

Simultaneous Matrix Orderings for Graph Collections

Citation for published version (APA):
van Beusekom, N., Meulemans, W., & Speckmann, B. (2022). Simultaneous Matrix Orderings for Graph
Collections. IEEE Transactions on Visualization and Computer Graphics, 28(1), 1-10.
https://doi.org/10.48550/arXiv.2109.12050, https://doi.org/10.1109/TVCG.2021.3114773

Document license:
TAVERNE

DOI:
10.48550/arXiv.2109.12050
10.1109/TVCG.2021.3114773

Document status and date:
Published: 01/01/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.48550/arXiv.2109.12050
https://doi.org/10.1109/TVCG.2021.3114773
https://doi.org/10.48550/arXiv.2109.12050
https://doi.org/10.1109/TVCG.2021.3114773
https://research.tue.nl/en/publications/cf310493-9664-4369-8202-02e238708865

Digital Object Identifier no. 10.1109/TVCG.2021.3114773

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 2022 1

Manuscript received 21 Mar. 2021; revised 13 June 2021; accepted 8 Aug. 2021.
Date of publication 29 Sept. 2021; date of current version 22 Dec. 2021.

1077-2626 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Simultaneous Matrix Orderings for Graph Collections

Nathan van Beusekom, Wouter Meulemans, and Bettina Speckmann

Apply

a b c d e f g h

a

b

c

d

e

f

g

h

a b c d e f g h

a

b

c

d

e

f

g

h

Union Ordering

a b c d e f g h

a

b

c

d

e

f

g

h

g c d a e f h b

g

c

d

a

e

f

h

b

Collection-aware
ordering

g c d a e f h b

g

c

d

a

e

f

h

b

g c d a e f h b

g

c

d

a

e

f

h

b

c d a b e f h g

c

d

a

b

e

f

h

g

c d a b e f h g

c

d

a

b

e

f

h

g

Fig. 1. A collection of two matrices (top left). The state-of-the-art first computes a (weighted) union (top middle and right, blue squares
have weight 2), then orders the union, and finally applies this ordering to all matrices in the collection. The union leads to a loss of
information, specifically, on those parts of the matrices which are different (bottom right). We propose a collection-aware approach
to compute orderings which avoids this loss of information (bottom left). Our approach can be applied to existing ordering methods;
examples in this figure use the popular leaf order heuristic.

Abstract—Undirected graphs are frequently used to model phenomena that deal with interacting objects, such as social networks,
brain activity and communication networks. The topology of an undirected graph G can be captured by an adjacency matrix; this matrix
in turn can be visualized directly to give insight into the graph structure. Which visual patterns appear in such a matrix visualization
crucially depends on the ordering of its rows and columns. Formally defining the quality of an ordering and then automatically computing
a high-quality ordering are both challenging problems; however, effective heuristics exist and are used in practice.
Often, graphs do not exist in isolation but as part of a collection of graphs on the same set of vertices, for example, brain scans over
time or of different people. To visualize such graph collections, we need a single ordering that works well for all matrices simultaneously.
The current state-of-the-art solves this problem by taking a (weighted) union over all graphs and applying existing heuristics. However,
this union leads to a loss of information, specifically in those parts of the graphs which are different. We propose a collection-aware
approach to avoid this loss of information and apply it to two popular heuristic methods: leaf order and barycenter.
The de-facto standard computational quality metrics for matrix ordering capture only block-diagonal patterns (cliques). Instead, we
propose to use Moran’s I, a spatial auto-correlation metric, which captures the full range of established patterns. Moran’s I refines
previously proposed stress measures. Furthermore, the popular leaf order method heuristically optimizes a similar measure which
further supports the use of Moran’s I in this context. An ordering that maximizes Moran’s I can be computed via solutions to the
Traveling Salesperson Problem (TSP); orderings that approximate the optimal ordering can be computed more efficiently, using any of
the approximation algorithms for metric TSP.
We evaluated our methods for simultaneous orderings on real-world datasets using Moran’s I as the quality metric. Our results show
that our collection-aware approach matches or improves performance compared to the union approach, depending on the similarity of
the graphs in the collection. Specifically, our Moran’s I-based collection-aware leaf order implementation consistently outperforms other
implementations. Our collection-aware implementations carry no significant additional computational costs.

Index Terms—Matrix ordering, graph visualization, algorithms, quality measures

1 INTRODUCTION

Graphs are a common tool to model interacting entities, be it humans
in social networks, synapses in human brains, or servers in computer
networks. Visualizations are a natural tool to explore the structure
of graphs and to analyze the underlying interactions. The majority of
current graph analysis tools make use of node-link diagrams to visualize

TU Eindhoven, the Netherlands. E-mail:
[n.a.c.v.beusekom,w.meulemans,b.speckmann]@tue.nl.

graphs. However, matrix visualizations of graphs – which directly draw
the graphs’ adjacency matrix – have been shown to be effective for low-
level analysis tasks [21] (‘are the vertices x and y connected’) and for
comparisons of (large) graphs [1]. A matrix visualization can highlight
local structures in graphs – such as clusters, bi-cliques, or stars – but
this relies on a suitable ordering of the rows and columns to make these
structures manifest as visual patterns. Formally defining the quality of
an ordering and then automatically computing a high-quality ordering
are challenging problems. A multitude of different techniques have
been proposed over the years; see the survey by Behrisch et al. [8] for
an extensive discussion.

Often, graphs do not appear in isolation, but they are rather part of a
collection of graphs which share a common set of vertices. Examples
include dynamic graphs (such as brain activity of one person over time)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 11,2022 at 09:15:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 20222

and graphs with distinct edge sets (such as brain activity patterns of
different persons). In either case, visualizing these graph collections
with matrices requires us to compute a single ordering that works well
for all graphs simultaneously. Using one single ordering for all graphs
in a collection facilitates comparisons between the matrices; at the
same time, the ordering should allow local structures in each matrix to
visually manifest themselves.

There are only a few visual analysis tools for graph collections that
use matrix visualizations. The Cubix system by Bach et al. [3] allows
the user to explore the evolution of a dynamic network using a matrix
visualization for each time step. These matrix visualizations are then
combined into a so-called matrix cube, using a single, possibly user-
defined, ordering for all matrices. The user can reorder any of the
matrices in the cube using a variety of provided ordering algorithms;
the new ordering is computed based on the values in this single selected
matrix only and then applied to all others. The MultiPiles technique
by Bach et al. [2] is another approach that facilitates the analysis of
time-series of graphs. Here collections of adjacency matrices are “piled”
together, using temporal clustering or based on user interactions; the
piles are then arranged in a small multiples style layout to facilitate
comparisons. Among the large set of user interactions is the option to
impose a so-called local order on a pile (collection) of matrices: this
ordering is computed for all matrices in the pile using the weighted
union of all matrices as input for the leaf order heuristic. Using a union
matrix inevitably loses information about the individual matrices, and
hence, the ordering algorithms have less information at their disposal.
Nevertheless, this approach works well if all matrices in the pile are
fairly similar. However, as illustrated in the example in Figure 1, if the
graphs contain complementary edges, then the union does not contain
enough information to arrive at a good simultaneous ordering.

In this paper we propose a collection-aware approach to computing
simultaneous matrix orderings for collections of graphs. As most
previous work, we focus our attention on undirected graphs, that is,
symmetric 0-1 valued adjacency matrices (indicated with 0:white and
1:black squares in all figures). Our basic premise is that a method will
produce an ordering which works well for all matrices simultaneously,
if the decisions that the method takes are based on the individual
matrices – as far as that is possible. Since any method needs to produce
a single ordering in the end, eventually information from all matrices
in the collection needs to be aggregated. However, the further down
the algorithmic pipeline this aggregation is happening, the more of the
local structures in the input matrices are preserved. We demonstrate
the soundness of our premise and the feasibility of our approach by
describing collection-aware variants of two popular matrix ordering
methods: the leaf order [4] and barycenter [14, 19, 27] heuristics.

The de-facto standard computational quality metrics for matrix visu-
alizations are based on distances induced by the input graph. Specifi-
cally, the bandwidth, profile, and linear arrangement measures count
how far each edge is removed from the diagonal (using different
schemes to aggregate this information into a single value). By design
these measures are optimized by orderings that move matrix cells of
edges as close to the diagonal as possible. However, many meaningful
patterns that occur in matrix visualizations, representing graph features
such as bi-cliques or stars (see the survey by Behrisch et al. [8]), are
in fact not close to the diagonal and hence are not captured by these
measures. The same survey is calling for future research into quantita-
tive measures which evaluate the quality of all patterns. To overcome
the current lack of such quantitative measures, Behrisch et al. [7] pro-
pose to describe and compare matrices via feature vectors (Magnostics)
that describe specific patterns. These vectors are well-suited to sup-
port database queries and user interactions, but they are less suited for
computational benchmarks and algorithmic optimization.

We observe that salient patterns in matrix visualizations are formed
by clusters of black and white cells – a simple form of spatial auto-
correlation. We hence propose to use Moran’s I [30], a prominent
measure for spatial auto-correlation, as a quality metric for matrix
visualizations. Moran’s I counts vertical and horizontal adjacencies in
three classes: black-black, white-white, and black-white (see Figure 2).
Black-black and white-white adjacencies contribute positively to the

Fig. 2. Moran’s I counts vertical and horizontal adjacencies in three
classes: black-black, white-white, and black-white.

count, weighted by relative frequency of white or black, while black-
white adjacencies contribute negatively. The final score is normalized
to lie between −1 (checkerboard pattern) and +1 (a white or black
matrix). Moran’s I is closely related to several quality metrics which
are used internally in matrix re-ordering algorithms (see Section 7.2 in
the survey by Behrisch et al. [9] on quality metrics). However, until
now, none of these metrics have been used as a quality metric for the
final matrix visualization.

Contributions. Summarizing the above, the contributions of our paper
are twofold. Our primary contribution is the new collection-aware
approach hinted at above, with a description of how to apply this
approach to the leaf order and barycenter heuristics.

Our second contribution is the introduction of Moran’s I as a quality
metric for matrix visualizations. Specifically, we explain how Moran’s I
relates to existing measures and algorithms, we show that Moran’s I
captures the full range of established patterns and anti-patterns in ma-
trix visualizations, and we explain how to efficiently approximate an
optimal matrix ordering for Moran’s I.

Throughout the main body of the paper we focus on collections of
undirected, unweighted graphs with symmetric adjacency matrices. In
Section A in the supplementary material we consider the more general
case of directed graphs. There we also argue that for undirected graphs
it is optimal (under Moran’s I) to use a single ordering for rows and
columns. Hence, we restrict our discussion in the main paper to a single
ordering. However, our techniques and measures readily generalize to
weighted or directed graphs.

We validate the efficacy of our methodology using a short com-
putational experiment using implementations of the collection-aware
and union approaches, to showcase that the loss of information in-
deed occurs in real-world data, and that the collection-aware approach
overcomes this problem.

The paper is organized as follows. In Section 2 we briefly summarize
notations and definitions. We provide details on measuring quality and
distances for matrix orderings and provide our exposition on Moran’s I
in Section 3. We then describe and review the union approach, and
our newly proposed collection-aware approach and its implementation
in Section 4. We describe in Section 5 the setup and results of our
computational experiments, and close in Section 6 with a review of our
findings and possible future work.

Related work. We are not aware of previous work that computes
simultaneous orderings for matrices, beyond the union approach of
MultiPiles [2]; see above, as well as Section 4 for a discussion of this
method. A discussion of related work in terms of ordering quality is
deferred to Section 3.

In the graph-drawing literature, we find related work on simultane-
ously drawing graphs in the node-link diagram style [10]. The goal
here typically is to avoid crossings, i.e., draw graphs planarly, on a
common vertex set. In other words, can locations for each vertex be
found, such that for each graph, all edges of that graph can be drawn
using these locations (e.g., with straight lines or few bends per edge)
while not introducing intersections. Note that crossings between edges
of different graphs are thus allowed. Results here focus on theoretical
aspects, establishing computational complexity, i.e., showing that the
problem is hard in general [16] but that other variants admit polynomial-
time solutions [12, 18, 22]. Recently, simultaneous embeddings were
generalized to graphs drawn in 3D, with the goal that different two-
dimensional projections preserve user specified distances [24]. Beck et

al. [5] present an extensive overview on visualization techniques for
dynamic graphs, which also touches upon matrix visualizations.

We focus on simple black-and-white representations of undirected,
unweighted graphs. However, there are many possibilities to augment
matrix visualizations. For example, cells can be used to display aux-
iliary data of the edges, including temporal data [15, 34]. Moreover,
augmentations with lines can help overcome some of the drawbacks of
matrix visualizations, such as the identification of paths [23, 32].

2 PRELIMINARIES

Graphs. A graph G = (V,E) consists of a set V of n vertices and a
set E ⊆ V 2 of m edges. We assume graphs to be undirected, that is,
(u,v) ∈ E ⇔ (v,u) ∈ E. Typically, undirected graphs do not contain
self-loops (u,u) ∈ E, but we assume that these may occur.

With N(G,v) we denote the neighborhood of vertex v in graph G.
Specifically, we interpret it as an n-dimensional 0-1 vector: an entry is
1 if and only if (v,ui) ∈ E where ui is the ith vertex in some arbitrary
fixed order of the vertices in V .
Orderings. An ordering of a graph G is a permutation of its ver-
tices V , which we represent as a bijective function on the indices,
ρ : {1, . . . ,n} → V . So, ρ(1) is the first vertex in the ordering, and
ρ−1(v) is the rank (position) of v ∈V in the ordering.1 We use ρ(i, j)
as a shorthand for the pair (ρ(i),ρ(j)), that is, a pair of vertices which
may or may not constitute an edge in E.

Given an ordering ρ of G, we can create a table with n rows and
n columns, where each row and column is associated with a vertex
through the ordering. We color each cell [i, j] in row i and column j of
this table black if the edge ρ(i, j) is in E, and white otherwise.
Simultaneous orderings. Assume that we are given a set G =
{G1, . . . ,Gk} of k undirected graphs . Each graph Gi = (V,Ei) is de-
fined on the same set V of vertices but has its own set of edges Ei ⊆V 2.
Our goal is to find a simultaneous ordering ρ for the set G , that is, an
ordering of the vertices V that results in good matrix visualizations for
all graphs in the set G .

