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Summary

Interconnected systems are omnipresent. The role of such systems in modern time
becomes increasingly important, with examples including power networks, net-
works in systems biology, economic systems and chemical plant networks. From a
control point-of-view, the ultimate goal is to influence an interconnected system
such that it achieves a desired closed-loop performance or prescribed behavior.
Models are typically not directly available for such systems, while data can be col-
lected with increasing ease. Moreover, commonalities of interconnected systems,
such as geographically distributed systems and a high dimension, impose restric-
tions on the controller synthesis and data collection. The challenge considered in
this thesis is the use of data for the modeling and control of an interconnected
system in a scalable manner with optimal or guaranteed control performance in
some well-defined sense.

Non-centralized controllers, such as distributed controllers, yield the advan-
tage of a non-classical communication pattern together with structured controller
dynamics. We consider three main research problems in this thesis, connecting
data of an interconnected system to distributed controller design. The first prob-
lem is to develop data-driven methods for modeling an interconnected system
with the aim of distributed controller design. Then, the problem of synthesiz-
ing a distributed controller directly on the basis of data is considered, omitting
the modeling of the underlying interconnected system. Finally, the problem of
determining whether data are informative for distributed controller design with
stability and performance guarantees is considered.

Provided the typical model-based nature of distributed controller synthesis
methods, new modeling problems become apparent for identifying dynamical
systems that are part of an interconnected system. These problems are related
to local required model information, the distribution of identification with respect
to an information pattern, and the orientation of identification towards a control-
performance metric. In this thesis, it is shown how the data-driven modeling of
linear interconnected systems in a closed-loop configuration can be performed by
dynamic network identification. Further, results have been developed to perform
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control-oriented identification of dynamic networks with respect to H2 perfor-
mance criteria. Optimally, the control-oriented identification corresponds with
a multi-input-multi-output prediction-error identification problem with external
predictor inputs and internal predictor outputs. To allow for decentralized data
collection and distributed estimation of model parameters, this thesis provides
a solution to the distributed identification problem. For the corresponding dis-
tributed H2 controller synthesis problem, convex synthesis conditions have been
developed, allowing for a scalable controller design.

Omitting the modeling step in the intertwined identification and control prob-
lem, leads to a data-driven philosophy for control, called direct data-driven con-
trol. This philosophy is particularly interesting for the control of interconnected
systems, due to the complex model structures. In this thesis, we make the step
from the well-established field of centralized direct data-driven control to dis-
tributed direct data-driven control. The development is based on the model-
reference paradigm, utilizing a structured reference model that describes desired
characteristics for the interconnected system. We introduce the notion of an
ideal distributed controller that implements the structured reference model ex-
actly. Two methods are provided for distributed direct data-driven controller
synthesis via dynamic network identification, enabled by either tailor-made noise
modeling or local controller identification in an auxiliary network.

Informativity is a fundamental property in data-driven control and identifi-
cation of interconnected systems. The concept of informativity allows the use of
data that is not necessarily persistently exciting of a sufficient order for identifi-
cation, but is informative enough for, e.g., stabilization or performance-oriented
controller synthesis. Conditions for informativity for linear systems with exact
data and disturbed data with quadratic noise bounds have been studied in the
literature. In this thesis we study informativity of data from interconnected
systems for the synthesis of stabilizing distributed controllers and H2/H∞ per-
formance specifications. Alternative to data with quadratic noise bounds, we
investigate informativity with a different prior knowledge on the noise, in the
form of cross-covariance bounds. Comprehensive solutions are provided for de-
termining informativity of data for (distributed) control and for the synthesis of
distributed controllers from noisy data with guaranteed H2 or H∞ performance.



Notation and symbols

x> transpose of vector x

I identity matrix

1 column vector of all ones

0 zero, zero vector, zero matrix

A−1 inverse of matrix A

A> transpose of matrix A

rank(A) rank of matrix A

trace(A) trace of matrix A

imA image of matrix A

kerA kernel of matrix A

A⊥ basis matrix of kerA

in−A number of negative eigenvalues of real symmetric matrix A

in0A number of zero eigenvalues of real symmetric matrix A

in+A number of positive eigenvalues of real symmetric matrix A

inA inertia of real symmetric matrix A, i.e., (in−A, in0A, in+A)

diag(A1, . . . , Am) block-diagonal matrix with matrices A1, . . . , Am on its diagonal

col(A1, . . . , Am) matrix that vertically stacks matrices A1, . . . , Am

row(A1, . . . , Am) matrix that horizontally stacks matrices A1, . . . , Am

diaga∈AAa block-diagonal matrix with matrices Aa, a ∈ A, on its diagonal

cola∈AAa matrix that vertically stacks matrices Aa, a ∈ A
rowa∈AAa matrix that horizontally stacks matrices Aa, a ∈ A
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Aij the (i, j)-th entry of matrix A

A � 0 matrix A is positive definite

A � 0 matrix A is positive semi-definite

A ≺ 0 matrix −A is positive definite

A � 0 matrix −A is positive semi-definite

R the set of real numbers

R≥0 the set of non-negative real numbers

R>0 the set of positive real numbers

Rn set of vectors with n real entries

Rn×m set of n×m matrices with real entries

Sn×n set of n× n symmetric matrices with real entries

Z the set of integer numbers

N the set of non-negative integer numbers

N>0 the set of positive integer numbers

Z[a:b] the set Z ∩ [a, b] for a < b, a ∈ Z, b ∈ Z

B \A the relative complement of set A with respect to set B

|A| the cardinality of set A

‖x‖ Euclidean norm of a a vector x ∈ Rn

`m2 set of all Lebesgue measurable functions d : N→ Rm

Lm2 set of all Lebesgue measurable functions d : R→ Rm

‖d‖`2 `2 norm of d ∈ `m2
‖d‖L2

L2 norm of d ∈ Lm2
‖Σ‖H2

H2 norm of asymptotically stable system Σ

‖Σ‖H∞ H∞ norm of asymptotically stable system Σ

deg(F ) Degree of a polynomial function F

∆ deg(F ) Relative degree of a rational function F



Contents

1 Introduction 1
1.1 Interconnected systems – taking control . . . . . . . . . . . . . . . 1
1.2 Challenges in control of interconnected systems . . . . . . . . . . . 7
1.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Decentralized control . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Distributed control . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Distributed identification and estimation . . . . . . . . . . . 12
1.3.4 Data-driven control and informativity for control . . . . . . 14

1.4 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Design of a distributed controller through data-driven mod-

eling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Design of a distributed controller directly on the basis of

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.3 Data-based conditions for the existence of a distributed

controller with guaranteed performance . . . . . . . . . . . 19
1.5 Overview of contents . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Summary of publications . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7 Other publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

I Network identification and distributed control 29

2 Control-oriented identification of dynamic networks 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Dynamic network and distributed controller . . . . . . . . . 33
2.2.2 Closed-loop network dynamics . . . . . . . . . . . . . . . . 35
2.2.3 State-space representation . . . . . . . . . . . . . . . . . . . 36

2.3 Network identification in the presence of distributed control . . . . 36
2.3.1 Direct method . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



x Contents

2.3.2 Indirect method . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3 Tailor-made parametrization . . . . . . . . . . . . . . . . . 42

2.4 Network identification for distributed control . . . . . . . . . . . . 43
2.4.1 Control-oriented identification problem . . . . . . . . . . . . 43
2.4.2 Exact modeling . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.3 Approximate modeling . . . . . . . . . . . . . . . . . . . . . 46
2.4.4 Iterative identification and controller design . . . . . . . . . 48

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Appendices 51
2.A Derivation of a state-space representation . . . . . . . . . . . . . . 51

3 Distributed identification in dynamic networks 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Concepts from Lyapunov theory . . . . . . . . . . . . . . . 56
3.3 Identification in dynamic networks . . . . . . . . . . . . . . . . . . 57

3.3.1 Direct method in dynamic network identification . . . . . . 58
3.3.2 Recursive least squares . . . . . . . . . . . . . . . . . . . . . 60

3.4 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Distributed estimation algorithm . . . . . . . . . . . . . . . . . . . 62
3.6 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6.1 Central recursive LSE . . . . . . . . . . . . . . . . . . . . . 65
3.6.2 Distributed recursive estimator . . . . . . . . . . . . . . . . 66
3.6.3 Network conditions . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Appendices 73
3.A Proof of Theorem 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.B Proof of Theorem 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.C Proof of Proposition 3.6.1 . . . . . . . . . . . . . . . . . . . . . . . 75

4 Scalable distributed H2 and H∞ controller synthesis 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Dissipative interconnected systems . . . . . . . . . . . . . . 81
4.2.2 Interconnected-system analysis . . . . . . . . . . . . . . . . 82

4.3 Distributed H2 and H∞ controller synthesis . . . . . . . . . . . . 83
4.3.1 H2 conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 H∞ conditions . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.3 Distributed H2 controller existence conditions . . . . . . . 86



Contents xi

4.3.4 Decentralized H2 controller existence conditions . . . . . . 89
4.3.5 Distributed H∞ controller existence conditions . . . . . . . 91
4.3.6 Controller construction . . . . . . . . . . . . . . . . . . . . 91

4.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.1 Triangle network (L = 3) . . . . . . . . . . . . . . . . . . . 94
4.4.2 Large-scale network (L = 218) . . . . . . . . . . . . . . . . 95
4.4.3 Computation times . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendices 99
4.A H2-norm analysis results . . . . . . . . . . . . . . . . . . . . . . . . 99
4.B Proof of Proposition 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . 101
4.C Closed-loop scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.D Definition H∞ norm . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.E Controller reconstruction details . . . . . . . . . . . . . . . . . . . 103

5 Distributed control in a behavioral setting 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.1 Control in a behavioral setting . . . . . . . . . . . . . . . . 110
5.3 Control of interconnected systems . . . . . . . . . . . . . . . . . . . 110

5.3.1 Plant interconnections . . . . . . . . . . . . . . . . . . . . . 110
5.3.2 Distributed control problem . . . . . . . . . . . . . . . . . . 112

5.4 Canonical distributed controller . . . . . . . . . . . . . . . . . . . . 114
5.5 Regularity of the canonical distributed controller . . . . . . . . . . 117

5.5.1 Regularity of the plant-controller interconnection . . . . . . 118
5.5.2 Regularity of the interconnection of local canonical controllers119

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

II Distributed data-driven model-reference control 125

6 Distributed model-reference control of interconnected systems 127
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3 Ideal distributed controller synthesis . . . . . . . . . . . . . . . . . 132
6.4 Properness and stability: analysis . . . . . . . . . . . . . . . . . . . 134

6.4.1 Properness of an ideal distributed controller . . . . . . . . . 135
6.4.2 Stability of an ideal distributed controller . . . . . . . . . . 136

6.5 Properness and stability: synthesis . . . . . . . . . . . . . . . . . . 137
6.5.1 Interconnection variable transformation . . . . . . . . . . . 137



xii Contents

6.5.2 Synthesis of a structured reference model: existence of a
proper ideal distributed controller . . . . . . . . . . . . . . 139

6.5.3 Synthesis of a structured reference model: existence of a
stable ideal distributed controller . . . . . . . . . . . . . . . 141

6.6 Reference model synthesis from performance specifications . . . . . 144
6.6.1 Networks with minimum-phase and stable plants . . . . . . 144
6.6.2 Networks with non-minimum-phase plants . . . . . . . . . . 146

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Virtual reference feedback tuning in dynamic networks 149
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2.1 Dynamical network and distributed controller . . . . . . . . 151
7.2.2 Distributed model-reference control . . . . . . . . . . . . . . 153

7.3 Distributed virtual reference feedback tuning . . . . . . . . . . . . 154
7.3.1 Virtual reference generation . . . . . . . . . . . . . . . . . . 154
7.3.2 Identification of the ideal distributed controller in a virtual

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.4 VRFT: a tailor-made noise model for consistent estimation . . . . 159

7.4.1 Modeling H̄d directly . . . . . . . . . . . . . . . . . . . . . . 160
7.4.2 Tailor-made noise model with prediction-error filtering . . . 161

7.5 Distributed VRFT in dynamic networks: consistent estimation . . 163
7.6 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.6.1 9-systems network (DVRFT) . . . . . . . . . . . . . . . . . 166
7.6.2 2-systems network (DVRFT + noise modeling) . . . . . . . 169

7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Appendices 173
7.A Instrumental lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.B Proof of Theorem 7.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.C IV approach to DVRFT . . . . . . . . . . . . . . . . . . . . . . . . 176

8 Distributed controller identification for data-driven model-reference
control 179
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.4 Distributed optimal controller identification . . . . . . . . . . . . . 186

8.4.1 Transformed network dynamics . . . . . . . . . . . . . . . . 186
8.4.2 Direct method for controller identification . . . . . . . . . . 187
8.4.3 Indirect method for controller identification . . . . . . . . . 191

8.5 Dealing with a coupled reference model . . . . . . . . . . . . . . . 194



Contents xiii

8.6 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

III Distributed data-driven control with guarantees 201

9 Guaranteed H∞ performance analysis and distributed control
from noisy input-state data 203
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.3 Inferring system performance

from noisy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9.4 Interconnected system analysis . . . . . . . . . . . . . . . . . . . . 209
9.5 Distributed controller synthesis from data . . . . . . . . . . . . . . 211
9.6 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . 214

9.6.1 Example 1: H∞-norm analysis . . . . . . . . . . . . . . . . 214
9.6.2 Example 2: Distributed H∞ controller synthesis . . . . . . 215

9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Appendices 219
9.A Proof of Lemma 9.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.B Definition scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

10 Data-informativity for control: ellipsoidal cross-covariance noise
bounds 221
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
10.2 Input-output data: cross-covariance bounds . . . . . . . . . . . . . 223

10.2.1 Cross-covariance noise bounds . . . . . . . . . . . . . . . . 223
10.2.2 Output-feedback control . . . . . . . . . . . . . . . . . . . . 225

10.3 Informativity for stabilization . . . . . . . . . . . . . . . . . . . . . 226
10.3.1 Informativity of input-output data . . . . . . . . . . . . . . 226
10.3.2 Informativity of input-state data . . . . . . . . . . . . . . . 228

10.4 Including performance specifications . . . . . . . . . . . . . . . . . 230
10.5 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

11 Data-informativity for control: polyhedral cross-covariance noise
bounds 237
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
11.2 Polyhedral cross-covariance bounds . . . . . . . . . . . . . . . . . . 239
11.3 Informativity for feedback stabilization . . . . . . . . . . . . . . . . 244

11.3.1 ΣR(U−,X) is an unbounded polyhedron . . . . . . . . . . . . . 245



xiv Contents

11.3.2 ΣR(U−,X) is a bounded polyhedron . . . . . . . . . . . . . . . 247
11.4 Including performance specifications . . . . . . . . . . . . . . . . . 249
11.5 Approximating ΣR(U−,X) by an ellipsoidal superset . . . . . . . . . . 252

11.5.1 Finding the smallest superset Σ̄R(U−,X) ⊇ ΣR(U−,X) . . . . . . 254

11.5.2 A practical approach to determine Σ̄R(U−,X) ⊇ ΣR(U−,X) . . . 254

11.5.3 Variable superset Σ̄R(U−,X) ⊇ ΣR(U−,X) . . . . . . . . . . . . . 255
11.6 Data-based analysis of interconnected systems with cross-covariance

bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
11.6.1 Network cross-covariance bounds . . . . . . . . . . . . . . . 259
11.6.2 Data-based network analysis with cross-covariance bounds . 260
11.6.3 Data-based distributed controller design with cross-covariance

bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
11.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

12 Conclusions and future perspectives 265
12.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
12.2 Future perspectives and extensions . . . . . . . . . . . . . . . . . . 268

Bibliography 271

Acknowledgments 286

Curriculum Vitae 287



Chapter 1

Introduction

1.1 Interconnected systems – taking control

Think about any device around you that is electrical or mechanical. Likely, this
device consists of several interconnected components or is interconnected with
one or multiple other devices. In the current era of technology, it is hard to
imagine a world without complex technological systems that enhance our society.
Be it the power generators feeding the electricity grid, irrigation systems that
serve the demand for water in growing crops, or our mobile phone that allows
us to connect to any other device connected to the internet. Even the room in
our office is a system that is interconnected to other systems: walls of adjacent
rooms transfer energy according to the second law of thermodynamics.

When we mention a system, we have to describe what we mean by this notion.
Various (formal) definitions of a system can be given. On a high level, a system
is an object to which variables are associated, room temperatures for example,
that influence each other, i.e., variables that interact. Some of these variables
can be observable, while other variables can be influenced. These variables may
be called respectively outputs and inputs. When a variable, not necessarily an
input or output, is associated with multiple systems, an interaction between the
systems occurs, naturally. We say that the systems are interconnected. At this
point, we do not formalize the notion of interconnected systems further. Instead,
we discuss a couple of examples of such systems.

Example 1.1 (Power networks). A power network consists of systems that
consume and/or produce electrical energy and are interconnected through power
transmission lines. In a classical power network, electrical energy is produced in
central power stations, such as coal-fired power stations, nuclear power plants or
hydro-electric power stations. Energy is consumed by the private and industrial

1



2 Chapter 1. Introduction

sectors that have loads connected to the power grid. In this way the classical
power grid can be seen as one-way pipeline, where the source (power station) has
no real-time information about the termination points (consumers) (Farhangi,
2010). The classical power network is undergoing a rapid transformation. This
transformation is partially induced by the integration of renewable energy sources,
leading to distributed power consumption, storage, and generation by small-scale
resources (Farhangi, 2010) (Figure 1.1).

The transition from a classical power network to a power grid with distributed
power generation, storage and consumption (smart grid), forms a technological
challenge and offers opportunities at the same time. Indeed, the uni-directional
nature, over-engineered properties and low efficiency of the existing power grid
can be improved (Farhangi, 2010). These changes, however, can affect the syn-
chronous stability of the power network, i.e., the ability to recover a synchronous
frequency in the event of a disturbance (Tegling, 2018). The frequency is of main
importance in the power network. It is a variable that is associated with each
system in the power grid and has to be close to a nominal value, e.g. 50 Hz,
for safe and reliable operation of the grid. A change in frequency at one node
propagates through a power network, as the nodes are (indirectly) coupled through
their frequency and corresponding phase.

own electricity use. In other words, if a grid is not transactive,
it is not a smart grid.

But what are the likely outcomes if we invest in such smart
grid technology, but retain our historic method of regulating
retail prices?

Smart technology, dumb pricing

The GridWise Olympic Peninsula project and others suggest
that smart technology and dumb pricing will nullify most of
the potential consumer and system benefits of smart grid
technology. Achieving the potential value creation from
transactive end-use technology also requires enabling
consumers to choose how much price volatility they are willing
to accept, knowing that they have technology to manage their
price responsiveness autonomously. At a minimum,
transactive technologies require dynamic retail pricing if these
innovations are to create value for consumers. Without
dynamic pricing, the power system will fail to deliver efficiency
and value to consumers. The ‘one size fits all’ of regulated and
fixed retail rates is obsolete because of technological,
institutional, regulatory and cultural changes that have created
a diversity of products and services that the electricity industry
can profitably sell to consumers. Dynamic pricing is necessary
to maximise the value of technological innovation and other
market reforms that characterise the most valuable, flexible
and resilient power system; dynamic pricing also is, in and of
itself, a valuable step in producing efficient and fair electricity
markets.

Dynamic pricing, product differentiation and
complementary technologies are the foundation of achieving
decentralised co-ordination in the electric power industry.
They bring timely information to consumers and enable them

to participate in retail market processes; they also enable
retailers to discover and satisfy the heterogeneous preferences
of consumers, all of whom have private knowledge that is
unavailable to firms and regulators in the absence of such
market processes. Institutions that facilitate this discovery
through dynamic pricing and technology are crucial for
achieving decentralised co-ordination. Thus retail
restructuring that allows dynamic pricing and product
differentiation, that does not stifle the adoption of digital
technology, and that reduces retail entry barriers is necessary
if this value-creating decentralised co-ordination is to happen.

More generally, transactive end-use technologies make
retail competition more feasible and beneficial. The inverse
is also true: competitive retail electricity markets will be a
platform for unleashing entrepreneurial creativity to enable
consumers to get the most out of these technologies, and
future ones that we cannot yet even imagine. The vibrant
innovation in consumer electronics in the past 15 years
illustrates this technology-institutions symbiosis that leads
to consumer benefits and economic growth.

The present and future of the
electricity system

These technological and institutional innovations would
have implications beyond the individual consumer. Consider
the electric power network as a system of interconnected
individuals and physical assets. Historically, the technology,
economics and business model in the industry has been a
linear value chain with substantial homogeneity among
the agents in the network, and with the delivery of value
being uni-directional – the sale of generated electricity to
end-use consumers. As Figure 1 suggests, technological
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Control centre
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Energy storage

Houses

Solar power

Hospital
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(with hydrogen-car
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Apartment
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Figure 1: The future smart grid value network
Sources: The Economist, ABB
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Figure 1.1: A smart grid is an electrical network that consists of renewable energy
sources, traditional power plants, energy storage and users that consume and/or
produce energy. Image adapted from (Kiesling, 2010).

Example 1.2 (Irrigation networks). Withdrawal of water from surface and
groundwater resources for irrigation currently accounts for 70% of all global water
withdrawals (Nations, 2021). Efficient use of water in irrigation is therefore of
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paramount importance. An irrigation network serves the transportation of water
from reservoirs to farms through an infrastructure of open-water channels, illus-
trated in Figure 1.2. In large-scale irrigation networks, the distribution of water
in an irrigation network is typically performed under gravity (Cantoni et al.,
2007). The flow of water in the network is controlled by gates, for example over-
shot gates (depicted in schematic form in Figure 1.3). An open-water channel in
the network can be interpreted as a series of water pools that are linked through
the control gates.

Water losses in irrigation networks occur due to seepage and evaporation,
but are mainly due to oversupply, resulting in spillage along, and at the end of,
open water channels (Cantoni et al., 2007). Efficient operation of the network
therefore requires that water levels along a channel remain close to reference set
points, depending on the demand. The actuation of an upstream gate does not
only influence the water level of a downstream pool. Indeed, also the water level
of the upstream pool is influenced, leading to an interaction of the pools (systems)
in the network.

Reservoir

Farm

Farm

Farm

Farm

Main channel

Secondary channel

Gate

Figure 1.2: Top view of an irrigation network, illustrating the distribution of
water through a network of channels and gates.

The urge to understand and influence systems that are around us, either
natural or synthetic, has been part of human society for as long as we are aware
of. This has brought laws of physics, understanding of the human body and
the development of man-made systems currently running our society. The verb
understand is intrinsically coupled with the verb model. In everyday life, we
model the world around us in order to interact with it; we implicitly create a



4 Chapter 1. Introduction

model of a conversation partner to predict his/her response, we implicitly create
a model of our keyboard to hit the right key when we type and we model our
surroundings when we cycle to avoid the collision with a tree.

Modeling systems explicitly requires a systematic approach. For example,
modeling dynamical systems by a graphical model, e.g., a typical time trajec-
tory or frequency function, is widely accepted for design purposes (Ljung, 1999).
For systems that are too complex to be modeled graphically, a mathematical
model may be necessary. Mathematical models describe relations among sys-
tem variables by mathematical expressions. For models of dynamical systems,
these mathematical models typically consist of a set of difference or differential
equations. Paramount mathematical models in the systems and control field are
polynomial models (Ljung, 1999), (Hannan and Deistler, 1987), transfer function
models (Ljung, 1999), state-space models (Franklin et al., 2020) and behavioral
models (Polderman and Willems, 1998), each of which has its own advantages
and applications.

Modeling an interconnected system is a special and important case of math-
ematical modeling. Besides a set of mathematical expressions that model the
dynamics, a graphical representation models the structure of the interconnected
system (not to be confused with a graphical model, described in the previous
paragraph). A graph consists of vertices and edges. Depending on the repre-
sentation, vertices can represent variables and edges can represent dynamical
relations, or vice versa. For linear interconnected systems, one such model is a
(module) dynamic network model, defined as an interconnection of signals, rep-
resented by vertices, which are coupled through transfer functions (modules),
represented by edges (Van den Hof et al., 2013). Another type of interconnected
system model is given by the interconnection of (linear) state-space models, repre-
sented by vertices, and interconnection variables, represented by edges (Langbort
and D’Andrea, 2003). Both representations will be used in the sequel. Since the
latter can be equivalently represented by a dynamic network, and vice versa,
let us now exemplify the modeling of an interconnected systems by a dynamic
network model.

Example 1.3 (Irrigation network (continued)). Let us consider an example
of and irrigation network with three pools connected in series, as depicted in
Figure 1.3. Each pool has a water level wi, i = 1, 2, 3. The gate that is upstream
for pool i yields a flow which, after a change of variables, results in a measure of
the flow over gate i, ui say. For the second pool, the flow over gate 2 influences
both w2 and the water level of the upstream pool, w1. A first-order model for the
continuous time dynamics for the water level in the first pool is (Cantoni et al.,



1.1. Interconnected systems – taking control 5

2007)

α1
d

dt
w1(t) = u1(t− τ1)− u2(t) + v1(t), t ∈ R,

where α1 is a measure of the pool surface area, τ1 is a delay associated with the
time before the water reaches the point where the water level is measured and v1 is
a disturbance that represents, e.g., seepage and evaporation. A dynamic network
model for the three pools is illustrated in Figure 1.4, where the interaction between
w1, u1 and u2 is represented by the blue modules (transfer functions) G1 and G12.
Following a similar derivation for the other modules leads to all links represented
by the blue modules.

w1

w2

w3

u2

w1

u1

u3

u1

C1

r1

w2u2

C2

r2

w3u3

C3

r3

flow

Figure 1.3: A controlled irrigation channel with decentralized controllers.

u1 w1G1 u2G12 w2G2 u3G23 w3G3

C1 C2 C3

v1 r̄2 v2r̄1 r̄3 v3

Figure 1.4: A controlled irrigation channel from a dynamic-network perspective.

Example 1.4 (Power networks (continued)). The synchronization of fre-
quencies in a power network is commonly studied through a model that consists
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of coupled swing equations, describing the behavior of the phase angle θi and fre-
quency d

dtθi = ωi of N synchronous generators. Under simplifying assumptions,
the linearized swing equation for generator i can be written as (Dörfler et al.,
2013), cf. (Tegling and Sandberg, 2017)

mi
d2

dt2
θi(t) + bi

d

dt
θi(t) = ui −

∑
j∈Ni

kij(θi(t)− θj(t)), t ∈ R,

where mi and bi are inertia and damping coefficients, respectively. The coupling
is defined by coefficients kij, denoting the susceptance of the transmission line
between node i and a node j in Ni, the set of neighbours, and ui denotes the
mechanical power supplied to/withdrawn from the network. This power network
model has a mechanical analogue describing the motion of masses interconnected
by springs that are moving along a circle (Dörfler et al., 2013), as depicted in
Figure 1.5 on the left. A dynamic network model for the power network, where
the interaction between θ1, θ2 and θ3 is represented by the modules (transfer
functions) Gij, is shown in Figure 1.5 on the right (ūi is a filtered version of ui).

θ̇1θ̇2

θ̇3

k12

k23

k13

θ1

θ2 θ3

ū1

ū2 ū3

G12

G21

G31

G13

G32

G23

Figure 1.5: A mechanical analogue of the coupled swing equations (left) and a
power network from a dynamic-network perspective (right).

By influencing a system, we change its behavior. To influence a system,
additional dynamical laws are imposed on the variables; dynamics are added.
From this point of view, adding a controller to a system is nothing but attaching
another system, i.e., adding additional relationships between variables. A com-
mon and important type of controller is a centralized controller; a controller with
unstructured/lumped dynamics. Such a control architecture can be perfectly
suitable for systems that are ‘simple’, in the sense that there are, for example, a
manageable number of system variables or that the systems are not geographi-
cally distributed. However, for more complex systems this architecture can lead
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to an impractical communication architecture, or even infeasibility. Structured
controllers can overcome this culprit.

Consider for example the irrigation channel in Figure 1.3. We can add three
systems Ci, i = 1, 2, 3, to the interconnected system (cf. (Cantoni et al., 2007)),
each of which opens or closes gate i, depending if the water level wi is too low or
too high, respectively. Albeit in rudimentary form, this controller is a structured
controller with a structure that is decentralized. If gate i is not only actuated
based on wi, but also on wi+1, additional (dynamical) relationships have to be
imposed: the controllers are interconnected. This leads to a distributed controller.
Centralized, distributed and decentralized controller architectures are exemplified
in Figure 1.7. In the design of a distributed and decentralized controller, a
controller is designed for meeting a given control objective while also considering
the structure of the interconnected system. This is the essence in control of
interconnected systems.

1.2 Challenges in control of interconnected sys-
tems

In order to design a controller for an interconnected system that meets desired
control objectives, knowledge of the system is crucial. This knowledge can con-
sist of the structure of the interconnected system, the dynamical relationships
between variables, or both. With the increasing complexity of interconnected
systems, such as power networks, the corresponding models become increasingly
complex.

While one trend in the technological development of interconnected systems
is the increase in complexity, another major trend is the increase in ease of access
to information. Sensors are becoming less expensive and continuously improve
in accuracy. With the classical power network having a few sensors, a smart grid
contains sensors throughout (Farhangi, 2010). Clever use of the information pro-
vided by these sensors for obtaining the required knowledge of an interconnected
system is a huge challenge that has lead to research problems in, for example,
system identification, machine learning, systems biology, econometrics and con-
trol.

The main challenge in the control of interconnected systems is to deal with the
complexity of the system and to determine how data can be used for the controller
design. If a model of the interconnected system is not available, which data, e.g.
sensor measurements, are required to obtain the required model information?
If the structure of the interconnected system is not (completely) known, can it
be deduced from the data? Is a complete model of the interconnected system
actually necessary for the design of a decentralized/distributed controller?
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To illustrate fundamental challenges in the use of data for control of intercon-
nected systems, let us consider a simple version of the dynamic network discussed
in Example 1.3 shown in Figure 1.6. Contrary to the ‘downstream’ irrigation net-
work, an additional link may be present between u1 and w2. The decentralized
control architecture in this scheme was originally considered in (Gudi and Rawl-
ings, 2006) with G12 = 0, cf. (Van den Hof et al., 2018). Suppose the interaction
dynamics G21 (depicted in green) have to be derived from data. Which signals
in the scheme have to be measured? Do the controller dynamics need to be
known? What conditions on the data have to be satisfied to obtain a meaningful
model? These questions are all indirectly relevant to the controller design, since
any modeling error can propagate in the design process and reduce the achieved
performance of the synthesized controller.

C1 u1 G1 w1

C2 u2 G2 w2

G21

G12

r1

r2

v1

v2

Control loop 1

Control loop 2

Figure 1.6: Two interconnected control loops.

Practically speaking, modeling errors are unavoidable. Data can be corrupted
due to noise in the measurements, a limited number of data is available or the
model is not ‘rich’ enough to capture all the dynamics of the system. Such a
practical situation poses additional challenges in the design of a performance-
oriented decentralized/distributed controller. Indeed, if a consistent estimate
cannot be obtained from data, then what is the ‘best’ model for controller design?
This problem has been considered in the field of identification for control (Van
den Hof, 1998) for ‘isolated’ systems, cf. (Van den Hof and Schrama, 1995),
(Gevers, 2005), (Hjalmarsson, 2005). The identification of interaction dynamics,
and, generally speaking, parts of interconnected systems for distributed control
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is a challenge that is yet to be addressed.
In safety-critical applications, an interconnected-system model that is ‘ori-

ented’ towards the performance of a distributed controller may not suffice. Given
uncertainty in the available data, how can one design a distributed controller that
is guaranteed to meet the control objective? What kind of uncertainties can be
dealt with and can additional/instrumental variables aid in the controller design?

So far, we have posed challenges on how to use data structured controller
design for interconnected systems. A feature of interconnected systems is that
they are typically spatially distributed and measurements are not performed in a
central location. This leads to a non-classical information pattern for data-driven
modeling and control. The non-classical information pattern can be illustrated by
the example of the two interconnected control loops in Figure 1.6. Suppose there
are two operators: the first operator has access to data {r1, u1, w1} and the second
operator has access to data {r2, u2, w2}. Given a control objective, how can the
controllers C1 and C2 be designed on the basis of data given this information
pattern? If the modeling of G21, for example, is part of the control design, then
what information must be shared between the operators to perform this modeling
based on data? These questions are non-trivial. Hence, non-classical information
patterns do not only lead to challenges for distributed controller design, but also
for the underlying identification problem.

A model of an interconnected system captures the dynamics and structure
that is required for the design of a controller. In this respect, the model can
be regarded as a tool in the design of a distributed controller from data; an in-
termediate step in the design procedure from data. Are there situations where
a structured controller can be constructed directly on the basis of data? This
problem has been considered in the field of data-driven control for ‘isolated’
systems (Bazanella et al., 2012). Interconnected systems impose additional chal-
lenges to this problem, due to the structure of the interconnected system, con-
troller and the available information pattern.

1.3 State of the art

In this section, we provide an overview of relevant literature and state-of-the-art
methods for decentralized control, distributed control, distributed identification
and estimation, data-driven control and informativity of data for control. Decen-
tralized and distributed control can refer to the control of multi-agent systems
or interconnected systems. In both cases, the control of multiple systems is con-
sidered. Interconnected systems are coupled through the principle of sharing
variables, while multi-agent systems are typically decoupled, but interconnected
by design to solve cooperative control problems. In what follows, we will mainly
discuss literature related to interconnected systems.
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1.3.1 Decentralized control

As opposed to centralized control of large-scale systems, decentralized control uses
only locally available control variables. For feedback control, this means that only
local measurements are performed for determining local corrective actions. Fig-
ure 1.7 exemplifies this concept. The feature of having non-identical measurement
data available at controllers was first referred to as a non-classical information
pattern in (Witsenhausen, 1968). This feature makes the decentralized controller
easily implementable, but can lead to serious issues related to performance or even
instability of the system (Aoki, 1972). Necessary and sufficient conditions for the
existence of stabilizing local dynamic output feedback controllers were derived
in (Wang and Davison, 1973). The conditions were stated in terms of the first-
introduced notion of fixed modes of the decentralized control system. These fixed
modes appeared to be a natural generalization of uncontrollable/unobservable
modes of centralized control systems (Wang and Davison, 1973). Sandell et al.
(1978) already concluded considerable progress in the early days of decentral-
ized control, but observed that what lacked in the literature at the time was
the solution to a desirable control structure and information distribution. Broad
self-contained overviews of results and methods for decentralized control of large-
scale systems are provided in (Sandell et al., 1978), (Siljak, 1991) and (Lunze,
1992). Noting that the design of decentralized controllers for the general case
was still an open problem, the authors of (Scorletti and Duc, 2001) developed
sufficient conditions for the existence of decentralized H∞ controllers, introduced
in (Scorletti and Duc, 1997). The conditions are derived for yielding dissipative
properties of the subsystems and together with the performance objective, these
yield a convex optimization problem with linear matrix inequality constraints. In
(Rotkowitz and Lall, 2002), the notion of quadratic invariance, a property of in-
formation constraints with respect to the system, was introduced. This property
can be interpreted as an algebraic condition that relates the controller structure
and the system. Quadratic invariance was shown to be a sufficient condition for
optimal decentralized control problems to be convex, for any norm of interest of
the closed-loop system (Rotkowitz and Lall, 2006). It was shown in (Lessard and
Lall, 2010) that convex optimization problems for decentralized control can be
obtained for a broader class of information constraints with respect to the plant.
This broader class is characterized by a property called internal quadratic invari-
ance: a generalization of quadratic invariance. A generalization of decentralized
control to the behavioral framework was considered in (Ishido and Takaba, 2007)
and (Fiaz and Trentelman, 2010). Control in the behavioral framework is viewed
as the restriction of a system’s behavior via intersection with another behavior:
the controller. A key problem in behavioral control is the characterization of
all behaviors that can be achieved for the closed-loop system by interconnec-
tion with a controller. This problem is referred to as implementability and was
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extensively studied in (Belur and Trentelman, 2002). The natural analogue of im-
plementability for decentralized control was considered in (Fiaz and Trentelman,
2010), called decentralized implementability. The corresponding problem is the
characterization of all behaviors that can be achieved via decentralized control.

P1

P2

P3

C

P1 C1

P2 C2

P3 C3

P1 C1

P2 C2

P3 C3

Figure 1.7: Example of a controlled system interconnection with centralized con-
trol (left), distributed control (middle) and decentralized control (right).

1.3.2 Distributed control

One can also think of a control scheme with non-classical information patterns,
where local controllers can be interconnected. This concept is referred to in the
literature as distributed control. While decentralized control was a natural way
to address the non-classical information pattern at the time, distributed control
can omit limitations induced by decentralized control (Langbort et al., 2004).
These limitations include requirements on the information constraint, such as
quadratic invariance (Rotkowitz and Lall, 2006), or the restriction to static feed-
back controllers as in e.g. (Scorletti and Duc, 2001). Sufficient conditions for
the existence of controllers that are interconnected in the same way as the sub-
systems, i.e., plant and controller admit the same structure, while achieving H∞
performance, are developed in (Langbort et al., 2004). The latter work origi-
nates from (D’Andrea and Dullerud, 2003), where a distributed control design
for a class of interconnected identical systems was formulated. The control de-
sign of (Langbort et al., 2004) involves solving a linear matrix inequality. Even
for a moderate number of subsystems and interconnection variables, this linear
matrix inequality can be of large size (Langbort et al., 2004). Investigation of the
structure of this inequality, however, led to ideas to distribute not only the con-
troller itself, but also the computation of the controller (Langbort et al., 2004).
A distributed algorithm for distributed control design via the method of alter-
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nating projections was proposed in (Langbort and D’Andrea, 2003), wherein
design variables are shared via the same structure as the plant and controller
have. The stabilization of non-linear discrete-time interconnected systems was
considered in (Jokic and Lazar, 2009), for a given information pattern of the con-
troller. The computation of optimal control actions therein is enabled by solving
a convex optimization problem at each time step. In (Van Horssen and Wei-
land, 2016), a discrete-time analogue of the work in (Langbort et al., 2004) was
presented. Additionally, synthesis of the distributed controller in (Van Horssen
and Weiland, 2016) incorporates robust stability and robust H∞ performance of
the closed-loop system. A scalable H∞ controller design for interconnected sys-
tems is presented in (Stürz et al., 2018). This design is shown to decompose into
small-scale problems, given structural assumptions on the design variables. The
synthesis problem is, however, not convex, but can be transformed into a bilinear
matrix inequality (Stürz et al., 2018). Another distributed control strategy for in-
terconnected systems is distributed model predictive control (MPC). Early work
on this topic includes (Jia and Krogh, 2001) and (Camponogara et al., 2002),
wherein a distributed MPC algorithm was proposed with an exchange of local
state predictions between controllers. Stability constraints on one-step future
predicted states guarantee asymptotic stability of the closed-loop interconnected
system. A distributed MPC framework with stability and guaranteed feasibility
is provided in (Venkat et al., 2007). In (Christofides et al., 2013), a review of
results for distributed MPC is provided, including advantages and disadvantages
of the various schemes. Since information exchange between controllers typically
takes place over a digital network, the distributed MPC schemes are bound to
phenomena as packet loss and delays. A classification of distributed MPC algo-
rithms with respect to assumptions on the communication network is provided
in (Grüne et al., 2014).

1.3.3 Distributed identification and estimation

Despite the extensive amount of developments in the field of control for inter-
connected systems, methods for obtaining the underlying system models are rare
(Hansson and Verhaegen, 2014). As for data-driven estimation of individual dy-
namical systems, prediction-error identification methods provide well-established
procedures for obtaining consistent system parameter estimates (Ljung, 1999).
The focus on system identification of individual dynamical systems is, however,
limited, for interconnected systems. Given a structure of a network of linear
dynamical systems, various prediction error methods are readily operational for
identifying these systems, while imposing certain conditions on the network (Van
den Hof et al., 2013). The identification problem of such large-scale systems
can typically be separated into multiple-input-single-output (MISO) identifica-
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tion problems (Rao et al., 1984), (Van den Hof et al., 2013). More precisely,
consistent identification of a large-scale system can be performed via the identifi-
cation of MISO building blocks, on the basis of measurements of multiple inputs
and one, possibly disturbed, output, under the assumption that disturbances in
the network are uncorrelated. Correlation of disturbances in a network can lead
to confounding variables, which have to be taken into account in the identifica-
tion problem. Confounding variables can be addressed by including additional
inputs (Dankers et al., 2016), (Dankers et al., 2017) or outputs (Ramaswamy and
Van den Hof, 2021) in the predictor model.

Although existing prediction error methods for dynamical networks can con-
sistently identify local modules (single-input-single-output (SISO) systems), they
require the output signal and multiple input signals for a MISO identification
problem to be available centrally for global parameter estimation. Central data
collection and computation of the module estimates may not always be desirable
due to computational constraints or desired flexibility. A decomposition of the
MISO identification problem into SISO identification problems to reduce compu-
tational complexity was suggested in (Rao et al., 1984). Therein, it was proposed
to perform a decomposition of the parameter estimation via a Gauss-Seidel like
algorithm, but a proof of convergence is absent.

Distributed estimation approaches can be divided into two distinct classes.
The first class consists of consensus based methods, discerned by collaborative
estimation of a global (common) parameter vector that is performed via a number
of interconnected estimators. The estimation of a global parameter in (wireless)
sensor networks was considered in (Schizas et al., 2008), (Cattivelli et al., 2008)
and (Mateos et al., 2009). Therein, communication is employed between estima-
tors to consent on a global estimate. More recent results include a performance
analysis and reduced complexity of the algorithm from (Mateos et al., 2009)
in (Mateos and Giannakis, 2012). In (Breschi, 2017), methods for cloud-aided
estimation are presented for handling coupling constraints via the alternating
direction method of multipliers (ADMM). The problem is discerned by a sepa-
rable cost function, whereas the overlap of agent’s parameters induces coupling
constraints (consensus constraints). A similar (partial) consensus problem was
considered in (Bäumelt, 2016) for a thermal modeling problem in buildings, where
consensus constraints occur due to parameters such as a mutual wall conductance
between building zones. Parameter consensus was utilized to relax persistence of
excitation conditions in system identification via an ensemble of identical systems
in (Papusha et al., 2014).

The second class of distributed estimation is also enabled by collaborative
estimation via interconnected estimators. Therein each estimator is, however,
concerned with the estimation of a local parameter vector. Results for parame-
ter estimation in static interconnected systems were derived in (Marelli and Fu,
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2015). For distributed state estimation, we single out moving-horizon methods
(Farina et al., 2010), local plug-and-play estimators (Riverso et al., 2013) and
Kalman filtering (Marelli et al., 2018) for networks of linear systems. In (Hans-
son and Verhaegen, 2014), the problem of distributed system identification for
interconnected systems was considered. A distributed implementation solution
via the use of distributed ADMM optimization was proposed, which may lead to
local optimal solutions, however.

1.3.4 Data-driven control and informativity for control

Methods for the design of controllers on the basis of data can be divided into
two classes: (i) indirect data-driven control and (ii) direct data-driven control.
Indirect data-driven control is model based: first a plant model is estimated on
the basis of data and consecutively a controller design is performed on the basis
of the plant model. The problem of identying a model for control that leads to
the best control performance is considered in the field of identification for control
(Van den Hof and Schrama, 1995), cf. (Van den Hof, 1998), (Gevers, 2005), (Hjal-
marsson, 2005). In direct data-driven control, the plant modeling step is omitted;
a controller is synthesized directly from data. Typical advantages of direct-data
driven controller design are that no loss of data can occur due to under-modeling
of the plant and the order of the controller can be fixed. An exhaustive survey on
data-driven control methods, both direct and indirect, is provided in (Hou and
Wang, 2013). Virtual reference feedback tuning (VRFT) (Campi et al., 2002),
(Bazanella et al., 2012) is a ‘one-shot’ method for designing a controller directly
on the basis of data. In this method, a model-reference control problem is essen-
tially reformulated into a system identification problem, through the generation of
a virtual closed-loop system that is compatible with the data. Iterative feedback
tuning (IFT) (Hjalmarsson et al., 1998), (Hjalmarsson, 2002) shares with VRFT
the property of being direct, i.e., no model is identified in the procedure. A dis-
tinguishing feature of the IFT algorithm is, however, that it is iterative by design,
where a gradient estimation of the control criterion is performed at each iteration
to tune the controller (Hjalmarsson et al., 1998). Optimal controller identification
(OCI) (Campestrini et al., 2017) also solves a model-reference control problem,
by embedding the control design problem in the prediction-error identification of
an optimal controller. This method was extended in (Huff et al., 2019), for the
identification of controllers for multi-input-multi-output systems. Other state-
of-the-art methods for direct data-driven control are correlation-based tuning
(CbT) (van Heusden et al., 2011), asymptotically exact (Formentin et al., 2015)
and moment-matching (Breschi et al., 2019) controller tuning.

A recent trend in data-based system analysis and control originates from
Willems’ fundamental lemma (Willems et al., 2005). Applications include data-
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based predictive control (Coulson et al., 2019), (Allibhoy and Cortés, 2021), the
data-based parametrization of stabilizing controllers (De Persis and Tesi, 2020)
and robust data-based state-feedback design with noisy data (Berberich et al.,
2020). The data-based verification of dissipativity properties was considered
in (Koch et al., 2020a), (Koch et al., 2020b), which allows to determine system
measures such as the H∞ norm or passivity properties from data corrupted by a
noise signal satisfying quadratic bounds. A similar noise description was consid-
ered in (De Persis and Tesi, 2020) and (van Waarde et al., 2022), of which the lat-
ter extends the data-based controller design results in (van Waarde et al., 2020) to
the noisy case via a matrix S-lemma. The data-based conditions in (van Waarde
et al., 2022) are necessary and sufficient for stabilizing state feedback synthesis,
including H2 or H∞ performance specifications. Trade-offs in using quadratic
bounds, such as energy bounds, or instantaneous noise bounds for determining
controllers from data are discussed in (Bisoffi et al., 2021a). Data-driven results
for analysis and controller synthesis via Petersen’s lemma and Finsler’s lemma
have been developed in (Bisoffi et al., 2021b) and (van Waarde and Camlibel,
2021), respectively. These results bring alternative data-driven conditions with
respect to the matrix S-lemma, where the Finsler’s lemma in (van Waarde and
Camlibel, 2021) leads to conditions for both exact and noisy data.

1.4 Problem statement

We have observed that design of controllers from data has been extensively stud-
ied in the literature. However, most of the theory that has been developed,
applies only to isolated systems or small-scale interconnected systems where the
interconnection structure is not taken into account. From a control point-of-view,
methods are available for the synthesis of a structured controller, provided that
a model of the target interconnected system is available, which is not realistic in
general. For interconnected systems, the synergy between control and identifica-
tion is a field that is relatively unexplored. With data that is obtained according
to a non-classical information pattern, a controller that is an interconnected sys-
tem itself, and a global control objective that is represented by stability or a
performance criterion such as an H2/H∞ norm, we formulate the following re-
search question.

Under which conditions can data from an interconnected system be used for the
design of a distributed controller, with the objective of achieving optimal and/or
guaranteed control performance?

This research question contains several aspects. Let us consider these aspects
separately now by taking the state-of-the-art into account, in order to formulate
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sub-questions from the research question.

• Use data from an interconnected system for the design of a distributed con-
troller: As discussed in Section 1.3.4, control design based on data can
be separated into two categories on a high level: indirect data-driven con-
trol and direct data-driven control. We will consider indirect and direct
distributed data-driven control for interconnected systems in the research.
For indirect design, we therefore consider the data-driven modeling of dy-
namic networks and the model-based synthesis of distributed controllers.
For direct design, we consider the design of distributed controllers based
directly on data, which has been only considered for centralized controller
design in the state-of-the-art, as discussed in Section 1.3.4.

• Achieving optimal performance: The performance in the research will be
measured by control performance criteria, such as H2 and H∞ control
criteria. These criteria will be considered for the synthesis of distributed
controllers. In an indirect design, a distributed controller is model-based
and, hence, the performance will be limited by the quality of the model.
Quality of the model can be measured by asymptotic statistical properties,
such as consistency, or the ability to capture information about the dynam-
ics that lead to a controller with the best performance. In a direct design,
distributed model-reference control problems will be considered; structured
versions of model-reference control problems in state-of-the-art data-driven
control methods such as VRFT and OCI. The performance is measured
with respect to an (H2) model-reference control criterion for distributed
control.

• Achieving guaranteed performance: In the research we distinguish opti-
mal performance from guaranteed performance. Guaranteed performance
refers to the achieved performance of a distributed controller that is de-
signed based on a finite number of data samples, compared to data-driven
controller design with a performance that is asymptotically optimal in the
number of data points. Because state-of-the-art methods for guaranteed
performance only allow ‘unstructured’ analysis and synthesis, guaranteed
performance analysis and synthesis for interconnected systems will be con-
sidered in the research.

• Under which conditions: The conditions refer to the assumptions on the
experimental setup under which the data-driven controller design is per-
formed. This includes conditions on the measurement data, sensing and
actuating locations, unmeasured exogenous disturbances and the consid-
ered controller class.
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The discussed aspects lead to a number of sub-questions related to three main
topics that will be discussed in Part I to Part III of this thesis:

• Part I: Network identification and distributed control

• Part II: Distributed data-driven model-reference control

• Part III: Distributed data-driven control with guarantees

Next, we will formulate sub-questions for these topics in the following three sub-
sections corresponding to the three Parts of this thesis, including the considered
approach to solve the problems.

1.4.1 Design of a distributed controller through data-driven
modeling

Given the model-based nature of the majority of methods for distributed con-
troller design, we will first consider the problem of distributed control on the basis
of data according to a model-based philosophy. In the model-based philosophy,
two steps can be distinguished. The first step is to derive a suitable model for
controller design. Suitable in this context means a model that can be used in the
synthesis process and that is most relevant for control, e.g., a model that leads
to the best control performance.

For an unknown interconnected system, how to obtain the most relevant model
from data for control?

Models that are used in model-based distributed control are typically struc-
tured with respect to subsystems, cf. (Langbort et al., 2004), (Van Horssen
and Weiland, 2016), (Chen et al., 2019). The approach taken in Chapter 2 is
to take this structure into account in the data-driven modeling of subsystems,
via a dynamic-network approach to system identification (Van den Hof and Ra-
maswamy, 2021), (Gevers et al., 2018). Both indirect and direct identification
prediction-error identification methods are considered for obtaining consistent
estimates of an interconnected system, which may be interconnected with a (pre-
liminary) distributed controller. In the case that the subsystems cannot be rep-
resented by the considered model, bias and variance aspects play an important
role in the performance resulting from the identified model. We will approach
this problem by ‘shaping’ the bias through a modified identification criterion, to
minimize the resulting performance degradation for an H2 control criterion (for
reference tracking).

The second step is to design a distributed controller on the basis of the model
that leads to an optimal performance.
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How to obtain an optimal distributed controller for a model of the interconnected
system?

The approach taken to distributed controller design in Chapter 4, is to con-
sider dynamical subcontrollers which are interconnected with each other accord-
ing to the interconnection structure of the plant, according to the framework
introduced by (Langbort et al., 2004), or decentralized. We consider the ob-
jective of finding a distributed controller such that the controlled network has
an H2 or H∞ norm that is upper-bounded by a given value. Instead of view-
ing a linear interconnected system as an interconnection of transfer functions or
state-space systems, an interconnection of linear systems can also be considered
of which the dynamics are defined by their behavior ; a subset of all possible
outcomes/trajectories. Interconnections of systems in the behavioral setting do
not assume any directions of interconnection signal, i.e., no input or output is
assigned to a signal. We will consider distributed control in a behavioral set-
ting in Chapter 5. This approach widens the previously considered class of lin-
ear interconnected systems considered for distributed controller design and is
representation-free. We will consider the application of a canonical distributed
controller developed in Chapter 5 to module dynamic networks in Chapter 6.

An important aspect in the data-driven modeling of interconnected systems,
is the information pattern induced by distributed sensing. The distribution of
information poses additional challenges in the data-driven modeling and control
design for interconnected systems. Similar to the non-classical information pat-
terns in decentralized and distributed control schemes, one can think of limited
information availability for local “identification modules”, which are destined to
estimate a part of the interconnected system (or controller) dynamics. We refer
to the concept of interconnected identification modules with non-classical infor-
mation patterns as distributed identification. In this line of thought, a natural
question that arises is as follows:

How can required model or controller dynamics be obtained from measurement
data, given a non-classical information pattern for identification?

In Chapter 3, we step away from the classical (central) information pattern
deployed in classical identification. We approach this step by considering the
direct method for network identification in Chapter 2. The direct method yields
a network identification problem that is separable into distinct multiple-input-
single-output identification problems if the external noise signals are uncorrelated
with respect to each other. The idea is then to assign an estimator (identification
module) to each module in the network to estimate the corresponding parameters.
In our approach to distributed identification, we consider the development of a
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distributed version of the well-established recursive least squares estimator (Kay,
1993), (Mendel, 1973), to distribute the estimation both spatially as well as
temporally.

1.4.2 Design of a distributed controller directly on the ba-
sis of data

In the design of a distributed controller for an interconnected system for which
measurement data is available, the ultimate goal is to determine a controller that
achieves a given control objective, rather than determining a model of the un-
derlying system. From this point-of-view, the main research question does not
involve a modeling problem, but concerns directly the design of a distributed
controller on the basis of data. This reasoning leads to the following research
question:

Under which conditions can an optimal distributed controller be designed directly
on the basis of data?

To answer this question, we consider the development of two different dis-
tributed data-driven controller design methods, extending VRFT (Campi et al.,
2002) and OCI (Campestrini et al., 2016) to construct distributed controllers
based on interconnected system data. Direct data-driven methods, such as VRFT
and OCI, are typically based on a model-reference framework. We therefore con-
sider the development of a distributed model-reference framework for dynamic
networks in Chapter 6, based on the theory for distributed control in a behav-
ioral setting from Chapter 5. The approach continues by solving the distributed
model-reference control problem directly from data. This problem is considered
in Chapter 7 and Chapter 8 with a philosophy coming from, respectively, VRFT
and OCI.

1.4.3 Data-based conditions for the existence of a distributed
controller with guaranteed performance

With safety-critical applications in mind, a controller that is optimal based on an
infinite number of data points, i.e., an optimal controller that can be estimated
consistently, may not suffice. In such applications, the challenge is to design a
distributed controller on the basis of a finite number of data points, while guar-
anteeing a desired stability or performance objective. This leads to the following
research question:
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How to find a distributed controller on the basis of a (finite) number of data that
is guaranteed to yield a prescribed performance level and under which conditions
on the data does such a controller exist?

To answer this question, we start with considering the design of a distributed
controller based on a finite number of data samples in Chapter 9. Each noise
signal affecting a system in the network is assumed to satisfy a quadratic matrix
inequality in this chapter, which can represent, for example, bounds on the energy
or magnitude of the noise signal. This characterization of the noise allows us to
derive a parametrization of the set of system matrices for each subsystem that
are compatible with the data. Such parametrization of system matrices have
been considered in the literature for single/unstructured systems for analysis
and control, cf. (Koch et al., 2020b), (van Waarde et al., 2022), (Berberich
et al., 2021). Through a dual parametrization, we can employ a linear fractional
transformation (LFT) representation for each subsystem that enables the use of
a robust variant of the analysis conditions in Chapter 4 and distributed controller
existence conditions.

To determine under which conditions on the data a controller exists that yields
a guaranteed performance, we consider the concept of informativity in Chapter 10
and Chapter 11. Data being not informative enough for system identification does
not imply data are not informative for controller design per se. In Chapter 10, we
start by developing conditions on the data for the existence of stabilizing, H2 or
H∞ controllers that are unstructured, i.e., centralized. The noise in this analysis
is assumed to satisfy bounds on the squared sample cross-covariance. These
bounds represent prior knowledge about the system in a relative form, i.e., with
respect to an known signal that is instrumental. The bounds generalize quadratic
noise bounds as considered in the literature and Chapter 9. Because of the
quadratic parametrization of the corresponding set of feasible systems, a matrix
version of the S-lemma (van Waarde et al., 2022) is considered to determine
non-conservative conditions on the data for H2 or H∞ controller design. Prior
knowledge on the noise is considered in the form of (component-wise) linear
sample cross-covariance bounds, which is fundamentally different from the prior
knowledge assumed in Chapter 10, where bounds on the squared sample-cross
covariance matrix are specified with respect to the partial order on positive-semi-
definite matrices. The approach in Chapter 11 is to use the convexity of the set
of feasible systems (polyhedra) to derive informativity conditions on the data for
H2 or H∞ centralized and distributed controller design.
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1.5 Overview of contents

In Chapter 2, we consider the problem of deriving models of linear interconnected
systems with the purpose of designing a decentralized or distributed controller.
For a controlled network that is structured in a distributed control structure, with
a clear distinction between the structured plant and distributed controller, it is
shown that identification methods developed for dynamics networks can be spec-
ified to provide consistent and approximate models of the structured plant. We
will show how both direct and indirect methods for network identification can
be specified/generalized for the considered network setup. Furthermore, both
subsystem identification (local) as well as full-network identification (global) are
considered. The choice for indirect/direct or local/global identification can be
made by considering assumptions on the network, depending, e.g., on the knowl-
edge of the (preliminary) distributed controller or correlation of external noise
signals that affect subsystems in the network. In practical situations, a mis-
match between the chosen model class and true system is inevitable. For this
situation, we develop a procedure for determining a performance-oriented model
of the interconnected system. In this procedure, the performance degradation
(difference between designed and achieved controlled network) is minimized in
the data-driven modeling of the network for an H2 reference tracking criterion.

In Chapter 3, a distributed identification method is developed for estimating
modules in a dynamic network. The identification problem in dynamic networks is
separable into distinct multiple-input-single-output identification problems if the
external noise signals are uncorrelated with respect to each other. We develop
a distributed recursive estimation scheme for multi-input-single-output models
that are linear in the parameters, linking an estimator (identification module)
to each module in the network. Connecting the identification modules through
a mutual fusion center for communication, leads to a distributed identification
scheme for each multi-input-single-output system. By Lyapunovs second method,
sufficient conditions are derived for asymptotic convergence of the estimators to
the true parameter values, which lead to asymptotic unbiasedness in the presence
of additive output noise.

In Chapter 4, we consider the problem of synthesizing a distributed or decen-
tralized controller for linear interconnected systems. The considered objective
is to find a linear and dynamic distributed controller such that the controller
network has an H2 or H∞ norm that is upper-bounded by a given value. We
recall results for the H∞-case from the literature and treat the H2-case in detail.
Specifically, we consider the H2-analysis of interconnected systems, then move
to the analysis of controlled interconnected systems, and finally consider the syn-
thesis of structured controllers that achieve H2 performance. For the latter, we
develop convex and structured conditions for the existence of a distributed or
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decentralized H2 controller for interconnected systems with an arbitrary inter-
connection structure. The existence conditions serve as a preliminary step in
the controller synthesis and its solutions yield a distributed controller achieving
the specified performance upper-bound. The effectiveness and scalability of the
developed distributed H2 controller synthesis method is demonstrated for small-
to large-scale oscillator networks on a cycle graph.

In Chapter 5, distributed control is considered from a more general perspec-
tive. We introduce distributed control in a behavioral setting, where a distributed
controller is an interconnection of controllers with the same interconnection struc-
ture as the interconnected system to be controlled. Given a desired (structured)
behavior for the interconnected system, we provide conditions under which this
desired behavior can be implemented, i.e., there exists a distributed controller
that achieves the desired system behavior. The proof is constructive and yields a
canonical distributed controller described by the behavior of the to-be-controlled
and desired interconnected system. Furthermore, regularity of the canonical dis-
tributed controller will be analyzed; with respect to the interconnection between
the controller and the plant, as well as the interconnections between subsystems
of the distributed controller.

Chapter 6 is enabled by the canonical distributed controller in Chapter 5 and
considers the specific case of interconnected systems defined by transfer func-
tions. We develop a distributed controller that implements a desired behavior
described by transfer functions; a structured reference model. This controller, an
ideal distributed controller, consists of local controllers that depend explicitly on
the transfer functions of the corresponding subsystems of the to-be-controlled in-
terconnected system and reference model. We first analyze the properties of this
distributed controller and provide conditions on the reference model and inter-
connected system for which proper or stable distributed controllers are obtained.
Since the structured reference model is a key preliminary ingredient in the data-
driven controller design introduced in Chapter 7 and Chapter 8, the synthesis of
a structured reference model is also considered, based on the analysis conditions
for H2 and H∞ performance.

In Chapter 7, a method is developed for determining a distributed controller
directly on the basis of data, without an intermediate step of modeling the under-
lying interconnected system. We first consider a case without unmeasured exoge-
nous disturbances. The method is based on the structured reference model and
ideal-distributed-controller concept introduced in Chapter 6. Given the structure
of the interconnected system and reference model, a virtual reference network is
introduced, analogous to a virtual reference setup in VRFT. The node variables
in this network are comprised of measured node signals and virtual reference
signals that correspond to the measured signal. Consequently, a collection of
unknown modules in the network form an ideal distributed controller that is to
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be determined. We show how the ideal-distributed-controller synthesis problem
is transformed into a network identification problem. We then show what the
effect of noise is on distributed controller estimates if the identification procedure
is not adapted. This motivates the sensible modeling of the noise. A method
is provided to obtain consistent distributed controller estimates, by considering
tailor-made noise models in the network identification.

The problem of determining a distributed controller directly on the basis of
data is revisited in Chapter 8. Here, we show that a to-be-controlled intercon-
nected system is equivalent to an interconnected system with the modules related
to the reference model and the (inverse of) dynamics of an ideal distributed con-
troller. This framework allows the data-driven control problem to be analyzed by
dynamic network identification results. We call this method distributed optimal
controller identification (OCI). This approach to distributed data-driven control,
is directly applicable to interconnected systems subject to unmeasured exoge-
nous disturbances and we show that consistent controller estimates are obtained
if the noise is modeled correctly, i.e., if the considered class of noise models is
sufficiently rich. Via an example, we show how the achieved performance of the
controlled network improves by the application of the developed method, com-
pared to the direct data-driven controller design where noise is not modeled or
an instrumental variable method is used.

Chapter 9 considers the problem of determining a distributed controller from
data with guaranteed performance, for a finite number of data samples. Each
noise signal affecting a system in the network is assumed to satisfy a quadratic
matrix inequality in this chapter, which can represent, for example, bounds on
the energy or magnitude of the noise signal. With this characterization of the
noise, we derive a parametrization of the system matrices for each subsystem and
introduce a dual parametrization that allows the application of performance and
stability conditions in primal form. Via the parametrizations, we employ a linear
fractional transformation (LFT) representation for each subsystem that enables
us to use a robust variant of the convex conditions in Chapter 4 to develop
sufficient convex conditions based on noisy data for the performance analysis
of interconnected systems. Then, data-based conditions are presented that are
sufficient for the existence of a distributed controller that achieves a given H∞
performance level.

In Chapter 10, the informativity of data for controller design is analyzed. In
this chapter, we start by developing conditions on the data for the existence of
stabilizing, H2 or H∞ controllers that are unstructured, i.e., centralized. The
noise in this analysis is assumed to satisfy bounds on the squared sample cross-
covariance. These bounds represent prior knowledge about the system in a rela-
tive form, i.e., with respect to a known signal that is instrumental. The bounds
generalize quadratic noise bounds as considered in the literature and Chapter 9.
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We recall a matrix type S-procedure from the literature that allows us to derive
necessary and sufficient conditions for informativity of data for controller design.
These conditions are also constructive, in the sense that a controller that solves
the control problem can be derived from its solution set.

