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ABSTRACT

Computer-Aided Diagnosis (CADx) systems for in-vivo characterization of Colorectal Polyps (CRPs) which are
precursor lesions of Colorectal Cancer (CRC), can assist clinicians with diagnosis and better informed decision-
making during colonoscopy procedures. Current deep learning-based state-of-the-art solutions achieve a high
classification performance, but lack measures to increase the reliability of such systems. In this paper, the
reliability of a Convolutional Neural Network (CNN) for characterization of CRPs is specifically addressed by
confidence calibration. Well-calibrated models produce classification-confidence scores that reflect the actual
correctness likelihood of the model, thereby supporting reliable predictions by trustworthy and informative
confidence scores. Two recently proposed trainable calibration methods are explored for CRP classification
to calibrate the confidence of the proposed CNN. We show that the confidence-calibration error can be de-
creased by 33.86% (−0.01648 ± 0.01085), 48.33% (−0.04415 ± 0.01731), 50.57% (−0.11423 ± 0.00680), 61.68%
(−0.01553 ± 0.00204) and 48.27% (−0.22074 ± 0.08652) for the Expected Calibration Error (ECE), Average
Calibration Error (ACE), Maximum Calibration Error (MCE), Over-Confidence Error (OE) and Cumulative
Calibration Error (CUMU), respectively. Moreover, the absolute difference between the average entropy and
the expected entropy was considerably reduced by 32.00% (−0.04374± 0.01238) on average. Furthermore, even
a slightly improved classification performance is observed, compared to the uncalibrated equivalent. The ob-
tained results show that the proposed model for CRP classification with confidence calibration produces better
calibrated predictions without sacrificing classification performance. This work shows promising points of en-
gagement towards obtaining reliable and well-calibrated CADx systems for in-vivo polyp characterization, to
assist clinicians during colonoscopy procedures.

Keywords: Colorectal polyps, Convolutional Neural Networks, Classification, Model Confidence Calibration

1. INTRODUCTION

Colorectal Cancer (CRC) is the third-leading cause of cancer-related deaths for both men and women in the
United States, while CRC even ranks second when the cases for men and women are combined.1 Especially in
countries with medium to high Human Development Index (HDI), the incidence of CRC has increased the last
couple of years.2 As with most types of cancer, the survival rate of CRC is heavily correlated with the stage of
diagnosis. Precursor lesions of CRC are Colorectal Polyps (CRPs), which can be subdivided into three different
polyp types: adenomas (ADs), sessile serrated adenomas/polyps (SSA/Ps) and hyperplastic polyps (HPs). A
further subdivision, based on CRC progression risk, can be done into two classes, pre-malignant and benign
class. ADs and SSA/Ps belong to the first class since they are able to advance into CRC,3 while HPs bear no
risk of progression into cancer, thus belonging to the latter class. Early detection and removal of these lesions
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is essential to prevent from further complications and development into CRC, thereby increasing the chance of
survival for the patient.

Therefore, bowel cancer screening programs are implemented to identify and treat pre-malignant CRPs at an
early stage during colonoscopy. However, current colonoscopy procedures are subject to several complications.
Clinical colonoscopy procedures fully rely on pathological diagnosis, since studies show that even experienced and
trained endoscopists are not sufficiently able to correctly distinguish endoscopically benign from (pre-)malignant
CRPs.4 Consequently, the current medical protocol dictates that all polyps encountered during colonoscopy
procedures should be resected and undergo histopathological evaluation. This approach increases costs for
histopathological analysis and induces possible complication risks for patients, by unnecessarily resecting CRPs
that bear no risk of progressing into CRC. The above-mentioned challenges illustrate the growing need for in-vivo
Computer-Aided Diagnosis (CADx) systems for characterization of polyps.

In order to support diagnosis and resection decision-making of endoscopists as well as adoption of ‘resect-and-
discard’ and ‘diagnose-and-leave’ strategies5,6 during clinical assessment, reliable CADx systems are required.
Already many CAD systems for automated CRP classification have been developed. Well-established basic
machine learning algorithms, such as Support Vector Machines (SVMs) and Random Forests, are employed
by providing handcrafted features7 or features extracted by Convolutional Neural Networks (CNNs).8–12 More
recently, CNN architectures are used as an end-to-end predictor rather than feature extractor, enabled by the
increasing amount of publicly available datasets. However, the majority of these datasets are relatively small,
since labeling of medical datasets is expensive. Therefore, transfer learning with CNN architectures pre-trained
on large datasets as ImageNet13 is a widely employed strategy.14–20

In high-risk medical applications, such as CRP characterization, classification results of such CADx systems
should be well-calibrated and reliable to optimally assist clinicians in diagnosis and decision-making. At present,
CADx systems are obtaining very promising results towards real-time application,21 multimodal application22

and showing feasibility of ‘resect and discard’ and ‘diagnose and leave’ strategies23 by exceeding PIVI thresh-
olds.5 Unfortunately, metrics for increasing reliability and trustworthiness by model confidence calibration are
insufficiently addressed. Calibration of classification confidence is highly desirable, since deep learning models
tend to produce over-confident results,24 thereby limiting reliability and correct interpretation of classification
results. Carneiro et al.25 investigated the roles of confidence calibration and classification uncertainty on the
accuracy and calibration error for the five-class CRP classification problem. Confidence calibration was obtained
by post-processing temperature scaling,24 while a prediction uncertainty based on the entropy of the probability
vector was used for an acceptation/rejection protocol for classification results.

