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Under carbon source transitions, the intracellular pH of Saccharomyces

cerevisiae is subject to change. Dynamics in pH modulate the activity of

the glycolytic enzymes, resulting in a change in glycolytic flux and ulti-

mately cell growth. To understand how pH affects the global behavior of

glycolysis and ethanol fermentation, we measured the activity of the glyco-

lytic and fermentative enzymes in S. cerevisiae under in vivo-like conditions

at different pH. We demonstrate that glycolytic enzymes exhibit differential

pH dependencies, and optima, in the pH range observed during carbon

source transitions. The forward reaction of GAPDH shows the highest

decrease in activity, 83%, during a simulated feast/famine regime upon glu-

cose removal (cytosolic pH drop from 7.1 to 6.4). We complement our bio-

chemical characterization of the glycolytic enzymes by fitting the Vmax to

the progression curves of product formation or decay over time. The fitting

analysis shows that the observed changes in enzyme activities require

changes in Vmax, but changes in Km cannot be excluded. Our study high-

lights the relevance of pH as a key player in metabolic regulation and pro-

vides a large set of quantitative data that can be explored to improve our

understanding of metabolism in dynamic environments.

Introduction

Microorganisms are constantly challenged by environ-

mental changes, both in nature [1] and in artificial

setups such as large-scale bioreactors [2]. Changes in

substrate availability require constant readjustment of

metabolism [3,4] and often rely on allosteric regulation

of key metabolic enzymes [5–7]. Variations in extracel-

lular glucose concentrations have been reported to

impact intracellular pH in budding yeast [8–10]. Other

studies linked pH changes with weak acid stress

[11,12], nutrient signaling [13], cell-cycle progression

Abbreviations
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[14], and growth rate control [15]. In budding yeast,

multiple mechanisms are described to contribute to pH

homeostasis [16], and a significant amount of cell

resources is allocated to this task [17]. Disruption of

pH homeostasis can result in changes in enzyme con-

formation and solubility [18,19], potentially resulting

in the loss of catalytic activity. Additionally, the pro-

tonation state of substrates, products, and effectors

can be altered [16,20] and the equilibrium constant of

the enzymatic reactions [21].

Several studies seek to describe glycolysis in a sys-

tematic fashion [22–25]; however, kinetic measure-

ments were conducted at a single pH and by design

cannot capture the changes in enzyme activities that

result in intracellular pH dynamics [26]. Simulta-

neously, most studies that addressed pH effects of gly-

colytic enzymes were carried out with purified enzymes

and under different experimental conditions, limiting

interstudy comparability [11,27–31].
In this work, we used the in vivo-like buffer system

described by van Eunen et al. [23] to measure the

enzyme capacities of the glycolytic and fermentative

enzymes for the range of pH values often found during

nutrient transitions. We focused on glycolysis as this

metabolic pathway is an essential part of central car-

bon metabolism and the main source of ATP and met-

abolic cell precursors in the presence of fermentative

carbon sources. To investigate further the role of the

different kinetic parameters in our system, we developed

a computational approach that includes the entire pro-

gression curve profiles of product formation or decay

over time (Fig. 1). By incorporating Michaelis–Menten

kinetic parameters such as the Michaelis–Menten con-

stant (Km) and pH-dependent equilibrium constant

(Keq) and the variation in metabolite concentrations

over time [32–34], we determined the maximum reaction

rate (Vmax) [34–36] using maximum likelihood estima-

tion [37]. Through this method, we obtain parameter

estimates, which consider all the available data.

Our study provides a comprehensive description of

pH effects on yeast glycolytic and fermentative

enzymes. The generated data represents an effort

towards more realistic data sets and therefore a step

further to understand yeast central carbon metabolism

under dynamic glucose environments.

Results

Carbon source transitions lead to a rapid

cytosolic acidification

To estimate the pH changes that follow an increase in

glycolytic flux we subjected a population of yeast cells

expressing the pH sensor pHluorin [38] to glucose
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Fig. 1. Schematic representation of the

experimental design and the computational

method developed in this work. Under

carbon source transitions, S. cerevisiae can

experience intracellular pH dynamics. Such

fluctuations can potentially affect glycolytic

fluxes and therefore growth. This work

shows how glucose dynamics affect

intracellular pH and how glycolytic and

ethanol brunch enzymes activity is

influenced by pH. Additionally, we

developed a modeling approach to extract

additional information from the kinetic

profiles that allowed us to elaborate on the

origin of the different activities.
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dynamics. We exposed glucose pregrown cells to feast/

famine cycles in a microfluidics device by alternating

every 5 minutes between media with and without glu-

cose. Using a widefield fluorescence microscope we

measured the cytosolic pH dynamics over 850 minutes

(about 14 hours) (Fig. 2A). After glucose removal, the

cytosolic pH dropped 0.7 pH units (from 7.1 to 6.4,

max and min mean pH values, respectively), followed

by recovery upon glucose readdition (Fig. 2B). For

some cells, pH recovered before glucose readdition,

which is likely related to a leakage in the mixing cham-

ber. Nonetheless, all cells within the population

showed a similar response, and no adaptation was

observed during the cycles. Our results are in line with

previous studies that showed that starvation results in

cytosolic acidification [15]. Galactose-adapted cells

equally showed a rapid and transient decrease in pH

from 6.97 to 6.82 pH units after glucose addition, char-

acterized by an overshoot to slightly above 7, followed

by relaxation to preperturbation values (Fig. 2C). To

convert the pHluorin ratio to pH, a calibration curve

was obtained for both experiments above described

using permeabilized cells incubated in a range of pH

buffers (Fig. 2D,E).