3 MEASURING ORDERING QUALITY

Computational quality measures play an important role when designing
and evaluating matrix ordering algorithms. Here measures are used

1Note that the survey by Behrisch et al. [8] defines the ordering function the
other way around, from vertex to index; being a bijection, this is but a notational
difference. We found that in our exposition, we rely mostly on the resulting row
order so our definition avoids excessive use of the inverse.

I(G, ρ) = 0.61 I(G, ρ) = 0.72

I(G, ρ) = 0.39 I(G, ρ) = 0.28 I(G, ρ) = 0.12

I(G, ρ) = −0.19

Fig. 3. Patterns (black) and anti-patterns (red) [8] with Moran’s I score
(higher = more correlated). Top row: block pattern, off-diagonal block
pattern, noise anti-pattern; bottom row: line/star pattern, bands pattern,
bandwidth anti-pattern.

essentially in three different ways: to evaluate the final quality of a
matrix visualization, as part of the objective function to be optimized
by an algorithm, or simply as distance function between two rows of
the matrix. In principle each measure can be used in all three settings,
however, we observe that so far, certain measures have been used only
in one or two of them. We can roughly separate existing measures into
two categories: measures that are based on distances in the ordering
between vertices and measures that are based on adjacencies of row (or
column) vectors in the matrix.
Ordering distance. Measures in this category focus on combinatorial,
connectivity aspects of the input graph. That is, they measure how
well the ordering represents the (edge) connectivity in the graph. The
measures attempt to capture the idea that nodes which are adjacent or
at least close in the graph should be adjacent or close in the order and
vice versa. The de-facto standard computational quality metrics are
all based on the concept of rank difference (distance in the ordering):
λρ (u,v) = |ρ−1(u)−ρ−1(v)| should be small for all (u,v) ∈ E. The
function λ effectively expresses the deviation of an edge from the
diagonal of the matrix. This principle is used to define three common
measures [8]:

bandwidth which is the maximum deviation, max(u,v)∈E λ (u,v)

profile which measures per vertex the maximum deviation to an adja-
cent vertex earlier in the order,

n

∑
i=1

(i− min
j<i∧ρ(j,i)∈E

j) =
n

∑
i=1

max
j<i∧ρ(j,i)∈E

λ (ρ(j),ρ(i))

linear arrangement which accounts for all edges,

∑
u∈V

∑
(u,v)∈E

λ (u,v) = ∑
(u,v)∈E

λ (u,v)

All three measures are focused on keeping edges close to the diagonal
and are hence optimized by orderings which form block patterns along
the diagonal (see Figure 3 top left). They are used both in optimization
functions and, specifically linear arrangement, as a measure for the
final quality of a matrix visualization.

However, several meaningful patterns which correspond to salient
structures in the input graph are not related to distance from the diago-
nal. Furthermore, the bandwidth anti-pattern (which does not match a
logical structure in the input graph) is in fact a typical result of optimiz-
ing for ordering distance. See Figure 3 for an illustration of the most
common patterns according to the survey by Behrisch et al. [8]. Ta-
ble 1 lists each of the three ordering distance measures for each pattern
and anti-pattern (lower = better). Bandwidth and linear arrangement,
for example, assess the off-diagonal block pattern as worse than the
bandwidth anti-pattern, and profile cannot distinguish between these.
In contrast, Moran’s I consistently ranks the patterns higher than the
anti-patterns (higher = better).
Adjacency. Measures in this category are usually used to compute
distances between two (adjacent) rows of a matrix, based on the directly
adjacent cells in the respective rows. Two vertically or horizontally
adjacent black squares correspond to two edges which share a vertex.
Hence, in some sense these measures promote the clustering of the
neighborhood of vertices in the graph into adjacent cells of the matrix.
Adjacency measures naturally generalize to the complete matrix and
hence are used also as part of optimization functions. So far, measures
in this category do not appear to have been used as a quality measure
for the final matrix visualization.

Moran’s I, which we will describe in greater detail in the next subsec-
tion, is an adjacency measure, and so are the measure of effectiveness
by McCormick et al. [28, 29] and the stress measure by Niermann [31].
All standard distance measures for vectors fall into this category as well,
such as the Euclidean distance L2. Note that the squared Euclidean
distance is identical to the Manhattan distance for 0−1 vectors.

Lenstra and Kan [26] observed that an optimal ordering for the
measure of effectiveness is equivalent to a traveling salesperson path,

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 11,2022 at 09:15:51 UTC from IEEE Xplore. Restrictions apply.

3Beusekom eT AL.: simuLTAneous mATrix orderings for grAph CoLLeCTions

and graphs with distinct edge sets (such as brain activity patterns of
different persons). In either case, visualizing these graph collections
with matrices requires us to compute a single ordering that works well
for all graphs simultaneously. Using one single ordering for all graphs
in a collection facilitates comparisons between the matrices; at the
same time, the ordering should allow local structures in each matrix to
visually manifest themselves.

There are only a few visual analysis tools for graph collections that
use matrix visualizations. The Cubix system by Bach et al. [3] allows
the user to explore the evolution of a dynamic network using a matrix
visualization for each time step. These matrix visualizations are then
combined into a so-called matrix cube, using a single, possibly user-
defined, ordering for all matrices. The user can reorder any of the
matrices in the cube using a variety of provided ordering algorithms;
the new ordering is computed based on the values in this single selected
matrix only and then applied to all others. The MultiPiles technique
by Bach et al. [2] is another approach that facilitates the analysis of
time-series of graphs. Here collections of adjacency matrices are “piled”
together, using temporal clustering or based on user interactions; the
piles are then arranged in a small multiples style layout to facilitate
comparisons. Among the large set of user interactions is the option to
impose a so-called local order on a pile (collection) of matrices: this
ordering is computed for all matrices in the pile using the weighted
union of all matrices as input for the leaf order heuristic. Using a union
matrix inevitably loses information about the individual matrices, and
hence, the ordering algorithms have less information at their disposal.
Nevertheless, this approach works well if all matrices in the pile are
fairly similar. However, as illustrated in the example in Figure 1, if the
graphs contain complementary edges, then the union does not contain
enough information to arrive at a good simultaneous ordering.

In this paper we propose a collection-aware approach to computing
simultaneous matrix orderings for collections of graphs. As most
previous work, we focus our attention on undirected graphs, that is,
symmetric 0-1 valued adjacency matrices (indicated with 0:white and
1:black squares in all figures). Our basic premise is that a method will
produce an ordering which works well for all matrices simultaneously,
if the decisions that the method takes are based on the individual
matrices – as far as that is possible. Since any method needs to produce
a single ordering in the end, eventually information from all matrices
in the collection needs to be aggregated. However, the further down
the algorithmic pipeline this aggregation is happening, the more of the
local structures in the input matrices are preserved. We demonstrate
the soundness of our premise and the feasibility of our approach by
describing collection-aware variants of two popular matrix ordering
methods: the leaf order [4] and barycenter [14, 19, 27] heuristics.

The de-facto standard computational quality metrics for matrix visu-
alizations are based on distances induced by the input graph. Specifi-
cally, the bandwidth, profile, and linear arrangement measures count
how far each edge is removed from the diagonal (using different
schemes to aggregate this information into a single value). By design
these measures are optimized by orderings that move matrix cells of
edges as close to the diagonal as possible. However, many meaningful
patterns that occur in matrix visualizations, representing graph features
such as bi-cliques or stars (see the survey by Behrisch et al. [8]), are
in fact not close to the diagonal and hence are not captured by these
measures. The same survey is calling for future research into quantita-
tive measures which evaluate the quality of all patterns. To overcome
the current lack of such quantitative measures, Behrisch et al. [7] pro-
pose to describe and compare matrices via feature vectors (Magnostics)
that describe specific patterns. These vectors are well-suited to sup-
port database queries and user interactions, but they are less suited for
computational benchmarks and algorithmic optimization.

We observe that salient patterns in matrix visualizations are formed
by clusters of black and white cells – a simple form of spatial auto-
correlation. We hence propose to use Moran’s I [30], a prominent
measure for spatial auto-correlation, as a quality metric for matrix
visualizations. Moran’s I counts vertical and horizontal adjacencies in
three classes: black-black, white-white, and black-white (see Figure 2).
Black-black and white-white adjacencies contribute positively to the

Fig. 2. Moran’s I counts vertical and horizontal adjacencies in three
classes: black-black, white-white, and black-white.

count, weighted by relative frequency of white or black, while black-
white adjacencies contribute negatively. The final score is normalized
to lie between −1 (checkerboard pattern) and +1 (a white or black
matrix). Moran’s I is closely related to several quality metrics which
are used internally in matrix re-ordering algorithms (see Section 7.2 in
the survey by Behrisch et al. [9] on quality metrics). However, until
now, none of these metrics have been used as a quality metric for the
final matrix visualization.

Contributions. Summarizing the above, the contributions of our paper
are twofold. Our primary contribution is the new collection-aware
approach hinted at above, with a description of how to apply this
approach to the leaf order and barycenter heuristics.

Our second contribution is the introduction of Moran’s I as a quality
metric for matrix visualizations. Specifically, we explain how Moran’s I
relates to existing measures and algorithms, we show that Moran’s I
captures the full range of established patterns and anti-patterns in ma-
trix visualizations, and we explain how to efficiently approximate an
optimal matrix ordering for Moran’s I.

Throughout the main body of the paper we focus on collections of
undirected, unweighted graphs with symmetric adjacency matrices. In
Section A in the supplementary material we consider the more general
case of directed graphs. There we also argue that for undirected graphs
it is optimal (under Moran’s I) to use a single ordering for rows and
columns. Hence, we restrict our discussion in the main paper to a single
ordering. However, our techniques and measures readily generalize to
weighted or directed graphs.

We validate the efficacy of our methodology using a short com-
putational experiment using implementations of the collection-aware
and union approaches, to showcase that the loss of information in-
deed occurs in real-world data, and that the collection-aware approach
overcomes this problem.

The paper is organized as follows. In Section 2 we briefly summarize
notations and definitions. We provide details on measuring quality and
distances for matrix orderings and provide our exposition on Moran’s I
in Section 3. We then describe and review the union approach, and
our newly proposed collection-aware approach and its implementation
in Section 4. We describe in Section 5 the setup and results of our
computational experiments, and close in Section 6 with a review of our
findings and possible future work.

Related work. We are not aware of previous work that computes
simultaneous orderings for matrices, beyond the union approach of
MultiPiles [2]; see above, as well as Section 4 for a discussion of this
method. A discussion of related work in terms of ordering quality is
deferred to Section 3.

In the graph-drawing literature, we find related work on simultane-
ously drawing graphs in the node-link diagram style [10]. The goal
here typically is to avoid crossings, i.e., draw graphs planarly, on a
common vertex set. In other words, can locations for each vertex be
found, such that for each graph, all edges of that graph can be drawn
using these locations (e.g., with straight lines or few bends per edge)
while not introducing intersections. Note that crossings between edges
of different graphs are thus allowed. Results here focus on theoretical
aspects, establishing computational complexity, i.e., showing that the
problem is hard in general [16] but that other variants admit polynomial-
time solutions [12, 18, 22]. Recently, simultaneous embeddings were
generalized to graphs drawn in 3D, with the goal that different two-
dimensional projections preserve user specified distances [24]. Beck et

al. [5] present an extensive overview on visualization techniques for
dynamic graphs, which also touches upon matrix visualizations.

We focus on simple black-and-white representations of undirected,
unweighted graphs. However, there are many possibilities to augment
matrix visualizations. For example, cells can be used to display aux-
iliary data of the edges, including temporal data [15, 34]. Moreover,
augmentations with lines can help overcome some of the drawbacks of
matrix visualizations, such as the identification of paths [23, 32].

2 PRELIMINARIES

Graphs. A graph G = (V,E) consists of a set V of n vertices and a
set E ⊆ V 2 of m edges. We assume graphs to be undirected, that is,
(u,v) ∈ E ⇔ (v,u) ∈ E. Typically, undirected graphs do not contain
self-loops (u,u) ∈ E, but we assume that these may occur.

With N(G,v) we denote the neighborhood of vertex v in graph G.
Specifically, we interpret it as an n-dimensional 0-1 vector: an entry is
1 if and only if (v,ui) ∈ E where ui is the ith vertex in some arbitrary
fixed order of the vertices in V .
Orderings. An ordering of a graph G is a permutation of its ver-
tices V , which we represent as a bijective function on the indices,
ρ : {1, . . . ,n} → V . So, ρ(1) is the first vertex in the ordering, and
ρ−1(v) is the rank (position) of v ∈V in the ordering.1 We use ρ(i, j)
as a shorthand for the pair (ρ(i),ρ(j)), that is, a pair of vertices which
may or may not constitute an edge in E.

Given an ordering ρ of G, we can create a table with n rows and
n columns, where each row and column is associated with a vertex
through the ordering. We color each cell [i, j] in row i and column j of
this table black if the edge ρ(i, j) is in E, and white otherwise.
Simultaneous orderings. Assume that we are given a set G =
{G1, . . . ,Gk} of k undirected graphs . Each graph Gi = (V,Ei) is de-
fined on the same set V of vertices but has its own set of edges Ei ⊆V 2.
Our goal is to find a simultaneous ordering ρ for the set G , that is, an
ordering of the vertices V that results in good matrix visualizations for
all graphs in the set G .

3 MEASURING ORDERING QUALITY

Computational quality measures play an important role when designing
and evaluating matrix ordering algorithms. Here measures are used

1Note that the survey by Behrisch et al. [8] defines the ordering function the
other way around, from vertex to index; being a bijection, this is but a notational
difference. We found that in our exposition, we rely mostly on the resulting row
order so our definition avoids excessive use of the inverse.

