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ARTICLE

A microfluidic optimal experimental design
platform for forward design of cell-free genetic
networks
Bob van Sluijs1,6, Roel J. M. Maas 1,6, Ardjan J. van der Linden2,3,4, Tom F. A. de Greef 1,2,3,4,5 &

Wilhelm T. S. Huck 1✉

Cell-free protein synthesis has been widely used as a “breadboard” for design of synthetic

genetic networks. However, due to a severe lack of modularity, forward engineering of

genetic networks remains challenging. Here, we demonstrate how a combination of optimal

experimental design and microfluidics allows us to devise dynamic cell-free gene expression

experiments providing maximum information content for subsequent non-linear model

identification. Importantly, we reveal that applying this methodology to a library of genetic

circuits, that share common elements, further increases the information content of the data

resulting in higher accuracy of model parameters. To show modularity of model parameters,

we design a pulse decoder and bistable switch, and predict their behaviour both qualitatively

and quantitatively. Finally, we update the parameter database and indicate that network

topology affects parameter estimation accuracy. Utilizing our methodology provides us with

more accurate model parameters, a necessity for forward engineering of complex genetic

networks.
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Cell-free protein synthesis (CFPS), either using purified
components1 or based on cell lysates2, was originally used
as a method to express proteins toxic to the host cell3.

However, rapid progress in the past decades has shown that CFPS
is a promising technology for the creation of biosensors4,5, point-
of-care expression platforms6,7, for educational purposes8, and as
an essential component for artificial cells9–13. In addition, CFPS
has been widely used as a molecular “breadboard” for prototyping
synthetic genetic circuits and cell-free metabolic engineering14–17.
To this end, Noireaux and co-workers introduced the E. coli
transcription translation (TX-TL) Toolbox 1.0 to 3.0 as general
CFPS systems built around the endogenous σ-factors of E.
coli18–21. These systems allow for the expression of hundreds of
genes simultaneously and are ideal for the creation of synthetic
genetic networks22. To be able to design larger and more complex
cell-free genetic networks, this platform has been extended to
include other natural and synthetic transcription factors4,15,23–26,
riboregulators27–30 and dCas9-based repressors which offer the
possibility to block any promoter without the need for repressor
specific operator sequences31.

However, despite the increased availability of a large number of
genetic building blocks, construction of complex cell-free genetic
circuits has remained slow. Forward design of gene networks has
proven difficult due to the lack of precision provided by con-
ventional kinetic characterization methods and insufficient con-
siderations regarding the retroactivity of parts at the system-level,
thus rendering the building block not mutually interchangeable
or reusable in novel network settings32–37.

Several groups have attempted to improve the quality of the
kinetic data using batch CFPS systems14,38,39, and by studying
and modelling transcription and translation reactions separately
by measuring both time-resolved mRNA and protein dynamics.
Despite these efforts, the predictive power of the resulting models
and estimated parameters has remained low, preventing forward
design of cell-free circuits. Besides, genetic building blocks are
studied either in isolation, or in relatively simple two-gene sys-
tems. Recently, Singhal et al. further improved on this work by
establishing a computational toolbox for the characterization of
genetic building blocks in batch CFPS40. They characterized
different regulatory interactions of an incoherent feedforward
loop (IFFL) in isolation. However, despite a rather involved
computational and experimental process, parameters were still
mostly covariant and thus unidentifiable.

A fundamental limitation in previous work has been the use of
batch systems, where—due to the short expression lifetime and
changing transcription and translation rates resulting from the
depletion of nutrients—only the first few hours of expression
contain information about the reaction kinetics. Batch systems
also preclude the study of more complex genetic networks with
steady-state behaviour, as reaction products accumulate and
nutrients are depleted. Microfluidic systems, in which the reac-
tion media is continuously refreshed, offer long-term protein
expression, operate under steady-state kinetics and allow for
precise control over DNA concentrations, dilution rates, and the
concentration of cellular resources41–44.

Microfluidic systems allowed the construction of regulatory
networks exhibiting complex behaviour15,45–48, Niederholtmeyer
et al. studied numerous ring oscillators where the qualitative and
quantitative performance of the oscillators in vitro reflect those in
in vivo conditions, demonstrating the potential of a cell-free bio-
chemical breadboard15. However, similar to conventional batch
reactions, the covariance between parameters prevents accurate
parameter estimation and thereby also prevents prediction of the
phase space of the functional output of complex gene networks in
microfluidic systems. To solve these problems and enable forward
engineering of cell-free genetic networks, we present a kinetic

parameter extraction methodology, where we combine the advan-
tages of CFPS, microfluidics and optimal experimental design
(OED)49,50 to extract parameters from complete synthetic genetic
networks and build a database of characterized building blocks. This
database is then used to design two synthetic genetic networks.

Our methodology is based on a design–characterize–test cycle
(Fig. 1), in which we combine microfluidics, optimal experimental
design (OED) and optimize a kinetic model of the CFPS process
with an agent-based non-linear least-squares optimization rou-
tine which utilizes all collected experimental data simultaneously.
We first design a library of genetic building blocks containing
promoters, operators, a RiboJ sequence, a 5′ UTR (5′ untranslated
region), which contains the ribosomal binding site (RBS), and
open reading frames (ORFs). Using this library, we designed six
incoherent type 1 feed-forward loops (IFFL), that share an acti-
vator gene but have different repressors (Fig. 1, step 1). We
develop ordinary differential equation (ODE) models of the cell-
free IFFL circuits based on Michaelis-Menten and Hill kinetics
(Supplementary Information 2).