Kinetic measurements reveal differential pH

sensitivity of glycolytic enzymes

We sought to understand the catalytic behavior of the gly-

colytic enzymes at different pH values through a series of

kinetics measurements under substrate saturation to tar-

get Vmax. The enzyme activities were measured in cell-free

extracts using coupled enzymatic assays and the reaction

rates were monitored through absorbance of NAD(P)H

as described by van Eunen et al. [23], with the exception

of enolase (ENO) reaction that was measured directly by

monitoring phosphoenolpyruvate (PEP) absorbance. To

calculate the enzyme activities we used the standard

method based on the initial slope of the progression

curves of substrate production/consumption rate, and a

fitting approach here developed that considers the entire

progression curves (parameters in Table S1).
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Fig. 2. pH dynamics upon glucose transitions. (A) Feast/famine pH dynamics in CEN.PK113-5D harboring pHluorin performed in a microflui-

dics device over 850 minutes show a drop in cytosolic pH when glucose is removed. No adaptation was observed over the cycles. Blue

lines represent individual cell traces (n = 64 at the beginning of the experiment). (B) Zoom in the first cycle of the feast/famine dynamics.

The orange line represents the mean of the single-cell responses. (C) Glucose pulse in galactose pregrown CEN.PK2-1C cells expressing

pHluorin induces a transient drop in pH. Each data point represents the mean of 3 technical replicates (plate reader data). The light blue

shaded area represents the standard deviation. pH values reported in (A), (B), and (C) were calculated from fluorescence ratios through in

vivo calibrations ((D) and (E), for microscope and plate reader titrations, respectively), using polynomial functions of degree 3. Gray dots plot-

ted in (D) represent single-cell measurements. Error bars in (E) depict the response of three technical replicates.
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We found that the rates of all glycolytic enzymes

under study were pH-sensitive, to different degrees

(Fig. 3). In the entire pH range surveyed, aldolase

(ALD), hexokinase (HXK), phosphoglycerate mutase

(PGM), and glyceraldehyde 3-phosphate dehydroge-

nase (GAPDH) forward showed the largest decrease in

activity from pH 6.8 to 6.2, namely 88, 82, 81 and

70%, respectively (Fig. 4A). By contrast, the rate of

the reverse reaction of GAPDH showed a transient

increase between pH 6.8 and 6.6, followed by a drop

in activity at pH 6.2 to similar values observed at the

physiological pH. A more diverse response was

observed for higher pH. While the activity of phospho-

fructokinase (PFK), ALD, GAPDH reverse, and pyru-

vate decarboxylase (PDC) decreased at higher pH

when compared to the reference, it increased for ENO,

GAPDH forward, phosphoglucose isomerase (PGI)

and triosephosphate isomerase (TPI). The highest

change in activity was observed for GAPDH forward,

a 6-fold increase in activity from pH 6.8 to 7.8. Pyru-

vate kinase (PYK) was the enzyme less affected by

pH, with a 16 and 4% decrease in activity from the

reference pH to pH 6.2 and 7.9, respectively. No

straightforward correlation was observed between pH

values at the maximum or optimal enzyme capacity

and the enzyme position in the glycolytic pathway

(Fig. 4B).

We compared the Vmax values measured at pH 6.8

(reference pH) to those obtained by van Eunen et al.

[23] at the same pH (Fig. 5). We found reduced activi-

ties (above 70% difference) of PGI and PFK and the

forward reaction of GAPDH and an increased activity

(above 70% difference) of PYK. These enzymes are

among the ones with a larger difference in Vmax

Fig. 3. Glycolytic enzymes are pH dependent. Vmax estimates obtained for cell-free extracts of CEN.PK113-7D with the slope-based method

(dark blue) and the progression curve-fitting method (light blue) at various pH. The dark gray area corresponds to the pH range of fluctua-

tions observed during the first glucose feast/famine cycle (Fig. 2B) and the light gray area to the pH change observed during the glucose

pulse in galactose pregrown cells (Fig. 2C). The dashed line indicates the reference pH 6.8. Each plot describes a glycolytic enzyme: HXK

(hexokinase); PGI (phosphoglucose isomerase); PFK (phosphofructokinase); ALD (aldolase); GAPDH (glyceraldehyde 3-phosphate dehydroge-

nase forward reaction); GAPDHR (glyceraldehyde 3-phosphate dehydrogenase reverse reaction); PGM (phosphoglycerate mutase); ENO

(enolase); PYK (pyruvate kinase); and PDC (pyruvate decarboxylase). Plots include data of at least 2 dilution factors of the cell-free extract

and 3 technical replicates (Fig. S1 and Table S2 in Supplementary material). The parameters measured by the direct and curve-fitting

approach can be find in Table S1.
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between reactions performed with different amounts of

cell-free extract (Fig. S1 and Table S2 in Supplemen-

tary Material), suggesting the presence of enzyme

inhibitors or activators in the reaction mix that could

explain the observed discrepancies between the present

and the earlier study [23]. Additionally, in the study of

van Eunen et al. [23], the Vmax of PGI and GAPDH

in the forward direction were recalculated using mea-

surements in the reverse direction [23] and Km and Keq

from literature. An important difference between both

studies is still related to the growth conditions, while

we used exponentially growing cells from a batch cul-

ture, van Eunen used chemostat cultures (growth rate

of 0.1 h−1).

Enzyme activity estimates based on progression

curve-fitting are in line with those obtained

using direct slope estimates

Traditional experimental Vmax determination relies on

finding the maximal slope of the progression curves of

substrate or product concentration over time. How-

ever, this method neglects additional information con-

tained in the entire progression curves, such as

potential pH effects on Km and Keq. Moreover, esti-

mates of slopes are usually performed one at a time,

even if the dilution series of the cell-free extract pro-

vide a consistent set of data from which the parame-

ters can be directly obtained. Therefore we determined

the maximum reaction rates by generating individual

Ordinary differential equation (ODE)-based models

for each reaction. We used single ODEs to model

direct enzymatic assays (GAPDH, ENO) and

concatenated ODEs for coupled assays. The Teusink

model[22] was here used for the glycolytic enzymes

under the study following the Michaelis–Menten kinet-

ics [33].