I(G, ρ) = 0.61 I(G, ρ) = 0.72

I(G, ρ) = 0.39 I(G, ρ) = 0.28 I(G, ρ) = 0.12

I(G, ρ) = −0.19

Fig. 3. Patterns (black) and anti-patterns (red) [8] with Moran’s I score
(higher = more correlated). Top row: block pattern, off-diagonal block
pattern, noise anti-pattern; bottom row: line/star pattern, bands pattern,
bandwidth anti-pattern.

essentially in three different ways: to evaluate the final quality of a
matrix visualization, as part of the objective function to be optimized
by an algorithm, or simply as distance function between two rows of
the matrix. In principle each measure can be used in all three settings,
however, we observe that so far, certain measures have been used only
in one or two of them. We can roughly separate existing measures into
two categories: measures that are based on distances in the ordering
between vertices and measures that are based on adjacencies of row (or
column) vectors in the matrix.
Ordering distance. Measures in this category focus on combinatorial,
connectivity aspects of the input graph. That is, they measure how
well the ordering represents the (edge) connectivity in the graph. The
measures attempt to capture the idea that nodes which are adjacent or
at least close in the graph should be adjacent or close in the order and
vice versa. The de-facto standard computational quality metrics are
all based on the concept of rank difference (distance in the ordering):
λρ (u,v) = |ρ−1(u)−ρ−1(v)| should be small for all (u,v) ∈ E. The
function λ effectively expresses the deviation of an edge from the
diagonal of the matrix. This principle is used to define three common
measures [8]:

bandwidth which is the maximum deviation, max(u,v)∈E λ (u,v)

profile which measures per vertex the maximum deviation to an adja-
cent vertex earlier in the order,

n

∑
i=1

(i− min
j<i∧ρ(j,i)∈E

j) =
n

∑
i=1

max
j<i∧ρ(j,i)∈E

λ (ρ(j),ρ(i))

linear arrangement which accounts for all edges,

∑
u∈V

∑
(u,v)∈E

λ (u,v) = ∑
(u,v)∈E

λ (u,v)

All three measures are focused on keeping edges close to the diagonal
and are hence optimized by orderings which form block patterns along
the diagonal (see Figure 3 top left). They are used both in optimization
functions and, specifically linear arrangement, as a measure for the
final quality of a matrix visualization.

However, several meaningful patterns which correspond to salient
structures in the input graph are not related to distance from the diago-
nal. Furthermore, the bandwidth anti-pattern (which does not match a
logical structure in the input graph) is in fact a typical result of optimiz-
ing for ordering distance. See Figure 3 for an illustration of the most
common patterns according to the survey by Behrisch et al. [8]. Ta-
ble 1 lists each of the three ordering distance measures for each pattern
and anti-pattern (lower = better). Bandwidth and linear arrangement,
for example, assess the off-diagonal block pattern as worse than the
bandwidth anti-pattern, and profile cannot distinguish between these.
In contrast, Moran’s I consistently ranks the patterns higher than the
anti-patterns (higher = better).
Adjacency. Measures in this category are usually used to compute
distances between two (adjacent) rows of a matrix, based on the directly
adjacent cells in the respective rows. Two vertically or horizontally
adjacent black squares correspond to two edges which share a vertex.
Hence, in some sense these measures promote the clustering of the
neighborhood of vertices in the graph into adjacent cells of the matrix.
Adjacency measures naturally generalize to the complete matrix and
hence are used also as part of optimization functions. So far, measures
in this category do not appear to have been used as a quality measure
for the final matrix visualization.

Moran’s I, which we will describe in greater detail in the next subsec-
tion, is an adjacency measure, and so are the measure of effectiveness
by McCormick et al. [28, 29] and the stress measure by Niermann [31].
All standard distance measures for vectors fall into this category as well,
such as the Euclidean distance L2. Note that the squared Euclidean
distance is identical to the Manhattan distance for 0−1 vectors.

Lenstra and Kan [26] observed that an optimal ordering for the
measure of effectiveness is equivalent to a traveling salesperson path,

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 11,2022 at 09:15:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 20224

Table 1. Metrics for the patterns and anti-patterns in Figure 3. For the
first three metrics lower is better, while for the Moran’s I higher is better.

Pattern Bandwidth Profile
Linear ar-

rangement Moran’s I

Block 3 10 30 0.61

Off-diagonal
Block

9 24 126 0.72

Line/Star 6 24 54 0.39

Bands 3 23 74 0.28

Anti-pattern Bandwidth Profile
Linear ar-

rangement Moran’s I

Noise 8 28 76 -0.19

Bandwidth 4 24 60 0.12

where each matrix row corresponds to a city and the distance between
two rows is measured by the number of pairwise vertical black-black
adjacencies. In fact, every adjacency measure is optimized globally
via a traveling salesperson path. The Bond Energy Algorithm by Mc-
Cormick et al. [28, 29] is in fact a heuristic for TSP using the measure
of effectiveness. The popular leaf order heuristic is a heuristic for TSP
as well, using the Euclidean distance.

3.1 Spatial auto-correlation: Moran’s I
We observe that salient patterns are formed by clusters of black cells:
moving rows (vertices) close together which have similar neighbor-
hoods. As such, we postulate that promoting patterns is a form of spatial
auto-correlation. Spatial auto-correlation measures are global measures
of structure in the data. The matrix visualization in this context becomes
the data for which we try to measure spatial auto-correlation.

We propose to use Moran’s I [30], one of the prominent measures
for spatial auto-correlation. This very general measure requires values
associated with each cell and a weight matrix which captures how the
cells are structurally (visually) related. In our case, we associate the
values 1 and 0 with each cell, depending on whether the associated
edge is in E or not. We design the weight matrix such that each cell is
considered adjacent (with weight 1) to the cells with which it shares a
border and unadjacent (weight 0) otherwise. Higher scores in Moran’s
I indicate a stronger correlation and are thus desirable for an ordering.

As described above, we use Rook’s adjacency rather than Queen’s
adjacency2. Our motivation is twofold. First, two cells (i, j) and (i�, j�)
correspond to two edges and thus up to four vertices. If each of these
has a different value, we get indeed four vertices and the two edges
connect two arbitrary pairs. As such, it does not match to a local
structure. However, if the two cells are in the same column or row,
there are only three vertices, and thus it describes a small pattern of
two vertices sharing a common neighbor. Second, Moran’s I with
Queen’s adjacency fails to capture negative spatial auto-correlation on
the prototypical chess board of alternating black and white cells.

In our setting, Moran’s I effectively simplifies to the following
expression (see below for a derivation).

I(G,ρ) = cB(G) ·B(G,ρ)+ cW (G) ·W (G,ρ)−1

Here, B(G,ρ) and W (G,ρ) refer to the number of black-black and
white-white adjacencies, respectively. See Figure 4 for illustrations.
The c-terms are constants, relying only on the number of vertices and
edges in G, that weigh the relative impact of these types of adjacencies.
Generally speaking, if the matrix has more white cells than black cells,
black-black adjacencies have more impact and vice versa.
Derivation. Here we present a brief derivation of our simplified form
of Moran’s I, starting from its general form. For a detailed derivation,
refer to Section A of the supplementary material.

A graph G = (V,E) on n vertices for some fixed ordering ρ implies
an n×n 0-1 matrix M where Mi j = 1 if ρ(i, j)∈E and 0 otherwise. The

2This refers to the movement capabilities of chess pieces.

cells of M are interpreted as the spatial units for the sake of Moran’s
I, and contains all necessary information to derive Moran’s I. We
hence omit dependencies on G and ρ in our derivation here, for sake of
notational simplicity.

We use slightly different notation than perhaps conventional for the
general form of Moran’s I, so as to distinguish between the general
form and our simplified form. Specifically, we use r instead of N to
denote the number of spatial units (regions) and use a weights matrix T
(topology) with sum t instead of w with sum W . Moreover, we refer to
the regions using indices a and b rather than i and j.

Moran’s I is defined over r spatial units, which have associated
values xa for a ∈ {1, . . . ,r}. Furthermore, an r× r matrix T encodes
the weights for (typically neighboring) regions: entry Tab is the weight
between region a and b. We use t to denote the sum over all weights
in T . Moreover, let x denote the average value ∑r

a=1 xa
r . The general

form of Moran’s I is as follows [30]:

I =
r
t
· ∑r

a=1 ∑r
b=1 Tab(xa − x)(xb − x)
∑r

a=1(xa − x)2

As the cells of M correspond to spatial units, we have r = n2. Let
m denote the total number of entries with value 1 in M (the number
of edges, with double counting). Hence, x = m

n2 and we can rewrite

xa − x = xan2−m
n2 . This allows us to simplify the generic form to

I =
n2

t
· ∑r

a=1 ∑r
b=1 Tab(xan2 −m)(xbn2 −m)

∑r
i=1(xan2 −m)2 .

With Rook’s adjacency, Tab is 1 if a and b are adjacent cells in M
and 0 otherwise. We thus need to consider only the terms for which
Tab is 1, i.e., for adjacent cells in M. Furthermore, since M is a 0-1
matrix, xa is either 0 or 1: the term xan2 −m is either n2 −m or −m.
In the denominator, there are hence two cases to consider (white cells
and black cells) and for the numerator there are three cases (a and b
describe a white-white, black-black, or black-white adjacency). The
contribution to Moran’s I is the same per case.

We thus case simplify this summation by simply counting the num-
ber of occurrences of each case, and we identify B (black-black), W
(white-white) and D (black-white) with this count. There are 2n(n−1)
adjacencies, but we count every adjacency twice since T is symmetric:
t = ∑Tab = 4n(n−1).

a b c d e f

a

b

c

d

e

f

I(G, ρ) = 0.33

f c a e b d

f

c

a

e

b

d

I(G, ρ′) = −0.73
a b c d e f

a

b

c

d

e

f

I(G, ρ) = 0.33

f c a e b d

f

c

a

e

b

d

I(G, ρ′) = −0.73

Fig. 4. Visualizations of the same graph based on two different orderings,
ρ and ρ �. The bottom row shows the same visualizations, with annotated
horizontal and vertical adjacencies. More such lines mean more same-
colored adjacencies and thus a higher quality in terms of Moran’s I.

I =
n2

4n(n−1)
· 2B · (n2 −m)2 +2W · (−m)2 +2D · (n2 −m)(−m)

m(n2 −m)2 +(n2 −m)(−m)2

=
1

2n(n−1)m(n2 −m)
· (B · (n2 −m)2 +W ·m2 −D · (n2 −m)m)

Since B+W +D = 2n(n−1), we see that it suffices to count only
B and W . This allows us to simplify the expression to a sum of B and
W , introducing cB and cB as the coefficients of B and W :

I = B · n
2(n−1)m

+W · n
2(n−1)(n2 −m)

−1

= cB ·B+ cW ·W −1

Using Moran’s I. With Moran’s I, we have a measure that is aimed
at capturing how well-structured the matrix visualization is. That is, it
aims to globally capture patterns, without specifically aiming to specify
what a pattern actually constitutes. We indeed see in Table 1 that the
patterns score considerably higher than the anti-patterns. As such, this
makes the measure more amenable for algorithmic use.

Indeed, we see that we are effectively counting cells in determining
similarity of neighborhoods. We denote with B(G,u,v) the number of
(vertical) black-black adjacencies we would obtain when u and v are
made adjacent in the ordering – the number of common neighboring
vertices in G; similarly, W (G,u,v) denotes the white-white adjacencies
for u and v – the number of vertices in G that are neighboring to
neither u nor v. Measuring the neighborhood similarity between u
and v as s(G,u,v) = cB(G) ·B(G,u,v)+cW (G) ·W (G,u,v), we get the
following form of the metric:

I(G,ρ) =−1+2
n−1

∑
i=1

s(G,ρ(i),ρ(i+1))

Maximizing Moran’s I is equivalent to maximizing the sum of s over
adjacent rows. However, many algorithms such as leaf order are based
upon minimizing a sum of distances. Hence, we define a Moran’s I
metric δI(G,u,v) = 1− s(G,u,v), which gives that I(G,ρ) = n−2−
2∑n−1

i=1 δI(G,ρ(i),ρ(i+1)). Now, maximizing Moran’s I corresponds
exactly to minimizing the sum of distances. We do observe that δI is not
a proper metric, since identical rows do not have a distance of zero. This
identity of indiscernables is inherently incompatible with Moran’s I as
two fully black rows and two fully white rows should score differently
depending on the number of black cells over the entire matrix. Nonethe-
less, the triangle inequality holds: δI(G,u,w)≤ δI(G,u,v)+δI(G,v,w)
rewrites to 1+ s(G,u,w)≥ s(G,u,v)+ s(G,u,w). However, we know
that I(G,ρ) cannot exceed one and thus s(G,u,v) + s(G,u,w) ≤ 1,
which proves the claim.

Measure δI can generally be used with methods that are based on
distance measures between rows such as leaf order. It also works well
with algorithms that are designed for metric TSP and rely on the triangle
inequality in their approximation guarantees. Furthermore, we believe
that this relation between spatial auto-correlation and neighborhood
similarities helps to explain why neighborhood measures for computing
orderings have been successful and popular in practice.
Relation to other adjacency measures. The measure of effectiveness
by McCormick et al. [28, 29], when translated to 0−1 valued (white-
black) matrices, simply counts ‘1’ for each vertical or horizontal black-
black adjacency, and ‘0’ otherwise. As such it is a less refined form of
Moran’s I. The stress measure proposed by Niermann [31], which uses
Queen’s adjacency, is related to Moran’s I as well; the final score is
the sum of all squared differences between a cell and its neighbors. As
already mentioned above, diagonal adjacencies do not capture a graph
property, they simply arise from two independent edges. Hence, this
stress measure is less suitable to optimize adjacency matrices of graphs.
Finally, the popular leaf order heuristic3 uses the Euclidean distance

3“[leaf order] consistently generates excellent results visually” Fekete [17]

I(G,ρ) = 0.66 I(G,ρ) = 0.33 I(G,ρ) = 0.29 I(G,ρ) = 0.63

I(G,ρ) = 0.65 I(G,ρ) = 0.30 I(G,ρ) = 0.20 I(G,ρ) = 0.63

Fig. 5. Optimizing Moran’s I using NN-2OPT (top row) and leaf order
(bottom row), matrices from [8].

between row vectors. For a 0-1 valued matrix, the Euclidean distance
simply counts ‘1’ for each black-white adjacency and then takes the
square root of this sum. Orders produced with the leaf order algorithm
hence tend to score very well on Moran’s I.
Optimizing Moran’s I. As mentioned in Section 3, every adjacency
measure is optimized via a traveling salesperson path. Since TSP
is NP-hard to compute, we implemented the Nearest Neighbor (NN)
heuristic using δI and further optimized the results using the 2-OPT
algorithm [13] as long as Moran’s I improves by more than 0.0001.
Figure 5 shows the results for the four running-example matrices from
the survey paper by Behrisch et al. [8]; each was computed in less than
half a second. For comparison, we also include the results using leaf
order with the L2 metric. We see that NN-2OPT manages to achieve
higher quality in terms of Moran’s I.

