s | successful PM) = 1− e−(λ+µ2)s, s ∈ (0, τ),

Panxn (s | successful PM) = 1, s ≥ τ,
Panxn (s |unsuccessful PM) = 1− e−(λ+µ1)s, s ∈ (0, τ),

Panxn (s |unsuccessful PM) = 1, s ≥ τ.

For xn = (1,SO, 0) and an = {do nothing},

Panxn [(1,SC, τ − s) |Tn+1 − Tn = s] =
µ1

λ+ µ1
, s ∈ (0, τ),

Panxn [(1,USO, τ − s) |Tn+1 − Tn = s] =
λ

λ+ µ1
, s ∈ (0, τ),

Panxn [(1,SO, 0) |Tn+1 − Tn = τ ] = 1,

and

Panxn (s) = 1− e−(λ+µ1)s, s ∈ (0, τ),

Panxn (s) = 1, s ≥ τ.

For xn = (2,SO, 0) and an = {do nothing} or an = {perform PM},

Panxn [(2,SC, τ − s) |Tn+1 − Tn = s] =
µ2

λ+ µ2
, s ∈ (0, τ),

Panxn [(2,USO, τ − s) |Tn+1 − Tn = s] =
λ

λ+ µ2
, s ∈ (0, τ),

Panxn [(2,SO, 0) |Tn+1 − Tn = τ ] = 1,

and

Panxn (s) = 1− e−(λ+µ2)s, s ∈ (0, τ),

Panxn (s) = 1, s ≥ τ.

Having fully defined the probabilities for the problem at hand, we proceed in

providing, following the proofs in Bhattacharya and Majumdar (1989), the proposition

below that guarantees that (1) a dynamic programming equation holds for the optimal

reward (this equation is typically referred to as the average optimality equality or as

the Bellman equation), and (2) a deterministic stationary policy (optimal for long-run

average reward) is provided by this equation.
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Proposition 7.3. For the model at hand, there exist a bounded function V (·) and a

constant g such that

V (x) = min
a∈Ax

{
c(x; a) +

∫
y

V (y)Pax(dy)− g τ(x; a)
}
, ∀x ∈ S. (7.23)

Moreover, the deterministic stationary policy π∗(∞) ∈ ΠDS is optimal for the ratio-

average cost criterion with

g = inf
π∈ΠDS

J(x, π) , J∗(x)

where, for π ∈ ΠDS,

J(x, π) , lim sup
n→∞

Eπx
[∑n−1

k=0 c(Xk, Ak)
]

Eπx [Tn]
≡ lim sup

n→∞

Eπx
[∑n−1

k=0 c(Xk, Ak)
]

Eπx
[∑n−1

k=0 τ(Xk, Ak)
] . (7.24)

Proof: The proof of the proposition relies on the fact that the costs c(x; a) are

non-negative and upper bounded by ccm. We follow here the ideas presented in

Bhattacharya and Majumdar (1989) and in Theorems 10.3.1 & 10.3.6 in (Hernández-

Lerma and Lasserre, 2012, Sections 10.4 and 10.5). Following the ideas therein, we

consider the corresponding α-discounted cost criterion

Vα(x, π) = Eπx

 ∞∑
k=0

e−αTkc(Xk, Ak)


and Vα(x) = infπ∈Π Vα(x, π). The main steps in the proof of the proposition are

Step 1: Show that the optimal reward Vα(x) under discounting is continuous and

bounded. The latter follows easily by noting that Vα(x) is bounded by

Vα(πDN, x), where πDN denotes the policy of doing nothing at all opportunities,

unless the component fails, in which case it is mandatory to do corrective

maintenance. This yields

Vα(x) ≤ ccm

µ1

µ1+α

1− µ1

µ1+α
µ2

µ2+α

, ∀x ∈ S.

Analogously,

g ≡ J∗(x) ≤ ccm
µ1µ2

µ2 + µ1
.

See Appendix 7.A.1 for further details.
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Step 2: Show that the discounted Bellman equation

Vα(x) = min
a∈Ax

{
c(x; a) +

∫
s

∫
y

e−αsV (y)Pax(dy | s) dF ax (s)
}
, x ∈ S, (7.25)

holds. Also, there exists a Borel measurable function that minimizes the right

side of the discounted Bellman equation for every x ∈ S. The deterministic

stationary policy is optimal under discounting. The proof follows verbatim the

steps in (Bhattacharya and Majumdar, 1989, Theorem 3.1 on page 227).

Step 3: Choose z ∈ S, then for all x ∈ S, show that |Vα(x)− Vα(z)| is bounded for

all α > 0. This follows oftentimes by the geometric ergodicity of the underlying

Markov controlled model. In the case under consideration, this is proven by

noting that from all states x = (i, j, t) ∈ S, after time t the system is in an SO

state with probability 1. This yields

|Vα(x)− Vα(z)| ≤ ccm

(
2 +

(
λ+ µ1 + µ2 + 1 +

µ1µ2

µ1 + µ2

)
(τx,1 + τz,1)

)
,

with τx,1 < ∞ denoting the expectation of the first passage time from state

x ∈ S to state (1,SO, 0). See Appendix 7.A.2 for further details. A consequence

of the above finding is that, for all deterministic stationary policies π ∈ ΠDS ,

the expected average cost in (7.24) is independent of x.

Step 4: Show that there exists a solution say g to the average optimality equality

(7.23). There exists a Borel measurable function π∗ on S into A such that the

maximum on the right side of (7.23) is attained at π∗(x), x ∈ S. The proof

follows verbatim the steps in (Bhattacharya and Majumdar, 1989, Theorem 3.2

(a) & (b) on page 228).

Step 5: Show that the stationary policy π∗(∞) is optimal for the long-run average

reward and g is the optimal reward, with g = lim supα→0+ αVα(x). See

Appendix 7.A.3 for further details.

Equivalent propositions (based on different methods, but more importantly based on

different assumptions regarding the geometric ergodicity) can be found for example

in Jaśkiewicz (2001); Vega-Amaya and Luque-Vásquez (2000); Jaśkiewicz (2004).
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7.A.1 Proof of Step 1

Under the policy of doing nothing at all opportunities, unless the component fails in

which case it is mandatory to do corrective maintenance, say πDN, Vα(πDN, x) can

be computed using first step analysis. Note that under this policy, it is not required

to keep track of the remaining time to the next SO opportunity. Say x = (i, j, ·).
If i = 1, then after an Exponentially distributed time with rate µ1, say Tµ1

, the

component will fail and a cost ccm will be incurred. If i = 2, then after a Hypo-

Exponentially distributed time with rates (µ2, µ1), say Tµ1
+ Tµ2

(the two random

times are independent), the component will fail and a cost ccm will be incurred. All

in all,

Vα(x, πDN) = E[e−α(Tµ1+Tµ21{i=2})]
(
ccm + E[Vα((1,SC, ·), πDN)]

)
. (7.26)

Similarly,

Vα((1,SC, ·), πDN) = E[e−α(Tµ1
+Tµ2

)]
(
ccm + E[Vα((1,SC, ·), πDN)]

)
,

which yields upon solving for Vα((1,SC, ·), πDN) and substituting that E[e−αTµi ] =
µi

µi+α
, i = 1, 2,

Vα((1,SC, ·), πDN) = ccm

µ1

µ1+α
µ2

µ2+α

1− µ1

µ1+α
µ2

µ2+α

.

Combining the last equation with (7.26) yields

Vα(x, πDN) = ccm

µ1

µ1+α

(
µ2

µ2+α1{i=2} + 1{i 6=2}

)
1− µ1

µ1+α
µ2

µ2+α

≤ ccm

µ1

µ1+α

1− µ1

µ1+α
µ2

µ2+α

.

The proof for the long-run average cost follows by employing a simple renewal

argument.

7.A.2 Proof of Step 3

Choose x = (i, j, t) ∈ S. Let Tx,1 denote the first passage time from state x to state

(1,SO, 0), and F̃x,1(α) = E[e−αTx,1 ] and τx,1 = E[Tx,1].