Next, we move to the characterize phase where we characterize
the library of genetic building blocks in three steps (Fig. 1, step 2).
First, we perform calibration experiments and use these to optimize
a set of control inputs for the IFFL motif (Fig. 1, step 2). The
calibration and optimized CFPS experiments are performed in
microfluidic chemostats, similar to the ones used by Van der
Linden et al.44 and Yelleswarapu et al.47 (Fig. 1, step 2). All
experimental results are then assembled in a database, which we
use to obtain parameter sets for the model by simultaneously fitting
it to all experimental results in the database (Fig. 1, step 2). Finally,
in the test phase, we test the parameter sets and model by pre-
dicting the behaviour of two cell-free genetic networks perturbed
both in network topology and gene structure (Fig. 1, step 3). The
predictions demonstrate that this pipeline opens up the forward
design of complex cell-free genetic networks by demonstrating
modularity of the genetic building blocks.

Results
Designing a library of genetic building blocks and assembly of
IFFLs. First, we designed a library of modular genetic building
blocks encompassing promoters, operators and open reading
frames (ORFs), that allow for the fast assembly of genes in a mix-
and-match fashion. Therefore, we created a small library with 2
promoters, 3 operators, a RiboJ sequence51, an untranslated
region (UTR1) containing a strong ribosomal binding site
(RBS)19 and 6 ORFs transcribing for 6 different proteins (Fig. 1,
step 1). All building blocks have specific overhangs, which were
used to assemble them into a vector containing the T500 termi-
nator as described by Sun et al. (see ‘Methods’)52. Operators for
repressors were inserted downstream of the transcriptional start
site53,54 and a RiboJ insulator sequence was added in between the
operator and the UTR1 to prevent any effect of the operator
sequence on translation initiation51,55. We subsequently used this
library to design six IFFLs (Fig. 2a). An IFFL combines direct
activation with delayed inhibition reactions and consists of a
single activator activating both a reporter and repressor gene. The
repressor in turn inhibits the expression of the reporter resulting
in a pulse-like response. In our case, the IFFLs are activated by the
p70a-σ19 gene. Besides, each IFFL has a unique repressor con-
struct including a TetR, PhlF or CymR repressor which corre-
sponds to a reporter construct bearing the corresponding
operator site. Finally, each individual repressor construct has two
configurations, either containing a RiboJ sequence or not.

Model. To describe the network behaviour, we make use of a
coarse-grained model description of the different processes taking
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place during CFPS. In this model, which is defined by a set of
ordinary differential equations (ODEs) (see Supplementary
Information 2, Eqs. 3–9), we aim to balance the fidelity of the
mechanistic description and the identifiability of the most sen-
sitive parameters. Figure 2b shows the five processes determining
gene expression in our microfluidic chemostats. Kin is a control
parameter and models the time-dependent concentration of DNA
in each reactor based on the inflow rate where IF (the fraction of
the replaced reactor volume) divided by tIP (min−1) the time per
input controls how much of the stock concentration, kDNA(stock)
(nM), flows into the reactor. KTX models transcription based on
the DNA concentration and a sigma-factor dependent kd (nM)
and kcat (nMmin−1). We assume that the hybrid promoters, with
both σ19 and repressor recognition sites, have the same dis-
sociation constant as the bare promoter (Supplementary Fig. 10).
Parameter KTL models translation linearly proportional to the
mRNA concentration using a RiboJ and gene-specific translation
rate kcat (nMmin−1). Parameter Kreg models the repressor reg-
ulation using Hill kinetics with a specific Hill coefficient and kd
(nM) for each repressor. Finally, mRNA degradation is modelled
by a linear relationship by Kdeg with a mRNA-dependent
degradation rate kdeg (min−1). For the degradation of proteins
in the lysate we assume that the half-life >> dilution and is
therefore not included. The maturation rates (Kmat) of deGFP and
mmCherry were measured directly using a previously established
method (Supplementary Fig. 11)42.

We make three assumptions about the CFPS process in this
model. First, since we determined minimal competition for
ribosomes between genes and between sigma-factors for core
RNA polymerase (Supplementary Fig. 12), we omitted resource
competition in our model. Second, Noireaux et al. demonstrated
that σ70 is present at saturating conditions in the lysate38, is not
limiting and remains constant throughout the experiment.

Therefore, we modelled transcription from p70a promoter as a
linear term with a single kcat. Lastly, based on values from
Noireaux et al.38, who were able to define a lower bound for the
concentration of mRNA, we set a soft constraint on the allowed
minimum and maximum levels of mRNA in the flow reactor for
all activated promoters where the minimum concentration of
mRNA at steady state (in flow) is at least double that of its
corresponding genetic construct according to min([mRNA]ss) >
2*[DNA]ss and at most max([mRNA]ss) < 500*[DNA]ss.

