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Abstract
Compact x-ray sources offering high-brightness radiation for advanced imaging applications are
highly desired. We investigate, analytically and numerically, the photon yield of superradiant
inverse Compton scattering from microbunched electrons in the linear Thomson regime, using a
classical electrodynamics approach. We show that for low electron beam energy, which is generic to
inverse Compton sources, the single electron radiation distribution does not match well to
collective amplification pattern induced by a density modulated electron beam. Consequently, for
head-on scattering from a visible laser, the superradiant yield is limited by the transverse size of
typical electron bunches driving Compton sources. However, by simultaneously increasing the
electron beam energy and introducing an oblique scattering geometry, the superradiant yield can
be increased by orders of magnitude.

1. Introduction

Radiation in the soft and hard x-ray regime has become an indispensable tool for application in life and
material sciences [1]. Free electron lasers (FELs) offer coherent x-ray pulses of unprecedented high
brightness, however, these machines are only available at specialized, costly large scale facilities [2, 3].
Development of laboratory scale x-ray sources is therefore highly desirable. A promising approach for
generating x-rays in a compact setup is inverse Compton scattering (ICS), in which an electron beam
colliding with a laser pulse produces radiation. Due to the short wavelength of the laser pulse (compared to
an undulator), the beam energy required to generate x-rays can be reached with table-top accelerators.
Several ICS-sources are in construction or operational today [4–8]. The drawback of ICS is, however, that
the conversion from driving laser to x-ray photons is rather low.

In a FEL, the incoherent undulator radiation initiates a periodic density modulation process that
bunches the electron beam with a period on the scale of the radiation wavelength. The introduced
microbunching make the electrons radiate collectively, leading to coherent amplification of the radiation,
also known as superradiance [9, 10], which exponentially increases the FEL yield. This so-called
self-amplified spontaneous emission (SASE) process could also be initiated by x-rays from incoherent ICS
[11–13], but due to the stringent requirements on laser and electron beam parameters has yet to be
demonstrated experimentally.

Alternatively, the superradiant yield can be enhanced by imposing density modulation before the x-ray
emission process [14, 15]. In FELs, prebunching is attained by schemes like high-gain high harmonic
generation [16–18] and echo-enabled harmonic generation [19–21], mainly for greater longitudinal
coherence and shorter saturation length. At low beam energies, several prebunching methods have been
proposed: transverse modulation attained by masking or diffraction on a crystalline solid is transported
trough an emittance exchange line that converts the transverse modulation to a longitudinal modulation
[14, 15, 22]. Another method is to impart an energy modulation that converts into a density modulation by
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velocity bunching. The modulation can be realized by either the two-color ponderomotive force [23], the
inverse FEL process [24] or by time varying electric fields [25, 26]. Also, microbunched electrons can be
generated at the source by photoemission from shaped laser pulses [27] or periodically modulated
ionization of a laser cooled gas [28, 29]. Each method offers varying modulation period and compatibility
with beam energy and might require further compression or beam manipulation to reach modulation at
x-ray frequencies.

All of these prebunching techniques rely on the assumption that a density modulation leads to
significant coherent amplification of the single-electron radiation distribution. However, in this paper we
will show that the induced superradiance is highly angularly dependent, and does not necessarily match well
to the angular dependence of the single-electron radiation pattern. Especially at the low beam energies (few
to tens of MeVs) relevant for x-ray ICS sources, this mismatch can lead to a reduction in superradiant flux
of many orders of magnitude compared to a fully superradiant beam.

Here, a formalism is provided for calculating the number of superradiant photons from ICS by
microbunched electrons. The resulting expressions can be used as a tool for designing a coherent Compton
x-ray source driven by a prebunched electron beam. The paper is organized as follows: first, in section 2, we
introduce some basic properties of ICS. Second, in section 3, we discuss the essential components of the
three dimensional model of superradiant ICS: the single electron radiation distribution describing the
spectral angular properties of the scattering process and the three dimensional bunching factor, which
describes the full spectral angular dependence of collective emission by an electron bunch. Third, in
section 4 we combine the single electron radiation distribution with the bunching factor to calculate the
yield of superradiant photons from a cold modulated Gaussian electron bunch for head-on and
non-collinear scattering. Then, we estimate the effects of finite energy spread and emittance on the
superradiant yield. Last, we apply the derived expression to a proposed coherent soft x-ray source.

2. Basic properties of ICS

When a laser pulse collides with a relativistic electron (see figure 1(a)), the wavenumber of the scattered
radiation is increased due to the relativistic Doppler shift. The increase in wavenumber is described by the
well-known expression

k1 = k0
1 − n0 · v/c

1 − n · v/c
, (1)

where k0 the wavenumber of the laser pulse, v the velocity vector of the electron, c the speed of light,
n0 = k0/k0 and n = k/k are unit vectors pointing in the propagation direction of the laser pulse and
scattered radiation, respectively. The scattered frequency (1) is strongly angular dependent: it is highest
along the propagation direction of the electron θ = arccos(n · v/v) = 0, and becomes progressively lower at
larger scattering angles.

Also the radiation distribution of ICS is highly angular dependent: it is well known from classical
electrodynamics [30] that an ultrarelativistic electron that is accelerated perpendicular to its velocity mostly
radiates into a cone of half angle Θ � 1/γ, where γ =

√
1 − v2/c2 the Lorentz factor, with symmetry axis

along its propagation direction. Within a small bandwidth δk/k � 1 around the on-axis frequency, the
opening angle (see figure 1(b)) is approximately given by [31]

Θ1 =
1

γ

√
δk

k
, (2)

which can also be found directly from (1) in the ultrareltivistic limit γ � 1. For incoherent ICS sources
with unmodulated electron bunches, Θ1 is the smallest possible half angle in which all radiation is
contained.