In this work, we address confidence calibration by two recently proposed trainable methods.26,27 In contrast
to the work of Carneiro et al., in which only a single approach was employed, the calibration techniques in
our work do not require an explicit training procedure on the validation set for calibration, thereby offering
a more convenient solution and facilitating the calibration process. One of the suggested calibration methods
significantly reduces the calibration error, in terms of all five employed metrics, while even slightly increasing the
classification performance. Consequently, this enables the proposed method to be reliable and well-calibrated,
without sacrificing on polyp distinction capability.

The remainder of this paper is organized as follows. Section 2 gives an overview of the methodology. Section 3
elaborates on the experimental results, followed by an extensive discussion in Section 4. Lastly, the conclusions
are presented in Section 5.

2. METHODS

2.1 Data

The data used in this study are prospectively collected at the Maastricht University Medical Center+ (MUMC+),
Catharina Hospital Eindhoven (CZE), both in the Netherlands, and the Queen Alexandra Hospital (QA) in
Portsmouth, United Kingdom. The dataset includes images acquired with White-Light Endoscopy (WLE) ∗,
Blue Light Imaging (BLI) ∗ and Linked Color Imaging (LCI) ∗ modalities, which are collected from CZE and QA.

∗ EG-760 Colonoscope (Fujifilmr Corporation, Tokyo, Japan)



Table 1. Number of polyps per colorectal polyp class.

Polyp Class
Hospital Pre-Malignant (P) Benign (N) Total

MUMC+ 259 30 289
CZE 307 77 384
QA 93 54 147

Total 659 161 820

Table 2. Number of available images per modality per colorectal polyp class

Polyp Class
Modality Pre-Malignant (P) Benign (N) Total

i-Scan1 258 30 288
i-Scan2 207 27 234
i-Scan3 233 30 263
WLE 395 131 526
BLI 398 133 531
LCI 345 100 445

Total 1836 451 2287

Furthermore, data collection in MUMC+ is done with other acquisition equipment, in the sense that MUMC+
acquires images with i-Scan modality in Modes 1, 2 and 3 †. All available modalities ensure visual properties for
enhanced visibility of polyps and polyp surface, which can be observed in the examples depicted in Fig. 1.

Included polyp types are HPs, ADs, SSA/Ps and adenocarcinoma. The latter three polyp types are (pre-)
malignant and hence considered the positive (P) class in this study, while HPs are considered the negative (N)
benign class. The total number of included polyps, subdivided per hospital, are presented in Table 1, while the
number of images subdivided per imaging modality are listed in Table 2. From Tables 1 and 2, it can be observed
that a maximum of one image per polyp per imaging modality occurs.

The test set used for performance evaluation on unseen data, is restricted to 86 distinct polyps, consisting of
respectively 19 benign and 67 pre-malignant polyps. For each polyp, images in WLE, BLI and LCI modalities
are contained in the test set, leading to a total number of 258 images. For model training, 80% of the remaining
images are used, a total of 316 and 1,308 images in the benign and pre-malignant class, respectively. The
remaining 20% is used for the validation set, a total of 78 and 327 images for the benign and pre-malignant class,
respectively. In the splits made for testing and training/validation, it is ensured that all polyps from the same
patient are contained in a single set to avoid data leakage.

2.2 Data Pre-processing

From raw endoscopic images, the central area is selected as the region of interest. This region ensures a coverage
of polyp area as well as the surrounding tissue, such that the black border of the raw endoscopic image is removed.
All RGB images are resized to 256 × 256 pixels, while compatibility of the dataset with ImageNet pre-trained
networks is ensured by channel-wise subtracting the mean and dividing by the standard deviation of ImageNet
data. In order to virtually increase the dataset size for improved generalization of the network, data augmentation
techniques are employed. The images are augmented by a combination of horizontal and vertical flipping,
rotation by θ ∈ {0◦, 90◦, 180◦, 270◦}, Gaussian blurring, contrast/saturation/brightness enhancements, random
affine and perspective transforms. To alleviate on the significant class imbalance, as observed in Tables 1 and 2,
the described augmentation techniques are employed per-class, by ensuring a higher probability of execution for
the inferior (N) class compared to the majority (P) class.

† EC38-i10F2 Colonoscope (PENTAXr Medical, Hoya Corp., Tokyo, Japan)



Figure 1. Overview of images in all available modalities (Top) From left to right: WLE, BLI and LCI. (Bottom) From
left to right: i-Scan1, i-Scan2 and i-Scan3.

Figure 2. Images with and without CLAHE pre-processing. (Left) Original. (Right) CLAHE (CL=4.0, TS=(3,3)).