We then proceeded to fit the models’ parameters to

the kinetic data set generated in this study. Curve-

fitting and slope-based parameter estimates were in

line with the Vmax dependency over pH (Fig. 3), i.e.,

for most enzymes assayed, numerical deviations were

within the experimental confidence interval or within

25% of the experimental value at most. The exceptions

were PGM and GAPDH, where for GAPDH forward

and reverse reactions several computational estimates

increased at least by a factor of 2 relative to the slope-

based direct estimates (Fig. 3). The advantage of using

both Vmax and Km with our curve-fitting method,

instead of the slope-based method, becomes clear when

simulating the progression curves (Fig. 6). Only when

the information contained in the entire progression

(A) (B)

Fig. 4. Enzyme activities obtained for the lowest and highest pH under study and maximum enzyme activity of the glycolytic enzymes as a

function of pH. (A) Normalized enzyme activities for the lowest and highest pH are represented at dark and light blue, respectively (data

normalized to pH 6.8). (*) Represents missing values calculated by fitting the experimental data. (B) Maximum enzyme activity measured for

the enzymes under study. The color separates the enzymes by upper glycolysis (dark blue), lower glycolysis (light blue), and ethanol branch

(orange). Enzyme activities were estimated using the direct method. (A) and (B) represent data from 3 technical replicates and at least 2

cell-free extract dilutions (Fig. S1 and Table S2 in Supplementary material).
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curves was considered for the estimation of Vmax, and

Km was not constrained to the literature values, could

the data be accurately described for GAPDH and

PGM (Fig. 6, dark blue simulations).

pH fluctuations during carbon source transitions

have a minor influence on driving force

In reactions that generate or consume protons, pH

affects the ratio of the products over substrates at

which thermodynamic equilibrium is reached and

therefore the equilibrium constant. We estimated the

equilibrium constants for the reactions here studied for

pH values between 6 and 8, using the eQuilibrator

database [39]. The Keq from enzymes HXK, PFK,

GAPDH, PYK, and PDC showed a strong pH depen-

dence for this pH range (2.8-7.9 × 102 fold change).

However, this effect was relatively small in the range

of pH values observed across our carbon transitions

(2.4-14 fold change). Next, we investigated whether the

effect of pH on some of the Keq could influence the

estimation of the Vmax in our assays. We therefore

tested both pH-dependent and pH-independent Keq in

our models and estimated the Vmax for either scenario.

With the exception of HXK, the difference was barely

noticeable, with Vmax estimates differing by a maxi-

mum of 10% at higher pH values (Fig. 7). The mar-

ginal effect of Keq on the Vmax estimates results from

the experimental design of the reactions performed at

saturating concentrations of substrates and in the

absence of products at the starting of the assay. In this

way reactions were kept far from equilibrium, mini-

mizing the effect of Keq on the reaction rates. Alto-

gether the results confirm the proper design of the

enzyme kinetic assays for maximal activity measure-

ments, even though they highlight that pH dependency

on Keq should be included in future models for higher

accuracy.

ODE models reveal pH dependence of Vmax for

the enzyme enolase

Michaelis–Menten reactions also depend on Km, and

Km can depend on pH too. Although the experimental

setup was optimized for Vmax rather than Km determi-

nation, we tested whether the changes in enzyme activ-

ity could be explained by such changes in Km. To

assess this possibility, we used enolase as a case study

because the activity of this enzyme can be directly

measured by PEP production, without relying on cou-

pling enzymes and therefore reducing uncertainty in

the computational analysis. Our analysis confirmed

that the parameter Vmax changes with pH for the

enzyme enolase. The error between simulations and

experimental data is smaller when Km is estimated as a

pH-independent parameter and only Vmax is allowed

to change with pH (Fig. 8A, blue bar), when com-

pared to the condition where Km is estimated as a pH-

dependent parameter and Vmax is fixed (Fig. 8A,

orange bar). The same result can be seen in the pro-

gression curve fits (Fig. 8B).

Carbon source transitions promote a rapid

decrease in enzyme activity

In this work, we showed that glucose-adapted cells

undergo transient cytosolic acidification when glucose

is removed (Fig. 2B) and that changes in cytosolic pH

can potentially affect enzyme activities (Fig. 3). To

assess the possible effects on enzymes kinetics during

glucose dynamics, we extrapolated the changes in

enzyme activity from the pH dynamics of the first

feast/famine cycle (Fig. 9). Our results show that a

decrease in 0.7 pH units (from pH 7.1 to 6.4) can

potentially lead to a decrease of 83% activity for the

GAPDH forward reaction. In parallel, we observed an
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Fig. 5. Comparison of enzyme activities at physiological pH from

this and an earlier study. Enzyme activities were measured in cell-

free extracts of CEN.PK113-7D at pH 6.8 using the in vivo-like

buffer developed by Eunen [23] (light blue) and compared with the
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range of Keq observed in this study (gray-

shaded area, as low as pH 6.19). Dots

show the experimental data points. (C)

Effect of the different pH-independent Keq

values (from within the pH range 6.19–7.90)
on the Vmax.
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increase in activity of 40% for the GAPDH reverse

reaction during the removal of glucose. For most

enzymes under the study, glycolytic fluxes are

compromised during such artificial perturbation with

four out of ten enzymes exhibiting a decrease in activ-

ity above 60% (PGI, ALD, GAPDH, and ENO).
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Discussion

Glycolytic enzymes are strongly pH dependent:

consequences for the cell

pH is tightly controlled in yeast and simultaneously a

highly dynamic property of cell physiology [16,40]. In

this study, we used a glucose feast/famine setup as an

example of a dynamic environment that leads to fluc-

tuations in cytosolic pH. The drop in extracellular glu-

cose upon glucose removal leads to an acidification of

the cytosol (Fig. 2A), potentially leading to changes in

enzyme activities. Variations in intracellular pH in

budding yeast have been reported in several studies

[8,15,17,40–42] as a result of both natural and artificial

nutrient dynamics. Here we show that the catalytic

activity of the glycolytic enzymes is strongly pH

dependent, with different enzymes exhibiting distinct

degrees of sensitivity (Fig. 3) and optimal pH (Fig.