The number of photons within angle Θ1 scattered by an unmodulated electron bunch of Ne electrons
from a laser pulse having Nφ = k0σz number of periods with σz the rms pulse length, is given by [31, 32]

N inc
ph =

π

4
αA2

0NφNe
δk

k
, (3)

where α the fine-structure constant, A0 = eE0/(mec2k0) the normalized vector potential of the laser and E0

the laser electric field amplitude, me the electron mass and c the speed of light. In (3) it is assumed that the
waist of the electron beam is much smaller than the waist of the laser pulse. Furthermore, the linear
Thomson regime is assumed, i.e. A0 � 1, such that spectral broadening due to nonlinear effects is
negligible [33]. Without appropriately chirping the laser frequency [34–37], the non-linear effects limit

2
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Figure 1. (a) ICS geometry. (b) Single electron radiation intensity. (c) Superradiant ICS from a density modulated electron
bunch.

upscaling of the photon yield with laser intensity. To certain extent, the yield can be linearly increased by
interaction length [13] or by charge [38, 39].

Alternatively, the yield can be scaled up by imparting a modulation to the charge density distribution. If
the modulation period is resonant with the scattered radiation, such that the individual microbunches
radiate in phase with the others, the yield will scale quadratically with charge. In the ideal case, all scattered
radiation within a bandwidth δk/k = 1/Nb defined by the number of microbunches Nb, will be coherently
amplified, such that the yield is given by:

NSR
ph, 1D =

π

4
αA2

0NφN2
e b2

1
1

Nb
, (4)

where b1 =
∫∞
−∞Λ(z) exp[−iΔϕ]dz ∈ [0, 1] the one-dimensional bunching factor with Λ(z) the line density

of the microbunched electrons and Δϕ � kz the phase difference measured by the central amplified
wavenumber k. The bunching factor is a measure for the quality of modulation: if b1 = 0 the bunch is
unmodulated, if b1 = 1 the modulation is ideal. When the latter is true, even for moderate bunch charges
Ne = 106, the yield is significantly enhanced with respect to the incoherent part N inc

ph .
However, in contrast to the incoherent radiation, if the electron bunch is modulated, the superradiant

emission can be confined to an even smaller angle than Θ1 see figure 1(c). The finite transverse waist of the
modulated electron bunch limits the amplification to a certain angle at which the single-electron emission
starts to interfere destructively. For an electron beam waist σ⊥, the opening angle of the superradiant cone
can be expected to be on the order of [40, 41]

ΘSR =
1

kσ⊥
. (5)

This angle coincides with the well-known divergence angle of the fundamental transverse (TEM00) Gaussian
mode, which is also the dominant mode amplified in SASE FELs [42].

The main problem we will address in this paper is that for low electron beam energies (few to tens of
MeV), generic to x-ray ICS sources, the superradiant angle ΘSR is much smaller than the single emission
angle Θ1 and thus equation (4) does not hold. For example, to generate λ = 1.24 nm (photon energy
Uph = 1 keV) x-rays by head-on collision with a laser pulse of wavelength λ0 = 1 μm, an electron bunch is
required with kinetic energy Ukin = (γ − 1)mec2 = 6.8 MeV, corresponding to γ = 14. The single electron
opening angle for these x-rays within a 1% bandwidth Θ1 � 7.1 mrad. Assuming an electron bunch waist
size of σ⊥ = 5 μm, which is small compared to typical ICS-sources [4–8], the superradiant angle is
ΘSR � 39 μrad, more than two orders of magnitude smaller than Θ1. As such, only a small part of the
single electron radiation is coherently amplified. Thus, for a correct description of superradiant ICS, we
have to take into account the transverse degrees of freedom of the electron bunch, which will be done in the
next section.

3. Three dimensional theory of superradiant ICS

In what follows, we will formulate a set of expressions that quantify the number of superradiant photons
that is generated by ICS from a three dimensional, density modulated electron bunch. For ICS, or any other
electron bunch induced radiation process, the radiation distribution, i.e. the total amount of photons that is
emitted per unit solid angle and per unit spatial frequency, by a general electron bunch with Ne electrons
can be written as [40, 43]:

3
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Figure 2. Head-on scattering: (a) single electron radiation distribution. (b) Bunching factor of a modulated Gaussian.
(c) Resulting full radiation distribution of the superradiant emission.

Nk,Ω(k) = N1
k,Ω(k) × [Ne + Ne(Ne − 1)|b(k)|2], (6)

where N1
k,Ω(k) = d2N1

ph/(dΩ dk) is the single electron radiation distribution and b(k) ∈ [0, 1] is the three
dimensional bunching or coherence factor describing the phase correlations of the generated radiation. The
first part of this equation, scaling linearly with the amount of electrons Ne, is the incoherent contribution of
the radiation. The second part, scaling with N2

e , describes the coherent radiation, which is the dominant
term when Ne � 1 and b(k) � 1.

Although single electron radiation distributions N1
k,Ω(k) have been calculated by numerous authors

before [31, 32, 44, 45], we have provided a compact derivation in appendix A to make this work
self-contained. The single electron radiation distribution for collision with a linearly polarized Gaussian
plane wave is given by:

N1
k,Ω(k) =

αA2
0N2

φ

4π

k

κ2
0

[
1 − (k · ε̂)2

κ2
0

]
exp

[
−N2

φ

(
1 − k

k1

)2
]

, (7)

where Nφ is the number of periods of the laser, A0 the normalized vector potential laser amplitude,
κ0 = γk0(1 − n0 · v/c) the wavenumber of the laser in the rest frame of the electron, ε̂ is the polarization
vector of the laser, which in (7) is assumed to be perpendicular to v. The exponential term is the so-called
resonance function [31] which peaks at wavenumber k1. The bandwidth of the resonance function is
determined by the finite length of the drive laser pulse. When evaluated at k1, the first term between square
brackets describes the angular dependency of the relativistic differential cross-section [45], which is zero at
θ = arccos(β) or θ � 1/γ in the ultrarelativistic limit. The single electron radiation distribution for
head-on scattering is plotted in figure 2(a).