Starting from state x, after time t ∈ [0, τ), the system is in an SO state with

probability 1. More concretely, under the optimal policy (which is deterministic

stationary), say π
(∞)
α , starting in state x = (i, j, t), it will end up in state (1,SO, 0)
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after time t with probability px, and in state (2,SO, 0) with probability 1 − px. In

case state x coincides with an SO state then px = 0 or px = 1. Once in an SO

state, the system state observed at only the SO epochs behaves like a discrete time

(irreducible and aperiodic) Markov chain with only states (1,SO, 0) and (2,SO, 0).

Thus, τx,1 = E[Tx,1] = limα→0+
1−F̃x,1(α)

α <∞.

From the above

Vα(x) = Eπ
(∞)
α
x [α-cost from x to state (1,SO, 0) in Tx,1] + Eπ

(∞)
α
x [e−αTx,1 ]Vα(1,SO, 0).

Note that Eπ
(∞)
α
x [α-cost from x to state (1,SO, 0) in Tx,1] is equal to: (1) the expected

discounted cost incurred directly in state x, which is upper bounded by ccm, (2) the

total expected discounted cost of all the SOs that occur in time Tx,1, which is upper

bounded by ccmτx,1, (3) the total expected discounted cost of all the USOs that

occur in time Tx,1, which is upper bounded by ccmλτx,1, and (4) the total expected

discounted cost of all the corrective maintenance opportunities that occur in time

Tx,1, which is upper bounded by ccm(µ1 + µ2)τx,1. All in all,

Eπ
(∞)
α
x [α-cost from x to state (1,SO, 0) in Tx,1] ≤ ccm(1 + τx,1 + (λ+ µ1 + µ2)τx,1).

Then, straightforward computations yield∣∣Vα(x)− Vα(1,SO, 0)
∣∣ =

∣∣∣Eπ(∞)
α
x [α-cost from x to state (1,SO, 0) in Tx,1]

+ Eπ
(∞)
α
x [e−αTx,1 ]Vα(1,SO, 0)− Vα(1,SO, 0)

∣∣∣
≤ Eπ

(∞)
α
x [α-cost from x to state (1,SO, 0) in Tx,1]

+

∣∣∣∣1− Eπ
(∞)
α
x [e−αTx,1 ]

∣∣∣∣Vα(1,SO, 0)

≤ ccm(1 + τx,1 + (λ+ µ1 + µ2)τx,1)

+

(
1− Eπ

(∞)
α
x [e−αTx,1 ]

)
Vα(1,SO, 0).

Similarly, for z = (i′, j′, t′) ∈ S,∣∣Vα(z)− Vα(1,SO, 0)]
∣∣ ≤ ccm(1 + τx,1 + (λ+ µ1 + µ2)τz,1)

+

(
1− Eπ

(∞)
α
z [e−αTz,1 ]

)
Vα(1,SO, 0).
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Then,∣∣Vα(x)− Vα(z)
∣∣ ≤ ∣∣Vα(x)− Vα(1,SO, 0)

∣∣+
∣∣Vα(z)− Vα(1,SO, 0)

∣∣
≤ ccm(2 + τx,1 + τz,1 + (λ+ µ1 + µ2)(τx,1 + τz,1))

+

(
1− Eπ

(∞)
α
x [e−αTx,1 ] + 1− Eπ

(∞)
α
z [e−αTz,1 ]

)
Vα(1,SO, 0).

Combining the above with Step 1 yields

|Vα(x)− Vα(z)| ≤ ccm(2 + τx,1 + τz,1 + (λ+ µ1 + µ2)(τx,1 + τz,1))

+

(
1− Eπ

(∞)
α
x [e−αTx,1 ] + 1− Eπ

(∞)
α
z [e−αTz,1 ]

) µ1

µ1+α

1− µ1

µ1+α
µ2

µ2+α

.

Lastly, note that(
1− Eπ

(∞)
α
x [e−αTx,1 ] + 1− Eπ

(∞)
α
z [e−αTz,1 ]

) µ1

µ1+α

1− µ1

µ1+α
µ2

µ2+α

≤ (τx,1 + τz,1)
µ1µ2

µ1 + µ2
,

which yields

|Vα(x)− Vα(z)| ≤ ccm

(
2 +

(
λ+ µ1 + µ2 + 1 +

µ1µ2

µ1 + µ2

)
(τx,1 + τz,1)

)
.

7.A.3 Proof of Step 5

To prove this step, we follow to a large extent the approach in (Bhattacharya and

Majumdar, 1989, Theorem 3.2 (c)–(d)). Consider the average optimality equality

(7.23), this yields for an arbitrary policy π,

V (Xk) ≤ c(Xk; ak) + Eπx [V (Xk+1) |Xk, ak]− g τ(Xk; ak), k = 0, 1, . . . ,

which can be equivalently written as

c(Xk; ak) ≥ g τ(Xk; ak) + V (Xk)− Eπx [V (Xk+1) |Xk, ak], k = 0, 1, . . . .

Taking expectations on both sides one gets

Eπx [c(Xk; ak)] ≥ g Eπx [τ(Xk; ak)] + Eπx [V (Xk)]− Eπx [V (Xk+1)], k = 0, 1, . . . .
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Summing both sides of the above equation over k = 0, 1, ..., N − 1, and dividing by

Eπx
[∑N−1

k=0 τ(Xk; ak)
]

one has

Eπx
[∑N−1

k=0 c(Xk; ak)
]

Eπx
[∑N−1

k=0 τ(Xk; ak)
] ≥ g +

V (x)− Eπx [V (XN )]

Eπx
[∑N−1

k=0 τ(Xk; ak)
] . (7.27)

Note that as N →∞, for x = (i, j, t),

t+ (N − 1)τ

1 + λτ + µ1µ2

µ1+µ2
τ
≤ Eπx

N−1∑
k=0

τ(Xk; ak)

 . ≤ t+ (N − 1)τ

1 + λτ + (µ1 + µ2)τ
.

As such, Eπx
[∑N−1

k=0 τ(Xk; ak)
]

is bounded from below for large values of N . Taking

lim sup
N→∞

on both sides of Equation (7.27) yields J(x, π) ≥ g.

Since, for π∗(∞), the above analysis holds with an equality, it is evident that

J(x, π∗(∞)) = g. Note that g is an arbitrary limit point of αVα(x) as α → 0+.

Furthermore, since α|Vα(x)− Vα(z)| → 0 as α→ 0+ for all x and for all z, it is now

evident that g = lim supα→0+ αVα(x) for all x ∈ S.

To complete the proof, we need to show that the deterministic stationary policy is

optimal. To this purpose, note that for vα(x) = Vα(x) − Vα(z), for some arbitrary

choice of z ∈ S, the average optimality equation assumes the form

vα(x) + (1− F̃π
∗

x (α))Vα(z) = min
a∈Ax

{
c(x; a) +

∫
s

∫
y

e−αsv(y)Pax(dy | s) dF ax (s)
}
.

Moreover,

lim sup
α→0+

(1− F̃π
∗

x (α))Vα(z) = lim sup
a→0+

αVα(z) lim
a→0+

1− F̃π∗x (α)

α
= gτ(x;π∗).

So there exists a sequence of discounting factors α(n)→ 0+ such that

lim sup
α(n)→0+

(1− F̃π
∗

x (α(n)))Vα(n)(z) = gτ(x;π∗)

and

h(x) = lim inf
n→∞

vα(n)(x)
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yielding

vα(n)(x)+(1−F̃π
∗

x (α(n)))Vα(n)(z) = min
a∈Ax

{
c(x; a)+

∫
s

∫
y

e−α(n)sv(y)Pax(dy | s) dF ax (s)
}
.

Let πα(n)(x) ∈ Ax be the policy that the above equation attains the minimum, so

that

vα(n)(x) + (1− F̃π
∗

x (α(n)))Vα(n)(z) = c(x;πn)+∫
s

∫
y

e−α(n)sv(y)Pπα(n)
x (dy | s) dF

πα(n)
x (s)

}
.

