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The discrete element method (DEM) proposed by Cundall and Strack [1] is a widely used numerical approach to
study the fundamentals of particulatematter at the particle scale. In our present study, theflowbehavior of dense
configurations of soft particles was studied by means of a new formulation of the multi-contact force closure for
theDEM. Thefirst stepwas to verify the response of the new force closure, and calibrate its parameters based on a
comparison of the results for simple uniaxial compression with results from a reference simulation. This refer-
ence simulation used a highly accurate nonlocal formulation of contact mechanics in the quasi-static limit [2],
which accounts for the interplay of deformations due to multiple contact forces acting on a single particle. The
newly developed and calibratedmodel results show significant improvement over those derived via the existing
multi-contact model. Also, the dependence of the stress in the sheared granularmatter on the Poisson's ratiowas
unveiled when using the newly derived advancedmulti-contact force closure. Therefore, an extensive campaign
of simple shear flow simulations was performed (at a fixed volume of the simulation box) to probe the effect of
particle volume fraction and the speed of shearing. These simulations show that the stress at particle volume frac-
tions larger than a critical value depends not only on the friction coefficient and particle stiffness, but also on the
Poisson's ratio of the material. Finally, we report a response surface for the pressure in a sheared particle bed as a
function of all key influence parameters. This response surface is beneficial for calibratingDEMmodel parameters
in extremely dense flow configurations.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Soft solid or fluid particles, including gels, rubber, powders, clays,
microorganisms, cells, droplets, bubbles, etc., are encountered in many
applications from food to bio-medical industries. The deformability of
soft particles is vital for understanding their bulk and mechanical be-
havior as it is a key characteristic in many manufacturing steps, such
as separation and purification.

In numerical simulations of these systems, only small deformations
of the involved particles are typically considered. Thus, particles are ei-
ther treated as rigid bodies (e.g., in the case of the hard-spheremethod),
or deformations are idealized (e.g., in the case of the DEM). Despite this,
an investigation of large deformations is essential, e.g., for a better un-
derstanding ofmany industrial processes such as (i) tableting and gran-
ulation processes in the food and pharmaceutical industry [3], (ii)
investigations of the outflow dynamics and clogging during silo
. This is an open access article under
discharge [4], or (iii) biomedical applications, for instance, studying
the flow properties of blood cells [5].

The discrete element method (DEM) [1] is a powerful numerical
method for modeling and analysis of the behavior of various particulate
systems [6–9]. The particles in DEM interact with each other via
pairwise contact forces. Employing the usual soft-particle approach,
which assumes a tiny overlap of particles corresponding to the particle
deformation at the contact point, particles can stay in contact for a finite
amount of time. Althoughmultiple contact forces are allowed to act on a
particle in this approach, each interparticle contact is usually considered
binary and independent of other contacts.We denote such an approach
as “classical DEM” since it reflects the original idea of Cundall and Strack
[1]. However, the assumption of independent contacts is only valid for
moderately dense granular systems in which deformations are small
and localized around the contact point. Therefore, the classic DEM is im-
perfect formodeling ensembles of particles that undergo large deforma-
tions.

One common way of introducing deformability is by combining the
capabilities of the finite element method (FEM) with DEM [10–14] by
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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discretizing individual particles. Although pure FEM can also be used
for accurate particle deformation modeling, the method is mesh-
dependent, computationally expensive, and limited to account for
large deformations [11]. Other discretization methods, such as the
continuum-based material point method [15–17] or the discrete-
bonded particle method [18], have also been introduced for this
purpose. Although these methods are beneficial in modeling different
deformationmechanisms and any particle shape, they are computation-
ally costly and suitable only for a limited number of particles.

Other complex methods have been introduced to consider the
deformability in DEM. One is the deformable discrete element method
(DDEM) [19], where particles are deformed uniformly due to consistent
internal stress. In DDEM, the strain created inside of each particle (i.e., a
so-called “local strain”) affects the evaluation of binary contact forces by
using newly formed global overlaps (i.e., so-called “global strains”).
DDEM was developed for disks and is applicable to 2D situations only
[19]. Another method is discrete deformation analysis (DDA), devel-
oped by Shi [20], which employs an implicit solution algorithm de-
manding the evaluation of stiffness matrices of deformable blocks.
These formulations were developed for deformable cylindrical (in 2D)
and deformable blocks, respectively.What hinders using thesemethods
is that they are relatively complex for even simple 2Dmodeling, and fur-
ther developments are needed for 3D applications.