The superradiant contribution to the scattered radiation is governed by bunching factor b(k). Provided
that all electrons have identical initial velocities, which we will refer to as the cold beam approximation, and
assuming we can neglect Coulombic interactions, the bunching factor is written as:

b(k) =
1

Q

∫ ∞

−∞
ρ(x) exp[−iΔϕ]d3x, (8)

where ρ(x) is the (continuous) charge density distribution and Q = −eNe the total charge of the bunch.
The argument Δϕ of the complex exponential measures the phase difference between electrons separated
by x, which can be written as:

Δϕ = k · x − k

k1
k0 · x, (9)

where k · x is the phase difference due to the geometric separation between the electrons. The second term
results from the finite phase velocity of light, which we will explain using figure 3, where two electrons
(I and II in green) moving at velocity v0 are shown in the comoving frame. Reference electron I is
positioned at the origin and electron II at some arbitrary constant vector x. The phase difference along the
scattering direction n due to distance between the electrons is evidently k · x, giving us the first term in
equation (9). After passing electron I, the driving laser’s wavefront (in red) has to travel a optical path
length n0 · x to reach electron II, which takes time τ = n0 · x/vp,0, with vp,0 = c − n0 · v the phase velocity
of the laser in the comoving frame. During time τ the scattered radiation leaving I and propagating at phase

4



New J. Phys. 24 (2022) 033040 B H Schaap et al

Figure 3. Two electrons in the lab frame and comoving frame scattering radiation (blue) from driving laser (red).

velocity vp = c − n · v, has traveled a path length Λ = n0 · xvp/vp,0, which is then subtracted from the
geometrical path length difference, resulting in the sought after expression. Therefore, if the scattered
radiation and laser are copropagating this decreases the phase difference; when they are counterpropagating
first electron II will be reached by the laser, and the sign of Λ changes, increasing the phase difference. The
phase difference (9) can also be found directly by rewriting equation (A.5).

For the calculations below we will use a cold Gaussian, cylindrically symmetric distribution of charge
with a periodic modulation along modulation wavevector ke, which in terms of its Fourier components is
given by:

ρ(x) = ρ0

∞∑
n=−∞

bn exp

[
−1

2
xTS−1x + inke · x

]
, (10)

where ρ0 = −eNe

[∑∞
n=−∞bn exp

(
−n2N2

b/2
)]−1[

(2π)3 det S
]−1/2

the peak charge density, variance matrix
S = diag(σ2

⊥,σ2
⊥,σ2

‖), Nb = (kT
e Ske)1/2 is the number of microbunches and σ⊥ and σ‖ the transverse and

longitudinal rms waist size of the electron bunch. The Fourier coefficient bn of the nth harmonic is:

bn =
1

2π

∫ 2π

0
w(ke · x) exp [−inke · x] d(ke · x), (11)

where w(x) > 0 describes an arbitrary periodic density modulation, which is normalized such that the zero
frequency component b0 = 1. In the case of cosine modulation w(x) = 1 + cos(x), only b0 and the
fundamental orders b±1 = 1/2 contribute to the expansion. However, for an ideal Dirac comb
w(x) =

∑∞
m=−∞δ(x − m2π), with δ(x) the Dirac delta function, all higher harmonics n > 1 contribute

equally, bn = 1, to the Fourier expansion of the density modulation. Strong harmonic content of the
bunching frequency is also found in more complex density modulation, for example attained in schemes
like high-gain high harmonic generation [16–18] and echo-enabled harmonic generation [19, 20].

Combining equations (8)–(10), and assuming Nb � 1 such that the exponent in the denominator in ρ0

is negligible, the bunching factor for positive frequencies without the zero-frequency band is given by

b(k) =
∞∑

n=1

bn exp

[
−1

2
k̄T

nSk̄n

]
, (12)

where bn ∈ [0, 1] the Fourier coefficients of the density modulation, which describe the maximum
bunching amplitude of the nth harmonic of ke, and k̄n = k − k/k1k0 − nke with k1 given by equation (1).
Bunching factor (12) describes the spectral angular characteristics of the induced superradiance by a
Gaussian charge distribution with an arbitrary periodic density modulation for arbitrary scattering
geometry. In figure 2(b) the (n = 1) bunching factor (12) is shown for head-on scattering.

In the next section we will consider specific cases of (12) and for those cases calculate the superradiant
yield. Although the main properties remain the same, other envelope distributions can be used.

5
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4. Superradiant x-ray yield

The single electron radiation distribution (7) and bunching factor (12), are now combined to calculate,
numerically and analytically, the total superradiant yield for different scattering geometries by evaluating
the following integral

NSR
ph =

∫
dΩ

∫
N2

e N1
k,Ω(k)|b(k)|2dk, (13)

with dΩ = sin θ dθ dφ. Here, it was assumed that Ne � 1 such that Ne(Ne − 1) � N2
e , and that the electron

bunch propagates along the z-axis. In the following, we will only consider superradiance due the
fundamental of the bunching frequency (n = 1), which can be trivially extented to higher harmonics a
posteriori. The superradiant photon yield NSR

ph from this three dimensional study is compared to the ideal
one dimensional case. To this end, we introduce the efficiency of the superradiant yield, defined by:

η =
NSR

ph

NSR
ph, 1D

, (14)

with NSR
ph, 1D = π

4αA2
0NφN2

e b2
1/Nb the one-dimensional superradiant yield (4) and b1 is the maximum of the

on-axis bunching factor. If η = 1 the single electron emission is completely amplified by the modulated
electron bunch, which radiated as a one-dimensional pencil beam. If η < 1, the coherent amplification is
not completely utilized as a result of destructive interference from the finite transverse size of the electron
bunch.

In the following, we first discuss the head-on scattering geometry. Then, in section 4.2 also the
superradiant yield for non-collinear scattering is discussed.