The informativity of noisy data is revisited in Chapter 11. Prior knowledge
on the noise is considered in the form of (component-wise) linear sample cross-
covariance bounds, which is fundamentally different from the prior knowledge
assumed in Chapter 10, where bounds on the squared sample-cross covariance
matrix are specified with respect to the partial order on positive-semi-definite
matrices. We show how finite sets of input-state data together with the linear
cross-covariance bounds lead to a set of feasible system matrices that is either an
unbounded or bounded polyhedron, depending on the input, state, and instru-
mental variable data. We show how convexity of the set of feasible systems lead
to conditions under which the data are informative for quadratic stabilization,
which are also necessary in case the polyhedron is bounded. The results are then
naturally extended for informativity for H2 and H∞ control. The construction
of ellipsoidal supersets of the polytope is considered subsequently, to reduce the
computational complexity, while adding conservatism to the resulting informa-
tivity conditions. Finally, we show how the cross-covariance bounds apply to
interconnected systems and develop sufficient conditions on informativity of data
collected from interconnected systems for the design of a distributed controller.

A graph representing the relations between Chapter 2 to Chapter 11 from this
thesis is shown in Figure 1.8. An arrow pointing from one node to an other node
indicates that the results from the source chapter extend to the sink chapter, or
that the theory in the source node is applicable to the sink node. Bidirectional
arrows indicate a general relation, e.g., a mutual control objective is considered.
Whether a relation is strong or weak is indicated by the link being solid or dashed,
respectively.
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Figure 1.8: Relations between chapters in this thesis.
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Chapter 8 contains results that have been presented in:

• T. R. V. Steentjes, M. Lazar, and P. M. J. Van den Hof. Controller identi-
fication for data-driven model-reference distributed control. In Proc. 2021
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Chapter 9 contains results that have been presented in:
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Part I

Network identification and
distributed control
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Chapter 2

Control-oriented
identification of dynamic
networks

Distributed controller design methods typically rely on a model of the underlying
interconnected system that has to be controlled. Due to the complex intercon-
nection structure or dynamics, such models are typically not directly available.
In this chapter we consider the problem of deriving models of interconnected
systems for distributed controller design. This problem is first approached by
considering the identification of subsystems of an interconnected system that is
in closed-loop with a distributed controller. The identification can be performed
by considering direct and indirect network identification methods for the specific
closed-loop network structure. The network structure and controller dynamics
can be used explicitly in the identification objective by considering a tailor-made
parametrization of the closed-loop transfer matrices. In the case of approximate
modeling, an H2 control performance criterion can be taken into account, leading
to full-network identification problem with a tailor-made parametrization.

2.1 Introduction

State-of-the-art distributed controller design methods are typically based on a
model of the to-be-controlled interconnected system. Several examples of such
methods for the design of distributed and decentralized controllers have been dis-
cussed in Section 1.3. A convex scalable method for the design of distributed H2

controllers is presented in Chapter 4 of this thesis. Interconnected system mod-
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els are, however, typically not directly available for controller design. When data
from the interconnected system is available, two approaches to controller design
can be followed: (i) indirect data-driven control and (ii) direct data-driven con-
trol. Indirect data-driven control is model based: first a plant model is estimated
on the basis of data and consecutively a controller design is performed based on
the model. The modeling step is omitted in direct-data driven control; a con-
troller is synthesized directly from data. Direct data-driven distributed control
is extensively treated in Part II and III of this thesis.

Indirect data-driven distributed control is concerned with the estimation of an
interconnected-system model from data and distributed controller design based
on the model. The identification of interconnected systems, also called dynamic
network identification in the literature (Van den Hof et al., 2013), is a topic that
has received increased interest over the past years. Specific network identification
methods have been developed for various applications, such as the identification
of plant dynamics in decentralized control loops (Gudi and Rawlings, 2006), (Van
den Hof et al., 2018) and the reconstruction of biological networks (Yuan et al.,
2011). Stemming from open-loop and closed-loop identification, prediction-error
identification methods for generic dynamic networks have been developed in the
literature (Van den Hof et al., 2013), (Gevers and Bazanella, 2015), (Dankers
et al., 2016), (Linder, 2017), (Weerts et al., 2018), (Gevers et al., 2018), (Ra-
maswamy et al., 2019), (Bazanella et al., 2019). Other methods for identification
of interconnected systems have been developed in an alternative setting, e.g.,
through Wiener filters (Materassi and Salapaka, 2012) and subspace identifica-
tion (Haber and Verhaegen, 2014). Despite the fact that distributed controller
design is one of the motivations for dynamic network identification (Van den Hof
et al., 2013), links between dynamic network identification and distributed con-
troller design are sparse in the literature. The identification of interconnection
dynamics in two interconnected control loops was motivated by model-predictive
controller design in (Gudi and Rawlings, 2006). However, for general distributed
control schemes, indirect data-driven distributed control results have yet to be
developed, to the best of the author’s knowledge.

Identification for controller design of single-input-single-output/unstructured
multi-input-multi-output systems has been investigated in the field of ‘identifica-
tion for control’ (Van den Hof and Schrama, 1995), (Gevers, 2005). In this field,
the performance criterion for control is taken into account, yielding a control-
oriented identification procedure that minimizes a performance degradation cri-
terion. Iteratively performing control-oriented identification and controller design
aims at minimizing the achieved performance, see e.g., (Zang et al., 1991), (An-
derson and Kosut, 1991), (Lee et al., 1995) or (Van den Hof and Schrama, 1995)
for an overview.

In this chapter, we consider two problems related to the identification of net-
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work dynamics for distributed controller design. First, we consider the problem
of identifying a model of an interconnected system that operates in a closed-loop
setting with a distributed controller. This yields a dynamic network with a partic-
ular structure. We will show how identification methods that have been developed
for dynamic network identification, can be adapted to this specific situation to
deal with this particular structure and the distributed controller dynamics. Fur-
thermore, we will consider a network identification problem with a tailor-made
parametrization of network transfer matrices. In this problem, the structure of
the closed-loop network and knowledge of the distributed controller dynamics are
explicitly used for identification of the subsystems of the interconnected system.

Next, we consider the control-oriented identification of interconnected systems
with respect to an H2 reference tracking criterion. The identification problem
is control-oriented in the sense that the aim is to minimize the performance
degradation, by shaping the bias of the subsystem models in an approximate
modeling setting. We will show that the identification criterion of the closed-
loop network identification method with a tailor-made parametrization, can be
interpreted as a performance degradation term for the H2 reference tracking
criterion.

2.2 Preliminaries

2.2.1 Dynamic network and distributed controller

Consider a network of L linear systems on a directed graph G = (V, E), with
vertex set V := {1, . . . , L} and edge set E ⊂ V × V, described by

yi(t) = G0
i (q)ui(t) +

∑
j∈Ni

G0
ij(q)wj(t) + vi(t), i ∈ V, t ∈ Z, (2.1)

where yi is the output of system i, ui is the control input, vi is an unmea-
sured exogenous disturbance signal (process noise), q−1 is the shift operator, i.e.,
q−1x(t) = x(t− 1). The rational transfer functions G0

i and G0
ij describe the local

and coupling dynamics, respectively. The vector process v := col(v1, . . . , vL) is
modeled as a stationary stochastic process with a rational spectral density ma-
trix Φv, such that there exists a white noise process e := col(e1, . . . , eL) and a
rational transfer matrix H0 that is monic, stable and minimum phase, satisfying
v(t) = H0(q)e(t). Subsystems are interconnected through the outputs yj or in-
puts uj , j ∈ V, corresponding to wj = yj or wj = uj , respectively. Specifically,
the output of system i ∈ V is influenced by the outputs or inputs of systems
j ∈ Ni, where Ni ⊆ V denotes the set of incoming neighbours such that (j, i) ∈ E
(Ni = {j ∈ V |G0

ij 6= 0}).
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P2

P1

P3

C2

C1

C3

y1

y2
y3

y1

Figure 2.1: Three systems Pi interconnected through outputs yi, i ∈ {1, 2, 3},
and controlled by controllers Ci.

To each system i ∈ V, a reference signal ri is assigned. This induces a track-
ing error zi := ri − yi; the difference between the reference and observed output
signal. We define the data-generating interconnected system (or true intercon-
nected system) as an interconnected system with subsystems Pi, defined by the
dynamics (2.1) and performance output zi = ri − yi:

Pi :

{
yi = G0

i (q)ui +
∑
j∈Ni

G0
ij(q)wj + vi,

zi = ri − yi,
i ∈ V. (2.2)

An example network (|V| = 3) with output coupling is shown in Figure 2.1.
A dynamical distributed controller is interconnected with the interconnected

system through the tracking errors and control inputs. More specifically, the
distributed controller consists of subcontrollers Ci, described by

Ci :

{
ui = Ci(q)zi +

∑
j∈Ni

Cij(q)ηij ,

ζij = Kij(q)zi +
∑
h∈Ni

Kijh(q)ηih, j ∈ Ni, i ∈ V, (2.3)

which takes zi as an input and generates ui as an output. Two subcontrollers Ci
and Cj are interconnected through their interconnection variables ηij = ζji only
if j ∈ Ni. To be consistent with the distributed control setting in Chapter 4, the
controller interconnections are considered to be bi-directional. We note, however,
that the reasoning in this chapter is analogous for a setting with uni-directional
communication constraints in the distributed controller. Decentralized control
schemes form a special case of distributed control schemes where the interconnec-
tion signal dimension is zero, i.e., a decentralized controller module Ci is described
by ui = Ci(q)zi.
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2.2.2 Closed-loop network dynamics

The controller interconnection equations ηij = ζji for each pair of controllers
Ci and Cj that are interconnected can be compactly written as ζ = ∆cη, where
∆c is a binary matrix and ζ := col(ζ1, . . . , ζL), η := col(η1, . . . , ηL). With z :=
col(z1, . . . , zL), u := col(u1, . . . , uL), the distributed controller dynamics (2.3) are
compactly described by[

u
ζ

]
=

[
CD CDD
KDD KD

] [
z
η

]
, ζ = ∆cη. (2.4)

Elimination of the controller interconnection variables ζ and η in (2.4) leads to a
transfer matrix for the distributed controller from z to u:

u = CI(q)z, where CI = CD + CDD(∆c −KD)−1KDD.

Since the plant interconnection signals wj are equal to either uj or yj , we can
write w =

[
∆y ∆u

]
col(y, u), where ∆y and ∆u are binary diagonal matrices

such that each row of
[
∆y ∆u

]
sums up to one, i.e.,

[
∆y ∆u

]
1 = 1 where 1

denotes the column vector of all ones. Define G0
D := diag(G0

1, . . . , G
0
L) and let

G0 be a matrix whose (i, j)-th entry is G0
ij , (i, j) ∈ V2. We arrive at a compact

representation for (2.1):

y = G0∆yy + (G0∆u +G0
D)u+H0e.

The closed-loop network (with tracking errors (z1, . . . , zL) eliminated) is therefore
described by [

y
u

]
=

[
G0∆y G0∆u +G0

D
−CI 0

]
︸ ︷︷ ︸

G0
I

[
y
u

]
+

[
0
CI

]
r +

[
H0

0

]
e, (2.5)

where G0∆y and G0∆u are hollow matrices and G0
D is a diagonal matrix.

Remark 2.2.1. In the closed-loop data-generating system (2.5), the control in-
puts ui are assumed to be disturbance free, which is reflected by the (exact)
equality u = CI(q)(r − y). This an assumption of a principal nature, which is
also a common assumption in the literature on classical closed-loop identification,
cf. (Van den Hof, 1998), (Forssell and Ljung, 1999), (Gevers, 2005), (Hjalmars-
son, 2005). The assumption of disturbance-free inputs in the experimental setup
is evaluated in more detail in (Van den Hof, 1998, Section 7).
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2.2.3 State-space representation

A transfer function representation of the interconnected system and distributed
controller is considered in this chapter, following the convention of dynamic net-
work representations (Van den Hof et al., 2013). State-space representations of
subsystems Pi and subcontrollers Ci will be considered for distributed controller
design in Chapter 4. A state-space representation of Pi is of the form

xi(t+ 1) = Aixi(t) +
∑
j∈Ni

Aijwj(t) +Biui(t), (2.6)

yi(t) = Cixi(t) +
∑
j∈Ni

Cijwj(t) +Diui(t) + vi(t), zi(t) = ri(t)− yi(t),

and satisfies G0
i (q) = Ci(qI −Ai)−1Bi +Di and

G0
ij(q) = Ci(qI −Ai)−1Aij + Cij , j ∈ Ni.

A representation (2.6) can always be constructed, but is in general not unique
(Kailath, 1980), (Hannan and Deistler, 1987). One state-space representation
for Pi is derived in Appendix 2.A. A state-space representation for Ci can be
obtained mutatis mutandis.

2.3 Network identification in the presence of dis-
tributed control

Consider the closed-loop interconnected system described by (2.2)-(2.3). The
problem of identifying a transfer function G0

ij or collection of transfer functions

(G0
i , (G

0
ij)j∈Ni

) is commonly referred to as a local identification problem in dy-
namic network identification (Ramaswamy et al., 2019), (Van den Hof et al.,
2019), (Van den Hof and Ramaswamy, 2021). Methods for the local module iden-
tification problem can be categorized into two main approaches: direct methods
and indirect methods. A direct method is characterized by the use of ‘node’
signals wj (uj or yj in the considered setting) as predictor inputs, i.e., as inputs
for predicting yi through a parametrized model. In an indirect method, exter-
nal signals rj are chosen as predictor inputs to predict yi, and a post-processing
step is typically required to extract the local estimated dynamics. The synergy
of the two methods led to a generalized method for local module identification,
developed by Ramaswamy et al. (2019).

2.3.1 Direct method

The main idea behind the direct method for identification in a closed loop, is
to use the input-output data of the plant for identifying a model without taking
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the closed-loop situation directly into account, i.e., by disregarding the presence
of the controller (Van den Hof, 1998). Similarly, in the direct method to local
module identification in dynamic networks, a module or MISO system is identi-
fied based on its input-output data, without considering the rest of the network
in the identification procedure (directly), cf. (Van den Hof et al., 2013). Al-
though not considered direcly, the network as a whole is still of importance for
the direct method for the analysis of informativity of the input-output data for
identification, which will be discussed later in this subsection.

The direct method typically requires the inclusion of a model for the noise fil-
ters in the estimation problem. When the process noise signals in {v1, v2, . . . , vL}
are uncorrelated (Φv is a diagonal matrix) such that vi = H0

i (q)ei, the identi-
fication problem reduces to a MISO identification problem (Van den Hof et al.,
2013). Consider the parametrized transfer function models Gi(θi), (Gij(θi))j∈Ni

and Hi(θi) for, respectively, G0
i , (G0

ij)j∈Ni
and H0

i , with a one-step-ahead pre-
dictor for yi given by

ŷi(t|t− 1; θi) :=(1−H−1
i (θi))yi(t) +H−1

i (θi)

Gi(θi)ui(t) +
∑
j∈Ni

Gij(θi)wj(t)

.
The corresponding prediction error εi(t, θi) := yi(t)− ŷi(t|t− 1; θi) is minimized
in the direct method in a least-squares sense (Van den Hof et al., 2013):

θ̂Ni := arg min
θ

1

N

N−1∑
t=0

εi(t, θi)
2. (2.7)

Under weak assumptions1, the parameter estimate converges asymptotically
in the number of data as θ̂Ni → θ∗i with probability 1 as N → ∞, where θ∗i :=

arg minθ Ēε
2
i (t, θ), Ē := limN→∞ 1

N

∑N−1
t=0 E and E is the expectation. When the

transfer function models are evaluated at θ∗i , consistent estimates are obtained.

Definition 2.3.1. The module transfer functions G0
i , G

0
ij, j ∈ Ni, and H0

i are

said to be estimated consistently if, respectively, Gi(q, θ
∗
i ) = G0

i (q), Gij(q, θ
∗
i ) =

G0
ij(q), j ∈ Ni, and Hi(q, θ

∗
i ) = H0

i (q).

Consistent identification through the direct method in dynamic network iden-
tification is dependent on the chosen parametrization, the information present in
the predictor input and output signals and correlation of the external signals.

1These assumptions are standard in the identification literature and are related to the sta-
bility of the predictor model and bounded moments of the noise (for convergence), see e.g.,
(Ljung, 1999) for details.
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Proposition 2.3.1 (Van den Hof et al. (2013)). Consider the closed-loop network
described by (2.2)-(2.3), the direct method estimator (2.7) and let the following
conditions hold:

(1) the noise vi is uncorrelated to the reference rj, for all j ∈ Z[1:L],

(2) the noise vi is uncorrelated to the noise vj, for all j ∈ Z[1:L] \ {i},

(3) every path in the network graph from vertex i to itself contains at least one
transfer function with a delay,

(4) the spectral density of col(yi, ui, wh1, . . . , whL), h• ∈ Ni is positive definite
for almost all ω ∈ [−π, π],

(5) there exists θ0
i so that Gi(θ

0
i ) = G0

i , Gij(θ
0
i ) = G0

ij and Hi(θ
0
i ) = H0

i .

Then G0
i , G

0
ij, j ∈ Ni, and H0

i are estimated consistently.

Data-informativity for the direct method is formulated in terms of a positive-
definite power spectrum of col(yi, ui, wh1, . . . , whL), h• ∈ Ni, requiring sufficient
excitation from external signals. Excitation can be both provided by reference
signals rj , j ∈ V, as well as disturbance signals ej , j ∈ V, because both types of
signals contribute to the excitation of the predictor inputs.

While this informativity condition is rather implicit, it can be translated to
path-based conditions on the closed-loop network graph for informativity that
holds generically, i.e., independent of the transfer function coefficients. The next
lemma follows mutatis mutandis from Proposition 1 by Van den Hof and Ra-
maswamy (2020).

Lemma 2.3.1. Consider the vector wD := col(yi, ui, wh1, . . . , whL) ∈ Rp, h• ∈
Ni and let the stacked vector of external signals col(r, e) have a power spectrum
that is positive definite almost everywhere. Then ΦwD is positive definite almost
everywhere if there are p vertex-disjoint2 paths from col(r, e) to wD.

By (2.2) and (2.3), we observe that there exists a path from ri to ui (through
Ci) and that there exists a path from ei to yi (through H0

i ). These two paths
are clearly disjoint. Hence, if there exist |Nj | vertex-disjoint paths (of which
each path is vertex disjoint with ri → ui and ei → yi), then the condition in
Lemma 2.3.1 is satisfied.

Corollary 2.3.1. Let Φ(r,e) be positive definite almost everywhere and let rV and
eV be stacked vectors of rj and ej, with j ∈ V \{i}. Then ΦwD is positive definite
almost everywhere if there are |Ni| vertex-disjoint paths from col(rV , eV) to wNi .

2A set of paths is vertex disjoint if no two of them have one or more vertices in common.
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For the condition on the vertex-disjoint paths to hold, it is clearly necessary
that there are at least |Ni| external signals in (rV , eV). Let us illustrate the direct
method and its sufficient informativity conditions via a simple example network.

Example 2.1. Consider the two interconnecting control loops introduced in Chap-
ter 1, depicted in Figure 2.2. The identification of the interconnection dynamics
G0

21 has been treated in detail by Gudi and Rawlings (2006). In view of the direct
method, the dynamics of P1 and P2 can be identified through two identification
experiments.

z1 C1 u1 G0
1

y1

z2 C2 u2 G0
2

y2

G0
21

G0
12

r1

r2

v1

v2

−

−

Control loop 1

Control loop 2

Figure 2.2: Two interconnected control loops considered by Gudi and Rawlings
(2006), cf. (Van den Hof et al., 2018).

The identification of P2 for example, consists of modeling G0
2, G0

21 and, pos-
sibly, H0

2 . Finding the parameter estimates in (2.7), requires a prediction for y2

with predictor inputs u2 and u1. By choosing a suitable model class according to
condition 5 in Proposition 2.3.1, consistent estimates can be obtained if the data
informativity condition (condition 4, Proposition 2.3.1) holds, i.e., if the power
spectrum of col(u1, u2, y2) is positive definite. By Corollary 2.3.1, only one path
from r1 and e1 to u1 is required. It is clear that, due to the feedback loop from y1

to z1, sufficient excitation can be provided by choosing either r1 or e1 to have a
positive definite power spectrum. Notice that it is not required to measure these
external signals, nor to know the controller dynamics.

Instead of the identification of one subsystem Pi, identification of the full plant
(Pi)i∈V can be performed by the separate identification of Pi, i ∈ V (which may
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be performed in parallel). When Φv is a non-diagonal matrix, confounding vari-
ables are present in the experimental setup (Van den Hof and Ramaswamy, 2021).
The implication is that consistent estimates cannot be obtained through the di-
rect method with a MISO predictor model, in general. Confounding variables
due to noise correlation can be handled by adapting the predictor model, e.g.,
through adding additional variables to the predictor output, as described in (Ra-
maswamy and Van den Hof, 2021). Alternatively, correlated noise processes can
be handled by the use of an indirect identification method, as discussed in the
next subsection.

2.3.2 Indirect method

Based on the dynamics of the closed-loop network in (2.5), the closed-loop net-
work can be written as[

y
u

]
= (I −G0

I)−1

([
0
CI

]
r +

[
H0

0

]
e

)
=

[
T 0
y

T 0
u

]
r + v̄,

where [
T 0
y

T 0
u

]
:= (I −G0

I)−1

[
0
CI

]
and v̄ := (I −G0

I)−1

[
H0

0

]
e

If T 0
y and T 0

u would be known/given and the transfer matrices G0 and G0
D are

unknown, one can use the definition of col(T 0
y , T 0

u) above in order to retrieve G0

and G0
D. It is well known (Ljung, 1999), cf. (Gevers et al., 2018), (Van den Hof

and Ramaswamy, 2021), that a consistent estimate col(T̂y, T̂u) of col(T 0
y , T

0
u) can

be obtained through open-loop MIMO identification, provided that the power
spectrum of r is positive definite for a sufficiently high number of frequencies.
Given the definition of col(T 0

y , T
0
u) and (2.5), estimates of G0 and G0

D can be

obtained from col(T̂y, T̂u), by solving the equation[
I − Ĝ∆y −(Ĝ∆u + ĜD)
CI I

] [
T̂y
T̂u

]
=

[
0
CI

]
(2.8)

in Ĝ and ĜD. Consistent estimates of G0 and G0
D are obtained through (2.8) if

the estimates T̂y and T̂u are consistent.

Remark 2.3.1. Notice that the first block row in (2.8) is sufficient for solving
the equation in Ĝ and ĜD, given T̂y and T̂u. Moreover, if the controller transfer

matrix CI is known, then knowledge of either T̂y or T̂u is sufficient. Indeed, given

CI , T̂u can be obtained by solving the second block row in (2.8) given T̂y. Vice

versa, the transfer matrix T̂y can be obtained from T̂u.
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Not all the transfer functions in G0
I have to be identified for controller design.

The transfer matrix CI (which captures dynamics of the distributed controller
in the loop) is either known or its dynamics are not of interest in the considered
identification problem. The dynamics of one subsystem Pi, i ∈ V, (or all sub-
systems) can be identified by solving a subset of the equations in (2.8), which
also requires only the identification of a submatrix of col(T 0

y , T
0
u) (Gevers et al.,

2018).
Let us elaborate on the indirect identification of G0

i , (G0
ij)j∈Ni . Consider a

vector of reference signals rD = colj∈D rj , with D ⊆ V. Now, consider two trans-
fer matrices of interest: the transfer matrix T 0

i,rD from external reference signals

rD to yi and the transfer matrix T 0
wN ,rD from rD to wN := col(ui, wh1

, . . . , whL
),

h• ∈ Ni. The main principle of the local indirect method is that estimates of G0
i ,

(G0
ij)j∈Ni

can be obtained, by post-processing estimates of T 0
i,rD and T 0

wN ,rD .
To estimate the transfer matrices from rD to yi and wN , we collect the out-
put yi, control input ui, and the in-neighbour nodes in the predictor output
wY = col(yi, ui, wh1 , . . . , whL

) = col(yi, wN ). By minimizing the prediction error

εi(t, θ) = H̄i(q, θ)
−1

(
wY −

[
Ti,rD
TwD,rD

]
(q, θ)rD

)
, (2.9)

in a least-squares sense, an estimate (T̂i,rD , T̂wN ,rD ) of (T 0
i,rD , T

0
wN ,rD ) is ob-

tained. Since this is an open-loop identification problem, the noise model H̄i

in (2.9) does not have to be identified consistently for the consistent estimation
of the tranfer functions of interest (hence, e.g. H̄i = I can be chosen). The
following result follows from Theorem 5.2, by Gevers et al. (2018).

Theorem 2.3.1. Take rD = col(ri, rh1
, . . . , rhL

), h• ∈ Ni. If the estimate
(T̂i,rD , T̂wN ,rD ) of (T 0

i,rD , T
0
wN ,rD ) is consistent, then consistent estimates of G0

i ,

(G0
ij)j∈Ni

are given by [
Ĝi ĜNi

]
= T̂i,rD T̂

−1
wN ,rD . (2.10)

Consistent estimates of (T 0
i,rD , T

0
wN ,rD ) can be obtained via standard open-

loop identification, which requires a full-order model for the elements of T 0
i,rD ,

T 0
wN ,rD and rD is required to be persistently exciting of a sufficiently high or-

der (Ljung, 1999).

Example 2.2. Let us return to the two interacting control loops in Example 2.1.
For the identification of G0

2 and G0
21 through the indirect method, we can estimate

the transfers col(r1, r2)→ col(u1, u2) and col(r1, r2)→ y2. Consistent estimates
T̂wN ,rD and T̂2,rD can be obtained with the prediction error (2.9), provided that
(r1, r2) is persistently exciting of sufficiently high order. Consistent estimates of
G0

2 and G0
21 are then obtained as

[
Ĝ2 Ĝ21

]
= T̂2,rD T̂

−1
wN ,rD .
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The external signal vector rD can be chosen in other ways than stated in
Theorem 2.3.1, with D any subset of V, cf. (Van den Hof and Ramaswamy,
2021), (Shi et al., 2022). This may yield a non-square matrix T̂wN ,rD , such that
a consistent estimate is [

Ĝi ĜNi

]
= T̂i,rD T̂

†
wD,rD ,

where T̂ †wN ,rD is a right-inverse of T̂wN ,rD . It should be noted that the existence

of the right inverse of T̂wN ,rD requires a sufficient number of (measured) external
excitation signals in rD (|D| ≥ |Ni|+ 1) (Van den Hof and Ramaswamy, 2021).

2.3.3 Tailor-made parametrization

From the previous subsection, we have observed that the indirect identification
of a plant in a closed-loop network requires two steps: (i) the identification of a
transfer matrix from (a subset of) external signals to (a subset of) node signals
(u, y) and (ii) the computation of the plant transfer functions through post-
processing. In a classical closed-loop situation, the two steps of the indirect
identification procedure can be combined into a single step, by employing a tailor-
made parametrization where knowledge of the controller is used (Van den Hof,
1998). In this subsection, we will consider the identification in a closed-loop
network with a tailor-made parametrization, where knowledge of the controller
and the network structure is used in the parametrization.

Let us consider a predictor model where the outputs (y1, . . . , yL) are predicted
on the basis of the external reference signals (r1, . . . , rL). A one-step-ahead pre-
dictor for the output yi with predictor inputs (r1, . . . , rL) will be of the form

ŷi(t|t− 1; θ) :=

L∑
j=1

Tij(q, θ)rj(t), (2.11)

with Tij(q, θ) the parametrized transfer between rj and yi. Now, since the struc-
ture of the transfer rj and yi is known (due to (2.5)), this means that Tij(q, θ)
can be parametrized in terms of the parameters of (Gi(θ))i∈V and (Gij(θ))(i,j)∈E .

We will make this parametrization explicit. From (2.5), it follows that

y = G0∆yy + (G0∆u +G0
D)CI(r − y) +H0e

and, hence, with H̄0 :=
(
I −G0∆y + (G0∆u +G0

D)CI
)−1

H0,

y =
(
I −G0∆y + (G0∆u +G0

D)CI
)−1

(G0∆u +G0
D)CI︸ ︷︷ ︸

=:T0

r + H̄0e. (2.12)
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Therefore, given a parametrizationG(θ) andGD(θ) ofG0 andG0
D, the parametriza-

tion T (θ) of T0 in (2.12) can be taken as

T (θ) = (I −G(θ)∆y + (G(θ)∆u +GD(θ))CI)
−1

(G(θ)∆u +GD(θ))CI , (2.13)

such that the parametrized transfers Tij(θ) in (2.11) are taken as the (i, j)-th
entry of T (θ).

This leads to an identification problem arg minθ VTM (θ), with

VTM (θ) :=

L∑
i=1

1

N

N−1∑
t=0

ε2
i (t, θ), εi(t, θ) = yi(t)−

L∑
j=1

Tij(q, θ)rj(t), i ∈ V. (2.14)

Remark 2.3.2. Notice that explicit knowledge of the experimental setup is used
in the identification. Indeed, from (2.13), we observe that in the tailor-made
parametrization knowledge is used of the network structure, the fact that the plant
operates in closed loop, and the dynamics of the distributed controller are used.
This also implies that the distributed controller (at least the transfer matrix CI)
should be known in order to compute the prediction error in (2.14). In contrast,
in the indirect method described in (2.3.2), an unstructured estimate of T0 is made
in the first step, using no knowledge of the network structure or controller.

Remark 2.3.3. The noise filter H̄0 is not identified through the presented ap-
proach, but is implicitly modeled with a fixed noise model H̄ = I. Notice that there
is no assumption on the correlation between noise signals ei and ej, (i, j) ∈ V2,
i 6= j.

Consistent estimates G(θ̂N ) and GD(θ̂N ) of G0 and G0
D are obtained if the

power spectrum of r is positive definite for a sufficiently high number of frequen-
cies, provided that r and e are uncorrelated and that the model set parametrized
by (2.13) is uniformly stable3. We will not go into further detail on consistency
of the tailor-made identification method here, since the tailor-made parametriza-
tion is particularly of interest for identification for controller design in case the
system is not in the model set.

2.4 Network identification for distributed con-
trol

2.4.1 Control-oriented identification problem

In the previous section, the problem of identifying subsystems in a closed-loop
setting with a distributed control architecture was considered. In this section,

3Uniform stability here refers to the stability of the (derivatives) of predictor filters and
connectedness of the parameter set, cf. (Van den Hof, 1998) for more details.
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we will consider the identification of subsystems Pi, i ∈ V, with the objective
of designing a distributed controller. The control problem that is considered
here is a distributed H2 control problem, which will be considered in Chap-
ter 4 for the problem of synthesizing a distributed controller in a general setting.
In the setting of this chapter this is a reference tracking problem, where the
tracking errors of all subsystems should be minimal for any choice of reference
signals. More specifically, for the interconnected system (2.2) with subsystems
P = (P1, . . . ,PL), the control problem is to find a distributed controller (2.3) with
controllers C = (C1, . . . , CL) such that ‖F (P, C)‖H2 is minimal, where F (P, C)
is the transfer col(r1, . . . , rL) → col(z1, . . . , zL) for the closed-loop network de-
scribed by (2.2)-(2.3).

In Chapter 4, the dynamics of the interconnected system (2.2) are assumed
to be known and a solution is provided to the distributed H2 control problem. In
reality, these dynamics are typically not known, i.e., for each i ∈ V, the transfer
functions describing Pi, G0

i andG0
ij with j ∈ Ni, are not known. The model-based

controller design in Chapter 4 therefore requires a model of the interconnected
system, P̂ = (P̂1, . . . , P̂L).

Loosely speaking, the problem of concern is to identify a model P̂ of the
interconnected system and to synthesize a distributed controller C = (C1, . . . , CL)
based on P̂ such that ‖F (P, C)‖H2

is minimal, i.e., such that the closed-loop data-
generating system achieves a high performance in terms of reference tracking. Of
course, without further considerations, only ‖F (P̂, C)‖H2 is optimized in a model-
based controller design. That is, the closed-loop interconnected system model
achieves a high performance. Evaluation of the performance with a model-based
design is possible via the performance inequality (Van den Hof and Schrama,
1995), cf. (Schrama, 1992):∣∣‖F (P̂, C)‖H2 − ‖F (P, C)− F (P̂, C)‖H2

∣∣
≤ ‖F (P, C)‖H2 (2.15)

≤ ‖F (P̂, C)‖H2
+ ‖F (P, C)− F (P̂, C)‖H2

,

where we can distinguish three main terms: the achieved performance ‖F (P, C)‖H2
,

the designed performance ‖F (P̂, C)‖H2 , and the performance degradation term
‖F (P, C)− F (P̂, C)‖H2 .

The achieved performance is ‘squeezed’ in between the upper and lower bounds
dictated by the triangular inequality, if the performance degradation is kept
(relatively) small. The optimization of ‖F (P, C)‖H2

through model-based de-
sign could therefore be performed by minimizing the upper-bound in (2.15),
while taking into account that the performance degradation should be relatively
small (with respect to the designed performance) (Van den Hof and Schrama,
1995). State-of-the-art methods for distributed controller design and network
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identification can either optimize the distributed controller or interconnected sys-
tem model, but are not fit to optimize both simultaneously in the upperbound
in (2.15)4. Iterative schemes for identification and control aim at minimizing
the upperbound by alternately solving an identification problem and a control
problem, cf. (Van den Hof and Schrama, 1995).

Given a model (P̂1, . . . , P̂L) of the interconnected system, ‖F (P̂, C)‖H2
is

a distributed H2 controller criterion which should be optimized for C1, . . . , CL.
Given a distributed controller C1, . . . , CL, the performance degradation ‖F (P, C)−
F (P̂, C)‖H2 is a model mismatch criterion. Now, consider the problem of deter-
mining P̂1, . . . , P̂L from data such that the performance degradation is optimized,
i.e., the problem

min
P̂1,...,P̂L

‖F (P, C)− F (P̂, C)‖H2 . (2.16)

Notice that this is a control-oriented identification problem with a criterion that
is determined by the transfer matrix of interest F and the H2 performance met-
ric. Problem (2.16) is an identification problem with a non-trivial identification
criterion. This problem has been thoroughly analyzed in the field of identification
for control for single-input-single-output systems in a standard control loop (Van
den Hof and Schrama, 1995).

For the case of interconnected systems, (2.16) is a network identification prob-
lem. We distinguish two cases: (i) consistent identification of Pi, i ∈ V (exact
modeling) and (ii) identification of Pi, i ∈ V, with a model set that is not rich
enough to capture all dynamics of the network (approximate modeling).

2.4.2 Exact modeling

Consider the direct method described in Section 2.3.1. As a consequence of
Proposition 2.3.1, the sum of the asymptotic identification criteria Ēε2

i (t, θ) leads
to an identification criterion with a minimizing argument that also minimizes
the control-oriented identification criterion in (2.16). Indeed, if the consistency
conditions in Proposition 2.3.1 are satisfied for each i, then a consistent estimate
P̂i equals Pi, for all i ∈ V. Hence, (P̂1, . . . , P̂L) clearly is a minimizing argument
of ‖F (P, C) − F (P̂, C)‖H2 . Similarly, it is clear that consistent estimates of Ĝ0

i ,

(Ĝ0
ij)j∈Ni

obtained through the indirect method form a model (P̂1, . . . , P̂L) that
is a solution to (2.16).

4The optimization of ‖F (P, C)‖H2
directly on the basis of data, instead of the upperbound,

is a challenging problem on its own. This problem will be discussed in detail in Part II in a
model-reference control setting.
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2.4.3 Approximate modeling

The estimates that follow from the direct method are consistent and therefore
solve the control-oriented identification problem. However, when the ‘system in
the model set’ assumption is violated5, then consistency is not guaranteed, which
implies that an estimated model P̂ is in general not a minimizing argument of
‖F (P, C) − F (P̂, C)‖H2

. The question is then: how to identify (P1, . . . ,PL) via
approximate modeling, such the performance degradation is minimized? We will
show that the identification criterion of the indirect identification method with
tailor-made parametrization, described in Section 2.3.3, can be interpreted as the
performance degradation term in (2.15) under conditions on the experimental
setup.

Let us have a closer look at the performance degradation for an approximated
model P̂. Let ∆Fij := F 0

ij − F̂ij , where F 0
ij is the transfer rj → zi of the closed-

loop network (2.2)-(2.3)6. By the definition of the H2 norm, we can rewrite the
performance degradation as

‖F (P, C)− F (P̂, C)‖H2
=

1

2π

∫ π

−π
trace ∆F (eiω)∗∆F (eiω) dω

=
1

2π

∫ π

−π
∆F ∗11∆F11 + · · ·+ ∆F ∗L1∆FL1

+ ∆F ∗12∆F12 + · · ·+ ∆F ∗L2∆FL2

...

+ ∆F ∗1L∆F1L + · · ·+ ∆F ∗LL∆FLL dω

=

L∑
j=1

L∑
i=1

1

2π

∫ π

−π
∆F ∗ij∆Fij dω. (2.17)

In order to minimize the performance degradation, prediction-error identification
with predictor inputs as reference signals r1, . . . , rL and predictor outputs as
tracking errors z1, . . . , zL therefore appears to be a natural choice. Indeed, it
can be shown that the prediction-error identification criterion7 with a tailor-
made parametrization from Section 2.3.3, can be interpreted as a performance
degradation term.

5That is, there does not exist a θ0i such that Gi(θ
0
i ) = G0

i , Gij(θ0i ) = G0
ij and Hi(θ

0
i ) = H0

i .

This is referred to as approximate modeling in the identification literature (system is not in the
model set).

6Since zi = ri − yi, F 0
ij is directly related to the transfer T 0

ij from rj to yi as F 0
ij = −T 0

ij

for i 6= j and F 0
ii = 1− T 0

ii.
7Notice that the output yi is predicted in Section 2.3.3 instead of the tracking error zi.

This is equivalent, however, since the prediction error in (2.14) is εi(t, θ) = yi − ŷ(t|t− 1; θ) =
(ri−ŷ(t|t−1; θ))−zi, where the first term is a prediction of ziwith a tailor-made parametrization.



2.4. Network identification for distributed control 47

Given the tailor-made parametrization Tij(θ) of T 0
ij as defined in (2.13),

consider the parametrization Fij(θ) of F 0
ij as Fij(θ) = −Tij(θ), i 6= j and

Fii(θ) = 1 − Tii(θ). The following result provides an expression for the asymp-
totic identification criterion corresponding to the network identification prob-
lem (2.14).

Lemma 2.4.1. Consider the asymptotic prediction-error identification criterion
V̄TM (θ) :=

∑L
i=1 Ēε

2
i (t, θ), with the prediction errors defined in (2.14). If the

conditions

1. for all (i, j) ∈ Z2
[1:L], ri is uncorrelated to ej,

2. for all (i, j) ∈ Z2
[1:L], i 6= j, ri is uncorrelated to rj,

are satisfied, then

V̄TM (θ) =

L∑
j=1

L∑
i=1

1

2π

∫ π

−π
∆Fij(θ)

∗∆Fij(θ)Φrj + E∗(ω)(H̄0
i )∗H̄0

i E(ω) dω,

where E denotes the Fourier transform of e.

Proof. Parseval’s theorem provides an expression for V̄TM in the frequency do-
main:

V̄TM (θ) =

L∑
i=1

1

2π

∫ π

−π
Φεi(ω) dω.

By condition 1. and 2., it follows that

Φεi =

L∑
j=1

|F 0
ij − Fij(θ)|2Φrj + E∗(ω)(H̄0

i )∗H̄0
i E(ω), i ∈ V.

Hence, we find that

V̄TM (θ) =

L∑
i=1

1

2π

∫ π

−π

L∑
j=1

|F 0
ij − Fij(θ)|2Φrj + E∗(ω)(H̄0

i )∗H̄0
i E(ω) dω

=

L∑
i=1

L∑
j=1

1

2π

∫ π

−π
∆F ∗ij(θ)∆Fij(θ)Φrj + E∗(ω)(H̄0

i )∗H̄0
i E(ω) dω,

which yields the assertion.
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Two observations can be made: (i) the identification criterion V̄TM consists
of a part that depends on the parameter vector θ and a part that is independent
of θ, and (ii) the identification criterion is tunable through Φrj , i.e., through the
choice of external reference signals. Under the conditions in Lemma 2.4.1, we
find that the minimizing argument of V̄TM is equal to

arg min
θ
V̄TM (θ) = arg min

θ

L∑
i=1

L∑
j=1

1

2π

∫ π

−π
∆F ∗ij(θ)∆Fij(θ) dω

+

L∑
i=1

1

2π

∫ π

−π
E∗(ω)(H̄0

i )∗H̄0
i E(ω) dω

= arg min
θ

L∑
i=1

L∑
j=1

1

2π

∫ π

−π
∆F ∗ij(θ)∆Fij(θ) dω

for constant reference spectra Φri = 1, i ∈ V. Hence, we find that a plant model
P̂ obtained through the minimization of V̄TM will be a minimizing argument
of ‖F (P, C) − F (P̂, C)‖H2 by (2.17). That is, the parameter vector that mini-
mizes the asymptotic identification criterion V̄TM is a minimizing argument of
the performance degradation.

Remark 2.4.1. The rationale behind the prediction-error (2.14) is that the es-
timator bias in the case of approximate modeling is ‘shaped’ such that models Gi
and Gij give a small H2 norm for the transfer functions of interest for control.
This idea has been explored in (Ljung, 1999, Section 13.5) for ‘pulling’ the bias
towards models that give a small sensitivity in SISO control loops. It should be
noted that if the model class is chosen such that condition 5. of Proposition 2.3.1
is satisfied (the system is in the model set), then there is no bias (asymptotically)
and the identification approach in this subsection still yields consistent estimates
of G0

i and G0
ij, j ∈ Ni, under sufficient excitation through r.

2.4.4 Iterative identification and controller design

As mentioned in Section 2.4, the designed performance and performance degra-
dation in (2.15) cannot be minimized simultaneously. Iterative schemes have
been developed in the field of identification for control to alternately minimize
the designed performance and performance degradation via controller design and
control-oriented identification, respectively (Van den Hof and Schrama, 1995).
Considering these iterative schemes, an scheme in which the interconnected sys-
tem identification and distributed controller design are performed iteratively, has
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the form

(P̂1, . . . , P̂L)(k + 1) = arg min
P̃1,...,P̃L

‖F (P, C(k))− F (P̃, C(k))‖H2

(C1, . . . , CL)(k + 1) = arg min
C̃1,...,C̃L

‖F (P̂(k + 1), C̃)‖H2
.

Here k denotes the iteration number. This iterative scheme can be interpreted as
a ‘windsurfer approach’8 for the distributed controller design of interconnected
systems.

The iterative control scheme can be initiated by performing experiments on
the closed-loop network (2.2) with a preliminary (distributed) controller C(k).
The plant models (P̂1, . . . , P̂L)(k + 1) are obtained through identification with
a control-oriented identification criterion as discussed in Section 2.4.3 (or Sec-
tion 2.4.2 in the case of exact modeling). Based on the model (P̂1, . . . , P̂L)(k+1),
a distributed or decentralized H2 controller (C1, . . . , CL)(k + 1) can be designed
such that ‖F (P̂(k + 1), C̃)‖H2

is minimized, via the method described in Chap-
ter 4. Iterations are continued by setting k → k+ 1 and repeating the identifica-
tion and controller design.

2.5 Conclusions

In this chapter we have considered the problem of identifying subsystems of an
interconnected system for the design of a decentralized or distributed controller.
We have first considered the identification of subsystems of a network in closed-
loop with a (distributed) controller, yielding a network with a special structure.
It has been shown that consistent estimates of the subsystems can be obtained
through both direct and indirect network identification methods. When a tailor-
made parametrization is used in the network identification, the structure of the
closed-loop network and the controller dynamics can be explicitly taken into
account in the predictor model. The identification criterion corresponding to
the network identification method with a tailor-made parametrization can be
interpreted as the performance degradation for an H2 performance criterion for
reference tracking.

8The windsurfer approach is an adaptive robust control design method introduced by An-
derson and Kosut (1991). It is motivated by the way humans learn windsurfing.
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Appendix

2.A Derivation of a state-space representation

The transfer matrix [G0
i GNi

] has a (left) matrix fraction description9 (Hannan
and Deistler, 1987)

[G0
i G

0
Ni

] = P−1
i [Qi QN ],

where P , Q and QN are polynomial matrices given by P (q−1) = I + P1q
−1 +

· · ·+Plq
−l, Q(q−1) = Q0 +Q1q

−1 + · · ·+Qlq
−l and QN (q−1) = QN0 +QN1 q

−1 +
· · ·+QNl q

−l. The dynamics of Pi are therefore described by zi = ri − yi and

P (q−1)yi(t) =
[
Q(q−1) QN (q−1)

] [ ui(t)
wNi

(t)

]
+ Pi(q

−1)vi(t)

or, equivalently, defining ȳi := yi − vi,

ȳi(t) + P1ȳi(t− 1) + · · ·+ Plȳi(t− l) = Q0u(t) +Q1u(t− 1) + · · ·+Qlu(t− l)
+QN0 wNi

(t) +QN1 wNi
(t− 1) + · · ·+QNl wNi

(t− l).

Define the vector signal xi(t) := col(ȳi(t)), ȳi(t− 1), . . . , ȳi(t− l), ūi(t), . . . , ūi(t−
1), . . . , ūi(t − l)), where ūi = col(ui, wNi

), and define P̄ := row(−P1, . . . Pl) and
Q̄ := row(Q1, Q

N
1 , . . . , Ql, Q

N
l ), such that

ȳi(t) =
[
Q0 QN0

]
ūi(t) +

[
P̄ Q̄

]
xi(t). (2.18)

9A simple but rudimentary way of obtaining a matrix fraction description of a rational
matrix G, is to write G = p−1Q, where p is the least common multiple of the denominator
polynomials of the entries of G.
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From (2.18) it follows that a state-space representation of Pi is

xi(t+ 1) =


P̄ Q̄
I 0 0 0
0 0 0 0
0 0 I 0


︸ ︷︷ ︸

=:Ai

xi(t) +


Q0

0
I
0
0


︸ ︷︷ ︸

=:Bi

ui(t) +


QN0
0
0
I
0


︸ ︷︷ ︸

=:ANi

wNi(t),

yi(t) =
[
P̄ Q̄

]︸ ︷︷ ︸
=:Ci

xi(t) + Q0︸︷︷︸
=:Di

ui(t) + QN0︸︷︷︸
=:CNi

wNi(t) + vi(t), (2.19)

with zi = ri − yi.



Chapter 3

Distributed identification in
dynamic networks

The identification of dynamic networks can typically be separated into the iden-
tification of several multi-input-single-output (MISO) systems. In this chapter,
we separate the identification in dynamic networks further, by developing a novel
approach to distributed identification of MISO systems. The distributed identifi-
cation is discerned by the local estimation of local parameters, which correspond
to a module in the MISO system. The local estimators are derived from the stan-
dard recursive least squares estimator and require limited information exchange.
By Lyapunov’s second method, sufficient conditions are derived for asymptotic
convergence of the estimators to the true parameters in the absence of distur-
bances, which lead to asymptotic unbiasedness in the presence of additive output
disturbances.

3.1 Introduction

Prediction-error identification methods provide a powerful tool for obtaining con-
sistent system parameter estimates (Ljung, 1999). However, when dealing with
large scale interconnected systems, such as the ones arising from biology or power
grids, the identification problem becomes more challenging. Given a network of
linear dynamical systems, various prediction error methods are readily opera-
tional for identifying these systems (Rao et al., 1984), (Van den Hof et al., 2013).

This chapter is based on the publication: T. R. V. Steentjes, M. Lazar, and P. M. J. Van den
Hof. A recursive estimation approach to distributed identification of large-scale multi-input-
single-output FIR systems. IFAC-PapersOnLine, 51(23):236 – 241, 2018. 7th IFAC Workshop
on Distributed Estimation and Control in Networked Systems
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The identification problem of such large-scale systems can typically be sep-
arated into multiple-input-single-output (MISO) identification problems, in the
case that the process disturbances are uncorrelated over the channels (Rao et al.,
1984), (Van den Hof et al., 2013). More precisely, identification of a large-scale
system can be performed via the identification of MISO building blocks, on the
basis of measurements of multiple inputs and one, possibly disturbed, output.
Figure 3.1 shows such a MISO building block. In the case that the process noise
is correlated over the channels, confounding variables can require the addition of
inputs or outputs to the predictor model, leading to extended MISO (Dankers
et al., 2016) or MIMO (Ramaswamy and Van den Hof, 2021) identification prob-
lems.

Gj2

Gj1

Gjmj

Hj

w2

w1

wmj

ej

rj

wj

...

Figure 3.1: MISO system interconnection with mj ∈ N subsystems.

Although existing prediction error methods for dynamical networks can con-
sistently identify local modules (single-input-single-output (SISO) systems), the
identification problem that has to be solved is typically a MISO identification
problem, with measurement data required to be available centrally for parameter
estimation. Central data collection and computation of the module estimates may
not always be desirable due to computational constraints or desired flexibility.
A further decomposition of the MISO identification problem into SISO identifi-
cation problems to reduce computational complexity was also suggested in (Rao
et al., 1984). Therein, it was proposed to perform a decomposition of the param-
eter estimation via a Gauss-Seidel like algorithm, but a proof of convergence is
absent.

Distributed estimation has caught a vast amount of attention in the litera-
ture. Existing approaches can be divided into two distinct classes. The first class
consists of consensus based methods, discerned by collaborative estimation of a
global (common) parameter vector that is performed via a number of intercon-
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nected estimators (Mateos and Giannakis, 2012), (Papusha et al., 2014). The
second class is also enabled by collaborative estimation via interconnected esti-
mators. Therein each estimator is, however, concerned with the estimation of a
local parameter vector. We refer to the results derived for parameter estimation
in static large-scale systems (Marelli and Fu, 2015), distributed state estimation
via moving-horizon methods (Farina et al., 2010) and distributed identification
via ADMM (Hansson and Verhaegen, 2014).

In this work, we consider the distributed identification of transfer function
modules in dynamic networks. We consider that the identification problem can
be separated into MISO identification problems, which holds true under the as-
sumption that noise processes are uncorrelated over the channels. To the best of
the author’s knowledge, the distribution of the identification of modules in inter-
connected systems has only been considered by Hansson and Verhaegen (2014)
in the optimization layer through ADMM; a method that performs alternating
optimization steps and can often be successfully applied, but has no guarantee
for convergence (Hansson and Verhaegen, 2014). The distribution of the identi-
fication of modules in dynamic networks is therefore a largely unsolved problem
in the literature.

We develop a distributed solution for the MISO prediction error identifica-
tion problem (Van den Hof et al., 2013). Predictor models are employed that are
linear with respect to the parameters and can be specified by orthogonal basis
functions (Heuberger et al., 2005). These models are chosen to be linear because
of the explicit solution to the corresponding least squares problem for identifi-
cation, which allows recursive parameter estimation via recursive least squares
methods. The use of orthogonal basis functions allows the specification of model
structures such as FIR or ARX, while more advanced basis functions can improve
the accuracy of the model (Heuberger et al., 2005). These predictor models serve
as a basis for the developed distributed identification method. The distributed
identification scheme is composed of local recursive estimators that are coupled
with local SISO modules. Intercommunication of the local estimators is accom-
plished through the transmission of scalar signals between recursions via a mutual
fusion center.

3.2 Preliminaries

The sets of non-negative integers and non-negative reals are denoted by N and
R≥0, respectively. Given a ∈ Z, b ∈ Z such that a < b, we denote Z[a:b] :=
{a, a+ 1, . . . , b− 1, b}. Let In ∈ Rn×n denote the identity matrix. A function
α : R≥0 → R≥0 is said to belong to class K (α ∈ K), if it is continuous, strictly
increasing and α(0) = 0. It is said to belong to class K∞ (α ∈ K∞), if additionally
α(r)→∞ as r →∞. For an x ∈ Rn, let ‖x‖2, or simply ‖x‖, denote the 2-norm
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of x.

3.2.1 Concepts from Lyapunov theory

Consider the discrete-time, time-varying system

x(t+ 1) = f(x(t), t), x0 := x(t0), t0 ∈ N, (3.1)

with f : Rn×N→ Rn, f(0, ·) = 0. Let the solution of (3.1) initialized in x0 ∈ Rn
at time t0 ∈ N be denoted by s(t, t0, x0).

Definition 3.2.1. The origin equilibrium of (3.1) is called stable if for each
ε > 0 and each t0 ∈ N, there exists δ = δ(ε, t0) so that

‖x0‖ < δ ⇒ ‖s(t, t0, x0)‖ < ε, ∀t ≥ t0.

Definition 3.2.2. The origin equilibrium of (3.1) is called attractive if there is
a δ > 0 such that

For each ε > 0 there exists T = T (ε, t0) such that

‖x0‖ < δ ⇒ ‖s(t, t0, x0)‖ < ε, ∀t ≥ t0 + T. (3.2)

By the definition of a function limit at infinity, (3.2) is equivalent with:

‖x0‖ < δ ⇒ ‖s(t, t0, x0)‖ → 0 as t→∞.

Definition 3.2.3. The origin equilibrium of (3.1) is called globally attractive if

x0 ∈ Rn ⇒ ‖s(t, t0, x0)‖ → 0 as t→∞.

Definition 3.2.4. The origin equilibrium of (3.1) is called asymptotically stable
if it is stable and attractive.

Definition 3.2.5. The origin equilibrium of (3.1) is called globally asymptotically
stable if it is stable and globally attractive.

Theorem 3.2.1. The origin is a stable equilibrium of (3.1) if there is a function
W : Rn × N→ R, so that

k1(‖ξ‖) ≤W (ξ, τ) ≤ k2(‖ξ‖, τ), ∀(ξ, τ) ∈ Rn × N, (3.3)

∆W (ξ, τ) ≤ 0, ∀(ξ, τ) ∈ Rn × N, (3.4)

with k1 ∈ K∞, k2(·, τ) ∈ K∞ for each τ ∈ N and ∆W (ξ, τ) := W (f(ξ, τ), τ +
1)−W (ξ, τ).
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Proof. See Appendix 3.A.

Theorem 3.2.2. The origin is a globally asymptotically stable equilibrium of
(3.1) if there is a function W : Rn × N→ R so that

k1(‖ξ‖) ≤W (ξ, τ) ≤ k2(‖ξ‖, τ), ∀(ξ, τ) ∈ Rn × N, (3.5)

∆W (ξ, τ) ≤ −k3(‖ξ‖), ∀(ξ, τ) ∈ Rn × N, (3.6)

with k1 ∈ K∞, k2(·, τ) ∈ K∞ for each τ ∈ N and k3 : R≥0 → R≥0 a continuous
and positive definite function with k3(0) = 0.

Proof. See Appendix 3.B.

Note the absence of a uniform upperbound on W in Theorem 3.2.2. This
avoids the need for a uniform lower bound on, or termination of gain/covariance
matrix recursions as in (Mendel, 1973), (Udink ten Cate, 1979), for proving con-
vergence of the recursive estimation scheme in Section 3.6.

Definition 3.2.6. A function W : Rn × N → R that satisfies (3.5) and (3.6) is
called a Lyapunov function for (3.1).

3.3 Identification in dynamic networks

We consider the system setup of Van den Hof et al. (2013): a dynamic network
that describes the relations among L internal variables wi, i ∈ {1, . . . , L} =: V
on a directed graph G = (V, E), with edges E ⊂ V × V:

wj(t) =
∑
i∈Nj

G0
ji(q)wi(t) + rj(t) + vj(t), j ∈ V, (3.7)

where

• q−1 is the delay operator, i.e., q−1x(t) = x(t− 1),

• Nj ⊆ V is the set of nodes i ∈ V for which G0
ji 6= 0, i.e., for which (i, j) ∈ E ,

where G0
ji is a rational and strictly proper transfer function,

• vj is an unmeasured process noise signal. The process v := col(v1, . . . , vL)
is modeled as a stationary stochastic process with a rational and diagonal
spectral density matrix Φv (uncorrelated over channels), such that there
exist stationary zero-mean white-noise processes ej with variance σ2

j and

transfer functions H0
j that are monic, stable and minimum phase, satisfying

vj(t) = H0
j (q)ej(t).
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Collecting all network variables wj , rj and vj in vectors yields an expression
w1

w2

...
wL

 =


0 G0

12 · · · G0
1L

G0
21 0 · · · G0

2L
...

...
. . .

...
G0
L1 G0

L2 · · · 0



w1

w2

...
wL

+


r1

r2

...
rL

+


H1e1

H2e2

...
HLeL

 , (3.8)

which describes the dynamics of the network. With straightforward vector and
matrix notations, (3.8) is equivalently written as

w = G0w + r +H0e.

We will assume throughout this chapter that the network is well-posed, i.e.,
(I −G0)−1 exists, and that (I −G0)−1 is stable.

3.3.1 Direct method in dynamic network identification

Given the description of the dynamic network in (3.7), each scalar internal vari-
able wj , is described by a multi-input-single-output (MISO) system

wj(t) =
∑
i∈Nj

G0
ji(q)wi(t) + rj(t) +H0

j (q)ej(t).

This MISO structure is the starting point for the distributed identification method
that is developed in this chapter. In the direct method (Van den Hof et al., 2013),
a module G0

ji (for some i ∈ Nj is identified by identifying all G0
jl, l ∈ Nj simul-

taneously. That is, by solving a single optimization problem

min
θ
Vj(θ), Vj(θ) :=

N−1∑
t=0

ε2
j (t, θ), (3.9)

where εj is the prediction error, ε(t, θ) := wj(t) − ŵj(t|t − 1; θ), based on the
one-step ahead predictor ŵj , defined by (Van den Hof et al., 2013)

ŵj(t|t− 1; θ) =
(
1−H−1

j (q, θ)
)
wj(t) (3.10)

+H−1
j (q, θ)

( ∑
i∈Nj

Gji(q, θ)wi(t) + rj(t)
)
,

where Gji(q, θ) and Hj(q, θ) are models of G0
ji and H0

j , with Hj(q, θ) a monic
transfer function and θ the parameter vector.
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In this chapter, we consider predictors ŵj which are linear with respect to the
parameters. This requires that H−1

j (q, θ)Gji(q, θ) and H−1
j (q, θ) are linear in the

parameters, such that the predictor (3.10) becomes

ŵj(t|t− 1; θ) =

na∑
k=1

akF
j
k (q)(rj(t)− wj(t)) +

∑
i∈Nj

ni
b∑

k=0

bikL
j
k(q)wi(t) + rj(t)

= ϕ>j (t)θj +
∑
i∈Nj

ϕ>i (t)θi + rj(t), (3.11)

where the monicity of Hj(q, θ) is used. In the predictor expression (3.11), the
parameter vector is θ = coll∈Nj∪{j} θl, where θj := col(a1, . . . , ana) and θi :=

col(bi1, . . . , b
i
ni
b
), i ∈ Nj , and F jk , Ljk are (orthogonal) basis functions, cf. (Van

den Hof et al., 1995), (Heuberger et al., 2005). In prediction-error identification,
a set of basis functions (Fk)k∈{1,...,n} is typically chosen as a set of orthonormal
basis functions, where orthonormality is reflected by the property

1

2π

∫ π

−π
Fk(eiω)Fk(e−iω) dω = 1 and

1

2π

∫ π

−π
Fk(eiω)Fl(e

−iω) dω = 0, k 6= l.

A special choice of basis functions is Fk(q) = q−k, for which the model structure
becomes an ARX or FIR model structure (which will be shown in Example 3.1
and 3.2 for the predictor (3.11)). Since the accuracy of the model is limited
by the choice of basis functions (Van den Hof et al., 1995), more advanced basis
functions have been developed in the literature, such as Laguerre functions, Kautz
functions and generalizations of the aforementioned functions (Heuberger et al.,
2005). Let us briefly exemplify the predictor via two model structures for Gji
and Hj that lead to a linear prediction expression of the form (3.11).

Example 3.1 (ARX model structure). In an ARX model structure, parametrized
models are transfer functions that are rational with respect to the delay operator,
such that

Gji(q, θ) =
Bi(q, θ)

A(q, θ)
, i ∈ Nj ,

Hj(q, θ) =
1

A(q, θ)
,

where

A(q, θ) = 1 + a1q
−1 + a2q

−2 + · · ·+ anaq
−na ,

Bi(q, θ) = bi0 + bi1q
−1 + bi2q

−2 + · · ·+ bni
b
q−n

i
b ,
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with θ = coll∈Nj∪{j} θl and θj, θi as defined in the paragraph following (3.11). It
follows by (3.10) that

ŵj(t|t− 1; θ) =

na∑
k=1

akq
−k(rj(t)− wj(t)) +

∑
i∈Nj

ni
b∑

k=0

bikq
−kwi(t) + rj(t),

which can be written as (3.11) with F jk (q) = Ljk(q) = q−k. The second equality
in (3.11) follows with

ϕ>j (t) =
[
rj(t− 1)− wj(t− 1) · · · rj(t− na)− wj(t− na)

]
,

ϕ>i (t) =
[
wi(t) wi(t− 1) · · · wi(t− nib)

]
, i ∈ Nj .

Example 3.2 (FIR model structure). An FIR model structure is a special, but
important, case of an ARX model structure where A(q, θ) = 1. It follows that the
predictor (3.10) is

ŵj(t|t− 1; θ) =
∑
i∈Nj

ni
b∑

k=0

bikq
−kwi(t) + rj(t) =

∑
i∈Nj

ϕ>i (t)θi + rj(t),

with θi and ϕi as defined in Example 3.1.

Because the predictor (3.11) has the property of being linear-in-the-parameters,
the least-squares identification problem (3.9) has a closed-form solution:1

θ̂ := arg min
θ
Vj(θ) = (Φ>Φ)−1Φ>wj , (3.12)

with wj a vectorized form of wj , i.e., wj := col(wj(0), . . . , wj(N − 1)), and

Φ> := (ϕ(0), . . . , ϕ(N − 1)) with ϕ(t) := coll∈Nj∪{j}. The parameter estimate θ̂
is referred to as the least squares estimator (LSE). The covariance matrix of the
LSE is Σ = σ2

j (Φ>Φ)−1 (Kay, 1993).

3.3.2 Recursive least squares

In practice, computing the LSE can be undesirable when all the data wj and
Φ are not available at once or when (3.12) is computationally intractable, for
example. Instead, one can use a recursive LSE (Kay, 1993), which updates the
LSE each time new data is available.

Let θ̂(k) denote the LSE of θ based on k + 1 data samples of the output
node wj(k) = (wj(0) · · · wj(k))> and regressor Φ(k) = (ϕ(0) · · ·ϕ(k))>. The

1We omit rj here and in the sequel for clarity of exposition. The reasoning throughout this
chapter is identical for the case where rj is non-zero.
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recursive LSE reads as follows (Kay, 1993). First, compute the “batch” estimator

θ̂(k) for k ∈ N:

θ̂(k) = (Φ(k)>Φ(k))−1Φ(k)>wj(k), (3.13)

Σ(k) = σ2
j (Φ(k)>Φ(k))−1.

When new data is available, update the estimator according to

θ̂(k + 1) = θ̂(k) + α(k)Σ(k)ϕ(k + 1)(wj(k + 1)− ϕ>(k + 1)θ̂(k)), (3.14)

α(k) :=
1

σ2
j + ϕ>(k + 1)Σ(k)ϕ(k + 1)

.