4 COMPUTING SIMULTANEOUS ORDERINGS

There are various ways in which a simultaneous ordering can be com-
puted. In the literature, we find two approaches that rely on computing
an ordering for a single graph. A simple method, used by both Cu-
bix [3] and MultiPiles [2], to compute an ordering is to base it on a
single graph, using any algorithm; this ordering is then simply applied
to the other graphs as well. However, we do not consider such an
approach to really address the simultaneous ordering problem, as it
uses the structure of only a single graph.

Below we review what we refer to as the union approach that is
suggested by MultiPiles [2] for the leaf order method and apply it to the
barycenter method as well. We then propose our new collection-aware
approach which overcomes the loss of information that arises in the
union approach (see also Figure 1), and show how to apply it to the leaf
order method and the barycenter method. As we extend these methods,
below is a brief summary of their basic steps (see also the survey [8]
for details on these methods).
Leaf order. The leaf order method [4] computes an ordering in three
stages: first, the distance between each pair of vertices is determined,
based on some distance measure δ (G,u,v); second, this information
is used to construct a hierarchical clustering on the vertices – our
implementation is built on reorder.js4 which uses greedy complete-
linkage clustering here; third, the ordering ρ is computed that mini-
mizes ∑n−1

i=1 δ (G,ρ(i),ρ(i+ 1)) and “adheres” to the clustering tree.
“Adhering” here means that the ordering matches the order in which
an in-order traversal visits the leaves of the tree; effectively, we can
choose for each internal node of the tree which of its two children will
be the left and the right child. Note that this choice is for every node
and thus allows completely reversing the leaves in any subtree. As
not all permutations adhere to a given hierarchy, this method avoids
the complexity that is inherent in the TSP formulation; indeed, this
problem can be solved optimally in an efficient manner [11]. Often, this

4https://github.com/jdfekete/reorder.js/

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 11,2022 at 09:15:51 UTC from IEEE Xplore. Restrictions apply.

5Beusekom eT AL.: simuLTAneous mATrix orderings for grAph CoLLeCTions

Table 1. Metrics for the patterns and anti-patterns in Figure 3. For the
first three metrics lower is better, while for the Moran’s I higher is better.

Pattern Bandwidth Profile
Linear ar-

rangement Moran’s I

Block 3 10 30 0.61

Off-diagonal
Block

9 24 126 0.72

Line/Star 6 24 54 0.39

Bands 3 23 74 0.28

Anti-pattern Bandwidth Profile
Linear ar-

rangement Moran’s I

Noise 8 28 76 -0.19

Bandwidth 4 24 60 0.12

where each matrix row corresponds to a city and the distance between
two rows is measured by the number of pairwise vertical black-black
adjacencies. In fact, every adjacency measure is optimized globally
via a traveling salesperson path. The Bond Energy Algorithm by Mc-
Cormick et al. [28, 29] is in fact a heuristic for TSP using the measure
of effectiveness. The popular leaf order heuristic is a heuristic for TSP
as well, using the Euclidean distance.

3.1 Spatial auto-correlation: Moran’s I
We observe that salient patterns are formed by clusters of black cells:
moving rows (vertices) close together which have similar neighbor-
hoods. As such, we postulate that promoting patterns is a form of spatial
auto-correlation. Spatial auto-correlation measures are global measures
of structure in the data. The matrix visualization in this context becomes
the data for which we try to measure spatial auto-correlation.

We propose to use Moran’s I [30], one of the prominent measures
for spatial auto-correlation. This very general measure requires values
associated with each cell and a weight matrix which captures how the
cells are structurally (visually) related. In our case, we associate the
values 1 and 0 with each cell, depending on whether the associated
edge is in E or not. We design the weight matrix such that each cell is
considered adjacent (with weight 1) to the cells with which it shares a
border and unadjacent (weight 0) otherwise. Higher scores in Moran’s
I indicate a stronger correlation and are thus desirable for an ordering.

As described above, we use Rook’s adjacency rather than Queen’s
adjacency2. Our motivation is twofold. First, two cells (i, j) and (i�, j�)
correspond to two edges and thus up to four vertices. If each of these
has a different value, we get indeed four vertices and the two edges
connect two arbitrary pairs. As such, it does not match to a local
structure. However, if the two cells are in the same column or row,
there are only three vertices, and thus it describes a small pattern of
two vertices sharing a common neighbor. Second, Moran’s I with
Queen’s adjacency fails to capture negative spatial auto-correlation on
the prototypical chess board of alternating black and white cells.

In our setting, Moran’s I effectively simplifies to the following
expression (see below for a derivation).

I(G,ρ) = cB(G) ·B(G,ρ)+ cW (G) ·W (G,ρ)−1

Here, B(G,ρ) and W (G,ρ) refer to the number of black-black and
white-white adjacencies, respectively. See Figure 4 for illustrations.
The c-terms are constants, relying only on the number of vertices and
edges in G, that weigh the relative impact of these types of adjacencies.
Generally speaking, if the matrix has more white cells than black cells,
black-black adjacencies have more impact and vice versa.
Derivation. Here we present a brief derivation of our simplified form
of Moran’s I, starting from its general form. For a detailed derivation,
refer to Section A of the supplementary material.

A graph G = (V,E) on n vertices for some fixed ordering ρ implies
an n×n 0-1 matrix M where Mi j = 1 if ρ(i, j)∈E and 0 otherwise. The

2This refers to the movement capabilities of chess pieces.

cells of M are interpreted as the spatial units for the sake of Moran’s
I, and contains all necessary information to derive Moran’s I. We
hence omit dependencies on G and ρ in our derivation here, for sake of
notational simplicity.

We use slightly different notation than perhaps conventional for the
general form of Moran’s I, so as to distinguish between the general
form and our simplified form. Specifically, we use r instead of N to
denote the number of spatial units (regions) and use a weights matrix T
(topology) with sum t instead of w with sum W . Moreover, we refer to
the regions using indices a and b rather than i and j.

Moran’s I is defined over r spatial units, which have associated
values xa for a ∈ {1, . . . ,r}. Furthermore, an r× r matrix T encodes
the weights for (typically neighboring) regions: entry Tab is the weight
between region a and b. We use t to denote the sum over all weights
in T . Moreover, let x denote the average value ∑r

a=1 xa
r . The general

form of Moran’s I is as follows [30]:

I =
r
t
· ∑r

a=1 ∑r
b=1 Tab(xa − x)(xb − x)
∑r

a=1(xa − x)2

As the cells of M correspond to spatial units, we have r = n2. Let
m denote the total number of entries with value 1 in M (the number
of edges, with double counting). Hence, x = m

n2 and we can rewrite

xa − x = xan2−m
n2 . This allows us to simplify the generic form to

I =
n2

t
· ∑r

a=1 ∑r
b=1 Tab(xan2 −m)(xbn2 −m)

∑r
i=1(xan2 −m)2 .

With Rook’s adjacency, Tab is 1 if a and b are adjacent cells in M
and 0 otherwise. We thus need to consider only the terms for which
Tab is 1, i.e., for adjacent cells in M. Furthermore, since M is a 0-1
matrix, xa is either 0 or 1: the term xan2 −m is either n2 −m or −m.
In the denominator, there are hence two cases to consider (white cells
and black cells) and for the numerator there are three cases (a and b
describe a white-white, black-black, or black-white adjacency). The
contribution to Moran’s I is the same per case.

We thus case simplify this summation by simply counting the num-
ber of occurrences of each case, and we identify B (black-black), W
(white-white) and D (black-white) with this count. There are 2n(n−1)
adjacencies, but we count every adjacency twice since T is symmetric:
t = ∑Tab = 4n(n−1).

a b c d e f

a

b

c

d

e

f

I(G, ρ) = 0.33

f c a e b d

f

c

a

e

b

d

I(G, ρ′) = −0.73
a b c d e f

a

b

c

d

e

f

I(G, ρ) = 0.33

f c a e b d

f

c

a

e

b

d

I(G, ρ′) = −0.73

Fig. 4. Visualizations of the same graph based on two different orderings,
ρ and ρ �. The bottom row shows the same visualizations, with annotated
horizontal and vertical adjacencies. More such lines mean more same-
colored adjacencies and thus a higher quality in terms of Moran’s I.

I =
n2

4n(n−1)
· 2B · (n2 −m)2 +2W · (−m)2 +2D · (n2 −m)(−m)

m(n2 −m)2 +(n2 −m)(−m)2

=
1

2n(n−1)m(n2 −m)
· (B · (n2 −m)2 +W ·m2 −D · (n2 −m)m)

Since B+W +D = 2n(n−1), we see that it suffices to count only
B and W . This allows us to simplify the expression to a sum of B and
W , introducing cB and cB as the coefficients of B and W :

I = B · n
2(n−1)m

+W · n
2(n−1)(n2 −m)

−1

= cB ·B+ cW ·W −1

Using Moran’s I. With Moran’s I, we have a measure that is aimed
at capturing how well-structured the matrix visualization is. That is, it
aims to globally capture patterns, without specifically aiming to specify
what a pattern actually constitutes. We indeed see in Table 1 that the
patterns score considerably higher than the anti-patterns. As such, this
makes the measure more amenable for algorithmic use.

Indeed, we see that we are effectively counting cells in determining
similarity of neighborhoods. We denote with B(G,u,v) the number of
(vertical) black-black adjacencies we would obtain when u and v are
made adjacent in the ordering – the number of common neighboring
vertices in G; similarly, W (G,u,v) denotes the white-white adjacencies
for u and v – the number of vertices in G that are neighboring to
neither u nor v. Measuring the neighborhood similarity between u
and v as s(G,u,v) = cB(G) ·B(G,u,v)+cW (G) ·W (G,u,v), we get the
following form of the metric:

I(G,ρ) =−1+2
n−1

∑
i=1

s(G,ρ(i),ρ(i+1))

Maximizing Moran’s I is equivalent to maximizing the sum of s over
adjacent rows. However, many algorithms such as leaf order are based
upon minimizing a sum of distances. Hence, we define a Moran’s I
metric δI(G,u,v) = 1− s(G,u,v), which gives that I(G,ρ) = n−2−
2∑n−1

i=1 δI(G,ρ(i),ρ(i+1)). Now, maximizing Moran’s I corresponds
exactly to minimizing the sum of distances. We do observe that δI is not
a proper metric, since identical rows do not have a distance of zero. This
identity of indiscernables is inherently incompatible with Moran’s I as
two fully black rows and two fully white rows should score differently
depending on the number of black cells over the entire matrix. Nonethe-
less, the triangle inequality holds: δI(G,u,w)≤ δI(G,u,v)+δI(G,v,w)
rewrites to 1+ s(G,u,w)≥ s(G,u,v)+ s(G,u,w). However, we know
that I(G,ρ) cannot exceed one and thus s(G,u,v) + s(G,u,w) ≤ 1,
which proves the claim.

Measure δI can generally be used with methods that are based on
distance measures between rows such as leaf order. It also works well
with algorithms that are designed for metric TSP and rely on the triangle
inequality in their approximation guarantees. Furthermore, we believe
that this relation between spatial auto-correlation and neighborhood
similarities helps to explain why neighborhood measures for computing
orderings have been successful and popular in practice.
Relation to other adjacency measures. The measure of effectiveness
by McCormick et al. [28, 29], when translated to 0−1 valued (white-
black) matrices, simply counts ‘1’ for each vertical or horizontal black-
black adjacency, and ‘0’ otherwise. As such it is a less refined form of
Moran’s I. The stress measure proposed by Niermann [31], which uses
Queen’s adjacency, is related to Moran’s I as well; the final score is
the sum of all squared differences between a cell and its neighbors. As
already mentioned above, diagonal adjacencies do not capture a graph
property, they simply arise from two independent edges. Hence, this
stress measure is less suitable to optimize adjacency matrices of graphs.
Finally, the popular leaf order heuristic3 uses the Euclidean distance

3“[leaf order] consistently generates excellent results visually” Fekete [17]

I(G,ρ) = 0.66 I(G,ρ) = 0.33 I(G,ρ) = 0.29 I(G,ρ) = 0.63

I(G,ρ) = 0.65 I(G,ρ) = 0.30 I(G,ρ) = 0.20 I(G,ρ) = 0.63

Fig. 5. Optimizing Moran’s I using NN-2OPT (top row) and leaf order
(bottom row), matrices from [8].

between row vectors. For a 0-1 valued matrix, the Euclidean distance
simply counts ‘1’ for each black-white adjacency and then takes the
square root of this sum. Orders produced with the leaf order algorithm
hence tend to score very well on Moran’s I.
Optimizing Moran’s I. As mentioned in Section 3, every adjacency
measure is optimized via a traveling salesperson path. Since TSP
is NP-hard to compute, we implemented the Nearest Neighbor (NN)
heuristic using δI and further optimized the results using the 2-OPT
algorithm [13] as long as Moran’s I improves by more than 0.0001.
Figure 5 shows the results for the four running-example matrices from
the survey paper by Behrisch et al. [8]; each was computed in less than
half a second. For comparison, we also include the results using leaf
order with the L2 metric. We see that NN-2OPT manages to achieve
higher quality in terms of Moran’s I.

4 COMPUTING SIMULTANEOUS ORDERINGS

There are various ways in which a simultaneous ordering can be com-
puted. In the literature, we find two approaches that rely on computing
an ordering for a single graph. A simple method, used by both Cu-
bix [3] and MultiPiles [2], to compute an ordering is to base it on a
single graph, using any algorithm; this ordering is then simply applied
to the other graphs as well. However, we do not consider such an
approach to really address the simultaneous ordering problem, as it
uses the structure of only a single graph.