4.1. Head-on scattering
Experimentally, the most common configuration is head-on scattering in which the electrons bunch
generates x-rays from a counterpropagating laser pulse [4–8]. In this configuration, the Doppler shift is
maximized, yielding the largest scattered wavenumber kX = k0(1 + β)/(1 − β) for a particular electron
beam energy, where β = v/c.

In the head-on geometry, the bunching factor b(k) for a modulated Gaussian electron bunch with
bunching wavevector along its propagation axis ke = keez has significant superradiant emission along the
axis (θ = 0) if ke = 2k0/(1 − β). The bunching wavenumber ke is larger than the resonant on-axis radiation
wavenumber kX due to the finite propagation speed of the scattered radiation and laser driving the
scattering process. For these parameters, equation (12) also confirms that a large bunching factor, and hence
significant coherence, the emission is confined to a central cone of angle ΘSR = arcsin

[
1/(σ⊥k)

]
, which for

small angles ΘSR � 1/(σ⊥k). As mentioned, the typical transverse waists of electron bunches in ICS sources
is several micrometers [4–8], ensuring that ΘSR is small for x-rays.

In the small-angle approximation, integral (13) to calculate the superradiant yield can be performed
analytically. For briefness, we divert this part of straightforward but cumbersome calculations to appendix
B. We find that the superradiant yield efficiency can be written as:

η = erfcx
(
ξ−1

)
, (15)

where the function erfcx(x) = exp[x2](1 − 2/
√
π
∫ x

0 exp[−y2]dy) is the scaled complementary error
function, and:

ξ =
1

2

1 + β

1 − β

1

k2
Xσ

2
⊥

NbNφ√
N2

b + N2
φ

� 2
Θ2

SR

Θ2
1

, (16)

is the collectivity parameter being a measure for how well the single electron angle Θ1 and superradiant
angle ΘSR overlap. Here, Θ1 �

√
δk/k/γ with bandwidth δk/k =

√
(δk/k)2

1 + (δk/k)2
SR where

(δk/k)SR = 1/Nb and (δk/k)1 = 1/Nφ are relative bandwidths of the superradiant and single electron
spectrum, see figure 2.

As expected, the superradiant emission is suppressed by the transverse degrees of freedom of the
electron bunch. It is interesting to investigate how η behaves at limiting values of ξ. For small arguments
x � 1, erfcx(x) � 1; for large arguments x � 1, erfcx(x) � 1/(

√
πx). Thus, the superradiant efficiency can

be approximated by:

η =

⎧⎪⎨
⎪⎩

1 for ξ � 1

ξ√
π

for ξ � 1
, (17)

6



New J. Phys. 24 (2022) 033040 B H Schaap et al

Figure 4. The superradiant yield for head-on scattering as function of electron beam energy. Here, an electron bunch with
σ⊥ = 5 μm and Nb = 104 microbunches scatters λX = 1.24 nm (Uph = 1 keV) photons from a pulse of Nφ = 103. The grey box
corresponds to laser wavelengths in the visible regime (400–1000 nm).

where the first expression corresponds to the pencil beam regime and the second to the beer-can beam
regime in which transverse degrees of freedom dominate.

In the pencil beam regime, the opening angle of the superradiant cone is much larger than the single
electron beaming angle: ΘSR � Θ1. As such, the bunch radiates as a one-dimensional pencil beam, and the
coherent amplification can only be increased by the quality of microbunching, the number of electrons per
microbunch or the interaction length.

On the other hand, in the beer-can beam regime, destructive interference due to the finite waist of the
bunch limits superradiant x-ray emission. If so, the opening angle of the superradiant cone is much smaller
than the single electron emission angle; ΘSR � Θ1, such that only a small part of the single electron
scattering is effectively amplified. Here, we want to stress that for typical ICS parameters, the electron beam
can be considered thick: taking the same example as in section 2, (λX = 1.24 nm, λ0 = 1032 nm, γ = 14,
σ⊥ = 5 μm) and assuming a laser pulse length of 1 ps (Nφ � 1.8 × 103) and Nb = 104 microbunches. The
collectivity parameter for this case amounts to ξ = 1.1 × 10−3 corresponding to a yield η = 6.2 × 10−4.

Focusing the electron beam more tightly should increase the superradiant flux, since ξ ∝ σ−2
⊥ .

Realistically, however, focusing to a waist smaller than a micron becomes difficult for several reasons. To
start, tight focusing increases the transverse angular spread Θe of the electron beam to a degree that the cold
beam approximation becomes invalid. Effectively, the angular spread expands the opening angle when
Θe � Θ1, counteracting the effect of the smaller waist, see later section 5. Furthermore, high electron
density in the waist leads to an increase of the Coulomb forces, which are detrimental to yield, especially at
low electron beam energies and the bunch charge required for ICS. Limitation in the production of
superradiant x-rays due to Coulomb forces can be split up in two effects: first, the defocussing force due to
self fields limits the smallest attainable waist. Second, the Coulomb forces in such foci degrade the intricate
density modulation (b1) within the beam.

A higher electron beam energy improves the overlap between the opening angles, while simultaneously
reducing Coulomb forces. However, to attain resonance at a certain scattered wavelength, the frequency k0

has to be reduced in head-on scattering. Figure 4 presents the superradiant yield η around λX = 1.24 nm,
(Uph = 1 keV) for different values of Lorentz factor γ. The graph clearly shows that the superradiant yield
from a typical electron beam with σ⊥ = 5 μm waist at low beam energies (5–14 MeV), corresponding to a
drive laser in the visible regime (λ0 = 400–1000 nm, indicated by the grey box), is correctly described by a
beer-can beam approximation (blue line). Therefore, the yield is significantly suppressed compared with
a fully superradiant beam (red line). Note that equation (15), plotted with the solid black line is identical to
numerical integration of (13) (green dashed line).