The covariance matrix of the updated LSE is

Σ(k + 1) = (I − α(k)Σ(k)ϕ(k + 1)ϕ>(k + 1))Σ(k). (3.15)

Remark 3.3.1. The recursive LSE and covariance matrix can be written in a
more compact form, using the prediction error definition in (3.14) and applying
the matrix inversion lemma (Guttman, 1946) to Σ(k + 1) in (3.15), as

θ̂(k + 1) = θ̂(k) + α(k)Σ(k)ϕ(k + 1)εj(k + 1, θ̂(k)), (3.16)

Σ−1(k + 1) = Σ−1(k) +
1

σ2
j

ϕ(k + 1)ϕ>(k + 1), (3.17)

respectively, cf. (Kay, 1993).

Remark 3.3.2. One can avoid the computation of a batch LSE (3.13) completely,

by initialization of the recursive LSE (3.16) from “scratch” with θ̂(−1) = 0 and
Σ(−1) = cI, with c ∈ R≥0 (Kay, 1993).

3.4 Problem formulation

Given the MISO prediction error identification problem described in Section 3.3.1,
central collection of mj = |Nj | node signals wi and one node signal wj is required2

for the central computation of θ̂, using either the LSE (3.12) or the recursive LSE
(3.16). From a distributed point of view, however, local module parameter es-

timators θ̂i for θi, may be preferred, due to computational or communication
constraints. We will refer to the concept of distributed identification, as the local
parameter estimation for Gji via a local identification module, with intercom-
munication between local identification modules. The distributed identification

2We remark that if all wi’s are uncorrelated, then SISO identification (without modeling
other subsystems) provides consistent estimates. This will lead to increased variance, however.
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concept is illustrated in Figure 3.2: Each subsystem Gji, i ∈ Nj is coupled with
an identification module Ii, which measures node signal wi and is connected to
some module B. Module Ij is an identification module that aims at modeling the
noise filter Hj (if parametrized). Module B describes the relation between sent
and received signals of all modules Il, l ∈ Nj ∪ {j}. Given this distribution, two
problems arise, related to the local identification and communication. Firstly, is
there an Il that arrives at unbiased estimates of the true parameter θ0

l ? Conse-
quently, if the answer is affirmative, what signals have to be shared between the
identification modules Il, l ∈ Nj ∪ {j}, i.e., what should B describe?

I1

I2

Imj

B Ij

w1

w2

wmj

wj

...

Figure 3.2: Distributed identification scheme with identification modules Ii, i ∈
Nj ∪ {j} and communication module B.

Since the data matrix Φ is in general non-sparse, the identification problem
minθ Vj(θ) is in general non-separable. Therefore, it is not clear how the LSE
(3.12) can be adopted in a distributed identification scheme. The recursive LSE,
however, can be advantageous for the distribution of the parameter estimation.
Indeed, one can exploit structures for the parameter covariance matrix Σ(k), such
as diagonal or block-diagonal structures, in order to “separate” the estimation
problem w.r.t. θl, l ∈ Nj∪{j}. Finally, asymptotic unbiasedness of the developed
distributed identification procedure should be assessed, i.e., we need to verify
whether limk→∞ E θ̂l(k)→ θ0

l , where θ̂l(k) denotes the proposed estimator for θ0
l

based on k + 1 data samples.

3.5 Distributed estimation algorithm

Inspired by the recursive LSE (3.16), we develop a distributed recursive estimator:

for each i ∈ N[1:mj ], let the local parameter estimate θ̂i : N→ Rni of θ0
i be defined
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recursively by

θ̂i(k + 1) = θ̂i(k) + αi(k)Σi(k)ϕi(k + 1)(wj(k + 1)−
∑

l∈Nj∪{j}
ϕl(k + 1)θ̂l(k)),

(3.18)

with αi : N → R and Σi : N → Rni×ni . Comparing the local estimator update
equation (3.18) with the recursive LSE (3.16), the matrix Σi has the interpreta-

tion of a local covariance matrix of θ̂i. Let Σi : N→ Rni×ni be defined recursively
by

Σ−1
i (k + 1) = Σ−1

i (k) +
1

γ2
i (k)

ϕi(k + 1)ϕ>i (k + 1), (3.19)

with γi : N→ R. The scalars αi(k) and γi(k) are related to sufficient conditions
for consistency of estimator (3.18), which will be provided in Section 3.6.

Consider the stacked vector θ̂B(k) := coll∈Nj∪{j} θ̂l(k). Define AB(k) :=
diagl∈Nj∪{j} αl(k)Inl

and let ΓB(k) := diagl∈Nj∪{j} γl(k)Inl
. Accordingly, let

ΣB(k) := diagl∈Nj∪{j}Σl(k),

ϕB(k) := diagl∈Nj∪{j} ϕl(k)ϕ>l (k).

For the estimator update we can then write

θ̂B(k + 1) = θ̂B(k) +AB(k)ΣB(k)ϕ(k + 1)ε(k + 1, θ̂B(k))

with

Σ−1
B (k + 1) = Σ−1

B (k) + Γ−2
B (k)ϕB(k + 1).

The latter equations seem to resemble (3.16) and (3.17), which describe the re-
cursive LSE. Note, however, that the matrix ΣB is block diagonal, while the
covariance matrix Σ is dense, in general.

Now, let identification module Ii be described by (3.18) and (3.19) so that

Ii :

{
θ̂i(k + 1) = θ̂i(k) + αi(k)Σi(k)ϕ(k + 1)εj(k + 1, θ̂B(k))
Σ−1
i (k + 1) = Σ−1

i (k) + 1
γ2
i (k)

ϕi(k + 1)ϕ>i (k + 1).

Writing the distributed estimator (3.18) as

θ̂i(k + 1) = θ̂i(k) + αi(k)Σi(k)ϕi(k + 1)

· (wj(k + 1)− ϕ>i (k + 1)θ̂i(k)−
∑

l∈(Nj∪{j})\{i}
ϕ>l (k + 1)θ̂l(k)),
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it becomes apparent what information exchange is required between identifica-
tion modules, assuming that each module Ii can measure node wi(t) and (indi-

rectly) receive node wj(t). The local recursive estimator θ̂i(k + 1) depends on
an “autonomous” part plus a contribution from other identification modules Il,
l ∈ (Nj ∪ {j}) \ {i}. The inputs from other subsystems and parameter vectors θ̂l
are not required to be known. Indeed, only the scalar products ϕ>l (k+1)θ̂l(k) ∈ R
need to be known, for all l ∈ (Nj ∪ {j}) \ {i}, which we will refer to as the local
predictions. The appropriate communication can be achieved if, for example, at
every time step, each Ii sends the local prediction ϕ>i (k+1)θ̂i(k) ∈ R to all other
identification modules Il, l ∈ (Nj ∪ {j}) \ {i} with a corresponding definition for
B. The latter corresponds to an all-to-all communication, however, and can be
inefficient for a large number of identification modules, i.e., for large mj . One
can instead consider B to be described by the static relation

B : εj(k + 1, θ̂B(k)) = wj(k + 1)− ϕ>j (k + 1)θ̂j(k)−
∑
i∈Ni

ϕ>i (k + 1)θ̂i(k)

and consider the following distributed identification procedure to improve effi-
ciency in the communication:

For all l ∈ Nj ∪ {j}, initialize Il at k = 0 with θ̂i(0) ∈ Rnl and 0 ≺ Σl(0) ∈
Rnl×nl . For each time k ∈ N perform

(i) For each i ∈ Nj , Ii measures wi(k + 1) and sends the local prediction

ϕ>i (k+1)θ̂i(k) to B. Identification module Ij measures wj(k+1) and sends

wj(k + 1)− ϕ>j (k + 1)θ̂j(k) to B.

(ii) B returns the prediction error ε(k + 1, θ̂B(k)) to Il, l ∈ Nj ∪ {j}.

(iii) For each l ∈ Nj ∪ {j}, Il computes θ̂l(k + 1) and Σl(k + 1) by (3.18) and
(3.19), respectively.

Remark 3.5.1. The distributed identification procedure can be viewed as a cen-
tral fusion, distributed computation scheme: local estimations are obtained by
modules Il, l ∈ Nj ∪ {j}, which all connect to B. This scheme reflects the in-
terconnection of the MISO system in Figure 3.1, where all modules Gji, i ∈ Nj,
and noise filter Hj connect to a single summation point.

3.6 Convergence analysis

Now that the central and distributed estimators are updated according to (3.16)
and (3.18), respectively, let us analyze the asymptotic properties of the estima-
tors. In this section, we will first assume that no noise affects wj(t), i.e., the
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noise signal vj(t) = 0 for t ∈ N, and that the model structure defining the pre-
dictor (3.11) is rich enough to capture the dynamics of the MISO system i.e., the
node signal wj can be described by wj(t) = ϕ>(t)θ0 for some θ0. We will ana-

lyze the desired convergence θ̂ → θ0 via Lyapunov’s second method, as was done
in the analysis of gradient algorithms for deterministic parameter estimation in
(Udink ten Cate and Verbruggen, 1978) and (Mendel, 1973).

3.6.1 Central recursive LSE

We will briefly pay attention to a convergence result for the recursive LSE, to show
the analogy with the convergence result for the distributed recursive estimator
in Section 3.6.2.

Consider the estimator error θ̃(k) := θ̂(k)− θ0 ∈ Rn. In the absence of noise
(vj(t) = 0), it follows from (3.16) that the recursive LSE error dynamics are
described by

θ̃(k + 1) = θ̃(k)− α(k)Σ(k)ϕ(k + 1)ϕ>(k + 1)θ̃(k), (3.20)

Σ−1(k + 1) = Σ−1(k) +
1

σ2
j

ϕ(k + 1)ϕ>(k + 1). (3.21)

Observe that the origin is clearly an equilibrium of difference equation (3.20).

Convergence

The following result demonstrates that the estimation error converges to zero for
the recursive LSE in the deterministic case, i.e., when the noise v(t) = 0 for all
t ∈ N. A similar result was proven in (Udink ten Cate and Verbruggen, 1978,
Appendix B), for a least-squares like gradient algorithm.

Proposition 3.6.1. Let WC : Rn × N→ R be defined by

WC(ξ, τ) := ξ>Σ−1(τ)ξ

and let Σ(k) satisfy (3.21), Σ(0) � 0. Assume that θ̃(k) and ϕ(k + 1) are not
orthogonal for all k ∈ N. Then WC : Rn × N → R is a Lyapunov function for
(3.20).

Proof. See Appendix 3.C.

Remark 3.6.1. When θ̃(k) and ϕ(k+ 1) are orthogonal, the error system (3.20)
is stable, but not guaranteed to be asymptotically stable, and convergence cannot
be concluded. Orthogonality can, however, always be avoided by utilizing input
signals with sufficient independent frequencies (Mendel, 1973).



66 Chapter 3. Distributed identification in networks

3.6.2 Distributed recursive estimator

Estimator error dynamics

Consider the distributed recursive estimator (3.18). When no noise is present in
the measured node wj(t) (vj(t) = 0), the distributed estimator update (3.18) can
be written as

θ̂i(k + 1) = θ̂i(k) + αi(k)Σi(k)ϕi(k + 1)
( ∑
l∈N̆j

ϕ>l (k + 1)θ0
l −

∑
l∈N̆j

ϕ>l (k + 1)θ̂l(k)
)

where we used wj(k) =
∑
l∈N̆j

ϕ>l (k)θ0
l , with N̆j := Nj ∪ {j}. Now, define the

error vector θ̃B(k) := θ̂B(k)− θ0 ∈ Rn. We then have

θ̃B(k + 1) = θ̂B(k + 1)− θ0

= θ̂B(k)− θ0 +AB(k)ΣB(k)ϕ(k + 1)
∑
l∈N̆j

ϕ>l (k + 1)(θ0
l − θ̂l(k))

= θ̃B(k)−AB(k)ΣB(k)ϕ(k + 1)ϕ>(k + 1)θ̃B(k)

= F (k)θ̃B(k)

with F (k) := In −AB(k)ΣB(k)ϕ(k + 1)ϕ>(k + 1).
Recalling the difference equation for the gain matrix ΣB(k), we conclude that

the error behavior of the distributed recursive estimator (3.18) is described by

θ̃B(k + 1) = F (k)θ̃B(k), (3.22)

Σ−1
B (k + 1) = Σ−1

B (k) + Γ−2
B (k)ϕB(k + 1), (3.23)

where Γ−2
B (k) = diagl∈N̆j

γ−2
l (k)Inl

.

Convergence

The following result proves the existence of the scalar functions γi(k) for each
estimator, such that the distributed estimation error vector converges to zero in
the deterministic case.

Theorem 3.6.1. Let WB : Rn × N→ R be defined by

WB(ξ, τ) := ξ>Σ−1
B (τ)ξ

and let ΣB(·) satisfy (3.23), ΣB(0) � 0. For all i ∈ N[1:m], let αi = αB, with

αB(k) := (σ2
j +

∑
l∈N̆j

ϕ>l (k + 1)Σl(k)ϕl(k + 1))−1. Assume that θ̃B(k) and

ϕ(k + 1) are not orthogonal for all k ∈ N. Then there exist γi, i ∈ N̆j, such that
WB : Rn × N→ R is a Lyapunov function for (3.22).
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Proof. We will first prove that there exists k1 ∈ K∞ s.t. WB(ξ, τ) ≥ k1(‖ξ‖)
for all (ξ, τ) ∈ Rn × N, by induction. Let ξ ∈ Rn be arbitrary and let k1(r) :=
λmin(Σ−1

B (0))r2. We claim that WB(ξ, τ) ≥ k1(‖ξ‖) for all τ ∈ N. For the base
case τ = 0 the statement is true, since we have WB(ξ, 0) ≥ λmin(Σ−1

B (0))‖ξ‖2 =
k1(‖ξ‖). Now, let WB(ξ, k) ≥ k1(‖ξ‖) be true for some k ∈ N. Then

WB(ξ, k + 1) = ξ>Σ−1
B (k + 1)ξ

= ξ>Σ−1
B (k)ξ + ξ> Γ−2

B (k)ϕB(k + 1)︸ ︷︷ ︸
≥0

ξ

≥ ξ>Σ−1
B (k)ξ ≥ k1(‖ξ‖),

thus the statement is also true for k + 1. We conclude that WB(ξ, τ) ≥ k1(‖ξ‖)
for all (ξ, τ) ∈ Rn × N. For the upperbound, let k2(r, k) := λmax(Σ−1

B (k))r2.
Then WB(ξ, τ) ≤ λmax(Σ−1

B (τ))‖ξ‖2 = k2(‖ξ‖, τ) for all ξ ∈ Rn.

Let us now analyze the one-step-difference ∆WB(k) := WB(θ̃B(k+1), k+1)−
WB(θ̃B(k), k). Using the distributed estimator error dynamics (3.22), we find

∆WB(k) = θ̃>B(k + 1)Σ−1
B (k + 1)θ̃B(k + 1)− θ̃>B(k)Σ−1

B (k)θ̃B(k)

= θ̃>B(k + 1)
(
Σ−1
B (k + 1)− Σ−1

B (k)
)
θ̃B(k + 1)

+ θ̃>B(k + 1)Σ−1
B (k)θ̃B(k + 1)− θ̃>B(k)Σ−1

B (k)θ̃B(k)

= ∆WB(k) + θ̃>B(k + 1)
(
Σ−1
B (k + 1)− Σ−1

B (k)
)
θ̃B(k + 1),

where

∆WB := θ̃>B(k + 1)Σ−1
B (k)θ̃B(k + 1)− θ̃>B(k)Σ−1

B (k)θ̃B(k)

= θ>BΣ−1
B θ̃B − 2θ̃>Bϕϕ

>ΣBABΣ−1
B θ̃B

+ θ̃>Bϕϕ
>ΣBABΣ−1

B ABΣBϕϕ
>θ̃B − θ>BΣ−1

B θ̃B

= θ̃>Bϕϕ
>ΣBABΣ−1

B ABΣBϕϕ
>θ̃B − 2θ̃>Bϕϕ

>ΣBABΣ−1
B θ̃B .

Now, since αi = αB for all i ∈ N[1:m], we have that ∆WB simplifies to

∆WB = α2
B θ̃
>
Bϕϕ

>ΣBϕϕ
>θ̃B − 2αB θ̃

>
Bϕϕ

>θ̃B

= −αB(θ̃>Bϕ)2
(
2− αBϕ>ΣBϕ

)
,

so that ∆WB is negative when

0 < αB <
2

ϕ>ΣBϕ
.
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Since αB = (σ2
j +

∑
l∈N̆j

ϕ>l Σlϕl)
−1, the latter condition is satisfied, such that

∆WB < 0.
By equation (3.23), the one-step-difference is equal to

∆WB(k) = ∆WB + θ̃>B(k + 1)Γ−2
B (k)ϕB(k + 1)θ̃B(k + 1)

= ∆WB +
∑
i∈N̆j

1

γ2
i (k)

θ̃>i (k + 1)ϕiϕ
>
i θ̃i(k + 1)

≤ ∆WB +
∑
i∈N̆j

1

γ2
i (k)

∑
l∈N̆j

(θ̃>l (k + 1)ϕl)
2,

where we used the Cauchy-Schwarz inequality. The decrease condition ∆WB(k) <
0 is therefore satisfied whenever γi(k), i ∈ N[1:m], are so large that

m∑
i=1

1

γ2
i (k)

<
|∆WB |

θ̃>B(k)F>(k)ϕBF (k)θ̃B(k)

for all k ∈ N, which is equivalent to the existence of k3 : R≥0 → R≥0 such that
(3.6) holds (Malisoff and Mazenc, 2009). This concludes the proof.

Remark 3.6.2. The difference in the stability analysis of the distributed estima-
tor w.r.t. the recursive LSE is induced by (3.23). The block-diagonality of ϕB
requires conditions on γi for stability, whereas a multiplication of ϕϕ> with σ−2

in (3.21) suffices for stability of the recursive LSE.

Remark 3.6.3. The proof of Theorem 3.6.1 gives exact conditions on the scalar
functions γi(k). When γi(k) = γi is chosen to be a constant, it suffices to assume
that γi ∈ R is large enough, such that ∆WB(k) < 0.

In the presence of noise, the error dynamics for the distributed estimator are
described by

θ̃B(k + 1) = F (k)θ̃B(k) +G(k)v(k + 1),

with G(k) := AB(k)ΣB(k)ϕ(k + 1). The following result provides sufficient con-

ditions for asymptotic unbiasedness of the distributed estimator θ̂B .

Proposition 3.6.2. Let
∏k
τ=t+1 F (τ)G(t) and vj(t) be statistically independent

for all t ∈ N. If there exists a Lyapunov function for (3.22), then limk→∞ E θ̂B(k) =
θ0.

Proof. We refer the reader to the proof of (Mendel, 1973, Theorem 2-5).
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3.6.3 Network conditions

We will now translate the conditions in Theorem 3.6.1 and Proposition 3.6.2 for
asymptotic convergence and unbiasedness to conditions on the dynamic network
described by (3.8).

One of the sufficient conditions in Theorem 3.6.1 for asymptotic convergence
of the distributed estimates θ̂l(k) to θ0

l as k → ∞, is that for all k ∈ N it holds

that θ̃B(k) and ϕ(k + 1) are not orthogonal. This is naturally satisfied if for all

k ∈ N it holds that θ̂i(k) − θ0
i and ϕi(k + 1) are not orthogonal. As noted in

Remark 3.6.1, orthogonality of θ̂B(k) − θ0 and ϕ(k + 1) can always be avoided
by choosing ‘input’ signals that are excited at a sufficient number of independent
frequencies (Mendel, 1973). These conditions therefore translate to excitation
conditions on wi, i ∈ Nj , and wj . The following corollary therefore follows from
Theorem 3.6.1.

Corollary 3.6.1. Let vj = 0 and let the spectral density of coll∈N̆j
wl, denoted

Φj,Nj
(ω), be positive definite for almost all ω ∈ [−π, π]. Further, let γl be chosen

as in the constructive proof of Theorem 3.6.1. Then each estimate θ̂l(k)→ θ0
l for

k →∞.

In the presence of noise (vj 6= 0), the statistical independence of the terms∏k
τ=t+1 F (τ)G(t) and the noise vj(t) yields asymptotically unbiased estimates

(Proposition 3.6.2). The dependence of
∏k
τ=t+1 F (τ)G(t) on ϕj and thus wj in

the case that A(q, θ) 6= 1, can yield the independence condition to fail to hold. If
A(q, θ) = 1 (as in the FIR case, for example), then the independence condition
can be satisfied. An additional sufficient condition is that the node variables wi,
i ∈ Nj do not depend on vj , i.e., there is no path from vj to wi for each i ∈ Nj :
Corollary 3.6.2. Suppose there does not exist a path from node j to node i for
each i ∈ Nj. Let the spectral density of coll∈N̆j

wl, denoted Φj,Nj
(ω), be positive

definite for almost all ω ∈ [−π, π] and let γl be chosen as in the constructive proof

of Theorem 3.6.1. Then limk→∞ E θ̂B(k) = θ0.

3.7 Numerical example

Consider the data generating system (3.7) with mj = 20 subsystems (depicted
in Figure 3.1), so that wj(t) =

∑
i∈Nj

G0
ji(q)wi(t) + vj(t), with G0

ji = B0
i (q) =

bi0 + bi1q
−1 + · · · + bi

ni
b
q−n

i
b and v(t) zero-mean white Gaussian noise with stan-

dard deviation σj = 0.1. For this illustrative example, the subsystems G0
ji(q) of

the data generating system are constructed in a random fashion as follows: each
subsystem has nib + 1 ∈ N unknown parameters, which is an integer drawn from
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a discrete uniform distribution U{1, 10} using the Matlab function randi. The
unknown parameters bik ∈ R, k ∈ N[0:ni

b], i ∈ Nj , are drawn from a normal dis-

tribution N (0, 1) in Matlab using randn. The total number of to-be-estimated
parameters is n =

∑
i∈Nj

(nib + 1) = 102. The rest of the network, i.e., the rows

in (3.8) except row j, is chosen such that the nodes wi are persistently exciting
of sufficiently high order. More specifically, the rest of the network is described
by wi = vi, i ∈ {1, . . . , 20} = V, where vi is a Gaussian white-noise process with
unit variance.

We apply the distributed recursive estimation procedure from Section 3.5.
The local estimators θ̂i : N → Rni are described by (3.18) with αi = αB , i ∈
N[1:20], as defined in Theorem 3.6.1. The matrices Σi : N→ Rni×ni are described
by (3.19), with γi(k) = γ = 100. For comparison, we apply a corresponding
central recursive estimator, i.e., the recursive LSE (3.16) with the update for the
matrix Σ : N→ Rn×n described by Σ−1(k+ 1) = Σ−1(k) +γ−2ϕ(k+ 1)ϕ>(k+ 1)
instead of (3.17).
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Figure 3.3: Evolution of the estimation error for all parameters [θ̂]j − [θ0]j , j ∈
N[1:102], for the central identification of a MISO system with mj = 20 subsystems.

Figure 3.3 and 3.4 show the evolution of the estimation error over time for the
central and distributed estimator, respectively, initialized in θ̂(1) = θ̂B(1) = 0

and Σ(1) = ΣB(1) = 100I102. The overall estimation errors ‖θ̂(k) − θ0‖2 and

‖θ̂B(k)− θ0‖2 are shown in Figure 3.5 in blue and red, respectively. We observe
a lower decrease rate for the estimation errors in the distributed identification
scheme w.r.t. the central scheme, in general, while convergence is observed for
both schemes.
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Figure 3.4: Evolution of the estimation error for all parameters [θ̂B ]j − [θ0]j ,
j ∈ N[1:102], for the distributed identification of a MISO system with mj = 20
subsystems.
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Figure 3.5: Estimation error for the central estimator ‖θ̃(k)‖2 (blue) and dis-
tributed estimator ‖θ̃B(k)‖2 (red) for γ = 100.

3.8 Conclusions

We have stated a recursive estimation algorithm for the distributed identification
of MISO systems in dynamic networks, enabled by a prediction-error identifica-
tion problem with a predictor that is linear in the parameters. The distributed
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identification scheme consists of local identification modules, which estimate a
subvector of the total parameter vector corresponding to subsystems and, pos-
sibly, a noise filter. Via Lyapunov’s second method, we have obtained sufficient
conditions for asymptotic convergence of the estimators to the true parameters
in the absence of noise, which leads to asymptotic unbiasedness in the presence
of noise at the system’s output.

Regarding communication, information exchange between identification mod-
ules is required to be performed through a mutual fusion center in the developed
method. The communication protocol only requires regressors to be communi-
cated, which should not yield concerns regarding privacy of parameter estimates
or measurement data. The present communication features a single point of
failure, however. The application of alternative communication architectures for
distributed identification of dynamic networks is a problem that could be explored
in future research.



Appendix

3.A Proof of Theorem 3.2.1

Proof. The proof follows the same line of reasoning as the proof for the continuous-
time version of the theorem (Vidyasagar, 1993, Section 5.3.1, Theorem 1). We
give the proof for completeness.

Let ε > 0 and t0 ∈ N be given. We will show that there exists δ(ε, t0) > 0 so
that

‖x0‖ < δ(ε, t0) ⇒ ‖s(t, t0, x0)‖ < ε ∀t ≥ t0.

Take δ = δ(ε, t0) > 0 so that

k2(δ, t0) < k1(ε).

Such a δ > 0 always exists, since k1(ε) > 0 and k2(δ, t0)→ 0 as δ → 0. Now, let
‖x0‖ < δ. Then

W (x0, t0) ≤ k2(δ, t0) < k1(ε).

From (3.4), it follows that for all t ≥ t0 we have

W (s(t, t0, x0), t) ≤W (x0, t0).

Since W (s(t, t0, x0), t) ≥ k1(‖s(t, t0, x0)‖) by (3.3), we have

k1(‖s(t, t,0 , x0‖) ≤W (s(t, t0, x0), t)

≤W (x0, t0) ≤ k2(δ, t0) < k1(ε),

which implies

‖s(t, t0, x0)‖ < ε, ∀t ≥ t0.

Therefore, the origin equilibrium of (3.1) is stable, which concludes the proof.

73
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3.B Proof of Theorem 3.2.2

Proof. Let t0 ∈ N and x0 ∈ Rn. Since (3.5) and (3.6) imply conditions (3.3) and
(3.4), the origin is stable by Theorem 3.2.1. It remains to be proven that the
origin is globally attractive, i.e., limt→∞ s(t, t0, x0) = 0.

Suppose that the origin is not attractive, i.e., there exists an x0 ∈ Rn such
that

¬
[

lim
t→∞

‖s(t, t0, x0)‖ = 0
]

is true (¬a denotes the negation of assertion a). Then there is a sufficiently small
positive number c ∈ R>0 such that for all T ∈ N, T ≥ t0, there exists some
t ≥ T with ‖s(t, t0, x0)‖ ≥ c. Hence, there exists a sequence {t1, t2, . . . , tk} with
t0 < t1 < t2 < · · · < tk and tk →∞ as k →∞, which satisfies

‖s(ti, t0, x0)‖ ≥ c, i = 1, . . . , k. (3.24)

Indeed, let t1 ≥ t0 be such that ‖s(t1, t0, x0)‖ ≥ c and let T1 := t1 + 1. Then
there exists some t2 ≥ T1 such that ‖s(t2, t0, x0)‖ ≥ c. Now, assume that
‖s(ti, t0, x0)‖ ≥ c for some i ∈ {1, . . . , k − 1} and define Ti := ti + 1. Then
there exists some ti+1 ≥ Ti such that ‖s(ti+1, t0, x0)‖ ≥ c. Therefore, (3.24)
holds true by the principle of natural induction.

Since ‖s(ti, t0, x0)‖ ≥ c, we have that k1(‖s(ti, t0, x0)‖) ≥ k1(c) and hence

W (s(ti, t0, x0), t) ≥ k1(c) > 0

for all i ∈ {1, . . . , k}, by (3.5). Define a non-decreasing and positive-definite
function ρ : R≥0 → R≥0 by

ρ(s) = inf
z≥s

k3(z),

so that ρ(s) ≤ k3(s) for all s ∈ R≥0. Then ρ(‖s(ti, t0, x0)‖) ≥ ρ(c), since ρ :
R≥0 → R≥0 is non-decreasing, so that

∆W (s(ti, t0, x0), ti) ≤ −ρ(c), (3.25)

for all i ∈ {1, . . . , k}, by (3.6). Define the set T̄k := Z[t0:tk] \ {t1, t2, . . . , tk}. The
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upperbound in (3.25) implies

W (s(tk, t0, x0), t) = W (x0, t0) +

tk∑
τ=t0

∆W (s(τ, t0, x0), τ)

= W (x0, t0) +

k∑
i=1

∆W (s(ti, t0, x0), ti) +
∑
τ∈T̄k

∆W (s(τ, t0, x0), τ)

≤W (x0, t0) +

k∑
i=1

∆W (s(ti, t0, x0), ti)

≤W (x0, t0) +

k∑
i=1

−ρ(c) = W (x0, t0)− ρ(c)(k − 1)

where the first inequality follows from the non-positiveness of ∆W (s(τ, t0, x0), τ),
τ ∈ T̄k, by (3.6), and the second inequality follows from (3.25). Hence, we have

0 < k1(c) ≤W (s(tk, t0, x0), tk) ≤W (x0, t0)− ρ(c)(k − 1).

For sufficiently large values of k, the right-hand side of the latter inequality
becomes negative, which cannot be true. Therefore, we conclude that the origin
is attractive, i.e., limt→∞ s(t, t0, x0) = 0, which concludes the proof.

3.C Proof of Proposition 3.6.1

Proof. We will first prove condition (3.5). Let ξ ∈ Rn be arbitrary and let
k1(r) := λmin(Σ−1(0))r2. We claim that WC(ξ, τ) ≥ k1(‖ξ‖) for all τ ∈ N.
For the base case τ = 0 the statement is true, since we have WC(ξ, 0) ≥
λmin(Σ−1(0))‖ξ‖2 = k1(‖ξ‖). Now, let WC(ξ, k) ≥ k1(‖ξ‖) be true for some
k ∈ N. Then

WC(ξ, k + 1) = ξ>Σ−1(k + 1)ξ

= ξ>Σ−1(k)ξ +

(
ξ>ϕ(k + 1)

σj

)2

≥ k1(ξ),

thus the statement is also true for k + 1. We conclude that WC(ξ, τ) ≥ k1(‖ξ‖)
for all (ξ, τ) ∈ Rn × N. For the upperbound, let k2(ξ)(r, k) := λmax(Σ−1(k))r2.
Then WC(ξ, τ) ≤ λmax(Σ−1(τ))‖ξ‖2 = k2(‖ξ‖, τ) for all ξ ∈ Rn.

We investigate the one-step difference ∆WC(k) := WC(θ̃(k + 1), k + 1) −
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WC(θ̃(k), k). Using the estimator error dynamics (3.20), we find that

∆WC(k) = θ̃>(k + 1)Σ−1(k + 1)θ̃(k + 1)− θ̃>(k)Σ−1(k)θ̃(k)

= θ̃>(k)Σ−1(k + 1)θ̃(k)− θ̃>(k)Σ−1(k)θ̃(k)

+ α2(k)θ̃>(k)ϕ(k + 1)ϕ>(k + 1)Σ(k)Σ−1(k + 1)

· Σ(k)ϕ(k + 1)ϕ>(k + 1)θ̃(k)

− 2θ̃>(k)Σ−1(k + 1)α(k)Σ(k)ϕ(k + 1)ϕ>(k + 1)θ̃(k).

Substituting the covariance matrix update equation (3.21) into the latter
equation, we determine that

∆WC(k) = (θ̃ϕ)2

(
1

σ2
j

+ α2ϕ>Σϕ+
α2

σ2
j

(
ϕ>Σϕ

)2 − 2α− 2
α

σ2
j

ϕ>Σϕ

)
,

where we omitted the time dependence of the variables on the RHS for brevity.
Recalling the definition of α(k), we can further rewrite ∆W (k) as

∆WC(k) = − θ̃>ϕϕ>θ̃
σ2
j + ϕ>Σϕ

.

It is now easily seen that

∆WC(k) = − θ̃
>(k)ϕ(k + 1)ϕ>(k + 1)θ̃(k)

σ2
j + ϕ>(k + 1)Σ(k)ϕ(k + 1)

< 0

if θ̃(k)>ϕ(k+1) 6= 0, which implies the existence of k3 : R≥0 → R≥0 so that (3.6)
holds (Malisoff and Mazenc, 2009), which concludes the proof.



Chapter 4

Scalable distributed H2 and
H∞ controller synthesis

The current limitation in the synthesis of distributed H2 controllers for linear
interconnected systems is scalability due to non-convex or unstructured synthe-
sis conditions. In this chapter we develop convex and structured conditions for
the existence of a distributed H2 controller for discrete-time interconnected sys-
tems with an interconnection structure that corresponds to an arbitrary graph.
Neutral interconnections and a storage function with a block-diagonal structure
are utilized to attain coupling conditions that are of a considerably lower com-
putational complexity compared to the corresponding centralized H2 controller
synthesis problem. A detailed procedure is provided for the construction of the
distributed controller, which is applicable to both the distributed H2 controller,
as well as distributed H∞ controller existence conditions which are recalled from
the literature. The effectiveness and scalability of the developed distributed H2

controller synthesis method is demonstrated for small- to large-scale oscillator
networks on a cycle graph.

4.1 Introduction

Control of interconnected systems is relevant to a wide area of applications in
smart grids, communication networks, irrigation networks and chemical plant
networks, fueled by the digital industrial revolution, see e.g. (Lunze, 1992) and

This chapter is based on the publication: T. R. V. Steentjes, M. Lazar, and P. M. J.
Van den Hof. Scalable distributed H2 controller synthesis for interconnected linear discrete-
time systems. IFAC-PapersOnLine, 54(9):66–71, 2021c. 24th International Symposium on
Mathematical Theory of Networks and Systems
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(Bullo, 2018). Distributed control is preferred for such systems due to its scalable
implementation and it has been a major research topic in recent years for several
control objectives, including H2 and H∞ performance criteria.

For continuous-time systems, sufficient conditions for the existence of a con-
troller that admits the same interconnection structure as the plant and that
achieves unit H∞ performance were developed by Langbort et al. (2004). The
basis for these sufficient conditions is laid by dissipativity theory, introduced by
Willems (1972), which is also the cornerstone for this work. Van Horssen and
Weiland (2016) presented a discrete-time analogue of the work in (Langbort et al.,
2004) with additional robust stability and robust H∞ performance guarantees.
For both the continuous- and discrete-time distributed H∞ control problems, the
conditions can be stated as linear matrix inequalities (LMIs) (Langbort et al.,
2004), (Van Horssen and Weiland, 2016).

The method in (Eilbrecht et al., 2017) provides an approach to solve the
discrete-time H2 output-feedback problem for interconnected systems, by min-
imizing a linear combination of the closed-loop system’s H2 norm and a cost
related to the sparsity of the controller matrices. However, this approach yields a
non-convex problem in general. (Vamsi and Elia, 2016) solved the discrete-time
H2 problem for a ‘strictly causal’ network, via the search for an unstructured
controller and a subsequent transformation into a structured one. The structure
of systems interconnected over one spatial dimension was exploited by (Rice,
2010) for the efficient design of H2 controllers interconnected in a string. The
distributed H2 controller synthesis for continuous-time systems with arbitrary
interconnection topology was recently considered by (Chen et al., 2019). Unlike
the H∞ case, however, the feasibility problem for the distributed H2 controller
existence in (Chen et al., 2019) is not convex, but amounts to solving a bilinear
optimization problem.

The H2 norm has a particularly interesting interpretation in the field of data-
driven modeling of interconnected systems, where stochastic assumptions on dis-
turbance signals are key (Van den Hof et al., 2013). This is due to the fact that
the H2 norm equals the asymptotic output variance for a white noise excitation
(Scherer and Weiland, 2017). The trend for data-driven modeling of intercon-
nected systems asks for accompanying distributed controller design methods that
apply to discrete-time systems affected by stochastic disturbance signals. How-
ever, the current approaches to distributed H2 control, reviewed above, do not
facilitate the controller synthesis for arbitrarily-structured large-scale systems,
due to non-convex or unstructured synthesis conditions, or due to restrictions
to systems that are spatially distributed in one dimension. Hence, it is of inter-
est to develop scalable (convex) conditions for the synthesis of distributed H2

controllers for systems with a general interconnection structure.

In this chapter, we therefore develop sufficient conditions for the existence
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of a distributed H2 controller for a discrete-time system with an arbitrary in-
terconnection structure, by adopting the fundamental approach to distributed
controller synthesis of (Langbort et al., 2004). Analogous to distributed H2

controller synthesis for linear continuous-time systems (Chen et al., 2019), the
conditions are principally not convex, which is induced by a number of scalar
terms that are nonlinear w.r.t. the optimization variables, equal to the number
of subsystems. However, we show that the resulting conditions are equivalent
to alternative convex conditions stated as LMIs, with no loss of generality or
scalability.

Basic nomenclature

The basic notation in the Notation section of the front matter of this thesis is
considered. We recall the relevant notation for this chapter here for convenience.
The integers are denoted by Z. Given a ∈ Z, b ∈ Z such that a < b, we
denote Z[a:b] := {a, a+ 1, . . . , b− 1, b}. Let In ∈ Rn×n, or simply I, denote the
identity matrix. The operator col(·) vertically concatenates its arguments. The
block diagonal matrix diag(X1, . . . , Xm) has matrices Xi, i ∈ N[1:m], in its block
diagonal entries. For S ⊆ Z, the block diagonal matrix diagi∈S Xi has matrices
Xi, i ∈ S, in its block diagonal entries. The image and kernel of a matrix
A ∈ Rm×n are imA := {Ax |x ∈ Rn} and kerA := {x ∈ Rn |Ax = 0}, with A⊥
a basis matrix of kerA. For a real symmetric matrix X, X � 0 denotes that X
is positive definite.

4.2 Preliminaries

Let the structure of an interconnected system be given by a graph G = (V, E),
where V is the vertex set of cardinality L and E ⊂ V × V is the edge set. Each
vertex vi ∈ V, corresponds to a discrete-time system Pi. An edge (vi, vj) ∈ E
exists if subsystems Pi and Pj are interconnected. For ease of presentation,
self-connections are excluded for all subsystems Pi, i ∈ Z[1:L].

Each subsystem Pi is assumed to admit a state-space representationxi(k + 1)
oi(k)
zi(k)

 =

ATT
i ATS

i BTd
i

AST
i ASS

i BSd
i

CzTi CzSi Dzd
i

xi(k)
si(k)
di(k)

 , (4.1)

where xi : Z → Rki is the subsystem’s state, oi : Z → Rni and si : Z → Rni

are the outgoing and incoming interconnection variables, and zi : Z → Rqi and
di : Z→ Rfi are the performance output and disturbance input, respectively.

We write the interconnection signals si and oi as si = col(si1, si2, . . . , siL) and
oi = col(oi1, oi2, . . . , oiL) so that (sij , oij) denotes the interconnection channel
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between subsystem Pi and subsystem Pj . For the ease of the interconnection
definition, we assume, without loss of generality (Langbort et al., 2004), that oij ,
sij , oji and sji are all elements of Rnij , nij ≥ 0. The interconnection between
system Pi and Pj is defined through the interconnection equation[

oij(k)
sij(k)

]
=

[
sji(k)
oji(k)

]
, ∀k ∈ Z. (4.2)

Hence, Pi and Pj are interconnected if and only if nij > 0, if and only if (vi, vj) ∈
E .

The interconnected system can be compactly represented byx(k + 1)
o(k)
z(k)

 =

ATT ATS BT

AST ASS BS

CT CS D

x(k)
s(k)
d(k)


and the interconnection equation o = ∆s, with the variables defined as x :=
col(x1, . . . , xL), o := col(o1, . . . , oL), s := col(s1, . . . , sL), z := col(z1, . . . , zL)
and d := col(d1, . . . , dL), the block-diagonal system matrices defined as ATT :=
diag(ATT

1 , . . . , ATT
L ), ATS := diag(ATS

1 , . . . , ATS
L ), et cetera, and the matrix ∆

defined by aggregating (4.2) for all corresponding index pairs. Elimination of the
interconnection variables s and o yields a state-space representation

PI :

[
x(k + 1)
z(k)

]
=

[
AI BI
CI DI

] [
x(k)
d(k)

]
(4.3)

where [
AI BI
CI DI

]
:=

[
ATT BT

CT D

]
+

[
ATS

CS

]
(∆−ASS)−1

[
AST BS

]
.

Consider the interconnection variable subspaces (Langbort et al., 2004)

SI := {(o, s) ∈ R2n | o = ∆s} and

SB := {(o, s) ∈ R2n | col(oi, si) ∈ im col(ASS
i , I), i ∈ Z[1:L]}.

Definition 4.2.1. An interconnected system described by (4.1) and (4.2) is said
to be well-posed if SI ∩ SB = {0}.

Well-posedness of an interconnected system means that the inputs di and
initial conditions xi(0) uniquely determine the system variables xi, oi, si and zi.

Definition 4.2.2. A well-posed interconnected system is said to be asymptotically
stable (AS) if the roots of det(zI − AI) are in the open unit disk in the complex
plane.
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Definition 4.2.3. The H2 norm of a well-posed and AS interconnected system
with a transfer function T (z) := CI(zI −AI)−1BI +DI is defined by

‖PI‖H2
:=

(
1

2π
trace

∫ π

−π
T ∗(eiω)T (eiω) dω

) 1
2

,

quantifying the mapping from disturbance inputs to performance outputs.

4.2.1 Dissipative interconnected systems

As a basis for the analysis of the interconnected system and the synthesis of
distributed controllers, we employ the theory of dissipative dynamical systems
(Willems, 1972).

Definition 4.2.4. Subsystem Pi is said to be dissipative with respect to the supply
function σi : Si×Oi×Di×Zi → R, if there exists a non-negative storage function
Vi : Xi → R≥0, so that for all t ∈ Z≥0 the inequality

Vi(xi(t))− Vi(xi(0)) ≤
t−1∑
k=0

σi(si(k), oi(k), di(k), zi(k))

holds for all trajectories (xi, si, oi, di, zi) of (4.1).

We consider the class of quadratic storage functions:

Vi(xi) := x>i Xixi, i ∈ Z[1:L],

with Xi � 0. Supply functions are restricted to be quadratic functions of the
form

σi(si, oi, di, zi) := σint
i (si, oi) + σext

i (di, zi), i ∈ Z[1:L],

with ‘internal’ supply functions

σint
i (si, oi) :=

L∑
j=1

σij(sij , oij), σij(sij , oij) :=

[
oij
sij

]>
Xij

[
oij
sij

]
,

where Xij is a real symmetric matrix, and ‘external’ supply functions

σext
i (di, zi) := ρid

>
i di − z>i zi,

where ρi > 0. For any pair (i, j) ∈ Z2
[1:L], i 6= j, the interconnection between sub-

system Pi and subsystem Pj is said to be neutral if the internal supply functions
satisfy (Scherer and Weiland, 2017)

0 = σij(sij , oij) + σji(sji, oji). (4.4)
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One can interpret a neutral interconnection as a lossless one; no ‘energy’ is dis-
sipated or supplied through the interconnection channel (Willems, 1972). The
neutrality condition (4.4) is equivalent with

0 = Xij +

[
0 I
I 0

]
Xji

[
0 I
I 0

]
.

4.2.2 Interconnected-system analysis

The following result provides sufficient conditions for well-posedness, stability
and bounding the H2 norm of the interconnected system, and provides a discrete-
time counterpart of the continuous-time result of (Chen et al., 2019, Theorem 1).
Define the matrix

Ti :=


I 0 0

ATT
i ATS

i BTd
i

AST
i ASS

i BSd
i

0 I 0
CzT
i CzS

i Dzd
i

0 0 I

 . (4.5)

Proposition 4.2.1. The interconnected system PI is well-posed, AS and ‖PI‖H2
<

γ, if BSd
i = 0 for all i ∈ Z[1:L] and there exist positive-definite Xi ∈ Rki×ki , ρi >

0, symmetric X11
ij ∈ Rnij×nij , (i, j) ∈ Z2

[1:L], and X12
ij ∈ Rnij×nij , (i, j) ∈ Z2

[1:L],
i > j, with

T>i


−Xi 0 0 0 0 0

0 Xi 0 0 0 0
0 0 Z11

i Z12
i 0 0

0 0 (Z12
i )> Z22

i 0 0
0 0 0 0 I 0
0 0 0 0 0 −ρiI

Ti ≺ 0, (4.6)

L∑
i=1

trace
(
(BTd

i )>XiB
Td
i + (Dzd

i )>Dzd
i

)
< γ2, (4.7)

where

Z11
i := − diag

j∈Z[1:L]

X11
ij , Z

22
i := diag

j∈Z[1:L]

X11
ji ,

Z12
i := diag

(
− diag
j∈Z[1:i]

X12
ij , diag

j∈Z[i+1:L]

(X12
ji )>

)
.

Proof. The proof is provided in Appendix 4.B.
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Remark 4.2.1. Proposition 4.2.1 is a discrete-time version of a continuous-
time result in the literature (Chen et al., 2019, Theorem 1)). Both results follow a
dissipativity-based approach for the analysis, following the framework by Langbort
et al. (2004). One of the differences in the continuous- and discrete-time results
for H2 analysis, is that direct feed-through from disturbance inputs to performance
outputs are allowed in the discrete-time setting, which is also revealed by (4.7).
The main innovation of the results in this chapter is in the convexity of the
distributed controller synthesis conditions, which will be discussed in Section 4.3.

Let us illustrate the analysis conditions by a simple example.

Example 4.1. Consider two identical scalar subsystems described by

xi(k + 1) =
1

2
xi(k) +

1

10
si(k) + di(k), i = 1, 2, k ∈ Z,

and zi(k) = oi(k) = xi(k), with interconnection constraints s1(k) = o2(k),
s2(k) = o1(k). It is easily verified that LMI (4.6) holds for i = 1, 2, with Xi = 7

4 ,
X11

12 = X11
21 = − 1

5 , X12
21 = 0 and ρi = 20. By Proposition 4.2.1, the intercon-

nected system is well-posed, asymptotically stable and the expression ‖PI‖H2
< γ

holds for all γ >
√
X1 +X2 =

√
7
2 ≈ 1.87. The actual H2 norm of the system is

‖PI‖H2
= 1.68. �

4.3 Distributed H2 and H∞ controller synthesis

Let us now address the problem of synthesizing a distributed controller. Consider
the case where each subsystem Pi has a control input ui and a measured output
yi, such that 

xi(k + 1)
oi(k)
zi(k)
yi(k)

 =


ATT
i ATS

i BTd
i BTu

i

AST
i ASS

i BSd
i BSu

i

CzTi CzSi Dzd
i Dzu

i

CyT
i CyS

i Dyd
i Dyu

i



xi(k)
si(k)
di(k)
ui(k)

 , (4.8)

where we assume that Dyu
i = 0, without loss of generality (Langbort et al., 2004).

The to-be-synthesized distributed controller is also an interconnected system,
with subsystems Ci, i ∈ Z[1:L], described byξi(k + 1)

oCi (k)
ui(k)

 =

(ATT
i )C (ATS

i )C (BT
i )C

(AST
i )C (ASS

i )C (BS
i )C

(CT
i )C (CS

i )C (Di)C

ξi(k)
sCi (k)
yi(k)

 , (4.9)
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where ξi : Z→ Rki is the controller’s state, and oCi : Z→ RnCi , sCi : Z→ RnCi are
the controller’s interconnection (communication) variables. Controller Ci and Cj
are interconnected only if Pi and Pj are interconnected and the interconnection
equation is [

oCij(k)
sCij(k)

]
=

[
sCji(k)
oCji(k)

]
, ∀k ∈ Z. (4.10)

The local closed-loop (controlled) system, Ki say, can then be represented byxKi (k + 1)
oKi (k)
zi(k)

 =

(ATT
i )K (ATS

i )K (BT
i )K

(AST
i )K (ASS

i )K (BS
i )K

(CT
i )K (CS

i )K (Di)K


︸ ︷︷ ︸

=:Γi

xKi (k)
sKi (k)
di(k)

 , (4.11)

where xKi := col(xi, ξi), o
K
i := col(oi, o

C
i ) and sKi := col(si, s

C
i ). Such a represen-

tation is obtained through elimination of the control variables yi, ui, as depicted
in Figure 4.1. The state-space matrices of a closed-loop subsystem are affine with
respect to the state-space matrices of the local controller:

Γi = U>i ΘiVi +Wi, (4.12)

with

Θi :=

(ATT
i )C (ATS

i )C (BT
i )C

(AST
i )C (ASS

i )C (BS
i )C

(CT
i )C (CS

i )C (Di)C

 , Vi :=

 0 I 0 0 0
0 0 0 I 0

CyT
i 0 CyS

i 0 Dyd
i

 ,

U>i :=


0 0 BTu

i

I 0 0
0 0 BSu

i

0 I 0
0 0 Dzu

i

 , Wi :=


ATT
i 0 ATS

i 0 BTd
i

0 0 0 0 0
AST
i 0 ASS

i 0 BSd
i

0 0 0 0 0
CzTi 0 CzSi 0 Dzd

i

 .

4.3.1 H2 conditions

The feasibility test provided by Proposition 4.2.1 directly induces a feasibility
test for well-posedness, stability and H2 performance for the closed-loop system,
which consists of subsystems (4.11), as stated in the following corollary. Define
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Pi Ci

si oi

di

zi

sCi oCi

yi

ui

Ki

Figure 4.1: Interconnection visualization of a locally controlled system Ki, i ∈
Z[1:L].

the matrix

TKi :=


I 0 0

(ATT
i )K (ATS

i )K (BT
i )K

(AST
i )K (ASS

i )K (BS
i )K

0 I 0
(CT

i )K (CS
i )K (Di)K

0 0 I

 .

Corollary 4.3.1. The interconnected system KI of (4.11) is well-posed, AS and
‖KI‖H2 < γ, if (BS

i )K = 0 for all i ∈ Z[1:L] and there exist positive-definite

XKi ∈ R2ki×2ki , ρi > 0, symmetric (X11
ij )K ∈ R(nij+nCij)×(nij+nCij), (i, j) ∈ Z2

[1:L],

and (X12
ij )K ∈ R(nij+nCij)×(nij+nCij), (i, j) ∈ Z2

[1:L], i > j, with

(TKi )>


−XKi 0 0 0 0 0

0 XKi 0 0 0 0
0 0 (Z11

i )K (Z12
i )K 0 0

0 0 (Z12
i )>K (Z22

i )K 0 0
0 0 0 0 I 0
0 0 0 0 0 −ρiI

T
K
i ≺ 0, (4.13)

L∑
i=1

trace
(
(BT

i )>KX
K
i (BT

i )K + (Di)
>
K(Di)K

)
< γ2, (4.14)

with the closed-loop scales

(Z11
i )K :=

[
(Z11

i )P (Z11
i )PC

(Z11
i )>PC (Z11

i )C

]
, (Z22

i )K :=

[
(Z22

i )P (Z22
i )PC

(Z22
i )>PC (Z22

i )C

]
,

(Z12
i )K :=

[
(Z12

i )P (Z12
i )PC

(Z12
i )CP (Z12

i )C

]
,
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and the submatrices defined in Appendix 4.C. �

Given the affine dependence of the closed-loop state-space matrices Γi of sub-
systems Ki with respect to the controller parameters Θi, it follows that (4.13) is
not an LMI with respect to the decision variables Θi, X

K
i , (X11

ij )K and (X12
ij )K.

Through elimination of the controller parameters, the conditions can be trans-
formed into LMIs, which will be discussed in Section 4.3.3.

4.3.2 H∞ conditions

The related distributed H∞ control problem has been addressed in the liter-
ature, where sufficient conditions for robust H∞ performance of discrete-time
interconnected systems were derived in (Van Horssen and Weiland, 2016). The
definition of the H∞ norm is given in Appendix 4.D. We recall the robust result
from Van Horssen and Weiland (2016) for the nominal case, i.e., for the case that
the parametric uncertainty is zero.

Corollary 4.3.2. The interconnected system KI of (4.11) is well-posed, AS
and ‖KI‖H∞ < γ, if there exist positive-definite XKi ∈ R2ki×2ki , symmetric

(X11
ij )K ∈ R(nij+nCij)×(nij+nCij), (i, j) ∈ Z2

[1:L], and (X12
ij )K ∈ R(nij+nCij)×(nij+nCij),

(i, j) ∈ Z2
[1:L], i > j, with

(TKi )>



−XKi 0 0 0 0 0
0 XKi 0 0 0 0
0 0 (Z11

i )K (Z12
i )K 0 0

0 0 (Z12
i )>K (Z22

i )K 0 0
0 0 0 0 1

γ 0

0 0 0 0 0 −γI

T
K
i ≺ 0, (4.15)

4.3.3 Distributed H2 controller existence conditions

Recall the definition of Ti in (4.5) and define

Si =


(ATT

i )> (AST
i )> (CzTi )>

−I 0 0
0 −I 0

(ATS
i )> (ASS

i )> (BSd
i )>

0 0 −I
(BTd

i )> (BSd
i )> (Dzd

i )>

 .

We are now ready to state the main result, which provides necessary and sufficient
conditions for the existence of a distributed controller that satisfies the conditions
in Corollary 4.3.1, in the form of LMIs.
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Proposition 4.3.1. Let BSd
i = 0, Dyd

i = 0 for all i ∈ Z[1:L]. The following
statements are equivalent:

• There exist controllers Ci, with nCij = 3nij for all (i, j) ∈ Z2
[1:L] so that

the controlled interconnected system described by (4.2), (4.10) and (4.11)
admits ρi > 0, matrices XKi � 0, i ∈ Z[1:L], symmetric (X11

ij )K, (i, j) ∈
Z2

[1:L], and (X12
ij )K, (i, j) ∈ Z2

[1:L], i > j, that satisfy inequalities (4.13) and

(4.14).

• There exist Xi, Yi, symmetric (X11
ij )P , (Y 11

ij )P , αi, βi > 0 for all (i, j) ∈
Z2

[1:L], and (X12
ij )P , (Y 12

ij )P for all (i, j) ∈ Z2
[1:L], i > j, that satisfy[

Xi I
I Yi

]
� 0, (4.16)

L∑
i=1

trace
(
(BTd

i )>XiB
Td
i + (Dzd

i )>Dzd
i

)
< γ2, (4.17)

Ψ>i T
>
i


−Xi 0 0 0 0 0

0 Xi 0 0 0 0
0 0 (Z11

i )P (Z12
i )P 0 0

0 0 (Z12
i )>P (Z22

i )P 0 0
0 0 0 0 I 0
0 0 0 0 0 −αiI

TiΨi ≺ 0, (4.18)

Φ>i S
>
i


−Yi 0 0 0 0 0

0 Yi 0 0 0 0
0 0 (W 11

i )P (W 12
i )P 0 0

0 0 (W 12
i )>P (W 22

i )P 0 0
0 0 0 0 I 0
0 0 0 0 0 −βiI

SiΦi � 0, (4.19)

where the columns of Ψi and Φi form a basis of ker(CyTi CySi Dyd
i ) and

ker((BTu
i )> (BSu

i )> (Dzu
i )>), respectively, and

(W 11
i )P := − diag

j∈Z[1:L]

(Y 11
ij )P , (W 22

i )P := diag
j∈Z[1:L]

(Y 11
ji )P ,

(W 12
i )P := diag

(
− diag
j∈Z[1:i]

(Y 12
ij )P , diag

j∈Z[i+1,L]

(Y 12
ji )>P

)
.
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Proof. We first show that the existence of positive scalars αi and βi such that
(4.18) and (4.19) hold is equivalent with the existence of a positive scalar ρi such
that

Ψ>i T
>
i Λi(ρi)TiΨi ≺ 0 and Φ>i S

>
i Πi(ρ

−1
i )SiΦi � 0, (4.20)

with

Λi : ξ 7→ diag(−Xi, Xi, (Zi)P , I,−ξI) and

Πi : ξ 7→ diag(−Yi, Yi, (Wi)P , I,−ξI).

For sufficiency, let αi and βi satisfy (4.18) and (4.19). We distinguish two cases.
First, if αiβi ≥ 1, then

Φ>i S
>
i Πi(βi)SiΦi︸ ︷︷ ︸
�0

+ Φ>i S
>
i diag(0, 0, 0, 0, (βi − α−1

i )I)SiΦi︸ ︷︷ ︸
�0

= Φ>i S
>
i Πi(α

−1
i )SiΦi � 0.

Hence, (4.20) holds for ρi = αi. In the other case αiβi < 1, thus it follows that

Ψ>i T
>
i Λi(αi)TiΨi︸ ︷︷ ︸
≺0

+ Ψ>i T
>
i diag(0, 0, 0, 0, (αi − β−1

i )TiΨi︸ ︷︷ ︸
�0

= Ψ>i T
>
i Λi(β

−1
i )TiΨi ≺ 0.

Hence, (4.20) holds for ρi = β−1
i . Necessity follows directly by taking αi = ρi

and βi = ρ−1
i .

For a proof that the existence of Xi, Yi, (Zi)P , (Wi)P and ρi that satisfy (4.20)
and (4.16) is equivalent with the existence of XKi , (Zi)K and ρi that satisfy (4.13),
we refer the reader to (Langbort et al., 2004) due to space limitations.

Finally, we will show that (4.17) is equivalent with (4.14). We note that for
necessity Xi can be taken as the upper-left block of XKi , while for sufficiency,
XKi can be taken such that its upper-left block equals Xi (Langbort et al., 2004).
Thus, by (4.12), we have that

(BTd
i )>XiB

Td
i + (Dzd

i )>Dzd
i = (BT

i )>KX
K
i (BT

i )K

+ (Di)
>
K(Di)K

for all i ∈ Z[1:L], since Dyd
i = 0. It therefore follows that (4.17) ⇔ (4.14), which

concludes the proof.

Remark 4.3.1. The equivalence between the convex conditions (4.18), (4.19) and
non-convex conditions (4.20) can be transferred to the continuous-time case (Chen
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Pi Ci

si oi

di

zi

yi

ui

Ki

Figure 4.2: Locally controlled system Ki for a decentralized controller.

et al., 2019, Theorem 2) mutatis mutandis. The continuous-time distributed H2

controller existence problem can then be solved via equivalent LMIs, instead of the
equivalent bilinear optimization problem with L additional LMIs in (Chen et al.,
2019), with L the cardinality of the vertex set V.

4.3.4 Decentralized H2 controller existence conditions

A special distributed controller is a decentralized controller, where no controller
interconnections are present. This is depicted in Figure 4.2 for a locally controlled
system. The synthesis of decentralized controllers is motivated by interconnected
systems where no communication between controllers is possible. In this case
nCi = 0, hence Proposition 4.3.1 cannot be applied for the construction of a
decentralized controller, since it guarantees the existence of a controller with
nCij = 3nij only.

Therefore, we provide conditions for the existence of a controller with nCij = 0
which achieves global H2 performance by fixing the supply functions related to
the interconnection variables. Given symmetric X11

ij , (i, j) ∈ Z2
[1:L], and X12

ij ,

(i, j) ∈ Z2
[1:L], i > j, we have the following result.

Proposition 4.3.2. Let BSd
i = 0, Dyd

i = 0 for all i ∈ Z[1:L]. The following
statements are equivalent:

• There exist controllers Ci, with nCi = 0 for all i ∈ Z[1:L] so that the controlled
interconnected system described by (4.2), (4.10) and (4.11) admits ρi ∈
R>0, XKi � 0, i ∈ Z[1:L] that satisfy (4.13) and (4.14) for (X11

ij )K = Xij

and (X12
ij )K = X12

ij .

• There exist Xi, Yi and αi, βi > 0, i ∈ Z[1:L], so that (4.16), (4.17), (4.18)
and (4.19) are satisfied for (Z11

i )P = Z11
i , (Z12

i )P = Z12
i , (Z22

i )P = Z22
i
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and [
(W 11

i )P (W 12
i )P

(W 12
i )>P (W 22

i )P

]
:=

[
Z11
i Z12

i

(Z12
i )> Z22

i

]−1

. (4.21)

Proof. (⇐) Take an arbitrary i ∈ Z[1:L]. By (4.16), there exist extended matrices
XKi , Y Ki , so that XKi = (Y Ki )−1. Define Λi := diag(−XKi , XKi , Zi, I,−ρiI). Then
by (4.18) and (4.19), a permutation of Λi gives a matrix Pi which satisfies

(Vi)
>
⊥

[
I
Wi

]>
Pi

[
I
Wi

]
(Vi)⊥ ≺ 0 and

(Ui)
>
⊥

[
−W>i
I

]>
P−1
i

[
−W>i
I

]
(Ui)⊥ � 0. (4.22)

Hence, by the elimination lemma (Scherer, 2001), there exists a Θi so that[
I

U>i ΘiVi +Wi

]>
Pi

[
I

U>i ΘiVi +Wi

]
≺ 0, (4.23)

which is equivalent with (4.13) for (X11
ij )K = Xij and (X12

ij )K = X12
ij .

(⇒) To show necessity, observe again that (4.13) is equivalent with (4.23),
which is equivalent with (4.22). Then, by taking Xi and Yi as the upper-left
blocks of XKi and Y Ki , respectively, we obtain (4.18) and (4.19).

The equivalence of (4.17) and (4.14) was shown in the proof of Proposi-
tion 4.3.1, which concludes the proof.

The main feature of Proposition 4.3.2 is that the existence of a decentralized
controller is guaranteed if the conditions hold true, which is crucial if communi-
cation between subcontrollers is infeasible. However, this feature comes at the
cost of supply functions for the interconnection channels that are assumed to be
fixed, which can introduce conservatism regarding the existence of a decentralized
controller for the interconnected system under consideration.

Remark 4.3.2. Fixing the supply functions for the closed-loop subsystems as
σij(sij , oij) = o>ijsij, corresponding to X11

ij = 0 and X12
ij = 1

2I, implies that the
closed-loop subsystems are required to be passive with respect to the interconnec-
tion variables. The design of passive systems holds an important place in control
theory (van der Schaft, 2016) and is a classical method for guaranteeing stability
of interconnected systems (Arcak et al., 2016); see e.g. (Cucuzzella et al., 2019)
for a recent development of passivity-based distributed control for DC microgrids.
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4.3.5 Distributed H∞ controller existence conditions

For distributed H∞ control, the following convex existence conditions follow from
the robust result (Van Horssen and Weiland, 2016, Theorem 2), that we state
here for reference:

Proposition 4.3.3. The following statements are equivalent:

• There exist controllers Ci, with nCij = 3nij for all (i, j) ∈ Z2
[1:L] so that

the controlled interconnected system described by (4.2), (4.10) and (4.11)
admits matrices XKi � 0, i ∈ Z[1:L], symmetric (X11

ij )K, (i, j) ∈ Z2
[1:L], and

(X12
ij )K, (i, j) ∈ Z2

[1:L], i > j, that satisfy inequalities (4.15).

• There exist Xi, Yi, symmetric (X11
ij )P , (Y 11

ij )P for all (i, j) ∈ Z2
[1:L], and

(X12
ij )P , (Y 12

ij )P for all (i, j) ∈ Z2
[1:L], i > j, that satisfy[
Xi I
I Yi

]
� 0, (4.24)

Ψ>i T
>
i



−Xi 0 0 0 0 0
0 Xi 0 0 0 0
0 0 (Z11

i )P (Z12
i )P 0 0

0 0 (Z12
i )>P (Z22

i )P 0 0
0 0 0 0 1

γ 0

0 0 0 0 0 −γI

TiΨi ≺ 0, (4.25)

Φ>i S
>
i



−Yi 0 0 0 0 0
0 Yi 0 0 0 0
0 0 (W 11

i )P (W 12
i )P 0 0

0 0 (W 12
i )>P (W 22

i )P 0 0
0 0 0 0 γI 0
0 0 0 0 0 − 1

γ I

SiΦi � 0. (4.26)

4.3.6 Controller construction

In essence, the controller construction consists of three parts: (i) the extension
of the matrices Xi, Yi, defining the storage functions, to their closed-loop ver-
sions XKi , Y Ki , (ii) the extension of the matrices (X11

ij )P , (Y 11
ij )P , (X12

ij )P and

(Y 12
ij )P , defining the ‘internal’ supply functions, to their closed-loop versions

(Z11
i )K, (Z12

i )K and (Z22
i )K and (iii) the computation of controller matrices Θi
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such that the conditions in Corollary 4.3.1 are satisfied. One procedure to con-
struct the distributed controller is provided in this section. The details of this
procedure are provided in Appendix 4.E. The main steps for the construction are
summarized in the following algorithm.