Taking the limit as n→∞ yields

h(x) + gτ(x;π∗) = c(x;π∗) +

∫
y

h(y)Pπ
∗

x (dy).

This proves that π∗ is optimal.

7.B. Average cost equalities – Bellman equations

We proceed writing down the average cost equalities for the model at hand, cf.

Proposition 7.3. More concretely, for t ∈ [0, τ), let V (i, j, t) be the value function

when the state of the system is (i, j, t) ∈ S. The average optimality equations read

as follows:

V (2, SC, t) = 0− g
∫ t

0

e−(µ1+λ)x dx+ V (1, SO, 0)

∫ ∞
t

(µ1 + λ)e−(µ1+λ)x dx

+

∫ t

0

(
µ1

µ1 + λ
V (1,SC, t− x) +

λ

µ1 + λ
V (1,USO, t− x)

)
(µ1 + λ)e−(µ1+λ)x dx

= e−(µ1+λ)t

(∫ t

0

(
µ1V (1, SC, y) + λV (1,USO, y)− g

)
e(µ1+λ)y dy + V (1, SO, 0)

)
, (7.28)

V (1, SC, t) = cc

+ e−(µ2+λ)t

(∫ t

0

(
µ2V (2,SC, y) + λV (2,USO, y)− g

)
e(µ2+λ)y dy + V (2,SO, 0)

)
,
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V (2,USO, t) = min

{
cuso
p

+ e−(µ2+λ)t

(∫ t

0

(
µ2V (2, SC, y) + λV (2,USO, y)− g

)
e(µ2+λ)y dy + V (2, SO, 0)

)
;

e−(µ2+λ)t

(∫ t

0

(
µ2V (2,SC, y) + λV (2,USO, y)− g

)
e(µ2+λ)y dy + V (2, SO, 0)

)}
, (7.29)

V (2, SO, 0) = min

{
csop

+ e−(µ2+λ)τ

(∫ τ

0

(
µ2V (2,SC, y) + λV (2,USO, y)− g

)
e(µ2+λ)y dy + V (2, SO, 0)

)
;

e−(µ2+λ)τ

(∫ τ

0

(
µ2V (2,SC, y) + λV (2,USO, y)− g

)
e(µ2+λ)y dy + V (2, SO, 0)

)}
, (7.30)

V (1,USO, t) = min

{
cuso
p

+ pe−(µ2+λ)t

(∫ t

0

(
µ2V (2,SC, y) + λV (2,USO, y)− g

)
e(µ2+λ)y dy + V (2, SO, 0)

)

+ qe−(µ1+λ)t

(∫ t

0

(
µ1V (1, SC, y) + λV (1,USO, y)− g

)
e(µ1+λ)y dy + V (1,SO, 0)

)
;

e−(µ1+λ)t

(∫ t

0

(
µ1V (1,SC, y) + λV (1,USO, y)− g

)
e(µ1+λ)y dy + V (1,SO, 0)

)}
, (7.31)

V (1, SO, 0) = min

{
csop

+ pe−(µ2+λ)τ

(∫ τ

0

(
µ2V (2, SC, y) + λV (2,USO, y)− g

)
e(µ2+λ)y dy + V (2, SO, 0)

)
+ qe−(µ1+λ)τ

(∫ τ

0

(
µ1V (1, SC, y) + λV (1,USO, y)− g

)
e(µ1+λ)y dy + V (1, SO, 0)

)
;

e−(µ1+λ)τ

(∫ τ

0

(
µ1V (1,SC, y) + λV (1,USO, y)− g

)
e(µ1+λ)y dy + V (1,SO, 0)

)}
. (7.32)

In this paragraph, we explain in detail how Equation (7.28) is obtained. State

(2,SC, t) is associated with only the decision “do nothing”. Therefore, there is no

minimum operator appearing on the right hand side of Equation (7.28) and the
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corresponding cost is equal to zero. For the other terms appearing on the right hand

side of Equation (7.28), it suffices to note that there are three possible evolutions in

terms of the state of the system: either an SO or an SC or a USO, where the time

till the next SO is equal to t, while the times till the SC and USO are Exponentially

distributed with rates µ1 and λ, respectively. In particular, the expected sojourn

time of the semi-MDP in state (2,SC, t) can be calculated as the expectation of the

minimum of a deterministic time t and two Exponentially distributed times, which

can be easily verified to be equal to
∫ t

0
e−(µ1+λ)x dx.

s(2,SC, t) = t

∫ ∞
t

(µ1 + λ)e−(µ1+λ)x dx+

∫ t

0

x(µ1 + λ)e−(µ1+λ)x dx

=

∫ t

0

e−(µ1+λ)x dx. (7.33)

The set of optimality equations for the remaining states can be obtained using very

similar arguments. Note that in Equations (7.29)–(7.32), inside the minimum, the

left term corresponds to the action ‘perform preventive maintenance’, while the right

terms correspond to the action ‘do nothing’.

We observe that, since csopm, c
uso
pm > 0 and p+ q = 1, Equations (7.29) and (7.30) yield

that it is never optimal to perform preventive maintenance in state 2 in both USOs

and SOs, respectively.

We define the following auxiliary functions, for t ∈ [0, τ) and i ∈ {1, 2},

Fi(t) , e−(µi+λ)t

(∫ t

0

(
µiV (i,SC, y) + λV (i,USO, y)− g

)
e(µi+λ)y dy

+V (i,SO, 0)

)
, (7.34)

so that Equations (7.28)-(7.32) reduce to

V (1,SC, t) = ccm + F2(t), V (2,SC, t) = F1(t), t ∈ [0, τ), (7.35)

V (i,USO, t) = min
{
cuso
pm + pF2(t) + qFi(t), Fi(t)

}
, i ∈ {1, 2}, t ∈ [0, τ), (7.36)

V (i,SO, 0) = min
{
csopm + pF2(τ) + qFi(τ), Fi(τ)

}
, i ∈ {1, 2}, t ∈ [0, τ). (7.37)
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7.C. Proof of Theorem 7.1

Proof: We distinguish four cases, each corresponding to a different set of actions.

Case (i): F1(τ) − F2(τ) ≤ csopm

p ; Case (ii):
csopm

p < F1(τ) − F2(τ) <
cuso
pm

p ; Case (iii):
cuso
pm

p < F1(τ)− F2(τ); Case (iv): F1(τ)− F2(τ) =
cuso
pm

p .

Case (i): In state (2,SO, 0), it is optimal to not perform preventive maintenance.

Furthermore, from the assumption

F1(τ)− F2(τ) ≤
csopm

p
(7.38)

and Equation (7.37) for i = 1, it becomes evident that it is also optimal to not

perform preventive maintenance in state (1,SO, 0). Since the function F1(t) −
F2(t) is, by definition, a continuous function in t ∈ [0, τ ], csopm < cuso

pm , and taking

into account Equation (7.38), it is evident that there exists an ε > 0, such that

F1(t)− F2(t) ≤
cuso
pm

p
, for all t ∈ (τ − ε, τ ]. (7.39)

Equation (7.39), in light of Equation (7.36), implies that if the elapsed time from

the SO is less than ε, then, under the assumption it is optimal to not perform

preventive maintenance on the system in state (i,SO, 0), it is also not optimal

to perform preventive maintenance at a USO. In this case, for t ∈ (τ − ε, τ ], we

have that V (1,USO, t) = F1(t) and V (2,USO, t) = F2(t), cf. Equation (7.36).

Taking the derivative with respect to t in Equation (7.34) and substituting the

above obtained values for V (1,USO, t) and V (2,USO, t) yields, for t ∈ (τ−ε, τ ],

F ′1(t)− F ′2(t) = −(µ1 + λ)F1(t) + µ1V (1,SC, t) + λV (1,USO, t)

+ (µ2 + λ)F2(t)− µ2V (2,SC, t)− λV (2,USO, t)

= −(µ1 + λ)F1(t) + µ1(ccm + F2(t)) + λF1(t)

+ (µ2 + λ)F2(t)− µ2F2(t)− λF2(t),

= −(µ1 + µ2)F1(t) + (µ1 + µ2)F2(t) + µ1ccm.