Below we review what we refer to as the union approach that is
suggested by MultiPiles [2] for the leaf order method and apply it to the
barycenter method as well. We then propose our new collection-aware
approach which overcomes the loss of information that arises in the
union approach (see also Figure 1), and show how to apply it to the leaf
order method and the barycenter method. As we extend these methods,
below is a brief summary of their basic steps (see also the survey [8]
for details on these methods).
Leaf order. The leaf order method [4] computes an ordering in three
stages: first, the distance between each pair of vertices is determined,
based on some distance measure δ (G,u,v); second, this information
is used to construct a hierarchical clustering on the vertices – our
implementation is built on reorder.js4 which uses greedy complete-
linkage clustering here; third, the ordering ρ is computed that mini-
mizes ∑n−1

i=1 δ (G,ρ(i),ρ(i+ 1)) and “adheres” to the clustering tree.
“Adhering” here means that the ordering matches the order in which
an in-order traversal visits the leaves of the tree; effectively, we can
choose for each internal node of the tree which of its two children will
be the left and the right child. Note that this choice is for every node
and thus allows completely reversing the leaves in any subtree. As
not all permutations adhere to a given hierarchy, this method avoids
the complexity that is inherent in the TSP formulation; indeed, this
problem can be solved optimally in an efficient manner [11]. Often, this

4https://github.com/jdfekete/reorder.js/

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 11,2022 at 09:15:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 20226

approach is implemented using for δ some measure of (dis)similarity
between N(G,u) and N(G,v).

Barycenter method. The barycenter method [14, 19, 27] (see also the
survey [8]) focuses on optimizing “crossings”, a standard measure of
quality in traditional node-link drawings of graphs. The number of
crossings incurred by an ordering ρ of G = (V,E) is defined as follows:
we duplicate each vertex v into v0 and v1, and draw vi at (ρ(v), i);
we then draw every edge (u,v) ∈ E as two line segments, u0v1 and
v1v0; the number of crossings caused by these line segments (excluding
common endpoints) is the number of crossings that ρ incurs.

The basic barycenter method works in two phases. First, starting
from an arbitrary ordering, the ordering is repeatedly updated by sorting
the vertices according to the median rank of its neighbors. This is
done at least for a fixed number of iterations, possibly followed by
additional iterations until the number of crossings no longer decreases
(“convergence”). Second, a postprocessing step is applied which tries
to swap adjacent vertices in the ordering, while such a swap reduces
the number of crossings further.

4.1 The union approach

With MultiPiles, Bach et al. [2, Section 4.7] suggest an approach to
computing a simultaneous ordering: “MultiPiles can calculate a global
ordering which tries to find a topological clustering across all matrices”.
The paper itself provides no further detail on this method, but as their
code is open source5, we were able to extract the exact algorithm. What
follows is first our general interpretation of their approach, followed by
their exact implementation on the leaf order heuristic.

The union approach takes the (weighted) union over all graphs in
G to arrive at a graph H on the same vertex set V , where each edge
has a weight corresponding to the number of graphs of G it occurs in.
Effectively, it is the sum over all 0-1 adjacency matrices. We may apply
any ordering algorithm to H and apply the resulting ordering to all
graphs in G . For a vertex v, N(H,v) = ∑G∈G N(G,v) is now a vector
of length n where each entry is an integer in {0, . . . ,k}, reflecting the
weight of the associated edge.

The drawback of the union approach is a potential information loss,
as H does not store information on which of the underlying graphs the
edges actually occur in. In the extreme case, H could be a complete
graph with unit weights for all edges, even though the underlying graphs
have structures; imagine for example, two cliques in one graph and a
biclique connecting the vertices of the two cliques in a second graph.
In this case, all neighborhoods are identical and as such, there is no
information left in H to inform a suitable simultaneous order. This is in
fact our example in Figure 1, though we introduced some “noise” in this
figure. The advantage is its simplicity: techniques that inherently work
on (or straightforwardly generalize to) weighted graphs can readily
be applied. It could in principle also be applied to techniques for
unweighted graphs, but this only exacerbates the information loss.

Union leaf order. MultiPiles [2] applies the union approach to
the leaf order method. This algorithm readily works on weighted
graphs, and all it needs is some choice of measure δ . The
MultiPiles implementation uses δ (u,v) = L2(N(H,u),N(H,v)) =
L2(∑G∈G N(G,u),∑G∈G N(G,v)), that is, the Euclidean distance be-
tween neighborhoods. In general, we may of course use other measures
instead of L2 in the same fashion. We observe that squaring has no
effect on comparisons of distances and thus does not affect the result
of the complete-linkage clustering; it may however alter the eventual
ordering, since comparisons between sums of distances may change.

But we may also use, for example, a Moran’s I-based metric. We
shall refer to it in this context also as δI , but observe that it is not simply
counting the number of black-black and white-white adjacencies. In-
stead, we compute δI(u,v) =−∑x∈V (w(u,x)−w)(w(v,x)−w) where
w(a,b) is the weight of edge (a,b) in H, i.e., the number of graphs in G
it occurs in, and w is the average weight over all pairs. Effectively, this
is the original Moran’s I formula where we forego the normalization
terms as they are all the same for a given matrix; we multiply this by

5https://github.com/benjbach/multipiles, accessed Feb. 2021.

−1 as to obtain a distance function. As the implementation relies only
on comparisons and sums, the negative values do not cause issues in
this method – though we could factor in the normalization and add 1 as
we did for δI in Section 3 to obtain a nonnegative measure that satisfies
triangle inequality.

We observe the loss of information here as follows. Whereas indeed
similar neighborhoods across the graphs lead to similar sums, the
converse is not true: similar sums do not imply similar neighborhoods
across the graphs. As such, the method may promote putting two
vertices adjacent in the ordering that look similar in H but are actually
not similar in any of the individual graphs.

Union barycenter. The barycenter method is typically applied in an
unweighted setting. However, the crossing measure readily generalizes
to a weighted setting. That is, rather than counting the number of cross-
ings, we multiply the weights of two intersecting edges and sum the
result of all intersecting pairs. We refer to this as the union barycenter.

We observe the information loss here as follows. Whereas crossings
in one of the graphs contribute to the cost of an ordering, a counted
crossing need not actually be present in any of the graphs in the collec-
tion. That is, two edges may cross in the union, but not occur together
in any graph, and as such incorrectly contribute to the cost.

Though the second stage is readily affected by this change in mea-
sure, we note that it does not truly affect the first stage, beyond testing
convergence: the ordering by median ranks of neighbors remains the
same. We could apply a weighted median instead, or revert to using
the actual (weighted) barycenters. As such, if this is pursued, it may
be worthwhile to revisit this idea and in fact compute with the actual
weighted barycenter. However, such extension is beyond the scope of
our work here, as we focus on avoiding the loss of information that the
union approach incurs.

4.2 The collection-aware approach
We propose a new approach to computing simultaneous orderings,
one that is collection-aware. That is, we push the graph collection
actually into the algorithms that compute orderings as much as possible.
Specifically, when an algorithm makes decisions about the quality of
an ordering, or how to modify an ordering based on neighborhoods, we
now base this information on all graphs, rather than some aggregated
form. In this manner, we may prevent the information loss that the
union approach incurs. How this is done specifically, naturally depends
on the algorithm under consideration.

Collection-aware leaf order. As all information is captured in the
pairwise distances between vertices, it suffices here to ensure that δ is
collection-aware. That is, δ (u,v) should be low if u and v have similar
neighborhoods in many graphs, and vice versa. Whereas the union
approach gives the former, it does not succeed in the latter.

Rather than δ (u,v) = L2(∑G∈G N(G,u),∑G∈G N(G,v)), a
collection-aware interpretation would apply these operators the other
way around: δ (u,v) = ∑G∈G L2(N(G,u),N(G,v)).

Again, we observe that we may replace L2 with other distance mea-
sures as well. Specifically, observe that L2

2, using the squared Euclidean
distance, is different from using L2 now also in the clustering step.
Also, we can again use the Moran’s I-based metric δI where we can
now rely on the metric formulation as presented in Section 3.

Note that this provides no computational overhead in asymptotic
terms. As adding vectors is typically slightly faster than computing
distances, we may expect a slight overhead. Yet, this is likely overshad-
owed by the clustering and leaf order stages of the algorithm and as
such barely noticeable.

Collection-aware barycenter. In our collection-aware barycenter im-
plementation, we go back to counting crossings (as we assume un-
weighted graphs in G), but we now do so for each graph separately
and then take the sum over all graphs. This makes the second stage
collection-aware.

However, as before, changing the way we measure crossings does
not readily influence the procedure in the first stage, beyond testing
convergence, as this is based purely on the ranks of the neighbors. In
a collection-aware approach, however, we should strive to base these

decisions on ordering on all graphs. Rather than using all neighbors in
all graphs to determine the target rank of a vertex, we determine the
target rank per graph, and aggregate this information. We implement
this as follows. For every vertex, we compute the median rank of its
neighbors in each graph in G separately to arrive at a set of median
ranks. Subsequently, we compute the median of these median ranks. In
the event that a vertex has no neighbors at all in a graph, it is omitted
from the set of median ranks. Sorting then proceeds as before, but is
now based on the median of medians instead.

5 EXPERIMENTS

Here we present the results of a brief experimental evaluation that aims
to quantify how much improvement our collection-aware approach
provides compared to the union approach, via various implementa-
tions. Moreover, we also investigate the use of Moran’s I as a distance
measure for optimization.

5.1 Setup

Algorithms. We have two approaches to solving the simultaneous
ordering problem: (U) union and (C) collection-aware. We have shown
how to implement these approaches on two base algorithms: (LO) leaf
order and (BC) barycenter. Finally, LO can work with various distance
metrics. In particular, we use Euclidean distance L2 and the Moran’s
I-based metric δI , as well as their squared variants L2

2 and δ 2
I . We name

each algorithm using a concatenation of these abbreviations. For exam-
ple, U-LO-L2 refers to the union leaf order method using L2, effectively
the implementation suggested by MultiPiles; C-LO-δ 2

I refers to the
collection-aware leaf order method using δ 2

I as a metric; C-BC refers
to the collection-aware barycenter method. Our implementation of the
ten resulting algorithms is openly available on GitHub6.
Data. We test our algorithms with three datasets, chosen to obtain a
variety of characteristics, ranging from many graphs with few vertices,
to few graphs with many vertices; Table 2 provides some basic statistics.

FLT The “flashtap” data that was used for MultiPiles [2]7. It represents
functional brain connectivity in a Parkinson’s disease study.

SCH Social interaction between children and teachers at a primary
school [20, 33]8.

VIS Publications data in the InfoVis conference [25]9. We construct a
graph on the authors for each year from 2015 to 2020, where an
edge between two authors is included if they had a joint paper in
this period. We include only authors with publications in at least
three years and their co-authors.

The density m/n2 of these graphs varies (Table 2). Arguably, graphs
with low density such as the VIS co-authorship network are better
visualized using other visual idioms, for instance, node-link diagrams
or hybrid visualizations, but we include them here to investigate our
algorithms under diverse circumstances. For each dataset we also
measured the change Δ between graphs, which is the number of cells
in the matrix that change their value. Though expressed as a fraction of
the entire matrix (where FLT changes most, and VIS the least), these
values can also be interpreted with respect to the edge density (in which
case VIS changes most, relatively speaking, and FLT the least).
Quality measures. We measure the quality of the resulting matrix
orderings via the current standard of linear arrangement as well as with
Moran’s I. Whereas Moran’s I is normalized to [−1,1] by definition,
linear arrangement is not. We normalize a linear arrangement value a
to 1− a/M, where M is the maximum value over all algorithms and
graphs of the same dataset. Hence, the normalized linear arrangement

6https://github.com/nvbeusekom/reorder.js
7https://aviz.fr/˜bbach/multipiles/, accessed March 2021.
8http://www.sociopatterns.org/datasets/

primary-school-temporal-network-data/, accessed March 2021.
9https://sites.google.com/site/vispubdata/home, accessed

March 2021 at version 9.02.

Table 2. Overview of datasets. k: number of graphs in collection; n:
number of vertices in each graph; m: number of black cells in the matrix;
Δ: number of changing edges between graphs. m and Δ are given as a
percentage of the number of cells in the matrix (n2), and we provide the
mean μ and standard deviation σ .

Dataset k n m/n2 (%) Δ/n2 (%)
μ σ μ σ

FLT 96 29 44.06 11.31 19.67 20.61
SCH 17 242 5.15 1.48 3.31 3.68
VIS 6 536 0.28 0.10 0.21 0.26

is a value in [0,1], where 1 is the best performing matrix, such that in
both measures, higher values correspond to higher quality.

Note that we measure our metrics for each graph in the collection
separately. As such, we obtain a distribution of ordering quality, for
each algorithm-dataset combination. We focus on the minimum, av-
erage and median quality. The latter two simply because we aim for
high overall quality. The minimum, however, is also specifically useful
since it gives us an idea of the worst matrix in the collection. Ideally,
we would want to avoid slightly improving many graphs at the expense
of greatly reducing the quality of one graph.

5.2 Results
Figure 2 in Section B of the supplementary material shows the results
for each algorithm on each dataset in terms on the two measures. Our
primary observation here is that using squared versions of metrics
changes the results, but does not seem to considerably change the
overall performance (in terms of means, medians and minima). Refer
to the tables in Section B of the the supplementary material for precise
differences; averaged over all datasets the differences do not exceed

U-LO-L2

G1

C-LO-δI

G48

G96

Fig. 6. A comparison of the state-of-the-art (U-LO-L2) against our main
contribution (C-LO-δI) on timesteps G1, G48 and G96 of the FLT dataset.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 11,2022 at 09:15:51 UTC from IEEE Xplore. Restrictions apply.

7Beusekom eT AL.: simuLTAneous mATrix orderings for grAph CoLLeCTions

approach is implemented using for δ some measure of (dis)similarity
between N(G,u) and N(G,v).

Barycenter method. The barycenter method [14, 19, 27] (see also the
survey [8]) focuses on optimizing “crossings”, a standard measure of
quality in traditional node-link drawings of graphs. The number of
crossings incurred by an ordering ρ of G = (V,E) is defined as follows:
we duplicate each vertex v into v0 and v1, and draw vi at (ρ(v), i);
we then draw every edge (u,v) ∈ E as two line segments, u0v1 and
v1v0; the number of crossings caused by these line segments (excluding
common endpoints) is the number of crossings that ρ incurs.