Algorithm 4.3.1. For each pair (i, j) ∈ Z2
[1:L], let Xi, Yi, ρi, (X11

ij )P , (Y 11
ij )P ,

and for each pair (i, j) ∈ Z2
[1:L], i > j, let (X12

ij )P , (Y 12
ij )P , be computed to satisfy

(4.16)-(4.17), (4.20).

For each i ∈ Z[1:L], the synthesis of controller Ci proceeds as follows:

1. Let Mi and Ni be non-singular and such that MiN
>
i = I −XiYi. Compute

XKi as the unique solution to the linear equation

XKi

[
Yi I
N>i 0

]
=

[
I Xi

0 M>i

]
.

2. Define

XPij :=

[
(X11

ij )P (X12
ij )P

(X12
ij )
>
P −(X11

ji )P

]
, Y Pij :=

[
(Y 11

ij )P (Y 12
ij )P

(Y 12
ij )>P −(Y 11

ji )P

]
.

and compute an eigendecomposition XPij − (Y Pij )−1 = VijΛijV
>
ij , with Λij a

diagonal matrix with the eigenvalues on its diagonal in a descending order.
Scale the eigenvectors as V̄ij = Vij |Λij |

1
2 such that

XPij − (Y Pij )−1 = (V̄ +
ij V̄ −ij ) diag(I,−I)(V̄ +

ij V̄ −ij )>,

with V̄ij =: (V̄ +
ij V̄ −ij ). Let M12

ij := 1√
3
(V̄ +
ij V̄

+
ij V̄

+
ij V̄

−
ij V̄

−
ij V̄

−
ij ) and M22

ij :=

diag(I3nij ,−I3nij ), and define

M12
ij =:

[
(X11

ij )PC (X12
ij )PC

(X12
ij )>CP −(X11

ji )PC

]
, M22

ij =:

[
(X11

ij )C (X12
ij )C

(X12
ij )>C −(X11

ji )C

]
.

3. Construct the closed-loop scales defined in Appendix 4.C and let

Pi :=


−XKi 0 0 0 0 0

0 (Z22
i )K 0 0 (Z12

i )>K 0
0 0 −ρiI 0 0 0
0 0 0 XKi 0 0
0 (Z12

i )K 0 0 (Z11
i )K 0

0 0 0 0 0 I

 .
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Solve the following inequality for Θi:[
I

U>i ΘiVi +Wi

]>
Pi

[
I

U>i ΘiVi +Wi

]
≺ 0. (4.27)

The quadratic matrix inequality (4.27) can be solved by computing an eigen-
decomposition and solving a linear equation, see Appendix 4.E for details.

The controller construction is not limited to the discrete-time H2 distributed
control problem; it can also be used for the continuous-time H2 (Chen et al.,
2019), continuous-time H∞ (Langbort et al., 2004) and discrete-time H∞ (Van
Horssen and Weiland, 2016) distributed control problem. We emphasize that the
controller construction procedure is performed for each controller Ci individu-
ally, while the LMIs (4.16), (4.17), (4.18) and (4.19) are solved centrally, due to
coupling in inequalities (4.17), (4.18) and (4.19).

When the conditions in Proposition 4.3.1 are feasible, Algorithm 4.3.1 will
provide a distributed controller such that the closed-loop interconnected system
satisfies the conditions in Corollary 4.3.1. The steps in the algorithm are com-
putationally attractive, because these can be performed through the solutions
to linear quations, the computation of eigendecompositions and basic matrix
operations. The resulting distributed controller is not necessarily well posed,
however; a problem that has also been observed in the literature for LPV con-
troller construction (Apkarian and Gahinet, 1995) and distributed H∞ controller
contruction (Langbort et al., 2004). Langbort et al. (2004) noted that if, for all

i, CyS
i = 0 or BSu

i = 0, then well-posedness of the closed-loop interconnected
system is equivalent with well-posedness of both the plant and distributed con-
troller. The interpretation of these constraints on the system matrices, is that
the control inputs do not directly affect the interconnection signals, or that the
interconnection signals do not directly affect the sensors’ measurements.

4.4 Numerical examples

To illustrate the distributed H2 controller synthesis method, we consider a linear
coupled-oscillator network consisting of L oscillators. For each node i ∈ Z[1:L],
the dynamics are described by

miθ̈i + biθ̇i = ui −
∑
j∈Ni

kij(θi − θj) + di, (4.28)

with inertia mi, damping bi and coupling coefficient kij = kji. The mechanical
analogue of a linear coupled-oscillator network is a network of masses that are
interconnected through linear springs and have linear damping. A typical system
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that is modeled as a linear oscillator network is a linearized power network,
consisting of generators (mi 6= 0) and loads (mi = 0) (Bergen and Hill, 1981;
Dörfler et al., 2013). The local measurement is assumed to be yi := θi and the
performance output is set equal to the state zi := xi := col(θi, θ̇i). We use
a zero-order hold discretization with sampling time T = 0.1 seconds for each
subsystem and an approximation eM ≈ I+M , so that each subsystem Pi has an
input/state/output representation (4.1) with matrices

ATT
i =

[
1 T

−∑j∈Ni

kij
mi
T 1− bi

mi
T

]
, ATS

i = row
j∈Ni

[
0

kij
mi
T

]
,

AST
i = CyT

i = col
j∈Ni

[
1 0

]
, ASS

i = 0ni×ni ,

BSd
i = BSu

i = 0ni×1, B
Td
i = BTu

i = col(0,
T

mi
), CzTi = I2,

CzSi = 02×ni
, Dzd

i = Dzu
i = 02×1, D

yd
i = Dyu

i = 0.

P2

P1

P3

C1

C2 C3

Figure 4.3: Structure of the oscillator network represented by a triangle graph
(L = 3). The synthesized distributed H2 controller modules are depicted in gray.

4.4.1 Triangle network (L = 3)

Let us consider a network with a triangular structure, as depicted in Figure 4.3.
The systems’ inertia, damping and coupling coefficients are m1 = 3, m2 = 1,
m3 = 2, b1 = 2, b2 = 1, b3 = 4 and k12 = k23 = k31 = 1. The open-loop system
is not AS. We aim for disturbance attenuation via the synthesis of a distributed
controller that achieves unit H2 performance for the controlled network. We
therefore verify the feasibility of the LMIs in Proposition 4.3.1 for γ = 1. We
find that the LMIs are feasible, hence there exists a distributed controller that
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Figure 4.4: Subsystem states [xi]1 (green) and [xi]2 (yellow), controller states
[ξi]1 (red) and [ξi]2 (violet) and control inputs ui (black), i ∈ {1, 2, 3}, for the
distributed (solid) and central (dashed) controller.

achieves ‖KI‖H2 < 1. The distributed controller is constructed according to
Algorithm 4.3.1 and results in a closed-loop H2 norm of 0.22. Simulation of the
controlled network with zero disturbance, with the subsystems’ initial conditions
drawn from a normal distribution N (0, 1) and the controllers’ initial conditions
set identical to zero, results in the trajectories depicted in Figure 4.4. We observe
that the subsystems’ and controllers’ states asymptotically converge to zero, il-
lustrating asymptotic stability of the closed-loop system. For validation, we also
compute a central controller via the feasibility problem in (Scherer and Weiland,
2017) for an H2 upper-bound equal to 0.22. The resulting controller achieves
an H2 norm of 0.18 and the trajectories are shown in Figure 4.4 (the central
controller state ξ ∈ R6 is denoted ξ = col(ξ1, ξ2, ξ3)).

4.4.2 Large-scale network (L = 218)

Next, we consider a large-scale oscillator network, consisting of L = 218 subsys-
tems, with parameters mi, bi and kij = kji random variables drawn from uniform
distributions U(2, 3), U(2, 3) and U(1, 2), respectively. The interconnection struc-
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ture is described by the graph G, which is visualized in Figure 4.5. This graph
has 218 vertices and 648 edges.

Figure 4.5: Left: Interconnection structure of the considered large-scale oscillator
network (L = 218). Right: Disturbances di (gray) and corresponding perfor-
mance output components [zi]1 and [zi]2 (coloured), i ∈ Z[1:218]

The goal is to synthesize a distributed controller that achieves ‖KI‖H2
< γ

for γ = 1. For each i ∈ Z[1:L], we select αi = β−1
i = 10 and consider the LMIs

from Proposition 4.3.1. The corresponding feasibility problem, a semidefinite
programming problem consisting of 873 matrix variables, 2593 scalar variables
and 5196 constraints, was solved in 0.73 seconds using MOSEK Optimization
Suite (MOSEK ApS, 2019) on a PC with a 2.3GHz Intel Core i5 processor and
16GB memory. Interconnection of PI with the computed distributed controller
CI results in the interconnected system KI , which is asymptotically stable and
‖KI‖H2

= 0.80.

For illustration of the controlled network’s ability to reduce output vari-
ance in the case of stochastic disturbance signals, we initialize the system with
x(0) = 0, ξ(0) = 0, and apply signals di, that are mutually uncorrelated Gaus-
sian white-noise processes with unit variance. Asymptotically, the obtained H2

norm for the controlled network is directly related to the output variance through
limk→∞ Ez>(k)z(k) = ‖KI‖2H2

(Scherer and Weiland, 2017). This stochastic in-
terpretation gives rise to the assessment of the variance of the output on a finite
interval. Figure 4.5 shows the two components of all performance outputs zi,
i ∈ Z[1:218], which illustrate a significant attenuation of the stochastic distur-
bances by the distributed controller.
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4.4.3 Computation times

To demonstrate the scalability of the developed synthesis method, we consider
the controller construction for the oscillator network on cycle graphs with in-
creased values of L. For each graph, the constants mi, bi and kij = kji are
drawn from uniform distributions U(1, 2), U(2, 3) and U(1, 2), respectively. Ta-
ble 4.1 summarizes the times required to solve the controller existence LMIs in
Proposition 4.3.1. The performance bound is chosen as γ = 10, such that the
LMIs are feasible for all values of L in Table 4.1. Computations were performed
using MOSEK Optimization Suite (MOSEK ApS, 2019) on a PC with a 2.3GHz
Intel Core i5 processor and 16GB memory. We observe that for a cycle graph
of moderate size (L = 50), the computation time is considerably lower for the
distributed controller compared to the central controller. For L ≥ 100, no solu-
tion was obtained for the central controller after 4 hours of computation, while
the distributed controller problem was solved for up to L = 10, 000 in less than
6 seconds.

L Central controller Distributed controller

3 0.44s 0.24s
10 0.78s 0.29s
50 831.57s 0.34s
100 † 0.42s

1, 000 † 1.35s
10, 000 † 5.77s

Table 4.1: Computation times for solving the LMIs in Proposition 4.3.1 for the
distributed H2 controller and the corresponding LMIs for the central H2 con-
troller for L interconnected systems on a cycle graph. †: No solution after 4
hours.

4.5 Conclusions

In this chapter, methods have been developed to compute distributed controllers
that achieve an H2 performance bound for interconnected linear discrete-time
systems with arbitrary interconnection structure. Convex controller existence
conditions have been derived in the form of LMIs, which provide a scalable ap-
proach to the construction of distributed H2 controllers. We have observed a con-
siderable reduction in computation time with respect to centralized H2 controller
synthesis for moderately-sized networks and efficient computation for large-scale
networks for which the centralized H2 synthesis is not tractable.
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Appendix

4.A H2-norm analysis results

Consider a linear discrete-time system Σ described by an input/state/output
representation

Σ :

{
x(k + 1) = Ax(k) +Bd(k),

z(k) = Cx(k) +Dd(k),

with state variable x : Z → Rn, (disturbance) input variable d : Z → Rm and
output variable z : Z→ Rp.

Definition 4.A.1. System Σ is called asymptotically stable (AS) if the roots of
det(zI −A) are contained in the open unit disk on the complex plane.

Definition 4.A.2. The H2 norm of an AS system Σ having transfer function
T (z) := C(zI −A)−1B +D is defined by

‖Σ‖H2
:=

(
1

2π
trace

∫ π

−π
T ∗(eiω)T (eiω) dω

) 1
2

.

Lemma 4.A.1. For an AS system Σ, ‖Σ‖2H2
= trace

(
B>MB +D>D

)
with

M � 0 satisfying

A>MA−M + C>C = 0.

Proof. By Parseval’s theorem we infer that

‖Σ‖2H2
= trace

(
1

2π

∫ π

−π
T ∗(eiω)T (eiω) dω

)
= trace

(
D>D +

∞∑
k=0

B>(Ak)>C>CAkB

)
= trace

(
D>D +B>MB

)
,

99
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with M :=
∑∞
k=0(Ak)>C>CAk � 0 the observability Gramian, that satisfies the

matrix equation

A>MA−M + C>C = 0.

The following result is a discrete-time version of one of the equivalence results
in (Scherer and Weiland, 2017, Proposition 3.13), and is instrumental for the
proof of Proposition 4.2.1.

Proposition 4.A.1. Let system Σ be AS and let γ ∈ R>0. The following state-
ments are equivalent:

(i) ‖Σ‖H2
< γ.

(ii) There exists X � 0 so that

A>XA−X + C>C ≺ 0 and trace
(
B>XB +D>D

)
< γ2.

Proof. We first show (i) ⇒ (ii). Since Σ is AS, there exists P � 0 so that
A>PA − P ≺ 0. Then by Lemma 4.A.1, there exists an ε ∈ R>0 so that X :=
M + εP satisfies

traceB>XB +D>D = traceB>MB +D>D + εB>PB < γ2,

with M � 0 so that A>MA−M + C>C = 0. Hence, X � 0 and

A>XA−X + C>C = A>MA−M + C>C + ε(A>PA− P ) ≺ 0.

Next, we show (ii) ⇒ (i). If (ii) is true, then there exists a matrix Γ so that

0 = A>XA−X + C>C + Γ>Γ = A>XA−X +

[
C
Γ

]> [
C
Γ

]
.

Hence, with TΓ(z) := Γ(zI −A)−1B, we use Lemma 4.A.1 to conclude that

γ2 > ‖col(T, TΓ)‖2H2
=

1

2π

∫ π

−π
T ∗(eiω)T (eiω) + T ∗Γ(eiω)TΓ(eiω) dω ≥ ‖T‖2H2

,

which concludes the proof.
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4.B Proof of Proposition 4.2.1

Proof. Well-posedness is identically defined for continuous-time systems (Lang-
bort et al., 2004) and the proof for well-posedness of PI is identical to the first
part of the proof of (Langbort et al., 2004, Theorem 1), since (4.6) implies the
condition used therein. Let (4.6) and (4.7) be true. We define the candidate lo-
cal storage functions Vi(xi) := x>i Xixi and the candidate global storage function

V (x) :=
∑L
i=1 Vi(xi). Multiplication of inequality (4.6) from the right and from

the left with col(xi(k), si(k), di(k)) and its transpose yields

0 > x>i (k + 1)Xixi(k + 1)− x>i (k)Xixi(k)

+

[
oi(k)
si(k)

]> [
Z11
i Z12

i

(Z12
i )> Z22

i

] [
oi(k)
si(k)

]
+ z>i (k)zi(k)− εid>i (k)di(k)

= Vi(x(k + 1))− Vi(x(k))− σint
i (si(k), oi(k))− σext

i (di(k), zi(k)).

Thus system Pi is dissipative with respect to the supply function σi. Summing
the latter inequality over i yields

V (x(k + 1))− V (x(k)) <

L∑
i=1

σint
i + σext

i .

From the neutrality condition (4.4), we observe that
∑L
i=1 σ

int
i = 0, and thus

V (x(k + 1))− V (x(k)) <

L∑
i=1

σext
i . (4.29)

To prove stability, consider the case that d(k) = 0. Then

V (x(k + 1))− V (x(k)) < −
L∑
i=1

z>i (k)zi(k) ≤ 0.

Therefore, V is a Lyapunov function for the interconnected system PI with d(k) =
0, from which we conclude asymptotic stability of the interconnected system
(Kalman and Bertram, 1960, Corollary 1.2).

Next, we prove H2 performance for PI . From (4.3) and inequality (4.29), it
follows that for all (x, d)[

x
d

]> [
I 0
AI BI

]> [−XI 0
0 XI

] [
I 0
AI BI

] [
x
d

]
< −

[
x
d

]> [
CI DI
0 I

]> [
I 0
0 −E

] [
CI DI
0 I

] [
x
d

]
,
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with XI := diagi∈Z[1:L]
Xi and E := diagi∈Z[1:L]

εiI. Hence[
A>IXIAI −XI + C>I CI A>IXIBI + C>I DI
B>I XIAI +D>I CI B>I XIBI +D>I DI − E

]
≺ 0,

which implies

A>IXIAI −XI + C>I CI ≺ 0. (4.30)

Since BSd
i = 0 for all i ∈ Z[1:L], we have

trace
(
B>I XIBI +D>I DI

)
(4.31)

= trace

(
L∑
i=1

(BTd
i )>XiB

Td
i + (Dzd

i )>Dzd
i

)
(4.32)

=

L∑
i=1

trace
(
(BTd

i )>XiB
Td
i + (Dzd

i )>Dzd
i

)
< γ2. (4.33)

Hence, by Proposition 4.A.1, inequalities (4.30) and (4.33) imply ‖PI‖H2
< γ

and the proof is completed.

4.C Closed-loop scales

(Z11
i )P := − diag

j∈Z[1:L]

(X11
ij )P , (Z

22
i )P := diag

j∈Z[1:L]

(X11
ji )P ,

(Z12
i )P := diag

(
− diag
j∈Z[1:i]

(X12
ij )P , diag

j∈Z[i+1:L]

(X12
ji )>P

)
,

(Z11
i )C := − diag

j∈Z[1:L]

(X11
ij )C , (Z

22
i )C := diag

j∈Z[1:L]

(X11
ji )C ,

(Z12
i )C := diag

(
− diag
j∈Z[1:i]

(X12
ij )C , diag

j∈Z[i+1:L]

(X12
ji )>C

)
,

(Z11
i )PC := − diag

j∈Z[1:L]

(X11
ij )PC , (Z

22
i )PC := diag

j∈Z[1:L]

(X11
ji )PC ,

(Z12
i )PC := diag

(
− diag
j∈Z[1:i]

(X12
ij )PC , diag

j∈Z[i+1:L]

(X12
ji )>CP

)
,

(Z12
i )CP := diag

(
− diag
j∈Z[1:i]

(X12
ij )CP , diag

j∈Z[i+1:L]

(X12
ji )>PC

)
.
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4.D Definition H∞ norm

Let `m2 be the set of all Lebesgue measurable functions d : N→ Rm for which (Stoor-
vogel, 1992)

‖d‖2`2 :=

∞∑
k=0

‖d(k)‖2 <∞.

Definition 4.D.1. The H∞ norm of an AS system Σ is defined by

‖Σ‖H∞ := sup
06=d∈`m2

‖Td‖`2
‖d‖`2

.

4.E Controller reconstruction details

Let Xi, Yi, ρi, (X11
ij )P , (Y 11

ij )P , (X12
ij )P and (Y 12

ij )P satisfy LMIs (4.16), (4.17)
and (4.20). Let i ∈ Z[1:L]. First, we construct the closed-loop matrices

XKi :=

[
Xi XPCi

(XPCi )> XCi

]
, Y Ki :=

[
Yi Y PCi

(Y PCi )> Y Ci

]
, (4.34)

so that XKi = (Y Ki )−1 � 0. The extension of Xi and Yi to their closed-loop
counterparts XKi ∈ R2ki×2ki and Y Ki ∈ R2ki×2ki is well-known for the centralized
quadratic performance problem (including the H∞ control problem), see e.g.
(Scherer and Weiland, 2017, Theorem 4.2), (Gahinet and Apkarian, 1994), and
can be performed as follows. Inequality (4.16) is equivalent to I − XiYi ≺ 0,
hence I −XiYi is of rank ki. Take non-singular matrices Mi, Ni ∈ Rki×ki so that
MiN

>
i = I−XiYi. Now, we find Y Ki as the unique solution to the linear equation[

Yi I
N>i 0

]
= Y Ki

[
I Xi

0 M>i

]
, (4.35)

and set XKi := (Y Ki )−1. It is clear that XKi and Y Ki are of the form (4.34).
Observe that XKi � 0 and (Y Ki ) � 0 is equivalent to I−XiYi ≺ 0, by application
of the Schur complement to the explicit expression of the solution Y Ki to (4.35).

Let (i, j) ∈ Z2
[1:L], i > j and let XPij , Y

P
ij ∈ R2nij×2nij be defined by

XPij :=

[
(X11

ij )P (X12
ij )P

(X12
ij )>P −(X11

ji )P

]
, Y Pij :=

[
(Y 11
ij )P (Y 12

ij )P
(Y 12
ij )>P −(Y 11

ji )P

]
.

By (Dullerud and D’Andrea, 2004, Lemma 21), there exist matrices M12
ij , N

12
ij ∈

R2nij×lij and M22
ij , N

22
ij ∈ Rlij×lij so that[
XPij M12

ij

(M12
ij )> M22

ij

]
=

[
Y Pij N12

ij

(N12
ij )> N22

ij

]−1
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with

in

[
XPij M12

ij

(M12
ij )> M22

ij

]
= (ι−ij , 0, ι

+
ij),

if and only if

in−
[
XPij I
I M12

ij

]
≤ ι−ij and in+

[
XPij I
I M12

ij

]
≤ ι+ij .

For lij = 6nij and i−ij = i+ij = 4nij , the latter inertia requirements are satisfied

Langbort et al. (2004). The construction of such M12
ij , N12

ij and M22
ij , N22

ij fol-
lows from the constructive proof for (Dullerud and D’Andrea, 2004, Lemma 21).
Let M22

ij := diag(I,−I) ∈ R6nij×6nij and M12
ij ∈ R2nij×6nij so that inM22

ij =

(ι−ij , 0, ι
+
ij)− inY Pij and

XPij − (Y Pij )−1 = M12
ij M

22
ij (M12

ij )> = M12
ij

[
I 0
0 −I

]
(M12

ij )>. (4.36)

Since XPij − (Y Pij )−1 is symmetric, it commutes with itself and hence it admits an
eigendecomposition (Bernstein, 2011, Corollary 5.4.4)

XPij − (Y Pij )−1 = VijΛijV
>
ij ,

with Λij = diagk∈Z[1:2nij ]
(λij)k, (λij)1 ≥ (λij)2 ≥ · · · ≥ (λij)2nij

and Vij a

unitary matrix whose columns are corresponding eigenvectors. Clearly, if we let
V̄ij = Vij |Λij |

1
2 , then XPij − (Y Pij )−1 = (V̄ +

ij V̄ −ij ) diag(I,−I)(V̄ +
ij V̄ −ij )>, with

V̄ij =: (V̄ +
ij V̄

−
ij ). Thus we take

M12
ij :=

1√
3

[
V̄ +
ij V̄ +

ij V̄ +
ij V̄ −ij V̄ −ij V̄ −ij

]
such that (4.36) holds. Hence, by defining

M12
ij =:

[
(X11

ij )PC (X12
ij )PC

(X12
ij )>CP −(X11

ji )PC

]
, M22

ij =:

[
(X11

ij )C (X12
ij )C

(X12
ij )>C −(X11

ji )C

]
,

we can construct the scales

ZKi :=

[
(Z11

i )K (Z12
i )K

(Z12
i )>K (Z22

i )K

]
, WKi :=

[
(W 11

i )K (W 12
i )K

(W 12
i )>K (W 22

i )K

]
, (4.37)

such that ZKi = (WKi )−1, with (W 11
i )K, (W 12

i )K and (W 22
i )K analogously defined

as (Z11
i )K, (Z12

i )K and (Z22
i )K in Appendix 4.C.
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For each i ∈ Z[1:L], let P̄i = diag(−XKi , XKi , ZKi , I,−ρiI). Permute the rows
and columns of P̄i to obtain

Pi :=


−XKi 0 0 0 0 0

0 (Z22
i )K 0 0 (Z12

i )>K 0
0 0 −ρiI 0 0 0
0 0 0 XKi 0 0
0 (Z12

i )K 0 0 (Z11
i )K 0

0 0 0 0 0 I

 , (4.38)

such that

(Vi)
>
⊥

[
I
Wi

]>
Pi

[
I
Wi

]
(Vi)⊥ ≺ 0 and

(Ui)
>
⊥

[
−W>i
I

]>
P−1
i

[
−W>i
I

]
(Ui)⊥ � 0. (4.39)

By the elimination lemma (Scherer, 2001, Lemma A.2), there exists a con-
troller matrix Θi so that (4.13) is satisfied, or, equivalently, so that[

I
U>i ΘiVi +Wi

]>
Pi

[
I

U>i ΘiVi +Wi

]
≺ 0. (4.40)

To construct such a Θi, let Hi and Ji be non-singular matrices such that

ViHi =:
[
V̄i 0

]
, UiJi =:

[
Ūi 0

]
,

with V̄i and Ūi having full column rank. Then with Qi := J>i WiHi, we can
rewrite inequality (4.40) as (Scherer, 2001)

(?)>
[
H>i 0
0 J−1

i

]
Pi

[
H>i 0
0 J−1

i

]
︸ ︷︷ ︸

=:Πi

>


I 0
0 I

Ū>i ΘiV̄i +Q11
i Q12

i

Q21
i Q22

 ≺ 0,

and, hence, as [
Ri

[
I
Ei

]
Si

]>
Πi

[
Ri

[
I
Ei

]
Si

]
≺ 0, (4.41)

with Ei := Ū>i ΘiV̄i +Q11
i and

Ri :=


I 0
0 0
0 I
Q21
i 0

 , Si :=


0
I
Q12
i

Q22
i

 .
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Now, because Ei is an unrestricted unknown in (4.41), a suitable solution is
given by Ei = (E2)i(E1)−1

i (Scherer, 2001), with Fi := col((E1)i, (E2)i) solving
the quadratic inequality

F>i
(
R>i ΠiRi −R>i ΠiSi(S

>
i ΠiSi)

−1S>i ΠiRi
)︸ ︷︷ ︸

=:Ωi

Fi ≺ 0. (4.42)

Let the columns of Fi be vectors that span the eigenspaces of Γi that are associ-
ated with negative eigenvalues, such that (4.42) is satisfied. If the resulting (E1)i
is singular, one can always choose a δi > 0 such that (E1)i + δiI is non-singular
and [

(E1)i + δiI
(E2)i

]>
Ωi

[
(E1)i + δiI

(E2)i

]
≺ 0.

Finally, a suitable controller matrix Θi can then be constructed by solving the
linear equation

Ū>i ΘiV̄i = (E2)i ((E1)i + δiI)
−1 −Q11

i . (4.43)



Chapter 5

Distributed control in a
behavioral setting

Control in a classical transfer function or state-space setting typically views a
controller as a signal processor: sensor outputs are mapped to actuator inputs.
In behavioral system theory, control is simply viewed as interconnection; the in-
terconnection of a plant with a controller. In this chapter we consider the problem
of control of interconnected systems in a behavioral setting. The behavioral set-
ting is especially fit for modeling interconnected systems, because it allows for the
interconnection of subsystems without imposing inputs and outputs. The aim is
to find a distributed controller that is explicit in the plant dynamics, such that
it can also serve as a basis for distributed model-reference control in Part II. We
introduce a so-called canonical distributed controller that implements a given in-
terconnected behavior that is desired. The controller is distributed and its design
is, given the desired behavior’s subsystems, decentralized, in the sense that a local
controller only depends on the local system behavior, by definition. Regularity of
interconnections is an important property in behavioral control that yields feed-
back interconnections. We provide conditions under which the interconnection
of this distributed controller with the plant is regular. Furthermore, we show
that the interconnections of subsystems of the canonical distributed controller
are regular if and only if the interconnections of the plant and desired behavior
are regular.

107
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5.1 Introduction

When physical systems are interconnected, no distinction between inputs and
outputs is made. Think for example of the interconnection of two RLC-circuits
through their terminals or the interconnection of two mass-spring-damper sys-
tems. Typical transfer function and input-state-output representations inherently
impose an input-output partition of system variables. One of the main features
of the behavioral approach to system theory, is that it does not take an input-
output structure as a starting point to describe systems: a mathematical model is
simply the relation between system variables. In the case of dynamical systems,
the set of all time trajectories that are compatible with the model is called the
behavior. The behavioral approach has been advocated as a convenient start-
ing point in several applications, among which in the context of interconnected
systems (Willems, 2007) and the context of control (Willems, 1997).

In the context of interconnected systems, modeling can be performed through
tearing (viewing the interconnected system as an interconnection of subsystems),
zooming (modeling the subsystems), and linking (modeling the interconnections)
(Willems, 2007). Interconnection of systems in a behavioral setting means vari-
able sharing. When two masses are physically interconnected, the laws of motion
for the first mass involve the position of the second mass and vice versa; the laws
of motion of both masses together dictate the behavior of the interconnected
system. Thinking of system interconnections makes the modeling of intercon-
nected systems remarkably simple. Partitioning variables into input and output
variables is appropriate in signal processing, feedback control based on sensor
outputs and other unilateral systems, but often unnecessary for physical system
variables (Willems, 2007).

Feedback control based on sensor outputs to generate actuator inputs, where
the controller is viewed as a signal processor (Trentelman, 2011), holds an im-
portant place in control theory. It has been argued that many practical control
devices cannot be interpreted as feedback controllers, such as passive-vibration
control systems, passive suspension systems or operational amplifiers (Willems,
1997). Indeed, such control systems do not inherit a signal flow, but can be in-
terpreted as an interconnection in a behavioral setting. More specifically, control
in a behavioral setting means restricting the behavior of the system that is to be
controlled, by interconnecting it with a controller. By specifying a behavior that
is desired for the controlled system, the basic control problem is to determine the
existence of a controller such that the controlled system’s behavior is equal to
the desired behavior. This is called the implementability problem (Trentelman,
2011). The canonical controller plays a major role in the implementability prob-
lem: the canonical controller implements the desired behavior if and only if the
desired behavior is implementable (Julius et al., 2005), (van der Schaft, 2003).
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In this chapter, we will consider distributed control in a behavioral setting.
In particular, we will consider distributed control of interconnected linear time-
invariant systems. As a natural consequence of behavioral interconnections, we
consider a distributed controller to be an interconnected system itself, i.e., we con-
sider it to consist of subsystems that are interconnected without imposing signal
flows between subsystems. Several types of interconnections become of interest
in this problem: interconnections between subsystems of the to-be-controlled in-
terconnected system (plant), interconnections between subsystems of the plant
and subsystems of the distributed controller, and interconnections between sub-
systems of the distributed controller. Given a desired behavior for the controlled
interconnected system that has the same interconnection structure as the plant,
the considered distributed control problem is to determine the existence of a
distributed controller that implements the desired behavior. We introduce a
distributed canonical controller which implements the desired behavior if it is
implementable. The distributed canonical controller has an attractive intercon-
nection structure, in the sense that two of its subsystems are interconnected only
if two subsystems of the plant or desired behavior are interconnected.

Distributed control with input-output partitioning and communication be-
tween subsystems of the distributed controller (considered in, e.g., Chapter 4
and Chapter 6) follows as an important special case of distributed control in a
behavioral setting. An important question is: when can the canonical distributed
controller be implemented with feedback interconnections? Following up on this
question: When can the interconnections between controller subsystems be im-
plemented as communication channels? The main concept in the solution to
these problems is regularity of the corresponding interconnections. We will ana-
lyze regularity of the canonical distributed controller. In particular, we show that
the connections between subsystems of this distributed controller are regular if
and only if connections between subsystems of the plant and desired behavior are
regular.

5.2 Preliminaries

For the notions of systems in the behavioral setting, we will follow the notation
in (Trentelman, 2011). A dynamical system is defined as a triple Σ = (T,W,B),
where T ⊆ R is the time space, W is the signal space and B ⊆ WT is the
behavior. Consider two dynamical systems Σ1 = (T,W1 ×W3,B1) and Σ2 =
(T,W2 ×W3,B2) with the same time space, and trajectories (w1, w3) ∈ B1 and
(w2, w3) ∈ B2, respectively. The interconnection of Σ1 and Σ2 through w3 yields
the dynamical system

Σ1 ∧w3
Σ2 := (T,W1 ×W2 ×W3,B),
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with

B := {(w1, w2, w3) : T →W1 ×W2 ×W3 | (w1, w3) ∈ B1 and (w2, w3) ∈ B2}.
The manifest behavior of Σ1 w.r.t. w1 is

(B1)w1 := {w1 : T →W1 | ∃w3 so that (w1, w3) ∈ B}.
The set Lw denotes the set of all linear differential systems Σ = (R,Rw,B), with
w ∈ N variables, where the behavior is

B := {w ∈ C∞(R,Rw) |R(
d

dt
)w = 0},

with a polynomial matrix R ∈ Rg×w[ξ], g ∈ N>0, and C∞(R,Rw) denotes the set
of infinitely often differentiable functions from R to Rw.

Consider a behavior B ∈ Lw. The components of w ∈ B allow for a component-
wise partition1 such that w = (u, y), with u input and y output. The partition
w = (u, y) is called an input-output partition if u is free, i.e., for all u there
exists a y so that (u, y) ∈ B (Polderman and Willems, 1998). Such a partition is
not unique, but always exists. The number of components in the input and out-
put, called the input and output cardinality, is invariant, i.e., independent of the
input-output partition. Henceforth, m(B) denotes the input cardinality and p(B)
denotes the output cardinality, which implies that p(B)+m(B) = w. For a kernel
representation R

(
d
dt

)
w = 0 of B, the output cardinality is p(B) = rankR.

5.2.1 Control in a behavioral setting

A controlled interconnection is the interconnection of a plant Σp = (T,W ×
C,P) and a controller Σc = (T,C, C), with the same time space, and trajectories
(w, c) ∈ P and c ∈ C, respectively. The plant has two types of variables: w
is the to-be-controlled variable and c is the control variable. The controlled
interconnection is thus P ∧c C. A general control problem can now be formulated
as: Given the plant behavior P ⊆ (W×C)T and a desired behavior K ⊆WT , does
there exist a controller C so that K = (P ∧c C)w, i.e., is K implementable? The
implementability problem has been extensively studied in (Trentelman, 2011).

5.3 Control of interconnected systems

5.3.1 Plant interconnections

For the design of a distributed controller, we consider plants Σpi = (T,Wi ×
Si × Ci,Pi), i ∈ Z[1:L], having trajectories (wi, si, ci) ∈ Pi, with wi the to-
be-controlled variable, si the inter-plant connection variable and ci the control

1Up to re-ordering of the components in w.
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w1 P1 c1

w2 P2 c2

w3 P3 c3

s12

s23

(a) System interconnection.

c1 C1

c2 C2

c3 C3

p12

p23

(b) Controller intercon-
nection.

Figure 5.1: Behavioral approach to control of interconnected systems.

variable. Partition the inter-plant connection variable si into sij , the variable
that behavior Pi shares with Pj . The interconnection of Pi and Pj is given by

Pi ∧sij Pj = {(wi, wj , sij , ci, cj) | (wi, sij , ci) ∈ Pi and (wj , sij , cj) ∈ Pj}.

We denote the straightforward generalization of the interconnection of Pi, i ∈
Z[1:L] as

PI := ∧si,i∈Z[1:L]
Pi

= {(w1, . . . , wL, s1, . . . , sL, c1, . . . , cL) | (wi, si, ci) ∈ Pi for all i ∈ Z[1:L]}.

Figure 5.1a depicts an interconnection example of three behaviors P1, P2 and
P3, through s12 and s23, i.e., P1 ∧s12 P2 ∧s23 P3. When we eliminate the inter-
connection variables (si)i∈Z[1:L]

from the behavior of the interconnected system,
PI , we obtain the manifest behavior of PI with respect to (w, c). This manifest
behavior of the plant interconnection w.r.t. (w, c) is

(PI)(w,c) = (∧si,i∈Z[1:L]
Pi)(w,c)

= {(w1, . . . , wL, c1, . . . , cL) | ∃si ∈ C∞(R,Rsi), i ∈ Z[1:L],

so that (wi, si, ci) ∈ Pi for all i ∈ Z[1:L]}.
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5.3.2 Distributed control problem

In the following, we will consider an interconnection of linear systems Pi ∈
Lwi+si+ci , i ∈ Z[1:L]. Given Ki ∈ Lwi+ki , i ∈ Z[1:L], let the desired behavior
of the interconnected system be equal to the manifest behavior of the intercon-
nection of Ki w.r.t. w, i.e.,

(KI)w = (∧ki,i∈Z[1:L]
Ki)w ={(w1, . . . , wL) | ∃ki ∈ C∞(R,Rki), i ∈ Z[1:L],

so that (wi, ki) ∈ Ki, i ∈ Z[1:L]}.

Complementary to the interconnected plant, we are looking for another in-
terconnected behavior, the controller, such that the interconnection of the plant
with the controller yields the desired manifest behavior w.r.t. w, i.e., (KI)w. The
controller behavior is the interconnection of Ci ∈ Lci+pi , i ∈ Z[1:L], through inter-
controller connection variable pi. The controller interconnection is distributed in
the following sense: if Pi and Pj do not share a variable (they cannot be intercon-
nected), then Ci and Cj do not share a variable, i.e., for each pair (i, j) ∈ Z2

[1:L],
it holds that sij = 0 ⇒ pij = 0. In this way, the controller structure will
reflect the plant structure and, hence, the structure of the “closed-loop” inter-
connection. This idea is exemplified in Figure 5.1b for the plant interconnection
in Figure 5.1a. The chosen controller structure is a design choice that is nat-
ural in the sense that the interconnection structure of the plant is respected.
Therefore, this choice is commonly considered in the distributed control litera-
ture, cf. (D’Andrea and Dullerud, 2003), (Langbort et al., 2004), (Camponogara
et al., 2002), (Cantoni et al., 2007), (Rice and Verhaegen, 2009), (Chen et al.,
2019). Alternative distributed controller structures are, for example, hierarchical
and multilayer structures, which are designed according to multi-level or multi-
resolution models (Christofides et al., 2013) or through optimization (Gusrialdi,
2012).

Considering the control problem described in Section 5.2.1, we can now anal-
ogously state the distributed control problem: Given the plant interconnection
PI = ∧si,i∈Z[1:L]

Pi and a desired behavior defined by KI = ∧ki,i∈Z[1:L]
Ki, do

there exist controllers Ci ∈ Lci+pi , i ∈ Z[1:L], so that (KI)w = ((∧si,i∈Z[1:L]
Pi) ∧c

(∧pi,i∈Z[1:L]
Ci))w? That is, does there exist a distributed controller such that the

desired behavior is equal to the controlled interconnection? Figure 5.2 illustrates
this controlled interconnection.

Definition 5.3.1. Let Ki, i ∈ Z[1:L], be given and consider the desired intercon-
nected system behavior (KI)w. If there exists a distributed controller such that
the controlled interconnected behavior equals the desired interconnected behavior,
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i.e., if there exist Ci, i ∈ Z[1:L], such that

(∧ki,i∈Z[1:L]
Ki)w =

(
[∧si,i∈Z[1:L]

Pi] ∧c [∧pi,i∈Z[1:L]
Ci]
)
w

m (5.1)

(KI)w =
(
PI ∧c [∧pi,i∈Z[1:L]

Ci]
)
w

then KI is called implementable via distributed control.

Consequently, a distributed controller with controller behaviors Ci, i ∈ Z[1:L],
is said to implement KI if (5.1) holds.

Remark 5.3.1. A natural question that comes to mind is: what prevents a
desired behavior from being implementable? The necessary conditions of the con-
troller implementability theorem for ‘centralized’ control by Willems and Trentel-
man (2002) reveal that there are two restrictions: (i) since control means that
the behavior of the plant is restricted, the desired behavior must be a subset of the
(manifest) behavior of the plant and (ii) since the hidden behavior of the plant
(for c = 0) should remain possible, the hidden behavior of the plant must be subset
of the desired behavior (Willems and Trentelman, 2002).

w1 P1 C1

w2 P2 C2

w3 P3 C3

s12

s23

p12

p23

c1

c2

c3

Figure 5.2: Controlled interconnection.
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5.4 Canonical distributed controller

Let Ki ∈ Lwi+ki , i ∈ Z[1:L], and consider its interconnected manifest behavior
(KI)w ∈ Lw+k. We define the controller

Ccan
i := (Pi ∧wi

Ki)(ci,si,ki) (5.2)

= {(ci, si, ki) | ∃wi so that (wi, si) ∈ Pi and (wi, ki) ∈ Ki}, (5.3)

i.e., the manifest behavior w.r.t. (ci, si, ki) of the interconnection of the local
plant behavior Pi and desired behavior Ki through wi. This interconnection
is depicted in Figure 5.3. We call Ccan

i a local canonical controller. By the
elimination theorem (Polderman and Willems, 1998, Theorem 6.2.6), we have
that Ccan

i ∈ Lci+si+ki .
Notice that by construction of the plant interconnection and interconnection

defining the desired behavior, we can interconnect two canonical controllers Ccan
i

and Ccan
j through the variables (sij , kij), i.e., Ccan

i ∧(sij ,kij) Ccan
j . In order to

construct a distributed controller, we interconnect the local canonical controllers
Ccan
i , i ∈ Z[1:L], through (si, ki). The behavior of the interconnection of the local

canonical controllers is

Ccan
I = ∧(si,ki),i∈Z[1:L]

Ccan
i ,

which is called the canonical distributed controller.
We will now provide conditions on the interconnected system and desired

interconnected behavior under which the canonical distributed controller imple-
ments KI . The hidden behavior of PI is defined as

N (PI) := {w | (w, 0) ∈ (PI)(w,c)}.

Proposition 5.4.1. The controller CcanI implements the desired behavior KI ∈
Lw+k if

N (PI) ⊆ (KI)w ⊆ (PI)w.

Proof. The proof can be separated in two parts: (i) show that the distributed
canonical controller satisfies (Ccan

I )c = ((PI)(w,c) ∧w (KI)w)c and (ii) application
of the implementability proof for the centralized canonical controller (Julius et al.,
2005). We will prove both parts (i) and (ii) for completeness.

We will first show that (∧(si,ki)Ccan
i )c =

(
(∧siPi)(w,c) ∧w (∧kiKi)w

)
c, i.e.,

that (Ccan
I )c = ((PI)(w,c) ∧w (KI)w)c. The manifest behavior of ∧kiKi with

respect to wi is

(∧kiKi)w = {(w1, . . . , wL) | ∃ki, i ∈ Z[1:L], so that (wi, ki) ∈ Ki, i ∈ Z[1:L]}
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and the manifest behavior of ∧siPi with respect to (w, c) is

(∧siPi)(w,c) = {(w1, . . . , wL, c1, . . . , cL) | ∃si, i ∈ Z[1:L], so that

(wi, si, ci) ∈ Pi, i ∈ Z[1:L]}.

Hence, we have(
(∧siPi)(w,c) ∧w (∧kiKi)w

)
c

= {(c1, . . . , cL) | ∃(wi, si, ki), i ∈ Z[1:L], so that

(wi, ki) ∈ Ki and (wi, si, ci) ∈ Pi}.

Furthermore, the manifest behavior of Ccan
I with respect to c is

(Ccan
I )c = (∧(si,ki), i∈Z[1:L]

Ccan
i )c

= {(c1, . . . , cL) | ∃(si, ki), i ∈ Z[1:L], so that (ci, si, ki) ∈ Ccan
i },

= {(c1, . . . , cL) | ∃(wi, si, ki), i ∈ Z[1:L], so that

(wi, ki) ∈ Ki and (wi, si, ci) ∈ Pi}.

Hence, it follows that (Ccan
I )c = ((PI)(w,c) ∧w (KI)w)c.

With this expression for the behavior of the canonical distributed controller,
we find that the behavior of the interconnection of the manifest behavior of the
canonical distributed controller and the manifest behavior of the plant is equal
to

((PI)(w,c) ∧c ((Ccan
I )c)w = ((PI)(w,c) ∧c ((PI)(w,c) ∧w (KI)w)c)w.

We will now show that this behavior is in fact equal to (KI)w. Consider minimal
kernel representations for (PI)(w,c) and (KI)w, respectively:

R
(

d
dt

)
w +M

(
d
dt

)
c = 0, K

(
d
dt

)
w = 0.

We therefore have that

∃w so that

[
R
(

d
dt

)
M
(

d
dt

)
K
(

d
dt

)
0

] [
w
c

]
= 0

is a latent variable representation for (Ccan
I )c. SinceN (PI) ⊆ (KI)w and (KI)w ⊆

(PI)w, there exists a polynomial matrix F (ξ) so that K(ξ) = F (ξ)R(ξ). Consider

the unimodular matrix U(ξ) :=

[
F (ξ) −I
I 0

]
. Post-multiplication of U(ξ) with

col(M(ξ), 0) and col(−R(ξ),K(ξ)) yields U(ξ)

[
M(ξ)

0

]
=

[
F (ξ)M(ξ)
M(ξ)

]
and

U(ξ)

[
−R(ξ)
K(ξ)

]
=

[
−F (ξ)R(ξ) +K(ξ)

−R(ξ)

]
=

[
0

−R(ξ)

]
.
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We thus have (CI)c = {c |F
(

d
dt

)
M
(

d
dt )
)
c = 0} so that

(PI)(w,c) ∧c ((Ccan
I )c = {(w, c) |

[
R
(

d
dt

)
M
(

d
dt

)
0 F

(
d
dt

)
M
(

d
dt

)] [w
c

]
= 0}

= {(w, c) |
[
R
(

d
dt

)
0

]
w =

[
−M

(
d
dt

)
−F

(
d
dt

)
M
(

d
dt

)] c}.
Now, since

U(ξ)

[
R(ξ)

0

]
=

[
F (ξ)R(ξ)
R(ξ)

]
and U(ξ)

[
−M(ξ)

−F (ξ)M(ξ)

]
=

[
0

−M(ξ)

]
,

we have

((PI)(w,c) ∧c ((Ccan
I )c)w = {w |FR

(
d
dt

)
w = 0} = {w |K

(
d
dt

)
w = 0} = (KI)w

and the proof is complete.

ci Pi Ki

si ki

wi

Ccan
i

Figure 5.3: Local canonical controller. The mirrored plant notation emphasizes
that the control and to-be-controlled variables of Pi are reversed inside the canon-
ical controller.

Remark 5.4.1. The manifest behavior of the controller w.r.t. c is equal to the
behavior of the “central” canonical controller for the desired interconnected be-
havior, cf. (Julius et al., 2005). Intuitively, this is sensible, see e.g. the controlled
interconnection for the example with 3 subsystems in Figure 5.4. The controllers
Ccani are based on “local” behavior Pi, while the central canonical controller is
based on (PI)(w,c). From a distribution point of view, the control design is de-
centralized in the sense that only the subsystem Pi of the interconnected system
is required to determine Ccani , once a desired interconnected behavior has been
specified.
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w1 P1 P1 K1

w2 P2 P2 K2

w3 P3 P3 K3

s12

s23

s12

s23

k12

k23

c1

c2

c3

Ccan
1

Ccan
2

Ccan
3

Figure 5.4: Controlled interconnection with local canonical controllers.

5.5 Regularity of the canonical distributed con-
troller

An important type of system interconnections is a regular interconnection, intro-
duced by (Willems, 1997). Formally, a regular interconnection of two systems is
defined as follows.

Definition 5.5.1. Consider two behaviors B1 ∈ Lw1+w2 and B2 ∈ Lw2+w3 . The
interconnection of B1 and B2 is said to be regular if

p(B1 ∧w2
B2) = p(B1) + p(B2),

where B1 ∧w2 B2 = {(w1, w2, w3) | (w1, w2) ∈ B1 and (w2, w3) ∈ B2}.

Regularity of the interconnection of two systems has multiple interpretations.
First, regularity means in a sense that the equations describing the dynamics
of B1 and B2 are independent of each other (Willems et al., 2003). For the
second interpretation, consider a plant P ∈ Lw+c, a controller C ∈ Lc and their
interconnection K := {(w, c) ∈ P | c ∈ C}. According to Definition 5.5.1, the
plant-controller interconnection is regular if

p(K) = p(P) + p(C).

This interconnection is regular if and only if the controller C can be realized
as a transfer function from an output variable to an input variable of P for an
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input/output partitioning of the control variable c (Willems et al., 2003). From a
control-point-of-view, regularity of the plant-controller interconnection therefore
means that the controller acts as a feedback controller, i.e., it can process sensor
outputs to actuator inputs. Notice that, while this is a typical assumption in
control theory that is not in the behavioral framework, it is not a matter of
course in control in a behavioral setting (Willems, 1997), (Willems et al., 2003),
(Julius et al., 2005).

Let us now consider regularity of the interconnections related to the canon-
ical distributed controller, which was introduced in Section 5.4. There are two
types of interconnections that are of interest: (i) the interconnection between
the canonical distributed controller Ccan

I and the interconnected system PI , i.e.,
the plant-controller interconnection and (ii) the interconnection between Ccan

i

and Ccan
j , (i, j) ∈ Z2

[1:L] and i 6= j, i.e., the interconnection of local controllers.
The interpretation of regularity of the plant-controller interconnection has been
considered in the previous paragraph. Regularity of the interconnection of lo-
cal canonical controllers can be interpreted as follows. If the interconnection
between controllers is regular, then the interconnection variable pij can always
be partitioned to achieve a regular feedback interconnection, i.e., such that the
transfers from inputs in the partitioning to outputs are proper. In a sense, regu-
larity of interconnection between local controllers thus means that the controllers
can communicate with each other, by processing received communication signals
(input) into sent communication signals (output).

5.5.1 Regularity of the plant-controller interconnection

Regularity of the interconnection of the interconnected system behavior PI and
a distributed controller CI follows from the regularity of the behaviors with
the interconnection variables (s1, . . . , sL) and (p1, . . . , pL) eliminated, i.e., from
(PI)(w,c) and (CI)c. By definition, the interconnection of (PI)(w,c) and (CI)c is
regular if

p((PI)(w,c)) + p((CI)c) = p((PI)(w,c) ∧c (CI)c). (5.4)

If (5.4) holds, then the distributed controller is called regular with respect to c.
A sufficient condition for regularity with respect to c of all distributed controllers
that implement KI follows from (Julius et al., 2005, Theorem 12).

Proposition 5.5.1. Let Pi ∈ Lwi+si+ci and Ci ∈ Lci+pi , i ∈ Z[1:L], and consider
the interconnected system PI = ∧si,i∈Z[1:L]

Pi and distributed controller CI =
∧pi,i∈Z[1:L]

Ci. Let (KI)w be the desired behavior, with KI = ∧ki,i∈Z[1:L]
Ki, where

Ki ∈ Lwi+ki , i ∈ Z[1:L].
Every distributed controller CI that implements KI , i.e., (5.1) holds, is regular

with respect to c if (PI)c = C∞(R,Rc), where (PI)c is the manifest behavior of
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the interconnected system with respect to c, i.e.,

(PI)c = {c | ∃(w, s) so that (w, s, c) ∈ PI}.

Proof. First, notice that PI = ∧si,i∈Z[1:L]
Pi ∈ Lw+s+c and that (PI)(w,c) ∈ Lw+c.

Hence, there exists a minimal kernel representation for (PI)(w,c):

R

(
d

dt

)
w +M

(
d

dt

)
c = 0.

Assume that (PI)c = C∞(R,Rc). Then R has full row rank. Now, take any dis-
tributed controller CI = ∧pi,i∈Z[1:L]

Ci ∈ Lc+p that implements KI . The manifest
behavior of CI with respect to c, i.e., (CI)c, satisfies (CI)c ∈ Lc and therefore has
a minimal kernel representation

C

(
d

dt

)
c = 0.

Since R has full row rank, we find that[
R
(

d
dt

)
M
(

d
dt

)
0 C

(
d
dt

)] [w
c

]
= 0

is a minimal kernel representation of (KI)(w,c). We find that

p((KI)(w,c)) = rankR+ rankC = p((PI)(w,c)) + p((CI)c),

which was to be proven.

Corollary 5.5.1. Consider an interconnected system PI = ∧si,i∈Z[1:L]
Pi, Pi ∈

Lwi+si+ci , and the desired behavior (KI)w, with KI = ∧ki,i∈Z[1:L]
Ki, Ki ∈ Lwi+ki ,

i ∈ Z[1:L]. Assume that

N (PI) ⊆ (KI)w ⊆ (PI)w.

If (PI)c = C∞(R,Rc), then the canonical distributed controller implements KI
and is regular with respect to c.

5.5.2 Regularity of the interconnection of local canonical
controllers

Let us now consider the regularity of the interconnection of local canonical con-
trollers, i.e., the regularity of Ccan

i ∧(sij ,kij)Ccan
j , (i, j) ∈ Z2

[1:L] and i 6= j. Without
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loss of generality, we will consider that L = 2 in this subsection. The intercon-
nection of Ccan

1 and Ccan
2 is regular if

p(Ccan
1 ∧(s,k) Ccan

2 ) = p(Ccan
1 ) + p(Ccan

2 ).

The behaviors Pi ∈ Lwi+si+ci , i = 1, 2, admit kernel representations

Ri

(
d

dt

)
wi + Si

(
d

dt

)
s+Mi

(
d

dt

)
ci = 0, i = 1, 2. (5.5)

Similarly, the behaviors Ki ∈ Lwi+ki , i = 1, 2, admit kernel representations

Wi

(
d

dt

)
wi +Ki

(
d

dt

)
k = 0, i = 1, 2. (5.6)

Define the partitioned matrix
M1 0 S1 0 R1 0
0 0 0 K1 W1 0
0 M2 S2 0 0 R2

0 0 0 K2 0 W2

 =:

[
L1 N1

L2 N2

]
. (5.7)

Proposition 5.5.2. Consider the behaviors Pi ∈ Lwi+si+ci and Ki ∈ Lwi+ki ,
i = 1, 2, and the kernel representations (5.5) and (5.6), respectively. The inter-
connection of Ccan1 and Ccan2 is regular if and only if

rank
[
L1 N1

]
+ rank

[
L2 N2

]
= rank

[
L1 N1

L2 N2

]
. (5.8)

Proof. By (5.5) and (5.6), the local canonical controller behavior is represented
by the latent variable representation

Ccan
i = {(ci, s, k) | ∃wi so that

[
Ri
(

d
dt

)
Si
(

d
dt

)
Mi

(
d
dt

)
0

Wi

(
d
dt

)
0 0 Ki

(
d
dt

)]

wi
s
ci
k

 = 0}.

Hence, the interconnection of Ccan
1 and Ccan

2 is

Ccan
1 ∧(s,k) Ccan

2 = {(c1, c2, s, k) | (c1, s, k) ∈ Ccan
1 and (c2, s, k) ∈ Ccan

2 }

= {(c1, c2, s, k) | ∃(w1, w2) so that

[
L1

(
d
dt

)
N1

(
d
dt

)
L2

(
d
dt

)
N2

(
d
dt

)]

c1
c2
s
k
w1

w2

 = 0},
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which is a latent variable representation for the canonical distributed controller
(with latent variable (w1, w2). By Lemma 8 in (Belur and Trentelman, 2002), the
output cardinality of Ccan

1 ∧(s,k) Ccan
2 can be determined from its latent variable

representation as

p(Ccan
1 ∧(s,k) Ccan

2 ) = rank

[
L1 N1

L2 N2

]
− rank

[
N1

N2

]
.

Similarly, the output cardinality of Ccan
1 and Ccan

2 is given by

p(Ccan
i ) = rank

[
Mi Si 0 Ri
0 0 Ki Wi

]
− rank

[
Ri
Wi

]
, i = 1, 2.

It follows by (5.7) that

p(Ccan
1 ∧(s,k) Ccan

2 ) = rank

[
L1 N1

L2 N2

]
− rank

[
R1

W1

]
− rank

[
R2

W2

]
. (5.9)

Hence, by (5.9) and (5.7), we find that

p(Ccan
1 ) + p(Ccan

2 )

= rank
[
L1 N1

]
− rank

[
R1

W1

]
+ rank

[
L2 N2

]
− rank

[
R2

W2

]
= rank

[
L1 N1

]
+ rank

[
L2 N2

]
− rank

[
L1 N1

L2 N2

]
+ p(Ccan

1 ∧(s,k) Ccan
2 ).

Therefore, p(Ccan
1 ∧(s,k) Ccan

2 ) = p(Ccan
1 ) + p(Ccan

2 ) if and only if (5.8) holds. This
concludes the proof.

Regularity of the interconnection of Ccan
1 and Ccan

2 turns out to be easily
verifiable through regularity of the interconnections of subsystems P1 and P2 of
the interconnected system that has to be controlled and of the interconnection
of K1 and K2. We have the following result.

Theorem 5.5.1. The interconnection of Ccan1 and Ccan2 is regular if and only if
the interconnection of P1 and P2 is regular and the interconnection of K1 and K2

is regular. That is, the interconnection of Ccan1 and Ccan2 is regular if and only if

p(P1 ∧s P2) = p(P1) + p(P2) and p(K1 ∧k K2) = p(K1) + p(K2).

Proof. Let Ri
(

d
dt

)
wi+Si

(
d
dt

)
s+Mi

(
d
dt

)
ci = 0 be a minimal kernel representa-

tion for Pi and let Wi

(
d
dt

)
wi+Ki

(
d
dt

)
k = 0 be a minimal kernel representation

for Ki, i = 1, 2.
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(⇒) Assume that p(P1 ∧s P2) = p(P1) + p(P2) and that p(K1 ∧k K2) =
p(K1) + p(K2). We then have that

rank

[
R1 M1 0 0 S1

0 0 R2 M2 S2

]
= p(P1 ∧s P2) = p(P1) + p(P2) (5.10)

= rank
[
R1 M1 S1

]
+ rank

[
R2 M2 S2

]
,

and

rank

[
W1 0 K1

0 W2 K2

]
= p(K1 ∧s K2) = p(K1) + p(K2) (5.11)

= rank
[
W1 K1

]
+ rank

[
W2 K2

]
.

By Proposition 5.5.2, Ccan
1 ∧(s,k) Ccan

2 is regular if and only if (5.8) holds, i.e., if
and only if

rank


A1

B1

A2

B2

 = rank

[
A1

B1

]
+ rank

[
A2

B2

]
, (5.12)

where

A1 :=
[
M1 0 S1 0 R1 0

]
, A2 :=

[
0 M2 S2 0 0 R2

]
,

B1 :=
[
0 0 0 K1 W1 0

]
, B2 :=

[
0 0 0 K2 0 W2

]
.

Now, by (5.10), A1 and A2 do not have rows that are linearly dependent. Simi-
larly, by (5.11), B1 and B2 do not have rows that are linearly dependent. Fur-
thermore, B1 and A2 do not have rows that are linearly dependent and A1 and

B2 do not have rows that are linearly dependent, by construction. Hence,

[
A1

B1

]
and

[
A2

B2

]
do not have rows that are linearly dependent. Hence, (5.12) holds true

and it follows that Ccan
1 ∧(s,k) Ccan

2 is regular.
(⇐) Let Ccan

1 ∧(s,k) Ccan
2 be regular. Then (5.12) holds true. But then A1

and A2 cannot contain dependent rows. Hence, p(P1 ∧s P2) = p(P1) + p(P2).
Moreover, by (5.12), B1 and B2 cannot contain dependent rows. Hence, p(K1 ∧k
K2) = p(K1) + p(K2). This completes the proof.

5.6 Conclusions

In this chapter, we have considered the distributed control problem for linear
interconnected systems in a behavioral setting. This setting allows to view dis-
tributed control from a more general perspective, where controllers are not in-
trinsically viewed as signal processors. Given a desired behavior represented by
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a linear interconnected system, the canonical distributed controller implements
it, provided that sufficient conditions on the manifest behavior of the plant and
desired behavior are satisfied. We have shown that regularity of the intercon-
nections between subsystems in the plant and desired behavior are necessary
and sufficient for regularity of the interconnections between subsystems in the
canonical distributed controller.

From a design point-of-view, the desired interconnected system behavior is
assumed to be known a priori, which may not always be at hand in practice.
The theory of behavioral distributed control in this chapter, and in particular the
canonical distributed controller, forms the basis for distributed model-reference
control in Chapter 6 for transfer function representations. The analysis and
synthesis of structured reference models (representing the desired interconnected
system behavior) will also be addressed in Chapter 6.
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Part II

Distributed data-driven
model-reference control

125





Chapter 6

Distributed model-reference
control of interconnected
systems

Data-driven control methods typically follow a model-reference controller design
problem. The basis in a model-reference control problem is formed by given
performance specifications for the closed-loop system, captured by a reference
model. This reference model yields an ideal controller that is unknown; it is the
target object in direct data-driven control. In this chapter, we set the basis for
distributed data-driven control for interconnected systems. We show that there
exists an ideal distributed controller that implements performance specifications
captured by a structured reference model. The properness and stability of the
distributed controller and reference model are analyzed in this chapter. Finally,
a method for synthesizing a structured reference model based on H2 or H∞ per-
formance specifications is developed, hence this chapter also yields an alternative
solution to the distributed H2/H∞ control problems considered in Chapter 4
through the model-reference paradigm.

This chapter is based on the preliminary work: T. R. V. Steentjes, M. Lazar, and P. M. J.
Van den Hof. Data-driven distributed control: Virtual reference feedback tuning in dynamic
networks. In Proc. 59th IEEE Conference on Decision and Control (CDC), pages 1804–1809,
2020

127
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6.1 Introduction

Model-reference controller design dates back to at least the 1960’s, see e.g. (Tyler,
1964). In the model-reference control paradigm, a reference model is employed
to describe the desired characteristics of a closed-loop system (Landau, 1978),
(Bazanella et al., 2012). In reference tracking, the output cannot attain a ref-
erence trajectory exactly, in general, think e.g. of a step reference signal. Since
perfect tracking is not possible, the tracking objective is typically relaxed into
specifications of what is satisfactory, such as maximum overshoot, rise time, or
settling time. The model-reference paradigm collects such specifications (and
other specifications) in a linear dynamical system with the corresponding prop-
erties. Given a reference signal, the controller design problem is to minimize the
difference between the output of the closed-loop system and the output of the
reference model, instead of the difference between the output and the reference
itself (Bazanella et al., 2012).

A solution to the linear model-reference control problem is given by an ideal
controller; a controller that can be written explicitly in terms of dynamics of the
plant and reference model, and that achieves exactly the reference model (Campi
et al., 2002). Of course, whether this ideal controller can be actually implemented
depends on the considered class of controllers. Typical properties that are (im-
plicitly) captured in a controller class are the dynamical order of the controller,
properness, and stability of the controller. Stability and properness of the con-
troller yield design restrictions for the reference model (Bazanella et al., 2012)
and, hence, should be taken into account in the design of the reference model.

In this chapter, we introduce a model-reference paradigm for interconnected
systems. In this paradigm, the structure of the interconnected system (described
by a graph), is taken into account in the reference model. More specifically, we
develop a framework where the reference model consists of subsystems that are
interconnected only if two subsystems of the network under consideration are in-
terconnected. In this way, the interconnection structure of the plant is respected
in the controller design in the sense that the closed-loop system attains the same
interconnection structure, with possibly removed couplings. The composition of
the reference model’s subsystems describes the desired behavior for the intercon-
nected system. A special case of the structured reference model is one where all
subsystems are disconnected, describing a decoupling control objective.