The solution to the above differential equation reads, for t ∈ (τ − ε, τ ],

F1(t)− F2(t) =
µ1ccm

µ1 + µ2
+

(
F1(τ)− F2(τ)− µ1ccm

µ1 + µ2

)
e(µ1+µ2)(τ−t). (7.40)
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If F1(τ) − F2(τ) − µ1ccm

µ1+µ2
6= 0, it follows that, for t ∈ (τ − ε, τ ], the function

F1(t) − F2(t) is strictly monotone. In this case, by extending the previous

analysis to the entire domain, which would maintain the strict monotonicity of

the function F1(t)−F2(t), we would reach a contradiction: For t = 0, Equation

(7.34) yields F1(0) = V (1,SO, 0)
(7.37)

= F1(τ) and F2(0) = V (2,SO, 0)
(7.37)

=

F2(τ), where
(·)
= denotes that the equality follows from Equation (·). We thus

have

F1(0)− F2(0) = F1(τ)− F2(τ). (7.41)

Due to (7.41), it is evident that F1(τ) − F2(τ) − µ1ccm

µ1+µ2
= 0, thus the function

F1(t)− F2(t) satisfying Equation (7.40) is a constant function, i.e.

F1(t)− F2(t) =
µ1ccm

µ1 + µ2
, t ∈ (0, τ ]. (7.42)

Combining Equation (7.38) with Equation (7.42) leads to the optimality

condition for Case (i). That is, if

µ1ccm ≤ (µ1 + µ2)
csopm

p
,

we do not perform preventive maintenance at any opportunity.

Case (ii): In state (2,SO, 0), similarly to the previous case, it is optimal to not

perform preventive maintenance. However, from the assumption

csopm

p
< F1(τ)− F2(τ) <

cuso
pm

p
(7.43)

and Equation (7.37) for i = 1, it becomes evident that it is optimal to perform

preventive maintenance on the system in state (1,SO, 0). Similarly to Case (i),

as F1(τ)− F2(τ) <
cuso
pm

p , there exists an ε > 0 for which (7.39) holds.

Repeating the same analysis as in Case (i), we can show that, for t ∈ [0, τ ], the

function F1(t) − F2(t) satisfies Equation (7.40) and that it is a non-decreasing

function if

F1(τ)− F2(τ)− µ1ccm

µ1 + µ2
< 0. (7.44)
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However, for t = 0, we now have that

F1(0)− F2(0)
(7.34)

= V (1, SO, 0)− V (2, SO, 0)

= csopm + pF2(τ) + (1− p)F1(τ)− F2(τ)

= csopm + (1− p)(F1(τ)− F2(τ)). (7.45)

Combining (7.45) with (7.40) (on the domain t ∈ [0, τ ]) yields

csopm + (1− p)(F1(τ)− F2(τ)) =
µ1ccm

µ1 + µ2
+

(
F1(τ)− F2(τ)− µ1ccm

µ1 + µ2

)
e(µ1+µ2)(τ)

⇔
(

1− p− e(µ1+µ2)(τ)
) (
F1(τ)− F2(τ)

)
=
(

1− e(µ1+µ2)(τ)
) µ1ccm

µ1 + µ2
− csopm

⇔ F1(τ)− F2(τ) =

(
1− e(µ1+µ2)τ

)
µ1ccm

µ1+µ2
− csopm

1− p− e(µ1+µ2)τ
. (7.46)

Combining Equations (7.43), (7.44), and (7.46) leads to the optimality condition

for Case (ii). That is, if

(µ1 + µ2)
csopm

p
< µ1ccm <

(
cuso
pm

p
−

cuso
pm − csopm

e(µ1+µ2)τ − 1

)
(µ1 + µ2),

we perform preventive maintenance on the system if it is in state 1 at an SO

but not at a USO.

Case (iii): In state (2,SO, 0), similarly to the previous case, it is optimal to not

perform preventive maintenance. However, from the assumption

F1(τ)− F2(τ) >
cuso
pm

p
>
csopm

p
(7.47)

and Equation (7.37) for i = 1, it becomes evident that it is optimal to perform

preventive maintenance on the system in state (1,SO, 0). Along the lines of the

previous cases, as F1(τ)− F2(τ) >
cuso
pm

p , there exists an ε > 0 for which

F1(t)− F2(t) ≥
cuso
pm

p
, for all t ∈ (τ − ε, τ ]. (7.48)

In this case, for t ∈ (τ − ε, τ ], we have that V (1,USO, t) = cuso
pm + pF2(t) + (1−

p)F1(t) and V (2,USO, t) = F2(t) (cf. Equation (7.36)). Taking a derivative with

respect to t in (7.34) and substituting the above obtained values for V (1,USO, t)
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and V (2,USO, t) yields, for t ∈ (τ − ε, τ ],

F ′1(t)− F ′2(t) =− (µ1 + λ)F1(t) + µ1V (1,SC, t) + λV (1,USO, t)

+ (µ2 + λ)F2(t)− µ2V (2,SC, t)− λV (2,USO, t)

=− (µ1 + λ)F1(t) + µ1(ccm + F2(t))

+ λ(cuso
pm + pF2(t) + (1− p)F1(t))

+ (µ2 + λ)F2(t)− µ2F1(t)− λF2(t)

=− (µ1 + µ2 + λp)(F1(t)− F2(t)) + µ1ccm

+ λcuso
pm . (7.49)

The solution to the above differential equation reads for t ∈ (τ − ε, τ ],

F1(t)− F2(t) =
µ1ccm + λcuso

pm

µ1 + µ2 + λp

+

(
F1(τ)− F2(τ)−

µ1ccm + λcuso
pm

µ1 + µ2 + λp

)
e(µ1+µ2+λp)(τ−t). (7.50)

Note that, if we assume that F1(τ) − F2(τ) − µ1ccm+λcuso
pm

µ1+µ2+λp ≥ 0, then we can

extend (7.50) on the entire domain t ∈ [0, τ ], and the function F1(t) − F2(t)

is non-increasing. However, this is unfeasible. Note that, for t = 0, Equation

(7.34) yields F1(0) = V (1,SO, 0)
(7.37)

= csopm + pF2(τ) + qF1(τ) and F2(0) =

V (2,SO, 0)
(7.37)

= F2(τ), thus

F1(0)− F2(0) = csopm + q(F1(τ)− F2(τ)) ≥ F1(τ)− F2(τ)

⇔ F1(τ)− F2(τ) ≤
csopm

p
, (7.51)

which contradicts Assumption (7.47). Due to this contradiction, it is necessary

to assume that F1(τ)− F2(τ)− µ1ccm+λcuso
pm

µ1+µ2+λp < 0. This implies that the function

F1(t)−F2(t) is non-decreasing and we can extend (7.50) on the domain t ∈ [t∗, τ ],

where t∗ is such that F1(t∗)− F2(t∗) =
cuso
pm

p , i.e. for t ∈ [t∗, τ ],

F1(t)− F2(t) =
µ1ccm + λcuso

pm

µ1 + µ2 + λp

+

(
F1(τ)− F2(τ)−

µ1ccm + λcuso
pm

µ1 + µ2 + λp

)
e(µ1+µ2+λp)(τ−t). (7.52)
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See Figure 7.8 for a visualization of F1(t)− F2(t).

0 t ➔ T 

cso

p 

p 

-F1(t) - F2(t)

t*

Figure 7.8 The case of maintaining a system at scheduled and unscheduled opportunities in
t ∈ [t∗, τ).