OED and in silico identifiability analysis. In our work, we used
optimal experimental design (OED) to increase the information
density about the parameters in of the experimental data resulting
in optimal identifiability of the model parameters. We do this by
optimizing the experimental inflow patterns in such a way that
the covariance between parameters in our model is minimized.
Covariance between parameters can often be broken by testing
specific combinations of control inputs, which can be identified
by the OED56. In our case, this results in a specific inflow pattern
for each DNA construct of the IFFL network, leading to a mul-
titude of different concentrations of the three DNA constructs
being tested in a single experiment (Fig. 2c, 3rd panel). A full
description of the software toolboxes and computational pipeline,
together with a detailed explanation of the implementation of
OED and model fitting, are provided in the Supplementary
Information.

For optimal experimental design to work we need ‘appropriate’
initial parameter values. This stems from the fact that the
parameter sensitivities that make up the Fischer information
matrix57 are dependent on the parameter values; thus, the
covariance changes along with the chosen parameter set57.
Intuitively, we can imagine a scenario where an initial guess for
the repressive strength of the three repressors is too far from its
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Fig. 1 Overview of the design–characterize–test pipeline. (1) IFFLs are assembled from a library of genetic building blocks. All IFFLs share the same
activator but differ in the repressors. Detailed gene structures and names are provided in Fig. 2. Besides, a CFPS ODE model is formulated to describe all
reactions (Eqs. 3–9 in the Supplementary Information). (2) Calibration and optimized inflow patterns are created (top) and used to perform CFPS
experiments in microfluidic chemostats (middle). Schematic representation of the microfluidic device (left) and a picture of a single device plugged in and
ready for an experiment (right) are shown. All experiments are combined in a database and we estimate the parameter values and distributions using the
associated kinetic models. (3) Using the same library of building blocks, two new networks are assembled and are used as test cases to assess the
predictive power of the estimated parameters and model. General overview of the network topology is shown. Detailed gene structures and names are
provided in Figs. 4 and 5.
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true in vitro counterpart and the repressor template concentra-
tion is either too high (there is no transcription) or too low (there
is no repression) during an experiment. This renders the system
non-responsive to timely changes in the repressor construct
concentration and we do not gain any information (In
Supplementary Information 3 and 4 we demonstrate the effect
of specific input pattern combinations in a tutorial). Therefore,
the first experiments we performed were step calibrations (Fig. 2c
second panel and Supplementary Fig. 13).

Using the step calibration experiments, we obtained a set of
initial parameter estimates. With these, we designed an optimized
inflow pattern (Fig. 3a) (i.e. a pattern corresponding to the
minimized determinant of the Fischer information matrix for
which our model suggest that the information density will be
highest and covariance in the parameter values lowest) for the
IFFLs. Before performing the optimized flow experiments, we first
wanted to validate our workflow with an in silico identifiability
analysis. For this, we used the initial parameter estimates and
simulated different CFPS experiments (batch, step flow and
optimized flow) for all six IFFLs. We then calculated the pairwise
collinearity index (metric of covariance) between all parameters

for the TetR-IFFL network by applying a single value decom-
position to the sensitivity vectors, as described by Gábor et al.33.
For a graphically easier representation, we lumped all parameters
in the four categories (KTX, KTL, Kreg, Kdeg as indicated in Fig. 2b)
and plotted the mean and normalized collinearity index in Fig. 2c.
For a series of five in silico batch experiments, sampling the TetR
repressor construct DNA concentration from 0 to 1 nM, we
identified high levels of covariance between the parameters
(Fig. 2c, first panel and Supplementary Fig. 14). The covariance
decreased when going from batch to a step flow experiment
(Fig. 2c, second panel and Supplementary Fig. 15) and even
further for the optimized flow experiment (Fig. 2c, third panel
and Supplementary Fig. 15). Finally, collecting all simulated flow
experiments, both step and optimized, for all IFFLs into a
database and calculating the collinearity indices for the
parameters using this database as a whole instead of the
individual simulations resulted in the least covariance between
all parameters and thus provided maximal identifiability of the
parameters (Fig. 2c, last panel and Supplementary Fig. 16).

The reduction in collinearity index obtained when incorporat-
ing the full database can be attributed to the inclusion of parts
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and parameters that are both shared and non-shared between the
different networks. For example, for the KTL parameters (high-
lighted collinearities in Fig. 2c), the observed variance between
experiments of the same network, with and without RiboJ, can
solely be attributed to the difference in KTL rates thus resulting in
less covariance. This indicates that shared parts between
experiments become a point off information as the difference in
expression rates can solely be attributed to non-shared parts.
Taken together, the in silico experiments indicate that our
workflow indeed results in less covariance and thus improved
identifiability of the parameters.

Extracting parameter estimates. We execute the optimized
inflow pattern (Fig. 3a), determined using the initial parameter
estimates, in microfluidic chemostats, using unique stock con-
centrations (KDNA(stock)) for the repressor in each IFFL based on
the step calibration experiments. Experiments were performed in
triplicate for each IFFL (both with and without RiboJ sequence).
Furthermore, an optimized pulse experiment for σ19 activation
was performed (Fig. 3a and Supplementary Figs. 17–19). In this
work, we applied the same optimized inflow pattern to each IFFL
variant. The parameter estimates were subsequently obtained by
fitting the model to the collective of all flow data in the database
and from fitting the model to the data of the individual step
experiments (Supplementary Fig. 20 and Supplementary Data 1)
(fitting 7 models to 13 experiments with time-dependent inputs is
a non-trivial problem and discussed in Supplementary
Information 5).