4B). Simultaneously, no clear cutoff in pH response by

upper and lower glycolysis emerged from our study

(Fig. 4B). Nonetheless, the large decrease in the

activity of GAPDH forward reaction upon glucose

depletion (83%) from pH 7.1 to 6.4 could contribute

to the previously described imbalance in glycolysis,

characterized by a transient accumulation of fructose

1,6-bisphosphate (F16BP) as upper glycolysis runs fas-

ter than the lower glycolysis. Depending on the genetic

background, this phenomenon can result in growth

arrest [42] and ultimately cell death [31,43]. The pre-

sent data identify the GAPDH forward reaction as a

potentially problematic step in dynamic pH regimes.

Cellular mechanisms involved in pH response

There are three potential effects that cytosolic pH

changes may have on enzyme activity: (a) changes in

enzyme conformation and stability; (b) changes in the

ratio of protonated/unprotonated forms of the reac-

tants; and (c) changes in enzyme concentration; or a

combination of those [44–46]. While the first two

mechanisms take place in a short time scale (seconds

to minutes), the last happens in a longer time scale [7].

Besides ADP (second pKa of 4.99), all compounds

Fig. 9. Simulated changes in enzyme activity during a feast/famine cycle. Enzyme activities (dark blue lines) were calculated by interpolating

the enzyme activities to changes in pH (orange lines) measured during the first feast/famine cycle (Fig. 2B). Plotted values correspond to

the mean values of the individual cell traces.
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used in the assays have a pKa far from the range of

pH we tested (https://chemaxon.com), indicating that

protonation and deprotonation will not be favored in

our experiments and the concentration of reactants is

fixed and pH independent. Additionally, possible

effects of product inhibition were accounted for by

considering reversibility and product concentrations in

the modeled systems. Altogether, this suggests that the

observed changes in enzyme activity must be enzyme

dependent. Those could be due to changes in enzyme

conformation, protein aggregation, or changes in the

protonation state of the active site, among others.

The curve-fitting method adds information

contained in the Km or Keq

The Vmax estimates obtained by the curve-fitting and

the slope-based direct method are, with few deviations

such as for GAPDH and PGM, in agreement (Fig. 3).

Here, a better fit was achieved by considering the

information contained in the entire progression curves

[36], including potential effects of pH on Km and Keq,

while Km was not constrained to literature parameters.

Furthermore, after implementing pH dependency on

the Keq, it was found that the exclusion of the pH

dependency on the Keq of HXK resulted in a deviation

of 10% of the enzyme activities (Fig. 7). Altogether,

this suggests that the curve-fitting method positively

complements the slope-based approach, which might

overlook the information contained in Km or Keq.

Including pH dependence in a full glycolysis

model could help to explain the response to

glucose dynamics

This work shows how intracellular pH changes in

response to the addition or removal of glucose and

how enzyme activities vary as a function of pH.

Enzyme sensitivities were found to vary widely, and

GAPDH, previously identified as a flux bottleneck in

glycolysis [42], showed the highest pH sensitivity in

our assays (Fig. 9). Therefore, our data suggest that

future models of glycolysis may need to consider the

pH dependencies of enzymes when studying dynamic

responses to sudden changes in glucose availability. So

far, none of the dynamic models available that studied

the cell response to a glucose pulse in yeast have

included the pH effect [22,24,25,42].

Since glycolytic enzymes are highly conserved

among Eukaryotes that follow the Embden-Meyerhof-

Parnas pathway [47], it is likely that the activity of

these enzymes is also constrained by pH across differ-

ent species [48]. Interestingly, pH dependency of

enzymatic constants Km and Vmax has been successfully

implemented in a complete skeletal muscle cell glyco-

genolysis model, showing the pH dependencies to be

necessary to reproduce the physiological kinetics and

equilibrium states [49,50].

Materials and methods

1. Glucose pulse experiment

In situ pHluorin calibration

pHluorin calibration was performed as described by Smits

et al. [8] with some modifications. CEN.PK2-1C (MATa;

his3Δ1; leu2-3112; ura3-52; trp1-289; MAL2-8c; SUC2) was

the strain used in the titration. Cells from a single colony

were cultivated in bath conditions at 30 °C and 200 rmp in

50 mL of minimal medium containing 6.8 g�L−1 Yeast

Nitrogen Base (Sigma-Aldrich, Stl. Louis, MO, USA),

20 mg�L−1 L-histidine (Sigma-Aldrich), 60 mg�L−1 L-

leucine (SERVA Electrophoresis GmbH, Heidelberg, Ger-

many), 20 mg�L−1 L-tryptophan (Sigma-Aldrich), 1% v/v

ethanol (VWR International, Radnor, PA, USA) and 1%

v/v glycerol (Sigma-Aldrich). The OD600nm of the culture

was adjusted to 1.5 with YNB buffer (containing 6.8 g�L−1

Yeast Nitrogen Base) to a final volume of 40 mL. Cells

were washed in 10 mL of the same buffer, followed by

1 min centrifugation at 4000 rpm at room temperature.