The transition to the pencil beam regime occurs at the energy when the yields for ξ � 1 (red line) and
ξ � 1 (blue line) are equal. This happens when ξ =

√
π, or:

7
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Figure 5. (a) Oblique incidence of the driving laser results in a walk-off angle of the superradiant emission. (b) Walk-off angle
ΦSR plotted against angle of incidence θ0 for different values of normalized velocity β. (c) Superradiant yield for λX = 4.1 nm
(Uph = 0.3 keV) from a modulated Gaussian electron beam with σ⊥ = 10 μm and Nb = 104 microbunches a for head-on
(black) non-collinear (red), and non-collinear scattering with micronbunch tilt (blue) with a Nφ = 103 laser pulse.

γtr =
(π

4

)1/4 1

ΘSR

√
δk

k
, (18)

which for the parameters in figure 4 is at Ukin = 386 MeV. Electron beam energies near the transition
energy are favorable for the yield. However, the resonant laser wavelength around γtr is on the millimeter
scale, far from the visible regime.

4.2. Non-collinear scattering
In the previous section it was shown that the transverse size of the microbunches significantly limits the
yield η at low electron beam energies required for head-on scattering using an optical laser. It was also
shown that for a constant on-axis scattered frequency kX, an increase of beam energy significantly increases
the number of superradiant photons. At beam energies around the transition energy, however, the required
wavelength of the driving wave is longer than visible wavelengths for the head-on geometry. Another way to
control the scattered frequency (1), which allows the usage of visible lasers even at high beam energy, is to
change the propagation direction n0 of the laser pulse in respect to the velocity of the electrons. However, if
n0 does not coincide with the propagation and thus scattering axis of the electron bunch, extra transverse
terms turn up in phase (9) such that the superradiant emission cone is redirected off-axis as illustrated in
figure 5(a). For an electron bunch that is modulated longitudinally ke = keez, the so-called walk-off angle of
the superradiant cone can be inferred from equation (12), and is given by

ΦSR = arcsin

(
(β2 − 1) sin θ0

sin2θ0 + (β + cos θ0)2

)
, (19)

where θ0 = arccos(−v · n0/v) the angle between propagation axis of the laser (n0 = −sin θ0ey − cos θ0ez)
and electrons. ΦSR can be thought of as the angle of specular reflection from a relativistic mirror, and is
plotted against laser angle θ0 for different values of β in figure 5(b). The maximum walk-off angle
ΦSR, max = π/2 is found at laser angle θ0,max = arccos[−2β/(1 + β2)]. In the ultrarelativistic regime, the
walk-off angle ΦSR � −tan(θ0/2)/(2γ2) is small for θ0 < θ0,max � π. However, as seen in figure 5(c), when
ΦSR ∼ Θ1, the shift in the direction of the superradiant cone leads to further loss of superradiant photons
(red dashed line) with respect to the head-on scattering (black line).

There are several ways to compensate for this effect. First, adjusting the bunching frequency to match
the resonant frequency along this angle ke = k0(cosΦSR + cos θ0)/(1 − β cosΦSR) leads to an off-axis
superradiant beam, which might be interesting for non-invasive monitoring of microbunching. Second,
equation (19) suggests the walk-off angle becomes small again at high beam energies, ensuring that that
ΦSR < Θ1, which results in a relative growth in number of photons. Third, two lasers can be used with θ0

and −θ0: the superposed fields of the lasers in the interaction region form a wave with phase
ϕ = k0z cos θ0 − ω0t, ensuring a wavefront that is aligned with the transverse plane of the electron bunch,
such that no additional phase differences occur in the transverse plane. The bunching frequency using two
lasers should match the on-axis resonance frequency as with a single laser pulse

8
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Figure 6. Yield normalized to cold-beam yield including: (a) energy spread and (b) angular spread from head-on scattering at
γ = 14 with δk/k =

√
2 10−3. 〈η〉γ,θe is the yield as calculated by numerical integration of the integral defined in appendix C.

ke = k0(1 + cos θ0)/(1 − β). Finally, a microbunch tilt can be applied such that ke = ke sinαey + ke cosαez,
with α is the microbunch tilt angle. Microbunch tilts have been shown to form when a density modulated
electron beam is simultaneously diverted and defocused [46]. The tilt angle that ensures on-axis
superradiant radiation from ICS with a driving laser under an angle θ0 can also be found from the
bunching factor (12), and is given by α = arctan[(1 − β)sin θ0/(1 + cos θ0)]. A bunching frequency
resonant with the on-axis frequency was used ke = k0(1 + cos θ0)/(1 − β)

√
1 + (1 − β)2 tan2(θ0/2), which

is higher than the bunching frequency for non-tilted modulation. In figure 5(c) the numerically calculated
superradiant yield is shown for tilted microbunches (blue dashed), which we find to follow equation (15)
with kX = k0(1 + β cos θ0)/(1 − β).

5. Energy spread and angular spread

Until now we have assumed a perfectly cold electron beam. In reality, however, an electron beam has finite
energy spread δγ and transverse angular spread Θe, which can alter the radiation distribution so that the
cold-beam approximation does not hold. Here, we numerically calculate (see appendix C) the superradiant
yield under influence of energy spread and angular spread separately, the results of which are shown by the
dots in figures 6(a) and (b) respectively. Also, a heuristic approach is presented to estimate the effect of
energy and angular spread.

Due to energy spread each electron, and its generated radiation, experiences slightly different Doppler
shifts, resulting in broadening of the (incoherent) ICS bandwidth by (δk/k)γ = 2δγ/γ [47, 48]. Bandwidth
broadening leads to decrease of photons available for coherent amplification. When δγ/γ � δk/k, where

δk/k =
√

1/N2
b + 1/N2

φ the relevant cold beam bandwidth, we find that the induced frequency shift by

energy spread is small enough that the superradiant yield remains unaffected. In this regime the cold beam
approximation is appropriate, and the yield is correctly described by equation (15). Around δγ/γ � δk/k
the difference in electron energy becomes significant and the yield drops by half. For δγ/γ � δk/k, the
yields is significantly limited by the energy spread of the electrons.