An interestingmethod called themulti-contact DEM (MC-DEM)was
first developed by Brodu et al. [21]. This method explicitly considers the
mutual influence of the formation of new contacts due to the particles'
deformation to evaluate the contact force. In this model, the deforma-
tion is employed by an analytical solution. Brodu et al. have successfully
compared the results of theirMC-DEMmodelwith experimental data of
uniaxial compression of hydrogel particles. Recently, Giannis et al. [22]
have introduced a stress-based MC-DEM variant. Specifically, they use
the trace of the particle stress tensor in order to consider the simulta-
neous effect of all contacts on a single particle. This MC-DEM variant
has been validated by confined and unconfined uniaxial compression
of different materials like hydrogels, rubber, and glass beads. Giannis
et al. [22] have shown that their stress-basedMC-DEMmodel is compu-
tationally much faster than methods involving particle discretization.

Granularmaterials exhibit a flow behavior that ranges from that of a
gas to that of a solid, depending on their properties and the interaction
between grains. In dense flows above the critical (jamming) solid vol-
ume fraction, the effect of the formation of new contacts and a realistic
evaluation of contact forces is of significant importance. Despite the ad-
vantages mentioned above of the MC-DEM method, this model is nu-
merically not capable of simulating the extremely dense configuration
of strongly deformed particles. Specifically, our preliminary analysis
shows that employing standard MC-DEM for large deformations can
lead to situations where the corrected contact surfaces predicted by
the model are extremely huge (data not shown). This behavior results
in contact penetrations larger than the particle's radius. This is physi-
cally impossible and hence needs to be corrected.

In our current study, the standard MC-DEM model has been im-
proved to be capable of modeling extremely dense configurations of
highly deformable particles that standard MC-DEM cannot cover. This
advanced MC-DEM method is ultimately employed to investigate sim-
ple shearflows beyond the jammingpoint. Due to the computational ef-
ficiency of contact detection and the simplicity of implementation,
spherical particles are often preferred and the focus of our present
study. Firstly, the verification of the proposed method and the calibra-
tion of themodel parameters were carried out for uniaxial compression
of granular matter, using the highly accurate nonlocal contact formula-
tion of Gonzalez et al. [2,23,24]. Subsequently, a large set of simple shear
flow simulations within the quasi-static regime was executed to inves-
tigate the effect of particle volume fraction and the shear rate on the
time-averaged pressure. Lastly, considering the Poisson's ratio effect, a
response surface for the pressure in this regime is presented as a
2

function of all key parameters. That is of value for the calibration of pa-
rameters in future applications of our model.

2. Simulation approach and computational model

Simulations are performed using the discrete element method
(DEM) solver LIGGGHTS [25]. TheDEM includes solvingNewton's equa-
tions for every particle's translational and angular momentum [1].
Grains are modeled as inelastic, frictional spheres, interacting through
a modified Hertz's law. Specifically, an advanced multi-contact surface
model, which is capable of modeling dense configuration of soft parti-
cles and explained in the next paragraph, is used to improve Hertz's
law for binary contact forces.

Brodu et al. [21] has first introduced the standard multi-contact
(MC) model. This model considers the influence of induced deforma-
tions at neighboring contact points when calculating particle-particle
contact forces.

In the classical DEMmethod, contact laws relate the contact force to
the overlap of twoparticles. If two particles i and j, with radii ri and rj and
positions xi and xj are in contact, this overlap is:

δc ¼ ri þ rj
� �

− xi−xj
� � � n ð1Þ

where n is the unit vector pointing from particle j to i.
InMC-DEMbasedmodels, the displacement field imposed by neigh-

boring contacts δk→c (k denotes here the neighbour contact index) at
each local contact δc is calculated by the following expression derived
by elasticity theory [21]:

δk!c ¼ −γ
1þ υð ÞFk
2πEdkc

nk � ukcð Þ nc � ukcð Þ þ 3−4υð Þnk � nc

8<:
− 1−2υð Þ nk þ ukcð Þ � nc

1þ nk � ukc

9=;

ð2Þ

where Fk is the force at contact k, nk is a surface normal vector at contact
point k, ukc is the unit vector connecting the contact point k to c, E is the
Young'smodulus of the particles, dkc is the distance between the surface
position of contacts c and k, υ is the Poison's ratio, and γ is an adjustable
pre-factor that empirically accounts for the geometry. Consequently,
the contact force will be defined as some function f of (δc + ∑kδk→c)
instead of δc as done in the classical DEM. For instance, using the
Hertzian contact law, the contact force will be proportional to (δc +
∑kδk→c)3/2. Based on the relative distance of the two contact surface
positions c and k and the Poisson's ratio, the evaluated value of the
terms in the curly brackets in Eq. (2) can be negative or positive.
Therefore, this solution considers the deformation of particles as if the
particles' radius is reduced or increased for contact force detection and
evaluation. Furthermore, this method assumes that the deformation is
isotropic enough such that there is no need to recompute the moment
of inertia tensor of each grain after deformations.

Deploying the standardMC-DEM formodeling large deformations is
beneficial in closely packed situations. Unfortunately, the corrected con-
tact surface positions resulting from applying the above-mentioned dis-
placement field for extreme conditions can lead to negative overlaps
(i.e., the particles' contact position passes each other's centers). This is
clearly unphysical.