To showcase narrowing of the parameter distributions we
calculated the distribution width, as the ratio between the average
of the five highest and lowest values of each parameter
distribution, for both the individual step fits and the database
fits. We assume that all parameter values in each distribution are
reasonable descriptions of the data. We then lumped all
parameters in the 4 parameter categories (KTX, KTL, Kreg and
Kdeg), averaged the distribution widths within each category and
normalized them to the individual step fit (Fig. 3b). The
improvement (i.e. a decreased distribution width), especially in
the regulation parameters Kreg, can be attributed to two factors.
First, the responsiveness of the deGFP signal to changes in the
DNA concentration is indicative of the repressors’ strength, since
build-up of repressor takes time. So, the continuously changing
DNA concentrations in the optimized flow experiments improve
estimation of the repressors’ kd. Second, as the parameters
between experiments for KTX are shared, the strength of the
repressor and the KTL of its corresponding mRNA are the sole
contributors to the observed variance between experiments using
different repressors. Moreover, since each network utilizes a

repressor construct both including and excluding a RiboJ
sequence, the variance observed between these experiments can
solely be attributed to KTL leaving a smaller range over which
KTX, Kreg, KTL and Kdeg can compensate for each other within the
set biophysical constraints. Summarized, we see significant
narrowing of the parameter distributions for all but one
parameter class (Kdeg). Therefore, we believe the newly con-
strained parameter space is internally consistent and small
enough to test in a new context.

Testing the parameter estimates in new networks. In the test
phase, we assess if our workflow brings us closer to forward
engineering of genetic networks. To do this, we reused building
blocks and constructed two circuits, a pulse decoder (Fig. 4) and a
bistable switch (Fig. 5), and test if the optimized parameters and
model have predictive value. We applied a time-dependent input
to both circuits by changing the concentrations of the DNA
constructs and predicted the response of both networks.

The pulse decoder is a cascade network driven by σ19 as the
activator, three consecutive repressors, and a reporter construct
(Fig. 4a). We initiate this network without the PhlF construct. In
this state, CymR repressor inhibits the TetR construct and deGFP
is produced. We subsequently add the PhlF construct for different
lengths of time Δt (defined as the time during which the PhlF
construct is actively added), such that when PhlF is present in
excess, the resulting decline in CymR production and subsequent
activation of TetR production should shut down the production
of deGFP. The duration of p19a-RiboJ-PhlF addition determines
the drop in relative yield, stabilizing below 20% after a certain
threshold duration has been reached (Fig. 4b).

To experimentally validate the pulse decoder, we performed a
series of experiments with 9 different pulse durations (Δt) of
5 nM p19a-PhlF for two concentrations of p19aPhlFO1-CymR,
0.1 and 0.5 nM, and created a pulse-response curve (Fig. 4c and
Supplementary Fig. 21). For these experiments, we plot the
relative drop in expression (a/b in Fig. 4b) versus the pulse
duration and as expected, we observed that a longer pulse
duration resulted in a stronger reduction of deGFP expression
until it stabilizes below 20% (Fig. 4c). The pulse decoder is thus
capable of decoding the duration of a pulse, repressing expression
to below 20% after a specific duration has been reached. A lower
concentration of p19aPhlFO1-CymR (0.1 nM vs. 0.5 nM) resulted
in a shift of the entire pulse-response curve to the left as less
CymR is present in the system and less PhlF is needed to shut
down deGFP expression.

To test if the model with the newly estimated parameters can
predict a functional regime, we performed the same set of
experiments in silico and scored the simulations against the
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experiments (all simulated pulse-response curves can be found in
Supplementary Data 2 and the used parameter sets in
Supplementary Data 1). The shaded area in Fig. 4c represents
the standard deviation from the mean of the model simulations.
For the 0.1 nM p19aPhlFO1-CymR data series, the model predicts
a slightly faster shut down of the CymR production than is
observed experimentally, while for 0.5 nM p19aPhlFO1-CymR,
the model matches the data series.

First, these results highlight that we are able to obtain both
qualitative and quantitatively accurate predictions for a reconfi-
gured network with a perturbed state space. Second, the observed
deviation for 0.1 nM p19aPhlFO1-CymR was not unexpected.
Microfluidic chemostats do not operate based on continuous
flow. A single refresh cycle, which takes 22.5 min, includes a
loading step where individual components are added sequentially
(lysate, buffer, DNA and MQ). This means that p19a-RiboJ-PhlF
is not present in the reactor at the start of the refresh cycle,
something that is not accounted for in the model (which assumes
immediate PhlF production).

Next, we tested if we would be able to predict the behaviour of
a more complex and non-linear system, a bistable switch (Fig. 5).
The bistable switch is controlled by the σ19 activator, which

drives the expression of two repressors, CymR and TetR and two
reporter proteins, deGFP and mmCherry. The reporter constructs
are regulated by TetR and CymR, respectively (Fig. 5a). The
bistable switch can be in two distinctive states where either one of
the two repressors is being expressed. When the system is in the
CymR state, CymR is produced continuously and the production
of TetR is shut down. When we pulse in p19aCymRO1-TetR,
TetR expression is increased and the system switches to the TetR
state. The system will subsequently remain in the TetR state until
switched back (Fig. 5b).