From the definition of t∗, and the continuity of F1(t) − F2(t), it follows that

there exists an ε > 0, such that

F1(t)− F2(t) ≤
cuso
pm

p
, for all t ∈ (t∗ − ε, t∗]. (7.53)

Note that if one were to assume that F1(t)−F2(t) ≥ cuso
pm

p , for all t ∈ (t∗− ε, t∗],
then due to Equation (7.51), this would again contradict Assumption (7.47).

Now repeating the analysis performed in Case (i), albeit in a different domain,

we can show that, for t ∈ [0, t∗],

F1(t)− F2(t) =
µ1ccm

µ1 + µ2
+

(
F1(t∗)− F2(t∗)− µ1ccm

µ1 + µ2

)
e(µ1+µ2)(t∗−t). (7.54)

From the continuity of F1(t)− F2(t) at t = t∗, we obtain

cuso
pm

p
=
µ1ccm + λcuso

pm

µ1 + µ2 + λp

+

(
F1(τ)− F2(τ)−

µ1ccm + λcuso
pm

µ1 + µ2 + λp

)
e(µ1+µ2+λp)(τ−t∗). (7.55)

Furthermore, setting t = 0 in Equation (7.54) and using (7.51) yields

csopm + (1−p)(F1(τ)−F2(τ)) =
µ1ccm

µ1 + µ2
+

(
cuso
pm

p
− µ1ccm

µ1 + µ2

)
e(µ1+µ2)t∗ . (7.56)
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Note that Equations (7.55) and (7.56) form a system of two equations with two

unknowns, which produce a unique solution for t∗, cf. Equation (7.1). Since

F1(t)−F2(t) is a continuous function throughout [0, τ), we can directly use the

optimality condition for Case (ii) to state the optimality condition for this case.

That is, if

µ1ccm >

(
cuso
pm

p
−

cuso
pm − csopm

e(µ1+µ2)τ − 1

)
(µ1 + µ2),

we perform preventive maintenance on the system if it is in state 1 at an SO

and at a USO for which the residual time until the next SO is in the interval

[t̂, τ), with t̂ = min{τ,max{0, t∗}}.

Case (iv): This case follows evidently by performing again the steps of Case (iii) for

t∗ = τ .

7.D. Proof of Theorem 7.2

Proof: Similarly to the proof of Theorem 7.1, we need to make certain assumptions

here regarding the actions at the given opportunities. In particular, we distinguish

four cases, each corresponding to a different set of actions: Case (i): F1(τ)−F2(τ) ≤
cuso
pm

p ; Case (ii):
cuso
pm

p < F1(τ) − F2(τ) <
csopm

p ; Case (iii):
csopm

p < F1(τ) − F2(τ); Case

(iv): F1(τ) − F2(τ) =
csopm

p . The proof of this theorem is similar in structure to the

proof of Theorem 7.1 and for this reason it is omitted.

7.E. Proof of Theorem 7.4

Proof: We first focus on the derivation of the cycle length appearing in the

denominator of Equation (7.8). Observe that the length of a renewal cycle consists

of the time the system spends in state 2 plus the time from the state-change 2 → 1

until the first successful maintenance. To this purpose, let CL denote the length of

the part of the renewal cycle that the underlying stochastic process spends in state

1. Furthermore, let Y denote the random amount of time from a state-change 2→ 1

to the first SO, we then have for the probability density function of Y that

fY (y) = fTµ2
(τ − y|Tµ2

< τ),



7.E Proof of Theorem 7.4 229

which leads to Equation (7.13). Conditioning on Y , a renewal cycle can either end

before the first SO, or at the first SO, or after the first SO. Hence, we have that the

expected cycle length is equal to

1

µ2
+ E

[
CL1{CL≤Y }

]
+ E

[
CL1{CL>Y }

]
. (7.57)

We first focus on deriving expressions for the individual expectations in Equation

(7.57). Note that the first successful maintenance can be of type j ∈ {SC,SO,USO}
and may occur in the interval [t, t′], this is in short denoted by j [t, t′]. Thus, rewriting

the first part in Equation (7.57) results in (cf. Equation (7.9))

E
[
CL 1{CL≤Y }

]
=E

[
CL1{USO[τ−Y,τ−t̃]}

]
+ E

[
CL1{SO[τ−Y,τ ]}

]
+ E

[
CL1{CM[τ−Y,τ ]}

]
. (7.58)

For the second expectation in Equation (7.57), observe that the length of this part can

be further decomposed: first the system goes through a geometric number of intervals

of length τ in which no successful maintenance activity takes place, after which the

system enters the last interval in which the successful maintenance activity takes

place. To this end, let pu be the probability that there is no successful maintenance

activity in an arbitrary interval between two SOs (including the SO with which this

interval ends) after the state change 2→ 1, i.e.

pu , (1− p)P[Tµ1 > τ, Tλp > τ − t̃] = (1− p)e−µ1τ−λp(τ−t̃) = (1− p)P
[
SO[0, τ ]

]
.

We then have, from the memoryless property of Tµ1
and Tλp,

E
[
CL1{CL>Y }

]
= (1− p)P[SO[τ−Y,τ ]]

E [Y ] +

∞∑
k=0

pku(1− pu)

(
E
[
CL1{Y+kτ≤CL≤Y+(k+1)τ}

])
= (1− p)P[SO[τ−Y,τ ]]

E [Y ] +

∞∑
k=0

pku(1− pu)

(
kτ + E

[
CL′ 1{CL′≤Y } |Y = τ

])
= (1− p)P[SO[τ−Y,τ ]]

(
E [Y ] +

τpu
1− pu

+ E
[
CL′ 1{CL′≤Y } |Y = τ

])
,

where E
[
CL′ 1{CL′≤Y } |Y = τ

]
is the expected length of the last part of the renewal

cycle, i.e. the interval in which the successful maintenance activity takes place.
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Analogously to Equation (7.58), we can further decompose E
[
CL′ 1{CL′≤Y } |Y = τ

]
by conditioning on the type of the successful maintenance activity with which it ends.

We are now left with defining the events that lead to j [t, t′], such that we can calculate

the expectations in Equations (7.17)-(7.19). With respect to SO[τ−y, τ ], observe that

if y ∈ [0, t̃), 1{SO[τ−y,τ ]} is equal to 1 if Tµ1 > y, since we do not take any USOs. If

y ∈ [t̃, τ ], no successful USOs in [τ − y, τ − t̃] can occur and Tµ1 > y for 1{SO[τ−y,τ ]}
to be equal to 1. Combining this leads to Equation (7.14). Equations (7.15) and

(7.16) are obtained along similar lines. Note that all expectations and probabilities

only involve Exponentially distributed random variables. Consequently, closed-form

expressions can be obtained using straightforward calculus. However, for the sake

of brevity, we have chosen to provide one closed-form expression and omit the rest

(which can be obtained analogously). For Equation (7.17), we have for y > t̃:

E
[
CL1{USO[τ−y,τ−t̃]}

]
= E

[
Tλp1{USO[τ−y,τ−t̃]}

]
= E

[
Tλp1{Tλp≤min{y−t̃,Tµ1}}

]
=

∫ y−t̃

0

E
[
Tλp1{Tλp≤x}

]
µ1e
−µ1x dx+

∫ ∞
y−t̃

E
[
Tλp1{Tλp≤y−t̃}

]
µ1e
−µ1x dx

=

∫ y−t̃

0

∫ x

0

zλpe−λpz dzµ1e
−µ1x dx+

∫ ∞
y−t̃

∫ y−t̃

0

zλpe−λpz dzµ1e
−µ1x dx

=
λp

λp+ µ1

(
1− e−(λp+µ1)(y−t̃)(1 + (λp+ µ1)(y − t̃))

λp+ µ1

)
.

We now focus on the numerator of Equation (7.8), i.e. the expected cycle cost.

To that end, let CC be the cost incurred in a renewal cycle. The analysis for the

expected cycle cost, E [CC], is similar to the analysis of the expected cycle length.