To address this problem, we propose a modification to this method
in a way that (for each contact) the displacement field caused by each
neighboring contact (as given by Eq. 2) is limited to a maximum pene-
tration ratio,MPR= δmax/ri, where ri is the particle's i radius. Thismeans
that Eq. (2) is only effective for contact overlaps that are less than the
allowed MPR multiplied by the particle radius. MPR signifies the ratio



Fig. 1.Normal stress acting on the top plate during compression and decompression of hydrogel particles up to two final strain levels (panel a: low strain, panel b: high strain) versus solid
volume fraction of the bed. Classical DEM with Hertzian contact force (solid blue line), standard MC (solid black line), and advanced MC model with different sets of model parameters
(dashed lines).

Fig. 2. Stress vs. solid volume fraction for the compression of hydrogel particles using the
nonlocal formulation [2], classical DEM with Hertzian contact force, standard MC-DEM
[21], and the advanced MC.

N. Ghods, P. Poorsolhjouy, M. Gonzalez et al. Powder Technology 401 (2022) 117288
between themaximumdisplacement per contact δmax and the radius of
the particle. Thus, the contact force is redefined as:

Fk ¼
f δcð Þ if δk→c > δmax

f δc þ
X
k

δk→c

 !
if δk→c ≤δmax

8><>: ð3Þ

For displacements above the defined maximum, the deformation at
each contact is so large that standard multi-contact (MC) equations
would lead to numerical instabilities. Thus, one needs to choose an ex-
pression that leads to a stable (and realistic) contact force, which we
find is satisfied by the base contact law (i.e., the Hertz law).

It has to be noted that the overlap (or deformation and penetration
ratio) terms used in the model's description are only referring to the
DEM contact force calculation as the soft-sphere approach. Thus, the ex-
tent of the overlap of particles relates to the magnitude of the contact
force. In the MC-DEM, the particles neither change size nor are de-
formed.Moreover, theMC-DEM is a surfacemodel approach for consid-
ering the effect of multiple contacts in contact detection and contact
force calculation in DEM simulations, compatible with any contact law
- the Hertz law is used in this study. In Appendix A we have illustrated
the corresponding computer algorithm of the advanced multi-contact
model. Therefore, MPR=0 relates to binary contact calculation and de-
tection, while MPR = 1 resembles multiple contact calculation for all
the contacts. In this research, we discovered that since the displacement
field imposed by neighboring contacts (Eq. 2) approximates the partic-
ulate packing to an infinite half-space, small overlaps adding the effect
of other contacts can be more important than a large overlap. In the
standard MC closure, the addition of this approximation for large over-
laps provoked large deviations in the displacement field prediction, re-
sulting in unphysical results.

TheMPR value and the empirical pre-factor (γ) need to be calibrated
for a given assembly when using the advanced MC closure. In what fol-
lows, the calibration strategy and how switching back to the Hertz solu-
tion results in stable and realistic results is discussed.

3. Verification and calibration

The advanced MC-DEM model has two parameters that should be
calibrated and that are dependent on the particle properties. Therefore,
the uniaxial compression test case of hydrogel particles by Brodu et al.
[21] was replicated. This setup allows the study of extreme compaction
conditions (i.e., reaching solid volume fractions of 0.85). We used our
3

advanced and the standard multi-contact model of Brodu et al. [21] to
simulate it. The system contains 514 hydrogel particles with a mean di-
ameter of 2.1 ± 0.2 [cm], packed into a rectangular bed with the initial
size of 0.165 × 0.166 × 0.168 [m] in x-y-z direction (further particle
properties are summarized in Appendix B). The initial solid volume frac-
tion of the bed of particles is 0.58. The particles are uniaxially com-
pressed and decompressed in the z direction with a constant velocity
of 0.1 m/s. For all the simulations, the DEM timestep is chosen to be
below the critical value [26], therefore ensuring stable simulations and
the independence of the calibrated parameters to the chosen time step.

wAs is expected, our advanced MC-DEM predicts higher forces
compared to the classical Hertz model (see Fig. 1). The solid black
lines correspond to the standard MC-DEM prediction using the maxi-
mum γ pre-factor that is numerically reachable (i.e., without numer-
ical failure).

The effect of theMPR is highly dependent on the number of contacts
and the distribution of the overlap values within the system, and the
contact force between particles. The reason is that if the contact force
from the previous timestep is overestimated - this can happen with
large γ factors - the contact model switches back to the base model
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(i.e., the Hertz model). The results closely agree with the standard MC-
DEMbydecreasing theMPR from1.0 to a particular value, depending on
thefinal solid volume fraction (and themaximumoverlaps). In turn, the
results now rely on the value for γ (indicated as dashed grey lines in
Fig. 3. Stress vs. solid volume fraction plot of compression case for thenonlocal formulation [2], c
different Poisson's ratios.