We chose pulse intensities of 2 nM for p19aTetRO1-CymR and
5 nM for p19aCymRO1-TetR to switch the system (an excess to
ensure we can switch the system back and forth, see Supplemen-
tary Fig. 22). Figure 5c shows the time-resolved expression traces
of both deGFP and mmCherry. We initiated the system in the
CymR state by first adding only the p19aTetRO1-CymR construct
at 0.2 nM into the reactor. After some time, we added the
p19aCymRO1-TetR construct at 0.8 nM, which kept the system
in the CymR state. This inhibited the transcription of mmCherry,
whereas deGFP was freely expressed. Next, we pulsed an excess of
p19aCymRO1-TetR in the reactor, CymR was repressed and the
system switched. The system stayed in the TetR state until an
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excess of p19aTetRO1-CymR was pulsed into the reactor to
switch the system back to the CymR state, after which the system
was switched once more towards the TetR state.

Similar to the pulse decoder, we simulated the experiment
using the estimated parameter sets and plotted the standard
deviation from the mean as shaded areas around the actual data.
Gratifyingly, predictions matched experimental data rather
closely in the case for deGFP. This indicates that our method is
able to quantitatively predict properties of more complex
networks (all simulated time traces can be found in Supplemen-
tary Data 3 and the used parameter sets in Supplementary
Data 1). For mmCherry the predicted yields were consistently
lower than the experimental yield. This is not surprising, as we
did not have any prior data on mmCherry expression with RiboJ
and translation rates without RiboJ are generally weaker
(Supplementary Fig. 23).

As we have data on translation rates of genes with and without
the RiboJ element (Supplementary Fig. 23), we decided to
extrapolate these data to parts that did not contain the RiboJ
element. We inferred a multiplication factor for the addition of
the RiboJ element by taking the median increase for the three
repressors upon addition of the RiboJ element. An additional
round of predictions, where the mmCherry translation rates are
multiplied by this inferred factor, resulted in an improved
prediction of the mmCherry signal (Fig. 5c). These results show
that information of new combinations of building blocks can be
inferred from available data in the database, which will be of use
in the formation of a library of genetic elements for forward
engineering of cell-free genetic networks.

Note, for a system to be bistable, the Kreg parameters need to be
finely balanced, thus not all parameter sets predicted bistability
for our experimental conditions, a small subset of the parameters
did not show any, another subset favoured a single state,
switching once. Upon closer inspection we found that successful
parameter sets shared lowered values for the Hill coefficients of
both repressors (between 1 and 2) (Supplementary Fig. 25),
indicating that this network topology improves the estimation
of Kreg.

Updating the database. In our workflow, we showed that treating
all experiments, from different circuit variants, as a collective
instead of as separate experiments improves parameter estimates.
We explore this in supplementary information 7 and Supple-
mentary Fig. 24, where we compare the predictive power of the
model when we fit subsets of the database. Specifically, we fit
the step experiments independently, then together, and finally the
pulse experiments together. The figure shows a progressive
improvement in the predictive power of the model. With the step
experiments, we gain initial information about the bounds of the
parameter values and the behaviour of independent genes. With
the pulse sequence we screen a large part of the space of potential
construct concentration combinations and the strength of those
interactions at each point, resulting in more refined estimates
(this is corroborated by the identifiability analysis in Supple-
mentary Fig. 15 and Fig. 2c, which shows, for example, that the
Hill coefficients are less collinear with other parameters in the
model for a pulse experiment).

Following this line of reasoning, inclusion of the pulse decoder
and bistable switch experiments in the estimation process could
result in a further improvement in the parameter estimates. To
show this, we took the parameter sets used for the predictions
shown in Figs. 4 and 5 and recreated the distributions (Table 1,
Supplementary Fig. 25 and Supplementary Data 1). Based on
these distributions, we plotted the relative width of these
distributions (again as the ratio between the average of the five

highest and lowest parameter values and normalized to the
calibration step experiments), for all fitting rounds (Fig. 6).
Figure 6 highlights that the distribution width of a parameter
shrinks in proportion with the complexity of the dataset and that
this complexity can be derived from perturbations in both the
state space with OED but also the networks space. For example,
the parameter space for the Hill coefficients shows to be more
constrained when network topologies are used where Hill
coefficients play a more prominent role, like the bistable switch.
Another striking result is the remarkable lower distribution width
for the Hill coefficient of PhlF in the case of the bistable switch
experiments. PhlF is not used in this network, but as all
parameters are combined and linked in the database, constraining
the Hill coefficients of CymR and TetR results in indirectly
constraining the Hill coefficient of PhlF. This indicates that
combining all experiments for different network configurations
and their parameters in a single database can greatly improve
characterization of all genetic building blocks in the library.
Finally, it demonstrates that a sufficiently complex dataset does
map onto genetic building blocks which leads to modularity and
predictability.