Cells were collected and resuspend in PBS 10 mM contain-

ing 100 µg�mL−1 of digitonin (150 µL of the solution was

used per OD600nm unit), followed by an incubation of

10 min at 30 °C to allow permeabilization. After incubation

cells were collected by centrifugation (5 min at 4000 rpm

and 4 °C) and resuspended in PBS 10 mM to an OD600nm =
1.5. The cell suspension was split into tubes (3 mL) and

centrifuged twice to collect the PBS (5 min, 4000 rpm fol-

lowed by 1 min, 4000 rpm at 4 °C). Cells were washed in

1 mL of citric acid/Na2HPO4 in a range of pH 4.86–8.41
(1 min, 4000 rpm at 4 °C) and resuspended in the same pH

buffer. For the titration, cells were diluted to an OD600nm =
0.55 in the final pH buffer, and fluorescence was measured

in a 96 well black polystyrene clear-bottom microplate

(Greiner Bio-One International GmbH, Kremsmünster,

Austria). 100 µL of the cell suspension was added per well.

Fluorescence excitation was provided at 390 and 470 nm

(10 nm bandwidth), and emission was measured at 510 nm

using a FLUOstar Omega microplate reader (BMG LAB-

TECH GmbH). The wild-type strain was used to correct

for background fluorescence. The ratio R390/470 was cal-

culated and plotted against the corresponding pH.

Glucose pulse

CEN.PK2-1C cells from a single colony were cultivated in

bath conditions at 30 °C and 200 rmp in YNB medium
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containing 6.8 g�L−1 Yeast Nitrogen Base, 20 mg�L−1 L-

histidine, 60 mg�L−1 L-leucine, 20 mg�L−1 L-tryptophan

and 10.2 g�L−1 potassium hydrogen phthalate (VWR Inter-

national) and supplemented with 111 mM galactose (Sigma-

Aldrich). The pH of the media was adjusted to 5 with

KOH (Sigma-Aldrich). Cells were diluted and collected in

mid-log phase for the pulse experiment. The glucose pulse

was performed by the addition of 111 mM glucose (final

concentration; Boom BV, Meppel, Netherlands) to the

galactose pregrown cells. Excitation at 390 and 470 nm

(10 nm bandwidth) was used and emission was measured at

510 nm in a FLUOstar Omega microplate reader. The

wild-type strain was used to correct for background fluores-

cence. The ratio R390/470 was calculated and converted to

pH based on the In situ pHluorin calibration above

described.

2. Feast/Famine experiment

In situ pHluorin calibration

For the calibration of the pH sensor, pHluorin cells of the

strain CENPK.113-5D (MATa, ura3-52, HIS3, LEU2,

TRP1, MAL2-8c, and SUC2) were grown in YNB media

supplemented with 1% v/v ethanol and 1% v/v glycerol.

For the permeabilization step cells were treated as men-

tioned in Section 1. Glucose pulse experiment, subsection

In situ pHluorin calibration. For the microscopy imaging,

cells were transferred to a Attofluor cell chamber (Thermo

Fisher Scientific, Waltham, MA, USA) containing a Conca-

navalin A (ConA) pretreated coverslip (solution made

accordingly by Hansen et al. [51]) and incubated for

30 minutes at 30 °C. Before imaging, cells were washed

twice with 1 mL of the appropriate pH buffer to remove

unattached cells and incubated in 1 mL of the same buffer

for imaging. Cells were imaged at 30 °C using a Nikon Ti-

eclipse widefield fluorescence microscope (Nikon, Minato,

Tokyo, Japan) equipped with an Andor Zyla 5.5 sCMOS

Camera (Andor) and a SOLA 6-LCR-SB power source

(Lumencor, Beaverton, OR, USA). Fluorescence was

recorded using 400/40 nm and 480/40 nm excitation filters,

and 505 nm long-pass and 535/50 nm emission filters (Sem-

rock, Lake Forest, IL, USA). Images were obtained with a

Plan Apo λ 100x Oil Ph3 objective (numerical aperture

1.45) using an exposure time of 50 ms and 7.6% of light

power. 4 × 4 binning was used to acquire images in the

fluorescent channels. Cell segmentation was performed with

an in-house macro using Fiji (NIH, Bethesda, MD, USA).

Microfluidics device and time-lapse microscopy

The strain CENPK.113-5D expressing pHluorin was used in

this experiment. Cells from a single colony were grown in

YNB medium supplemented with 100 mM glucose and

10.2 g�L−1 potassium hydrogen phthalate (pH adjusted to 5

with KOH) at 30 °C and 200 rpm. Cells were diluted and

collected in the mid-log phase to inject into a PDMS chip

attached to a ConA precoated coverslip. The PDMS chip

and ConA were prepared as described by Hansen et al. [51].

Two reservoirs containing YNB media with and without glu-

cose were connected to a mixing chamber, and the switch

between media was performed using a flow rate control mo-

dule (Maesflow, Fluigent). The flow rates were programmed

for an initial 2 hours in glucose followed by 5 minute cycles

switch between reservoirs. The feeding flow rate was adjusted

to 20 µL�min−1. Cells were imaged for 14 hours using the

microscopy specification described in Section 2. Feast/Fam-

ine experiment, subsection In situ pHluorin calibration. The

brightfield images were acquired without binning and using

10 ms of exposure time.

Cell segmentation and image analysis

Cell segmentation was performed using the brightfield

images and a custom in-house pipeline that uses convolu-

tional networks [52]. The segmentation was performed for

each time frame, and the results were used to extract the

fluorescence intensity from the fluorescent images. Data

were plotted in Python programming language.

3. Enzyme kinetics experiments

Growth conditions

CENPK.113-5D was the yeast strain used in this work.

Cells from a single colony were grown overnight at 200

rmp and 30 °C in a minimal medium containing 6.8 g�L−1

Yeast Nitrogen Base, 20 mg�L−1 L-uracil and 100 mM glu-

cose. Cells were later diluted in 200 mL of the same

medium and grown overnight in batch cultivation until

they reached 9 generations (mid-log phase).