4

Fig. 1). Fortunately, when reducing the MPR value, the γ pre-factor
can be increased to reach the desired stress levels.

The response of the advanced MC-DEM force closure with different
pairs of parameters during the compression cycle is demonstrated in
lassical DEMwithHertzian contact force, standardMC-DEM [21], and the advancedMC, for



Fig. 4. The normalized root-mean-square error (NRMSE) of Hertz, Standard and advanced
MC method relative to the reference results (i.e., the nonlocal formulation) for various
Poisson's ratios. Fig. 6. Granular matter at a volume fraction of 0.9 in simple shear flow (colors indicate in-

dividual particle speed).
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Fig. 1. The second compression-decompression cycle has been plotted
to eliminate the effect of the packing's initial configuration, as well as
the rearrangement of particles during the initial compression. This pro-
tocol was also adopted to make the response reversible and reach the
initial packing fraction after decompression. The simulated stress re-
sponse is consistent with similar compression experiments of deform-
able spheres such as hydrogel and rubber, where for the first 1–2 mm
of displacement (corresponding to ϕ = 0.66), the packing follows the
Hertzian relationship, while at larger displacements (i.e., ϕ > 0.66), a
transition to a stiffer behavior is observed [27–30].

Our advanced multi-contact model predictions are validated by
comparing with Gonzalez's nonlocal contact formulation [2] results in
the quasi-static limit. The latter accounts for the interplay of deforma-
tions due to multiple contact forces acting on a single frictionless parti-
cle. Precisely, the effect of each contact load on every point of the
particle's surface is estimated using a closed-form solution, which al-
lows for an efficient formulation scheme to incorporate nonlocal effects.
The above-mentioned uniaxial compression test case of hydrogel parti-
cles was simulated for the most extreme compaction conditions up to
which the nonlocal formulation could handle (this was ϕ = 0.85), and
the results are shown in Fig. 2. Additional test cases for a single-
particle, and a body-centered cubic arrangement of particles, are re-
ported in Appendix B.

The standard MC model can be securely used for dilute systems
(i.e., in a range around the critical solid volume fraction). Under high
consolidation conditions, it is recommended to switch to the advanced
Fig. 5. Calibrated geometric pre-factor γ and E as a function of the Poisson's ratio.

5

MCmethod for stability reasons. It is observed that using the standard
MC method, with the highest numerically-possible γ pre-factor (i.e.,
the critical γ pre-factor), the stress levels that are predicted by the non-
local formulation cannot be reached. In contrast, reaching thehigh stress
predicted by the nonlocal formulation is achievable by calibrating
the advanced MC parameters. Unfortunately, as Fig. 2 shows, the exact
σ versus ϕ path obtained with the nonlocal formulation cannot be
replicated when using the advanced MC method.

This disadvantage can be removed when following a calibration ap-
proach inwhich Young'smodulus in theMC approach is also considered
a variable. Specifically, the idea is to increase the Young's modulus to
capture better the slope of the σ versus ϕ path at intermediate volume
fractions around ϕ = 0.7. When following such an idea, Fig. 3a and
Fig. 3b demonstrate that for low Poisson's ratios (i.e., ν ≤ 0.30), the re-
sults of the nonlocal formulation can beperfectly replicated by adjusting
MPR and γ only. Thus, the additional complication of modifying the
Youngs modulus is not necessary. Also, it can be observed that the stan-
dardMCcannot be changed to give satisfactory agreement for this range
of Poisson's ratios.

Fig. 3c-f illustrate the results for ν> 0.30. It is observed that although
the standard MC shows a good performance for the highest Poisson's
ratio investigated, the results of the advanced MC method necessitate
a smaller increase of the Youngs modulus (see Fig. 3f). Therefore, com-
pared to standard MC, the particles' stiffening (i.e., increase of E) will
only slightly force the decrease of the simulation timestep. This finding
becomes more significant when simulating a larger number of particles
for which the time steps size directly affects simulation time. It has to be
noted that, when increasing the stiffness, the analytical agreement at
Fig. 7. Dimensionless pressure vs. dimensionless shear rate for two Poisson's ratios, using
standard DEM and a Hertzian contact law (ϕ= 0.8).
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comparably dilute packings (only a few contacts per particle) will be
lost. However, this is irrelevant for the stress levels of interest. Also, it
is observed from Fig. 3f that as the particles' material approaches a
Poisson's ratio of 0.5 (i.e., the material behaves incompressible), a
greater stiffening is required.

For other Poisson's ratios (for results, see Fig. 3c-e), it was observed
that the fullσ versusϕ path could only be replicatedwhen using our ad-
vanced MC model. However, the final desired stress level can also be
reached using the inferior standardMCmodel. In summary, the optimal
geometric pre-factor γ in the standard MCmethod must be chosen as a
function of the final packing fraction to match the nonlocal results. In
contrast, there is more freedom in the advanced MC method since γ
and the MPR value can be adjusted. Here we found that with low MPR
values, not only the desired maximum compression pressure can be
met, but the exact stress-strain path can also be obtained.