Again, we decompose the length of a renewal cycle into three parts (i.e. the interval

after the state change until the first SO, the geometric number of intervals of length

τ in which no successful maintenance activity takes place, and the last interval in

which the successful maintenance activity takes place), and compute the conditional

expected cycle costs in these parts (mainly consisting of costs incurred at unsuccessful

maintenance activities). Thus,

E [CC] = E
[
CC1{CL≤Y }

]
+ E

[
CC1{CL>Y }

]
. (7.59)
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We first focus on the first part in Equation (7.59) and condition further on the type

of activity, which yields

E
[
CC 1{CL≤Y }

]
=E

[
CC 1{USO[τ−Y,τ−t̃]}

]
+ E

[
CC 1{SO[τ−Y,τ ]}

]
+ E

[
CC 1{CM[τ−Y,τ ]}

]
.

Analogous to the expected cycle length, the expected cost incurred during the

geometric number of intervals of length τ , in which no successful maintenance activity

takes place, is equal to

∞∑
k=0

pku(1− pu)k
(
λ(1− p)(τ − t̃)cuso

pm + csopm

)
=

(λ(1− p)(τ − t̃)cuso
pm + csopm)pu

1− pu
.

Observe that the expected cost in the interval in which the successful maintenance

activity takes place is composed of two parts regardless of the type of activity, i.e.

the cost of the successful maintenance activity itself and the cost related to the

unsuccessful USOs up to the successful maintenance activity (see Equations (7.20)

- (7.22)). Again, all expectations and probabilities related to the costs only involve

Exponentially distributed random variables, and again, for the sake of brevity, we

have chosen to provide one closed-form expression and omit the rest (which can be

obtained analogously). For Equation (7.21), we have

E
[
CC 1{SO[τ−y,τ ]}

]
=
(
csopm + λ(1− p)cuso

pm max
{
y − t̃, 0

})
P
[
SO[τ − y, τ ]

]
,

with

P
[
SO[τ − y, τ ]

]
= P

[
Tµ1

> y
]
1{y<t̃} + P

[
Tλp > y − t̃, Tµ1

> y
]
1{y≥t̃}

= e−µ1y 1{y<t̃} + e−(µ1y+λp(y−t̃))
1{y≥t̃},

which completes the proof.





Chapter 8

Conclusion and future research

In this thesis, we have studied novel mathematical models for maintenance opti-

mization, mainly motivated by the increasing and improved availability of real-time

data that can be leveraged in such models. In Chapters 2-6, we have focused on

the class of maintenance problems characterized by parameter uncertainty, while in

Chapter 7, we have studied a maintenance model with parameter certainty. In the

introductory chapter of this thesis, we have introduced a framework – in the form

of a structured road map – to guide the development of mathematical models that

integrate (i) learning from real-time data, and (ii) decision making, for maintenance

models characterized by parameter uncertainty. In this last chapter of the thesis, we

first summarize our work by revisiting this proposed framework and its application,

and then identify interesting directions for future research.

8.1. Framework revisited

The proposed structured learning and decision making framework comprises five steps,

see Figure 1.4 in the introductory chapter. In this section, we shortly summarize how

each step was carried out in each individual chapter focused on parameter uncertainty.

Since the maintenance models in these chapters differ significantly in virtually all

aspects but parameter uncertainty, we demonstrate the unified applicability of our

proposed framework.

233
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Step 1: Identify conjugate pair for Bayesian inference

In Chapter 2, we have studied a compound Poisson model in which two parameters –

of the arrival and jump process, respectively – need to be learned simultaneously from

the same data. We showed that the joint posterior distribution of both parameters

using the same observed data can be decomposed into two independent posterior

distributions that take the same form as the prior distribution. This result allowed

us to use conventional conjugate pairs for both parameters. Next, in Chapter 3, we

used Bayesian regression theory to tractably infer the unknown drift of a Brownian

motion using the Normal random variable as a prior distribution. We established

in Chapter 4 that the Gamma distribution remains a conjugate prior for the Poisson

distribution, even under condition-based production policies in which one controls the

Poisson process. In Chapter 5, we used the same Gamma-Poisson model as in Chapter

4 but without controlling the deterioration. Finally, in Chapter 6, we considered a

class of distributions (i.e., Newsboy distributions) famous for being the only class that

preserves conjugacy (using a Gamma prior) under censored observations.

Step 2: Determine sufficient statistics

The set of sufficient statistics is usually a direct consequence – through the updating

rules of each conjugate pair – of the previous step, but in some of our models it

required a more careful treatment.

In Chapter 2, we assumed that the compounding distribution is a member of the

non-negative exponential family. For this class, there is a general conjugate prior, but

depending on the exact distribution, the sufficient statistic might differ. We restricted

our analysis to members for which the sufficient statistic is linear in the data, so

that we only needed to keep track of the current deterioration level, the number of

shocks sustained, and the age of a component. In Chapter 3, the Bayesian regression

framework implied that for the Brownian motion, we only needed to keep track of

the current deterioration level and the age as sufficient statistics to infer the unknown

drift. The required sufficient statistics also implied that in Chapter 2, we needed

real-time information (i.e., continuous monitoring) because otherwise the number of

shocks sustained cannot be measured, while in Chapter 3, one only needs to sample at

discrete epochs. We showed in Chapter 4 that, in addition to the deterioration level

and age of the component, one also needs to keep track of a statistic that captures

the history of production decisions to infer the rate of the Poisson process. This is

intuitive as these decisions impact the observed deterioration data. When pooling

data stemming from multiple systems, we showed in Chapter 5 that one can simply
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add all sufficient statistics (the ages and cumulative deterioration) for joint learning of

a common, yet unknown Poisson rate. Finally, for the Newsboy distributions studied

in Chapter 6, we needed to keep track of all observed lifetimes, and the number of

uncensored observations to infer the unknown parameter of the lifetime distribution.

Step 3: Derive posterior predictive distribution and construct Bayesian MDP

In each chapter, we derived an analytical expression for the posterior predictive

distribution as a function of the corresponding sufficient statistics, that we then used

to construct the optimization problem.

In Chapter 2 and 3, we constructed an infinite-horizon discounted Bayesian Markov

decision process (MDP). For the Bayesian MDP in Chapter 2, the restriction to

linear sufficient statistics enabled us to keep the dimension of this Bayesian MDP

to only 3 states. In Chapter 4, we studied production and maintenance decisions

in continuous time. Integrating Bayesian learning directly into a continuous-time

MDP is inherently complex and, even for numerical purposes, not tractable. Instead,

we proposed a heuristic based on (i) the optimal policy when there is no parameter

uncertainty, and (ii) the established Bayesian learning framework from the previous

steps. This heuristic can effectively guide production decisions in continuous time

when there is parameter uncertainty. In Chapter 5, we built a finite-horizon Bayesian

MDP to explicitly take into account a finite lifespan over which multiple systems

are maintained. Finally, in Chapter 6, we have constructed a finite-horizon Bayesian

dynamic program (DP) instead of a discrete-time Bayesian MDP. The reason for

this is that maintenance decisions in the model studied in this chapter are not

made at equidistant epochs, but at random moments in time (a component is

replaced after reaching its age-replacement threshold or upon failure, whichever comes

first). Together with this Bayesian DP, we also proposed a heuristic that myopically

integrates Bayesian learning.

Step 4: Analyze structural properties of the optimal policy

When establishing structural properties of the optimization problems, we proceeded

as follows. We first studied stochastic ordering properties of the posterior predictive

distribution with respect to its sufficient statistics. Here, the derived analytical

expressions of the posterior predictive distributions from Step 3 served as input.

We then showed that the value function of the optimization problem has certain

monotonic properties with respect to the sufficient statistics using the stochastic

ordering properties of the posterior predictive distribution. For this, we employed an
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inductive argument on the well-known value iteration algorithm. Using the established

properties of the value function, we then established structural properties of the

optimal policy.