The basic barycenter method works in two phases. First, starting
from an arbitrary ordering, the ordering is repeatedly updated by sorting
the vertices according to the median rank of its neighbors. This is
done at least for a fixed number of iterations, possibly followed by
additional iterations until the number of crossings no longer decreases
(“convergence”). Second, a postprocessing step is applied which tries
to swap adjacent vertices in the ordering, while such a swap reduces
the number of crossings further.

4.1 The union approach

With MultiPiles, Bach et al. [2, Section 4.7] suggest an approach to
computing a simultaneous ordering: “MultiPiles can calculate a global
ordering which tries to find a topological clustering across all matrices”.
The paper itself provides no further detail on this method, but as their
code is open source5, we were able to extract the exact algorithm. What
follows is first our general interpretation of their approach, followed by
their exact implementation on the leaf order heuristic.

The union approach takes the (weighted) union over all graphs in
G to arrive at a graph H on the same vertex set V , where each edge
has a weight corresponding to the number of graphs of G it occurs in.
Effectively, it is the sum over all 0-1 adjacency matrices. We may apply
any ordering algorithm to H and apply the resulting ordering to all
graphs in G . For a vertex v, N(H,v) = ∑G∈G N(G,v) is now a vector
of length n where each entry is an integer in {0, . . . ,k}, reflecting the
weight of the associated edge.

The drawback of the union approach is a potential information loss,
as H does not store information on which of the underlying graphs the
edges actually occur in. In the extreme case, H could be a complete
graph with unit weights for all edges, even though the underlying graphs
have structures; imagine for example, two cliques in one graph and a
biclique connecting the vertices of the two cliques in a second graph.
In this case, all neighborhoods are identical and as such, there is no
information left in H to inform a suitable simultaneous order. This is in
fact our example in Figure 1, though we introduced some “noise” in this
figure. The advantage is its simplicity: techniques that inherently work
on (or straightforwardly generalize to) weighted graphs can readily
be applied. It could in principle also be applied to techniques for
unweighted graphs, but this only exacerbates the information loss.

Union leaf order. MultiPiles [2] applies the union approach to
the leaf order method. This algorithm readily works on weighted
graphs, and all it needs is some choice of measure δ . The
MultiPiles implementation uses δ (u,v) = L2(N(H,u),N(H,v)) =
L2(∑G∈G N(G,u),∑G∈G N(G,v)), that is, the Euclidean distance be-
tween neighborhoods. In general, we may of course use other measures
instead of L2 in the same fashion. We observe that squaring has no
effect on comparisons of distances and thus does not affect the result
of the complete-linkage clustering; it may however alter the eventual
ordering, since comparisons between sums of distances may change.

But we may also use, for example, a Moran’s I-based metric. We
shall refer to it in this context also as δI , but observe that it is not simply
counting the number of black-black and white-white adjacencies. In-
stead, we compute δI(u,v) =−∑x∈V (w(u,x)−w)(w(v,x)−w) where
w(a,b) is the weight of edge (a,b) in H, i.e., the number of graphs in G
it occurs in, and w is the average weight over all pairs. Effectively, this
is the original Moran’s I formula where we forego the normalization
terms as they are all the same for a given matrix; we multiply this by

5https://github.com/benjbach/multipiles, accessed Feb. 2021.

−1 as to obtain a distance function. As the implementation relies only
on comparisons and sums, the negative values do not cause issues in
this method – though we could factor in the normalization and add 1 as
we did for δI in Section 3 to obtain a nonnegative measure that satisfies
triangle inequality.

We observe the loss of information here as follows. Whereas indeed
similar neighborhoods across the graphs lead to similar sums, the
converse is not true: similar sums do not imply similar neighborhoods
across the graphs. As such, the method may promote putting two
vertices adjacent in the ordering that look similar in H but are actually
not similar in any of the individual graphs.

Union barycenter. The barycenter method is typically applied in an
unweighted setting. However, the crossing measure readily generalizes
to a weighted setting. That is, rather than counting the number of cross-
ings, we multiply the weights of two intersecting edges and sum the
result of all intersecting pairs. We refer to this as the union barycenter.

We observe the information loss here as follows. Whereas crossings
in one of the graphs contribute to the cost of an ordering, a counted
crossing need not actually be present in any of the graphs in the collec-
tion. That is, two edges may cross in the union, but not occur together
in any graph, and as such incorrectly contribute to the cost.

Though the second stage is readily affected by this change in mea-
sure, we note that it does not truly affect the first stage, beyond testing
convergence: the ordering by median ranks of neighbors remains the
same. We could apply a weighted median instead, or revert to using
the actual (weighted) barycenters. As such, if this is pursued, it may
be worthwhile to revisit this idea and in fact compute with the actual
weighted barycenter. However, such extension is beyond the scope of
our work here, as we focus on avoiding the loss of information that the
union approach incurs.

4.2 The collection-aware approach
We propose a new approach to computing simultaneous orderings,
one that is collection-aware. That is, we push the graph collection
actually into the algorithms that compute orderings as much as possible.
Specifically, when an algorithm makes decisions about the quality of
an ordering, or how to modify an ordering based on neighborhoods, we
now base this information on all graphs, rather than some aggregated
form. In this manner, we may prevent the information loss that the
union approach incurs. How this is done specifically, naturally depends
on the algorithm under consideration.

Collection-aware leaf order. As all information is captured in the
pairwise distances between vertices, it suffices here to ensure that δ is
collection-aware. That is, δ (u,v) should be low if u and v have similar
neighborhoods in many graphs, and vice versa. Whereas the union
approach gives the former, it does not succeed in the latter.

Rather than δ (u,v) = L2(∑G∈G N(G,u),∑G∈G N(G,v)), a
collection-aware interpretation would apply these operators the other
way around: δ (u,v) = ∑G∈G L2(N(G,u),N(G,v)).

Again, we observe that we may replace L2 with other distance mea-
sures as well. Specifically, observe that L2

2, using the squared Euclidean
distance, is different from using L2 now also in the clustering step.
Also, we can again use the Moran’s I-based metric δI where we can
now rely on the metric formulation as presented in Section 3.

Note that this provides no computational overhead in asymptotic
terms. As adding vectors is typically slightly faster than computing
distances, we may expect a slight overhead. Yet, this is likely overshad-
owed by the clustering and leaf order stages of the algorithm and as
such barely noticeable.

Collection-aware barycenter. In our collection-aware barycenter im-
plementation, we go back to counting crossings (as we assume un-
weighted graphs in G), but we now do so for each graph separately
and then take the sum over all graphs. This makes the second stage
collection-aware.

However, as before, changing the way we measure crossings does
not readily influence the procedure in the first stage, beyond testing
convergence, as this is based purely on the ranks of the neighbors. In
a collection-aware approach, however, we should strive to base these

decisions on ordering on all graphs. Rather than using all neighbors in
all graphs to determine the target rank of a vertex, we determine the
target rank per graph, and aggregate this information. We implement
this as follows. For every vertex, we compute the median rank of its
neighbors in each graph in G separately to arrive at a set of median
ranks. Subsequently, we compute the median of these median ranks. In
the event that a vertex has no neighbors at all in a graph, it is omitted
from the set of median ranks. Sorting then proceeds as before, but is
now based on the median of medians instead.

5 EXPERIMENTS

Here we present the results of a brief experimental evaluation that aims
to quantify how much improvement our collection-aware approach
provides compared to the union approach, via various implementa-
tions. Moreover, we also investigate the use of Moran’s I as a distance
measure for optimization.

5.1 Setup

Algorithms. We have two approaches to solving the simultaneous
ordering problem: (U) union and (C) collection-aware. We have shown
how to implement these approaches on two base algorithms: (LO) leaf
order and (BC) barycenter. Finally, LO can work with various distance
metrics. In particular, we use Euclidean distance L2 and the Moran’s
I-based metric δI , as well as their squared variants L2

2 and δ 2
I . We name

each algorithm using a concatenation of these abbreviations. For exam-
ple, U-LO-L2 refers to the union leaf order method using L2, effectively
the implementation suggested by MultiPiles; C-LO-δ 2

I refers to the
collection-aware leaf order method using δ 2

I as a metric; C-BC refers
to the collection-aware barycenter method. Our implementation of the
ten resulting algorithms is openly available on GitHub6.
Data. We test our algorithms with three datasets, chosen to obtain a
variety of characteristics, ranging from many graphs with few vertices,
to few graphs with many vertices; Table 2 provides some basic statistics.

FLT The “flashtap” data that was used for MultiPiles [2]7. It represents
functional brain connectivity in a Parkinson’s disease study.

SCH Social interaction between children and teachers at a primary
school [20, 33]8.

VIS Publications data in the InfoVis conference [25]9. We construct a
graph on the authors for each year from 2015 to 2020, where an
edge between two authors is included if they had a joint paper in
this period. We include only authors with publications in at least
three years and their co-authors.

The density m/n2 of these graphs varies (Table 2). Arguably, graphs
with low density such as the VIS co-authorship network are better
visualized using other visual idioms, for instance, node-link diagrams
or hybrid visualizations, but we include them here to investigate our
algorithms under diverse circumstances. For each dataset we also
measured the change Δ between graphs, which is the number of cells
in the matrix that change their value. Though expressed as a fraction of
the entire matrix (where FLT changes most, and VIS the least), these
values can also be interpreted with respect to the edge density (in which
case VIS changes most, relatively speaking, and FLT the least).
Quality measures. We measure the quality of the resulting matrix
orderings via the current standard of linear arrangement as well as with
Moran’s I. Whereas Moran’s I is normalized to [−1,1] by definition,
linear arrangement is not. We normalize a linear arrangement value a
to 1− a/M, where M is the maximum value over all algorithms and
graphs of the same dataset. Hence, the normalized linear arrangement

6https://github.com/nvbeusekom/reorder.js
7https://aviz.fr/˜bbach/multipiles/, accessed March 2021.
8http://www.sociopatterns.org/datasets/

primary-school-temporal-network-data/, accessed March 2021.
9https://sites.google.com/site/vispubdata/home, accessed

March 2021 at version 9.02.

Table 2. Overview of datasets. k: number of graphs in collection; n:
number of vertices in each graph; m: number of black cells in the matrix;
Δ: number of changing edges between graphs. m and Δ are given as a
percentage of the number of cells in the matrix (n2), and we provide the
mean μ and standard deviation σ .

Dataset k n m/n2 (%) Δ/n2 (%)
μ σ μ σ

FLT 96 29 44.06 11.31 19.67 20.61
SCH 17 242 5.15 1.48 3.31 3.68
VIS 6 536 0.28 0.10 0.21 0.26

is a value in [0,1], where 1 is the best performing matrix, such that in
both measures, higher values correspond to higher quality.

Note that we measure our metrics for each graph in the collection
separately. As such, we obtain a distribution of ordering quality, for
each algorithm-dataset combination. We focus on the minimum, av-
erage and median quality. The latter two simply because we aim for
high overall quality. The minimum, however, is also specifically useful
since it gives us an idea of the worst matrix in the collection. Ideally,
we would want to avoid slightly improving many graphs at the expense
of greatly reducing the quality of one graph.

5.2 Results
Figure 2 in Section B of the supplementary material shows the results
for each algorithm on each dataset in terms on the two measures. Our
primary observation here is that using squared versions of metrics
changes the results, but does not seem to considerably change the
overall performance (in terms of means, medians and minima). Refer
to the tables in Section B of the the supplementary material for precise
differences; averaged over all datasets the differences do not exceed

U-LO-L2

G1

C-LO-δI

G48

G96

Fig. 6. A comparison of the state-of-the-art (U-LO-L2) against our main
contribution (C-LO-δI) on timesteps G1, G48 and G96 of the FLT dataset.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 11,2022 at 09:15:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 20228

FLT dataset

C-BC

U-BC

C-LO-δI

U-LO-δI

C-LO-L2

U-LO-L2

A
lg
or
it
h
m

-1.0 -0.5 0.0 0.5 1.0
Moran’s I

C-BC

U-BC

C-LO-δI

U-LO-δI

C-LO-L2

U-LO-L2

A
lg
or
it
h
m

0.0 0.25 0.5 0.75 1.0
normalized linear arrangement

SCH dataset

-1.0 -0.5 0.0 0.5 1.0
Moran’s I

0.0 0.25 0.5 0.75 1.0
normalized linear arrangement

VIS dataset

-1.0 -0.5 0.0 0.5 1.0
Moran’s I

0.0 0.25 0.5 0.75 1.0
normalized linear arrangement

Fig. 7. Performance of the six main algorithms considered for each of the datasets (columns) in terms of Moran’s I (top row) and Linear Arrangement
(bottom row). For both, higher values indicate higher quality.

0.02 for Moran’s I. A notable outlier is the differences in the VIS
dataset between using L2

2 and L2 for collection-aware leaf order, though
we do not investigate this further.

Here, we focus on the six algorithms that do not use the squared
distance functions. In Section B of the supplementary material, Fig-
ures 3 to 16, we show all matrix visualizations obtained through the
six ordering algorithms for the FLT dataset. Figure 6 shows an excerpt
of the FLT dataset for U-LO-L2 (as proposed in [2]) and C-LO-δI (our
proposed algorithm). Clearly, each of the matrices in isolation can be
improved, but each column uses but one ordering by design, which
must work well for all 96 graphs in the collection. We may observe
that block patterns feature more strongly in the C-LO-δI result; the U-
LO-L2 result partitions these into smaller block patterns complemented
by matching off-diagonal blocks.

A summary of the results of the six algorithms are shown in Figure 7.
Below, we discuss various comparisons based on Moran’s I, before
briefly discussing linear arrangement.

(U/C)-LO-L2. Let us first compare the performance of the union and
collection-aware implementations of leaf order, using the standard Eu-
clidean distance. Generally, we see very similar performance between
these methods. For FLT and SCH, the median and average improve
slightly in the collection-aware variant (difference of 0.02 and 0.03 for
median, and 0.01 and 0.02 for average); the minimum improves more,
0.06 (FLT) and 0.07 (SCH).

For VIS we actually see a decrease, roughly −0.03 for each statistic.
We attribute this to the overall sparsity of the graphs. The Euclidean
distance may weigh white-white adjacencies too heavily, whereas they
contribute little to improving Moran’s I. Using a union gives for a
slightly denser graph and thus may help in finding some structure in
this specific case.