The normalized root-mean-square error NRMSE of the predictions,
i.e., the RMSE value divided by the arithmetic average of the σ -ϕ data
points of the nonlocal formulation calculations, are summarized in
Fig. 4. It significantly improves the results when advancing from a sim-
ple Hertz force closure to our advanced MC closure. As the Poisson's
ratio of the particles increases, the NRMSE increases as well.

Considering the calibrated parameters for the advancedMCmethod,
one finds that the calibrated γ factor should linearly decrease with in-
creasing Poisson's ratio, and for υ> 0.3, the calibrated E should increase
linearly with increasing Poisson's ratio (see Fig. 5). The MPR value
seems to vary between 0.07 and 0.09. This observation facilitates the
calibration procedure of the advanced MC method. It has to be noted
that density did not affect the calibrated parameters, since the particle
volume fraction and bulk density were considered to scale linearly
with particle density.
Fig. 8. Dimensionless pressure vs. dimensionless shear rate for different combinations o

6

4. Simple shear flow

4.1. Setup and postprocessing strategy

TheMC force closure presented above becomesmore relevant in sit-
uations where the formation of new contacts plays an important role.
Thus, simulations of closely packed soft particles and conditions close
to or above jamming should use a MC force closure. To investigate the
predictive capabilities of MC force closures, a simple shear flow of as-
semblies of aboutN=2000monodispersed particles in a cubic periodic
simulation boxwith Lees-Edward boundary condition [31] was studied.
This setup leads to a perfect linear shear flow at all volume fractions, as
illustrated in Fig. 6. An extensive set of simulations, all in jammed con-
ditions beyond the random close packing limit, considering a time-
invariant shear rate γ

:
were performed. Specifically, packings with

solid volume fractions of ϕ = 0.625, 0.65, 0.7, 0.75, 0.8, 0.85 and 0.9
were studied.Weensured that the resultswere not affected by thefinite
size of the simulation box by running simulations involving up to
~20,000 particles.

The contact model parameters are set according to the study of
Chialvo et al. [32]. The adjustable geometric pre-factor γ and the MPR
value of the advanced multi-contact model were selected as a function
of the Poisson's ratio, as discussed in the previous section.

Based on the particles' position and velocity, a macroscopic stress
tensor is calculated as:

σ ¼ 1
V
∑
i

∑
j≠i

1
2
rijFij þmi v0 ið Þ v0 ið Þ

" #
ð4Þ
f particle-particle friction coefficients and Poisson's ratio using advanced MC-DEM.
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Here V is the volume of the simulation box, rij is the center-to-center
vector from particle j to i, and v′i is the particle velocity relative
to the local mean particle velocity. The packing's average pressure
is calculated as p = (σxx + σyy + σzz)/3. This value is made
dimensionless with the normal stiffness of the particles by deploying
the Hertzian contact law. The normal and tangential contact forces are
calculated as:

Fnij ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
δijReff

q
knδijnij−γnmeffvnij
� � ð5Þ

Ftij ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
δijReff

q
−ktutij−γtmeffvtij
� � ð6Þ

Here, δij is the overlap distance which is calculated from Eq. 3, Reff =
RiRj/(Ri+ Rj) is the effective radius of two contacting particles i and j, kn
and kt are the normal and tangential stiffness constants, γn and γt are
the viscous damping constants, meff = mimj/(mi + mj) is the effective
mass for particle masses mi and mj, vnij and vtij are relative particle
velocity in normal and tangential directions, and utij is the elastic
shear displacement, which is truncated to fulfill the static yield
criterion, |Ftij| ≤ μ|Fnij|, where μ is the particle friction coefficient. The
explicit calculation of the stiffness and viscous damping constants are
reported in Appendix C.

The shear rate has been alsomade dimensionless with the following
relation
Fig. 9. Dimensionless kinetic pressure vs. dimensionless shear rate for different combinatio

7

bγ: ≡ γ
:
d=

ffiffiffiffiffiffiffiffiffiffi
kn=ρ

q
ð7Þ

where ρ is the particle density.

4.2. Results and discussion

Three main flow regimes are observed in simple shear flow. These re-
gimes are bounded by the critical volume fraction, ϕc, corresponding to
the jamming condition. A collisional/inertial regime (below ϕc) exists
where the spheres interact through collisions that can be regarded as
instantaneous, binary, and uncorrelated. The pressure is quadratic in the
shear rate in this regime. A deformational/quasi-static regime is present
at volume fractions larger than ϕc. The pressure is shear rate independent
in this regime. As the shear rate increases, the quasi-static and inertial re-
gime reach a common asymptote independent of the volume fraction of
the system. This regime is referred to as the intermediate regime.