Discussion
Cell-free synthetic biology has been used as a molecular bread-
board for the design and testing of new synthetic genetic net-
works before they are implemented in vivo15,23,24,58. However,
the genetic building blocks are usually not modular and need to
be recharacterized when reused in different network topologies32.
Here, we demonstrated that our platform, where we combine
microfluidics, OED and database fitting, can tackle the
modularity problem and predict functional behaviour of two
new networks build using the same parts but in different
configurations.

Our software is set-up to include any model and any type of
experiment (e.g. combining mRNA measurements in batch with
OED flow experiments) or microfluidic experimental platform,
for example the DNA brush-based system designed by Swank
et al.26, as long as the complexity of the model scales with the
complexity of the dataset40. This presents a number of oppor-
tunities for further development of the methodology. Comparing
a dataset that both adheres to and breaks a known model
assumption will be reflected by a shift in the distribution of the
parameters involved and pinpoints where mechanistic detail in
the model’s description is lacking (model selection)59. However,
to characterize the genetic building blocks in a more detailed
context, more points of control or observables will be needed to
increase the information about newly added parameters. These
controls can -in principle- be anything that interacts with the
CFPS process: antibiotic agents that modify the active ribosome
concentration, anti-sigma factors to target transcription, toehold
switches which regulate the repression or activation of gene
expression at the translational level, or even macroscopic prop-
erties such as temperature60–62. The addition of more obser-
vables, especially mRNA concentrations, could greatly improve
parameter estimation, especially for processes like mRNA
degradation63. A future study could also focus on the utilization
of these controls to include the competition for ribosomes and
coreRNAP in the mechanistic description of the CFPS
process36,47,64. Including knowledge about the concentrations of
active RNAP and ribosomes would also be a good starting point
to address batch-to-batch variation in lysates, as differences in
their concentrations likely play a major role65. Moreover, Gyorgy
et al. have shown that resource competition can be leveraged
in combination with OED to characterize genetic building
blocks50,66.
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Table 1 Parameter values and distributions.

Step Database Database+ pulse decoder Database+ bistable switch

KTX
kcat.TXσ19 (nMmin−1) 1.1 (0.1– 4) 1.5 (0.45–3.5) 1.7 (0.5–3) 1.9 (0.48–3.2)
kcat.TXσ70 (nMmin−1) 0.7 (0.1–4) 0.5 (0.2–1.6) 0.7 (0.25–1.37) 0.5 (0.25–1.56)
Kdσ19 (nM) 636.3 (9–1250) 627.4 (143–1250) 627.4 (168–1188) 794.4 (151–1245)
KTL
kcat.TLTetRRiboJ (nMmin−1) 1.6 (0.1–4) 2.8 (0.76–4) 2.5 (1.2–4) 2.0 (0.83–4)
kcat.TLCymRRiboJ (nMmin−1) 1.5 (0.1–4) 1.6 (0.4–4) 1.2 (0.65–3.6) 1.4 (0.5–3.5)
kcat.TLPhlFRiboJ (nMmin−1) 0.6 (0.1–4) 2.3 (0.7–4) 2.2 (1.1–3.8) 2.4 (0.75–3.5)
kcat.TLσ19 (nMmin−1) 0.7 (0.1–4) 0.2 (0.1–1.3) 0.2 (0.1–1) 0.2 (0.1–0.76)
kcat.TLdeGFPRiboJ (nMmin−1) 1.8 (0.125–4) 1.0 (0.3–2.5) 0.7 (0.3–2.1) 1.3 (0.33–2.3)
kcat.TLmmCherryRiboJ (nMmin−1) – 0.5 (0.13–1.5) 0.4 (0.18–1.3) 0.5 (0.17–0.85)
KREG
kdTetR (nM) 200.1 (1–1250) 27.0 (4–93) 26.5 (7–81) 22.3 (5–53)
kdCymR (nM) 207.8 (1–1250) 6.4 (0.6–80) 4.6 (0.8–55) 5.7 (0.57–36)
kdPhlF (nM) 3.1 (39–1250) 486.2 (110–1230) 689.5 (133–1183) 545.4 (157–1083)
NTetR 2.7 (1–4) 1.5 (1–4) 1.3 (1–3) 1.2 (1–1.6)
NCymR 2.7 (1–4) 1.9 (1–4) 2.0 (1–4) 1.4 (1–2)
NPHLF 3.1 (1–4) 3.3 (1.2–4) 3.5 (2.1–4) 3.9 (1.75–4)
KDEG
kdegmRNA-TetR (nMmin−1) 0.07 (0.008–0.125) 0.04 (0.008–0.11) 0.05 (0.01–0.11) 0.04 (0.01–0.1)
kdegmRNA-CymR (nMmin−1) 0.08 (0.008–0.125) 0.04 (0.008–0.125) 0.06 (0.008–1.21) 0.04 (0.009–0.12)
kdegmRNA-PhlF (nMmin−1) 0.09 (0.025–0.125) 0.06 (0.015–0.125) 0.06 (0.02–0.125) 0.06 (0.018–0.12)
kdegmRNA-σ19 (nMmin−1) 0.11 (0.008–0.125) 0.09 (0.033–0.125) 0.09 (0.04–1.2) 0.09 (0.05–0.12)
kdegmRNA-deGFP (nMmin−1) 0.09 (0.025–0.125) 0.05 (0.008–0.125) 0.04 (0.01–0.1) 0.05 (0.02–0.1)
kdegmRNA-mmCherry (nMmin−1) – 0.07 (0.008–0.11) 0.08 (0.04–0.125) 0.07 (0.03–1.2)