Specifically, in Chapter 2, we showed that the optimal policy is a control limit policy

that is (i) non-decreasing in the age of a component, and (ii) depending on the number

of shocks sustained. In Chapter 3, establishing structural properties of the proposed

Bayesian MDP proved to be complex due to an absolute value operator which rendered

the approach taken in Chapter 2 inapplicable. Instead, we established the equivalence

between the original Bayesian MDP and a so-called folded representation, which

allowed for structural analysis. Using this folded Bayesian MDP, we established the

optimality of a bandwidth policy that is monotone in the age of the component. In

Chapter 4, we characterized the optimal production control policy for the case without

parameter uncertainty. By establishing monotonic properties with respect to the rate,

we also gained insights into the behavior of our proposed heuristic for the case that this

rate is in fact unknown. As we considered multiple systems in Chapter 5, the resulting

Bayesian MDP suffered from the curse of dimensionality. As a remedy, we proved a

decomposition result that established the equivalence between the original Bayesian

MDP and multiple two-state MDPs with a binary action space, each focused on an

individual system. Using this result, we were able to prove the optimality of a control

limit policy for each system, where the control limit depends on the accumulated data

of all systems. Finally in Chapter 6, we proved, again by first establishing stochastic

ordering properties, some structural properties regarding the value function of the

Bayesian DP. We also established that the proposed myopic policy is asymptotically

optimal; that is, it almost surely learns the unknown parameter and converges to the

optimal policy with full knowledge of the parameter.

Step 5: Compute optimal policy

The novel structural properties that we established in the previous step can be

exploited to decrease the computational time complexity of numerically computing

the optimal policy by employing existing algorithms that rely on such properties.

By computing optimal policies, we were able to compare these optimal policies with

other policies in various settings, and evaluate the robustness of these optimal policies

to conditions that violate their underlying model assumptions. This allowed us to

numerically assess:

• the benefits of integrating learning and decision making (Chapter 2),
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• the robustness of the optimal policy to noisy degradation data (Chapter 2) and

its performance when degradation data is not relayed in real time (Chapter 2),

• the performance of the optimal policy when hyperparameters of the initial prior

distributions need to be estimated from limited data (Chapter 2),

• the robustness of the optimal policy to misspecification of the initial prior

distribution (Chapter 3),

• the optimality gaps with so-called clairvoyant Oracle policies that know the true

values of unknown parameters (Chapters 2 - 4),

• the value of condition-based production policies and the benefits of integrating

maintenance and production decisions (Chapter 4),

• the benefits of pooling data for the purpose of joint learning (Chapter 5), and

• the monotonic behavior of the optimal age-replacement threshold under cen-

sored learning when the number of replacements is finite (see Conjecture 6.1 in

Chapter 6).

8.2. Future research

In the concluding sections of each individual chapter, we already addressed several

possible suggestions for future research pertaining to the work in the corresponding

chapter. In this last section, we outline some avenues for future research which are of

interest for all of them, stretching well beyond each individual chapter.

Leaving the realm of conjugate pairs

The use of conjugate pairs in our framework facilitates a tractable way of integrating

learning and decision making, and allows us to subsequently analyze structural

properties of optimal policies. At the same time, however, it also limits this analysis to

deterioration processes and lifetime distributions that are characterized by uncertain

parameters that have such conjugacy properties. Future research could explore how

our methodological framework can be extended to settings that lie outside conjugate

families. In such extensions, Bayes’ rule can still be applied to infer unknown

parameters, but it will rely on tedious numerical integrations (see Equations (1.2)

and (1.3) in Chapter 1) as opposed to easy updating rules that we constantly

used throughout this thesis. As a direct consequence, the resulting optimization
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problems that integrate this Bayesian learning will most likely be not tractable at

all. We believe that these two obstacles – computational complexities associated

with Bayesian learning and intractable optimization problems – can be overcome by

applying novel techniques stemming from the area of machine learning, in particular

from Bayesian reinforcement learning (RL) (Ghavamzadeh et al., 2015).

Leveraging analytical results

In this thesis, we have obtained a good understanding of structural properties of

value functions and optimal policies in stylized settings with assumptions – such as

conjugate families – that could be violated in practice. In RL, such assumptions

could indeed be relaxed, and we could additionally integrate our knowledge of

structural properties into the algorithmic design to speed-up the development of

such RL algorithms. Kunnumkal and Topaloglu (2008), for instance, show how one

can exploit structural properties of the underlying MDP to improve the convergence

behavior of the well-known Q-learning algorithm. Jiang and Powell (2015) propose

a provably convergent approximate dynamic programming algorithm (ADP) that

explicitly exploits the monotonicity of value functions. Other examples that highlight

such an approach can be found in the inventory management literature. For instance,

the value function in both the canonical lost sales and dual sourcing inventory problem

is known to be L\-convex (Zipkin, 2008; Hua et al., 2015; Chen et al., 2018), and this

property has been used to successfully develop ADP policies that learn the parameters

of an L\-convex function to approximate the value function in both settings (Sun et al.,

2014; Chen and Yang, 2019). Along these lines, we believe that a promising avenue

for future research can be found in leveraging our established analytical results to

guide the development of RL algorithms that can be used in real-life applications.

Combining types of uncertainty

In the introductory chapter, we already mentioned that maintenance problems can be

characterized by types of uncertainty other than parameter uncertainty, namely state

and population uncertainty. Research has predominantly focused on these sources of

uncertainty from an isolated point of view, though it seems very interesting to study

models that integrate multiple types of uncertainty. In Chapter 2, we numerically

studied such an integration, where the efficacy of our model was assessed in the

case that there is also state uncertainty (i.e., when the deterioration state is only

partially observable). Studying such a combination analytically will provide insights

into how our results for the parameter uncertainty setting generalize when adding
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state uncertainty. The combination of population and parameter uncertainty could

lead to models that match practice more closely. An example is where components

originate from distinct and heterogeneous sub-populations, each of them having a

common, yet unknown parameter.

Like parameter uncertainty, population and state uncertainty in isolation can be

tractably dealt with using Bayesian learning. The main challenge when extending our

framework to combinations of uncertainty lies in keeping the joint Bayesian learning

tractable. Indeed, when multiple layers of uncertainty in deterioration data exist, it

may lead to identifiability issues pertaining to learning each individual parameter of

each source of uncertainty from that data.

Multi-component systems

In this thesis, we have studied optimal maintenance policies for single components,

yet real-life systems generally consist of multiple components. Implementing decisions

induced by such single-component models will likely lead to suboptimal decisions on a

system-level; that is, it is costly and inconvenient to shut down an entire system each

time a single component within a multi-component system needs maintenance. Future

research could focus on optimal maintenance policies from a system perspective,

where the deterioration processes or lifetime distributions of individual components

are characterized by parameter uncertainty. To that end, the work in this thesis can

be viewed as a stepping stone towards building such multi-component models.

When moving towards multi-component models, there are a few concrete avenues to

consider. First, in Chapter 7, we showed that using opportunities – arising due to

failures of other components in a system – for performing maintenance can lead to

significant cost reductions compared to treating components in isolation. It would be

interesting to see to what extent our established results generalize when parameter

uncertainty (e.g., through the rate at which opportunities arrive) is introduced.

Next, in multi-component systems there can be stochastic dependence between

multiple components (i.e., correlation between deterioration processes or lifetime

distributions), so that data stemming from each component can be used to jointly

learn the unknown parameters of all components. The numerical study in Chapter 5

showed that such joint learning can be very beneficial, and extending it to multivariate

processes that explicitly take into account stochastic dependence seems an interesting

direction. One such direction that seems particularly promising is to consider a

multivariate Brownian motion with unknown drifts – thereby building further on

the work of Chapter 3 – where the covariance matrix then models the stochastic
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dependence. For this case, it is known that Bayesian learning of the unknown

drifts remains tractable (see, e.g., Gelman et al., 1995, Chapter 3), so that our

proposed framework might be applicable as well. Finally, the performance of a multi-

component system will be determined by the performance of the components and their

configuration within the system, where series, parallel, k-out-of-N, and redundancy

systems are well-known examples (Olde Keizer et al., 2017). From this perspective, it

seems interesting to study our proposed models in such configurations, and to see to

which extent parameter uncertainty on a component-level impacts optimal decisions

on a system-level.