Angular spread also induces broadening by (δk/k)θe = γ2Θ2
e of the Compton bandwidth [47, 48],

mainly caused by the change in emission angle, which can hinder the efficiency of superradiant emission.
When Θe � Θ1, however, the effect of angular spread on the yield is insignificant. At Θe � Θ1, the angular
spread becomes important and the yield has dropped to half of its cold beam value. For Θe � Θ1 the
superradiant yield is hindered significantly by angular spread of the electrons.

A secondary effect of finite angular spread is that the waist of the electron beam is changing along the
beamline. A larger waist size leads to smaller ΘSR and, for a beer-can beam, thus reduction of yield. The
electron beam waist can be considered constant during interaction if the angular spread:

Θe <
k0σ⊥
Nφ

(1 + β cos θ0) , (20)

where it is assumed here that the Rayleigh length of the laser is much longer than the pulse length so that
the experienced intensity distribution is defined by the latter. For counterpropagating scattering geometries,
the effect of the changing waist is typically less apparent than the spectral broadening effect from the

9
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angular spread. However, when comoving laser pulses are used, the interaction length is extended, and the
changing waist of the electron bunch might affect the superradiant yield more than the angular spread
itself.

5.1. Estimation of superradiant yield
The combined effect of energy and angular spread on the relevant bandwidth of the scattered radiation can
be written as:

δk

k

∗
=

√
1

N2
φ

+
1

N2
b

+

(
2
δγ

γ

)2

+ γ4Θ4
e . (21)

Due to the thermal spread of the electrons, the induced radiation angle Θ∗ =
√
δk∗/k/γ becomes larger

than the single electron radiation angle Θ1. If equation (20) holds, ΘSR will not change appreciably.
Therefore, by naive substitution of Θ1 →Θ∗ in equations (16) and (17), we find that, in the beer-can beam
regime, the superradiant yield from a bunch with a thermal distribution can be written as

η∗ �
δk
k
δk∗

k

η, (22)

where δk/k is the cold bandwidth. Especially for energy spread in the beer-can beam regime (ξ � 1) there
is very good agreement of η∗ with the results from numerical integration in figure 6(a). Furthermore, even
for a pencil beam with energy or angular spread, equation (22) is a fair indication of the yield.

6. Application to source design: coldlight

To illustrate the use of previous expressions, we apply them to coldlight, which is a proposed superradiant
soft x-ray source [49]. The source will be driven by microbunched electrons extracted from an ultracold
electron source [50]. The electron source is a perfect ICS driver, since it has the unique property of allowing
Q � 1 pC electron bunches to be extracted while maintaining ultralow εn = 1 nm rad transverse emittance,
by minimization of the space charge forces due to the large ionization volume. In addition, the electron
source lends unique control of the photoionization process: by exciting the laser cooled and trapped atoms
using a standing wave of light, an electron bunch with about Nb = 1.25 × 104 microbunches can be
generated with cosine density modulation b1 = 1/2. After acceleration and compression, the electron bunch
attains modulation at extreme ultraviolet to soft x-ray wavelength.

A particular interesting bandwidth within the soft x-ray regime is the water window, which is between
Uph = 282–533 eV (λX = 4.4–2.3 nm). In this regime, water is transparent and carbon is absorbing, which
is interesting for high contrast imaging in life sciences. Suppose we want to generate as much photons as
possible for an advanced water window microscopy tool using a conventional 1 ps laser pulse of λ0 = 1 μm
with A0 = 0.1. Using (4) it is found that potentially NSR

ph, 1D = 8.1 × 107 can be generated with a Q = 1 pC
electron bunch.

To reach the water window, a 3.5 MeV electron beam is required for head-on scattering. Due to the
ultracold nature of the electrons, energy spread nor emittance will influence the yield. However, we estimate
that, at this energy, the electron beam waist size should be not be focussed smaller than σ⊥ = 5 μm before
the onset of significant debunching and increase of angular spread due to Coulomb forces. In such a
scattering geometry we find that the superradiant efficiency η = 2.2 × 10−3, severely limiting the yield.

Alternatively, by accelerating the electrons to 35 MeV and introducing a non-colinear geometry, one can
increase the flux by two orders of magnitude, since ξ ∝ γ2. Such energies can be reached with table
top-accelerators [7]. Coulomb forces, scaling with γ−2, reduce so that smaller waists can be attained
without destroying the bunching, thereby further increasing the yield. Assuming the electron beam can be
focused to σ⊥ = 1 μm at this higher energy, the superradiant yield is NSR

ph = 7 × 107, very close to full
superradiant potential. However, in this regime ΦSR ∼ Θ1, so one of the walk-off angle compensating
techniques should be applied. Without, we find through numerical calculation that the yield reduces by a
factor of 5.

When operating at f = 1 kHz repetition rate, the average brightness of coldlight
B = f NSR

ph /(σ⊥ΘSR)2 = 1.6 × 1014 ph/(s · mm · mrad 0.1%BW), comparable to bending magnet radiation
in a synchtrotron, is more than sufficient for water window microscopy [51] or coherent diffractive imaging
techniques [52, 53]. Compact high brightness (soft) x-ray sources like coldlight are of great importance
because they allow for easy integration with complementary imaging techniques, result in wide spread
availability and lead to increase of beam time.
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7. Conclusion

The superradiant x-ray yield from microbunched electrons depends not only on the quality of
microbunching, but also strongly on the shape, beam energy, energy spread and angular spread of the
macrobunch and scattering geometry. Summarizing, the number of superradiant emitted photons by a
Gaussian shaped electron bunch with arbitrary density modulation is given by:

NSR
ph =

π

4
αA2

0NφN2
e

b2
n

nNb
erfcx

(
Θ2

1

2Θ2
SR

)[
1 +

(
2δγ

γ3Θ2
1

)2

+
Θ4

e

Θ4
1

]−1/2

, (23)

where we included superradiance from harmonics of the density modulation by substituting Nb → nNb. In
equation (23), it is assumed that the scattering angle is small (ΘSR � 1 or Θ1 � 1), the electron bunch
consist of a multitude of microbunches (Nb � 1), the laser pulse has a slowly varying envelope (Nφ � 1),
the laser waist is much larger than the electron beam waist and the laser field is not so intense (A0 � 1) that
non-linear scattering occurs. Additionally, the electron recoil is assumed to be negligible
(γ�ω0/(mec2) � 1). The expression holds for head-on scattering with on resonance bunching frequency
ke = k0/(n(1 − β)) and for non-colinear scattering if the walk-off angle ΦSR is compensated for. Including
walk-off, equation (23) is a good approximation for the yield as long as ΦSR < Θ1. Furthermore, the term
between square brackets is not exact, but estimates of the influence of energy spread and angular spread.