Mean parameter values, with their upper and lower bounds in brackets, for the estimates from the calibration step experiments, the database and after we updated the database with either the pulse
decoder or bistable switch experiments. Graphical representation of the distributions can be found in Supplementary Fig. 25. Units for the parameters are provided in brackets after the parameters name.
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The continuous expansion of the database opens the door to
new design protocols for networks at scale. Reverse engineering
larger networks that exhibit complex behaviour has been aptly
demonstrated in silico67,68, and methods have been developed to
a priori reduce the uncertainty about the boundaries of certain
kinetic rates prior to fitting a database of experiments69. More-
over, a database enables the design of non-intuitive computer-
generated network designs, that exhibit significantly more com-
plex behaviour or are designed with a competing evolutionary
trade-off in mind, based on actual kinetic data70,71.

In conclusion, we demonstrated a microfluidic platform cou-
pled with a computational OED workflow capable of character-
izing genetic building blocks for the modular construction of
synthetic gene networks in CFPS systems. With this platform in
place, future work will include an increase of the library of well-
characterised modular building blocks and forward design of
larger and more complex (cell-free) genetic networks.

Methods
Description of device and microfluidic setup. Devices are created as described by
Van der Linden et al.44 and Niederholtmeyer et al.42 with some minor adjustments.
The width of the reactor channels was increased to 250 µm to increase the channel
to reactor volume ratio. Besides, control channel 27 was removed and control
channels 1–3 were adjusted to fit the increased width of the reactors (see Sup-
plementary Fig. 26).

The microfluidic setup was assembled as described by Van der Linden et al.44 with
some minor adjustments. Instead of a temperature-controlled box, a temperature-
controlled stage (TC-HP75x65, Bioscience Tools) was used. The set temperature was
32.1 °C, resulting in a temperature of 30 °C in the PDMS device (measured using a
temperature probe). The pressure on the pneumatic valves was set to 2 bar. Except for
the mixing channels which were set to 1.5 bar. Besides, the air outlet of the solenoid
valves controlling the mixing channels was connected to a vacuum pump to speed up
deflation of the mixing channels. The pressure on the Fluigent system (Fluigent
MFCS-EZTM) was set to 50mbar for all fluid lines (Supplementary Fig. 28).

The microfluidic device is controlled by an altered version of the LabView
program created by Van der Linden et al.44. The LabView program was altered to
communicate with the software of the microscope/camera and to work with
constantly changing inflow fractions. Predetermined inflow fractions were read
from a text file and converted to reactor specific number of load steps (see
Supplementary Information 6). The number of steps used was subsequently saved
in an output text file. The input text files enabled us to regulate the inflow of DNA
for each refresh cycle and per reactor. The output text files were used to calculate
the exact concentration of each DNA construct in each reactor over time (see
Supplementary Information 6), which were then used for the analysis of the data.

Construct design. To minimize the effect of the local genetic context on gene
expression, all genes were cloned into the pTXTL vector designed by Noireaux
et al.19. The p70a-S19 plasmid20 was bought from Arbor Biosciences. All other
genes were cloned using the in vitro GGA technique as described by Sun et al.52.
Promoter sequences were taken from the toolbox 2.0 plasmids and operator sites
were added downstream of the promoter as described by Zong et al.53. This design
strategy allowed operators and promoters to be exchanged easily between genes,
while preserving functionality. To isolate transcription from translation, the RiboJ
sequence was added in between the operator and the ribosomal binding site
(RBS)72. All constructs contain UTR1, bearing a strong RBS19. The UTR1 was
directly followed by the start codon for the protein sequence, directly followed by
the T500 terminator.

Assembly took place like described by Sun et al.52. In short, standardized
building blocks for the vector, 5′ and 3′ protective regions, promoters, operators,
UTR1, RiboJ, coding region and T500 terminator were PCR amplified to introduce
Esp3I restriction sites on both ends. Different building blocks were then mixed in a
3:1, vector:insert, ratio and were assembled into a circular construct by 35 cycles of
iterative restriction and ligation. GGA products were either directly amplified to
retrieve linear templates using PCR amplification or were first transformed into
XL1-Blue cells to amplify the plasmid, followed by linearization by PCR. All
sequences were sequence verified by BaseClear B.V.

Vector, 5′ and 3′ protective sequences, promoters, UTR1, T500 terminator,
deGFP and mmCherry GGA elements were created from the p70a-deGFP, p19a-
deGFP and p70a-mmCherry plasmids from Arbor Biosciences20. Operator
sequences, RiboJ (ultramers, designed after Zong et al.53 and Mutalik et al.72) and
TetR sequence (gBlock) were ordered from IDT and PCR amplified to create GGA
elements. PhlF and CymR sequences were PCR amplified from the Addgene
plasmids pRF-PhlF (#49367) and pET21a-CymR (#51165), respectively73. An
overview of the used sequences can be found in Supplementary Table 1.