In this comparison, we conclude that there indeed is some informa-
tion loss in the union approach. The medium-density graph improves
most, hinting that very dense graphs and very sparse graphs suffer
less from the information loss that complementary patterns may give
– though this may benefit more structural investigation using more
(controlled) datasets.

(U/C)-LO-δI . Let us now repeat the above comparison, but with algo-
rithms based on the Moran’s I metric δI . We now see an improvement
for each dataset. On average, the minimum Moran’s I improves by
0.07 and the median and average by 0.02 and 0.03 respectively. Most
different from the previous comparison is the improvement for VIS.
From this we conclude that the collection-aware approach actually does
help to make find structures in very sparse graphs. That is, the decrease
in performance can be attributed to the use of the Euclidean distance
rather than the collection-aware approach itself.
C-LO-(L2/δI). From the above, we may conclude that our collection-
aware adaptations yield benefits in terms of Moran’s I. So, we now
briefly consider the choice of metrics between the collection-aware im-
plementations. We see that on average (in terms of minimum, average
and median) using δI improves Moran’s I by 0.04 compared to using
L2. Some improvement was to be expected, since the method now
(heuristically) optimizes the quality measure directly. Yet, the effect is
somewhat small in that light.

Primarily, we can conclude that the Euclidean distance serves well
as a proxy. We see that this proxy suffers in case of very sparse graphs
(VIS), where using δI improves considerably more (differences of
0.12 to 0.14) than in the other datasets. The equal treatment of types
of adjacencies in the Euclidean distance does seem to hinder it, in
obtaining high Moran’s I.
(U/C)-BC. Let us now briefly turn to the barycenter method. We see
here again a strong difference between datasets. Whereas C-BC clearly
outperforms U-BC (differences of 0.08 to 0.15) for FLT and SCH, the
opposite it true for VIS. Again, we can attribute this to the sparsity of
the graph. As many vertices have edges in only one graph, their ranks
in the collection-aware method are based primarily on that one graph
– which may interfere with other graphs. With the union approach, at
least everything is treated centrally and thus the information in the
slightly denser union graph is indeed a bit more rich.
Linear arrangement. Though it focuses on block patterns only and
does not generally measure the degree of structure of the visualization,
linear arrangement is the de-facto standard for automatically measuring
ordering quality [8]. We briefly consider it for this reason.

For FLT, we may observe that the U-LO variants outperform C-LO
approaches, though the performance between C-LO variants is mostly
similar. For the barycenter method, this is rather the other way around:
C-BC outperforms U-BC.

For SCH, we see more spread of the linear arrangement within one
graph collection, but this may be an effect of the normalization. Though
U-LO-δI still slightly outperforms C-LO-δI , we now see that C-LO-
L2 offers a slight improvement on U-LO-L2. C-BC still outperforms
U-BC in terms of median and average, though its minimum is now
considerably lower.

For VIS, we again see that the U-LO variants outperform C-LO
approaches, now with a considerable difference. Interestingly, C-BC is
now slightly under U-BC as well. We may attribute this again to the
sparsity of the dataset.

We conclude that, for linear arrangement, the union approach is
typically better than the collection-aware approach to leaf order. For
the barycenter method, however, this appears to be opposite, unless the
dataset is excessively sparse. This is, perhaps, not surprising since the
crossing measure underlying the barycenter methods discourages “long
edges” and thus off-diagonal cells. With the collection-aware approach,
we see that this indeed avoids information loss, unless there is very little
information to begin with – in which case the union method strengthens
the signal of the little information that is available.

Overall comparison. Considering the above, we may conclude that
our collection-aware adaptations have been successful in improving
Moran’s I and thereby the structure of the resulting matrix visualiza-
tions. We observe that C-LO-δI performs best over all methods, with
higher minimum, median and average scores compared to all other
methods. It specifically performs better on the minimum compared
to other LO variants, and considerably improves upon BC variants.
Whereas the barycenter method focuses (indirectly) more on block
structures and thus linear arrangement, we do not see it consistently
outperforming the leaf order methods even in this criterion. We would
thus recommend the use of C-LO-δI as the most versatile algorithm for
solving the simultaneous ordering problem.

6 CONCLUSION

In this paper we considered the problem of computing simultaneous
orderings for graph collections. That is, given a set of graphs, com-
pute a single ordering that works well for visualizing each graph as a
matrix. To automatically assess quality, we observed that patterns in
the matrix can be seen as a form of spatial auto-correlation and thus
proposed the use of Moran’s I as a global measure of quality. Moran’s
I readily implies a distance metric between two vertices that can be
used in algorithms such as leaf order, as an alternative to other common
functions that measure adjacencies or neighborhood similarity.

Algorithmically, computing simultaneous orderings has received
little attention. We generalized the union approach that is found in
MultiPiles, but observed that this may lead to hiding structural infor-
mation from the ordering algorithms. Instead, we proposed a generic
collection-aware approach that avoids such loss of information and
showed how to apply this approach to the common leaf order and
barycenter methods.

Our experiments demonstrate that our collection-aware approach is
effective, especially leaf order based on the Moran’s I-inspired metric.
Our collection-aware leaf ordering method using δI is the most versatile
and consistently performs equally or better than the other algorithms,
though the magnitude of improvement varies between datasets. For
other algorithm comparisons, there is less consistency in relative per-
formance, also interacting with dataset. Our results confirm that the
potential information loss as sketched for the union approach indeed
occurs, also in real datasets. Though it does not occur to such a degree
to really cause arbitrary orderings as in hypothetical constructed cases,
it nonetheless leads to inferior orderings when not accounting for the
collection of graphs in the ordering algorithms.

Future work. There is not a clear metric, the optimization of which
gives visually the best or most useful ordering, even for a single graph.
Though we postulate that Moran’s I can be effective here, further re-

search is needed on how this concept actually relates to perceiving struc-
ture in matrix visualizations. Our focus was with algorithm-compatible
measures, but such future work can likely leverage the work on magnos-
tics [7]. Furthermore, it may be worthwhile to investigate the perceptual
effects that improving Moran’s I brings; for example, Beecham et al. [6]
study the “just noticeable difference” of Moran’s I and their experiment
includes weight grids as well. It suggests a degree to which Moran’s I
must improve for an observer to reliably identify the improved ordering,
though in our case, we have black-and-white and symmetric matrices,
which may influence the perception.

With our work, we provide (to the best of our knowledge) the first
explicit definition of the simultaneous ordering problem for visualizing
graphs using matrices. Our general concept of making algorithms
collection-aware is applicable to other alternatives. Especially distance-
based approaches like leaf order are easily amended. But we could also
consider other ways in making algorithms collection-aware, and indeed,
some algorithms may be more suitable than others for such adaptation.
Can we, for example, in fact directly modify the clustering algorithm
in leaf ordering, or change the objective function in its final stage, to
explicitly optimize e.g., the smallest sum?

Finally, our experiments show differences depending on the number
of graphs and vertices in the dataset. Whereas for a few matrices
(or a few MultiPiles) a single ordering can be effective, when using
many matrices, one is bound to have to make concessions for many of
them. As such, the question is perhaps, whether we could permit small
changes to the ordering for each matrix, to better highlight the structure
in each graph. In our next steps, we plan to address this challenge of
“stable” orderings.

To conclude, perhaps the main take-away of our work here is that
simultaneous matrix ordering is a complex algorithmic-visualization
problem. We have now taken the first steps in bringing this to the fore
and addressing the algorithmic challenges.

REFERENCES

[1] B. Alper, B. Bach, N. Henry Riche, T. Isenberg, and J.-D. Fekete. Weighted
graph comparison techniques for brain connectivity analysis. In Proc.
SIGCHI Conference on Human Factors in Computing Systems, pp. 483–
492, 2013. doi: 10.1145/2470654.2470724

[2] B. Bach, N. Henry-Riche, T. Dwyer, T. Madhyastha, J.-D. Fekete, and
T. Grabowski. Small MultiPiles: Piling time to explore temporal patterns
in dynamic networks. Computer Graphics Forum, 34:31–40, 05 2015. doi:
10.1111/cgf.12615

[3] B. Bach, E. Pietriga, and J.-D. Fekete. Visualizing dynamic networks
with matrix cubes. In Proc. SIGCHI Conference on Human Factors in
Computing Systems, pp. 877––886, 2014. doi: 10.1145/2556288.2557010

[4] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. Fast optimal leaf ordering
for hierarchical clustering. Bioinformatics, 17(suppl 1):S22–S29, 2001.

[5] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of
dynamic graph visualization. Computer Graphics Forum, 36(1):133–159,
2017. doi: 10.1111/cgf.12791

[6] R. Beecham, J. Dykes, W. Meulemans, A. Slingsby, C. Turkay, and
J. Wood. Map LineUps: effects of spatial structure on graphical in-
ference. IEEE Transactions on Visualization and Computer Graphics,
23(1):391–400, 2016.

[7] M. Behrisch, B. Bach, M. Blumenschein, M. Delz, L. von Rueden, J.-D.
Fekete, and T. Schreck. Magnostics: Image-based search of interesting
matrix views for guided network exploration. IEEE Transactions on
Visualization and Computer Graphics, 23:31–40, 01 2016. doi: 10.1109/
TVCG.2016.2598467

[8] M. Behrisch, B. Bach, N. Henry Riche, T. Schreck, and J.-D. Fekete. Ma-
trix reordering methods for table and network visualization. In Computer
Graphics Forum, vol. 35, pp. 693–716, 2016.

[9] M. Behrisch, M. Blumenschein, N. W. Kim, L. Shao, M. El-Assady,
J. Fuchs, D. Seebacher, A. Diehl, U. Brandes, H. Pfister, T. Schreck,
D. Weiskopf, and D. A. Keim. Quality metrics for information visualiza-
tion. Computer Graphics Forum, 37(3):625–662, 2018. doi: 10.1111/cgf.
13446

[10] T. Bläsius, S. G. Kobourov, and I. Rutter. Simultaneous embedding of
planar graphs. In R. Tamassia, ed., Handbook of Graph Drawing and
Visualization, pp. 349–383. CRC Press, 2013.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 11,2022 at 09:15:51 UTC from IEEE Xplore. Restrictions apply.

9Beusekom eT AL.: simuLTAneous mATrix orderings for grAph CoLLeCTions

FLT dataset

C-BC

U-BC

C-LO-δI

U-LO-δI

C-LO-L2

U-LO-L2

A
lg
or
it
h
m

-1.0 -0.5 0.0 0.5 1.0
Moran’s I

C-BC

U-BC

C-LO-δI

U-LO-δI

C-LO-L2

U-LO-L2

A
lg
or
it
h
m

0.0 0.25 0.5 0.75 1.0
normalized linear arrangement

SCH dataset

-1.0 -0.5 0.0 0.5 1.0
Moran’s I

0.0 0.25 0.5 0.75 1.0
normalized linear arrangement

VIS dataset

-1.0 -0.5 0.0 0.5 1.0
Moran’s I

0.0 0.25 0.5 0.75 1.0
normalized linear arrangement

Fig. 7. Performance of the six main algorithms considered for each of the datasets (columns) in terms of Moran’s I (top row) and Linear Arrangement
(bottom row). For both, higher values indicate higher quality.

0.02 for Moran’s I. A notable outlier is the differences in the VIS
dataset between using L2

2 and L2 for collection-aware leaf order, though
we do not investigate this further.

Here, we focus on the six algorithms that do not use the squared
distance functions. In Section B of the supplementary material, Fig-
ures 3 to 16, we show all matrix visualizations obtained through the
six ordering algorithms for the FLT dataset. Figure 6 shows an excerpt
of the FLT dataset for U-LO-L2 (as proposed in [2]) and C-LO-δI (our
proposed algorithm). Clearly, each of the matrices in isolation can be
improved, but each column uses but one ordering by design, which
must work well for all 96 graphs in the collection. We may observe
that block patterns feature more strongly in the C-LO-δI result; the U-
LO-L2 result partitions these into smaller block patterns complemented
by matching off-diagonal blocks.

A summary of the results of the six algorithms are shown in Figure 7.
Below, we discuss various comparisons based on Moran’s I, before
briefly discussing linear arrangement.

(U/C)-LO-L2. Let us first compare the performance of the union and
collection-aware implementations of leaf order, using the standard Eu-
clidean distance. Generally, we see very similar performance between
these methods. For FLT and SCH, the median and average improve
slightly in the collection-aware variant (difference of 0.02 and 0.03 for
median, and 0.01 and 0.02 for average); the minimum improves more,
0.06 (FLT) and 0.07 (SCH).

For VIS we actually see a decrease, roughly −0.03 for each statistic.
We attribute this to the overall sparsity of the graphs. The Euclidean
distance may weigh white-white adjacencies too heavily, whereas they
contribute little to improving Moran’s I. Using a union gives for a
slightly denser graph and thus may help in finding some structure in
this specific case.

In this comparison, we conclude that there indeed is some informa-
tion loss in the union approach. The medium-density graph improves
most, hinting that very dense graphs and very sparse graphs suffer
less from the information loss that complementary patterns may give
– though this may benefit more structural investigation using more
(controlled) datasets.

(U/C)-LO-δI . Let us now repeat the above comparison, but with algo-
rithms based on the Moran’s I metric δI . We now see an improvement
for each dataset. On average, the minimum Moran’s I improves by
0.07 and the median and average by 0.02 and 0.03 respectively. Most
different from the previous comparison is the improvement for VIS.
From this we conclude that the collection-aware approach actually does
help to make find structures in very sparse graphs. That is, the decrease
in performance can be attributed to the use of the Euclidean distance
rather than the collection-aware approach itself.
C-LO-(L2/δI). From the above, we may conclude that our collection-
aware adaptations yield benefits in terms of Moran’s I. So, we now
briefly consider the choice of metrics between the collection-aware im-
plementations. We see that on average (in terms of minimum, average
and median) using δI improves Moran’s I by 0.04 compared to using
L2. Some improvement was to be expected, since the method now
(heuristically) optimizes the quality measure directly. Yet, the effect is
somewhat small in that light.