The current study focuses on the key parameters in the shear flow of
soft particles above the jamming point. Preliminary simulations con-
firmed that the coefficient of restitution did not affect the stress re-
sponse for all systems studied. Thus, the normalized stress is primarily
a function of the coefficient of friction, the particle volume fraction,
and the dimensionless shear rate. Interestingly, we find an additional ef-
fect of the Poisson's ratio, which can only be identifiedwhen using aMC
contact force closure. Note that in simple shear flow simulations that
use the classical Hertz contact law, the effect of the Poisson's ratio is
negligibly small (Fig. 7).
ns of particle-particle friction coefficients and Poisson's ratio using advanced MC-DEM.



N. Ghods, P. Poorsolhjouy, M. Gonzalez et al. Powder Technology 401 (2022) 117288
The simulations were carried out for μ= 0.0, 0.1, 0.3, 0.5 and 1.0, as
well as for Poisson's ratios between υ=0.25 and 0.50. Fig. 8 shows the
evolution of dimensionless pressure with the dimensionless shear rate
for selected Poisson's ratio and friction coefficients. As it was expected
[32], the overall quasi-static pressure increases up to one order of mag-
nitude when increasing the friction coefficient for ϕ <0.75 (see Fig. 8).
This behavior is observed because the critical solid volume fraction is
dependent on the friction coefficient. Generally, for ϕ > 0.7 the curves
from all shear rates collapse to one, as the frictional particles become
more deformable (higher dimensionless shear rate) as if the granular
system becomes an elastic solid. This is less significant for incompress-
ible particles (i.e., υ=0.5), owing to the generation of larger lateral par-
ticle deformation. Our results confirm previous observations [32] of the
distinguishable regime transitions for higher friction coefficients. At
lower shear rates, the shear stress becomes highly dependent on the
friction coefficient. Comparing ϕ=0.625 and 0.65, for μ=1.0 (particu-
larly at lower shear rates), shows the significant effect of the larger
inter-particle overlaps with higher Poisson's ratio, leading to divergent
points.

As shown in Fig. 9, the order of magnitude of the dimensionless ki-
netic pressure is negligible compared to the ensemble-averaged contact
pressure (i.e., the first term in Eq. 4). This behavior is expected for
jammed sheared packings. Interestingly, it has been found that for the
softer particles (or higher dimensionless shear rates), the kinetic pres-
sure is independent of the solid volume fraction and increases linearly

with the increase of b_γ. Also, as friction increases, the dimensionless ki-

netic pressure reaches a commonplateau at lowb_γ. Moreover, the kinetic
pressure becomes more dependent on the solid volume fraction for

lower friction coefficients and as particles get stiffer (i.e., b_γ is reduced).
Fig. 10. Average coordination number vs. dimensionless shear rate for various

8

One of the quantities that can show the arrangement of the particles
and their behavior under jammed conditions is the ensemble-average
coordination number Z. We define this value for each particle i as Zi =
2Nc/N, where Nc is the number of contacts per particle for an
N-particle assembly. Since the values of ensemble-averaged Z do not
significantly fluctuate in the quasi-static regime, they are securely
time-averaged. Thus, in what follows only means are reported as
already done for the stress. As displayed in Fig. 10, the time-averaged

Z values monotonically decrease when increasing bγ: , and reach a
plateau for high dimensionless shear rates. The difference between the
higher and lower coordination numbers for each solid volume fraction
becomes more significant as particles get smoother (i.e., the friction
coefficient decreases) and the Poisson's ratio drops.

4.3. Response surface of quasi-static pressure model for deformable
particles

Both experimental [33] and computational [32] studies of shear
flows above the jamming point have proven that the pressure data
can be collapsed on a curve by powers of the distance to a critical parti-
cle volume fraction |ϕ − ϕc|. Thus, the pressure in the quasi-static re-
gime can be modeled as:

pQS=k ¼ αQS ϕ−ϕcj jβ ð8Þ

It is argued that αQS is a friction coefficient-dependent, and β is a
contact model-dependent parameter [34]. The results of the advanced
multi-contact indicated that the stress is dependent on both the friction
and the Poisson's ratio (see Fig. 11), especially for highly dense packings.
solid volume fractions and friction coefficients using advanced MC-DEM.



Fig. 11. Averaged quasi-static pressure versus the Poisson's ratio for different friction coefficients.
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Hence, the same holds for the parameters in Eq. 8. It is observed that the
effect of the Poisson's ratio becomesmore significant as the particles be-
come frictionless, as the quasi-static pressure only consists of static con-
tribution from the elasticity of the particles, while with frictional
9

particles similes gels with higher viscosity, leading to lower pressure
predictions. Since this behavior is complex, the evolution of these pres-
sure model parameters with various friction coefficients and Poisson's
ratios is depicted in Fig. 12.