The natural question that arises is: does there exist a distributed controller,
such that the closed-loop network dynamics coincide with the structured reference
model dynamics? Via the concept of the local canonical controllers described in
Chapter 5, we show that there exists a distributed controller with the same
structure as the network under consideration that solves the distributed model-
reference control problem; an ideal distributed controller.
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Properness and stability of a distributed controller are important, or even
indispensable properties of a distributed controller. Properness ensures that sub-
systems of the distributed controller are causal. Stability ensures that control
input signals, but also controller interconnection/communication signals, remain
bounded. We consider both the properness and stability analysis of the struc-
tured reference model in this chapter. Then, the synthesis of a reference model
is considered. An ideal distributed controller is inherently non-unique due to
the interconnection dynamics, i.e., one can ‘shift’ dynamics from one controller
subsystem to another through dynamic transformations (filtering) of the inter-
connection dynamics. This freedom is exploited to determine necessary and suffi-
cient conditions for the properness and stability of an ideal distributed controller,
leading to a structured procedure for obtaining a structured reference model.

Finally, when the control objective is to guarantee an H2 or H∞ bound
on the closed-loop network, it may not be clear how to choose the structured
reference model. We show how a decoupled reference model can be designed
that corresponds to a system with a given H2 or H∞ bound. As a consequence,
the corresponding ideal distributed controller then solves the H2/H∞ control
problem for the interconnected system.

6.2 Preliminaries

Consider an undirected graph G = (V, E) with vertex set V of cardinality L and
edge set E ⊆ V × V. This graph will define the interconnection structure of
an interconnected system with bilateral interconnections1. The neighbour set of
vertex i ∈ V is defined as Ni := {j ∈ V | (i, j) ∈ E}. To each vertex i ∈ V, we
associate a linear discrete-time system with dynamics

yi(t) = Gi(q)ui(t) +
∑
j∈Ni

Wij(q)sij(t),

oij(t) = Fij(q)yi(t), j ∈ Ni,

with Gi, Wij , Fij rational transfer functions, q the forward shift defined as
qx(t) = x(t + 1), ui : Z → R is the control input, yi : Z → R the output,
and oij , sij : Z→ R are variables through which the systems at vertices (i, j) ∈ E
are interconnected. The problem that we consider is that of reference tracking,
i.e., for each system it is desired that the output yi tracks a reference signal ri.
The tracking error for system i is defined as zi := ri−yi. By stacking all incoming
and outgoing interconnection variables of system i in vectors si and oi, that is

1Unilateral interconnections can be considered by setting the corresponding transfer func-
tions Wij or Fji equal to zero.
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si := colj∈Ni
sij and oi := colj∈Ni

oij , we arrive at the following description for
system i, denoted Pi:

Pi :

 yi = Gi(q)ui +Wi(q)si,
oi = Fi(q)yi,
zi = ri − yi,

(6.1)

where Wi := rowj∈Ni
Wij and Fi := colj∈Ni

Fij , and the time t is omitted for
brevity. The interconnection of system Pi and Pj , (i, j) ∈ E , is defined by

sij = oji and sji = oij . (6.2)

We consider a structured reference model described by

Ki :

{
ydi = Ti(q)ri +Qi(q)ki,
pi = Pi(q)y

d
i ,

(6.3)

where Qi := rowj∈Ni
Qij and Pi := colj∈Ni

Pij and the interconnection variables
are similarly partitioned as for Pi, i.e., ki := colj∈Ni

kij and pi := colj∈Ni
pij .

For each pair (i, j) ∈ E the interconnection of Ki and Kj is defined by

kij = pji and kji = pij . (6.4)

Hence, Ki and Kj can only be interconnected if Pi and Pj are interconnected.
A particular case of such a reference model occurs when a decoupled closed-loop
system is desired, i.e., Qij = 0 and Pij = 0, i, j = 1, 2, . . . , L.

For the control of the interconnected system described by (6.1) and (6.2),
we consider that each system Pi is associated with a (parametrized) controller
Ci, which is a linear discrete-time system that has the tracking error zi as an
input, control input ui as an output and is interconnected with other controllers
Cj through interconnection variables ηij , ζij :

Ci(ρi) :


ui = Cii(q, ρi)zi +

∑
j∈Ni

Cij(q, ρi)ηij ,

ζij = Kij(q, ρi)zi +
∑
h∈Ni

Kijh(q, ρi)ηih, j ∈ Ni.

The interconnection of Ci and Cj , (i, j) ∈ E is defined by

ηij = ζji and ηji = ζij . (6.5)

An example of a reference model and controlled interconnected system is provided
in Figure 6.1 for illustration purposes. By defining ηi := colj∈Ni ηij and ζi :=
colj∈Ni ζij , we compactly represent controller i by

Ci(ρi) :

[
ui
ζi

]
= Ci(q, ρi)

[
zi
ηi

]
. (6.6)
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ζ21

ζ12

η21

p12

k21

k12

p21

Figure 6.1: Structured reference model (left) and closed-loop network with dis-
tributed controller (right) for L = 2.

By stacking all the interconnection variables of the interconnected system
described by (6.1) and (6.2) as s := col(s1, . . . , sL) and o := col(o1, . . . , oL), we
can write

y = Gu+Ws, o = Fy, s = ∆o,

with G = diag(G1, . . . , GL), W = diag(W1, . . . ,WL), F = diag(F1, . . . , FL) and
the matrix ∆ defined by aggregating (6.2) for all corresponding index pairs. The
input-output behavior of the network is y = (I −W∆F )−1Gu.

Assumption 6.1. The interconnected system and reference model satisfy det(I−
W∆F ) 6= 0 and det(I −Q∆P ) 6= 0.

Assumption 6.2. The reference model is such that yd 6= r for all non-zero r,
i.e., det((I −Q∆P )−1T − I) 6= 0.

Assumption 6.1 is required for well-posedness of the interconnected system
and structured reference model, in the sense that the transfer matrices from in-
puts to outputs exist. The rationale behind Assumption 6.2 is that no reference
model is chosen that cannot be achieved by a (distributed) controller and en-
sures that the transfer functions of an ideal distributed controller considered in
Section 6.3 are well-defined, cf. (6.9).

Problem 6.2.1. Given the parametrized controllers Ci(ρi) and the reference mod-
els Ki, the considered distributed controller synthesis problem is

min
ρ1,...,ρL

JMR(ρ1, . . . , ρL), JMR(ρ1, . . . , ρL) :=

L∑
i=1

Ē[ydi (t)− yi(t)]2, (6.7)
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where Ē := limN→∞ 1
N

∑N
t=1E and E is the expectation2.

6.3 Ideal distributed controller synthesis

A controller that admits the same structure as the interconnected system and for
which the closed-loop network matches the structured reference model exactly,
i.e., yi = ydi for all i = 1, . . . , L, is called an ideal distributed controller. To derive
such an ideal controller, consider the interconnection of a subsystem Ki of the
structured reference model with a subsystem Pi of the interconnected system,
i.e., 

yi
oi
zi
ydi
pi

 =


Giui +Wisi

Fiyi
ri − yi

Tiri +Qiki
Piy

d
i

 and ydi = yi. (6.8)

Elimination of the variables ydi , yi and ri in (6.8) yields a local controller Cdi ,
described by (denoting xi by xci for the interconnection variables to distinguish
controller variables from plant variables)

Cdi :

uioci
pci

=


Ti

Gi(1− Ti)
− 1

Gi
Wi

1

Gi(1− Ti)
Qi

Ti
1− Ti

Fi 0
1

1− Ti
FiQi

Ti
1− Ti

Pi 0
1

1− Ti
PiQi


︸ ︷︷ ︸

=:Cd
i (q)

zisci
kci

. (6.9)

The distributed controller is constructed by interconnecting local controllers Cdi
and Cdj , (i, j) ∈ E , as [

scij
kcij

]
=

[
ocji
pcji

]
and

[
scji
kcji

]
=

[
ocij
pcij

]
(6.10)

Theorem 6.3.1. The closed-loop network described by (6.1) - (6.2) and the dis-
tributed controller (6.9) - (6.10) satisfies

yi = ydi , i = 1, . . . , L.

2A deterministic setting is considered in this chapter, but subsequent Chapters 7 and 8
consider the same control problem with a stochastic noise process affecting the output.
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Proof. Let the control variables (ui, zi) and controller interconnection variables
(sci , o

c
i , k

c
i , p

c
i ) satisfy (6.9) for all i and (6.10) for all (i, j) ∈ E , i.e., sc = ∆oc and

kc = ∆pc. We will first show that there exist latent variables rci : Z → R and
yci : Z→ R for each i, so that

yci
oci
zi
yci
pci

 =


Giui +Wis

c
i

Fiy
c
i

rci − yci
Tir

c
i +Qik

c
i

Piy
c
i

 . (6.11)

Define yci := Giui + Wisi and rci := zi + yci . We then have to show that yci =
Tir

c
i +Qik

c
i , o

c
i = Fiy

c
i and pci = Piy

c
i . By (6.9) we have that

ui =
Ti

Gi(1− Ti)
zi +

1

Gi(1− Ti)
Qik

c
i −

1

Gi
Wis

c
i

⇔
(1− Ti)Giui = Tizi +Qik

c
i − (1− Ti)Wis

c
i ,

which, by the definition of yci , is equivalent with

(1− Ti)yci = Tizi +Qik
c
i (6.12)

and hence, by the definition of rci , y
c
i = Tir

c
i + Qik

c
i . By (6.12) and (6.9), it

follows that

oci =
Ti

1− Ti
Fizi +

1

1− Ti
FiQik

c
i = Fiy

c
i ,

pci =
Ti

1− Ti
Pizi +

1

1− Ti
PiQik

c
i = Piy

c
i .

Next, define yc := col(yc1, . . . , y
c
L) and u := col(u1, u2, . . . , uL). It follows by (6.11)

that yc = Gu+Wsc and oc = Fy, such that, by sc = ∆oc, yc = (I−W∆F )−1Gu.
Similarly, define rc := col(rc1, . . . , r

c
L) to obtain yc = (I −Q∆P )−1Trc by (6.11),

with Q = diag(Q1, . . . , QL), P = diag(P1, . . . , PL) and T = diag(T1, . . . , TL).
Thus, using z = rc − yc, the controller satisfies

u = G−1(I −W∆F )(I −Q∆P )−1T

× (I − (I −Q∆P )−1T )−1z. (6.13)

Finally, the process y = (I−W∆F )−1Gu with z = r−y and the controller (6.13)
yield y = (I −Q∆P )−1Tr = yd, which concludes the proof.
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If we associate ρd1, . . . , ρ
d
L with the ideal distributed controller, such that

P>i C
d
i Pi = Ci(ρ

d
i ) for i = 1, . . . , L, with the permutation matrices Pi := diag(1, P i),

i = 1, . . . , L, such that col(sci , k
c
i ) = P i colj∈Ni col(scij , k

c
ij), then by Theorem 6.3.1,

(ρd1, . . . , ρ
d
L) solves problem (6.7).

The following simple example briefly illustrates the ideal distributed controller
constructed in this section.

Example 6.1. Consider two coupled processes

y1(t) = G1(q)u1(t) +G12(q)y2(t),

y2(t) = G2(q)u2(t) +G21(q)y1(t),

with transfer functions

G1(q) =
c1

q − a1
, G12(q) =

d1

q − a1
,

G2(q) =
c2

q − a2
, G21(q) =

d2

q − a2
.

The objective is that the closed-loop interconnected system behaves as two
decoupled processes with first-order dynamics, according to

ydi (t) = Ti(q)ri(t), Ti(q) =
1− γi
q − γi

, i = 1, 2. (6.14)

Now, via (6.9), we find that the ideal distributed controller is described by[
u1

oc1

]
=

[
Cd11 Cd12

Kd
12 0

] [
z1

sc1

]
and

[
u2

oc2

]
=

[
Cd22 Cd21

Kd
21 0

] [
z2

sc2

]
with zi = ri − yi, the interconnections sc1 = oc2, sc2 = oc1, and

Cdii(q) =
1− γi
ci

q − ai
q − 1

, Cdij(q) = −di
ci
,

Kd
ij(q) =

1− γi
q − 1

, (i, j) ∈ E .

6.4 Properness and stability: analysis

Theorem 6.3.1 shows that the distributed controller (6.9) yields a closed-loop
system with the prescribed structure and dynamics described by the structured
reference model. Therefore, given a stable structured reference model, this dis-
tributed controller will yield a stable closed-loop network in the sense that the
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transfer r → yd is stable. Internal stability and properness of the distributed
controller modules is not naturally guaranteed, however. For the distributed
controller to be practically applicable, stability and properness are of paramount
importance. In this section we will consider the analysis problem for the existence
of (strictly) proper and stable ideal distributed controllers.

6.4.1 Properness of an ideal distributed controller

In this subsection, we provide conditions on the reference model and plant for
which the ideal controller modules Cdi , i ∈ V are causal, i.e., Cdi is proper. For
each node i ∈ V, let Pi and Ki be causal. Consider the following definition of the
relative degree of a rational function.

Definition 6.4.1. The relative degree of a rational function q 7→ G(q) = B(q)
A(q) ,

with A(q) and B(q) polynomial functions, is defined as ∆ deg(G) := deg(A) −
deg(B), with deg(A) and deg(B) the degree of, respectively, polynomial A and B.

We have the following result regarding the causality of the controller Cdi .

Proposition 6.4.1. Consider the plant Pi and reference model Ki. Every non-
zero entry of the transfer matrix Cdi is proper if and only if the following condi-
tions hold:

• ∆ deg(Wij) ≥ ∆ deg(Gi) or Wij = 0 for all j ∈ Ni,

• ∆ deg(Qij) ≥ ∆ deg(Gi) or Qij = 0 for all j ∈ Ni,

• ∆ deg(Ti) ≥ ∆ deg(Gi).

Proof. Properness of Cdi is equivalent with ∆ deg[Cdi ]jk ≥ 0 for every entry
(j, k) ∈ {1, . . . , L}2.

It can be shown that

∆ deg
Ti

Gi(1− Ti)
= ∆ deg Ti −∆ degGi.

Hence, Ti

Gi(1−Ti)
is proper if and only if ∆ deg(Ti) ≥ ∆ deg(Gi).

Now, for j ∈ Ni we have

∆ deg
Wij

Gi
= ∆ degWij −∆ degGi

and

∆ deg
Qij

Gi(1− Ti)
= ∆ degQij −∆ degGi.
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Thus
Wij

Gi
and

Qij

Gi(1−Ti)
are proper if and only if ∆ deg(Wij) ≥ ∆ deg(Gi) and

∆ deg(Qij) ≥ ∆ deg(Gi). Next, for j ∈ Ni we have

∆ deg
Ti

1− Ti
Fij = ∆ degFij + ∆ deg Ti ≥ 0

and

∆ deg
Ti

1− Ti
Pij = ∆ degPij + ∆ deg Ti ≥ 0.

Hence, Ti

1−Ti
Fij and Ti

1−Ti
Pij are proper. Finally, for (j, k) ∈ Ni ×Ni

∆ deg
1

1− Ti
FijQik = ∆ degFij + ∆ degQik ≥ 0

and

∆ deg
1

1− Ti
PijQik = ∆ degPij + ∆ degQik ≥ 0

Hence, 1
1−Ti

FijQik and 1
1−Ti

PijQik are proper. This concludes the proof.

Proposition 6.4.2. Consider the plant Pi and reference model Ki. Every non-
zero entry of the transfer matrix Cdi is strictly proper if and only if the following
conditions hold:

• ∆ deg(Wij) > ∆ deg(Gi) or Wij = 0 for all j ∈ Ni,

• ∆ deg(Qij) > ∆ deg(Gi) or Qij = 0 for all j ∈ Ni,

• ∆ deg(Ti) > ∆ deg(Gi),

Proof. The proof follows directly from the proof for Proposition 6.4.1.

6.4.2 Stability of an ideal distributed controller

In this subsection, we provide conditions on the reference model and plant for
which the ideal controller modules Cdi , i ∈ V are stable, i.e., Cdi has no poles
outside the unit disk. For each node i ∈ V, let Ki be stable. We have the
following result.

Proposition 6.4.3. Consider the plant Pi and reference model Ki described
by (6.1) and (6.3), respectively. Let the following conditions hold:

• for j ∈ Ni, each pole λ of Wij so that |λ| > 1 is a pole of Gi,
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• each zero λ of Gi so that |λ| > 1 is a zero of Wij for all j ∈ Ni,

• each zero λ of Gi so that |λ| > 1 is a zero of Ti,

• each zero λ of Gi so that |λ| > 1 is a zero of Qij for all j ∈ Ni,

• for j ∈ Ni, each pole λ of Fij so that |λ| > 1 is a zero of Ti and a zero of
Qik for all k ∈ Ni,

• Ti(λ)− 1 6= 0 for all |λ| > 1.

Then every entry of the transfer matrix Cdi is stable.

Proof. Stability of Cdi is equivalent with: [Cdi ]jk is stable for every entry (j, k) ∈
{1, . . . , L}2. Let Gi = B

A , Wij = D
C , with polynomials A, B, C and D. Then,

Wi

Gi
= DA

CB . Hence, Wi

Gi
is stable if and only if every zero of B outside the unit disk

is a zero of D and every zero of C is a zero of A if and only if every zero of Gi
outside the unit disk is a zero of Wij and every pole of Wij is a pole of Gi.

Let Ti = Y
X . Then, Ti

Gi(1−Ti)
= Y A

B(X−Y ) . Hence, Wi

Gi
is stable if every zero of

B outside the unit disk is a zero of Y and X − Y has no zero outside the unit
disk, which is equivalent with: every zero of Gi outside the unit disk is a zero of
Ti and Ti(λ)− 1 6= 0 for all |λ| > 1.

The proof for the other entries follows mutatis mutandis. This completes the
proof.

Corollary 6.4.1. Consider the plant Pi and reference model Ki. Let the follow-
ing conditions hold:

• Gi and Ti − 1 have no zeros outside the unit disk,

• Fi and Wi are stable.

Then every entry of the transfer matrix Cdi is stable.

Proof. The conditions imply the conditions in Proposition 6.4.3. Hence, the
result follows directly.

6.5 Properness and stability: synthesis

6.5.1 Interconnection variable transformation

Consider any node i ∈ V. Proposition 6.4.1 provides necessary and sufficient
conditions on the transfer functions defining Pi and Ki for causality of the ideal
distributed controller. The first condition in Proposition 6.4.1 does not depend
on the reference model, however: if the condition does not hold, it cannot be
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satisfied by choosing an appropriate reference model. In this section, we will
consider a transformation of the interconnection variables scij and ocij , j ∈ Ni, to

transform the entries CWd
ij := −G−1

i Wij of the ideal distributed controller (6.9)

in case they are not proper. Properness of CWd
ij is equivalent with ∆ deg(Wij) ≥

∆ deg(Gi). Increasing ∆ deg(Wij) may not be feasible, since this requires to
change the dynamics of Pi or its representation. However, if one filters CWd

ij

with a filterM−1
ij , the resulting relative degree ∆ deg(CWd

ij M−1
ij ) = ∆ deg(CWd

ij )+

∆ deg(M−1
ij ) can be increased arbitrarily by increasing the relative degree of M−1

ij .
Consider a filtered version of sci ,

s̃ci := Mis
c
i ,

together with a filtered version of oci ,

õci := Nio
c
i ,

where Mi and Ni are square transfer matrices. From (6.9), we then haveuiõci
pci

 =

I 0 0
0 Ni 0
0 0 I

Cdi
zisci
kci

 =

I 0 0
0 Ni 0
0 0 I

Cdi
I 0 0

0 M−1
i 0

0 0 I


︸ ︷︷ ︸

=:C̃d
i

zis̃ci
kci

 ,

which defines an ideal distributed controller

C̃di :

uiõci
pci

 =

I 0 0
0 Ni 0
0 0 I

Cdi
I 0 0

0 M−1
i 0

0 0 I


︸ ︷︷ ︸

=C̃d
i

zis̃ci
kci

 , i = 1, . . . , L, (6.15)

with the interconnection equations s̃cij = õcji, k
c
ij = pcji and s̃cji = õcij , k

c
ji = pcij

Now, consider Mi and Ni diagonal for every i ∈ V, so that Mi := diagj∈Ni
Mij

and Ni := diagj∈Ni
Nij . It then follows that the interconnection constraint s̃cij =

õcji is equivalent with scij = ocji if Nji = Mij . Indeed, we then have

s̃cij = õcji ⇔ Mijs
c
ij = Njio

c
ji ⇔ scij = ocji.

Hence, it follows that the ideal distributed controller described by (6.9) is equiv-
alent with the one described by (6.15), in the sense that their ‘external behavior’
is equivalent, i.e., the transfer z → u is equal.

Proposition 6.5.1. The closed-loop network described by (6.1) and (6.15) sat-
isfies

yi = ydi , i = 1, . . . , L.
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The interpretation of transforming the interconnection variables between con-
trollers, is that filters are added in ‘in between’ controller subsystems. In this
way, the relative degree of controller transfer functions can be altered through
the choice of appropriate filters, while leaving the controller behavior intact.

6.5.2 Synthesis of a structured reference model: existence
of a proper ideal distributed controller

From (6.15), we observe that the filter Mij can be chosen such that C̃Wd
ij :=

CWd
ij M−1

ij is proper. Indeed, if we choose the relative degree if M−1
ij sufficiently

high, i.e.,

∆ degM−1
ij + ∆ degWij −∆ degGi ≥ 0,

then C̃Wd
ij is proper. However, notice that since Nji = Mij for j ∈ Ni, the relative

degree of C̃Fdji := NjiC
Fd
ji and C̃FQdjik := NjiC

FQd
jik are equal to

∆ deg C̃Fdji = ∆ degFji + ∆ deg Tj + ∆ degNji

= ∆ degFji + ∆ deg Tj −∆ degM−1
ij

and

∆ deg C̃FQdjik = ∆ degFji + ∆ degQjk + ∆ degNji

= ∆ degFji + ∆ degQjk −∆ degM−1
ij .

Therefore, by increasing ∆ degM−1
ij , ∆ deg C̃Fdji and ∆ deg C̃FQdjik decrease. Note

that C̃Fdji and ∆ deg C̃FQdjik can always be made proper by choosing ∆ deg Tj and
∆ degQjk sufficiently high, respectively.

Corollary 6.5.1. Consider the plant Pi and reference model Ki. Every entry of
the transfer matrix C̃di is proper if and only if the following conditions hold:

• ∆ deg Ti ≥ ∆ degM−1
ji −∆ degFij for all j ∈ Ni, ∆ degQik ≥ ∆ degM−1

ji −
∆ degFij for all (j, k) ∈ Ni × Ni, with Mji s.t. ∆ degMji ≤ ∆ degWji −
∆ degGj,

• ∆ degQij ≥ ∆ degGi or Qij = 0 for all j ∈ Ni,
• ∆ deg Ti ≥ ∆ degGi.

In order to ensure the existence of an ideal controller (6.15) for which all
entries of C̃di , i ∈ V are proper, the reference model has to be chosen such that
the conditions in Corollary 6.5.1 hold. An algorithm for choosing the structured
reference model such that the ideal distributed controller is causal is stated next:



140 Chapter 6. Distributed model-reference control

1. For each i ∈ V, choose Ti so that ∆ deg Ti ≥ ∆ degGi and choose Qij ,
j ∈ Ni, so that ∆ degQij ≥ ∆ degGi or Qij = 0.

2. For each i ∈ V, for each j ∈ Ni, if CWd
ij is proper, set Mij = I and Nji = I.

If CWd
ij is not proper, take an Mij so that

∆ degMij ≤ ∆ degWij −∆ degGi.

Choose Tj and Qjk so that

∆ deg Tj ≥ max{∆ degM−1
ji −∆ degFji, ∆ degGj}

and

∆ degQjk ≥ max{∆ degM−1
ji −∆ degFji, ∆ degGj}, k ∈ Nj .

By following the preceding steps, the structured reference model is constructed
systematically in order to ensure the existence of a proper ideal distributed con-
troller.

Example 6.2. Consider a network with V = {1, 2}, E = {(1, 2), (2, 1)}. The
dynamics of P1 and P2 are given by

G1 =
q − 0.1

(q − 0.5)(q − 0.6)
, W12 =

q − 0.1

q − 0.5
, F12 = 1,

G2 =
q − 0.2

(q − 0.4)(q − 0.7)
, W21 =

q − 0.2

q − 0.4
, F21 = 1.

We observe that ∆ degW12 < ∆ degG1 and ∆ degW21 < ∆ degG2, thus the
conditions in Proposition 6.4.1 cannot be satisfied for both i = 1 and i = 2.
However, by Corollary 6.5.1, we observe that there exists a proper ideal distributed
controller, if we choose the reference model such that

∆ deg Ti ≥ ∆ degM−1
ji = 1, (i, j) ∈ E

with

degMji = −1 ≤ ∆ degWji −∆ degGi = −1,

and, for example, Q12 = Q21 = 0. By example, consider the reference model with

T1 = T2 =
0.5

q − 0.5
.

Then there indeed exists a proper ideal distributed controller.
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6.5.3 Synthesis of a structured reference model: existence
of a stable ideal distributed controller

The sufficient conditions for stability of the ideal distributed controller in Propo-
sition 6.4.3 are partially independent of the reference model. This implies that
there exist plants for which the reference model cannot be chosen in a way that
Cdi is stable for all i ∈ V. We will now derive conditions for the design of a
reference model such that the transformed ideal distributed controller (6.15) is
stable.

Consider the entry CWd
ij . This entry is unstable if either there is a zero λ of

Gi so that |λ| > 1 that is not a zero of Wij or there is a pole λ of Wij so that

|λ| > 1 that is not a pole of Gi. The filtered version of CWd
ij in C̃di is

C̃Wd
ij = CWd

ij M−1
ij = − Wij

GiMij
.

We observe that the following conditions are sufficient for stability of C̃Wd
ij :

• M−1
ij is stable,

• each zero λ of Gi so that |λ| > 1 is a zero of Wij or a pole of Mij ,

• each pole λ of Wij so that |λ| > 1 is a pole of Gi or a pole of Mij .

Now, since Nji = Mij , we have that C̃Fdji = NjiC
Fd
ji = MijC

Fd
ji , which is

equal to

C̄Fdji = Mij
Tj

1− Tj
Fji, j ∈ Ni. (6.16)

Similarly, we have that

C̃FQdjik = NjiC
FQd
jik = NjiFji

1

1− Tj
Qjk = MijFji

1

1− Tj
Qjk, j ∈ Ni, k ∈ Nj .

(6.17)

Hence, if every pole λ of Mij so that |λ| > 1 is a zero of Tj , then C̃Fdji is stable.

Furthermore, if every pole λ of Mij so that |λ| > 1 is a zero of Qjk, then C̃FQdjik

is stable. In conclusion, we have the following result.

Proposition 6.5.2. Let the following conditions hold for every i ∈ V:

• each zero λ of Gi so that |λ| > 1 is a zero of Ti, Tj, j ∈ Ni and a zero of
Qij, Qjk, j ∈ Ni, k ∈ Nj,
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• each pole of Wij so that |λ| > 1 is a zero of Tj, j ∈ Ni and a zero of Qjk,
j ∈ Ni, k ∈ Nj,

• for j ∈ Ni, each pole λ of Fij so that |λ| > 1 is a zero of Ti and a zero of
Qik for all k ∈ Ni,

• Ti(λ)− 1 6= 0 for all |λ| > 1.

Then there exist matrices Mi, Ni, i ∈ V, with Mij = Nji for all (i, j) ∈ E, so

that C̃di is stable for all i ∈ V.

Proof. The third and fourth condition imply that CFdij and CFQdij are stable; this
follows from the proof for Proposition 6.4.3. The first and fourth condition imply
that C̃dii = Cdii and C̃Qdij = CQdij are stable.

Now, for an arbitrary i ∈ V, consider M−1
ij , j ∈ Ni, with M−1

ij stable and so
that each zero of Gi outside the unit disk and each pole of Wij outside the unit
disk is a pole of Mij . If Gi and and Wij have no zero or pole outside the unit disk,

respectively, let Mij = I. Then C̃Wd
ij is stable. Furthermore, the first condition

then implies that C̃Fdji and C̃FQdjik , k ∈ Nj , are stable. This follows from (6.16)
and (6.17). Since, i was chosen arbitrarily the assertion follows. This concludes
the proof.

Proposition 6.5.2 provides not only an existence result. Indeed, by considering
the choice for Mi and Ni as in the proof of Proposition 6.5.2, the controllers
C̃di in (6.15) provide a way to choose a controller class that contains an ideal
and stable controller. This class can be used subsequently to choose a sensible
parametrization in data-driven distributed controller synthesis.

Interconnection dynamics conservation

The conditions in Proposition 6.5.2 specify when there exists an ideal distributed
controller (6.15) with stable C̃di . Note, however, that the interconnections in the
distributed controller are there to ‘control’ or ‘modify’ the interactions dynamics
in the plant. In case one decides to maintain or conserve the interactions dynamics
Wij , then this can be captured in the reference model interaction dynamics.
Consequently, the ideal controller becomes simpler in the sense that it can be
realized as a decentralized controller, i.e., it has no interconnections between
subcontrollers Cdi . The choice of reference model interconnection dynamics such
that the distributed controller becomes decentralized will be addressed next.

Let us consider the case where Fij = Pij = 1 for all (i, j) ∈ E . Then it follows
that oij = pij = yi for all j ∈ Ni and thus scij = kcij = yj for all j ∈ Ni. But from
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(6.15) we have, with Mi = Ni = I, that

ui =
Ti

Gi(1− Ti)
zi +

∑
j∈Ni

(
Qij

Gi(1− Ti)
− Wij

Gi

)
︸ ︷︷ ︸

=:Cij

yj .

Now, let Qij = Q̄ij(1− Ti), with Q̄ij a to be chosen transfer function. Then

Cij =
1

Gi

(
Q̄ij −Wij

)
.

Hence, if we set Q̄ij = Wij , i.e., if we conserve the interconnection dynamics of the
plant, then Cij = 0: the ideal distributed controller becomes decentralized. This
makes sense intuitively, since this choice of structured reference model implies
we do not intend to ‘control’ or ‘modify’ the interactions dynamics in the plant.
Note that Q̄ij = Wij requires full knowledge of Wij , a transfer function that can
be obtained by a network identification procedure, preceding the reference model
synthesis and data-driven control procedure.

With Q̄ij = Wij , we thus have that ui = Ti

Gi(1−Ti)
zi, leading to an ideal

decentralized controller

Cdi : ui =
Ti

Gi(1− Ti)
zi. (6.18)

Corollary 6.5.2. Let Fij = Pij = 1 and Qij = Wij(1 − Ti) for all (i, j) ∈ E.
Then the closed-loop network described by (6.1) and the decentralized controller
(6.18) satisfies

yi = ydi , i = 1, . . . , L.

Sufficient conditions for properness and stability of the decentralized controller
modules follow directly from Proposition 6.4.1 and 6.4.3, respectively.

Corollary 6.5.3. The controller Cdii is proper if and only if ∆ deg(Ti) ≥ ∆ deg(Gi).

Corollary 6.5.4. Let the following conditions hold:

• each zero λ of Gi so that |λ| > 1 is a zero of Ti,

• Ti(λ)− 1 6= 0 for all |λ| > 1.

Then Cdii is stable.

We remark that the data-driven procedures DVRFT (Steentjes et al., 2020)
and DOCI (Steentjes et al., 2021b) procedures (described in the sequel, in re-
spectively Chapter 7 and 8) are applicable for this choice of reference model and
the corresponding decentralized controller class.
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6.6 Reference model synthesis from performance
specifications

6.6.1 Networks with minimum-phase and stable plants

Consider the case that the network consists of plants {Pi, i ∈ V} with minimum-
phase and stable dynamics, i.e., Gi, Wij and Fij are stable and minimum-phase
for all j ∈ Ni, i ∈ V. According to Corollary 6.4.1, any decoupled reference model
{Ki, i ∈ V} that satisfies “Ti− 1 has no zeros outside the unit disk” results in an
ideal controller {Cdi , i ∈ V} with Cdi stable for all i ∈ V.

Hence, for the stable and minimum-phase case, we consider the synthesis of a
decoupled reference model {Ki, i ∈ V}. Although every reference model with no λ
so that Ti(λ)−1 = 0 for some i ∈ V is sufficient for stability of Cdi , no performance
specifications are guaranteed for the reference model with such a choice for Ti. We
will now consider the synthesis of Ti, i ∈ V, such that performance specifications
are satisfied.

H2 performance compatible reference-model design

The transfer Ti specifies a desired transfer from reference ri to output yi. It
can therefore be interpreted as a complementary sensitivity function. Given the
definition of the tracking error zi = ri − yi, the transfer that would ideally be
zero is Si : ri → zi, which is equal to Si = 1− Ti. In the scalar case where Ti is
strictly proper, it can be shown that

‖Si‖2H2
= ‖Ti‖2H2

+ 1.

Hence, the minimization of ‖Si‖2H2
is equivalent with the minimization of ‖Ti‖2H2

.
Let us now consider the following problem: Given γi > 0, i ∈ V, find Ti ∈ Ti, with
Ti the set of all feasible reference models (e.g. of fixed order or with minimum
relative degree), such that

‖Ti‖H2 < γi.

Let us call this the H2 compatible problem. For a state-space realization (Ai, Bi, Ci)
of Ti, so that Ti(q) = Ci(qI −Ai)−1Bi, we recall the following result from Chap-
ter 4.

Proposition 6.6.1. The following statements are equivalent:

• ‖Ti‖H2
< γi,

• there exists Xi > 0 so that

A>i XiAi −Xi + C>i Ci < 0 and B>i XiBi < γ2
i .
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Hence, the set

Σγi = {(Ai, Bi, Ci) | ∃Xi > 0 : A>i XiAi −Xi + C>i Ci < 0 and B>i XiBi < γ2
i }

contains all tuples (Ai, Bi, Ci) so that ‖Ti‖H2
< γi and therefore, any transfer

function Ti that solves the H2 compatible problem, is in the set

Tγi := {Ti ∈ Ti |Ti = Ci(qI −Ai)−1Bi, (Ai, Bi, Ci) ∈ Σγi}.
To find an appropriate reference model, we only have to take one element of

the set Tγi . The problem is equivalent with finding (Ai, Bi, Ci) ∈ Σγi . We will
briefly describe one method to find such a tuple.

Let Ai be any stable matrix, i.e., any matrix with all eigenvalues |λ| < 1.
Then there exists a Xi > 0 so that

A>i XiAi −Xi < 0.

Now, take any Ci so that A>i XiAi−Xi+C>i Ci < 0. Finally, B>i XiBi is positive
definite and quadratic in Bi. Hence, there exists Bi so that B>i XiBi < γ2

i , which
can be found by determining the corresponding sublevel set, {Bi |B>i XiBi−γ2

i <
0}.

Mixed sensitivity reference-model design

Consider the reference model for vertex i ∈ V, Ti. As mentioned, this system
defines the desired transfer from ri → ydi , which can be interpreted as a desired
complementary sensitivity. Consider again the corresponding sensitivity Si =
1− Ti so that Si + Ti = 1.

Tracking problems commonly lead to a mixed sensitivity design, where the
shaping of the sensitivity functions is required to meet time-domain constraints
and control effort constraints. Such performance requirements are then translated
into weighting filters WT

i and WS
i , say, so as to achieve

‖WT
i Ti‖H∞ < γ (6.19)

‖WS
i Si‖H∞ < γ. (6.20)

The problem now becomes to choose Ti so that both (6.19) and (6.20) are satisfied.
This problem was considered in (Cerone et al., 2020) for SISO systems. The
result for the decoupled reference model follows directly from (Cerone et al.,
2020, Result 3).

Proposition 6.6.2. A decoupled reference model that satisfies (6.19) and (6.20),
is given by

Ti =
CFi G

F
i

1 + CFi G
F
i

, i ∈ V,
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with GFi a fictitious plant and CFi a controller that solves the H∞ control problem:

CFi ∈ {CFi | ‖Mi‖H∞ < γ},

with Mi = col(WT
i T

F
i ,W

S
i S

F
i ),

SFi =
1

1 + CFi G
F
i

, TFi = 1− SFi .

The fictitious plant GFi does not have to coincide with the dynamics of the
plant Pi and can be taken as GFi = 1 for all i ∈ V without loss of general-
ity (Cerone et al., 2020). This implies that finding the decoupled reference model
boils down to solving L separate H∞ control problems.

6.6.2 Networks with non-minimum-phase plants

In the case of non-minimum phase dynamics in the network, by Proposition 6.4.3
and Proposition 6.5.2, we should include the non-minimum phase zeros of Gi in
Ti and, possibly Tj , j ∈ Ni. Consider again the problem of Section 6.6.1, i.e., to
synthesize a decoupled reference model with Ti ∈ Tγi so that

‖Ti‖H2
< γi.

Proposition 6.6.3. Let Ti ∈ Ti be given by

Ti =
CFi G

F
i

1 + CFi G
F
i

, i ∈ V, (6.21)

with GFi a fictitious plant having zeros λik so that |λik| > 1 and CFi a fictitious
controller that solves the H2 control problem:

CFi ∈ {CFi stable | ‖Ti‖H2
< γi}. (6.22)

Then Ti ∈ Tγi and every zero λik is a zero of Ti, i ∈ V.

Proof. By (6.22), it follows directly that Ti ∈ Tγi . By the definition of Ti in (6.21),
it follows that λik is a zero of Ti, because |λik| > 1 and CFi is stable by (6.22).

Thus, instead of finding a Ti ∈ Tγi directly, by Proposition 6.6.3 we can
synthesize a fictitious controller CFi for a fictitious plant GFi so that the closed-
loop transfer Ti = (1 + CFi G

F
i )−1CFi G

F
i ∈ Tγi . When GFi has all zeros outside

the unit disk of Gi, respectively of Gi and Gj , j ∈ Ni, then every zero outside
the unit disk of Gi, respectively of Gi and Gj , j ∈ Ni, is also a zero of Ti ∈ Tγi .
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6.7 Conclusions

In this chapter, we have introduced the distributed model-reference control prob-
lem for interconnected systems. We have developed an ideal distributed controller
that has the same structure as the network under consideration and solves the
structured model-reference control problem. The developed ideal distributed con-
troller depends explicitly on the interconnected system and structured reference
model dynamics and forms the basis for the direct data-driven distributed con-
trol problem addressed in Chapter 7 and 8. A feature of the ideal distributed
controller, is that it can be designed in a decentralized manner, compared with
the coupled feasibility problem for the distributed controller design in Chapter 4.
How to choose the structured reference model may not be directly clear, however,
given rudimentary performance specifications. Properness and stability of the
ideal distributed controller have been analyzed and the synthesis of a structured
reference model has been considered. In the synthesis, properness and stability of
a corresponding ideal distributed controller is taken into account. Quantitative
performance specifications through H2 or H∞ norm upper bounds can be taken
into account, in the design of a reference model that is decoupled.
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Chapter 7

Virtual reference feedback
tuning in dynamic networks

In this chapter, we consider the problem of synthesizing a distributed controller
directly on the basis of data, with the objective to optimize a model-reference
control criterion. In Chapter 6, an explicit ideal distributed controller that solves
the model-reference control problem for a structured reference model was in-
troduced. We show how this distributed controller can be obtained through
data-driven modeling in a virtual dynamic network, extending virtual reference
feedback tuning (VRFT) towards distributed control. When the interconnected
system is subject to unmeasured exogenous inputs, we show that the structured
model-reference control problem can be approached by solving a dynamic net-
work identification problem with prediction-error filtering and a tailor-made noise
model. Sufficient conditions are provided for which the local controller estimates
are consistent. Moreover, it is shown how the method can be applied to the
single-process case, leading to consistent estimates with standard VRFT as well.

This chapter is based on the publications: T. R. V. Steentjes, M. Lazar, and P. M. J.
Van den Hof. Data-driven distributed control: Virtual reference feedback tuning in dynamic
networks. In Proc. 59th IEEE Conference on Decision and Control (CDC), pages 1804–1809,
2020 and T. R. V. Steentjes, P. M. J. Van den Hof, and M. Lazar. Handling unmeasured
disturbances in data-driven distributed control with virtual reference feedback tuning. IFAC-
PapersOnLine, 54(7):204–209, 2021d. 19th IFAC Symposium on System Identification SYSID
2021
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7.1 Introduction

Plant models are typically not directly available for controller design. When
data from the plant is available, two approaches to controller design can be fol-
lowed (Hou and Wang, 2013): (i) indirect data-driven control and (ii) direct data-
driven control. Indirect data-driven control is model based: first a plant model is
estimated on the basis of data and consecutively a controller design is performed
on the basis of the plant model. In direct data-driven control, an explicit plant
modeling step is omitted; a controller is synthesized directly from data. Typical
advantages of direct-data driven controller design are that no loss of data can
occur due to undermodeling of the plant and the order of the controller can be
fixed. Therefore, direct data-driven control is particularly interesting for the de-
sign of distributed controllers for interconnected systems, due to their complex
nature and involved data-driven modeling.

State-of-the art methods for direct data-driven controller design are virtual
reference feedback tuning (VRFT) (Campi et al., 2002), iterative feedback tun-
ing (IFT) (Hjalmarsson et al., 1998), optimal controller identification (OCI)
(Campestrini et al., 2017; Huff et al., 2019), correlation-based tuning (CbT) (van
Heusden et al., 2011), asymptotically exact (Formentin et al., 2015) and moment-
matching (Breschi et al., 2019) controller tuning. A common feature of these
methods is that they are based on the model-reference paradigm, wherein a ref-
erence model describes the desired behavior of the closed-loop system (Bazanella
et al., 2012). Subsequent estimation of a parametrized controller based on input-
output data leads to a closed-loop system that is optimal with respect to the
model-reference criterion.

Direct data-driven controller design methods in the literature typically ad-
dress the design of a centralized controller, where the underlying interconnection
structure is not taken into account. The design of a distributed controller directly
on the basis of data with a model-reference control objective, is a problem that
is unsolved in the literature. This problem yields new aspects that have to be
considered in the design, such as the interconnection structure of the system and
distributed controller, the distributed model-reference control problem, and the
use of measurement data from an interconnected system in the controller design.
Given the interconnected nature of the system and controller, network identifica-
tion methods for data-driven modeling of interconnected systems (Van den Hof
et al., 2013), (Gevers et al., 2018), (Bazanella et al., 2019), (Van den Hof and
Ramaswamy, 2021), can give relevant insights in the data aspects of the problem.

In this chapter, we first address the problem of designing a distributed con-
troller directly on the basis of data, without exogenous disturbances (noise).
We tackle this problem via the structured model-reference paradigm for inter-
connected systems, presented in Chapter 6. Then, we present an extension of
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VRFT to the case of interconnected systems called distributed VRFT (DVRFT)
and show that the distributed controller synthesis problem from data can be
transformed into a dynamic network identification problem. The contribution to
distributed control is the direct data-driven design, as the synthesis of distributed
controllers is typically model based. Regarding data-driven control, the contri-
bution is the synthesis of distributed data-driven controllers with a priori defined
structure and identification of a distributed controllers via network identification.

When the considered plant is affected by disturbances, VRFT inherently in-
troduces a bias in the controller estimates (Campi et al., 2002), (Bazanella et al.,
2012), leading to a degraded closed-loop performance. For DVRFT, also biased
estimates are obtained for local controllers in the case that a process noise affects
the corresponding subsystem. One approach to solve this problem is the use of
an instrumental variable (IV) method, in case the controller model is linear with
respect to the parameters. Depending on the choice of IV, however, additional
experiments on the system are required (Bazanella et al., 2012) and the parame-
ter variance is increased with a negative effect on the control performance. In the
general case, no method for obtaining consistent estimates for VRFT is present
in the literature, to the best of the author’s knowledge.

Therefore, we develop a method for dealing with noise in both VRFT and
DVRFT. The approach that is followed, is to take the modeling of an auxiliary
noise filter into account in the estimation of the controller. With the introduction
of a tailor-made noise model for VRFT, we provide sufficient conditions under
which consistent controller estimates are obtained. The method extends natu-
rally to the DVRFT framework and solves the distributed model reference control
problem via DVRFT for a class of interconnected systems with unmeasured ex-
ogenous inputs.

7.2 Preliminaries

7.2.1 Dynamical network and distributed controller

Consider a simple and undirected graph G = (V, E) with vertex set V of cardi-
nality L and edge set E ⊆ V × V. The neighbour set of vertex i ∈ V is defined
as Ni := {j ∈ V | (i, j) ∈ E}. The graph G describes the structure of a network
of linear discrete-time systems, where the dynamics associated with vertex i ∈ V
are described by

yi(t) = Gi(q)ui(t) +
∑
j∈Ni

Gij(q)yj(t) +Hi(q)ei(t), (7.1)

with ui : Z → R the control input, yi : Z → R the output, ei an unmeasured
zero-mean white-noise proces such that, for all (t, s), Eei(t)ej(s) = 0 for (i, j) ∈ E
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and Eei(t)uj(s) = 0 for (i, j) ∈ V ×V, and q the forward shift defined as qx(t) =
x(t+ 1). The rational transfer functions Gi, Gij and Hi, (i, j) ∈ E , describe the
local dynamics, coupling dynamics and noise dynamics, respectively. The noise
filter Hi is assumed to be monic, stable and minimum phase. We omit the time
and shift arguments t and q occasionally for brevity, when the context does not
yield ambiguity. The network can be compactly written as

y = GIy +Gu+He, (7.2)

where G = diag(G1, . . . , GL), H = diag(H1, . . . ,HL) and

GI =


0 G12 · · · G1L

G21 0 · · · G2L

...
...

. . .
...

GL1 GL2 · · · 0

 .
The transfer between external inputs and outputs is described by

y = (I −GI)−1(Gu+He), (7.3)

under the assumption that the network (7.2) is well posed, i.e. G := (I −GI)−1

exists. The simplest network consists of one node (L = 1), so that

y = Gu+He, (7.4)

which is a standard single-input-single-output process with a disturbance.
Considering a reference tracking problem for the network, each system is

equipped with a reference signal ri and the corresponding tracking error zi :=
ri − yi:

Pi :

{
yi = Giui +

∑
j∈Ni

Gijyj +Hiei,

zi = ri − yi.
(7.5)

The dynamical network is operating in closed-loop with a distributed controller
that consists of local controllers

Ci(ρi) :


ui = Cii(q, ρi)zi +

∑
j∈Ni

Cij(q, ρi)ηij ,

ζij = Kij(q, ρi)zi +
∑
h∈Ni

Kijh(q, ρi)ηih, j ∈ Ni,

where each controller is parametrized by a parameter vector ρi, and is intercon-
nected with other controllers as:

ηij = ζji for j ∈ Ni and ηij = 0 otherwise.
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With the definitions ηi := colj∈Ni
ηij and ζi := colj∈Ni

ζij , we compactly repre-
sent Ci by

Ci(ρi) :

[
ui
ζi

]
= Ci(q, ρi)

[
zi
ηi

]
. (7.6)

7.2.2 Distributed model-reference control

Distributed model-reference control considers the synthesis of a structured con-
troller such that the closed-loop network dynamics are optimal with respect to
a structured reference model. Introduced in Chapter 6, the structured reference
model is composed of subsystems Ki, i ∈ V, that can be interconnected:

Ki :

{
ydi = Ti(q)ri +Qi(q)ki,
pi = Pi(q)y

d
i ,

(7.7)

where Qi := rowj∈Ni
Qij and Pi := colj∈Ni

Pij and the interconnection variables
are partitioned as ki := colj∈Ni

kij and pi := colj∈Ni
pij . For each pair (i, j) ∈ E

the interconnection of Ki and Kj is defined by

kij = pji and kji = pij . (7.8)

Hence, Ki and Kj can only be interconnected if Pi and Pj are interconnected.
Given ei = 0 for all i ∈ V, the distributed model reference control problem is

min
ρ1,...,ρL

JMR(ρ1, . . . , ρL) = min
ρ1,...,ρL

L∑
i=1

Ē[ydi (t)− yi(t)]2, (7.9)

where Ē := limN→∞ 1
N

∑N
t=1E and E is the expectation. A distributed controller

that solves (7.9) was developed in Chapter 6. Define the column vector 1 :=
col(1, . . . , 1) and, for i ∈ V, define GiI := rowj∈Ni Gij . We recall Theorem 6.3.1
for the distributed model-reference control problem for the interconnected system
with output-interconnected subsystems (7.5).

Proposition 7.2.1. Consider ei = 0 for all i ∈ V and consider a distributed
controller described by the subsystems

Cdi :

uioci
pci

=


Ti

Gi(1− Ti)
− 1

Gi
GiI

1

Gi(1− Ti)
Qi

Ti
1− Ti

1 0
1

1− Ti
1Qi

Ti
1− Ti

Pi 0
1

1− Ti
PiQi


︸ ︷︷ ︸

=:Cd
i (q)

zisci
kci

, (7.10)
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for i ∈ V and the controller interconnections described by[
scij
kcij

]
=

[
ocji
pcji

]
and

[
scji
kcji

]
=

[
ocij
pcij

]
, (7.11)

for (i, j) ∈ E. A network with subsystems (7.5) in closed-loop with the distributed
controller (7.10)-(7.11) satisfies

yi = ydi , i ∈ V.

Recall from Chapter 6 (discussion after Theorem 6.3.1), that the parameters
ρd1, . . . , ρ

d
L associated with the distributed controller such that P>i C

d
i Pi = Ci(ρ

d
i ),

solve (7.9) by Proposition 7.2.11, i.e., Ci(ρ
d
i ) equals Cdi up to re-ordering of

the interconnection variables. Let Ci := {Ci(q, ρi) | ρi ∈ Rli} be the family of
parametrized controllers for node i ∈ V. It is assumed that the controller class Ci
is ‘rich’ enough in the sense that it contains Ci(ρ

d
i ), as formalized in the following

assumption.

Assumption 7.1. P>i C
d
i Pi ∈ Ci for each i = 1, . . . , L.

7.3 Distributed virtual reference feedback tun-
ing

The controller described in Section 6.3 provides a solution to Problem 6.2.1, but
requires Pi to be given. The problem considered in this section, is the direct
data-driven synthesis of a distributed controller in the absence of process noise,
i.e., given data {ui, yi}, i = 1, . . . , L for ei = 0, solve problem (6.7). The absence
of noise together with Assumption 7.1 corresponds to an ideal situation, in which
the main idea is developed for ease of explanation. The case where noise signals
are present will be addressed in Section 7.5.

We address the problem in the ideal situation by two steps: virtual reference
generation and distributed controller identification.

7.3.1 Virtual reference generation

Consider data {ui, yi}, i = 1, . . . , L collected from the network described by (7.5).
This data can be obtained in closed loop with a stabilizing controller or in open
loop if the network is stable, i.e., if (I − GI)

−1G is stable. For the reference
model described by (7.7)-(7.8), we recall that yd = (I − Q∆P )−1Tr. Now,

1The matrices Pi, i ∈ V, are permutation matrices Pi := diag(1, P i), with P i such that
col(sci , k

c
i ) = P i colj∈Ni

col(scij , k
c
ij).
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given y1, y2, . . . , yL, consider the computation of the virtual reference signals
r̄1, r̄2, . . . , r̄L according to the structured reference model as

y = (I −Q∆P )−1T r̄. (7.12)

Then r̄1, r̄2, . . . , r̄L are such that, when the network described by (7.5) is in
closed loop with the ideal distributed controller, fictitiously, the measured outputs
y1, y2, . . . , yL are the corresponding outputs. Solving (7.12) requires the data
y1, y2, . . . , yL to be collected by a central governor. Because central data collection
is not favourable, we propose to generate the virtual reference signals locally by
using the reference modelKi. This can always be done for the considered reference
model, by determining the virtual reference signals r̄1, r̄2, . . . , r̄L and the virtual
interconnection signals p̄1, p̄2, . . . , p̄L according to (7.7) and (7.8) so that

yi = Tir̄i +
∑
j∈Ni

Qij p̄ji and p̄ij = Pijyi, j ∈ Ni.

Given a virtual reference signal r̄i, the corresponding virtual tracking error and,
hence, the input to the ideal controller, is z̄i = r̄i − yi. The virtual reference
generation can thus be distributed, as summarized in Algorithm 7.3.1.

Algorithm 7.3.1 Distributed virtual reference computation

Input: Reference model transfer functions Ti, Qi, Pi and output data yi for
i = 1, . . . , L

Output: Virtual signals r̄i, z̄i, p̄i for i = 1, . . . , L
1: for i = 1 to L do
2: Compute p̄i such that p̄i(t) = Pi(q)yi(t).
3: end for
4: for i = 1 to L do
5: Receive p̄ji from nodes j ∈ Ni. Compute r̄i such that

Ti(q)r̄i(t) = yi(t)−
∑
j∈Ni

Qij(q)p̄ji(t).

6: z̄i ← r̄i − yi
7: end for
8: return r̄i, z̄i, p̄i, i = 1, . . . , L
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Figure 7.1: Virtual experiment setup for identification of the ideal distributed
controller (L = 2), with unknown plant dynamics Gi, Gij (blue), unknown ideal
distributed controller dynamics Cdii, C

d
ij (orange) and known ideal distributed

controller dynamics Kd
ij (white). The virtual and real part of the network are

visualized respectively by dashed and solid lines.

7.3.2 Identification of the ideal distributed controller in a
virtual network

Consider Example 6.1, introduced in Chapter 6. Figure 7.1 shows the constructed
virtual network that is obtained by following Algorithm 7.3.1. The task of de-
termining the controllers Cd1 and Cd2 now essentially becomes a dynamic network
identification problem (Van den Hof et al., 2013), where {Cd11, C

d
12,K

d
12} and

{Cd22, C
d
21,K

d
21} are the modules to be identified (strictly speaking {Cd11, C

d
12} and

{Cd22, C
d
21}, since Kd

12 and Kd
21 are known). The signals u1 and u2 are directly

available from the measurements, while z̄1 and z̄2 are virtual and obtained by
Algorithm 7.3.1. The virtual controller interconnection signals ōcij are obtained

by filtering z̄i as ōc12 = Kd
12z̄1 and ōc21 = Kd

21z̄2.

To illustrate the identification, consider the sets of parametrized controllers
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{C11(ρ1), C12(ρ1)}, {C22(ρ2), C21(ρ2)}, the control-input predictors

û1(ρ1) = C12(ρ1)ōc21 + C11(ρ1)z̄1, (7.13)

û2(ρ2) = C21(ρ2)ōc12 + C22(ρ2)z̄2 (7.14)

and the identification criterion

JVR(ρ1, ρ2) = Ē[ε1(ρ1)]2 + Ē[ε2(ρ2)]2

with εi := ui−ûi(ρi). We will now analyze the minima of JVR. Since ōc12 = Kd
12z̄1

and ōc21 = Kd
21z̄2, it follows that

ε1(ρ1) = (Cd1 − C1(ρ1))z̄1 + (Cd12 − C12(ρ1))Kd
21z̄2,

ε2(ρ2) = (Cd2 − C2(ρ1))z̄2 + (Cd21 − C21(ρ2))Kd
12z̄1.

Then, since z̄ = (T−1 − I)(I −GI)−1Gu, where T = diag(T1, T2), the prediction
errors are [

ε1(ρ1)
ε2(ρ2)

]
=

[
Cd11 − C11(ρ1) (Cd12 − C12(ρ1))Kd

21

(Cd21 − C21(ρ2))Kd
12 Cd22 − C22(ρ2)

]
(7.15)

× (T−1 − I)(I −GI)−1Gu.

It now appears that a global minimum of JVR is (ρ1, ρ2) = (ρd1, ρ
d
2) and that this

minimum is unique if the control input signal u = col(u1, u2) from the experi-
ment is persistently exciting of a sufficient order. Hence, the global minimum of
JVR(ρ1, ρ2) is then the same as the global minimum of JMR(ρ1, ρ2), where JVR

is quadratic in ρ when the sub-controllers are parametrized linearly in ρ. The
distributed-controller synthesis problem is therefore reformulated as a network
identification problem.

The latter reasoning for Example 6.1 leads us to the following result for a
general interconnected system:

Theorem 7.3.1. Consider the predictor ûi(ρi) := Cii(ρi)z̄i+
∑
j∈Ni

CWij (ρi)ō
c
ji+

CQij (ρi)p̄ji with ōcji = (1−Tj)−1Tj z̄j+
∑
h∈Nj

(1−Tj)−1Qjhp̄hj. The identification
criterion

JVR
i (ρi) = Ē[ui − ûi(ρi)]2

has a global minimum point at ρdi and this minimum is unique if the spectrum
of wi = col(z̄i, colj∈Ni ō

c
ji, colj∈Ni p̄ji), denoted Φwi(ω), is positive definite for

almost all ω ∈ [−π, π].

Proof. First, we note that p̄ji = pcji and ōcji = ocji, where pcji and ocji satisfy (6.9)
and (6.10) for zi = z̄i, i = 1, . . . , L. Consequently, by Corollary 1 in (Van den Hof
et al., 2013), it follows that ρdi is the unique global minimum point of JVR.
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When the reference model is decoupled, the spectrum condition can be trans-
lated directly to the spectrum of the input. Indeed, in this case the predictor
inputs are z̄i and ōcji = (1− Tj)−1Tj z̄j , where z̄i, i ∈ V, are related to ui, i ∈ V,

through z̄ = (T−1 − I)(I −GI)−1Gu with T = diagi∈V Ti.

Corollary 7.3.1. Let Pi = 0, Qi = 0 and consider the predictors ûDi (ρi) :=
Cii(ρi)z̄i +

∑
j∈Ni

Cij(ρi)ō
c
ji, i = 1, 2, . . . , L. The identification criterion

JVR(ρ1, . . . , ρL) =

L∑
i=1

Ē[ui − ûDi (ρi)]
2

has a global minimum point at (ρd1, . . . , ρ
d
L) and this minimum is unique if Φu(ω)

is positive definite for almost all ω ∈ [−π, π].

The condition on Φu in Corollary 7.3.1 can be realized by appropriate experi-
ment design. The condition on Φwi

in Theorem 7.3.1, however, cannot always be
realized by an appropriate design of u. For instance, consider Example 6.1, but
now with non-zero Qi, Pi. Then the number of entries of w1 = col(z̄1, ō21, p̄21)
is larger than the number of inputs in u = col(u1, u2), hence Φw1

(ω) cannot be
positive definite. We observe that the excitation condition can be relaxed if we
do not require ρdi to be the only global minimum2 of JVR

i .

Corollary 7.3.2. Each global minimum point ρ∗i of JVR
i satisfies Cii(ρ

∗
i ) =

Cii(ρ
d
i ) and for all j ∈ Ni:

(CWij (ρ∗i )− CWij (ρdi )) + (CQij (ρ
∗
i )− CQij (ρdi ))Pji = 0 (7.16)

if Φξi(ω), ξi = col(z̄i, colj∈Ni
ōcji), is positive definite for almost all ω ∈ [−π, π].

It can be verified that (ρ∗1, . . . , ρ
∗
L), satisfying Cii(ρ

∗
i ) = Cii(ρ

d
i ) and (7.16)

for all (i, j) ∈ E , is also a global minimum point of JMR and hence solves prob-
lem (7.9). Indeed, by the definition of ocij and pcij in (7.10) and (7.11), the

control input u∗i := Cii(ρ
∗
i )zi +

∑
j∈Ni

CWij (ρ∗i )s
c
ij + CQij (ρ

∗
i )k

c
ij = Cii(ρ

∗
i )zi +∑

j∈Ni
(CWij (ρ∗i ) + CQij (ρ

∗
i )Pji)yj . Hence, if Cii(ρ

∗
i ) = Cii(ρ

d
i ) and (7.16) hold

true, then u∗i is equal to the control input of the ideal controller in (7.10), i.e.,

u∗i = Cii(ρ
d
i )zi +

∑
j∈Ni

CWij (ρdi )s
c
ij + CQij (ρ

d
i )k

c
ij .

Each identification criterion JVR
i (ρi), i = 1, . . . , L, can be minimized sepa-

rately. The required predictor inputs for node i are the virtual signals obtained
in Algorithm 7.3.1, which are available locally (z̄i) or communicated by nodes

2The situation of having a non-unique global minimum can have consequences for the opti-
mization procedure and requires a careful choice of the optimization algorithm or, alternatively,
a re-parametrization. These considerations fall outside the scope of the research presented here.
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j ∈ Ni (ōcji and p̄ji). Of course, JVR
i is not to be considered in practice since it

involves expectations; for a finite number (N) of data, a solution ρi is obtained

by minimizing J̄VR
i (ρi) = 1

N

∑N
t=1(ui(t) − ûi(t, ρi))2. Observe the following dif-

ference with respect to multi-variable VRFT (Campestrini et al., 2016). Instead
of identifying the transfer from z̄ to u, we identify the local controller dynamics
Cdi by exploiting the structure of the interconnected system.

7.4 VRFT: a tailor-made noise model for consis-
tent estimation

In this section we consider the modeling of a noise filter for consistent controller
estimation with VRFT for a single process. Consider the single process described
by (7.4). The input u and e are assumed to be independent, corresponding to an
open-loop experiment in which the data (u, y) are collected. The tracking error
for this process is denoted z := r− y, with r the reference. A reference model for
the process is assumed to be given and described by

yd = Tdr.

Given the reference model, it is known that the ideal controller is (Bazanella
et al., 2012)

Cd =
Td

G(1− Td)
.

We will now discuss the identification of Cd from the data (u, y).
The virtual reference r̄ and tracking error z̄ are given by

r̄ := T−1
d y and z̄ := r̄ − y. (7.17)

We can rewrite (7.4) in terms of Cd, such that

u = Cdz̄ −G−1He = Cdz̄ + H̄de, (7.18)

with H̄d := −G−1H. This leads to the virtual control loop shown in Figure 7.2.
It is known that if we follow the standard VRFT procedure (Campi et al.,

2002) for the identification of Cd, we will obtain a biased estimate due to the
noise e (Campi et al., 2002), (Bazanella et al., 2012). We will now consider the
direct identification of Cd together with the identification of H̄d. The question is:
by including the estimation of the auxiliary noise filter, can we obtain consistent
estimates of Cd?
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z̄ Cd u G y

−

e

H̄d H

r̄

Figure 7.2: Virtual control loop – noisy case.

7.4.1 Modeling H̄d directly

Consider a parametrized model C(q, ρ) for Cd(q) and a model H̄(q, ρ) for H̄d(q).
Definition of the predictor

û(t, ρ) := H̄(q, ρ)−1C(q, ρ)z̄(t) + (1− H̄(q, ρ)−1)u(t),

leads to the prediction error ε(t, ρ) = u(t)− û(t, ρ):

ε(t, ρ) = H̄(ρ)−1(u− C(ρ)z̄)

= H̄(ρ)−1(Cdz̄ + H̄de− C(ρ)z̄)

= H̄(ρ)−1

(
(Cd − C(ρ))

1− Td
Td

y + H̄de

)
. (7.19)

After manipulation it can be shown that

ε(t, ρ) =
1

H̄(ρ)Cd
(Cd − C(ρ))u+

C(ρ)

Cd

H̄d

H̄(ρ)
e. (7.20)

Consider now the asymptotic parameter estimate

ρ∗ = arg min
ρ
V̄ (ρ), V̄ (ρ) := Ēε2(t, ρ). (7.21)

The cost σ2
e is obtained if C(ρ) = Cd and H̄(ρ) = H̄d, but we cannot conclude that

this is the minimum, since C(ρ)
Cd

H̄d

H̄(ρ)
is not necessarily monic. Hence, we cannot

conclude that C(ρ∗) = Cd and H̄(ρ∗) = Hd for the minimizing argument ρ∗.
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7.4.2 Tailor-made noise model with prediction-error filter-
ing

Let us return to the (virtual) data-generating system

u = Cdz̄ + H̄de. (7.22)

We have seen in the previous subsection that by modeling the auxiliary noise
filter directly, consistent estimates cannot be guaranteed. Note that if we filter
the prediction error (7.19) with G, then a noise filter −H is obtained in the
prediction error εG = Gε, with H monic. The plant G is, however, assumed to
be unknown.