Our main conclusion, based on equation (23), is that for electron beams of few MeV, the x-ray yield
from head-on scattering with a visible laser is suppressed significantly if the waist is on the order of
micrometers, since the opening angle of the diffraction cone of the superradiant beam is much smaller than
the single electron opening angle. By increasing the energy, and introducing an oblique scattering geometry,
more of the potential superradiance can be utilized, but only if one takes care of the walk-off angle. This is
confirmed, by applying the expressions to a proposed coherent soft x-ray source.

Under certain conditions, the superradiant regime will transition to a FEL regime where the bunching
factor amplitude bn increases due to ponderomotive force from the beat wave formed by the laser pulse and
ICS radiation. The stimulated superradiance in this regime can even further enhance the yield. In
comparison to a SASE optical FEL starting from incoherent Compon scattering [11–13], superradiance
from a prebunched beam could significantly decrease the saturation length Lsat of the FEL at which the
radiation reaches its maximum intensity [54, 55]. Future work should point out if Lsat ∝ −ln (b2

1) from
one-dimensional high gain analysis [56], still holds in the beer-can beam regime, where speculatively the
effective bunching factor amplitude beff � b1ΘSR/Θ1. If the latter is true, also in the (optical) FEL regime
the preferred scattering geometry is non-collinear at higher electron beam energy as proposed in [13].

All in all, this work has provided essential insight in the relevant parameter space for superradiant ICS,
which is of great importance for future high brightness, compact x-ray sources.
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Appendix A. Single electron radiation distribution

A.1. Single electron photon intensity distribution
We describe the interaction between an electron and a laser pulse in the framework of covariant
electrodynamics, using the metric gμν = diag(1,−1,−1,−1). In this classical description we neglect
electron recoil, restricting the initial laser frequency ω0 to fulfill the condition γ0�ω0/(mec2) � 1, where γ0

is the Lorentz factor of the electron prior to interaction, � the reduced Planck’s constant, c the speed of light
and me the electron mass. Furthermore, we restrict our discussion to the linear regime where the vector
potential amplitude of the laser pulse A satisfies eA/mec � 1, with e the elementary charge. In the linear
regime the transverse momentum induced by the laser remains non-relativistic, which is desired in most
experimental conditions to avoid spectral broadening. From here, unless stated otherwise, we will normalize
the relevant parameters as follows: charge is measured in units e, mass in units me, time is measured in ω−1

0

of the initial laser frequency, length in k−1
0 = c(ω0)−1 and (consequently) velocity is measured in units of c.

In classical electrodynamics, the photon spectral density scattered into the far field is given by [30]
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Nk,Ω(k) = −αk̃jμ̃jμ, (A.1)

where α = e2/(4πε0�c) the fine-structure constant and j̃μ(k) the four dimensional Fourier transform of the
four current. For an electron the spectral four current is:

j̃μ(k) = − 1

2π

∫
dτ uμ(τ) exp[ikνxν(τ)], (A.2)

where τ is the propertime of the electron, uμ(τ) = (γ, γβ) the four-velocity, with β the velocity vector,
xμ(τ) = (t, x) the four-position and kμ = (k, k) the four-wavevector of the scattered radiation.
Equations (A.1) and (A.2) show that the electron’s motion in the laser pulse fully determines the spectral
angular radiation properties in the far field.

Neglecting radiation damping, the electron motion is described by the Lorentz force equation:

duμ(τ)

dτ
= uν (∂νAμ − ∂μAν) , (A.3)

where Aμ = Aμ(ϕ) is the four-potential describing the field of laser pulse with ϕ = kν0 xν the optical phase
and kμ0 = (1, n0) the wavevector and n0 its propagation direction. If the Lorentz gauge condition ∂νAν = 0
holds and the vector potential only depends on ϕ, the exact solution to equation (A.3) is written as [45]

uμ(τ) = uμ
0 + Aμ(ϕ) − 1

uv
0k0v

[
1

2
AνAν(ϕ) + uv

0Av(ϕ)

]
kμ0 , (A.4)

where uμ
0 = (γ0, γ0β0) is the initial four-velocity. The second term here describes the quiver momentum

induced by the laser pulse. The terms within brackets describe the momentum resulting from the
ponderomotive force and a magnetic quiver motion respectively. Since the maximum amplitude of the
four-potential A0 � 1, the second order ponderomotive term is considerably smaller than the others, such
that it can be neglected in the following. For sake of clarity, we choose the laser polarization perpendicular
to the initial velocity, making the last term zero. This simplification does not deprive our model of any
useful physics, but it makes the expressions much easier to compute. Furthermore, if the vector potential
Aμ = A0f(ϕ)e−iϕεμ, where εμ = (0, ε) is the four-polarization, has a slowly varying amplitude, i.e.
df(ϕ)/dϕ � f(ϕ), we can integrate equation (A.4):

xμ(ϕ) � xμ0 + uμ
0τ +

iAμ(ϕ)

uν
0 k0ν

, (A.5)

where we make use of the fact that dϕ/dτ = kν0 uν = kν0 u0ν is a constant of motion. Here, xμ0 is the initial
four-position of the electron in respect to the laser phase. The second term describes the uniform motion by
the initial velocity of the electron. The last accounts for the quiver motion with an amplitude that is
proportional to the time the electron propagates trough an optical cycle. It is important to note here that xμ

depends on ϕ and therefore it is a recursive relation, which we must readdress for a correct description of
the bunching factor later on.