Cell sampling

Cells were harvested by centrifugation (2500 rpm for

10 min at 4 °C), washed twice in 20 mL of 10 mM potas-

sium phosphate buffer containing 2 mM EDTA (Appli-

Chem GmbH, Darmstadt, Germany) at pH 7.5 (4500 rpm

for 5 min at 4 °C) and resuspended in 4 mL of the same

buffer 50 times more concentrated. The cell suspension was

split into 1 mL aliquots with OD600nm = 40, the equivalent

to a dry weight of 14 mg. The supernatant was removed

and the cell pellets snap-frozen in liquid nitrogen and kept

at −80 °C for further use.

Cell-free extract preparation

For each enzyme assay, a single-cell pellet was thawed,

washed in 1 mL of 100 mM phosphate buffer containing
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2 mM MgCl2 (Sigma-Aldrich) at pH 7.5 and resuspended in

an equal volume of the same buffer containing 1 mM 1,4-

Dithiothreitol (DTT; Sigma-Aldrich). The cell suspension

was transferred to a screw cap tube containing 750 mg of

acid-washed glass beads (particle size 425–600 µM; Sigma-

Aldrich) and lysed using a FastPrep-24 5G (MP Biomedi-

cals, Santa Ana, CA, USA). 8 bursts of 6 m�s−1 and 10 s

duration were applied to the samples. Between bursts, sam-

ples were kept on ice for at least 1 min. The lysates were

centrifuged for 15 min at 15000 rpm and 4 °C, and the

supernatant was collected for further use.

Protein determination

We used the BCA assay to measure the total amount of

protein in the cell-free extracts. The assay was performed

according to the specifications of the manufacturer (Pierce

BCA Protein Assay Kit, Thermo Scientific). At least two

dilutions of the cell-free extract were used to determine the

protein concentration in the sample. DTT was added to the

BSA standard to a final concentration of 1 mM to correct

for the presence of the compound in the cell-free extracts.

Enzyme kinetic assays

In the present work, we used the standardized in vivo-like

buffer developed by van Eunen et al. [23] which contains

300 mM potassium, 50 mM phosphate, 245 mM glutamate,

20 mM sodium, 2 mM free magnesium, 2.5–10 mM sulfate,

and 0.5 mM calcium at pH 6.8 (reference pH). The pH of

the buffer was adjusted by mixing a potassium phosphate

buffer (0.85–0.95 M potassium, 0.735 M glutamate, and

0.11 M phosphate) with sodium phosphate (0.51–0.99 M

sodium and 0.5 M phosphate) at different ratios. By doing

so, we achieved a range of pH from 6.19 to 7.9 and conse-

quently, a change in potassium and sodium composition in

the in vivo-like buffer by 11% and 48%, from the lowest to

the highest pH, respectively. The free magnesium concen-

tration in the assay was adjusted to 2 mM, considering the

presence of cofactors that bind to this ion (ATP, ADP,

NADP, NAD, and TTP). The in vivo-like assay medium

was stored at 4 °C, and the reaction mix was freshly pre-

pared. The total activity of the isoenzymes was measured

at saturating concentrations of substrate and relative to the

total amount of protein. The assays were performed

according to the reactions described by van Eunen et al.

[23], with the following exceptions: i) the activity of PFK

was measured in the absence of the activator fructose 2,6-

bisphosphate, no longer commercially available; 10 mM of

fructose 6-phosphate (F6P) was used as start chemical, as

described in a follow-up study by van Eunen et al. [53]; ii)

the activity of TPI was measured with 58 mM glyceralde-

hyde 3-phosphate (GAP, 10 times higher concentration), to

correct for possible substrate limitation in the reaction mix.

The enzyme activity was measured in triplicates and four

dilutions of the cell-free extract were tested per assay to

ensure linearity. From those, at least the data of two dilu-

tions were combined in the final analysis (Table S2). The

progression of the enzyme reactions was followed by

NADH decay or NADPH formation at 340 nm, or PEP

formation at 240 nm over time at 30 °C in a SpectraMax

Plus 384 (Molecular Devices LLC). The activity of the

enzyme mix without start chemical was measured for

5 min, and the rate was used to correct the reaction rate

after substrate addition.

In vitro reactions

In vitro reactions were supplemented with purified enzymes

and substrates as described below to ensure that every

enzyme tested was working at its full capacity. A schematic

representation is displayed in Figure 10.

Hexokinase (HXK, EC 2.7.1.1, forward direction): 1 mM

NADP, 10 mM glucose, 1 mM ATP, and 1.8 U�mL−1 glu-

cose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49).

Phosphoglucose isomerase (PGI, EC 5.3.1.9, forward

direction): 0.15 mM NADH, 1 mM ATP, 2.5 U�mL−1 phos-

phofructokinase (PFK, EC 2.7.1.11), 0.45 U�mL−1 ALD

(EC 4.1.2.13), 0.94 U�mL−1 Glycerol 3-phosphate dehydro-

genase (G3PDH, EC 1.1.1.8), 5.5 U�mL−1 TPI (EC

5.3.1.1), and 5 mM glucose 6-phosphate (G6P).

Phosphofructokinase (PFK, EC 2.7.1.11, forward direction):

0.15 mM NADH, 0.5 mM ATP, 10 mM F6P, 0.45 U�mL−1

ALD, 0.6 U�mL−1 G3PDH, and 1.8 U�mL−1 TPI.

Aldolase (ALD, EC 4.1.2.13, forward direction):

0.15 mM NADH, 2 mM F16BP, 0.6 U�mL−1 G3PDH, and

1.8 U�mL−1 TPI.

Triosephosphate isomerase (TPI, EC 5.3.1.1, forward

direction): 0.15 mM NADH, 58 mM GAP, and 8.5 U�mL−1

G3PDH.

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH,

EC 1.2.1.12, forward direction): 10 mM ADP, 1 mM NAD,

5.8 mM GAP, and 22.5 U�mL−1 3-phosphoglycerate kinase

(PGK, EC 2.7.2.3).