Integration with logistical support

Maintenance decision making is usually studied in isolation, whereas in practice

it often interacts with other processes. In Chapter 3 and Chapter 4, we studied

the interaction with process control and production control, respectively, but there

are other areas that should be considered as well. We believe that particularly

the integration with the management of logistical support needed for performing

maintenance activities is an interesting avenue. When a maintenance activity is

performed, it generally requires a spare part to execute a replacement and a service

engineer to carry out the replacement. As a maintenance activity is (to a large degree)

leading in deciding when spare parts and service engineers are required, we believe

that such optimal spare parts provisioning policies and service engineer management

policies can build on our proposed models.

When considering spare parts management and maintenance jointly, one interesting

topic for future research is to see which impact parameter uncertainty on a component-

level has on the optimal control of spare parts. On a conceptual level, we believe that

as a decision maker gradually learns that components are deteriorating at a faster

(lower) rate, she will stock more (less) spare parts to protect against prolonged system

downtime due to part unavailability. Such condition-based spare parts provisioning

policies that integrate (i) learning from deterioration data, and (ii) stocking decisions

for spare parts are worthwhile to investigate.

One application in spare parts management that seems particularly promising is when

additive manufacturing (AM, also known as 3D printing) is used to print spare parts.

Asset owners are increasingly using AM as a strategy to reduce system downtime

by quickly printing a part when a component fails. However, this technique is still

very much evolving and as a result, the quality of printed spare parts can be highly

variable leading to parameter uncertainty in the deterioration processes when such
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parts are installed (Song and Zhang, 2020, 2021). Our proposed models in this thesis

can be used to cope with this parameter uncertainty and effectively guide spare parts

printing decisions in advance of a replacement.

The systems for which we have developed maintenance models in this thesis are usually

geographically distributed in a so-called service network (e.g., medical equipment in

hospitals in a certain country). The management of service engineers then boils

down to dispatching and repositioning engineers in these service networks such that

fast responses are realized whenever an engineer is needed to perform a maintenance

activity (Drent et al., 2020c). As a decision maker learns the deterioration behavior

of components, it might be beneficial to dynamically adjust the positioning and

dispatching of service engineers based on this accumulated data. To that end, our

proposed models can guide these decisions to ensure the presence of a service engineer

whenever a component in a system needs to be replaced.
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Summary

The availability of advanced technical systems such as wind turbines, lithography

systems, and X-ray systems, is crucial for the smooth operation of public services

as well as for the primary processes of companies. Unavailability – especially

when unplanned – and failures of these systems have severe consequences, both

from a societal and financial point of view. Maintenance optimization deals with

minimizing the risk of such failures, and otherwise mitigate their consequences, by

performing preventive replacements on critical components when needed. However,

early preventive replacements lead to high capital expenditures as the useful lifetimes

of the systems is cut short. The most important challenge is therefore to trade-off two

conflicting objectives: (i) minimize the risk of failure and unplanned downtime with

all its adverse consequences and (ii) maximize the utilization of the useful lifetime of

a component. This challenge is particularly difficult when components’ deterioration

processes or lifetime distributions are characterized by parameters that are a-priori

unknown and need to be learned. Fortunately, there is an increasing and improved

availability of real-time data stemming from ubiquitous sensors installed in modern

systems, which provides enormous opportunities when leveraged in maintenance

optimization characterized by such parameter uncertainty.

In this thesis, the overarching topic is the development of a general theory for a class of

maintenance problems characterized by parameter uncertainty. We propose a unified

framework in the form of a structured road map to develop mathematical models

that integrate learning from real-time data with decision making, and demonstrate

its wide applicability by adopting it for the analysis of various scenarios.

We first analyze a scenario in which a component’s condition deteriorates according

to a compound Poisson degradation with a fairly general compounding distribution,

where the parameters of both the Poisson process and the compounding distribution

are unknown. We propose a Bayesian framework to learn these unknown parameters

independently from each other and integrate this into a Bayesian Markov decision

259



260 Summary

process (MDP). We establish the optimality of a control limit policy that depends on

the entire deterioration path of the individual system. In a case study performed

on real-life data from interventional X-ray machines from Philips Healthcare, we

show that integration of learning and decision making leads to cost reductions of

11% relative to approaches that do not learn from real-time data and 4% relative to

approaches that separate learning and decision making.

We then study the joint optimization of maintenance and process control, where a

component’s condition evolves according to a Brownian motion with unknown drift.

We establish the optimality of a bandwidth policy that is monotone in the age of

the process under both the discounted and average cost criterion. With this policy,

the production process is continued if the condition is within a bandwidth that is

described by both an upper and a lower control limit. We again build a Bayesian MDP,

yet this formulation suffers from non-monotonic properties that render conventional

proof techniques to establish structural properties not applicable. We overcome this

challenge by translating the original Bayesian MDP into an alternative formulation

which does allow for establishing structural properties of the optimal policy.

Subsequently, we consider a scenario where we do not only monitor deterioration,

but where we can also control the deterioration by adjusting settings of the system

(e.g., controlling a wind turbine’s pitch to influence its deterioration). Dynamically

adjusting settings can then be used to ensure that the useful lifetime of the system

is maximized at precisely the time of a planned maintenance moment. We formulate

this problem as a continuous-time MDP and characterize the monotonic behavior of

the optimal setting policy. We further show that under optimal setting decisions, the

length of the interval between maintenance moments can be easily optimized, thereby

addressing the trade-off that arises due to maintenance costs at such moments. We

also develop a Bayesian heuristic for the case that there is parameter uncertainty in

the deterioration process, and show that it performs close to a clairvoyant policy.

We then analyze a scenario in which multiple systems must be maintained and

where data stemming from each individual system can be pooled to jointly learn

a common, yet unknown parameter. Each system has a critical component whose

condition deteriorates according to a Poisson process with a common unknown rate.

We formulate this problem as a finite-horizon Bayesian MDP, whose formulation

suffers from the well-known curse of dimensionality. As a remedy, we prove a new

decomposition result that establishes the equivalence between the original, high-

dimensional MDP and multiple two-state MDPs with a binary action space, each

focused on an individual system. We establish the optimality of a control limit policy

for each system that depends on the entire deterioration paths of all systems. In a
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numerical study, we show that savings because of pooling data can be large, but that

the exact magnitude depends on the magnitude of the uncertainty in the parameter.

We then revisit the canonical age-based maintenance model, but assume that the

systems’ lifetime distributions are parametrized by an a-priori unknown parameter

that needs to be learned. In this scenario, there is an additional exploration

versus exploitation trade-off: Corrective replacements are uncensored but costly

observations, whereas preventive replacements are censored but cheap observations

of the lifetime distribution. We first analyze the optimal policy for a finite sequence

of replacements and establish some properties. Subsequently, we propose a myopic

Bayesian policy, for which we show that it almost surely learns the unknown parameter

and converges to the optimal policy with full knowledge of the parameter.

The models considered in the previous scenarios are all characterized by parameter

uncertainty. In the last scenario, we depart from this and model the system’s

deterioration behavior as a delay time model of which the parameters are fully

known. We analyze a scenario with two types of preventive maintenance: Planned

maintenance at periodic, scheduled opportunities, and opportunistic maintenance at

unscheduled opportunities. The latter type of maintenance arises particularly in

application areas with a network dimension (e.g., wind turbines in a wind farm),

where if a system in the network fails, this constitutes an opportunity for maintenance

for the other systems. We formulate this problem as a semi-MDP, which allows us to

characterize the structure of the optimal policy under both the discounted and average

cost criterion. This policy, depending on the deterioration of the component and the

remaining time until the next planned maintenance, indicates when it is optimal to

perform preventive maintenance at both scheduled and unscheduled opportunities.
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