Primarily, we can conclude that the Euclidean distance serves well
as a proxy. We see that this proxy suffers in case of very sparse graphs
(VIS), where using δI improves considerably more (differences of
0.12 to 0.14) than in the other datasets. The equal treatment of types
of adjacencies in the Euclidean distance does seem to hinder it, in
obtaining high Moran’s I.
(U/C)-BC. Let us now briefly turn to the barycenter method. We see
here again a strong difference between datasets. Whereas C-BC clearly
outperforms U-BC (differences of 0.08 to 0.15) for FLT and SCH, the
opposite it true for VIS. Again, we can attribute this to the sparsity of
the graph. As many vertices have edges in only one graph, their ranks
in the collection-aware method are based primarily on that one graph
– which may interfere with other graphs. With the union approach, at
least everything is treated centrally and thus the information in the
slightly denser union graph is indeed a bit more rich.
Linear arrangement. Though it focuses on block patterns only and
does not generally measure the degree of structure of the visualization,
linear arrangement is the de-facto standard for automatically measuring
ordering quality [8]. We briefly consider it for this reason.

For FLT, we may observe that the U-LO variants outperform C-LO
approaches, though the performance between C-LO variants is mostly
similar. For the barycenter method, this is rather the other way around:
C-BC outperforms U-BC.

For SCH, we see more spread of the linear arrangement within one
graph collection, but this may be an effect of the normalization. Though
U-LO-δI still slightly outperforms C-LO-δI , we now see that C-LO-
L2 offers a slight improvement on U-LO-L2. C-BC still outperforms
U-BC in terms of median and average, though its minimum is now
considerably lower.

For VIS, we again see that the U-LO variants outperform C-LO
approaches, now with a considerable difference. Interestingly, C-BC is
now slightly under U-BC as well. We may attribute this again to the
sparsity of the dataset.

We conclude that, for linear arrangement, the union approach is
typically better than the collection-aware approach to leaf order. For
the barycenter method, however, this appears to be opposite, unless the
dataset is excessively sparse. This is, perhaps, not surprising since the
crossing measure underlying the barycenter methods discourages “long
edges” and thus off-diagonal cells. With the collection-aware approach,
we see that this indeed avoids information loss, unless there is very little
information to begin with – in which case the union method strengthens
the signal of the little information that is available.

Overall comparison. Considering the above, we may conclude that
our collection-aware adaptations have been successful in improving
Moran’s I and thereby the structure of the resulting matrix visualiza-
tions. We observe that C-LO-δI performs best over all methods, with
higher minimum, median and average scores compared to all other
methods. It specifically performs better on the minimum compared
to other LO variants, and considerably improves upon BC variants.
Whereas the barycenter method focuses (indirectly) more on block
structures and thus linear arrangement, we do not see it consistently
outperforming the leaf order methods even in this criterion. We would
thus recommend the use of C-LO-δI as the most versatile algorithm for
solving the simultaneous ordering problem.

6 CONCLUSION

In this paper we considered the problem of computing simultaneous
orderings for graph collections. That is, given a set of graphs, com-
pute a single ordering that works well for visualizing each graph as a
matrix. To automatically assess quality, we observed that patterns in
the matrix can be seen as a form of spatial auto-correlation and thus
proposed the use of Moran’s I as a global measure of quality. Moran’s
I readily implies a distance metric between two vertices that can be
used in algorithms such as leaf order, as an alternative to other common
functions that measure adjacencies or neighborhood similarity.

Algorithmically, computing simultaneous orderings has received
little attention. We generalized the union approach that is found in
MultiPiles, but observed that this may lead to hiding structural infor-
mation from the ordering algorithms. Instead, we proposed a generic
collection-aware approach that avoids such loss of information and
showed how to apply this approach to the common leaf order and
barycenter methods.

Our experiments demonstrate that our collection-aware approach is
effective, especially leaf order based on the Moran’s I-inspired metric.
Our collection-aware leaf ordering method using δI is the most versatile
and consistently performs equally or better than the other algorithms,
though the magnitude of improvement varies between datasets. For
other algorithm comparisons, there is less consistency in relative per-
formance, also interacting with dataset. Our results confirm that the
potential information loss as sketched for the union approach indeed
occurs, also in real datasets. Though it does not occur to such a degree
to really cause arbitrary orderings as in hypothetical constructed cases,
it nonetheless leads to inferior orderings when not accounting for the
collection of graphs in the ordering algorithms.

Future work. There is not a clear metric, the optimization of which
gives visually the best or most useful ordering, even for a single graph.
Though we postulate that Moran’s I can be effective here, further re-

search is needed on how this concept actually relates to perceiving struc-
ture in matrix visualizations. Our focus was with algorithm-compatible
measures, but such future work can likely leverage the work on magnos-
tics [7]. Furthermore, it may be worthwhile to investigate the perceptual
effects that improving Moran’s I brings; for example, Beecham et al. [6]
study the “just noticeable difference” of Moran’s I and their experiment
includes weight grids as well. It suggests a degree to which Moran’s I
must improve for an observer to reliably identify the improved ordering,
though in our case, we have black-and-white and symmetric matrices,
which may influence the perception.

With our work, we provide (to the best of our knowledge) the first
explicit definition of the simultaneous ordering problem for visualizing
graphs using matrices. Our general concept of making algorithms
collection-aware is applicable to other alternatives. Especially distance-
based approaches like leaf order are easily amended. But we could also
consider other ways in making algorithms collection-aware, and indeed,
some algorithms may be more suitable than others for such adaptation.
Can we, for example, in fact directly modify the clustering algorithm
in leaf ordering, or change the objective function in its final stage, to
explicitly optimize e.g., the smallest sum?

Finally, our experiments show differences depending on the number
of graphs and vertices in the dataset. Whereas for a few matrices
(or a few MultiPiles) a single ordering can be effective, when using
many matrices, one is bound to have to make concessions for many of
them. As such, the question is perhaps, whether we could permit small
changes to the ordering for each matrix, to better highlight the structure
in each graph. In our next steps, we plan to address this challenge of
“stable” orderings.

To conclude, perhaps the main take-away of our work here is that
simultaneous matrix ordering is a complex algorithmic-visualization
problem. We have now taken the first steps in bringing this to the fore
and addressing the algorithmic challenges.

REFERENCES

[1] B. Alper, B. Bach, N. Henry Riche, T. Isenberg, and J.-D. Fekete. Weighted
graph comparison techniques for brain connectivity analysis. In Proc.
SIGCHI Conference on Human Factors in Computing Systems, pp. 483–
492, 2013. doi: 10.1145/2470654.2470724

[2] B. Bach, N. Henry-Riche, T. Dwyer, T. Madhyastha, J.-D. Fekete, and
T. Grabowski. Small MultiPiles: Piling time to explore temporal patterns
in dynamic networks. Computer Graphics Forum, 34:31–40, 05 2015. doi:
10.1111/cgf.12615

[3] B. Bach, E. Pietriga, and J.-D. Fekete. Visualizing dynamic networks
with matrix cubes. In Proc. SIGCHI Conference on Human Factors in
Computing Systems, pp. 877––886, 2014. doi: 10.1145/2556288.2557010

[4] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. Fast optimal leaf ordering
for hierarchical clustering. Bioinformatics, 17(suppl 1):S22–S29, 2001.

[5] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of
dynamic graph visualization. Computer Graphics Forum, 36(1):133–159,
2017. doi: 10.1111/cgf.12791

[6] R. Beecham, J. Dykes, W. Meulemans, A. Slingsby, C. Turkay, and
J. Wood. Map LineUps: effects of spatial structure on graphical in-
ference. IEEE Transactions on Visualization and Computer Graphics,
23(1):391–400, 2016.

[7] M. Behrisch, B. Bach, M. Blumenschein, M. Delz, L. von Rueden, J.-D.
Fekete, and T. Schreck. Magnostics: Image-based search of interesting
matrix views for guided network exploration. IEEE Transactions on
Visualization and Computer Graphics, 23:31–40, 01 2016. doi: 10.1109/
TVCG.2016.2598467

[8] M. Behrisch, B. Bach, N. Henry Riche, T. Schreck, and J.-D. Fekete. Ma-
trix reordering methods for table and network visualization. In Computer
Graphics Forum, vol. 35, pp. 693–716, 2016.

[9] M. Behrisch, M. Blumenschein, N. W. Kim, L. Shao, M. El-Assady,
J. Fuchs, D. Seebacher, A. Diehl, U. Brandes, H. Pfister, T. Schreck,
D. Weiskopf, and D. A. Keim. Quality metrics for information visualiza-
tion. Computer Graphics Forum, 37(3):625–662, 2018. doi: 10.1111/cgf.
13446

[10] T. Bläsius, S. G. Kobourov, and I. Rutter. Simultaneous embedding of
planar graphs. In R. Tamassia, ed., Handbook of Graph Drawing and
Visualization, pp. 349–383. CRC Press, 2013.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 11,2022 at 09:15:51 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 1, JANUARY 202210

[11] U. Brandes. Optimal leaf ordering of complete binary trees. Journal of
Discrete Algorithms, 5(3):546–552, 2007.

[12] S. Cabello, M. J. van Kreveld, G. Liotta, H. Meijer, B. Speckmann, and
K. Verbeek. Geometric simultaneous embeddings of a graph and a match-
ing. Journal of Graph Algorithms and Applications, 15(1):79–96, 2011.

[13] G. A. Croes. A method for solving traveling-salesman problems. Opera-
tions Research, 6(6):791–812, 1958.

[14] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite
graphs. Algorithmica, 11(4):379–403, 1994.

[15] N. Elmqvist, T.-N. Do, H. Goodell, N. Henry, and J.-D. Fekete. ZAME:
Interactive large-scale graph visualization. In Proc. 2008 IEEE Pacific
Visualization Symposium, pp. 215–222, 2008. doi: 10.1109/pacificvis.
2008.4475479

[16] A. Estrella-Balderrama, E. Gassner, M. Jünger, M. Percan, M. Schaefer,
and M. Schulz. Simultaneous geometric graph embeddings. In Proc. 15th
International Symposium on Graph Drawing, LNCS 4875, pp. 280–290,
2008.

[17] J.-D. Fekete. Reorder.js: A JavaScript Library to Reorder Tables and
Networks. In Abstr. 2015 IEEE VIS posters, 2015. Available at https:
//hal.inria.fr/hal-01214274/file/reorder.pdf.

[18] J. J. Fowler, M. Jünger, S. G. Kobourov, and M. Schulz. Characterizations
of restricted pairs of planar graphs allowing simultaneous embedding with
fixed edges. Computational Geometry, 44(8):385–398, 2011.

[19] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for
drawing directed graphs. IEEE Transactions on Software Engineering,
19(3):214–230, 1993.

[20] V. Gemmetto, A. Barrat, and C. Cattuto. Mitigation of infectious disease at
school: targeted class closure vs school closure. BMC infectious diseases,
14:Article no. 695, 2014. doi: 10.1186/s12879-014-0695-9

[21] M. Ghoniem, J.-D. Fekete, and P. Castagliola. A comparison of the
readability of graphs using node-link and matrix-based representations.
In Proc. IEEE Symposium on Information Visualization, pp. 17–24, 2004.
doi: 10.1109/INFVIS.2004.1

[22] B. Haeupler, K. Jampani, and A. Lubiw. Testing simultaneous planarity
when the common graph is 2-connected. Journal of Graph Algorithms
and Applications, 17(3):147–171, 2013. doi: 10.7155/jgaa.00289

[23] N. Henry Riche and J.-D. Fekete. MatLink: Enhanced matrix visualization
for analyzing social networks. In Proc. 13th IFIP TC13 International

Conference on Human-Computer Interaction, LNCS 4663, pp. 288–302,
2007.

[24] M. I. Hossain, V. Huroyan, S. Kobourov, and R. Navarrete. Multi-
perspective, simultaneous embedding. IEEE Transactions on Visualization
and Computer Graphics, 27(2):1569–1579, 2021. doi: 10.1109/TVCG.
2020.3030373

[25] P. Isenberg, F. Heimerl, S. Koch, T. Isenberg, P. Xu, C. Stolper, M. Sedl-
mair, J. Chen, T. Möller, and J. Stasko. vispubdata.org: A metadata
collection about IEEE Visualization (VIS) publications. IEEE Transac-
tions on Visualization and Computer Graphics, 23(9):2199–2206, 2017.
doi: 10.1109/TVCG.2016.2615308

[26] J. K. Lenstra and A. H. G. R. Kan. Some simple applications of the
travelling salesman problem. Operational Research Quarterly (1970–
1977), 26(4):717–733, 1975.

[27] E. Mäkinen and H. Siirtola. The barycenter heuristic and the reorderable
matrix. Informatica (Slovenia), 29(3):357–364, 2005.

[28] W. McCormick, S. B. Deutsch, J. Martin, and P. Schweitzer. Identification
of data structures and relationships by matrix reordering techniques. 1969.

[29] W. T. McCormick, P. J. Schweitzer, and T. W. White. Problem decom-
position and data reorganization by a clustering technique. Operations
Research, 20(5):993–1009, 1972.

[30] P. A. P. Moran. Notes on continuous stochastic phenomena. Biometrika,
37(1/2):17–23, 1950.

[31] S. Niermann. Optimizing the ordering of tables with evolutionary com-
putation. The American Statistician, 59(1):41–46, 2005. doi: 10.1198/
000313005X22770

[32] Z. Shen and K.-L. Ma. Path visualization for adjacency matrices. In Proc.
9th Joint Eurographics / IEEE VGTC Conference on Visualization, 2007.
doi: 10.2312/VisSym/EuroVis07/083-090

[33] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.-F. Pinton, M. Quag-
giotto, W. Van den Broeck, C. Régis, B. Lina, et al. High-resolution
measurements of face-to-face contact patterns in a primary school. PloS
one, 6(8):e23176, 2011. doi: 10.1371/journal.pone.0023176

[34] J. S. Yi, N. Elmqvist, and S. Lee. TimeMatrix: Analyzing temporal social
networks using interactive matrix-based visualizations. International
Journal of Human–Computer Interaction, 26(11–12):1031–1051, 2010.
doi: 10.1080/10447318.2010.516722

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 11,2022 at 09:15:51 UTC from IEEE Xplore. Restrictions apply.