Fig. 12. The evolution of the quasi-static pressure model (a) slopeαQS and (b) the exponent β for various friction coefficients and Poisson's ratios. (For the exact values, see Appendix D).
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5. Conclusion

An existing contact force closure for extremely dense granularflows,
the standard multi-contact (MC) closure proposed by Brodu et al. [21],
was improved and parameters calibrated. Specifically, we propose to in-
troduce a maximum penetration ratio at which one should switch be-
tween the formulation of Brodu et al. [21] and the classical Hertzian
contact force closure. As a result, our advanced MC closure can now re-
liably model dense configurations of particles where conventional
models (e.g., Hertzian contact laws or standard MC) are inaccurate or
numerically unstable.

Our advancedMCmodel enablesDEM-based simulations of granular
flows characterized by solid volume fractions greater than 0.7. This was
demonstrated for monodisperse particle packings for uniaxial compres-
sion and simple shear flow. Our model has been verified by comparing
the results with an accurate reference model (i.e., a nonlocal formula-
tion of particle deformation). The results showed that as soft particles
become more incompressible (i.e., υ approaches 0.5), a calibration ap-
proach that considers a variety of the Young's moduli should be
followed. Finally, it was shown that the optimal geometric pre-factor
in our advanced MCmodel is linearly dependent on the Poisson's ratio.

The key influence parameters on the stress in the simple shear flow
of soft particles above the jamming pointwere closely investigated. This
is particularly valuable for calibrating model parameters, specifically if
advanced multi-contact DEM models are used. Although it has been
shown in previous studies that the only key parameter affecting the
quasi-static pressure is the coefficient of friction, our present analysis
showed that the Poisson's ratio also plays a key role.

Future work could explore if our model predictions are in line with
reference data for bi-disperse or poly-disperse material. The effect of
large inter-particle friction coefficients on the parameter calibration of
the advanced MC method should be investigated. Also, it has to be
noted that the full extent of the model's validity should be assessed by
careful comparison with experimental data, possibly requiring an addi-
tional calibration step.

Nomenclature

Symbol Property, Units
d Particle's diameter, m
dkc Distance between surface position of contacts c and k, m
E Young's modulus, Pa
Fij Contact force between particle i and j, N
Fk Force at contact k, N
k (kn) Particle's normal stiffness, N/m2

kt Particle's tangential stiffness, N/m2
10
mi Mass of particle i, kg
meff Effective mass of two contacting particles i and j, kg
nc Surface normal unit vector at contact c, –
nk Surface normal unit vector at contact k, –
N Total number of particles, –
Nc Number of contacts per particle, –
Reff Effective radius of two contacting particles i and j, m
Ri Radius of particle i, m
rij Center-to-center vector form particle j to i, m
p Packing's averaged pressure, Pa
pke Packing's averaged kinetic pressure, Pa
pQS Packing's averaged pressure in quasi-static state, Pa
ukc Unit vector from contact k to c, –
V Volume of the simulation box, m3

Z Coordination number, –
αQS The coefficient in quasi-static pressure model, –
β The exponent in the quasi-static pressure model, –
γ Empirical geometric pre-factor, –
γ
:

Shear rate, 1/sbγ: Dimensionless shear rate, –
γn Normal viscous damping constant, 1/m.s
γt Tangential viscous damping constant, 1/m.s
δij Overlap distance between two contacting particles i and j, m
δc Displacement field at local contact c, m
δk→c Displacement field by neighboring contacts, m
δmax Maximum displacement per contact, m
μ Coefficient of friction, –
υ Poison's ratio, –
ρ Particle's density, kg/m3

σ Macroscopic stress tensor, Pa
ϕ Solid volume fraction, –
ϕc Critical solid volume fraction, –
v′i Particle velocity relative to its mean velocity, m/s
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Table 1
Hydrogel particle properties for the compression tests [21].

Material
Properties

Effective
Density⁎
(kg/m3)

Young's
Modulus
(Pa)

Poisson's
ratio

Restitution
coefficient

Friction
coefficient

Values 11.5 23.3 × 103 0.5 0.95 0.03

⁎ Effective densitymeans the density of particles minus the density of the ambient fluid
(water).
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Appendix A. Advanced MC-DEM algorithm

The following algorithm shows how the advanced multi-contact
method calculates the contact forces based on the local deformation.
1
2
3
4
5
6
7
8
9
10

11
12
Fig. B.
plate d

Fig. B.
coeffic
loop over all particles:
loop over all contacts of particle i:
compute the surface position of contact ij and ji
get the normal force on the particle
loop over all contacts ij
loop over all other contacts of particle i
temp_delta = calculated displacement from Eq. 2
if temp_delta > mpr then: delta = 0.0
else: delta_i = delta_i + temp_delta
radius_i = radius_i + delta_i

continue general DEM force calculation with the deformed particles (new radii)
reset the particles' radii to their original value for the next time step
2. Stress-displacement response of a) a single hydrogel particle, and b) a bcc structure of n
isplacement divided by particle's radius. The solid lines show the stress on the compres