A more attractive solution is obtained as follows. By the definition of Cd, it
follows that

Td
1− Td

= CdG.

Hence, by filtering the prediction error with L := CdG instead of G, we have

εF (t, ρ) := CdGε(t, ρ) =
Td

1− Td
ε(t, ρ). (7.23)

The filter L depends only on the reference model Td, which is known. Rewriting
εF yields

εF (t, ρ) = Lε(t, ρ)

=
Td

1− Td
H̄(ρ)−1

(
(Cd − C(ρ))

1− Td
Td

y + H̄de

)
= H̄(ρ)−1

(
(Cd − C(ρ))y +

Td
1− Td

H̄de

)
= H̄(ρ)−1 ((Cd − C(ρ))y − CdHe) . (7.24)

Substituting the relation y = Gu+He yields

εF (t, ρ) = H̄(ρ)−1 ((Cd − C(ρ))(Gu+He)− CdHe)
= H̄(ρ)−1 ((Cd − C(ρ))Gu− C(ρ)He) .

By selecting a tailor-made parametrization H̄(ρ) = −C(ρ)H̆(ρ) with H̆(ρ) monic,
we have

εF (t, ρ) = −H̄(ρ)−1H̄(ρ)e+ e+ H̄(ρ)−1 ((Cd − C(ρ))Gu− C(ρ)He)

= H̄(ρ)−1 (∆C(ρ)Gu+ C(ρ)∆H(ρ)e) + e,
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with ∆C(ρ) := Cd−C(ρ) and ∆H(ρ) := H̆(ρ)−H. Now, since u and e are inde-
pendent, ∆C(ρ)Gu and e are uncorrelated3. Furthermore, since H and H̆(ρ) are
both monic, ∆H(ρ) is strictly proper so that C(ρ)∆H(ρ)e and e are uncorrelated.
Therefore,

V̄F (ρ) := Ēε2
F (t, ρ)

= Ē
[(
H̄(ρ)−1 (∆C(ρ)Gu+ C(ρ)∆H(ρ)e) + e

)2]
= Ē

[(
H̄(ρ)−1 (∆C(ρ)Gu+ C(ρ)∆H(ρ)e)

)2]
+ σ2

e ,

which implies V̄F (ρ) ≥ σ2
e for all ρ. The minimum of V̄F is σ2

e and, if u is
persistently exciting of sufficient order, then V̄F (ρ∗) = σ2

e if and only if ∆C(ρ∗) =
0 and ∆H(ρ∗) = 0. We conclude that consistent estimates of Cd are obtained.

Theorem 7.4.1. Consider the filtered prediction error εF and let ρ∗ be a mini-
mizing argument of V̄F . Let the following conditions be satisfied:

• the spectral density of u, Φu, is positive definite for almost all ω ∈ [−π, π],

• there exists a ρd such that C(ρd) = Cd and H̆(ρd) = H.

Then C(ρ∗) = Cd and H̆(ρ∗) = H.

Remark 7.4.1. The consequence of employing a tailor-made noise model is that
the parametrized controller needs to be incorporated in the noise model. This
implies that standard identification software, such as the identification toolbox
in Matlab, cannot be readily applied. The generally non-convex identification
problem can, however, be solved using standard non-linear least squares solvers,
which will be demonstrated in a numerical example in Section 7.6.

Remark 7.4.2. In the case that G is non-minimum phase, it is well known that
the zeroes outside the closed unit disk should be zeroes of the reference model
Td as well (Bazanella et al., 2012), cf. Proposition 6.4.3, in order to ensure
stability of Cd. The consequence for implementation is that r̄ is determined by the
unstable inverse of Td. Examples of solutions to this problem, include a mapping
of the unstable zeroes of Td inside the unit circle and filtering ε with an all-pass
filter, or simply filtering ε with Td itself (Bazanella et al., 2012, Section 3.2.1).
In addition to the problem of noise, the method presented in this section also
provides a solution to this problem. Indeed, the filtering of ε with Td

1−Td
in (7.23)

obviates filtering with the unstable inverse of Td, as shown in the expression of
the prediction error in (7.24).

3If u and e are not independent, e.g., if data is collected in a closed-loop configuration, then
∆C(ρ)Gu and e can still be uncorrelated. In this situation, it has to be ensured that ∆C(ρ)G
contains a delay, which is satisfied if the controller (model) is proper and G contains a delay.



7.5. Distributed VRFT in dynamic networks: consistent estimation 163

For the single-process case, a tailor-made noise model was considered in (van
Heusden et al., 2011) for correlation-based tuning (CbT) of a linearly parametrized
controller. To the best of the authors’ knowledge, modeling the noise filter to
obtain consistent estimates for VRFT is new. This approach also provides a
method to deal with noise for distributed VRFT, which will be discussed in the
following section.

7.5 Distributed VRFT in dynamic networks: con-
sistent estimation

For simplicity, we will consider the structured model-reference control problem
with a decoupled reference model in this section:

yi = Tir̄i and z̄i = r̄i − yi. (7.25)

We note however, that the results in this section apply mutatis mutandis to
a general structured reference model as considered in Section 7.3 for DVRFT
without noise modeling. Now, as was done in Section 7.4 for the single process,
we can similarly form an inverse model of the network (7.1). From (7.1), we can
write

ui = G−1
i yi −

∑
j∈Ni

G−1
i Gijyj −G−1

i Hiei

= Cdiiz̄i +
∑
j∈Ni

Cdij ō
c
ji + H̄d

i ei, i ∈ V, (7.26)

where we have used the definition of the ideal controller modules, (7.25), and, in
accordance with (6.9), Kd

ji := Ti(1− Ti)−1 for j ∈ Ni such that

ōcji := Kd
jiz̄j = yj , j ∈ Ni, (7.27)

H̄d
i := −G−1

i Hi.

In conjunction with the network dynamics described by (7.1), equation (7.26)
describes a virtual network, with the transfer functions describing the ideal con-
troller Cdi being unknown modules in this network. Figure 7.3 provides an in-
terpretation of this network for L = 2, with the real data from the underlying
system depicted by the solid lines and the virtual data depicted by dashed lines.
The relation between the output data yi and virtual signals z̄i (through r̄i) is
described by (7.25), but is implicit in Figure 7.3. This relation is made explicit
in Figure 7.4, which gives an alternative interpretation4 of the virtual network
and shows how u acts as an external excitation source for the network.
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Figure 7.3: Virtual network for L = 2 – noisy case.

Consider now the predictor

ûi(t, ρi) = H̄i(ρi)
−1

Cii(ρi)z̄i +
∑
j∈Ni

Cij(ρi)ō
c
ji

+ (1− H̄i(ρi)
−1)ui,

which leads to the prediction error

εi(t, ρi) := ui(t)− ûi(t, ρi)
= H̄i(ρi)

−1
(
ui − Cii(ρi)z̄i −

∑
j∈Ni

Cij(ρi)ō
c
ji

)
.

Then, by filtering the prediction error εi with a filter Li := CdiiGi = Ti(1 −
Ti)
−1, the filtered prediction error εFi (t, ρi) := Liεi(t, ρi) is obtained. We can

now formulate conditions for the corresponding filtered network identification

4While the interpretation is different, the dynamical relations between variables in Figure 7.3
and Figure 7.4 are the same and follow from (7.1), (7.25) and (7.26).
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Figure 7.4: Alternative network interpretation for L = 2 – noisy case.

problem. The asymptotic parameter estimate for controller i ∈ V is given by

ρ∗i = arg min
ρi

ĒεFi (t, ρi)
2︸ ︷︷ ︸

=:V̄ F
i (ρi)

.

Theorem 7.5.1. Consider a tailor-made noise model defined by

H̄i(ρi) := −Cii(ρi)H̆i(ρi),

with H̆i a monic transfer function and let the following conditions be satisfied:

• the spectral density of ζi := col(z̄i, ui, colj∈Ni ō
c
ji), Φζi , is positive definite

for almost all ω ∈ [−π, π],

• there exists a ρdi such that Cii(ρ
d
i ) = Cdii, Cij(ρ

d
i ) = Cdij and H̆i(ρ

d
i ) = Hi,

• Gji contains a delay for every j ∈ Ni.
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Then it holds that Cii(ρ
∗
i ) = Cdii, Cij(ρ

∗
i ) = Cdij, j ∈ Ni, and H̆i(ρ

∗
i ) = Hi.

Proof. A proof for Theorem 7.5.1 is given in Appendix 7.B, which is preceded by
two instrumental lemmas in Appendix 7.A.

Remark 7.5.1. The condition that Gji contains a delay for every j ∈ Ni is a
sufficient condition for the transfers Ḡii and Ḡji, j ∈ Ni, with Ḡji denoting the
(j, i)-th element of GGI , to have a delay (by Lemma 7.A.2). The last condition
in Theorem 7.5.1 can be replaced with “Ḡii and Ḡji, j ∈ Ni, contain a delay”, if
the situation that Gji contains a delay for every j ∈ Ni is not at hand.

The filter Li is known, since Ti is a known transfer function that describes
the reference model Ki. Hence, the distributed model reference control prob-
lem (6.7) can be solved using data, via a DVRFT framework by (i) filtering a
prediction-error with a known filter and (ii) a tailor-made noise model. Consis-
tent estimates are guaranteed under the conditions in Theorem 7.5.1, but one
should note that the identification criteria V̄ Fi are not convex, in general. ‘Stan-
dard’ DVRFT, i.e., without noise modeling, leads to convex identification criteria
for linearly-parametrized controllers, but does not provide consistent estimates
in the presence of noise.

Remark 7.5.2. Analogous to the reasoning in Remark 7.4.2, filtering the pre-
diction error with Li additionally provides a solution to the problem of a non-
minimum phase reference model Ti. The filtering implies that the filtered predic-
tion error can be computed, without deriving r̄ and z̄ through an unstable inverse
of Ti directly from (7.25).

7.6 Numerical examples

7.6.1 9-systems network (DVRFT)

Consider an interconnected system with L = 9 subsystems Pi described by (7.5)
and an interconnection structure as depicted in Figure 7.5a. The transfer func-
tions describing the dynamics are of order one and given by

Gi =
1

q − ai
, Gij =

0.1

q − ai
, i = 1, . . . , 9,

with ai ∈ (0, 1). It is desired to decouple the interconnected system and to have
the same step response for every output channel. Hence the reference model is
chosen as ydi = T di (q)ri, where

Ti(q) =
0.4

q − 0.6
, i = 1, . . . , 9.
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We collect the data {ui(t), yi(t), t = 1, 2, . . . , 100} from (7.2) in open-loop,
with mutually uncorrelated Gaussian white-noise input signals ui having a stan-
dard deviation of σui = 1. Hence, we are in the situation of Corollary 7.3.1.
Each controller Ci, i = 1, . . . , 9, is parametrized such that Assumption 7.1
holds: Cii(ρi) = ρia + ρib

1
q−1 and Cij(ρi) = ρij , with parameter vector ρi =

col(ρia, ρib, colj∈Ni ρij). Because of the linear parametrization of the sub-controllers,
the optimization of J̄VR

i with predictors (7.13) is a linear least-squares problem.
Since there is no noise present in the output, the optimization of J̄VR

i yields the
parameters ρdi and therefore JMR is equal to zero.

P1

P3

P2P4

P5

P6P8

P7

P9

(a) Interconnected system

C1

C3

C2C4

C5

C6C8

C7

C9

(b) Distributed controller

Figure 7.5: Graph for the interconnected system (a) and distributed controller (b)
that satisfies Assumption 7.1 (solid and dashed edges), that has reduced number
of links (solid edges) and that is decentralized (no edges).

Next, we will analyze a realistic situation where noise affects the system,
by considering disturbed outputs ỹi(t) = yi(t) + vi(t) for the synthesis, with vi
white-noise processes with standard deviations σvi = 0.1 that are mutually un-
correlated and uncorrelated with ui. The method of generating virtual references
and predictors is kept the same, i.e., the noise (filter) is not taken into account
in the predictor. The resulting distributed controller is interconnected with the
plant and a step reference is applied to each subsystem simultaneously, with an
amplitude between zero and one. Figure 7.6 shows the output response of the
closed-loop network in red together with the response of the reference model (in
black) on the left. We observe only a minor difference between the responses,
due to the noise added to the data for identification, as shown in Figure 7.6 on
the right.

The distribution of the error between the achieved closed-loop network with
the identified distributed controller and the structured reference model resulting
from 100 Monte Carlo runs, i.e., from 100 different data sequences, is presented
in Figure 7.7. Because P>i C

d
i Pi ∈ Ci for all i, the error between the achieved
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Figure 7.6: Left: Closed-loop response of the network with the data-driven dis-
tributed controller (red) and the desired response of the structured reference
model (black), for step reference signals applied to each subsystem simultane-
ously with an amplitude between zero and one. Right: Response errors with
respect to the desired outputs.

closed-loop system and the reference model is only due to the noise. The assump-
tion that the controller class is rich enough, i.e., Assumption 7.1, does not always
hold in practice. To illustrate such a situation, consider the case where four com-
munication links are not present, represented in Figure 7.5b by the dashed edges.
The implication is that in the parametrization Cij(ρi) = 0 for the corresponding
edges (i, j) ∈ E and, e.g., û2(ρ2) = C22(ρ2)z̄2+C21(ρ2)ōc12+C26(ρ2)ōc62. Note that
links are thus not removed a posteriori, but the interconnection structure for the
distributed controller is induced by the controller class. As shown by Figure 7.7,
there is a significant performance degradation, because the controller class is not
‘rich’ enough, although the graph for the controller remains connected. We finally
consider the data-driven synthesis of a decentralized controller, corresponding to
Cij(ρi) = 0 for all (i, j) ∈ E . The resulting discrepancy between reference model
and closed-loop network is plotted in Figure 7.7 and shows a further decrease in
performance.
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Figure 7.7: Distribution of the achieved performance for various controller classes,
where TI and Td denote the transfers r → y and r → yd, respectively.

7.6.2 2-systems network (DVRFT + noise modeling)

Let us now illustrate the inclusion of noise modeling in DVRFT for obtaining
consistent controller estimates, as described in Section 7.5. Consider a two-node
network, described by

y1 = G1u1 +G12y2 +H1e1,

y2 = G2u2 +G21y1 +H2e2,

with e1 and e2 Gaussian white-noise processes with variance σ2
e1 = σ2

e2 = σ2
e , u1

and u2 white-noise processes with distribution U(0, 1) and

G1 =
1

q − 0.8
, G12 =

0.1

q − 0.8
, H1 =

q

q − 0.8
,

G2 =
1

q − 0.6
, G21 =

0.1

q − 0.6
, H2 =

q

q − 0.6
.

In order to synthesize the data-driven controller, we consider that for each i = 1, 2,
data (ui(t), yi(t)), t = 1, . . . , N , is collected for N = 500 samples. We choose the
reference models T1 = T2 = 0.2(q − 0.8)−1 and the parametrization as

Cii(ρi) =
ρi1q + ρi2
q − 1

, Cij(ρi) = ρi3, H̄i(ρi) = −Cii(ρi)q
q + ρi4

,

such that the second condition in Theorem 7.5.1 is satisfied. Each controller
Ci(ρi), i = 1, 2, is obtained by minimizing the identification criterion V Fi (ρi) :=
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Figure 7.8: Achieved performance versus noise power σ2
e for DVRFT (red),

DVRFT with IVs (blue) and DVRFT with tailor-made noise modeling and PE
filtering (green). The solid lines indicate the median performance and the shaded
areas are bounded by the 25th and 75th percentiles.

∑N
t=1 ε

F
i (t, ρi)

2, using the lsqnonlin.m function in Matlab, with initial param-
eters ρinit

i = 0.1ρdi relatively ‘far’ from ρdi .
To illustrate the obtained closed-loop performance with respect to the in-

fluence of the disturbances, a Monte-Carlo simulation over 25 experiments is
performed for each noise power level σ2

e ∈ {0, 0.05, . . . , 0.45}. The obtained
closed-loop transfer TI from r → y results in a performance for DVRFT with the
tailor-made noise model and filtered prediction error as depicted in Figure 7.8,
in green. For comparison, we compute two distributed controllers from the same
experiments via (i) DVRFT without noise modellling and (ii) DVRFT with IVs
(obtained by performing an additional experiment for each estimation), as de-
scribed in Appendix 7.C. As shown in Figure 7.8 in red, the results confirm
the expectation that the noise-induced bias for DVRFT degrades the closed-loop
performance considerably. The use of IVs in combination with DVRFT provides
consistent estimates, but leads to an increased variance for the estimates. This
can be observed for the corresponding closed-loop performance for DVRFT with
IVs as well, as illustrated in blue in Figure 7.8. By Theorem 7.5.1, DVRFT with
a tailor-made noise model and prediction-error filtering also provides consistent
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estimates. However, due to a decrease in estimator variance, the method de-
scribed in this paper outperforms DVRFT with IVs considerably for higher noise
levels.

7.7 Conclusions

In this chapter we have considered virtual reference feedback tuning in dynam-
ics networks. We have first presented a method for the direct data-driven syn-
thesis of distributed controllers in the model-reference framework of Chapter 6,
DVRFT in short. In the case that no noise affects the interconnected system,
a distributed controller that solves the model-reference control problem can be
identified through network identification in a virtual network with DVRFT. Both
the synthesis (identification) and implementation of the constructed data-driven
distributed controllers can be distributed, which improves scalability compared
to the standard VRFT method.

In the case that noise affects the system, standard VRFT and also DVRFT
yield biased controller estimates. We have shown for the single-process case
that by including the direct modeling of the auxiliary noise filter, it cannot be
concluded that consistent estimates are obtained. However, a filtered prediction-
error identification problem can be formulated for which consistent estimates are
obtained when a tailor-made noise model is used. For DVRFT applied to dynamic
networks, a similar approach is obtained for estimating a local controller that is
part of a distributed controller. Sufficient conditions have been given for obtaining
consistent estimates in the considered framework, thereby solving the distributed
model-reference control problem in the presence of noise. Through an example
network consisting of two subsystems, we have shown that the developed method
provides a substantial closed-loop performance improvement for increasing levels
of noise power.

The main advantage of modeling the noise in (D)VRFT with a tailor-made
noise model and prediction-error filtering compared to using an IV method, is
that the variance can be reduced significantly, although consistent estimates can
be obtained through both approaches. A disadvantage is that the identification
problem with a tailor-made noise model becomes more involved, in the sense
that standard identification software cannot be used and that the problem is not
convex, in general.
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Appendix

7.A Instrumental lemmas

In this appendix, we provide two lemmas that will be instrumental in the proof
for Theorem 7.5.1.

Lemma 7.A.1. G = I + Ḡ, where Ḡ := GGI .

Proof. The proof follows directly by the identity

I = G−1G = (I −GI)−1 − (I −GI)−1GI = G − GGI .

Lemma 7.A.2. If Gji is strictly proper for each j ∈ Ni, then

• Ḡii is strictly proper,

• Ḡji is strictly proper for j ∈ Ni.

Proof. Assume that Gji is strictly proper for j ∈ Ni. Then

Ḡii =
∑

j∈V\{i}
GijGji =

∑
j∈Ni

GijGji

is strictly proper, because the summands are strictly proper. Pick an arbitrary
j ∈ Ni. Then

Ḡji =
∑

k∈V\{i}
GjkGki =

∑
k∈Ni

GjkGki

is strictly proper, because the summands are strictly proper. This concludes the
proof.
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7.B Proof of Theorem 7.5.1

Proof. To prove Theorem 7.5.1, we start by writing the prediction error as

εi(t, ρi) = H̄i(ρi)
−1
(
∆Cii(ρi)z̄i +

∑
j∈Ni

∆Cij(ρi)ō
c
ji + H̄d

i ei
)
,

using (7.26), where ∆C(ρi) := Cdii − Cii(ρi), ∆Cij(ρi) := Cdij − Cij(ρi), j ∈ Ni.
The virtual signals are related to yi and yj by (7.25) and (7.27), leading to

εi(t, ρi) = H̄i(ρi)
−1
(
∆Cii(ρi)

1− Ti
Ti

yi +
∑
j∈Ni

∆Cij(ρi)yj + H̄d
i ei
)
.

Now consider the filtered prediction error εFi , with filter Li = CdiiGi. By defini-
tion, the filter is

Li = CdiiGi =
Ti

1− Ti
.

Hence, we have that

εFi (t, ρi) = Liεi(t, ρi)

= H̄i(ρi)
−1
(
∆Cii(ρi)yi +

Ti
1− Ti

∑
j∈Ni

∆Cij(ρi)yj

+ CdiiGiH̄
d
i ei
)

= H̄i(ρi)
−1
(
∆Cii(ρi)yi +

∑
j∈Ni

∆Cij(ρi)K
d
ijyj − CdiiHiei

)
.

We proceed by writing the ‘node’ variables yj in terms of ‘external’ variables.
By (7.3) we have that

y = G(Gu+He) = G(ū+ v),

where ū := Gu and v = He. Hence, by Lemma 7.A.1, it follows that

GH = (I −GI)−1H = H + GGIH.

Therefore, we can write the node variables in y as

y = Gū+ Ḡv +He, (7.28)

where Ḡ = GGI , or, equivalently,

yi = Hiei +
∑
j∈V
Gij ūj + Ḡijvj , i ∈ V.



7.B. Proof of Theorem 7.5.1 175

It follows that

εFi (t, ρi) = H̄i(ρi)
−1 [xi(ρi)− Cii(ρi)Hiei] ,

where

xi(ρi) := ∆Cii(ρi)
∑
j∈V
Gij ūj +

∑
j∈Ni

Kd
ij∆Cij(ρi)

∑
k∈V
Gjkūk

+ ∆Cii(ρi)
∑
j∈V
Ḡijvj +

∑
j∈Ni

Kd
ij∆Cij(ρi)

(
vj +

∑
k∈V
Ḡjkvk

)
.

Now, considering the tailor-made noise model H̄i(ρi) = −Cii(ρi)H̆i(ρi), we obtain
the filtered prediction error

εFi (t, ρi) = H̄i(ρi)
−1
[
xi + Cii(ρi)H̆i(ρi)ei − Cii(ρi)Hiei

]
+ ei

= H̄−1
i [xi(ρi) + Cii(ρi)∆Hi(ρi)ei] + ei,

where ∆Hi(ρi) := H̆i(ρi)−Hi.

We now show that the noise ei is uncorrelated with xi(ρi) and Cii(ρi)∆Hi(ρi)ei:

• Since both H̆i(ρi) and Hi are monic, ∆Hi(ρi) is strictly proper. Hence,
Cii(ρi)∆Hi(ρi) has a delay, because Cii(ρi) is proper, which implies that
Cii(ρi)∆Hi(ρi)ei is uncorrelated with ei;

• ∆Cii(ρi)
∑
j∈V Gij ūj is uncorrelated with ei, since it is a filtered linear

combination of uj , j ∈ V, which are uncorrelated with ei by assumption;

• ∑j∈Ni
Kd
ij∆Cij(ρi)

∑
k∈V Gjkūk is uncorrelated with ei, since it is a fil-

tered linear combination of uj , j ∈ V, which are uncorrelated with ei by
assumption;

• ∆Cij(ρi)
∑
j∈V Ḡijvj is uncorrelated with ei, because (i) Ḡii is strictly proper

by Lemma 7.A.2 and (ii) ej , j ∈ V \ {i} is uncorrelated with ei by assump-
tion;

• ∑j∈Ni
Kd
ij∆Cij(ρi)

(
vj +

∑
k∈V Ḡjkvk

)
is uncorrelated with ei, because (i)

Ḡji is strictly proper for j ∈ Ni by Lemma 7.A.2 and (ii) ej , j ∈ V \ {i} is
uncorrelated with ei by assumption.
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Hence,

V̄ Fi (ρi) = ĒεFi (t, ρi)
2 (7.29)

= Ē
[(
H̄−1
i [xi(ρi) + Cii(ρi)∆Hi(ρi)ei] + ei

)2]
= Ē

[(
H̄−1
i [xi(ρi) + Cii(ρi)∆Hi(ρi)ei]

)2]
+ σ2

ei .

But then the minimum of V̄ Fi (ρi) must be σ2
ei and a minimizing argument is ρdi

by the second condition.
Next, we will show that the minimizing argument is unique. A minimizing

argument ρ∗i must satisfy V Fi (ρ∗i ) = σ2
ei , which, by (7.29), is equivalent with

0 = Ē
[
H̄i(ρ

∗
i )
−1 [xi(ρ

∗
i ) + Cii(ρ

∗
i )∆Hi(ρ

∗
i )ei]

]2

= Ē

∆xi(ρ
∗
i )

 Ti

Hi(1−Ti)
−Gi

Hi
− 1
Hi
GiN

0 Gi GiN
0 0 Kd

iN


︸ ︷︷ ︸

=:Γi

 z̄i
ui
ōcN i




2

,

with Kd
iN := diagj∈Ni

Kd
ij and

∆xi(ρ
∗
i ) =

1

H̄i(ρ∗i )

[
∆HiCii ∆Cii rowj∈Ni ∆Cij

]
(ρ∗i ).

Hence, by Parseval’s theorem,

1

2π

∫ π

−π
∆xi(e

iω, ρ∗i )
>ΓiΦζi(ω)Γ∗i∆xi(e

−iω, ρ∗i ) dω = 0.

Now, Γi(e
iω) has full rank for almost all ω and, by the first condition, Φζi(ω) is

positive definite for all ω. Hence, [∆HiCii ∆Cii rowj∈Ni
∆Cij ](ρ

∗
i ) is equal to

the zero row for almost all ω, which implies Cii(ρ
∗
i ) = Cdii, Cij(ρ

∗
i ) = Cdij , j ∈ Ni,

and H̆i(ρ
∗
i ) = Hi. This concludes the proof.

7.C IV approach to DVRFT

Let the parametrization of the controllers in Section 7.6.2 be linear such that

Cii(ρi) = col(ρi1, ρi2)> col(1,
1

q − 1
) and Cij(ρi) = ρi3.
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This leads to a regression vector ϕi(t) = col(C̄iiz̄i(t),K
d
jiz̄j(t)), j ∈ Ni, with

C̄ii := col(1, 1
q−1 ). The estimate of the controller parameter for DVRFT (without

the use of an instrumental variable approach) is obtained as

ρ̂i := [

N∑
t=1

ϕi(t)ϕ
>
i (t)]−1

N∑
t=1

ϕi(t)ui(t).

For DVRFT with an IV approach, an additional experiment is performed, where
the same inputs (u1, u2) are applied to the network and the corresponding output
data (yp1 , y

p
2) is collected. The virtual references and tracking errors corresponding

to the additional experiment are defined as

r̄pi := T−1
i ypi , z̄pi := r̄pi − ypi .

The instrumental variable is chosen as ζi(t) = col(C̄iiz̄
p
i (t),Kd

jiz̄
p
j (t)), such that

it is correlated to ϕi(t), but independent of ei(t) (the noise signal corresponding
to the first experiment with the data (u, y)). The controller parameters are then
obtained as (Bazanella et al., 2012)

ρ̂IV
i := [

N∑
t=1

ζi(t)ϕ
>
i (t)]−1

N∑
t=1

ζi(t)ui(t).
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Chapter 8

Distributed controller
identification for data-driven
model-reference control

The distributed model-reference control problem introduced in Chapter 6 can
be solved directly on the basis of data via DVRFT, as shown in Chapter 7.
DVRFT yields consistent estimates of the ideal distributed controller introduced
in Chapter 6, provided that no noise signals affect the interconnected system.
If process noise signals are present, biased controller estimates are obtained; a
problem that can be solved by the use of an instrumental variable method or by
using a tailor-made noise model with prediction-error filtering. In this chapter,
we also consider the problem of estimating the ideal distributed controller for an
interconnected system subject to process noise. We develop a method to solve
this problem with network identification methods, by constructing an augmented
dynamic network. The resulting method extends a state-of-the-art data-driven
control method, called optimal controller identification (OCI), to distributed con-
troller design. The OCI method uses the prediction-error identification method
for obtaining controller estimates, which naturally extends to prediction-error
identification in dynamic networks for its extension to distributed controller de-
sign. Therefore, the method provides a practical alternative to DVRFT, because
the distributed model-reference control problem is solved by ‘standard’ network
identification methods. The method has an advantage with respect to DVRFT

This chapter is based on the publication: T. R. V. Steentjes, M. Lazar, and P. M. J. Van
den Hof. Controller identification for data-driven model-reference distributed control. In Proc.
2021 European Control Conference (ECC), pages 2358–2363, Rotterdam, The Netherlands,
2021b
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in the presence of noise, in the sense that no tailor-made noise model has to be
included or instrumental variable methods are employed in the identification. We
show how the ideal distributed controller can be identified from the augmented
network by both direct and indirect methods for network identification.

8.1 Introduction

The distributed model-reference control problem considers the problem of deter-
mining a distributed controller for an interconnected system, such that the closed-
loop dynamics match a given structured reference model; a reference model with
dynamics that are desired for the to-be-controlled interconnected system. An ex-
plicit solution to the distributed model-reference control problem was determined
and analyzed in Chapter 6. This solution, called an ideal distributed controller,
depends explicitly on the subsystem dynamics of the to-be-controlled intercon-
nected system and the subsystem dynamics of the structured reference model.
Such an ideal distributed controller is therefore a model-based solution to the
distributed model-reference control problem, analogous to the (SISO or MIMO)
ideal controller for the ‘standard’ model-reference control problem, cf. (Campi
et al., 2002), (Bazanella et al., 2012), (Huff et al., 2019).

When a model is not known, the distributed model-reference control problem
can be solved using data collected from the interconnected system. Distributed
virtual reference feedback tuning (DVRFT), introduced in Chapter 7, is a method
that solves the distributed model-reference control problem from data, through
the identification of an ideal distributed controller in a virtual reference network.
Two important cases for DVRFT regarding assumptions on the network are:
(i) the network is noiseless, i.e., no unmeasured exogenous signals are present,
and (ii) process noise enters the network, i.e., unmeasured exogenous signals are
present. In the first case, consistent estimates of the ideal distributed controller
can be obtained through DVRFT. In the second case, consistent estimates are
only obtained through DVRFT if an instrumental variable (IV) method is em-
ployed or a tailor-made noise model is estimated consistently.

When not considered properly, noise can cause a significant performance
degradation of the closed-loop network with the resulting controller, due to in-
consistent estimates, cf. Chapter 7. Even for scalar systems, VRFT inherently
introduces a bias in the controller estimates when disturbances affect the sys-
tem (Bazanella et al., 2012), leading to a degraded closed-loop performance. For
both VRFT and DVRFT, this problem can be solved by using an IV approach
in case the controller model is linear with respect to the parameters. Depending
on the choice of IV, the introduction of IVs can require additional experiments
on the system (Bazanella et al., 2012) and increase the parameter variance with
a negative effect on the control performance. For a controller model that is not
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necessarily linear in the parameters, a method to still obtain consistent estimates
is to model the noise in VRFT. This requires to solve a non-standard identifica-
tion problem, however, where the noise model depends on the controller model
(tailor-made noise model), as analyzed in Chapter 7.

An alternative approach to direct data-driven controller design is optimal
controller identification (OCI) (Campestrini et al., 2017). This method relies on
the algebraic relation between the (unknown) plant, ideal controller and refer-
ence model, leading to an identification setup in which the inverse of the ideal
controller is to be identified. A feature of OCI is that the estimation of the
controller parameters is embedded in a standard prediction-error (PE) identifica-
tion problem, and consistency therefore follows from a ‘standard’ PE consistency
analysis (Campestrini et al., 2017). Furthermore, in the case of approximate
modeling, a flexible parametrization of the controller allows for shaping the bias
and variance to improve performance.

In this chapter, we solve the distributed model reference control problem in the
case that the interconnected system is subject to unmeasured exogenous inputs,
by extending the OCI method for distributed controller synthesis. We show how
the interconnected system can be transformed to a network with dynamics of the
ideal distributed controller introduced in Chapter 6. By using the direct method
for identification in dynamic networks (Van den Hof et al., 2013), we provide
sufficient conditions for consistent estimation of the distributed controller, solving
the distributed model-reference control problem directly from data. Alternatively,
we show how indirect identification can be applied, obviating the necessity of
modeling the noise for consistency. The local nature of the identification problems
imply that a decentralized computation of the distributed controller is possible.

8.2 Preliminaries

We consider again the network dynamics from Chapter 7:

yi(t) = Gi(q)ui(t) +
∑
j∈Ni

Gij(q)yj(t) +Hi(q)ei(t), i ∈ V, (8.1)

with V := {1, 2, . . . , L}, compactly written as y = GIy+Gu+He, describing an
interconnected system with subsystems Pi described by

Pi :

{
yi = Giui +

∑
j∈Ni

Gijyj +Hiei,

zi = ri − yi.
(8.2)

The subsystems are interconnected over an undirected graph G = (V, E), with
vertex set V and edge set E ⊆ V × V. Two plants Pi and Pj are interconnected
if (i, j) ∈ E .



182 Chapter 8. Distributed controller identification

Recall the structured reference model from Chapter 7, composed of L subsys-
tems, described by

Ki :

{
ydi = Ti(q)ri +

∑
j∈Ni

Qij(q)kij ,

pij = Pij(q)y
d
i , j ∈ Ni.

(8.3)

For (i, j) ∈ E , subsystems Ki and Kj are interconnected by kij = pji and kji =
pij . A distributed controller that solves the distributed model-reference control
problem (7.9) is

Cdi :

uioci
pci

 =


Ti

Gi(1− Ti)
− 1

Gi
GiI

1

Gi(1− Ti)
Qi

Ti
1− Ti

1 0
1

1− Ti
1Qi

Ti
1− Ti

Pi 0
1

1− Ti
PiQi


︸ ︷︷ ︸

=:Cd
i (q)

zisci
kci

 , i ∈ V, (8.4)

with the interconnection equations scij = ocji, k
c
ij = pcji and scji = ocij , k

c
ji = pcij .

We recall that, by Theorem 6.3.1, the plants {Pi, i ∈ V} in closed loop with the
controllers {Cdi , i ∈ V} yield a closed-loop network behavior that is equivalent
with that of the structured reference model {Ki, i ∈ V} in the sense that yi = ydi
for all i ∈ V.

8.3 Problem formulation

The problem that we consider in this chapter is to determine the ideal distributed
controller described by (8.4) in the case that the network described by (8.1) is
unknown, i.e., in the case that the transfer functions Gi, Gij and Hi, (i, j) ∈ E ,
are unknown. The local controller modules Cdi contain known modules, depending
solely on the reference model dynamics Ki and unknown modules describing the
top row in (8.4):

ui = Cdii(q)zi +
∑
j∈Ni

Cdij(q)s
c
ij +

∑
j∈Ni

CTdij (q)kcij , (8.5)

where Cdii := (Gi(1− Ti))−1Ti and Cdij := −G−1
i Gij , C

Td
ij := (Gi(1− Ti))−1Qij ,

(i, j) ∈ E .
Given data collected from the network (8.1), the transfer functions Cdii, C

d
ij

and CTdij can be determined through DVRFT, in the case that no noise is present,
i.e., ei = 0 for all i ∈ V. The application of VRFT for systems with noise leads
to biased estimates, both for the single-process case (Bazanella et al., 2012) and
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the network case, cf. Chapter 7, leading to a degraded closed-loop performance.
The bias of distributed controller estimates with VRFT can be characterized, as
illustrated in the following example.

u1

u2

y1G1

G2

G12 G21

y2

H1

H2

e1

e2

Figure 8.1: Two output coupled process with noise represented by a dynamic
network.

Example 8.1. Consider a network consisting of two subsystems, as depicted in
Figure 8.1, described by

y1 = G1u1 +G12y2 +H1e1, (8.6)

y2 = G2u2 +G21y1 +H2e2. (8.7)

We choose the reference model to be decoupled:

yd1 = T1r1, yd2 = T2r2. (8.8)

The ideal distributed controller is then described by

[
u1

oc1

]
=


T1

G1(1− T1)
−G12

G1
T1

1− T1
0


︸ ︷︷ ︸

=:

Cd11 Cd12

Kd
12 0



[
z1

sc1

]
, (8.9)
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[
u2

oc2

]
=


T2

G2(1− T2)
−G21

G2
T2

1− T2
0


︸ ︷︷ ︸

=:

Cd22 Cd21

Kd
21 0



[
z2

sc2

]
, (8.10)

with the interconnections sc1 = oc2 and sc2 = oc1. In the distributed VRFT (DVRFT)
approach to distributed controller synthesis described in Chapter 7, virtual refer-
ence signals and virtual tracking errors r̄i and z̄i are computed from data, satis-
fying

yi = Tir̄i and z̄i := r̄i − yi, i = 1, 2. (8.11)

Using the definitions for the virtual signals and ideal controller, the processes
(8.6) and (8.7) are rewritten as

u1 = Cd11z̄1 + Cd12ō
c
2 −G−1

1 H1e1, (8.12)

u2 = Cd22z̄2 + Cd21ō
c
1 −G−1

2 H2e2, (8.13)

where

ōci :=
Ti

1− Ti
z̄i = yi, i = 1, 2.

Controller module 1, for example, is then obtained by minimizing the identifica-
tion criterion

JVR
1 (ρ1) = Ē[u1 − û1(ρ1)]2 = Ē[u1 − ρ>1 ϕ1]2,

where the parametrized controller is chosen to be linear in the parameters:

û1(ρ1) = C11(ρ1)z̄1 + C12(ρ1)ōc21 = ρ>1 ϕ1,

with ρ1 := col(ρ11, ρ12) and the regression vector ϕ1 := col(C̄11z̄1, C̄12ō
c
2). Any

global minimizer ρ∗1 of JVR
1 satisfies the normal equation

Ē[ϕ1ϕ
>
1 ]ρ∗1 = Ē[ϕ1u1].

If Ē[ϕ1ϕ
>
1 ]−1 exists, then

ρ∗1 = Ē[ϕ1ϕ
>
1 ]−1Ē[ϕ1u1]. (8.14)
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Let ρdi be the parameter that corresponds to Cdii and Cdij. The difference between

ρdi and its estimate for finite data, ρ̂i := [
∑N
t=1 ϕi(t)ϕ

>
i (t)]−1

∑N
t=1 ϕi(t)ui(t), is

given by

ρ̂i − ρdi = (ρ∗i − ρdi ) + (ρ̂i − ρ∗i ),

where ρ∗i − ρdi is the bias error and ρ̂i − ρ∗i the variance error (Bazanella et al.,
2012).

Lemma 8.3.1. The bias error of the estimator ρ̂i, i = 1, 2 is

Ē[ϕiϕ
>
i ]−1Ē[ϕiG

−1
i Hiei].

Proof. Substitution of (8.12) in (8.14) yields

ρ∗1 = Ē[ϕ1ϕ
>
1 ]−1Ē[ϕ1

(
Cd11z̄1 + Cd12ō

c
21 −G−1

1 H1e1

)
]

= ρd1 − Ē[ϕ1ϕ
>
1 ]−1Ē[ϕ1G

−1
1 H1e1], (8.15)

where the linearity of the expectation operator was used to obtain the last equal-
ity. The bias expression for i = 2 can be obtained analogously.

Remark 8.3.1. If there is process noise present at process i ∈ {1, 2}, i.e. ei 6= 0,
this will influence the quality of the controller parameter estimate ρ̂i in terms of
bias by Lemma 8.3.1. The interpretation is that for DVRFT, ei acts as a con-
founding variable affecting both the input and output of the identification problem,
while ej, j 6= i, act as excitation sources in the network.

Due to the bias, controller parameter estimates will in general not minimize
the cost function (7.9) and hence lead to a reduced closed-loop performance if
the process is subject to noise. Two approaches to tackle this problem have been
described in Chapter 7: (i) estimating parameters of a tailor-made noise model
simultaneously with the controller parameters or (ii) estimating the controller pa-
rameters through an instrumental variable approach (applicable if the controllers
are linearly parametrized).

The problem considered in this chapter is to solve the data-driven distributed
model-reference control problem in the case that process noises ei are present in
the network (8.1), i.e., the problem that is solved in Section 7.5 with DVRFT. The
goal in this chapter is to provide an alternative method to solve this problem,
which can be applied using ‘standard’ prediction error identification methods
for dynamic network identification. Recall that OCI provides an alternative to
VRFT for solving the standard model-reference control problem in Campestrini
et al. (2017). We will consider the development of a method that extends OCI
to the distributed model-reference control problem for interconnected systems.
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8.4 Distributed optimal controller identification

In order to pose an identification problem, we start by rewriting the network
dynamics in terms of the ideal distributed controller dynamics. The approach
of rewriting the dynamics of a single-input single-output system in terms of an
ideal controller for prediction-error identification was introduced in (Campestrini
et al., 2017).

8.4.1 Transformed network dynamics

Let us first consider the case where the reference model is decoupled, i.e., for each
i ∈ V,

Ki : ydi = Ti(q)ri.

By (8.4), we observe that the transfer functions in (8.5) are

Cdii =
Ti

Gi(1− Ti)
, Cdij = −Gij

Gi
, (i, j) ∈ E .

Hence, we can write the network dynamics (8.1) in terms of the ideal distributed
controller and the reference model as

Gi =
1

Cdii

Ti
1− Ti

and

Gij = −CdijGi = −
Cdij
Cdii

Ti
1− Ti

.

Models for the network’s transfer functions can then be written in terms of the
controller parameters as

Gi(ρi) :=
1

Cii(ρi)

Ti
1− Ti

and Gij(ρi) := −Cij(ρi)
Cii(ρi)

Ti
1− Ti

.

We can thus rewrite the network dynamics (8.1) as

yi =
1

Cdii

Ti
1− Ti

ui −
∑
j∈Ni

Cdij
Cdii

Ti
1− Ti

yj +Hiei, i ∈ V,

or

yi = C̄diiūi +
∑
j∈Ni

C̄dij ȳij +Hiei, i ∈ V, (8.16)
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with

C̄dii :=
1

Cdii
, C̄dij :=

Cdij
Cdii

,

and the signals

ūi :=
Ti

1− Ti
ui = T̄iui, i ∈ V, (8.17)

ȳij := − Ti
1− Ti

yj = −T̄iyj , (i, j) ∈ E . (8.18)

In the case that Ti is proper, T̄i, i ∈ V, will be proper and the dynamical relations
(8.16)-(8.18) can be interpreted as an (augmented) dynamic network:yȳ

ū

 =

 0 C̄dI C̄d

T̄N 0 0
0 0 0

yȳ
ū

+

0
0
T̄

u+

H0
0

 e, (8.19)

with the matrices C̄dI := diagi∈V rowj∈Ni C̄
d
ij , C̄d := diag(Cd11, . . . , C̄

d
LL), T̄ :=

diag(T̄1, . . . , T̄L), T̄N := coli colj∈Ni
−T̄ie>j , with ei the i-th standard basis vector

in RL, and T̄ := diag(T̄1, . . . , T̄L). This augmented network is visualized in
Figure 8.2 for L = 2.

To write the model, define C̄ii(ρi) := 1
Cii(ρi)

and C̄ij(ρi) :=
Cij(ρi)
Cii(ρi)

, (i, j) ∈ E ,

such that

yi(θi) = C̄ii(ρi)ūi +
∑
j∈Ni

C̄ij(ρi)ȳij +Hi(θi)ei, (8.20)

where θi = col(ρi, ηi), with ηi additional parameters for the noise model Hi(θi)
1.

Model (8.20) is visualized in Figure 8.3 for i = 1, L = 2.

8.4.2 Direct method for controller identification

By using the direct method for dynamic network identification (Van den Hof
et al., 2013), the estimates are obtained as

θ̂i = arg min
θi

Vi(θi), Vi(θi) =
1

N

N∑
t=1

ε2
i (t, θi), (8.21)

with the prediction error defined by

εi(t, θi) := yi(t)− ŷi(t, θi)
1The controller and noise model are not required to be parametrized independently.



188 Chapter 8. Distributed controller identification

u1 ū1 y1

u2 ū2 y2

e1

e2

C̄d
11

C̄d
22

C̄d
12 −T̄2

C̄d
21−T̄1

T̄1

T̄2

H2

H1

ȳ12 ȳ21

Figure 8.2: The dynamic network represented by modules of the ideal distributed
controller and reference model.

ū1

y1

ȳ12

e1

C̄11(ρ1)

C̄12(ρ1)

H1(θ1)

Figure 8.3: Model with the auxiliary controller modules for i = 1, L = 2.

and the predictor

ŷi(t, θi) := H−1
i (θi)

C̄ii(ρi)ūi +
∑
j∈Ni

C̄ij(ρi)ȳij

 (8.22)

+
(
1−H−1

i (θi)
)
yi. (8.23)
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By definition of the auxiliary controller models, the controller estimates are then

Cii(ρ̂i) =
1

C̄ii(ρ̂i)
, Cij(ρ̂i) = C̄ij(ρ̂i)Cii(ρ̂i), (i, j) ∈ E .

Under weak assumptions, cf. Chapter 2, the estimator θ̂i converges asymp-
totically in N (Ljung, 1999):

θ̂i → θ∗i w.p. 1 as N →∞,

where θ∗i = arg minθi V̄i(θi) with V̄i(θi) := Ē[ε2
i (t, θi)]. The following result

provides sufficient conditions for consistent estimation of the controller modules.

Theorem 8.4.1. Suppose the following conditions hold:

(1) ei is uncorrelated to all ej, j ∈ V \ {i},

(2) ei is uncorrelated to all uj, j ∈ V,

(3) Gji contains a delay for every j ∈ Ni, with Gji = [(I −GI)−1]ji,

(4) the spectral density of ξ̄i := col(yi, ūi, ȳih1
, . . . , ȳihL

), h• ∈ Ni, is positive
definite for almost all ω ∈ [−π, π],

(5) there exists a θdi = (ρdi , η
d
i ) such that Ci(ρ

d
i ) = Cdi and Hi(θ

d
i ) = Hi.

Then it holds that Cii(θ
∗
i ) = Cdii, Hi(θ

∗
i ) = Hi and Cij(θ

∗
i ) = Cdij, j ∈ Ni.

Proof. We will first show that the minimum of the objective function V̄i is σ2
ei =

Ee2
i . By the definition of the predictor and prediction error, we have

V̄i(θi) = Ē

(
Hi(θi)

−1

(
vi +

∑
j∈Ni

∆C̄ij(θi)ȳij + ∆C̄ii(θi)ū)i

))2

.

Then, by (8.19) it follows that

V̄i(θi) = Ē

(
Hi(θi)

−1

(
vi −

∑
j∈Ni

∆C̄ij(θi)T̄iyj + ∆C̄ii(θi)T̄iui

))2
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and by (8.1):

V̄i(θi) = Ē

(
Hi(θi)

−1

(
vi + ∆C̄ii(θi)T̄iui

−
∑
j∈Ni

∆C̄ij(θi)T̄i
∑
k∈V
Gjk(Gkuk +Hkek)

))2

= Ē

(
Hi(θi)

−1

(
∆Hi(θi)ei + ∆C̄ii(θi)T̄iui

−
∑
j∈Ni

∆C̄ij(θi)T̄i
∑
k∈V
Gjk(Gkuk +Hkek)

)
+ ei

)2

.

Since both Hi and Hi(θi) are monic, ∆Hi(θi) is strictly proper. Hence, ∆Hi(θi)ei
is uncorrelated with ei. Also −∑j∈Ni

∆C̄ij(θi)T̄i
∑
k∈V GjkGkuk is uncorrelated

with ei, since it is a filtered linear combination of uk, k ∈ V, which are uncor-
related with ei by condition (ii). Moreover, −∑j∈Ni

∆C̄ij(θi)T̄i
∑
k∈V GjkHkek

is uncorrelated with ei by condition (i) and (v), since ∆C̄ij(θi) is proper by
construction and Gji is strictly proper for all j ∈ Ni by condition (v). Hence,

V̄i(θi) = Ē

(
Hi(θi)

−1

(
∆Hi(θi)ei + ∆C̄ii(θi)T̄iui

−
∑
j∈Ni

∆C̄ij(θi)T̄i
∑
k∈V
Gjk(Gkuk +Hkek)

))2

+ Ēe2
i

≥ σ2
ei .

It remains to show that V̄i(θi) = σ2
ei ⇒ θi = θdi . This follows from conditions

(iii) and (iv) and follows mutatis mutandis from (Van den Hof et al., 2013, Ap-
pendix B). This concludes the proof.

Remark 8.4.1. In comparison, both Theorem 7.5.1 and Theorem 8.4.1 provide
conditions under which consistent estimates of the ideal controller modules are
obtained via, respectively, DVRFT with noise modeling (described in Chapter 7)
and the method described in this chapter. The main difference, regarding the
identification aspect, is that a tailor-made parametrization for the noise model
is utilized in Chapter 7, which is not required in the method described in this
chapter, while the parametrization of the controller modules in this chapter can
be more involved.

Remark 8.4.2. The identification problem for obtaining Cdi is scalable with re-
spect to the size of the network L. Indeed, each identification criterion V̄i, i ∈ V,
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can be minimized independently. Furthermore, the number of controller modules
that are identified through the minimization of V̄i is equal to the number of neigh-
bours of node i, i.e., |Ni|, and is therefore independent of the number of nodes L
in the network.

Remark 8.4.3. Notice that the correlation condition on ei and uj, j ∈ V (The-
orem 8.4.1, condition (ii)) is typically satisfied when data are collected from the
network in open loop, i.e., when the interconnected system (P1, . . . ,PL) is not
interconnected with a (preliminary) controller. When the interconnected system
is interconnected with a (distributed) controller (such that the input u is a filtered
version of z, i.e., u(t) = C(q)z(t)), then it is sufficient that the external signals
rj, j ∈ V, are uncorrelated with ei and there is a delay in every loop around
yi, cf. Chapter 2. More specifically, the assertion in Theorem 8.4.1 holds true
for data collected in closed loop, when conditions (ii) and (iii) are replaced with
conditions (ii) and (iii) in Proposition 2.3.1.

Positive definiteness of the spectrum of the vector of signal ξ̄i, Φξ̄i , is implied
by sufficient excitation of the filtered input ūi = T̄iui and the signals ȳij , j ∈ Ni.
The condition on Φξ̄i can be translated to conditions on external signals uj , ej ,
j ∈ V, and conditions on the augmented network topology, as described in (Van
den Hof and Ramaswamy, 2020), cf. Section 2.3.1. The following result is a
consequence of Proposition 1 in (Van den Hof and Ramaswamy, 2020).

Lemma 8.4.1. Consider the vector ξ̄i := col(yi, ūi, ȳih1
, . . . , ȳihL

) ∈ Rp, h• ∈
Ni, and let the stacked vector of external signals col(u, e) have a power spectrum
that is positive definite almost everywhere. Then Φξ̄i is positive definite almost

everywhere if there are p vertex-disjoint2 paths from col(u, e) to ξ̄i.

Example 8.2. Consider the augmented network (8.19) for L = 2, depicted in
Figure 8.2 and consider the power spectrum of ξ̄1 = col(y1, ū1, ȳ12) ∈ R3, Φξ̄1 .
By Lemma 8.4.1, Φξ̄1 is positive definite almost everywhere if there are three

vertex-disjoint paths from col(u1, u2, e1, e2) to ξ̄1. Clearly, there are three such
vertex disjoint paths: from e1 → y1, from u1 → ū1 and from u2 → ȳ12. Hence,
we conclude that Φξ̄1 is positive definite almost everywhere. Notice that the same
conclusion can be reached by replacing u2 → ȳ12 with e2 → ȳ12 in the reasoning
for this example.

8.4.3 Indirect method for controller identification

In the previous subsection, the estimation of ideal controller modules in the aug-
mented network (8.19) via the direct method for network identification was con-
sidered. Alternatively, the controller modules can be identified via an indirect

2A set of paths is vertex disjoint if no two of them have one or more vertices in common.
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identification method (Van den Hof et al., 2013), (Van den Hof and Ramaswamy,
2021). Compared to the direct method, an indirect method leads to a prediction-
error identification problem with different predictor inputs and outputs (Van den
Hof and Ramaswamy, 2021) and estimates of Cdii and Cdij are obtained through
a post-processing step. This different choice of predictor model leads to a dif-
ferent condition for data informativity: the direct method utilizes both input
signals in u and noise signals in e for achieving data-informativity (as indicated
in Lemma 8.4.1), whereas an indirect method utilizes only signals in u for data-
informativity, cf. (Van den Hof and Ramaswamy, 2021). However, an indirect
method does not require the inclusion of noise models in the identification, pro-
vided that u and e are uncorrelated (Ljung, 1999). Therefore, we will now derive
an approach for obtaining consistent controller estimates through the use of an
indirect identification method.

The dynamics of the augmented network (8.19) yield a mapping from external
signals (u, e) to network signals (y, ȳ, ū) as follows:yȳ

ū

 = (I − CdT )−1

0
0
T̄

u+ (I − CdT )−1

H0
0

 e =

TyTȳ
Tū

u+ H̄e

with the transfer matrices (Ty, Tȳ, Tū) and H̄ defined byTyTȳ
Tū

 := (I − CdT )−1

0
0
T̄

 , H̄ := (I − CdT )−1

H0
0

 and CdT :=

 0 C̄dI C̄d

T̄N 0 0
0 0 0

.
(8.24)

The basic idea of applying the indirect method to the identification of the ideal
controller modules, is to first obtain estimates of the transfer matrices (Ty, Tȳ, Tū)
and subsequently estimate of the controllers from the relation between Cdii, C

d
ij

and (Ty, Tȳ, Tū). Known modules defined by the structured reference model sim-
plify the procedure, however, as explained next.

From (8.24), we find that I −C̄dI −C̄d
−T̄N I 0

0 0 I

TyTȳ
Tū

 =

0
0
T̄

 ⇔
{
Ty − C̄dI Tȳ − C̄dTū = 0,
Tȳ = T̄NTy and Tū = T̄ .

(8.25)

Pre-multiplication of the first equation on the right in (8.25) with Cd=diagi∈V C
d
ii,

satisfying CdC̄d = I, yields that (8.25) is equivalent with Tȳ = T̄NTy, Tū = T̄
and

CdTy = CdI Tȳ + Tū, (8.26)
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where CdI := diagi∈V rowj∈Ni
Cdij . We observe the following: given Ty, the con-

troller modules Cdii, C
d
ij , i ∈ V, j ∈ Ni, can be obtained by solving the equa-

tion (8.26) in Cd and CdI , where Tȳ = T̄NTy and Tū = T̄ .
Obtaining a consistent estimate of Ty from data measurements of u and y

is a standard MIMO identification problem (for data collected in an open-loop
setting), (Gevers et al., 2018), cf. (Ljung, 1999). Suppose such an estimate T̂y
of Ty is available. By (8.26), estimates Ĉ and ĈI of respectively Cd and CdI , can

be obtained solving ĈT̂y = ĈI T̄N T̂y + T̄ in Ĉ and ĈI , where the interconnection

structure is taken into account, i.e., for all (i, j) ∈ [1, L]2, it holds that [Ĉ]ij = 0

if and only if [Cd]ij = 0 and for all (i, j) ∈ [1, L]× [1, LN ], [ĈI ]ij = 0 if and only
if [CdI ]ij = 0, where LN :=

∑
i∈V |Ni| is the number of columns in CdI .

Corollary 8.4.1. Consider that an experiment is performed according to the
following conditions:

(1) all input signals (ui)i∈V are chosen such that u is persistently exciting of
sufficiently high order and uncorrelated with e,

(2) all output signals (yi)i∈V are measured.

Then a consistent estimate T̂y of Ty can be obtained through standard open-loop
identification with a full order model. Consequently, given a consistent estimate
T̂y, consistent estimates of the controller matrices Cd and CdI are given by Ĉ and

ĈI , obtained from the set of linear equations

ĈT̂y = ĈI T̄N T̂y + T̄ (8.27)

and the following constraints for incorporation of the interconnection structure
of the ideal distributed controller: for all (i, j) ∈ [1, L]2, it holds that [Ĉ]ij = 0 if

and only if [Cd]ij = 0 and for all (i, j) ∈ [1, L]× [1, LN ], [ĈI ]ij = 0 if and only if
[CdI ]ij = 0.

Remark 8.4.4. The method described in this subsection for obtaining consis-
tent controller estimates assumes that experiments are performed in an open-loop
setting, i.e., u and e are uncorrelated. This allows us to obtain estimates of Ty
with standard MIMO open-loop identification methods, where no noise modeling
is required. Practically, it is common that a preliminary (distributed) controller
is present in the experiment set-up, e.g. for stabilization of an unstable open-loop
system. In such a situation, two approaches can be followed. In the first approach,
a consistent estimate T̂y of the transfer Ty, i.e., from u to y, can be obtained by
using the direct method for closed-loop identification (Van den Hof, 1998), pro-
vided that the noise filter H̄ is estimated consistently, additionally. Consistent
estimates of Cd and CdI can then be obtained from (8.27). The second approach
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is to use an indirect method, where an estimate of the closed-loop transfer matrix
from measured external (dithering/reference) signals r to y is obtained. Conse-
quently, consistent estimates of the transfer functions of interest can be obtained
from the consistently estimated closed-loop transfer matrix directly, see e.g. Sec-
tion 2.3.2.

8.5 Dealing with a coupled reference model

In the case of a coupled reference model, the ideal distributed controller (8.4)
contains additional transfer function modules CTdij , (i, j) ∈ E , that are unknown.
These modules are not identified in the procedures described in Section 8.4. We
will now briefly describe an extension of the procedure in Section 8.4 to obtain
consistent estimates of the additional modules CTdij , (i, j) ∈ E , via the direct
method used in Section 8.4.2.

Consider again the example network (8.6)-(8.7) with a coupled reference
model

yd1 = T1r1 +Q12k12, p12 = P12y
d
1 ,

yd2 = T2r2 +Q21k21, p21 = P21y
d
2 .

where k12 = p21 and k21 = p12. The top row in (8.4) is given by (8.5), with the
modules defined in (8.9)-(8.10) and

CTd12 =
Q12

G1(1− T1)
, CTd21 =

Q21

G2(1− T2)
.

Now, the network (8.6)-(8.7) can be transformed into the augmented network
(8.19) as depicted in Figure 8.2, but by defining C̄Td12 := 1

CTd
12

, C̄Td21 := 1
CTd

21
and

the variables

ū12 :=
Q12

1− T1
u1 = Q̄12u1, ū21 :=

Q21

1− T2
u2 = Q̄21u2,

we can write the network (8.6)-(8.7) also as

y1 = C̄Td12 ū12 + C̄d12ȳ12 +H1e1,

y2 = C̄Td21 ū21 + C̄d21ȳ21 +H2e2,

as visualized in Figure 8.4.
The unknown modules CTd12 and CTd21 can now be determined by posing net-

work identification problems for the modules C̄Td12 and C̄Td21 , shown in orange in
Figure 8.4. Although the network structure in Figure 8.4 is the same as in Fig-
ure 8.2, different signals (ū12 and ū21) and different controller modules (C̄Td12 and
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C̄Td21 ) are present, where the modules C̄Td12 and C̄Td21 have not been identified in
the methods described in Section 8.4. The modules C̄d12 and C̄d21 are now de-
picted in white and assumed to be estimated consistently a priori as described
in Section 8.4.

For a general network (8.1) we have

yi = C̄Tdij ūij +
∑
k∈Ni

C̄dikȳik +Hiei, (i, j) ∈ E . (8.28)

Consider now the identification of CTdij as follows. For a given node i ∈ V, let

Cdij , j ∈ Ni, and Hi be given. We consider the following model for (8.28):

yij(ρ
c
ij) = C̄cij(ρ

c
ij)ūij +

∑
k∈Ni

C̄dikȳik +Hiei, (i, j) ∈ E ,

where C̄cij(ρ
c
ij) is a parametrized model for C̄Tdij . Define the prediction error

u1 ū12 y1

u2 ū21 y2

e1

e2

C̄Td
12

C̄Td
21

C̄d
12 −T̄2

C̄d
21−T̄1

Q̄12

Q̄21

H2

H1

ȳ12 ȳ21

Figure 8.4: The dynamic network represented by modules of the ideal distributed
controller and a coupled reference model.
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εcij(t, ρ
c
ij) := yi(t)− ŷij(t, ρcij) with

ŷij(t, ρ
c
ij) := H−1

i

(
C̄cij(ρ

c
ij)ūij +

∑
k∈Ni

C̄dikȳik

)
+ (1−H−1

i )yi.

Then by minimizing the identification criterion Vij(ρ
c
ij) := 1

N

∑N
t=1 ε

c
ij(t, ρ

c
ij)

2 for
each j ∈ Ni, the parameter estimates ρ̂cij are obtained. The asymptotic estimates

are ρ∗ij = arg minρcij Ē[εcij(t, ρ
c
ij)

2], j ∈ Ni.

Corollary 8.5.1. Suppose the following conditions hold:

• Φūij
(ω) is positive definite for almost all ω ∈ [−π, π],

• there exists ρdij such that Ccij(ρ
d
ij) = CTdij .

Then it holds that Ccij(ρ
∗
ij) = CTdij .

Notice that one can equivalently minimize
∑
j∈Ni

Vij(ρ
c
ij). Moreover, no ad-

ditional experiment is required for data acquisition.

Remark 8.5.1. The controller modules CTdij can also be obtained through an
indirect identification method. Indeed, the dynamics of the augmented network
described by (8.28) yield a mapping from external signals (u, e) to network signals
(including ūij). Consistent estimates of CTdij can therefore be obtained mutatis
mutandis via Corollary 8.4.1.

Remark 8.5.2. Under the assumption that a consistent estimate Ĉii of Cdii has

been obtained a priori, this estimate can also be used to obtain an estimate ĈTdij
of CTijd without posing an additional identification problem. By the definitions di-

rectly after (8.5), it follows that CTdij = CdiiQijT
−1
i , where Qij and Ti are transfer

functions that describe the reference model and are therefore known. Hence, a
consistent estimate of CTijd can be obtained as ĈTdij = ĈdiiQijT

−1
i .

8.6 Numerical example

Consider the two-node network described by (8.6)-(8.7), with transfer functions

G1(q) =
c1

q − a1
, G12(q) =

d1

q − a1
, H1 = 1,

G2(q) =
c2

q − a2
, G21(q) =

d2

q − a2
, H2 = 1,
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where a1 = 0.5, a2 = 0.2, c1 = c2 = 1 and d1 = d2 = 0.1. The objective is to let
the closed-loop interconnected system behave as two decoupled processes with
first-order dynamics, according to

ydi (t) = Ti(q)ri(t), Ti(q) =
1− γi
q − γi

, i = 1, 2, (8.29)

with γ1 = γ2 = 0.8.
As described in Section 8.3, the ideal distributed controller is described by

(8.9)-(8.10), with the interconnections sc1 = oc2, sc2 = oc1, and

Cd11(q) =
1− γ1

c1

q − a1

q − 1
, Cd12(q) = −d1

c1
, Kd

12(q) =
1− γ1

q − 1
,

Cd22(q) =
1− γ2

c2

q − a2

q − 1
, Cd21(q) = −d2

c2
, Kd

21(q) =
1− γ2

q − 1
.