Equations (A.4) and (A.5) are now used to calculate the spectral four current. Before integrating
equation (A.2), we expand the exponent to first order in Aμ by substituting equation (A.5):

exp[ikνxν(τ)] � b1

[
1 − kμAμ(ϕ)

uν
0k0ν

]
exp(ikνu0ντ), (A.6)

where b1 = exp(ikνx0ν) is the single electron phase factor. Higher orders of the expansion will contribute to
higher harmonics, which do not contribute to the radiation in the linear regime. The Taylor expansion in
(A.6) is identical to first performing the familiar Jacobi–Anger expansion and subsequently expanding the
Bessel functions for small arguments.

Keeping only the terms that will contribute to the fundamental frequency, we find that:

j̃μ(k) = −b1

[
εμ − kνεν

uν
0 k0ν

uμ
0

]
Ã(k), (A.7)

where

Ã(k) =
A0

4π

∫
dτ f (ϕ) exp[i(kν − kν0 )u0ντ], (A.8)
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is the Fourier transform of the amplitude of the laser pulse. In equation (A.8) a factor half is included to
account for the fact that the laser field must be real valued. For a Gaussian pulse
f (ϕ) = exp[− 1

2 (ϕ/Nφ)2] = exp[− 1
2 (kν0 u0ντ/Nφ)2], where in non-normalized units the number of

oscillations in an rms pulse length Nφ = ω0σt, with σt the rms pulse length as measured in the lab frame,
the Fourier transform becomes:

Ã(k) =
A0Nφ

2
√

2πkν0 u0ν
exp

[
−

N2
φ

2

(
kνu0ν

kν0 u0ν
− 1

)2
]
. (A.9)

For most part, the function Ã(k) describes the spectral properties of the radiation and will be referred to as
the resonance function. The resonance function peaks when kνu0ν = kν0 u0ν , i.e. when the scattered
frequency follows the well-known relation:

k = k1 ≡
1 − n0 · β0

1 − n · β0
, (A.10)

which is largest in the propagation direction of the electron, and becomes progressively lower going off axis.
Here n = k/k is the unit vector in the propagation direction of the scattered radiation. Away from
resonance, the function A(k) decays quickly when Nφ � 1.

The radiation distribution (A.1) can now be easily calculated by contracting the four-current (A.7),
resulting in the sought after expression.

Appendix B. Yield integral head-on scattering

For polarization ε = ex and head-on propagation direction n0 = −ez, the yield integral (13) in spherical
coordinates, can be written in the form

NSR
ph = N2

e L0

∫
dΩ

∫ ∞

−∞
dk

k

κ2
0

[
1 − k2

κ2
0

sin2 θ cos2 φ

]
exp

[
−Ak2 + Bk + C

]
, (B.1)

where L0 = αA2
0N2

φ/(4π) and κ0 = k0γ(1 + β) and coefficients

A = σ2
⊥ sin2 θ + σ2

‖
(1 + cos θ)2

(1 + β)2
+ N2

φ

(1 − β cos θ)2

k2
0(1 + β)2

, (B.2)

B =
2

k0(1 + β)

[
k0keσ

2
‖ + N2

φ + (k0keσ
2
‖ − βN2

φ) cos θ
]

, (B.3)

C = −k2
eσ

2
‖ − N2

φ. (B.4)

We can make use of the standard Gaussian integral
∫∞
−∞ exp[−Ax2 + Bx + C]dx =

√
π/A exp[B2/(4A)]

and its derivatives to coefficients A and B to integrate and find:

NSR
ph =

√
πN2

e L0

2κ2
0

∫ π

0
dθ

∫ 2π

0
dφ sin θ

(
B

A3/2
− 2 A + B2

4κ2
0A5/2

sin2 θ cos2 φ

)
exp

[
B2

4A
+ C

]
. (B.5)

Now, we assume that the superradiant emission is contained to a small angle and fill in ke = 2k0/(1 − β) so
that on-axis coherence is stimulated. Within the small angle approximation the terms of (B.1) can be
written as:

B

A3/2
sin θ �

(
1 + β

1 − β

)2 2θ√
N2

b + N2
φ

, (B.6)

2A + B2

4κ2
0A5/2

sin3 θ cos2 φ � 0, (B.7)

B2

4A
+ C � −k2

Xσ
2
⊥θ

2 −
(

1 + β

1 − β

)2 N2
bN2

φ

N2
b + N2

φ

θ4

16
, (B.8)

where Nb = keσ‖ = 2k0σ‖/(1 − β) the number of microbunches. Filling (B.6)–(B.8) into equation (B.1)
and integrating over scattering angle θ and azimuthal angle φ yields the sought after equation.
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Appendix C. Yield integral thermal electron bunch

We check equation (22) by numerical integration of the superradiant yield (13) including energy and
angular spread. First, we replace the velocity in the radiation distribution (7) and bunching factor (12) by

v = c(β +Δβ)(θe,xex + θe,yey +
√

1 − θ2
e,x − θ2

e,yez), where Δβ the deviation of the normalized velocity

with respect to β, and θe,x and θe,y are the angles of incidence with respect to the average propagation axis of
the electron bunch. Note that angular spread in this definition of v does not affect the energy of the electron
beam. The influence on yield η is calculated by numerically evaluating the following integral:

〈η〉γ,θe =
γ3

π3/2Θ2
eδγ

∫ ∞

−∞
d(Δβ)dθe,x dθe,yη exp

[
−γ6Δβ2

δγ2
−

θ2
e,x + θ2

e,y

Θ2
e

]
, (C.1)

where γ = (1 − β2)−1/2 is the average Lorentz factor and we assumed that δγ � δβγ3 with δβ the
normalized velocity spread.
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