1. Schematic representation of a) a single hydrogel particle b) a bcc structure of nine iden
ient of 0.03 for particle-wall interactions.
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Appendix B. Modeling test cases with hydrogel particle (verification
of microstructural features)

Two test cases were examined to verify themicrostructural features
of the advanced multi-contact closure on the particle level. In both
cases, hydrogel particles with a diameter of 2 mm, and properties re-
ported in Table 1 were utilized. In the first test case, a single particle,
and in the other test case, nine particles with bcc (body-centered
cubic) arrangement, enclosed in a rigid box, are compressed with con-
stant velocity (0.01 m/s) from above (see Fig. B.1). The applied stress
on the compression plate and the lateral stress exerted on the side
walls have been studied with Hertz, MC, and advanced MC models
(see Fig. B.2).

A perfect agreement between the reference nonlocal formulation
and the multi-contact models is observed by choosing γ = 0.82 for
the standard MC, and γ = 0.81 and an MPR value of 0.11 for the ad-
vanced MC closure. The MC and Advanced MC responses are entirely
consistent in these two cases due to the low coordination number
ine identical hydrogel particles during compression. Relative displacement is defined as the
sing plate, and the dashed lines show the lateral stress on sidewalls.

tical hydrogel particles, compressed in a rigid box, with E= 5.0× 107, assuming a friction

http://dcluster.tugraz.at
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and compression level. Consideration of the lateral stress shows an
adequate consideration of particle deformation in the MC models.
Also, the lateral stress predicted with the conventional DEM using
the Hertz contact law in the bcc structure is non-zero. This is due to
the component of the contact forces oriented in the direction per-
pendicular to the compression direction. However, the Hertz contact
law significantly underpredicts the lateral stress compared to results
of all other models.

Appendix C. Parameter definition of Hertz contact model parame-
ters

Here follows a series of definitions showing how the parameters de-
fined in eqs. 5 and 6 are related to the material properties of two
contacting particles i and j, when using the Hertz contact model:

kn ¼ 4
3
E∗, ðC:1Þ

γn ¼ −2

ffiffiffi
5
6

r
β

ffiffiffiffiffiffiffiffiffi
Sn
meff

s
ðC:2Þ

where

1
E∗

¼ 1−υ2
i

� �
Ei

þ
1−υ2

j

� �
Ej

, ðC:3Þ

β ¼ ln eð Þ
ln 2 eð Þ þ π2

, ðC:4Þ

Sn ¼ 2E∗ffiffiffiffiffiffiffiffiffiffiffiffi
Reff δij

p ðC:5Þ

where e is the particle's restitution coefficient.
And for the tangential properties we have:

kt ¼ 8G∗, ðC:6Þ

γt ¼ −2

ffiffiffi
5
6

r
β

ffiffiffiffiffiffiffiffiffi
St
meff

s
ðC:7Þ

where

1
G∗ ¼

2 2−υið Þ 1þ υið Þ
Ei

þ 2 2−υj
� �

1þ υj
� �

Ej
, ðC:8Þ

St ¼ 8G∗ffiffiffiffiffiffiffiffiffiffiffiffi
Reff δij

p ðC:9Þ

Appendix D. Quasi-static pressure model parameters

The exact values of the maps shown in Fig. 12, is reported in the
bellowed tables:

Table D.1
The slope αQS values of the quasi-static pressure model (Eq. 8) for various friction coeffi-
cients and Poisson's ratios.
F

Poisson's ratio
0.25
 0.30
 0.35
 0.40
 0.45
 0.50
riction
Coefficient
0.0
 0.104277
 0.118771
 0.141813
 0.21954
 0.453046
 0.916128

0.1
 0.110574
 0.123689
 0.133818
 0.167847
 0.193596
 0.221763

0.3
 0.139061
 0.156818
 0.168427
 0.212168
 0.25459
 0.325325

0.5
 0.145432
 0.163232
 0.172328
 0.215745
 0.262769
 0.358336

1.0
 0.135648
 0.151223
 0.162276
 0.201806
 0.247903
 0.354467
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Table D.2
The exponent β values of the quasi-static pressure model (Eq. 8) for various friction coef-
ficients and Poisson's ratios.
Poisson's ratio
0.25
 0.30
 0.35
 0.40
 0.45
 0.50
riction
Coefficient
0.0
 0.451572
 0.47525
 0.509283
 0.615447
 0.7912
 0.916196

0.1
 0.516353
 0.543197
 0.556984
 0.594151
 0.62764
 0.649442

0.3
 0.666142
 0.695518
 0.708862
 0.752943
 0.806323
 0.874100

0.5
 0.702005
 0.730395
 0.735797
 0.779424
 0.840925
 0.939593

1.0
 0.650966
 0.683512
 0.701467
 0.744274
 0.810227
 0.929334
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