CFPS setup. Lysate and feeding buffer (FB) are produced as described by Sun
et al.2 with some minor alterations. After pelleting and washing the cells, they
were stored at −80 °C before being lysed. Instead of bead beating, a French Press
was used to lyse the cells. Besides, the composition of the used S30B buffer was
14 mM Mg-glutamate and 150 mM K-glutamate, instead of 14 and 60 mM,
respectively. The AA mixture was prepared as described by Caschera and
Noireaux74.

The final CFPS reaction mixtures contained ~10 mg/mL lysate, 1x FB (1 mM
DTT, 1.5 mM each amino acid, 50 mM HEPES, 1.5 mM ATP and GTP, 0.9 mM
CTP and UTP, 0.2 mg/ml tRNA, 0.26 mM CoA, 0.33 mM NAD, 0.75 mM cAMP,
0.068 mM folinic acid, 1 mM spermidine and 30 mM 3-PGA), 8 mM Mg-
glutamate, 60 mM K-glutamate, 15 mM Maltose, 2% PEG-8000, 2.67 μM GamS
(purified following the protocol from Sun et al.52) and 1.33 U/mL inorganic
pyrophosphatase (IPP). All FB components were purchased from Sigma Aldrich.
IPP was purchased from NEB.

For all CFPS reactions, linear DNA templates were used. Linear DNA
templates were PCR amplified from plasmids ensuring a minimum of 250 bp of
protective DNA upstream and downstream of the promoter and terminator,
respectively52.

Performing flow experiments. Flow experiments were performed as described
by Van der Linden et al. with some minor adjustments. Besides the device
calibration, which determines the refresh ratio (RR) for each reactor separately,
a fluorescence calibration was performed using either 5 μM of eGFP and/or
mmCherry, by means of serial dilution in the devices. After both calibrations,
the devices were cleaned with a 1% Terg-a-Zyme (Sigma Aldrich) solution and
washed thoroughly with MQ.

During setup, either the whole CFPS mastermix (everything except DNA and
MQ) or separate lysate (also containing GamS and IPP) and energy solutions (ES)
(all other CFPS components except DNA and MQ) are loaded into PTFE tubing
(ID= 0.56 mm, OD= 1.07 mm, VWR) and cooled to about 0 °C using a
homemade lysate cooler (see Supplementary Fig. 27). All other non-cooled
components, DNA and MQ, are also preloaded into PTFE tubing and connected to
the device using metal connectors (AISI 304 ID/OD × L= 0.35/0.65 × 8 mm,
Unimed S.A.).

For all experiments, the refresh fraction (RF), the percentage of the reactor
volume that is replaced per dilution cycle, was set to 40%. The inflow ratios for
lysate and ES, DNA constructs and MQ were provided by a text file which specifies
the inflow ratio for all components per dilution cycle. During each dilution cycle
70% of the refreshed volume is taken up by lysate and ES the remaining 30% is
used for DNA and MQ. The concentration of lysate and ES thus stays the same
during the experiment. The inflow ratios are then converted to a specific number of
load steps using the reactor specific refresh ratio (determined during the device
calibration). The amount of load steps used are saved in an output text file. For
each experiment one of the reactors is used as a blank, where no DNA is added,
and one is used as a positive control, where only the reporter and activator gene are
expressed continuously.

For a detailed description of how the reactors work we refer you to the initial
papers from Niederholtmeyer et al.42 and Van der Linden et al.44. In short, a single
cycle in the microfluidic program consists of imaging, flushing, loading and
mixing. At first images are taken at predetermined positions in all reactors. During
the flushing step all channels, except reactors, are filled with fresh material from
one of the inlets. Then a specific amount of the just flushed material, determined by
the inflow ratio and RR for each reactor, is pushed in each reactor during the
loading step. Loading occurs in steps, meaning that the material is added in set
increments. After material from all inlets are flushed and loaded into all reactors,
order is usually lysate/FB, then all DNAs and MQ last, the contents of the reactors
are mixed until a total cycle time of 22.5 min is reached. Images are then again
taken at the start of the next cycle.

Software. LabView (LabView 2019) was used to control the flow through the
microfluidic chemostats. ImageJ was used to control the microscope and to extract
grey values from the images. Origin (Origin 2020) was used to extract maturation
rates for deGFP and mmCherry. An overview for the software that performs the
optimizations can be found in Supplementary Information 1. The package is
written in Python 3.8 (python software foundation, Delaware US). A simple string-
based model object and stepwise translated to an SBML and AMICI object75.
AMICI is an (excellent) ODE compilation package to C++, its interfaces with
python grants the speeds required for fitting models and provides forward sensi-
tivity options76. We break the software up in 3 parts, a demo that converts any
manually defined model to an AMICI object and allows users to simulate their
models with C++ speeds. An Identifiability and experimental design pipeline
which takes the AMICI object(s) which allows users to combine different experi-
ments and check which parameters correlate and covary and a model fit module,
code can be found at huckgroup github, https://github.com/huckgroup (OED
folder). For more information on OED and parameter estimation see Supple-
mentary Information 1–6. For additional literature, we refer the reader to excellent
previous work33,57,77–80.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The parameter sets acquired and used for the predictions can be found in Supplementary
Data 1. Other data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
Used code is available from the huckgroup github, https://github.com/huckgroup (OED
folder). Citeable archived versions can be found https://doi.org/10.5281/zenodo.6610321.
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