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH,

EC 1.2.1.12, reverse direction): 1 mM ATP, 0.15 mM NADH,

5 mM 3-phosphoglycerate (3PG), and 22.5 U�mL−1 PGK.

Phosphoglycerate mutase (PGM, EC 5.4.2.1, forward

direction): 10 mM ADP, 0.15 mM NADH, 1.25 mM 2,3-

diphospho-D-glyceric acid, 5 mM 3PG, 2 U�mL−1 enolase

(ENO, EC 4.2.1.11), 13 U�mL−1 pyruvate kinase (PYK, EC

2.7.1.40), and 11.3 U�mL−1 lactate dehydrogenase (LDH,

EC 1.1.1.27).

Enolase (ENO, EC 4.2.1.11, forward direction): 6 mM of

2-phosphoglycerate (2PG).

Pyruvate kinase (PYK, EC 2.7.1.40, forward direction):

10 mM ADP, 0.15 mM NADH, 1 mM F16BP, 2 mM PEP,

and 13.8 U�mL−1 LDH.
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Pyruvate decarboxylase (PDC, EC 4.1.1.1, forward direc-

tion): 0.2 mM TPP, 0.15 mM NADH, 50 mM pyruvate, and

88 U�mL−1 alcohol dehydrogenase (ADH, EC 1.1.1.1).

The GAPDH forward and ENO reactions were retrieved

from van Eunen et al. 2009 [53]. The PGM and PGI for-

ward reactions were retrieved from in-house protocols,

written by van Eunen.

Enzyme activity

The enzyme activities were calculated using Eqn (1) where

the term εNAD(P)H (cm−1.mM−1) × L(cm) was replaced by

Eqn (2) generated from a calibration curve. A similar

approach was used for the enolase Eqn (3).

½NADðPÞH� ðμmolÞ ¼ Abs� 0:0628

4:8365
(2)

½PEP� ðμmolÞ ¼ Absþ 0:008

1:223
(3)

Experimental determination of Vmax

The maximum enzyme activity or Vmax was experimentally

determined from the progression curves (initial measure-

ments while the concentration profiles changed linearly)

[32]. The background rate, in the absence of the start chem-

ical, was subtracted from the reaction rates. A conversion

factor was applied to correct for sample dilution (60 times

from the cell extract to the enzyme assay), and Vmax was

then expressed as µmol min−1 mg Protein−1. For all the

slope calculations, the size of the data set considered was

maximized as long as the R2-score of the regression

remained above 0.995. For some enzymes, estimated values
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Fig. 10. Coupled and direct enzyme assays were employed to measure the kinetics of glycolytic enzymes at different pH values. Thick

black arrows denote enzymes that were added in surplus. Annotated molecules indicate that the compound was externally added to the

reaction. Underlined molecules denote the metabolites whose concentration changes were measured through absorbance. HXK

(hexokinase), PGI (phosphoglucose isomerase), PFK (phosphofructokinase), ALD (aldolase), GAPDHF (glyceraldehyde 3-phosphate dehydro-

genase forward reaction), GAPDHR (glyceraldehyde 3-phosphate dehydrogenase reverse reaction), PGK (3-phosphoglycerate kinase), PGM
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Enzyme capacityðμmol:min�1:mgProtein�1Þ ¼ NADðPÞH consumptions ðs�1 � 60� dilution factorÞ
½Protein� ðmg:ml�1 � ϵNADHðcm�1:mM�1Þ � L ðcmÞ (1)

6033The FEBS Journal 289 (2022) 6021–6037 ª 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

L. Luzia et al. pH dependencies of glycolytic enzymes



at different dilution factors were not consistent between

dilutions. This was the case for TPI and PGI, but also

PDC and ALD to a lesser extent. To select which dilution

factors were to be considered (Table S2), we implemented a

semi-automated protocol. Briefly, Vmax were plotted against

the correspondent dilution factor and the data points out-

side the linear regime were discarded.

Kinetic models

Most glycolytic enzymes follow Michaelis–Menten kinetics

[32]. Assuming a constant concentration of enzyme,

excess of substrate, and absence of products, reversible

Michaelis–Menten kinetics can be described by the kinetic

parameters: Vmax, Km, and Keq [33]. The kinetic models

used in this work were based on ODEs. Each model,

referring to a specific reaction in glycolysis, was expressed

by a kinetic expression taken from van Heerden 2009

et al. [42]. Most assays consisted of a cascade of reac-

tions that include the coupling reactions and the reaction

under study (expressed as concatenated ODEs), with the

exception of the directly measured reactions for ENO

and GAPDH reverse direction. Parameter values were

retrieved from different sources. Vmax for the enzymes

here investigated were determined in this work. For the

coupling reactions, and since all enzymes were in excess,

Vmax from the literature [22] were increased three orders

of magnitude to avoid computational limitations. Km

were obtained from Smallbone et al. 2013 [25] and, when

not possible, supplemented with data from Teusink et al.

2000 [22] and van Heerden 2009 et al. [42]. Equilibrium

constants were retrieved from the eQuilibrator database

[21]. Reaction simulations were performed in Matlab

R2017b, and ODEs were manipulated using the tool

solver ode15s.

Computational estimation of Vmax

The analysis of the progression curves was here implemen-

ted to estimate the parameters Vmax and Km computation-

ally [34,36] and the experimental data was used to

reparameterize the ODE models generated. For each reac-

tion, a maximum likelihood estimation (MLE) problem

was generated considering the optimal cost function as the

difference between simulated and experimental data [54].

The sum of squared errors (SSE) problem was solved with

the lsqnonlin algorithm in Matlab 2017b. The initial

parameter values included the experimentally determined

values Vmax and Km from the literature. With the available

data, only Vmax value could be optimized for each pH

value. Km values were optimized as unique values for the

entire pH space. We observed dependency between the

Vmax and Km estimates for the enzyme PGM. Therefore, we

implemented a regularization factor to penalize deviations

in Km estimates from the literature values [55]. This

approach was added to the cost function to reduce the

solution space to a realistic region [37].