For the experiment, consider that u1 and u2 are Gaussian white-noise signals
with unit variance and e1 and e2 are (unmeasured) Guassian white-noise sig-
nals with variance σ2

e = 0.25. As analyzed in Section 8.3, the noise will cause a
bias in the controller parameter estimates when the distributed virtual reference
feedback tuning (DVRFT) method is applied directly. For the distributed opti-
mal controller identification (DOCI) method, described in Section 8.4, we expect
consistent estimates and hence an improved closed-loop performance.

We first represent the network as shown in Figure 8.2, where

C̄d11 =
c1

1− γ1

q − 1

q − a1
, C̄d12 = −d1

c1

q − 1

q − a1
.

The modules are therefore parametrized as

C̄11(θ1) = θ1a
1− q−1

1− θ1bq−1
, C̄12(θ1) = θ1c

1− q−1

1− θ1bq−1
,

H1(θ1) = 1,

so that there exists θd1 such that C̄d11 = C̄11(θd1), C̄d12 = C̄12(θd1) and H1 = H1(θ1).
By forming the predictor

ŷ1(t|t− 1; θ1) := C̄11(ρ1)ū1 + C̄12(ρ1)ȳ2

and minimizing V1(θ1) in (8.21) for N = 100 samples, we find the estimate θ̂1.

The estimate θ̂2 for controller 2 is obtained by following an analogous procedure.
Note that V1 and V2 are not quadratic functions in the parameters. The cor-
responding DVRFT cost functions are quadratic and the optimization problems
therefore have analytic solutions.
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Figure 8.5: Step response of the closed-loop network from (r1, r2) to (y1, y2) for
20 experiments with DOCI (green), DVRFT (yellow) and the desired closed-loop
network (black).

The distributed controller resulting from DOCI leads to a closed-loop net-
work with a step response shown in Figure 8.5 and a frequency response shown
in Figure 8.6 in green of the transfer r → y, for 20 experiments. For comparison,
we synthesize a DVRFT controller using the same data via the method described
in Section 7.3. The corresponding responses are shown in Figure 8.5 and 8.6 in
yellow. Note that the controller classes are chosen such that the ideal controller
belongs to the controller class for each method, which leads to a convex and non-
convex cost function for DVRFT and DOCI, respectively. We observe that the
distributed controller synthesized via DOCI leads to a closed-loop network with a
response that is closer to the reference model compared to the controller synthe-
sized via VRFT. As discussed in Section 8.3, DVRFT leads to biased controller
estimates when the noise terms e1 and e2 are non-zero. This bias is illustrated
in Figure 8.7b, where the parameter estimates for controller 1 are plotted for 100
experiments. The parameter estimates for controller 1 with DOCI are plotted
in Figure 8.7a. Finally, Figure 8.8 shows the distribution of the achieved per-
formance for DOCI and DVRFT in the presence of noise. As described in the
introduction, VRFT can yield consistent estimates when instrumental variables
(IVs) are used. The construction of IVs for the example network was performed
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Figure 8.6: Frequency response of the closed-loop network from (r1, r2) to (y1, y2)
for 20 experiments with DOCI (green), DVRFT (yellow) and the desired closed-
loop network (black). Notice that the desired network is decoupled, thus the
corresponding transfers ri → ydj , i 6= j, are identical to zero.

1
c

1a 1b

(a) DOCI

1
c

1b1a

(b) DVRFT

Figure 8.7: Parameter estimates for 100 experiments (gray) and the true param-
eter (red) for controller 1.

using an additional experiment (Bazanella et al., 2012), mutatis mutandis. The
mean value of the performance of DVRFT with IVs is significantly lower com-
pared to DVRFT, while the variance is significantly higher. We observe that
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Figure 8.8: Distribution of the achieved performance for DOCI, DVRFT and
DVRFT with IVs, where TI and Td denote the transfers r → y and r → yd,
respectively.

the mean value as well as the variance of the performance are considerably lower
for DOCI. Hence, although both DOCI and DVRFT with IVs yield consistent
estimates, the increased variance due to IVs in DVRFT yields an overall worse
performance compared to DOCI.

8.7 Conclusions

We have developed a data-driven method for the construction of a distributed
controller for an interconnected system subject to disturbances. This method
is enabled by the construction of an augmented network. We have shown how
the identification of the ideal distributed controller modules in this network can
be solved by direct and indirect identification methods, resulting in consistent
controller estimates. The estimated distributed controller therefore solves the
model-reference control problem asymptotically in the number of data. Com-
paratively, the methods can be utilized as an alternative to the DVRFT method
described in Chapter 7 and do not require a tailor-made parametrization of the
noise model through the direct identification method. In the case of the indirect
method, a noise model can be fully omitted if measurement data are collected
in an open-loop configuration. By a simple network consisting of two intercon-
nected systems, we have shown the effectiveness and the improvement over biased
or high-variance alternative methods on the closed-loop performance.



Part III

Distributed data-driven
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Chapter 9

Guaranteed H∞
performance analysis and
distributed control from
noisy input-state data

In this chapter, we extend a recent data-based approach for guaranteed per-
formance analysis to distributed analysis of interconnected linear systems. We
present a new set of sufficient LMI conditions based on noisy input-state data that
guarantees H∞ performance and has a structure that is applicable to distributed
controller synthesis from data. Sufficient LMI conditions based on noisy data are
provided for the existence of a dynamic distributed controller that achieves H∞
performance. The presented approach enables scalable analysis and control of
large-scale interconnected systems from noisy input-state data.

9.1 Introduction

Several methods have been developed for data-based system analysis and con-
troller synthesis, we refer to (Hou and Wang, 2013) for a survey on data-based
control. Some methods rely on the reference model paradigm, such as virtual

This chapter is based on the publication: T. R. V. Steentjes, M. Lazar, and P. M. J. Van
den Hof. H∞ performance analysis and distributed controller synthesis for interconnected linear
systems from noisy input-state data. In Proc. 60th IEEE Conference on Decision and Control
(CDC), pages 3717–3722, Austin, Texas, USA, 2021a
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reference feedback tuning (Bazanella et al., 2012) and optimal controller iden-
tification (Campestrini et al., 2017). Extensions for interconnected systems to
data-based distributed controller synthesis include distributed virtual reference
feedback tuning in the noiseless (Steentjes et al., 2020), and noisy (Steentjes et al.,
2021d) case, described in Chapter 7.

A recent trend in data-based system analysis and control originates from
Willems’ fundamental lemma (Willems et al., 2005). Applications include data-
based predictive control (Coulson et al., 2019), (Allibhoy and Cortés, 2021), the
data-based parametrization of stabilizing controllers (De Persis and Tesi, 2020)
and robust data-based state-feedback design with noisy data (Berberich et al.,
2020). The data-based verification of dissipativity properties was considered
in (Koch et al., 2020a), (Koch et al., 2020b), which allows to determine sys-
tem measures such as the H∞ norm or passivity properties from data corrupted
by a noise signal satisfying quadratic bounds. A similar noise description was
considered in (van Waarde et al., 2022), which extends the data-based controller
design results in (van Waarde et al., 2020) to the noisy case. The data-based
conditions in (van Waarde et al., 2022) are necessary and sufficient for stabilizing
state feedback synthesis, including H2 or H∞ performance specifications.

In this chapter, the data-based H∞ performance analysis and distributed con-
troller synthesis problem for interconnected systems is considered. We extend the
data-based framework for parameterizing an unknown system, considered in the
two distinct papers(Koch et al., 2020b) and (van Waarde et al., 2022), to the
situation of interconnected systems. The analysis in this chapter is enabled by
considering a dual parametrization of the set ΣD: the set of systems that are
compatible with input-state data D for unmeasured noise trajectories in a set
W that captures quadratic bounds on the noise sequence. A feature of the dual
parametrization is the applicability of standard (primal) conditions for unstruc-
tured (Scherer, 2001) and structured (Van Horssen and Weiland, 2016) robust
performance analysis. For an interconnected system, we consider sets ΣiD of sub-
systems that are compatible with the local input-state and neighbors’ state data,
given prior knowledge on the noise signals confined to a set Wi. We develop suf-
ficient data-based conditions for H∞ performance analysis and for the existence
of a dynamic distributed controller that achieves a given H∞ performance level.

A feature of our results is that no model of the interconnected system is iden-
tified from the data. The identification of interconnected systems is considered
in the field of network identification, which provides structured and consistent
methods for identification (Van den Hof et al., 2013). If an identified model is
only used for controller synthesis, however, it is arguably more efficient to con-
sider data-based synthesis conditions directly. Additionally, with our data-based
method, stability and performance guarantees for the closed-loop interconnected
system come with a finite number of data points. This is a consequence of the
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non-probabilistic noise paradigm that is considered for the data-based analysis
and synthesis. Comparatively, system identification based on prediction-error
methods comes with consistency results asymptotic in the number of data, but
does not provide guarantees for finite data.

Basic nomenclature

The integers are denoted by Z. Given a ∈ Z, b ∈ Z such that a < b, we denote
Z[a:b] := {a, a+ 1, . . . , b− 1, b}. Let In ∈ Rn×n, or simply I, denote the identity
matrix and 1n ∈ Rn, or simply 1, denote the column vector of all ones. For
a subset A ⊂ Z, the vertical, respectively horizontal, stacking of matrices Xa,
a ∈ A is denoted cola∈AXa, respectively rowa∈AXa. The kernel of a matrix A
is denoted kerA and a matrix A⊥ denotes a basis matrix of kerA. For a real
symmetric matrix X, X � 0 (X � 0) denotes that X is positive (semi-) definite.
Matrices that can be inferred from symmetry are denoted by (?).

9.2 Preliminaries

In this chapter, we consider interconnected systems composed of L linear time-
invariant systems of the form

xi(k + 1) = Aixi(k) +
∑
j∈Ni

Aijxj(k) +Biui(k) + wi(k),

yi(k) = Cixi(k) +Diui(k) for i = 1, . . . , L, (9.1)

where xi ∈ Rni denotes the state, ui ∈ Rmi the input and wi ∈ Rni is a noise
signal. The set Ni := {j ∈ V | (i, j) ∈ E} denotes the neighbours of system i,
where V and E ⊆ V × V denote the set of vertices and the set of non-oriented
edges defining the connected graph G = (V, E).

Let there exist a true interconnected system defined by the matrices A0
i , A

0
ij

and B0
i , (i, j) ∈ E , generating the input-state data {(ui(t), xi(t)), t = 0, . . . , N}

for i ∈ V. This data is collected in the matrices

Xi := [xi(0) · · · xi(N)], U−i := [ui(0) · · · ui(N − 1)].

By defining the matrices

X+
i := [xi(1) · · · xi(N)], X−i := [xi(0) · · · xi(N − 1)],

W−i := [wi(0) · · · wi(N − 1)],

we obtain the following data equation for each i ∈ V:

X+
i = A0

iX
−
i +

∑
j∈Ni

A0
ijX

−
j +B0

i U
−
i +W−i . (9.2)
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Consider the stacked input, state and noise variables u := col(u1, . . . , uL),
x := col(x1, . . . , xL) and w := col(w1, . . . , wL). Then the interconnected system
(9.1) is compactly described by

x(k + 1) = Ax(k) +Bu(k) + w(k), (9.3)

y(k) = Cx(k) +Du(k),

with straightforward definitions for A, B, C and D. The corresponding data
equation is

X+ = A0X− +B0U− +W−,

with the data matrices defined for system (9.3) as was done for each subsystem.
The transfer matrix from u to y of (9.3) is G(q) := C(qI − A)−1B +D and the
H∞ norm of G is denoted ‖G‖H∞ . For γ > 0, we say that the interconnected
system achieves H∞ performance γ if ‖G‖H∞ < γ.

9.3 Inferring system performance
from noisy data

In this section, we consider the data-based dissipativity analysis for an unstruc-
tured system. We recall a parametrization from (Koch et al., 2020b) and in-
troduce a dual parametrization of systems that are compatible with input-state
data. The dual parametrization allow us to (i) derive a dual result with respect
to (Koch et al., 2020b) for concluding dissipativity properties from data, and (ii)
extend the data-based results to structured results for interconnected systems.

Consider the system

x(k + 1) = A0x(k) +B0u(k) + w(k), (9.4)

y(k) = Cx(k) +Du(k) (9.5)

with collected data

X+ := [x(1) · · · x(N)], X− := [x(0) · · · x(N − 1)],

U− := [u(0) · · · u(N − 1)],

and noise sequence W− := [w(0) · · ·w(N−1)]. We assume that the data (U−, X)
are known, while W− is unknown, but

W− ∈ W :=

{
W |

[
W>

I

]> [
Qw Sw
S>w Rw

] [
W>

I

]
� 0

}
,
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with Qw ≺ 0 so that W is bounded. No assumptions on the statistics of w
are made. This noise model can represent, e.g., an energy bound W−W>− �
Rw for Qw = −I and Sw = 0 or bounds on individual components w(k) (van
Waarde et al., 2022). The square of sample cross-covariance bounds, as considered
in (Hakvoort and Van den Hof, 1995) for parameter-bounding identification, can
be captured by W with Qw generally not strictly negative definite; this is a topic
of current research. We assume that the data are informative in the sense that
the matrix col(X−, U−) has full row rank.

Because the noise term is unknown, there exist multiple pairs of system ma-
trices that are consistent with the data. The set of all pairs (A,B) that are
consistent with the data is defined as

ΣD = {(A,B) |X+ = AX−+BU−+W for some W ∈W}.

We note that the true system (A0, B0) ∈ ΣD by construction. Furthermore, in the
noiseless case (W− = 0), ΣD reduces to the singleton {(A0, B0)} if col(X−, U−)
has full rank (van Waarde et al., 2020).

The following result from (van Waarde et al., 2022), cf. (Koch et al., 2020b),
provides a parametrization of the set ΣD.

Lemma 9.3.1 (Parametrization ΣD). It holds that

ΣD = {(A,B) |

−A>−B>
I

> [Q̄D S̄D
S̄>D R̄D

]−A>−B>
I

 � 0},

with

[
Q̄D S̄D
S̄>D R̄D

]
=

X− 0
U− 0
X+ I

[Qw Sw
S>w Rw

]X− 0
U− 0
X+ I

> .
We now present a dual parametrization of ΣD.

Lemma 9.3.2 (Dual parametrization ΣD). Let the matrix[
Qw Sw
S>w Rw

]
be invertible. Then it holds that

ΣD = {(A,B) |

I 0
0 I
A B

> [QD SD
S>D RD

]I 0
0 I
A B

 � 0},

where RD � 0 with
[
QD SD
S>D RD

]
:=
[
Q̄D S̄D
S̄>D R̄D

]−1

.
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Proof. The proof is provided in Appendix 9.A.

Since any system that is consistent with the data is an element of ΣD, every
such system admits a representation

x(k + 1) =
[
A B

] [x(k)
u(k)

]
, with (A,B) ∈ ΣD.

As it was shown in (Koch et al., 2020b), this uncertain system admits the follow-
ing linear fractional transformation (LFT) representationx(k + 1)

y(k)
p(k)

 =


0 0 I
C D 0
I 0 0
0 I 0


x(k)
u(k)
l(k)

 , l(k) =
[
A B

]
p(k),

with (A,B) ∈ ΣD.

Proposition 9.3.1 (Dissipativity from data). If there exist a P and α such that
P � 0, α > 0 and (9.6) hold (see bottom of this page), then

I 0
A B
0 I
C D


>
−P 0 0 0
0 P 0 0
0 0 −Q −S
0 0 −S> −R



I 0
A B
0 I
C D

≺ 0 (9.7)

holds for all (A,B) ∈ ΣD.

Proof. Let (9.6) hold and let M =
[
A B

]
. By Lemma 9.3.2, it holds that for

α > 0, [
I
M

]> [−αQD −αSD
−αS>D −αRD

] [
I
M

]
� 0



I 0 0
0 I 0
0 I 0
I 0 0
0 0 I
0 0 I
C 0 D



> 
−P 0 0 0 0 0
0 P 0 0 0 0
0 0 −αRD −αS>D 0 0
0 0 −αSD −αQD 0 0
0 0 0 0 −Q −S
0 0 0 0 −S> −R





I 0 0
0 I 0
0 I 0
I 0 0
0 0 I
0 0 I
C 0 D


≺ 0

(9.6)
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for all (A,B) ∈ ΣD. Therefore, by the full block S-procedure (Scherer, 2001), it
follows that (9.7) holds.

Inequality (9.7) is the well known condition for dissipativity for a quadratic

supply rate matrix Π = −
[
Q S

S> R

]
. A special case of the supply rate matrix is

Q = γ2I, S = 0 and R = −I for γ > 0. For this specific case there exists a P � 0
so that (9.7) holds if and only if the channel u→ y achieves H∞ performance γ.

We have derived a dual parametrization of ΣD, which allows the application
of standard robust control tools to the LFT representation. The parametrization
from Lemma 9.3.1, see also (Koch et al., 2020b, Lemma 2), requires the appli-
cation of the dualization lemma on the data-based LMI. A feature of the dual
parametrization of ΣD in Lemma 9.3.2, is that robust analysis tools for inter-
connected systems can be applied mutatis mutandis, as we will show in the next
section.

9.4 Interconnected system analysis

Let us return to the interconnected system (9.1). We consider the data U−i , Xi

and Xj , j ∈ Ni, is available for each system i, while W−i is unknown. For each
i ∈ V, we assume

W−i ∈ Wi =

{
Wi |

[
W>i
I

]> [
Qiw Siw

(Siw)> Riw

]
︸ ︷︷ ︸

=:Πi
w

[
W>i
I

]
� 0

}
,

with Qiw ≺ 0. We assume that the data are informative enough in the sense that
the matrix col(X−i , X

−
Ni
, U−i ) has full row rank for each i ∈ V.

For each subsystem, there exist multiple tuples (Ai, ANi
, Bi) that are consis-

tent with the data, i.e., that satisfy

X+
i = AiX

−
i +

∑
j∈Ni

AijX
−
j +BiU

−
i +Wi (9.8)

for some Wi ∈ Wi. Here, we define ANi
:= rowj∈Ni

Aij . Hence, for each i ∈ V,
the set of subsystems that are consistent with the data is

ΣiD := {(Ai, ANi , Bi) | (9.8) holds for some Wi ∈ Wi}

We note that under the assumption that W−i ∈ Wi, the true system matrices are
in the set ΣiD by construction.



210 Chapter 9. Guaranteed H∞ performance from data

Lemma 9.4.1 (Parametrization ΣiD). It holds that

ΣiD = {(Ai, ANi , Bi) | (?)>
[
Q̄iD S̄iD

(S̄iD)> R̄iD

]
−A>i
−A>Ni

−B>i
I

 � 0},

with

[
Q̄iD S̄iD

(S̄iD)> R̄iD

]
:=


X−i 0
X−Ni

0

U−i 0
X+
i I

Πw
i


X−i 0
X−Ni

0

U−i 0
X+
i I


>

.

Lemma 9.4.2 (Dual parametrization ΣiD). Let Πw
i be invertible. It holds that

ΣiD is equal to

{(Ai, ANi
, Bi) | (?)>

[
QiD SiD

(SiD)> RiD

]
I 0 0
0 I 0
0 0 I
Ai ANi

Bi

 � 0},

where RiD � 0 with
[

Qi
D Si

D
(Si
D)> Ri

D

]
:=
[

Q̄i
D S̄i

D
(S̄i
D)> R̄i

D

]−1

.

The proofs for Lemma 9.4.1 and 9.4.2 follow an analogue reasoning as the
proofs for Lemma 9.3.1 and 9.3.2, respectively, and are omitted for brevity.

We note that if any interconnected system with subsystems in ΣiD, i.e., any
interconnected system that is consistent with the data, has a certain property,
then also the true interconnected system has this property. To show a property for
all interconnected systems that are consistent with the data, we use the following
LFT representation.

Every interconnected system that is consistent with the data can be described
by subsystems ΣiD, i ∈ V,

xi(k + 1)
yi(k)
pi(k)

=


0 0 0 I
Ci 0 Di 0I0
0

 0
I
0

 0
0
I

 0
0
0





xi(k)
colj∈Ni

xj(k)
ui(k)
li(k)


and li(k) =

[
Ai ANi

Bi
]
pi(k), with (Ai, ANi

, Bi) ∈ ΣiD.
This LFT representation for each subsystem allows us to apply robust analysis

results for interconnected systems, to conclude H∞ performance for all intercon-
nected systems that are compatible with the data. Consider the matrices Zi
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defined in Appendix 9.B and define the matrix

Ji :=



I 0 0 0
0 0 I 0

1⊗ I 0 0 0
0 I 0 0
0 0 I 0I0
0

 0
I
0

 0
0
0

 0
0
I


0 0 0 I
Ci 0 0 Di


. (9.9)

Proposition 9.4.1 (Performance from structured data). Let QiD ≺ 0 and γ > 0.
If there exist Pi, Zi and αi so that Pi � 0, αi > 0 and

J>i



−Pi 0 0 0 0 0 0 0
0 Pi 0 0 0 0 0 0
0 0 Z11

i Z12
i 0 0 0 0

0 0 (Z12
i )> Z22

i 0 0 0 0
0 0 0 0 −αiRiD −αi(SiD)> 0 0
0 0 0 0 −αiSiD −αiQiD 0 0
0 0 0 0 0 0 −γ2I 0
0 0 0 0 0 0 0 I


Ji ≺ 0

(9.10)

holds for all i ∈ V, then all interconnected systems with subsystems (Ai, ANi
, Bi) ∈

ΣiD, i ∈ V, achieve H∞ performance γ.

The proof follows by a similar argument as in Proposition 9.3.1 and the appli-
cation of (Van Horssen and Weiland, 2016, Theorem 1) to the LFT representation.

9.5 Distributed controller synthesis from data

So far we have considered the performance analysis of (interconnected) systems
from data for the channel u → y. We will now consider a distributed control
problem for the interconnected system (9.1), where we take ui and yi as the
control input and measured output respectively. Recall that we assume that
input-state data is collected to determine ΣiD for each i. With the system matrices
defined as Ci = I, Di = 0, this implies only state-measurements are available
for control. We note, however, that Ci is allowed to be chosen arbitrarily in
this section and that Di = 0; this implies that output measurements can be
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utilized for control. Future research will focus on extending the framework to the
case when only input-output data is available for synthesis. The problem under
consideration is to guarantee that the channel w → z achieves H∞ performance
γ > 0, with performance output

zi = Czi xi +
∑
j∈Ni

Czijxj +Dz
i ui. (9.11)

We consider a distributed controller that is an interconnected system with
dynamic subsystemsξi(k + 1)

oi(k)
ui(k)

 = Θi

ξi(k)
si(k)
yi(k)

 , i = 1, . . . , L, (9.12)

where ξi ∈ Rni is the state of controller i and oi = colj∈Ni
oij , si = colj∈Ni

sij are
interconnection variables satisfying sij = oji ∈ Rnij for (i, j) ∈ E . By represent-
ing every interconnected system with performance output (9.11) and subsystems
(Ai, ANi , Bi) ∈ ΣiD in LFT form, we obtain conditions on the data for the exis-
tence of a distributed controller by (Van Horssen and Weiland, 2016, Theorem 2).

Define the matrices

Ti :=



I 0 0 0
0 0 I I

1⊗ I 0 0 0
0 I 0 0
0 0 I 0I0
0

 0
I
0

 0
0
0

 0
0
0


0 0 0 I
Czi CzNi

0 0


, i ∈ V,

and let Si := (Ti)⊥, i ∈ V.

Theorem 9.5.1. Let Ψi and Φi be matrices that are a basis of ker
[
Ci 0

]
and

ker
[
0 I (Dz

i )>
]
, respectively, and let nij = 3ni. If there exist Pi, P̄i, Zi, Z̄i,

αi such that Pi � 0, P̄i � 0, αi > 0, (9.14)-(9.15) hold (see next page) with
βi = α−1

i and [
Pi I
I P̄i

]
� 0, (9.13)

then there exist Θi, i ∈ V, so that all closed-loop interconnected systems de-
scribed by (9.1), (9.11) and (9.12) with subsystems (Ai, ANi

, Bi) ∈ ΣiD achieve
H∞ performance γ.
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Ψ>i T
>
i



−Pi 0 0 0 0 0 0 0
0 Pi 0 0 0 0 0 0
0 0 Z11

i Z12
i 0 0 0 0

0 0 (Z12
i )> Z22

i 0 0 0 0
0 0 0 0 −αiRiD −αi(SiD)> 0 0
0 0 0 0 −αiSiD −αiQiD 0 0
0 0 0 0 0 0 −γ2I 0
0 0 0 0 0 0 0 I


TiΨi ≺ 0

(9.14)

Φ>i S
>
i



−P̄i 0 0 0 0 0 0 0
0 P̄i 0 0 0 0 0 0
0 0 Z̄11

i Z̄12
i 0 0 0 0

0 0 (Z̄12
i )> Z̄22

i 0 0 0 0
0 0 0 0 −βiR̄iD −βi(S̄iD)> 0 0
0 0 0 0 −βiS̄iD −βiQ̄iD 0 0
0 0 0 0 0 0 −γ−2I 0
0 0 0 0 0 0 0 I


SiΦi � 0

(9.15)

Remark 9.5.1. The conditions in Proposition 9.5.1 are sufficient for any αi > 0
are LMIs for fixed αi. Conservatism can be reduced by, e.g., verifying feasibility
of the LMIs on a discrete interval for αi, i ∈ V.

In particular, Theorem 9.5.1 implies that the existence of a distributed con-
troller for which the ‘true’ interconnected system achieves H∞ performance, can
be verified by checking a set of LMIs based on noisy input-state data. Suitable
matrices Pi, P̄i, Zi, Z̄i are thus indirectly based on the data; these matrices can
be used for the subsequent construction of the controller matrices Θi as described
in Chapter 4, cf. (Van Horssen and Weiland, 2016). We note that neither our
existence conditions, nor the construction of Θi is based on the unknown matrices
(Ai, ANi , Bi).
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9.6 Numerical examples

9.6.1 Example 1: H∞-norm analysis

Consider a system of the form (9.4) with L = 3,

A0 =

0.5 0.1 0
0.1 0.4 0.1
0 0.1 0.6

 and B0 = I.

We choose y = x so that C = I and D = 0. The input entries are drawn from a
normal distribution with zero mean and unit variance. The noise w(k) is drawn
uniformly from the set {w | ‖w‖2 ≤ σ}, where σ > 0 determines the noise level.
Hence, considering the set W with Qw = −I, Sw = 0 and Rw = Nσ2I, we have
that the noise satisfies W− ∈ W.

The aim is to find an upperbound on the H∞ norm of the channel u→ y using
the noisy data (U−, X) with N = 50 samples. The true H∞ norm is γ0 = 2.8836.
We choose eleven noise levels σ in the interval [0.04, 0.25] and generate one data
set for each noise level. For each data set, we minimize γ subject to (9.6) with
Q = γ2I, S = 0 and R = −I. The results are displayed in Figure 9.1 in blue.
By Proposition 9.3.1, the corresponding solutions satisfy (9.7), hence γ is an
upperbound on the H∞ norm for all systems in ΣD and, therefore, for (A0, B0).

Figure 9.1: Example 1: Upper bound on the H∞ norm determined from noisy
data with increasing noise levels σ via lumped (blue) and structured (red) data
analysis. The H∞ norm of the true system is shown in orange.

Next, we perform the analysis through Proposition 9.4.1 using the same data
sets. It is clear that W−i ∈ Wi for each i with Qiw = −I, Siw = 0 and Riw = Nσ2I.
For each data set, we minimize γ subject to the LMIs (9.10) for i = 1, 2, 3. The
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resulting γ values provide a guaranteed upper bound on the H∞ norm of u→ y
and are shown in Figure 9.1 in red.

The computed value of γ using either Proposition 9.3.1 or Proposition 9.4.1
is a guaranteed upper bound for the H∞ norm of the true system for all noise
levels. The bound provides a good approximation of γ0 for low noise levels. For
increasing noise levels, the bound γ becomes more conservative for both methods.
Comparing the results from Proposition 9.3.1 (unstructured data) with Propo-
sition 9.4.1 (structured data), the bounds obtained from (9.10) are conservative
with respect to those from (9.6) for higher noise levels, while the difference is
small for low noise levels. By solving the unstructured data-based conditions
in (Koch et al., 2020b, Theorem 4), we find the same bounds as obtained per
Proposition 9.3.1, as expected from the duality of the results.

P C

Figure 9.2: The problem in Example 2 is to synthesize a distributed controller
(C) from noisy input-state data collected from an interconnected system (P) with
L = 25 subsystems on a cycle graph, such that w → z achieves a given H∞ norm.

9.6.2 Example 2: Distributed H∞ controller synthesis

Consider an interconnected system with L = 25 subsystems, each having one
state (ni = 1). The subsystems are interconnected according to a cycle graph
G (as depicted in Figure 9.2) and the matrices Ai and Aij are drawn uniformly
on the interval [0, 1] and [0, 0.1], respectively, and Bi = 1. We consider yi = xi
for all subsystems and consider the performance output zi = xi, so that Czi = I
and Czij = Dz

i = 0. For the data acquisition, the input entries are drawn from a
normal distribution with zero mean and unit variance. The noise signals wi(k)
are drawn uniformly from the set {w | |w| ≤ σ}, where σ = 0.05 is the noise level.
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Hence, considering the sets Wi with Qiw = −I, Siw = 0 and Riw = Nσ2I, we have
that the noise sequences satisfy W i

− ∈ Wi, i = 1, . . . , L.
The goal is to synthesize a distributed controller that yields an upperbound

γ on the H∞ norm of the channel w → z, without using knowledge of Ai, Aij
and Bi. First, we verify what the smallest upperbound γ is, for which there
exists a model-based distributed controller by the nominal LMIs in (Van Horssen
and Weiland, 2016, Theorem 2). This smallest upperbound of γ is 1.00 and
serves as a benchmark: our data-based method for distributed control cannot
perform better than the model-based distributed controller. We generate the
data matrices (U−i , Xi) for N = 50 samples. For αi := α = 1, we observe that
the LMIs (9.14) and (9.15) are feasible for γ = 1.10. Hence, by Theorem 9.5.1,
there exists a distributed controller that achieves an H∞ norm less than 1.10 in
closed-loop with the true interconnected system.

Figure 9.3: Example 2: Achievable H∞ norm with distributed control from
noisy data with increasing noise levels σ (red) and achievable H∞ norm with
distributed control computed using the true system (blue).

Next, we increase the noise level, up to σ = 0.4. The resulting values of γ
are shown in Figure 9.3 and obtained from the conditions in Theorem 9.5.1 by
varying α in a discrete interval. We observe that the conservatism increases for
increasing noise levels. This can be explained by the increasing size of ΣiD, leading
to the existence of a more conservative distributed controller that achieves H∞
performance for all interconnected systems consistent with the data.

9.7 Conclusions

We have considered the problem of analyzing the H∞ norm of an interconnected
system and finding a distributed controller that achieves H∞ performance based
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on noisy data. First, we considered a dual parametrization of the set of sys-
tems consistent with the data and we presented a dual result for data-based
dissipativity analysis, with respect to the results in (Koch et al., 2020b). A
dual parametrization of data-compatible subsystems allowed us to introduce an
interconnected system with LFT representations of the subsystems. We have pre-
sented sufficient LMI conditions based on data that guarantee H∞ performance
or the existence of a distributed controller that achieves H∞ performance.

The noise that affects the system has been characterized by quadratic bounds
in this chapter, which can represent, for example, magnitude or energy bounds.
This characterization can yield guarantees on the achieved performance for finite
data, compared to the methods described in Chapter 7 and Chapter 8 in Part II,
as well as Chapter 2 in conjunction with Chapter 4 in Part I, that yield asymptotic
properties. Alternative noise characterizations with practical relevance will be
utilized in the sequel of Part III for performance analysis and controller synthesis.
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Appendix

9.A Proof of Lemma 9.3.2

Proof. Let M :=
[
A B

]
and

P̄ :=

[
Q̄D S̄D
S̄>D R̄D

]
∈ Rn×n.

Since col(U−, X−) has full row rank, (A,B) ∈ ΣD if and only if[
−M>
I

]> [
Q̄D S̄D
S̄>D R̄D

] [
−M>
I

]
� 0 and Q̄D ≺ 0,

by Lemma 9.3.1. This is equivalent to

P̄ � 0 on im

[
−M>
I

]
and P̄ ≺ 0 on im

[
I
0

]
. (9.16)

Since the direct sum of im

[
−M>
I

]
and im

[
I
0

]
is equal to Rn, it follows by the

dualization lemma (Scherer and Weiland, 2017, Lemma 4.9) that (9.16) holds if
an only if

P̄−1 � 0 on im

[
−M>
I

]⊥
and P̄−1 � 0 on im

[
I
0

]⊥
,

which is equivalent to

P̄−1 � 0 on im

[
I
M

]
and P̄−1 � 0 on im

[
0
I

]
.

Thus, (9.16) holds if and only if[
I
M

]> [
QD SD
S>D RD

] [
I
M

]
� 0 and R � 0,

which proves the assertion.

219
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9.B Definition scales

Let X11
ij and X̄11

ij be symmetric matrices. We define

Z11
i := − diag

j∈Z[1:L]

X11
ij , Z

22
i := diag

j∈Z[1:L]

X11
ji ,

Z̄11
i := − diag

j∈Z[1:L]

X̄11
ij , Z̄

22
i := diag

j∈Z[1:L]

X̄11
ji ,

Z12
i := diag

(
− diag
j∈Z[1:i]

X12
ij , diag

j∈Z[i+1:L]

(X12
ji )>

)
,

Z̄12
i := diag

(
− diag
j∈Z[1:i]

X̄12
ij , diag

j∈Z[i+1:L]

(X̄12
ji )>

)
.



Chapter 10

Data-informativity for
control: ellipsoidal
cross-covariance noise
bounds

In this chapter, we address the design of controllers based on noisy data that
are not necessarily informative for identification, under the assumption that the
noise satisfies sample cross-covariance bounds with respect to an instrumental
variable. New controller synthesis methods are developed that extend existing
frameworks in two relevant directions: a more general noise characterization in
terms of cross-covariance bounds and informativity conditions for control based
on input-output data. Previous works have derived necessary and sufficient in-
formativity conditions for noisy input-state data with quadratic noise bounds via
an S-procedure. Although these bounds do not capture cross-covariance bounds
in general, we show that the S-procedure is still applicable for obtaining non-
conservative conditions on the data. Informativity-conditions for stability, H∞
and H2 control are developed, which are sufficient for input-output data and
also necessary for input-state data. Simulation experiments illustrate that cross-
covariance bounds can be less conservative for informativity, compared to norm
bounds typically employed in the literature.

This chapter is based on the publication: T. R. V. Steentjes, M. Lazar, and P. M. J. Van den
Hof. On data-driven control: Informativity of noisy input-output data with cross-covariance
bounds. IEEE Control Systems Letters, 6:2192–2197, 2022b

221
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10.1 Introduction

When mathematical models of dynamical systems are not available, data plays an
essential role in the process of learning system characteristics. Indeed, data can
contain information about the system from which a model of the system can be
derived or a controller can be learned, either from a data-based model or directly
from the data. A key problem for data-driven control is to determine whether
a set of data collected from a system contains enough information to design a
controller, independent of the methodology.

An indirect approach for controller design from data consists of two steps: ob-
taining a model from data through system identification (Ljung, 1999) and sub-
sequently designing a controller via a model-based method. In the field of iden-
tification for control, the problem of determining a suitable model for controller
design is considered (Van den Hof and Schrama, 1995), (Gevers, 2005), aiming
at minimizing performance degradation due to model mismatching. Whether the
data used for obtaining a model are sufficiently rich for identification, is deter-
mined by a property called informativity.

Even if data are not informative for identification, data can still be informative
for controller design. Necessary and sufficient conditions for informativity of data
for control were developed in (van Waarde et al., 2020) for noiseless input-state
data. These results were extended in (van Waarde et al., 2022) for noisy input-
state data with prior knowledge on the noise in the form of quadratic bounds,
via a matrix variant of the S-procedure. Quadratic noise bounds play a key role
in data-driven controller design (van Waarde et al., 2022), (De Persis and Tesi,
2020), (Berberich et al., 2021), distributed controller design (Chapter 9) and
dissipativity analysis (Koch et al., 2020a), (van Waarde et al., 2021) from data,
and represent, for example, magnitude, energy and variance bounds on the noise.

In this chapter, we consider the problem of determining informativity of input-
output and input-state data for control with prior knowledge of the noise in the
form of a sample cross-covariance type bound with respect to a user-chosen in-
strumental signal. Bounds on the sample cross-covariance were introduced in
(Hakvoort and Van den Hof, 1995) as an alternative to magnitude bounds in
parameter bounding identification, given its overly conservative noise characteri-
zation, cf. (Bisoffi et al., 2021a) for a comparison of instantaneous and (quadratic)
energy type bounds for data-driven control. Our approach to data-driven con-
trol extends existing frameworks in two relevant directions: a more general noise
characterization in terms of cross-covariance bounds with practical relevance and
informativity conditions for control based on input-output data. We provide suf-
ficient conditions for informativity for stabilization, H∞ and H2 control, which
are also necessary for input-state data.
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10.2 Input-output data: cross-covariance bounds

Consider a class of linear systems described by

A(q−1)y(t) = B(q−1)u(t) + e(t), (10.1)

with A(ξ) ∈ Rp×p[ξ] and B(ξ) ∈ Rp×m[ξ] polynomial matrices, given by A(ξ) =
I+A1ξ+A2ξ

2 + · · ·+Anξl and B(ξ) = B0 +B1ξ+B2ξ
2 + · · ·+Blξl and q−1 is the

delay operator, i.e., q−1x(t) = x(t−1). By defining ζ(t) := col(y(t−1), . . . , y(t−
l), u(t− 1), . . . , u(t− l)), Ā := row(−A1, . . . ,−Al) and B̄ := row(B1, . . . , Bl), we
can write (10.1) equivalently as

y(t) = B0u(t) + e(t) +
[
Ā B̄

]
ζ(t), (10.2)

Hence, with ζ ∈ Rn as a state, a state-space representation is

ζ(t+ 1)=


Ā B̄
I 0 0 0
0 0 0 0
0 0 I 0


︸ ︷︷ ︸

=:Az

ζ(t) +


B0

0
I
0


︸ ︷︷ ︸

=:Bz

u(t) +


I
0
0
0


︸ ︷︷ ︸

=:Hz

e(t),

y(t) =
[
Ā B̄

]
ζ(t) +B0u(t) + e(t), (10.3)

Notice that (10.3) is a non-minimal representation of order n = (p+m)l. Defining
the data matrices Z− :=

[
ζ(0) · · · ζ(N − 1)

]
, Y− :=

[
y(0) · · · y(N − 1)

]
and U−, E− accordingly, we obtain the data equation

Y− =
[
Ā B̄

]
Z− +B0U− + E−, (10.4)

where Ā, B̄, B0 are unknown system matrices. We consider the noise not to be
measured, i.e., E− is unknown, while prior knowledge on the cross-covariance of
the noise with respect to an instrumental variable is available.

10.2.1 Cross-covariance noise bounds

Consider the sample cross-covariance with respect to the noise e ∈ Rp and a
variable r ∈ RM , given by 1√

N

∑N−1
t=0 e(t)r(t)> = 1√

N
E−R>−. The variable r is

instrumental and can be specified by the user (as discussed at the end of this
subsection), i.e., it is a given variable in the upcoming analysis. We assume prior
knowledge on the noise of the form

1

N
E−R

>
−R−E

>
− � Hu, (10.5)
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where Hu is an upper-bound on the squared sample cross-covariance matrix
1√
N
E−R>−. In a generalized form, we write

[
I

R−E>−

]> [
Q11 Q12

Q>12 Q22

] [
I

R−E>−

]
� 0, (10.6)

with Q22 ≺ 0. For Q11 = NHu, Q12 = 0 and Q22 = −I, the bound (10.5) is
recovered. Note that (10.6) can be rewritten as the bound in (van Waarde et al.,
2022, Assumption 1) with Φ22 = R>−Q22R−, but in general only Φ22 � 0 holds,
while Φ22 ≺ 0 is assumed in (van Waarde et al., 2022). This means that the data
informativity results of (van Waarde et al., 2022) cannot be used to establish data
informativity for general cross-covariance noise bounds. However, the matrix S-
lemma in (van Waarde et al., 2022, Theorem 13) can still be exploited to obtain
necessary conditions for informativity of input-state data with cross-covariance
bounds, as shown in Proposition 10.3.1 of this chapter.

In the state-space representation (10.3), the state-space matrices Az and Bz
contain unknown parameters Ā, B̄ and B0. Write

Az =


Ā B̄
0 0
0 0
0 0


︸ ︷︷ ︸

=:Λe

+


0 0 0 0

Ip(l−1) 0 0 0
0 0 0 0
0 0 Im(l−1) 0


︸ ︷︷ ︸

=:J1

(10.7)

and Bz =


B0

0
0
0


︸ ︷︷ ︸

=:Be

+


0
0
Im
0


︸ ︷︷ ︸

=:J2

, (10.8)

so that Λe and Be are unknown parameter matrices, concatenated with zero
rows, and J1 and J2 are binary matrices. The set of all pairs (Λe, Be) that are
compatible with the data is

ΣRQ(U,Y ) :={
[
Ā B̄
0 0

]
,
[
B0
0

]
) | ∃E− such that (10.6) and (10.4) hold}.

Remark 10.2.1. A remark about the notation is in order. To keep the notation
compact, the state-space matrices Az and Bz were defined in (10.3). The matrices
Λe and Be relate to Az and Bz as defined in (10.7)-(10.8) and both depend affinely
on the unknown matrices Ā, B̄ and B0. Finally, the coefficients in Ā, B̄ and B0

define the polynomial matrices A and B, describing the linear system (10.1).
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Lemma 10.2.1. Let Qe :=
[
HzQ11H

>
z HzQ12

Q>12H
>
z Q22

]
and consider I

Λ>e
B>e

> I HzY−R>−
0 −Z−R>−
0 −U−R>−

Qe
I HzY−R>−

0 −Z−R>−
0 −U−R>−

>  I
Λ>e
B>e

 � 0. (10.9)

It holds that ΣRQ(U,Y ) ⊆ {(Λe, Be) | (10.9) holds}. Moreover, if R−[Z>− U>− ] has full

column rank, then ΣRQ(U,Y ) = {(Λe, Be) | (10.9) holds}.

Proof. The first statement follows from (10.4), (10.6), and the definition of ΣRQ(U,Y ).

Full-column rank of R−[Z>− U>− ] and (10.9) imply that the last ml+p(l−1) rows
of [Λe Be] = col(M1, 0) are zero and E− := Y− −M1[Z>− U>− ] satisfies (10.6).

Hence, (Λe, Be) ∈ ΣRQ(U,Y ) so that ΣRQ(U,Y ) = {(Λe, Be) | (10.9) holds}.

We denote all (Az, Bz) that are compatible with the data by

Σ̄RQ(U,Y ) := {(Λe + J1, Be + J2) | (Λe, Be) ∈ ΣRQ(U,Y )}.

We have provided a parametrization of (a superset of) ΣRQ(U,Y ) based on the

data equation (10.4). One can equivalently parametrize Σ̄RQ(U,Y ) on the basis

of the state data equation Z+ = AzZ− + BzU− + HzE−. This leads to an
equal set Σ̄RQ(U,Y ), but the ‘repeated’ data in the parametrization contained in

Z+ :=
[
ζ(1) · · · ζ(N)

]
, would render the evaluation numerically sensitive.

Design methods in (van Waarde et al., 2022), (Berberich et al., 2021) can yield a

parametrization Σ̄RQ(U,Y ) based on this state data equation, but with limited appli-

cability to cross-covariance bounds (10.6), i.e., only if the dimension of r satisfies
M ≥ N .

Existing guidelines (Hakvoort and Van den Hof, 1995) recommend choosing
an instrumental variable r that is correlated with the input u, but uncorrelated
with the noise e. Hence, this suggests the choice of (filtered/delayed versions)
of the input for r in an open-loop case for data collection, and an external ref-
erence/dithering signal for r in a closed-loop case. Moreover, Lemma 10.2.1
provides an additional guideline for the choice of r to reduce conservatism in
the case of input-output data, i.e., R−[Z>− U>− ] has full column rank only if the
number of instrumental variables M satisfies M ≥ pl +m(l + 1).

10.2.2 Output-feedback control

Consider a (dynamic) output feedback controller described by the difference equa-
tion of the form (De Persis and Tesi, 2020)

C(q−1)u(t) = D(q−1)y(t), (10.10)
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with C(ξ) ∈ Rm×m[ξ] and D(ξ) ∈ Rm×p[ξ] polynomial matrices given by C(ξ) =
I + C1ξ + C2ξ

2 + · · ·+ Cnξ
l and D(ξ) = D1ξ +D2ξ

2 + · · ·+Dnξ
l. We define a

state ζc for (10.10) as ζc := col(u(t−1), . . . , u(t− l), y(t−1), . . . , y(t− l)), yielding
a state-space representation for the controller:

ζc(t+ 1) =


C̄ D̄
I 0 0 0
0 0 0 0
0 0 I 0

 ζc(t) +


0
0
I
0

 y(t), (10.11)

u(t) =
[
C̄ D̄

]
ζc(t),

with C̄ := row(−C1, . . . ,−Cl) and D̄ := row(D1, . . . , Dl). It follows that ζc =
[ 0 I
I 0 ] ζ, which implies that u(t) =

[
C̄ D̄

]
ζc(t) =

[
D̄ C̄

]
ζ(t). Hence, the closed-

loop system described by (10.3) and (10.11) has a representation

ζ(t+ 1) =


Ā+B0D̄ B̄ +B0C̄
I 0 0 0

D̄ C̄
0 0 I 0


︸ ︷︷ ︸

=:Acl

ζ(t) +


I
0
0
0

 e(t). (10.12)

With K :=
[
D̄ C̄

]
, the closed-loop system matrix Acl satisfies Acl = Az +BzK.

For some (Az, Bz) ∈ Σ̄RQ(U,Y ), we say that the controller (10.10) stabilizes (10.1) if

the closed-loop system (10.12) is stable, i.e., if all eigenvalues of Az + BzK are
in the open unit disk, since this implies stability of the closed-loop system (10.1)
and (10.10). The notion of stabilization with respect to the state-space repre-
sentation (10.3) was introduced in (De Persis and Tesi, 2020) for data-driven
stabilization. We note that in the single-input-single-output case, (Az, Bz) is
controllable if and only if A(ξ) and B(ξ) are coprime (De Persis and Tesi, 2020).

10.3 Informativity for stabilization

10.3.1 Informativity of input-output data

Definition 10.3.1. The data (U, Y ) are said to be informative for quadratic
stabilization by output-feedback controller (10.10) if there exist a K and P � 0
so that

Σ̄RQ(U,Y ) ⊆ {(A,B) | (A+BK)P (A+BK)> − P ≺ 0}.

By (10.7)-(10.8), we find that the existence of K and P � 0 so that (Az +
BzK)P (Az+BzK)>−P ≺ 0, is equivalent to the existence of K and P � 0 such
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that (10.13) holds true. Now, for the data (U, Y ) to be informative for quadratic
stabilization, we require the existence of K and P � 0 so that (10.13) holds for

all (Λe, Be) ∈ ΣRQ(U,Y ). This is precisely a problem that can be solved by the S-

procedure; more specifically, by the matrix-valued S-lemma (van Waarde et al.,
2022).

Theorem 10.3.1. The data (U, Y ) are informative for quadratic stabilization by
output feedback controller (10.10) if there exist L ∈ Rm×n, P � 0, α ≥ 0 and
β > 0 so that (10.14) holds true. Moreover, for L and P such that (10.14) is

satisfied, Acl = Az +BzK is stable for all (Az, Bz) ∈ Σ̄RQ(U,Y ) with K := LP−1.

Proof. Let L, P � 0, α ≥ 0 and β > 0 exist so that (10.14) holds true and
consider the matrix Π defined in (10.13). By the Schur complement, (10.14) is
equivalent to

Π− αΛ �
[
βI 0
0 0

]
, where K := LP−1 and

Λ :=

I HzY−R>−
0 −Z−R>−
0 −U−R>−

Qe
I HzY−R>−

0 −Z−R>−
0 −U−R>−

> .
Hence, (10.13) holds true for all (Λe, Be) ∈ ΣRQ(U,Y ), cf. (van Waarde et al., 2022,

Theorem 13). This concludes the proof.

We remark that if there is a Z so that Z̄>ΛZ̄ � 0 with Z̄ := col(I, Z),
called the generalized Slater condition (van Waarde et al., 2022), then (10.14) is
also a necessary condition for informativity of input-output data for quadratic
stabilization, if R−[Z>− U>− ] has full column rank (Lemma 10.2.1). Unlike in
the case of input-state data, which will be discussed next, we note that the
generalized Slater condition can in general not hold true in the input-output case
if l ≥ 1, since the noise affects a subspace of the extended state space, yielding a
degenerate matrix Λ. The combination of noisy and noiseless states in ζ suggests
that necessity could potentially be proven in general by a ‘fusion’ of the matrix
S-lemma and matrix Finsler’s lemma (van Waarde and Camlibel, 2021).

 I
Λ>e
B>e

>P − (J1 + J2K)P (?)> −(J1 + J2K)P −(J1 + J2K)PK>

−P (J1 + J2K)> −P −PK>
−KP (J1 + J2K)> −KP −KPK>


︸ ︷︷ ︸

=:Π

 I
Λ>e
B>e

�0

(10.13)
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10.3.2 Informativity of input-state data

We will now consider a special case, where input-state data is available instead
of input output data. That is, we measure a state y(t) = x(t) and the class of
systems considered is

x(t+ 1) = Ax(t) +Bu(t) + e(t), (10.15)

with the corresponding data equation

X+ = AX− +BU− + E−. (10.16)

All systems that explain the data (U−, X) for some E− satisfying the cross-
covariance bound (10.6) are in the set

ΣRQ(U−,X) := {(A,B) | ∃E− such that (10.6) and (10.16) hold}.

By (10.16), the set of feasible systems is ΣRQ(U−,X) = {(A,B) | (A,B) satisfies (10.17)},
where  I

A>

B>

> I X+R
>
−

0 −X−R>−
0 −U−R>−

Q
I X+R

>
−

0 −X−R>−
0 −U−R>−

>
︸ ︷︷ ︸

=:ΛX

 I
A>

B>

 � 0. (10.17)

Remark 10.3.1. Consider a specific selection of M = N instrumental variables
defined by ri(t) := δ(t−i+1), i = 1, . . . , N , and δ : Z→ {0, 1} is the unit impulse
defined as δ(0) = 1 and δ(x) = 0 for x ∈ Z \ {0}. It follows that R− = I for
this choice of instrumental signals. Then, with the generalized quadratic cross-
covariance bound (10.6), we observe that for this special choice R− = I, we
recover the set of feasible systems in (van Waarde et al., 2022), and, hence, the
informativity conditions in (van Waarde et al., 2022).

Definition 10.3.2. The data (U−, X) are said to be informative for quadratic
stabilization by state feedback if there exist a feedback gain K and P � 0 so that

ΣRQ(U−,X) ⊆ {(A,B) | (A+BK)P (A+BK)> − P ≺ 0}.


P − βI −J1P − J2L 0 J1P + J2L

? −P −L> 0
0 −L 0 L
? 0 L> P

− α

I HzY−R>−
0 −Z−R>−
0 −U−R>−
0 0

Qe (?)> � 0

(10.14)
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We will now provide a necessary and sufficient condition for informativity of
input-state data for quadratic stabilization, given prior knowledge on the cross-
covariance (10.6). Consider the generalized Slater condition[

I
Z

]>
ΛX

[
I
Z

]
� 0. (10.18)

Proposition 10.3.1. Suppose that there exists a Z so that (10.18) holds true.
Then the data (U−, X) are informative for quadratic stabilization if and only if
there exist L ∈ Rm×n, P � 0, α ≥ 0 and β > 0 so that

P − βI 0 0 0
0 −P −L> 0
0 −L 0 L
0 0 L> P

− α [ΛX 0
0 0

]
� 0. (10.19)

Moreover, K is such that A+BK is stable for all (A,B) ∈ ΣRQ(U−,X) if K := LP−1

with L and P � 0 satisfying (10.19).

Proof. (⇐) This is proven by the same argument as in the proof of Theorem 10.3.1.
(⇒) Let the data be informative for quadratic stabilization, i.e., there exist K
and P � 0 so that, with Π defined in (10.13) with J1 = 0, J2 = 0: I

A>

B>

>Π (?) � 0 for all (A,B) with

 I
A>

B>

>ΛX (?) � 0,

where ΛX =

[
ΛX11 ΛX12

ΛX21 ΛX22

]
:=

 I X+R
>
−

0 −X−R>−
0 −U−R>−

Q (?)>.

We will now show that ker ΛX22 ⊆ ΛX12, such that necessity follows by the matrix S-
lemma (van Waarde et al., 2022). First, notice that ker ΛX22 = kerR−

[
X>− U>−

]
.

Now, take any x ∈ ker ΛX22. Then R−
[
X>− U>−

]
x = 0. Clearly, we have that

(X+R
>
−Q22 + Q12)R−

[
X>− U>−

]
x = 0, which implies that x ∈ ker ΛX12. Since

x ∈ ker ΛX22 was chosen arbitrary, this shows that ker ΛX22 ⊆ ΛX12. By ker ΛX22 ⊆ ΛX12

and (10.18), there exist α ≥ 0 and β > 0 so that, by (van Waarde et al., 2022,
Theorem 13):

Π− αΛX �
[
βI 0
0 0

]
,

which is equivalent to (10.19) for L := KP by the Schur complement. This
completes the proof.
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10.4 Including performance specifications

We will now consider the problem of finding a controller (10.10) for which the
closed-loop system achieves an H∞ or H2 performance bound from the input-
output data (U, Y ). Consider the performance output z, given by z(t) = Czζ(t)+
Dzu(t). For any pair (Az, Bz), the controller (10.10) yields the closed loop system

ζ(t+ 1) = (Az +BzK)ζ(t) +Hze(t),

z(t) = (Cz +DzK)ζ(t).

Hence, the transfer matrix from e to z is given by

T (q) := (Cz +DzK)(qI −Az −BzK)−1Hz,

for which the H∞ and H2 norm are denoted ‖T‖H∞ and ‖T‖H2 , respectively.
For given K, the H∞ norm of T is less than γ, ‖T‖H∞ < γ, if and only if

there exists X � 0 such that (Scherer and Weiland, 2017, p. 125)
X 0 A>KX C>K
0 γI H>z X 0

XAK XHz X 0
CK 0 0 γI

 � 0, (10.20)

where AK := Az +BzK and CK := Cz +DzK.

Definition 10.4.1. The data (U, Y ) are said to be informative for common H∞
control by output-feedback controller (10.10) with performance γ if there exist a
K and X � 0 so that

Σ̄RQ(U,Y ) ⊆ {(Az, Bz) | (10.20) holds true}.

Theorem 10.4.1. The data (U, Y ) are informative for common H∞ control
with performance γ if there exist L ∈ Rm×n, P � 0, α ≥ 0 and β > 0 so that
(10.21)-(10.22) holds true.

Proof. By a congruence transformation of (10.20) with diag(P, I, P, I) with P :=
X−1 and the application of the Schur complement (twice), the existence of K
and X � 0 so that (10.20) holds, is equivalent to the existence of P and L so
that P � 0 and

P − Vz (P − γ−1F>F )−1︸ ︷︷ ︸
=:S

V >z − γ−1HzH
>
z � 0 (10.23)
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and P − γ−1F>F � 0, where Vz := AzP + BzL and F := CzP + DzL. We can
now rewrite (10.23) as I

A>z
B>z

> P − γ−1HzH
>
z 0

0 −
[
P
L

]
S

[
P
L

]> I
A>z
B>z

 � 0,

which is equivalent to I
Λ>e
B>e

>ΠH∞

 I
Λ>e
B>e

 :=

 I
Λ>e
B>e

>[P − γ−1HzH
>
z 0

0 0

] I
Λ>e
B>e


−

 I
Λ>e
B>e

>J1P + J2L
P
L

S (?)>

 I
Λ>e
B>e

�0. (10.24)

Hence, the data (U, Y ) are informative for common H∞ control with performance
γ if and only if there exist P � 0 and L such that P − γ−1F>F � 0 and (10.24)

holds for all (Λe, Be) ∈ ΣRQ(U,Y ). By assumption, there exist P � 0, L, α ≥ 0

and β > 0 such that (10.21) holds true. By the Schur complement, (10.21)
is equivalent to ΠH∞ − αΛ �

[
βI 0
0 0

]
, which implies that (10.24) holds for all

(Λe, Be) ∈ ΣRQ(U,Y ).

The conditions (10.21)-(10.22) are linear with respect to P , L, α and β. By a
straightforward additional application of the Schur complement, (10.21) can also
be made linear with respect to γ.

By Proposition 4.A.1, we have that, for a given controller parameter matrix
K, the H2 norm of T is less than γ, ‖T‖H2 < γ, if and only if there exists X � 0


P − γ−1HzH

>
z − βI 0 0 J1P + J2L 0

0 0 0 P 0
0 0 0 L 0
? ? ? P F>

0 0 0 F γI

− α

I HzY−R>−
0 −Z−R>−
0 −U−R>−
0 0
0 0

Qe (?)>� 0,

(10.21)[
P F>

F γI

]
� 0

(10.22)
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
P − βI 0 0 J1P + J2L 0

0 0 0 P 0
0 0 0 L 0
? ? ? P F>

0 0 0 ? I

− α

I HzY−R>−
0 −Z−R>−
0 −U−R>−
0 0
0 0

Qe

I HzY−R>−
0 −Z−R>−
0 −U−R>−
0 0
0 0


>

� 0

(10.26)

such that

traceH>z XHz < γ2 and X�A>KXAK + C>KCK . (10.25)

Definition 10.4.2. The data (U, Y ) are said to be informative for common H2

control by output-feedback controller (10.10) with performance γ if there exist a

K and X � 0 so that Σ̄RQ(U,Y ) ⊆ {(Az, Bz) | (10.25) holds true}.

Theorem 10.4.2. The data (U, Y ) are informative for common H2 control with
performance γ if there exist L ∈ Rm×n, symmetric Z, P � 0, α ≥ 0 and β > 0
so that traceZ < γ2, (10.26) holds true,[

P F>

F I

]
� 0 and

[
Z H>z
Hz P

]
� 0. (10.27)

Proof. By a congruence transformation of (10.25) with P := X−1 and the Schur
complement (in both directions), it follows that (10.25) is equivalent to P −
F>F � 0,

P − Vz(P − F>F )−1V >z � 0 (10.28)

and traceH>z P
−1Hz < γ2. Now, we can rewrite (10.28) as I
A>z
B>z

> P 0

0 −
[
P
L

]
(P − F>F )−1

[
P
L

]> I
A>z
B>z

 � 0,

which, by (10.7)-(10.8), holds if and and only if I
Λ>e
B>e

> J1P + J2L
P
L

S
J1P + J2L

P
L

>  I
Λ>e
B>e

 ≺
 I

Λ>e
B>e

> [P 0
0 0

] I
Λ>e
B>e

 .
(10.29)
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There exist P � 0, L so that (10.29), P − F>F � 0 and traceH>z P
−1Hz < γ2

if and only if there exist P � 0, L, Z so that (10.29), P − F>F � 0, Z −
H>z P

−1Hz � 0 and traceZ < γ2. Indeed, for Z := H>z P
−1Hz we infer traceZ <

γ2. Sufficiency follows from H>z P
−1Hz � Z ⇒ traceH>z P

−1Hz ≤ traceZ.
Hence, the data (U, Y ) are informative for common H2 control with performance
γ if and only if there exist P � 0, L, Z so that Z −H>z P−1Hz � 0, traceZ <

γ2, P − F>F � 0 and (10.29) hold for all (Λe, Be) ∈ ΣRQ(U,Y ). By assumption,

traceZ < γ2 is satisfied, P − F>F � 0, Z − H>z P−1Hz � 0 follow by (10.27)
and via an analogue argument as in the proof of Theorem 10.4.1, (10.29) holds

for all (Λe, Be) ∈ ΣRQ(U,Y ) by (10.26).

Remark 10.4.1. The conditions in Theorem 10.4.1/10.4.2 are also necessary
for informativity of input-state data for H∞/H2 control, where Hz = I, J1 = 0,
J2 = 0 and Y− and Z− are replaced by X+ and X−, if (10.18) holds for some Z.

10.5 Numerical example

Consider the system (10.15) with true system matrices

A0 =

−0.2414 −0.8649 0.6277
0.3192 −0.0301 1.0933
0.3129 −0.1649 1.1093

 , B0 =

1 0
0 2
1 1

 .
and consider a performance output z(t) = [0 0 1]x(t). The objective is to deter-
mine if input state data collected from the system are informative for common H2

control. We consider a noise signal e(t) with a uniform distribution, taking values
from the closed ball {e ∈ R3 | ‖e‖22 ≤ 0.35}. First, we consider this noise bound
to be known, represented by the noise model E− ∈ {E− |E−E>− � 0.35NI} as
described in (van Waarde et al., 2022, Section VI.A). This can be represented
by the noise model (10.5) with R− = I, cf. (van Waarde et al., 2022, Equation
(5)). We consider the informativity analysis for various data lengths N ranging
from N = 2 to N = 250. For each data length N , we generate 50 data sets.
Given the bound on E−, we can verify informativity for common H2 control via
Theorem 17 in (van Waarde et al., 2022). We find that the generalized Slater
condition (van Waarde et al., 2022, Equation (16)), holds true for all data sets,
thus the data are informative for common H2 control with performance γ if and
only if the condition (van Waarde et al., 2022, Equation (H2)) is feasible. The
relative number of data sets for which this necessary and sufficient condition is
feasible for some γ > 0 is visualized in Figure 10.1a for each data length N , in
red. Naturally, if the condition is not feasible for any γ > 0, the data are actually
not informative for feedback stabilization, although the true system is stable.
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(a) Informativity for H2 control (b) H2 performance from data

Figure 10.1: (a) Number of input-state data sets that are informative for H2

control versus data length N for noise-norm bounds (red) and quadratic cross-
covariance bounds (blue) and (b) feasible γ2 obtained versus data length N with
quadratic cross-covariance bounds.

Now, we consider the quadratic cross-covariance bound (10.5) for the noise.
We choose an instrumental variable that contains lagged versions of the input:

r(t) := col(u(t), u(t− 1), u(t− 2), . . . , u(t− 8), u(t− 9)).

We assume prior knowledge in the sense that E− ∈ ERQ = {E− |E−R>−R−E>− �
NHu}, where Hu is taken as Hu = I, independent of N . The cross-covariance
bounds hold true for all generated data sets. We verify that there exists some
Z so that (10.18) holds true for all data sets. Hence, by Remark 2, the data
are informative for common H2 control with performance γ if and only if the
conditions in Theorem 10.4.2 are feasible. The relative number of data sets for
which this necessary and sufficient condition is feasible for some γ > 0 is visualized
in Figure 10.1a for each data length N , in blue. For N ≥ 20, all data sets are
informative for common H2 control. For these data sets, the smallest H2 norm
upper bounds γ2 are visualized in Figure 10.1b, where the median performance
is indicated by a solid line and the shaded area is bounded by the 25th and
75th percentiles. In comparison, the H2 norm that can be achieved by a state
feedback controller with knowledge of (A0, B0) is equal to 1.000, which therefore
is a benchmark that cannot be outperformed by any data-based controller.

Now, consider that noisy output measurements are available instead of state
measurements. Consider the system (10.1) with A(q−1) and B(q−1) such that
T0(q−1) = A−1(q−1)B(q−1) with T0 := C0(qI−A0)−1B0, where C0 is the output



10.6. Conclusions 235

matrix. We consider three cases: C0 = [1 0 1], C0 = [0 1 0], and C0 = [1 0 0].
The noise is uniformly drawn from [−0.35, 0.35]. For each choice of output, we
generate 50 data sets for data lengths ranging from N = 2 to N = 250. We
choose an instrumental signal containing lagged input signals as before, which
is therefore independent on the choice of output. The upper-bound is chosen
Hu = 0.3, which holds for all data sets. By Theorem 10.4.2, feasibility of the
conditions for informativity for H2 control for some γ > 0 is verified for each data
set. The results are depicted in Figure 10.2. We observe that the data sets are
not informative for low data lengths, which can be expected. For increasing data
length, informativity becomes dependent on the choice of output. For N = 30,
for example, 90% of the data sets yielded feasible informativity conditions for the
choice of C0 = [1 0 0], compared to less than 50% of the data sets for the other
two choices for C0.

Figure 10.2: Effect of the choice of output on informativity of input-output data
for H2 control, illustrated by the number data sets that satisfy the conditions in
Theorem 10.4.2 versus the data length N .

10.6 Conclusions

We have considered the problem of informativity of input-output data for control,
with prior knowledge of the noise in the form of quadratic sample cross-covariance
bounds. Sufficient informativity conditions for stabilization, H∞ and H2 control
via dynamic output feedback were derived, which are also necessary if the state
is measured. We have provided a numerical case study where data-informativity
can be concluded with cross-covariance bounds, while the data are concluded to
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be non-informative with magnitude bounds. Finally, we have illustrated how the
choice of output affects the informativity of input-output data via a numerical
example.

The quadratic sample cross-covariance bounds on the noise have given new
insights in the informativity analysis for controller design and can yield less con-
servative results. The bounds are specified with respect to an instrumental vari-
able, however, that has to be chosen a priori and is therefore a crucial variable
in the controller design. The specification of cross-covariance bounds is further
addressed in Chapter 11, where bounds are specified with respect to individual
noise components and the corresponding bounds are linked with the performance
analysis of interconnected systems in Chapter 9.



Chapter 11

Data-informativity for
control: polyhedral
cross-covariance noise
bounds

In this chapter, we address the informativity of input-state data for control where
noise bounds are defined through the cross-covariance of the noise with respect
to an instrumental variable; bounds that were introduced originally as a noise
characterization in parameter bounding identification and were considered in a
squared form in Chapter 10 in terms of the partial order on positive semi-definite
matrices. The cross-covariance bounds considered in this chapter are defined by
a finite number of hyperplanes, which induce a (possibly unbounded) polyhedral
set of unfalsified systems. An advantage of this noise characterization is that
the specification may be done with respect to each noise component separately.
We provide informativity conditions for input-state data with polyhedral cross-
covariance bounds for stabilization and H2/H∞ control through vertex/half-
space representations of the polyhedral set of unfalsified systems.

11.1 Introduction

In Chapter 10, we have considered the problem of determining informativity
of data for controller design, with prior knowledge on the noise in the form of
quadratic cross-covariance bounds. The quadratic cross-covariance bounds lead

237
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to a data-based parametrization of the set of feasible system matrices, which is an
ellipsoid. Informativity conditions for control therefore follow by the application
of the matrix S-lemma (van Waarde et al., 2022). However, because the bounds
in Chapter 10 are specified in terms of the partial order on positive semi-definite
matrices, prior knowledge on the cross covariance of individual noise components
cannot be considered directly.

The problem that is considered in this chapter, is to determine if noisy data are
informative for controller design, while taking into account bounds on the individ-
ual entries of the sample cross-covariance between noise components and instru-
mental variables. More specifically, we consider informativity of input-state data
for controller design in the presence of noise satisfying polyhedral cross-covariance
bounds. This prior knowledge combined with measurement data leads to sets of
feasible system matrices that are intersections of halfspaces and therefore (possi-
bly unbounded) polyhedra. We show how convexity of the sets of feasible system
matrices and stability/performance criteria lead to data-based linear matrix in-
equalities (LMIs) that are necessary and sufficient for quadratic stabilization, H∞
and H2 control in the case the polyhedron is bounded. The technique of using
the convexity of polytopes for obtaining a finite set of controller synthesis LMIs
is well known in robust control, e.g. for stabilization of systems with polytopic
uncertainties, cf. (Kothare et al., 1996), (Scherer and Weiland, 2017, Chapter 5).

When the set of feasible system matrices is unbounded, there is no correspon-
dent from robust control for systems with polytopic uncertainty. An unbounded
set of feasible systems implies that data are not informative for system identifi-
cation in the case of noise-free data, cf. (van Waarde et al., 2020, Example 19),
and is therefore particularly interesting for informativity analysis. We provide
preliminary results for data informativity for stabilization, in the case of noisy
data that lead to a unbounded set of feasible systems.

Finally, utilizing the recently developed matrix S-procedure (van Waarde
et al., 2022), we show how conservative approximations obtained through ellip-
soidal supersets lead to sufficient but tractable conditions for data-driven control
design with polyhedral cross-covariance bounds. For interconnected systems, we
show how sets of feasible system matrices are determined per subsystem. The
resulting polytopes can be approximated by ellipsoids for each subsystem sepa-
rately. Application of the method described in Chapter 9 yields conditions for
informativity of input-state data for distributed H∞ control of interconnected
systems.
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11.2 Polyhedral cross-covariance bounds

In this chapter, we consider the data-informativity for a class of linear systems
that is affected by a noise signal e(t):

x(t+ 1) = Ax(t) +Bu(t) + e(t), (11.1)

with state dimension n and input dimension m.
The true system is represented by the pair (A0, B0). State and input data

generated by the true system are collected in the matrices

X := [x(0) · · · x(N)], U− := [u(0) · · · u(N − 1)].

By defining

X+ := [x(1) · · · x(N)], X− := [x(0) · · · x(N − 1)],

E− := [e(0) · · · e(N − 1)],

we clearly have

X+ = A0X− +B0U− + E−. (11.2)

In case the noise is measured, the set of systems that is consistent with the data
(U−, X) is

Σ(U−,X,E−) = {(A,B) |X+ = AX− +BU− + E−}.

When the data are informative for system identification, as defined in (van
Waarde et al., 2020), the set of feasible system is a singleton Σ(U−,X,E−) =
{(A0, B0)}. This is equivalent with col(X−, U−) having full rank. In the case the
data are not informative, the set Σ(U−,X,E−) is not a singleton, but becomes a
line or hyperplane. Even if the data are not informative for system identification,
the data can still be informative for other properties, such as stability or feedback
stabilization, cf. (van Waarde et al., 2020).

Let e =: col(e1, . . . , en) and consider that each noise channel ej , j = 1, . . . , n,
is not measured, i.e., E−j is unknown, but that ej(t) satisfies the bounds

clij ≤
1√
N

N−1∑
t=0

ri(t)ej(t) ≤ cuij , i = 1, . . . ,M, (11.3)

where ri are signals that are chosen, typically as a (delayed version of) state or
input signal, and clij , c

u
ij are specified bounds. Notice that we specify M upper

and lower bounds for each noise channel j ∈ {1, . . . , n}, and that the instrumental
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A

B

Figure 11.1: Informativity (blue dot) and non-informativity (blue line) of noise-
less data (U−, X) for system identification.

variables ri, i ∈ {1, . . . ,M}, are common for all noise channels j ∈ {1, . . . , n}.
The bounds in (11.3) are satisfied for all j if and only if

E− = col(E−1 , . . . , E
−
n ) ∈ ER,

where

ER := {E |Cl ≤
1√
N
E−R

>
− ≤ Cu}

= {E |Cl ≤
1√
N

N−1∑
t=0

e(t)r(t)> ≤ Cu}.

with R− := col(R−1 , . . . R
−
M ) and with clij and cuij the (i, j)-th entry of Cl and Cu,

respectively. The inequalities defining ER are thus entry-wise inequalities.

Remark 11.2.1. Noise bounds of the type (11.3) define upper and lower bounds
on the sample cross-covariance of the noise e and an instrumental variable r.
These bounds were introduced in (Hakvoort and Van den Hof, 1995) for parame-
ter bounding identification. An ‘ellipsoidal’ version of these bounds, i.e., a bound
on E−R>−R−E

>
− in the terms of the partial order on positive semi-definite ma-

trices, has been considered in Chapter 10 for analyzing informativity for con-
trol. The difference in prior knowledge on the noise has two implications: (i)
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the bounds (11.3) allow a component-wise specification of bounds on the cross-
covariance compared to ellipsoidal bounds, and (ii) incorporating this “polyhedral”
(possibly unbounded) prior knowledge on the noise in the informativity analysis
requires a fundamentally different approach compared with the application of the
matrix S-lemma (van Waarde et al., 2022) used in Chapter 10, as will be dis-
cussed in Section 11.3.

Remark 11.2.2. Guidelines in the literature recommend choosing an instrumen-
tal variable r that is correlated with the input u, but uncorrelated with the noise
e (Hakvoort and Van den Hof, 1995). We refer to (Hakvoort and Van den Hof,
1995) for more information on choosing r and estimating the bounds (11.3) from
data.

The bounds on the cross-covariance between the noise channels and the in-
strumental signals induce a restriction on the pairs (A,B) that satisfy the data
equation

X+ = AX− +BU− + E−. (11.4)

All systems that explain the data (U−, X) for some E− ∈ ER are collected in the
set ΣR(U−,X):

ΣR(U−,X) := {(A,B) | ∃E− ∈ ER such that (11.4) holds}.

The following proposition provides a parametrization for the set of feasible
systems with cross-covariance bounds.

Proposition 11.2.1. ΣR(U−,X) = {(A,B) | (11.5) holds}, where

√
NCl ≤ X+R

>
− −

[
A B

] [X−R>−
U−R>−

]
≤
√
NCu (11.5)

Proof. The set of feasible system matrices is

ΣR(U−,X) = {(A,B) |Cl ≤
1√
N

N−1∑
t=0

e(t)r(t)> ≤ Cu} (11.6)

= {(A,B) |Cl ≤ RN−er ≤ Cu}, (11.7)



242 Chapter 11. Polyhedral cross-covariance noise bounds

where

RN−er :=
1√
N

N−1∑
t=0

e(t)r(t)>

=
1√
N

N−1∑
t=0

(x(t+ 1)−Ax(t)−Bu(t)) r(t)>

=
1√
N
X+R

>
− −A

1√
N
X−R

>
− −B

1√
N
U−R

>
−.

Hence, the feasible set of systems is

ΣR(U−,X) = {(A,B) | (11.5) holds},

which completes the proof.

It can be shown that ΣR(U−,X) is an intersection of half spaces, by observing
that

ΣR(U−,X) = ΣR1

(U−,X) ∩ · · · ∩ ΣRM

(U−,X) =

M⋂
i=1

ΣRi

(U−,X),

where, for i = 1, . . . ,M ,

ΣRi

(U−,X) = {(A,B) | cli ≤ RN+
xri −

[
A B

] [RN−xri
RN−uri

]
≤ cui },

with RN+
xri = 1√

N
X+(R−i )>, RN−xri = 1√

N
X−(R−i )> and RN+

uri = 1√
N
U−(R−i )>.

Hence, the set of feasible subsystems is either an intersection of halfspaces and
unbounded (called an H-polyhedron) or it is a bounded polyhedron (called V-
polytope). Another way to see that ΣR(U−,X) is an intersection of halfspaces, is to
vectorize the inequalities:

ΣR(U−,X) = {(A,B) | vec(Cl) ≤ vec(RN+
xr )−

([
RN−xr
RN−ur

]>
⊗ In

)
× vec

([
A B

])
≤ vec(Cu)}.

Lemma 11.2.1. The set of feasible systems ΣR(U−,X) is bounded if and only if

ker

[
X−R>−
U−R>−

]>
= {0}. (11.8)
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Proof. First, we note that ΣR(U−,X) is not empty. A non-empty polyhedron

ΣR(U−,X) = {(A,B) |M vec(
[
A B

]
) ≤ c}

is unbounded if and only if there exists v 6= 0 so that Mv ≤ 0. With

M :=


−
([

RN−xr
RN−ur

]>
⊗ In

)
([

RN−xr
RN−ur

]>
⊗ In

)
 ,

we observe that Mv ≤ 0 if and only if Mv = 0. Hence, ΣR(U−,X) is unbounded if
and only if

ker

([
RN−xr
RN−ur

]>
⊗ In

)
6= {0} ⇔ ker

[
RN−xr
RN−ur

]>
6= {0}.

We conclude that ΣR(U−,X) is bounded if and only if ker

[
RN−xr
RN−ur

]>
= {0}, which

concludes the proof.

A

B

Figure 11.2: Illustration of the set ΣR(U−,X) for M = 1 (green) and for M > 1

(orange).
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Remark 11.2.3. The condition for boundedness of ΣR(U−,X) is equivalent with

the matrix row(R−X>− , R−U
>
− ) having full column rank. A necessary condition

for the rank of this matrix being full, is to have enough instrumental signals.
More precisely, a necessary condition for boundedness is that M ≥ n+m, where
we recall that n and m are the state and input dimension, respectively, and M
is the dimension of the instrumental signal r. For the scalar case n = m = 1,
an unbounded set ΣR(U−,X) is obtained for M = 1, as illustrated in Figure 11.2 in

green. With M > 1 the rank condition can be satisfied (no redundant inequalities)
and a polytope is obtained, as illustrated in Figure 11.2 in orange.

11.3 Informativity for feedback stabilization

Consider the problem of stabilizing the ‘true’ system (A0, B0) using the data
(U−, X). We define the set of systems that are stabilized1 by K as

ΣK := {(A,B) |A+BK is stable}.

In line with (van Waarde et al., 2020, Definition 12), we consider the following
definition for informativity for stabilization by state feedback.

Definition 11.3.1. The data (U−, X) are said to be informative for stabilization
by state feedback if there exists a feedback gain K so that

ΣR(U−,X) ⊆ ΣK .

In other words, if there exists a K so that for every system (A,B) in ΣR(U−,X),
A+BK is stable, then the data are informative for stabilization by state feedback.

Definition 11.3.2. The data (U−, X) are said to be informative for quadratic
stabilization by state feedback if there exist a K and P � 0 so that

ΣR(U−,X) ⊆{(A,B) | (A+BK)P (A+BK)>−P ≺ 0}. (11.9)

Notice the difference: the data are informative for quadratic stabilization
if there exists a common pair (K,P ), with P � 0, such that the inclusion in
Definition 11.3.2 holds, while the data are informative for stabilization if there is
a common K so that ΣR(U−,X) ⊆ ΣK . Hence, the data (U−, X) are informative for

stabilization by state feedback if the data (U−, X) are informative for quadratic
stabilization by state feedback, but the reverse implication is not true, in general.

1A matrix is called stable if all its eigenvalues are in the open unit disk.
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11.3.1 ΣR
(U−,X) is an unbounded polyhedron

We consider here the scalar case, i.e., m = n = 1. In the case that there is one
instrumental signal r = r1, the set ΣR(U−,X) is described by two linear inequalities

[
A B

] [RN−xr
RN−ur

]
≤ RN+

xr − cl,
[
A B

] [RN−xr
RN−ur

]
≥ RN+

xr − cu.

We observe that ΣR(U−,X) is the intersection of two closed half-spaces. The follow-
ing result states that a sufficient condition for data informativity for stabilization,
is the existence of a K that stabilizes all systems on the “boundaries”, i.e., the
defining hyperplanes of ΣR(U−,X).

Proposition 11.3.1. Let RN−xr be non-zero and let there exist (RN−xr )† such that2

RN−xr (RN−xr )† = 1 and

(RN+
xr − cl)(RN−xr )† and (RN+

xr − cu)(RN−xr )†

are stable. Then the data (U−, X) are informative for stabilization by state feed-
back. Moreover, K is such that ΣR(U−,X) ⊆ ΣK if K = RN−ur (RN−xr )†, with (RN−xr )†

as described above.

Proof. Let (RN−xr )† be non-zero and such that

(RN+
xr − cl)(RN−xr )† and (RN+

xr − cu)(RN−xr )†

are stable. We will first show that

−1 <
[
A B

] [RN−xr
RN−ur

]
(RN−xr )† < 1.

Consider the case that (RN−xr )† is positive. Then

[
A B

] [RN−xr
RN−ur

]
(RN−xr )† ≤ (RN+

xr − cl)(RN−xr )†,

[
A B

] [RN−xr
RN−ur

]
(RN−xr )† ≥ (RN+

xr − cu)(RN−xr )†.

Furthermore, RN+
xr − cu ≤ RN+

xr − cl implies that

−1 < (RN+
xr − cu)(RN−xr )† ≤ (RN+

xr − cl)(RN−xr )† < 1.

2Note that in this case (n = 1), (RN−
xr )† is a scalar and is unique.
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Hence, any (A,B) ∈ Σ(U−,X) satisfies

−1 <
[
A B

] [RN−xr
RN−ur

]
(RN−xr )† < 1. (11.10)

Similarly, if (RN−xr )† is negative, then RN+
xr − cu ≤ RN+

xr − cl implies that

−1 < (RN+
xr − cl)(RN−xr )† ≤ (RN+

xr − cu)(RN−xr )† < 1,

and we again find that (11.10) for any (A,B) ∈ ΣR(U−,X).

Now, define K := RN−ur (RN−xr )† to observe that −1 < A + BK < 1 for any
(A,B) ∈ ΣR(U−,X). Hence, there exists a K so that ΣR(U−,X) ⊆ ΣK , which com-
pletes the proof.

Example 11.1. Consider that data X = [0 1.2 3 4.1 4.25], U− = [1 1 −0.5 −2]
have been collected from a system with system matrices A0 = 1.5 and B0 = 1. The
corresponding noise E− = [0.2 0.2 0.1 0.1] is unknown, but satisfies E− ∈ ER for
R− = U− with Cu = −Cl = 0.25. For this example, (RN+

xr − cl)(RN−xr )† = 0.6882
and (RN+

xr −cu)(RN−xr )† = 0.8059, hence the data are informative for stabilization
by state feedback by Proposition 11.3.1 and K = RN−ur (RN−xr )† = −0.7353 is indeed
such that A0 +B0K is stable.

Alternatively, the sufficient conditions for the data (U−, X) to be informative
for feedback stabilization can be stated in terms of linear matrix inequalities.

Proposition 11.3.2. Let there exist a Θ satisfying RN−xr Θ = (RN−xr Θ)> so that[
RN−xr Θ (RN+

xr − cl)Θ
Θ>(RN+

xr − cl)> RN−xr Θ

]
� 0 and (11.11)[

RN−xr Θ (RN+
xr − cu)Θ

Θ>(RN+
xr − cu)> RN−xr Θ

]
� 0. (11.12)

Then the data (U−, X) are informative for stabilization by state feedback. More-
over, K is such that ΣR(U−,X) ⊆ ΣK if K = RN−ur Θ((RN−xr )†Θ)−1.

Proof. The inequalities in (11.11)-(11.12) imply that RN−xr Θ is positive definite
and that

[(RN+
xr − cl)Θ(RN−xr Θ)−1](RN−xr Θ)[?]> −RN−xr Θ ≺ 0 and

[(RN+
xr − cu)Θ(RN−xr Θ)−1](RN−xr Θ)[?]> −RN−xr Θ ≺ 0.

Hence, (RN+
xr − cl)Θ(RN−xr Θ)−1 and (RN+

xr − cu)Θ(RN−xr Θ)−1 are stable. That is,
there exists a right inverse (RN−xr )† := Θ(RN−xr Θ)−1 so that(RN+

xr − cl)Θ(RN−xr )†

and (RN+
xr − cu)Θ(RN−xr )† are stable. Therefore, it follows by Proposition 11.3.1

that the data (U−, X) are informative for stabilization by state feedback.
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11.3.2 ΣR
(U−,X) is a bounded polyhedron

By Lemma 11.2.1, we observe that ΣR(U−,X) is a convex polytope with a finite

number of vertices σi(U−,X), i = 1, . . . , L, if the data (U−, X) and instrumental

signals R− satisfy (11.8). In the scalar case, for example, the set ΣR(U−,X) is then
described by L = 4 vertices with M = 2 instrumental variables, as depicted in
Figure 11.2.

By Definition 11.3.1, the data (U−, X) are informative for stabilization by
state feedback if there exists a K so that A+BK is stable for all (A,B) ∈ ΣR(U−,X).

If (11.8) holds true, then ΣR(U−,X) = conv{σ1
(U−,X), . . . , σ

L
(U−,X)}. The following

lemma allows us to verify stability conditions for all matrices (A,B) that are
compatible with the data, by verifying the conditions at the extreme points of
ΣR(U−,X).

Lemma 11.3.1. Let Γ ∈ Sn×n,3 let S0 be a set and let F : S → Sn×n be a
function with domain S = convS0. Then F (x) ≺ Γ for all x ∈ S if and only if
F (x) ≺ Γ for all x ∈ S0.

Proof. The assertion is a strict version of the assertion in (Scherer and Weiland,
2017, Proposition 1.14). The proof follows mutatis mutandis by the proof of
(Scherer and Weiland, 2017, Proposition 1.14).

Now, given the (known) vertices σi(U−,X), i = 1, . . . , L, the problem of ver-
ifying informativity for stabilization can be reduced to verifying the stability
condition at the extreme points of ΣR(U−,X), as shown by the following result:

Proposition 11.3.3. Let (11.8) hold. The data (U−, X) are informative for
quadratic stabilization by state feedback if and only if there exist K and P so that
P � 0 and[

I
K

]>
(σi(U−,X))

>Pσi(U−,X)

[
I
K

]
− P ≺ 0, i = 1, . . . , L. (11.13)

Proof. Consider the matrix function F : ΣR(U−,X) → Sn×n, defined by F (σ) :=

col(I,K)>σ>Pσ col(I,K). Since ΣR(U−,X) is convex and P � 0, we infer that F

is a convex function. Hence, by Lemma 11.3.1, F (σ) ≺ P for all σ ∈ ΣR(U−,X)

if and only if F (σ) ≺ P for all σ ∈ {σ1
(U−,X), . . . , σ

L
(U−,X)}. This proves the

assertion.

We note that the conditions in Proposition 11.3.3 are not linear with respect to
K and P . The application of the Schur complement yields conditions equivalent
to (11.13) that are LMIs:

3Sn×n denotes the set of n× n symmetric matrices with real entries.
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Corollary 11.3.1. Let (11.8) hold. The data (U−, X) are informative for quadratic
stabilization by state feedback if and only if there exist Y and M so that[

Y Z>(σi(U−,X))
>

σi(U−,X)Z Y

]
� 0, i = 1, . . . , L, (11.14)

with Z := col(Y,M). Moreover, K is such that ΣR(U−,X) ⊆ ΣK if K = MY −1.

Proof. By the Schur complement, the existence of K and P � 0 such that (11.9)
is equivalent with

∃K,P such that

[
P (A+BK)>

A+BK P−1

]
� 0

for all (A,B) ∈ ΣR(U−,X). Define Y := P−1 and M := KP−1 and perform a

congruence transformation with diag(Y, I) to obtain

∃Y,M such that

[
Y (AY +BM)>

AY +BM Y

]
� 0

for all(A,B) ∈ ΣR(U−,X). By Lemma 11.3.1, we find that this is equivalent

with (11.14), which proves the assertion.

Corollary 11.3.2. Let (11.8) hold. The data (U−, X) are informative for sta-
bilization by state feedback if one (and therefore all) of the following equivalent
statements holds:

• the data (U−, X) are informative for quadratic stabilization by state feed-
back,

• there exist K and P so that P � 0 and (11.13) are satisfied,

• there exist Y and M so that (11.14) is satisfied.

Example 11.2. Consider again the system from Example 11.1 with A0 = 1.5 and
B0 = 1. Consider that the noise e(t) is drawn uniformly from the set {e | e2 ≤ 0.2}
and data (U−, X) is collected for N = 10. We select four different instrumental
variables r based on lagged versions of the input u with M ∈ {2, 3, 4, 5}. These are
defined as rM (t) := col(u(t), u(t−1), . . . , u(t−M+1), i.e., r2(t) = col(u(t), u(t−
1)), r3(t) = col(u(t), u(t − 1), u(t − 2)), et cetera. We assume prior knowledge
on the cross-covariance through the bounds (11.3) with cui = −cli = 0.1, i =
1, . . . ,M ; these bounds are verified to hold for each of the four choices for M .
Figure 11.3 shows the set of feasible systems ΣR(U−,X) for each choice of rM ,

denoted ΣRM , illustrating a significant reduction in the size of ΣRM for increasing
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M . We verify that the data (U−, X) are informative for quadratic stabilization by
Corollary 11.3.1, since the LMIs (11.14) are feasible for M = 2, . . . , 5, yielding
K = −1.4842 for M = 5 such that ΣK ⊆ ΣR5 .

Figure 11.3: Feasible sets of systems ΣR(U−,X) obtained in Example 11.2 with

different choices of R− for M ∈ {2, 3, 4, 5}.

11.4 Including performance specifications

In this section, we will consider the problem of finding a feedback gain from the
data (U−, X), such that the closed-loop system with (A0, B0) satisfies a given
H∞ or H2 performance bound. Consider the performance output z, given by

z(t) = Cx(t) +De(t),

where C and D are user-specified matrices. Recall the set ΣK ; the set of systems
that are stabilized by K. The set of systems that achieve H∞ performance γ
with feedback K is defined as

ΣH∞
K (γ) := ΣK ∩ {(A,B) | ‖T‖H∞< γ},

with T (q) := C(qI −A−BK)−1 +D.

Definition 11.4.1. The data (U−, X) are said to be informative for H∞ control
with performance γ if there exists a feedback gain K so that ΣR(U−,X) ⊆ ΣH∞

K (γ).
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Proposition 11.4.1. Consider a pair (A,B) and γ > 0. The following state-
ments are equivalent:

• there exists K so that (A,B) ∈ ΣH∞
K (γ),

• there exist K and P so that P � 0 and
I 0

A+BK I
0 I
C D


>
−P 0 0 0
0 P 0 0
0 0 −γ2I 0
0 0 0 I




I 0
A+BK I

0 I
C D

≺ 0. (11.15)

Definition 11.4.2. The data (U−, X) are said to be informative for common H∞
control with performance γ if there exist K and P so that P � 0 and (11.15) holds
for all (A,B) ∈ ΣR(U−,X).

Following a similar reasoning as for Proposition 11.3.3, necessary and sufficient
conditions on the data for informativity for common H∞ control are obtained,
by Proposition 11.4.1 in conjunction with Lemma 11.3.1.

Proposition 11.4.2. The data (U−, X) are informative for common H∞ control
with performance γ if and only if there exist K and P so that P � 0 and for all
i ∈ {1, . . . , L}:

I 0

σi(U−,X)

[
I
K

]
I

0 I
C D


>
−P 0 0 0
0 P 0 0
0 0 −γ2I 0
0 0 0 I




I 0

σi(U−,X)

[
I
K

]
I

0 I
C D

≺ 0.

Application of the Schur complement to the conditions in Proposition 11.4.2
yields necessary and sufficient conditions in the form of LMIs.

Corollary 11.4.1. The data (U−, X) are informative for common H∞ con-
trol with performance γ if and only if there exist Y and M so that for all
i ∈ {1, . . . , L}: 

Y 0 Z>(σi(U−,X))
> Y C>

0 γI I D>

σi(U−,X)Z I Y 0

CY D 0 γI

 � 0,

with Z := col(Y,M).
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The set of systems that achieve H2 performance γ with feedback K is defined
as

ΣH2

K (γ) := ΣK ∩ {(A,B) | ‖T‖H2
< γ}.

Definition 11.4.3. The data (U−, X) are said to be informative for H2 control
with performance γ if there exists a feedback gain K so that ΣR(U−,X) ⊆ ΣH2

K (γ).

Proposition 11.4.3. Consider a pair (A,B) and γ > 0. The following state-
ments are equivalent:

• there exists K so that (A,B) ∈ ΣH2

K (γ),

• there exist K, P and Z so that traceZ < γ andP P (A+BK) P
? P 0
? ? γI

 � 0,

P 0 C>

0 I D>

C D Z

 � 0. (11.16)

Definition 11.4.4. The data (U−, X) are said to be informative for common
H2 control with performance γ if there exists K, P and Z so that traceZ < γ
and (11.16) holds for all (A,B) ∈ ΣR(U−,X).

The application of Lemma 11.3.1 to the conditions in Proposition 11.4.3 leads
to necessary and sufficient conditions for informativity for common H2 control,
as stated in Proposition 11.4.4. These conditions can be stated equivalently as
LMIs through a variable transformation, leading to Corollary 11.4.2.

Proposition 11.4.4. The data (U−, X) are informative for common H2 control
with performance γ if and only if there exist K, P and Z so that traceP < γ and
for all i ∈ {1, . . . , L}:P 0 C>

0 I D>

C D Z

 � 0 and

P Pσi(U−,X)

[
I
K

]
P

? P 0
? ? γI

 � 0.

Corollary 11.4.2. The data (U−, X) are informative for common H2 control
with performance γ if and only if there exist Y , M and P so that traceP < γ
and  Y 0 Y C>

0 I D>

CY D P

 � 0 and

Y σi(U−,X)Z I

? Y 0
? ? γI

 � 0,

holds for all i ∈ {1, . . . , L} with Z := col(Y,M).
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By Proposition 11.4.2 and Proposition 11.4.4, we observe that the extension
of the data-informativity conditions for stabilization by state feedback extends
directly to conditions for H∞ and H2 control, due to Lemma 11.3.1. Notice that
the transfer matrix T under consideration, is the transfer from the disturbances e
to the performance output z, i.e., the influence of the disturbance on the per-
formance output z is penalized. If desired, the input u can be included in the
performance output mutatis mutandis. Furthermore, the results in this section
can be modified for a reference tracking problem, by considering the transfer T
from a reference r to the corresponding performance output z (tracking error).

11.5 Approximating ΣR
(U−,X) by an ellipsoidal su-

perset

Consider the case where we have multiple instrumental signals such that M � 1
and that (11.8) holds. From Corollary 11.3.1, 11.4.1 and 11.4.2, we observe that
the number of LMIs to be solved for concluding informativity for stabilization,
H∞ and H2 control, scales affinely with respect to the number of vertices of
ΣR(U−,X), i.e., with respect to L. The number of vertices grows with the number

of instrumental signals. For example, in the scalar case (n = m = 1), then for
M = 2 we have L = 4. Similarly, for M = 3 we have L = 6, as depicted in
Figure 11.4.

In the case that L is large, we can, alternatively, approximate ΣR(U−,X) by a

superset, say Σ̄R(U−,X), which is chosen such that

ΣR(U−,X) ⊆ Σ̄R(U−,X). (11.17)

We note that this is equivalent with σi(U−,X) ∈ Σ̄R(U−,X) for all i = 1, . . . , L. Such

a superset Σ̄R(U−,X) can, for example, be an ellipse, as depicted in Figure 11.4
in blue. The closure of an ellipse can be described by a quadratic inequality,
as utilized for the parametrization of the feasible set of systems in (van Waarde
et al., 2022), (Koch et al., 2020a) and Chapter 9. If Σ̄R(U−,X) is an ellipse in the

scalar case, there exist Q, R and S so that for all x ∈ Σ̄R(U−,X):

x>Qx− 2S>x+R ≥ 0, (11.18)

which is equivalent to [
−x
I

]> [
Q S
S> R

] [
−x
I

]
≥ 0.
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ΣR(U−,X)

Σ̄R(U−,X)

A

B

Figure 11.4: Feasible set of systems ΣR(U−,X) (green) with 6 vertices and the ellipse

Σ̄R(U−,X) (blue) so that ΣR(U−,X) ⊆ Σ̄R(U−,X).

In the general case (n > 1), we describe Σ̄R(U−,X) by

(?)>
[
Q S
S> R

]−A>−B>
I

 � 0⇔ (?)>
[
R −S>
−S Q

] I
A>

B>

 � 0, (11.19)

i.e., Σ̄R(U−,X) := {(A,B) | (11.19) holds}.
Under the condition (11.17), all systems that are compatible with the data

are contained in Σ̄R(U−,X). That is, the superset of systems explaining the data is
parametrized by a quadratic matrix inequality. Hence, we can apply the matrix
S-lemma (van Waarde et al., 2022) to conclude informativity for stabilization or
performance for all systems in Σ̄R(U−,X), and thus for all systems in ΣR(U−,X), by

using the parametrization in (11.19).

Remark 11.5.1. In this chapter we consider informativity for stabilization and
H2/H∞ control. The parametrization in (11.19) can also be used to determine if
the data are informative for other properties, such as dissipativity, as considered
in (Koch et al., 2020b), (van Waarde et al., 2021) and Chapter 9.

Remark 11.5.2. The frameworks in (van Waarde et al., 2022), (Koch et al.,
2020a) and Chapter 9 are based on the assumption that the noise satisfies a
quadratic matrix inequality. In this chapter, we assume that the noise satisfies
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cross-covariance bounds with respect to instrumental variables. So, although the
assumption on the noise is different, we can still apply the above mentioned re-
sults, e.g. the matrix S-lemma, to conclude informativity due to the inclusion
(11.17). Some conservatism is introduced, because ΣR(U−,X) 6= Σ̄R(U−,X) in general,

but the computational advantage increases with the number of vertices of ΣR(U−,X)

and hence with the number of instrumental variables that is considered.

11.5.1 Finding the smallest superset Σ̄R
(U−,X) ⊇ ΣR

(U−,X)

Finding a minimum volume ellipsoid that covers ΣR(U−,X) is a convex optimization

problem. Consider the vertex description of ΣR(U−,X):

ΣR(U−,X) = conv{σ1
(U−,X), . . . , σ

L
(U−,X)}

and consider the parameterization of an ellipsoid as in (Boyd and Vandenberghe,
2004)

Σ̄R(U−,X) = {(A,B) | ‖Hx+ g‖2 ≤ 1, x = vec[A B]>)},

where the volume of Σ̄R(U−,X) is proportional to detH−1. The problem of com-

puting the minimum volume ellipsoid that contains ΣR(U−,X) can be written as

(Boyd and Vandenberghe, 2004):

minimize log detH−1

subject to sup
x∈Σ̄R

(U−,X)

‖Hx+ g‖2 ≤ 1,

with variablesH and g. From the vertex representation of ΣR(U−,X), i.e., ΣR(U−,X) =

conv{σ1
(U−,X), . . . , σ

L
(U−,X)}, it follows that this optimization problem is equiva-

lent to

minimize log detH−1

subject to ‖Hσi(U−,X) + g‖2 ≤ 1, i = 1, . . . , L.

The constraints and objective function of this problem are both convex (Boyd
and Vandenberghe, 2004).

11.5.2 A practical approach to determine Σ̄R
(U−,X) ⊇ ΣR

(U−,X)

Finding the smallest ellipse containing ΣR(U−,X) is a convex problem. However,

the problem assumes that a vertex description of ΣR(U−,X) is available. For a



11.5. Approximating ΣR(U−,X) by an ellipsoidal superset 255

high number of vertices, this can be tedious. While this is required to determine
the smallest ellipsoidal superset, to determine the largest ellipsoidal subset of
ΣR(U−,X), the half-space description (11.6) suffices. Consider a scaled version of

ΣR(U−,X) with ρ > 0:

ρΣR(U−,X) = {(A,B) | a>i vec[A B]> ≤ bi, i = 1, . . . , 2M}.

Now, with a parametrization for the ellipsoid as

Σ̄R(U−,X) = {Fx+ d | ‖x‖2 ≤ 1, x = vec[A B]>},

the maximum volume ellipsoid inside ρΣR(U−,X) is obtained by solving the follow-
ing convex optimization problem for F and d:

minimize log detF−1

subject to ‖Fai‖2 + a>i d ≤ bi, i = 1, . . . , 2M.

By taking ρ > 0 sufficiently large, the resulting ellipsoid Σ̄R(U−,X) ⊆ ρΣR(U−,X) will

contain ΣR(U−,X). By reducing ρ, the volume can be decreased while satisfying

ΣR(U−,X) ⊆ Σ̄R(U−,X), as shown in Figure 11.5.

11.5.3 Variable superset Σ̄R
(U−,X) ⊇ ΣR

(U−,X)

Recall that ΣR(U−,X) = conv{σ1
(U−,X), . . . , σ

L
(U−,X)}. Define

W := {W =

[
R −S>
−S Q

]
|Q ≺ 0,

 I
A>

B>

>W
 I
A>

B>

 � 0

for all (A,B) ∈ {σ1
(U−,X), . . . , σ

L
(U−,X)}.

Because any W ∈ W has a south-east block that is negative definite, we infer
that the map

[
A>

B>

]
7→

 I
A>

B>

>W
 I
A>

B>

 =: Γ(W,A,B)

is concave (Scherer and Weiland, 2017), and, therefore, Γ(W,A,B) � 0 for all
(A,B) ∈ {σ1

(U−,X), . . . , σ
L
(U−,X)} implies Γ(W,A,B) � 0 for all (A,B) ∈ ΣR(U−,X).

Define the superset with the parameterization in (11.19)

Σ̄R(U−,X) := {(A,B) |Γ(W,A,B) � 0, W ∈ W}.
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ΣR(U−,X)

Σ̄R(U−,X)

ρΣR(U−,X)

A

B

Figure 11.5: Feasible set of systems ΣR(U−,X) (green) with 6 vertices, scaled version

ρΣR(U−,X) (purple) and the ellipse Σ̄R(U−,X) (blue) so that ΣR(U−,X) ⊆ Σ̄R(U−,X) ⊆
ρΣR(U−,X).

We observe now, that we can find a suitable superset by solving a finite set of
LMIs  I

A>

B>

>W
 I
A>

B>

 � 0, (A,B) ∈ {σ1
(U−,X), . . . , σ

L
(U−,X)}. (11.20)

Let us recall the definition for informativity for quadratic feedback stabiliza-
tion (Definition 11.3.2). It was noted in (van Waarde et al., 2022), that the
inequality

(A+BK)>P (A+BK)− P ≺ 0

is equivalent to  I
A>

B>

> P 0 0
0 −P −PK>
0 −KP −KPK>

 I
A>

B>

 � 0. (11.21)

Now, for the data (U−, X) to be informative for quadratic feedback stabiliza-
tion, it is sufficient that there exist K and P � 0 so that (11.21) holds for all
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pairs (A,B) ∈ Σ̄R(U−,X). This is precisely a problem that can be solved by the

S-procedure; more specifically, by the matrix-valued S-procedure (van Waarde
et al., 2022), which is applicable since Q ≺ 0.

Application of the matrix-valued S-procedure (van Waarde et al., 2022, Theo-
rem 13) and the Schur complement leads to the following informativity conditions
for stabilization by state feedback, H∞ control and H2 control.

Proposition 11.5.1. The data (U−, X) are informative for (quadratic) stabi-
lization by state feedback if there exist W , L ∈ Rm×n, P � 0 and β > 0 so that
(11.20) holds and 

P − βI 0 0 0
0 −P −L> 0
0 −L 0 L
0 0 L> P

−W � 0. (11.22)

Moreover, K is such that A+BK is stable for all (A,B) ∈ ΣR(U−,X) if K = LP−1

with L and P � 0 satisfying (11.22).

Proposition 11.5.2. The data (U−, X) are informative for (common) H∞ con-
trol with performance γ if there exist W , L ∈ Rm×n, Y � 0 and β > 0 so that
(11.20) holds and

Y − βI 0 0 0 U>

0 0 0 Y 0
0 0 0 L 0
0 Y L> Y − γ−2I 0
U 0 0 U I

−W � 0 (11.23)

and Y − γ−2I � 0

where U := CY+DL. Moreover, K is such that ΣR(U−,X) ⊆ ΣH∞
K (γ) if K = LY −1

with L and Y � 0 satisfying (11.23).

Proposition 11.5.3. The data (U−, X) are informative for (common) H2 con-
trol with performance γ if there exist W , L ∈ Rm×n, Y � 0, symmetric Z and
β > 0 so that (11.20) holds true, traceZ < γ2,

Y − βI 0 0 0 0
0 0 0 Y 0
0 0 0 L 0
0 Y L> Y U>

0 0 0 U I

−W � 0, (11.24)

[
Y U>

U I

]
� 0 and

[
Z I
I Y

]
� 0, (11.25)
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where U := CY +DL. Moreover, K is such that ΣR(U−,X) ⊆ ΣH2

K (γ) if K = LY −1

with L and Y � 0 satisfying (11.24).

Due to the approximation of ΣR(U−,X) by a superset Σ̄R(U−,X), the conditions in
Proposition 11.5.1, 11.5.2, and 11.5.3 are only sufficient and therefore, in general,
more conservative compared to the conditions in Corollary 11.3.1, 11.4.1, and
11.4.2, respectively. From a computational point-of-view, however, the number
of LMIs scales affinely with respect to the number of vertices for both approaches,
while the size of the LMIs in (11.20) is n× n, which is strictly smaller than the
size of the LMIs in Corollary 11.3.1, 11.4.1, and 11.4.2.

11.6 Data-based analysis of interconnected sys-
tems with cross-covariance bounds

When the system under consideration is an interconnected system, then the in-
terconnection structure can be taken into account in the data-based analysis
with cross-covariance bounds. In this section, we will address the data-based
analysis of interconnected systems, where the noise signal corresponding to each
subsystem is subject to sample cross-covariance bounds. Consider interconnected
systems composed of L linear time-invariant systems of the form

xi(k + 1) = Aixi(k) +
∑
j∈Ni

Aijxj(k) +Biui(k) + ei(k), i = 1, . . . , L, (11.26)

where xi ∈ Rni denotes the state, ui ∈ Rmi the input and ei ∈ Rni is a noise
signal. The set Ni := {j ∈ V | (i, j) ∈ E} denotes the neighbours of system i,
where V and E ⊆ V × V denote the set of vertices and the set of non-oriented
edges defining the connected graph G = (V, E).

We consider the following problem set up. Let there exist a true intercon-
nected system defined by the matrices A0

i , A
0
ij and B0

i , (i, j) ∈ E , generating the
input-state data {(ui(t), xi(t)), t = 0, . . . , N} for i ∈ V. This data is collected
in the matrices

X−i := [xi(0) · · · xi(N)], U−i := [ui(0) · · · ui(N − 1)].

By defining the matrices

X+
i := [xi(1) · · · xi(N)], X−i := [xi(0) · · · xi(N − 1)],

E−i := [ei(0) · · · ei(N − 1)],

we obtain the data equation

X+
i = A0

iX
−
i +

∑
j∈Ni

A0
ijX

−
j +B0

i U
−
i + E−i , (11.27)
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for each i ∈ V.

11.6.1 Network cross-covariance bounds

We assume here that ej(t), j ∈ V, are not measured, i.e., E−j is unknown for all
j ∈ V, but that each noise signal ej(t) satisfies the (element-wise) bounds

clj ≤
1√
N

N−1∑
t=0

ej(t)rj(t)
> ≤ cuj , j = 1, . . . , L, (11.28)

where rj is a vector that collects measured signals rij , i = 1, . . . ,M , that are
chosen, so that rj := col(r1j , . . . , rMj), and clj , c

u
j are specified bounds.. We

call rij instrumental network signals. These instrumental network signals can be
any measured signals in the network, e.g., (components of) states xi, i ∈ V, or
(components of) inputs ui, i ∈ V.

For each j ∈ V, the set of feasible subsystems, i.e., the set of subsystems that
are consistent with the data under the assumption on the noise (11.28), is

ΣjRD := {(Aj , ANj , Bj) |

clj ≤
1√
N

N−1∑
t=0

xj(t+ 1)−Ajx(t)−
∑
k∈Nj

Ajkxk(t)−Bjuj(t)

 rj(t)
> ≤ cuj }.

We find that the sample cross-covariance between ej and rj is

RN−ejrj :=
1√
N

N−1∑
t=0

ej(t)rj(t)
>

=
1√
N

N−1∑
t=0

xj(t+ 1)rj(t)
> − 1√

N

N−1∑
t=0

Ajxj(t)rj(t)
>

− 1√
N

N−1∑
t=0

∑
k∈Nj

Ajkxk(t)rj(t)
> − 1√

N

N−1∑
t=0

Bjuj(t)rj(t)
>

=
1√
N
X+
j (R−j )> −Aj

1√
N
X−j (R−j )> −

∑
k∈Nj

Ajk
1√
N
X−k (R−j )>

−Bj
1√
N
U−j (R−j )>

= RN+
xjrj −AjRN−xjrj −

∑
k∈Nj

AjkR
N−
xkrj
−BjRN−ujrj .
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Hence, the feasible set of systems is

ΣjRD = {(Aj , ANj , Bj) | clj ≤ RN+
xjrj −

[
Aj ANj

Bj
]  R

N−
xjrj

RN−xNjrj

RN−ujrj

 ≤ cuj }.

Σ1
RD

Σ̄1
RD

× Σ2
RD

Σ̄2
RD

× Σ3
RD

Σ̄3
RD

Figure 11.6: Each subsystem has its own feasible set of tuples (Ai, ANi , Bi),
illustrated by the polytopes. A polytope can be approximated by an ellipsoid
for each subsystem separately such that ΣiRD ⊆ Σ̄iRD for each i ∈ V. The set
of all feasible tuples ((A1, AN1

, B1), . . . , (AL, ANL
, BL)) is the Cartesian product

Σ1
RD × · · · × ΣLRD.

We consider the case where the inequalities defining ΣjRD are not redundant

for each j ∈ V so that ΣjRD is a convex polytope with a finite number of vertices

σjνD , ν ∈ {1, . . . , Nj} =: Sj . That is, for each subsystem j ∈ V, we have a
separate set of feasible tuples (Ai, ANj

, Bj) that is a polytope. This is illustrated
in Figure 11.6 for a network with V = {1, 2, 3}.

11.6.2 Data-based network analysis with cross-covariance
bounds

Since the sets ΣjRD, j ∈ V, are convex and have a finite number of vertices,
Lemma 11.3.1 can again be utilized to analyze the interconnected system perfor-
mance through verification of performance conditions at the vertices only. Con-
sider an output yj for each subsystem, given by

yj = Cjxj +Djuj , j ∈ V. (11.29)

The transfer matrix from col(u1, . . . , uL) to col(y1, . . . , yL) is denoted T . We
say that the interconnected system (11.26) with output (11.29) achieves H∞
performance γ > 0 if ‖T‖H∞ < γ.

We recall the nominal distributed controller existence conditions from Chap-
ter 4, Corollary 4.3.1, which provides sufficient conditions for the H∞ perfor-
mance of the interconnected system.



11.6. Data-based analysis of interconnected systems with cross-covariance
bounds 261

Theorem 11.6.1. If, for every i ∈ V, there exist Pi and Zi so that Pi � 0 and

(?)>


−Pi 0 0 0 0 0

0 Pi 0 0 0 0
0 0 Z11

i Z12
i 0 0

0 0 (Z12
i )> Z22

i 0 0
0 0 0 0 −γ2I 0
0 0 0 0 0 I




I 0 0
Ai ANi Bi

1⊗ I 0 0
0 I 0
0 0 I
Ci 0 Di

 ≺ 0 (11.30)

holds, then the interconnected system (11.26) with output (11.29) achieves H∞
performance γ.

Now, by the convexity of the sets of feasible subsystems ΣjRD, j ∈ V, we can

verify the feasibility of the analysis LMIs at each vertex σjνD , ν = 1, . . . , Nj for
each j ∈ V, to conclude feasibility of the analysis LMIs for all data-compatible
subsystems. Conversely, if the LMIs are feasible for data-compatible subsystems,
they are obviously feasible for subsystems at the vertices of ΣjRD, j ∈ V.

Proposition 11.6.1 (Performance from structured data). There exist Pi and Zi
so that Pi � 0 and

(?)>


−Pi 0 0 0 0 0

0 Pi 0 0 0 0
0 0 Z11

i Z12
i 0 0

0 0 (Z12
i )> Z22

i 0 0
0 0 0 0 −γ2I 0
0 0 0 0 0 I




I 0 0
σiνA σiνAN σiνB

1⊗ I 0 0
0 I 0
0 0 I
Ci 0 Di

 ≺ 0 (11.31)

holds for all (i, ν) ∈ V × Si, if and only if there exist Pi and Zi so that Pi � 0
and

(?)>


−Pi 0 0 0 0 0

0 Pi 0 0 0 0
0 0 Z11

i Z12
i 0 0

0 0 (Z12
i )> Z22

i 0 0
0 0 0 0 −γ2I 0
0 0 0 0 0 I




I 0 0
Ai ANi Bi

1⊗ I 0 0
0 I 0
0 0 I
Ci 0 Di

 ≺ 0 (11.32)

holds for all (Ai, ANi
, Bi) ∈ ΣiRD, i ∈ V.

Consequently, if there exist Pi and Zi so that Pi � 0 and (11.31) holds
holds for all (i, ν) ∈ V × Si, then all interconnected systems with subsystems
(Ai, ANi , Bi) ∈ ΣiRD, i ∈ V, achieve H∞ performance γ.
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Proof. Consider i ∈ V and the matrix functions Fi : ΣiRD → Sni×ni , defined by
Fi(σ) := σ>Piσi. Since ΣiRD is convex and Pi � 0, we infer that Fi is a convex
function. Hence, by Lemma 11.3.1, (11.32) holds for all (Ai, ANi , Bi) ∈ ΣiRD if
and only if (11.31) holds for all ν ∈ Si. This proves the assertion.

Now, let us approximate ΣiRD by a superset, say Σ̄iRD, for each i ∈ V, which
are chosen such that

ΣiRD ⊆ Σ̄iRD, i ∈ V. (11.33)

If we choose the supersets as ellipsoids, then there exist triples (QiD, S
i
D, R

i
D) for

each i, such that

Σ̄iRD = {(Ai, ANi , Bi) | (?)>
[
QiD SiD

(SiD)> RiD

]
I 0 0
0 I 0
0 0 I
Ai ANi Bi

 � 0}.

Although, we have used a different assumption on the noise, we have arrived at
the same parametrization used in Lemma 9.4.2, but now for a superset of each
feasible set of subsystems. Consequently, we have the following result.

Proposition 11.6.2 (Performance from structured data (superset)). Let QiD ≺ 0
and γ > 0. Let there exist Pi, Zi and αi so that Pi � 0, αi > 0 and

J>i



−Pi 0 0 0 0 0 0 0
0 Pi 0 0 0 0 0 0
0 0 Z11

i Z12
i 0 0 0 0

0 0 (Z12
i )> Z22

i 0 0 0 0
0 0 0 0 −αiRiD −αi(SiD)> 0 0
0 0 0 0 −αiSiD −αiQiD 0 0
0 0 0 0 0 0 −γ2I 0
0 0 0 0 0 0 0 I


Ji ≺ 0

(11.34)

holds for all i ∈ V, with Ji defined in (9.9). Then all interconnected systems with
subsystems (Ai, ANi , Bi) ∈ ΣiRD, i ∈ V, achieve H∞ performance γ.

11.6.3 Data-based distributed controller design with cross-
covariance bounds

Consider now the step from structured performance analysis from data to dis-
tributed controller existence analysis from data. Once the ellipsoidal supersets
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Σ̄iRD, i ∈ V, have been determined, this step can be performed as described in
Chapter 9. More specifically, the assertion regarding the existence of a distributed
controller in Theorem 9.5.1 holds true with ΣiD replaced with ΣiRD and the triples
(QiD, S

i
D, R

i
D), i ∈ V, such that the inclusions in (11.33) hold true. If the condi-

tions in Theorem 9.5.1 hold true, then there exists a distributed controller such
that the closed-loop network with (Ai, ANi

, Bi) ∈ ΣiRD, i ∈ V, achieves H∞
performance γ. A corresponding distributed controller can be constructed as
described by the procedure in Section 4.3.6.

11.7 Conclusions

We have addressed the problem of analyzing informativity of data for controller
design with prior knowledge on process noise in the form of linear sample cross-
covariance bounds. We have established a parametrization of the set of systems
that are compatible with data. This set is a (possibly unbounded) polyhedron
and the analysis therefore requires a different approach than the application of the
S-procedure in Chapter 10, where the noise has been characterized by quadratic
sample cross-covariance bounds. First, we have developed sufficient conditions
under which the data are informative for feedback stabilization, in the case that
the set of feasible systems is unbounded. For the case that this set is bounded,
we have used its convexity and the convexity of stability/performance conditions
with respect to the system matrices, leading to necessary and sufficient conditions
for informativity for stabilization and H2/H∞ control. To reduce the compu-
tational complexity, we have shown how the matrix S-lemma can be applied in
the informativity analysis by approximating polytopic sets of feasible systems by
ellipsoidal supersets. Finally, the analysis and control of interconnected systems
has been addressed, by determining the set of all feasible tuples of subsystem
matrices as a Cartesian product of polytopic sets or ellipsoidal supersets. The
parametrization of the ellipsoidal supersets is equal to the parametrization in
Chapter 9, which allows the application of the approach in Chapter 9 to the
analysis of interconnected systems with sample cross-covariance noise character-
izations.
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Chapter 12

Conclusions and future
perspectives

12.1 Conclusions

In this thesis, the use of data from interconnected systems for the design of
distributed controllers has been addressed. The problem of using data for dis-
tributed controller design has been approached in two philosophically different
manners in this thesis: indirect data-driven distributed control and direct data-
driven distributed control. The first approach has been considered in Part I,
through data-driven modeling of dynamic networks and distributed controller
design. In Part II, the direct approach to data-driven distributed control has
been addressed. Moreover, fundamental limitations of distributed controller de-
sign from data have been addressed, in Part III. The conclusions that follow from
the results in this thesis are summarized in this section.

Indirect data-driven distributed control

Different from centralized controller design from data, the design of distributed
controllers from data involves an interconnection structure of the controller. Fur-
thermore, the interconnected system that has to be controlled also has an in-
terconnection structure. As reasoned in the introduction, indirect data-driven
distributed controller design is concerned with the derivation of a structured
model of the interconnected system from data and the model-based synthesis of
a structured (distributed or decentralized) controller.

The data-driven modeling of interconnected linear systems has been addressed
in Chapter 2. Interconnected linear systems have a state-space representation and
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a module dynamic network representation that are observationally equivalent.
For a dynamic network that is interconnected with a distributed controller, with
a clear distinction between interconnected system and distributed controller, it is
shown that identification methods developed for dynamic networks can be spec-
ified and generalized for obtaining consistent subsystem models. Consistent esti-
mates can be obtained through indirect identification methods, using knowledge
of the distributed controller dynamics in the post-processing step. Alternatively,
consistent estimates, of one subsystem or the complete interconnected system
dynamics, can be obtained through direct methods for identification. The exper-
iment design for indirect methods relies fully on (measured) external excitations,
which can be provided through reference signals in the considered experiment
setup. This requirement can be relaxed for the direct method, where excita-
tion may be provided through unmeasured exogenous disturbances that affect
the underlying plant. In the case that a tailor-made parametrization is used in
an indirect method, the network identification criterion can be interpreted as a
(closed-loop) H2 performance degradation that can be used in an iterative scheme
of network identification and distributed control design, directly extending the
situation of a classical control loop through identification for control.

Measurement data and computational resources may be spatially distributed
for network identification. In Chapter 3, a distributed identification framework
has been developed for obtaining linearly parametrized MISO models with multi-
ple identification modules that are interconnected through a mutual fusion center.
It has been shown that the true parameters can be obtained asymptotically by
iteratively updating estimates via a distributed version of recursive least squares,
which requires the communication of regressors between identification modules.
In the case that process noise affects the output, a noise model can be identi-
fied through a separate identification module, leading to asymptotically unbiased
estimates.

In Chapter 4, the design of a distributed controller based on a state-space
model of an interconnected system, that may be obtained through one of the
procedures in Chapter 2, has been considered, with an H2 or H∞ performance
measure. Structured H2 analysis conditions have been presented for intercon-
nected linear systems in a discrete-time setting, through a dissipativity-based
approach. It has been shown that these analysis conditions transform to con-
vex synthesis conditions, that are sufficient for the existence of a distributed
controller with dynamical sub-controllers. Moreover, when supply functions as-
sociated with interconnection variables are fixed a priori, it has been shown that
the synthesis conditions can be used for the design of a decentralized controller.
A detailed controller construction procedure has been provided, which completes
the procedure of indirect data-driven distributed control.
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Direct data-driven distributed control

Alternative to indirect data-driven distributed control, direct data-driven dis-
tributed control omits the modeling of the underling system that is to be con-
trolled. A complete framework for direct data-driven distributed control has
been introduced in this thesis, following a structured model-reference approach
to control.

In Chapter 6, we have introduced a distributed model-reference control prob-
lem, which is to determine a distributed controller that yields a closed-loop in-
terconnected system with a behavior that is prescribed by a structured reference
model. It has been shown that this problem is solved by a distributed controller
(an ideal distributed controller) that explicitly depends on the plant and reference
model, extending the ideal controller in the situation of a classical control loop.
The philosophy behind this ideal distributed controller stems from the canonical
distributed controller introduced in Chapter 5, where each sub-controller is de-
fined by the interconnection of a reference model and plant subsystem through
to-be-controlled variables in a behavioral setting. Analysis and synthesis condi-
tions have been derived for verifying and guaranteeing properness and stability
of the distributed controller in Chapter 6.

The distributed model-reference control problem can be solved directly from
data, which has been shown in Chapter 7 and Chapter 8. In Chapter 7, a virtual
reference framework for distributed control has been developed. The distributed
model-reference control problem can be solved by identification of the ideal dis-
tributed controller modules in a virtual network, that can be generated with
measurement data in combination with the structured reference model. With
insights from the direct method in the identification of dynamic networks, it has
been found that the identification problem can be performed locally in order to
obtain consist estimates of the ideal distributed controller. In the presence of
process noise, consistent estimates can be obtained by modeling the noise fil-
ter with a tailor-made noise model and by filtering the corresponding prediction
error with a module of the reference model. This method is also applicable to
classical VRFT, providing an alternative to the instrumental-variable method for
obtaining consistent estimates in the presence of process noise.

In Chapter 8 it has been shown that the distributed model-reference control
problem can be solved from data by extending the underlying dynamic network,
such that transformed versions of ideal distributed controller dynamics appear as
modules. It has been shown that the transformed ideal controller modules can
be consistently identified in the extended network through indirect and direct
identification methods. The network transformation in combination with the
direct method for dynamics networks naturally extends the one-shot OCI method
for standalone control loops to distributed control. Compared with the method
in Chapter 7, no tailor-made noise model is required. The identification criterion
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is typically non-convex due to the transformed controller modules, however, even
if the controller class is linearly parametrized.

Informativity and performance with guarantees

The conclusions that are drawn for the performance in Part I and Part II are
based on consistent estimation, i.e., asymptotically in the number of data. In
Chapter 9, the design of a dynamical distributed controller based on a finite
number of noisy measurement data has been addressed. It has been found that
the existence of a distributed controller, that achieves a prescribed H∞ perfor-
mance, can be guaranteed by the feasibility of linear matrix inequalities that are
defined by the data. Once the controller existence has been established, a corre-
sponding distributed controller can be constructed via the procedure established
in Chapter 4 from the solution to the data-based LMIs.

In Chapter 10, a framework for data informativity for control has been con-
sidered, with a characterization of unmeasured exogenous disturbances by their
squared sample cross-covariance with respect to instrumental variables. Sufficient
informativity conditions for stabilization, H2 and H∞ control via dynamic out-
put feedback were derived, which are also necessary if the state is measured. A
numerical case study has been shown where data-informativity can be concluded
with cross-covariance bounds, while the data are concluded to be non-informative
with magnitude bounds. The choice of output measurements can be of paramount
importance for data informativity for control, which has been illustrated via a
numerical example. Linear versions of the bound in Chapter 10 have been con-
sidered in Chapter 11, leading to a polyhedral set of systems that are compatible
with the data. It has been shown that the convexity of the set of feasible systems
and analysis conditions, leads to a finite number of LMIs that are necessary and
sufficient for stabilization, H2 and H∞ control in the case that the data lead
to a bounded polyhedron. Furthermore, it has been shown that informativity
for stabilization can even be concluded if the polyhedron is unbounded, but the
derived conditions are only sufficient and have been derived for scalar input and
state data only. Through ellipsoidal approximations, the informativity conditions
have been shown to extend to the distributed control situation via the conditions
developed in Chapter 9.

12.2 Future perspectives and extensions

Selective identification for distributed control

In indirect data-driven distributed control, a model of the full underlying plant
is identified, to perform a model-based distributed controller synthesis. However,
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in large-scale interconnected systems, some subsystems may only have a limited
contribution to the synthesized distributed controller dynamics, and hence the
resulting closed-loop performance. In the scope of identification for control, it
is attractive to be able to characterize subsystems that are most ‘important’ for
distributed controller design. In a sense, this would correspond to minimization of
the performance degradation (Van den Hof and Schrama, 1995), (Gevers, 2005),
by selecting the most important systems for identification.

Local synthesis of sub-controllers from data

Similarly, in direct distributed data-driven control the aim is to find a full dis-
tributed controller. It would be attractive to allow the synthesis of sub-controllers
that have a relatively large impact on the closed-loop performance. Such a con-
troller could, for example, correspond to a sub-controller attached to subsystem
that has altered dynamics. A first approach could be as follows. First, estimate
the local ‘sensitivity’ transfer function from the local reference to local perfor-
mance output to determine the current performance and construct a reference
model with a higher performance (e.g., lower H2 norm). Consequently, a new
local controller could be estimated from data by performing the local identifica-
tion from Chapter 7 or Chapter 8 such that the closed-loop network achieves the
new reference model dynamics.

Synthesis of structured reference models

The structured reference model, considered in direct data-driven distributed con-
trol in Chapter 7 and Chapter 8, has been analyzed in Chapter 6. Regarding
the synthesis of structured reference models, preliminary steps toward the syn-
thesis of decoupled reference models have been made in Chapter 6. The problem
of synthesizing structured reference models in general, however, remains largely
open. A systematic procedure for determining structured reference models would
improve the applicability of the direct data-driven methods to distributed control
described in this thesis. A first step toward this direction could be to investigate
the possibility of extending the method in (Gonçalves da Silva et al., 2019) to
structured reference models for distributed control.
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K. van Heusden, A. Karimi, and T. Söderström. On identification methods for
direct data-driven controller tuning. International Journal of Adaptive Control
and Signal Processing, 25(5):448–465, 2011.

E. P. Van Horssen and S. Weiland. Synthesis of distributed robust H-infinity
controllers for interconnected discrete time systems. IEEE Transactions on
Control of Network Systems, 3(3):286–295, Sept 2016.

H. J. van Waarde, J. Eising, H. L. Trentelman, and M. K. Camlibel. Data
informativity: A new perspective on data-driven analysis and control. IEEE
Transactions on Automatic Control, 65(11):4753–4768, 2020.

H. J. van Waarde and M. K. Camlibel. A matrix Finsler’s lemma with applica-
tions to data-driven control. ArXiv e-prints, arXiv:2103.13461, 2021.

H. J. van Waarde, M. K. Camlibel, P. Rapisarda, and H. L. Trentelman. Data-
driven dissipativity analysis: application of the matrix S-lemma. ArXiv e-
prints, arXiv:2109.02090, 2021.

H. J. van Waarde, M. K. Camlibel, and M. Mesbahi. From noisy data to feedback
controllers: Nonconservative design via a matrix S-lemma. IEEE Transactions
on Automatic Control, 67(1):162–175, 2022.

A. N. Venkat, J. B. Rawlings, and S. J. Wright. Distributed model predictive
control of large-scale systems. In R. Findeisen, F. Allgöwer, and L. T. Biegler,
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