Estimating parameters as constant or changing with pH

To investigate whether Vmax and Km have an influence on

the data fitting, we estimated both parameters as pH

dependent and independent for the enzyme enolase. When

estimating one of the parameters as pH independent and

the data could not be fit, the parameter was considered as

pH dependent. Equilibrium constants have not been esti-

mated in this work. To assess their influence on Vmax esti-

mations, Keq was fixed to the respective values at the

reference pH 6.8 [55].

Software used for data analysis, model development, and

visualization

Python version 3.8.5 and R Core Team (2013) were used

for data analysis and visualization. R: A language and

environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. ISBN 3-900051-07-

0, URL http://www.R-project.org/. Matlab R2017b was

used for model development.
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19 Kukić P, Farrell D, Søndergaard CR, Bjarnadottir U,

Bradley J, Pollastri G, et al. Improving the analysis of

NMR spectra tracking pH-induced conformational

changes: removing artefacts of the electric field on the

NMR chemical shift. Proteins Struct Funct Bioinf.

2010;78:971–84.
20 Cornish-Bowden A. Fundamentals of enzyme kinetics.

4th ed. Wiley-Blackwell; 2012.

21 Flamholz A, Noor E, Bar-Even A, Milo R.

eQuilibrator–the biochemical thermodynamics

calculator. Nucleic Acids Res. 2011;40(D1):D770–5.
22 Teusink B, Passarge J, Reijenga CA, Esgalhado E, van

der Weijden CC, Schepper M, et al. Can yeast

glycolysis be understood in terms of in vitro kinetics of

the constituent enzymes? Testing biochemistry. Eur J

Biochem. 2000;267:5313–29.
23 van Eunen K, Bouwman J, Daran-Lapujade P,

Postmus J, Canelas AB, Mensonides FI, et al.

Measuring enzyme activities under standardized in vivo-

like conditions for systems biology. FEBS J.

2010;277:749–60.
24 van Eunen K, Kiewiet JA, Westerhoff HV, Bakker BM.

Testing biochemistry revisited: how in vivo metabolism

can be understood from in vitro enzyme kinetics. PLoS

Comput Biol. 2012;8:e1002483.

25 Smallbone K, Messiha HL, Carroll KM, Winder CL,

Malys N, Dunn WB, et al. A model of yeast glycolysis

based on a consistent kinetic characterisation of all its

enzymes. FEBS Lett. 2013;587:2832–41.

6035The FEBS Journal 289 (2022) 6021–6037 ª 2022 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

L. Luzia et al. pH dependencies of glycolytic enzymes



26 Garcı́a-Contreras R, Vos P, Westerhoff HV, Boogerd

FC. Whyin vivomay not equalin vitro- new effectors

revealed by measurement of enzymatic activities under

the samein vivo like assay conditions. FEBS J.

2012;279:4145–59.
27 Kumar DP, Tiwari A, Bhat R. Effect of ph on the

stability and structure of yeast hexokinase A acidic

amino acid residues in the cleft region are critical for

the opening and the closing of the structure. J Biol

Chem. 2004;279:32093–9.
28 Kinderlerer J, Ainsworth S, Morris CN, Rhodes N. The

regulatory properties of yeast pyruvate kinase. Effect of

pH. Biochem J. 1986;234:699–703.
29 Dickenson C, Dickinson F. A study of the pH-and

temperature-dependence of the reactions of yeast

alcohol dehydrogenase with ethanol, acetaldehyde and

butyraldehyde as substrates. Biochem J. 1975;147:303–
11.

30 Go MK, Koudelka A, Amyes TL, Richard JP. Role of

Lys-12 in catalysis by triosephosphate isomerase: a two-

part substrate approach. Biochemistry. 2010;49:5377–89.
31 Leemputte FV, Vanthienen W, Wijnants S, Zeebroeck

GV, Thevelein JM. Aberrant intracellular pH

regulation limiting glyceraldehyde-3-phosphate

dehydrogenase activity in the glucose-sensitive yeast

tps1D mutant. MBio, 11.

32 Berg JM, Tymoczko JL, Gatto GJ Jr. Lubert Stryer.

Biochemistry. 8th ed. Freeman Macmillan. p. 978–81.
ISBN-13.

33 Cornish-Bowden A, Hofmeyr J-HS. Enzymes in

context: kinetic characterization of enzymes for systems

biology. Biochemist. 2005;27:11–4.
34 Tummler K, Lubitz T, Schelker M, Klipp E. New types

of experimental data shape the use of enzyme kinetics

for dynamic network modeling. FEBS J. 2014;281:549–
71.

35 Zimmerle CT, Frieden C. Analysis of progress curves

by simulations generated by numerical integration.

Biochem J. 1989;258:381–7.
36 Nikolova N, Tenekedjiev K, Kolev K. Uses and

misuses of progress curve analysis in enzyme kinetics.

Cent Eur J Biol. 2008;3:345–50.
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Supporting information

Additional supporting information may be found

online in the Supporting Information section at the end

of the article.
Fig. S1. Enzyme capacities for the enzymes were tested

at different dilution factors. Color intensity indicates

the dilution factor (DF) of the cell-free extract. Four

dilution factors were tested for each enzyme.

Table S1. Parameters are measured by the direct and

curve-fitting approach. Enzyme capacities ( mol min−1.

mg Protein−1) are displayed for each pH value

assayed. Curve-fitting estimates (simulation, sim),

direct determinations (experimental, exp), difference

between curve-fitting estimates, and direct determina-

tions, in percentage (diff).

Table S2. Dilution factors were selected for Vmax esti-

mation for each enzyme and pH. Dilution factors

range from 1 to 32.
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