Since images originate from several hospitals and acquisition equipment, significant contrast differences are
observed among images. To investigate the influence of contrast enhancement on the performance of the proposed
CNN, in some experiments Contrast Limited Adaptive Histogram Equalization (CLAHE)28 is employed prior to
all previously stated pre-processing operations. CLAHE divides the image in small tiles, in which the contrast is
enhanced by a pre-determined clip limit before equalizing the histogram. Several combinations of tile size (TS)
and clip limit (CL) have been explored for our application. The most successful combination for this application
is the combination of a value of 4.0 for the clip limit and a tile size of 3× 3 pixels (CL=4.0, TS=(3,3)), which is
used for conducting further experiments. A comparison of an original image with an image obtained after the
CLAHE application is depicted in Fig. 2.

2.3 Network Architecture

In this work, the EfficientNet29 architecture is serving as the backbone for the proposed classification algorithm.
A customized version of EfficientNet-B4 (Eff-B4), has been used for the conducted experiments. In order to
make the default network architecture suitable for our two-class CRP classification problem, the classification
head with the fully-connected output layer consisting of 1,000 nodes is removed. Instead, a custom classification
head is inserted, consisting of a flattened layer, followed by two 1,024-neuron fully-connected layers with ReLU
activation, finalized with the 2-neuron fully-connected output layer with SoftMax activation.

The EfficientNet-B4 framework is either initialized with ImageNet pre-trained weights, or with weights ob-
tained by ImageNet pre-training followed by secondary pre-training with an endoscopy-driven dataset. The
dataset exploited for secondary endoscopy-driven pre-training is the GastroNet database, as described in the
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Figure 3. Overview of the employed network architecture used for the two-class CRP classification task.

papers of De Groof et al.30 and Van der Putten et al.31 This dataset consists of ≈ 500, 000 endoscopic images
from several organs in the gastro-intestinal track. Pre-training with this set enables the model to gather improved
discriminative power for endoscopic imagery. In the remainder of this paper, the dual pre-training variant is
adopted, which is referred to as ‘PT’. A schematic of the proposed network architecture is depicted in Fig. 3.

2.4 Training Procedure

The proposed network is trained for 75 epochs or until convergence on the validation set, using the Adam
optimizer with a learning rate of 1× 10−5 and (β1, β2) = (0.9, 0.999). Due to the imbalance between the classes,
an independent batch generator is constructed, which sub-samples the pre-malignant class, thereby ensuring
that each of the two classes is representative during training. Each training iteration, a batch of 8 benign and
10 pre-malignant images is generated followed by a shuffling operation, until all benign images are seen by the
network once, which triggers the end of a training epoch. The cross-entropy (CE) loss has been used to evaluate
the loss of the model during the training procedure. The proposed methods are implemented in Python using
the PyTorch framework and experiments were executed on a GeForce RTX 2080 Ti.

2.5 Confidence Calibration Methods

Model confidence calibration is the problem of matching the predicted confidence scores with the true correctness
likelihood of the model. Deep learning models are typically poorly calibrated, because models tend to produce
over-confident results.24 An example of poorly calibrated results is when a model is 80% accurate for a set of
predictions, while being 0.99 confident for each of the predictions. Ideally, a model should be 0.80 confident for
each of the predictions when being 80% accurate. Over-confidence limits the reliability and correct interpretation
of predictions, since there is no clear indication whether the model is likely to be incorrect (i.e. predicting with low
confidence when likely to be incorrect). Therefore, well-calibrated models are desired for a high-risk application
as CRP classification, to provide clinicians with trustworthy and informative confidence scores.

Model calibration is visualized with reliability diagrams.32 A reliability diagram summarizes the accuracy
versus the predicted confidence of samples, by grouping predictions into bins, based on their predicted confidence.
Subsequently, for each bin the accuracy is plotted as a function of the average predicted confidence. The level
of miscalibration can be assessed by the gap between the plotted accuracy and the ideal diagonal. The better
the bin accuracy aligns with the ideal diagonal, the higher the calibration performance of the model. Several
examples of reliability diagrams are depicted in Fig. 4.

In order to calibrate the output of the proposed network, two trainable techniques are considered. Firstly,
the auxiliary loss term proposed by Liang et al.26 is added to the default cross-entropy loss during the training
procedure. This auxiliary loss term comprises the difference between the average predicted confidence and



Figure 4. Three examples of reliability diagrams. (Left) Reliability diagram for a model with under-confident predictions,
where the accuracy exceeds the average predicted confidence. (Middle) Reliability diagram for a model that is perfectly
calibrated, where the accuracy ideally aligns with the average predicted confidence. (Right) Reliability diagram for a
model with over-confident predictions, where the accuracy falls short to the average predicted confidence.

accuracy (called DCA), thereby enabling the minimization of the calibration error for each mini-batch directly
in the loss. The employed loss (LDCA) is computed by:

LDCA = CE + β ·DCA

= CE + β ·

∣∣∣∣∣ 1

N

N∑
i=1

1(ŷi = yi)−
1

N

N∑
i=1

p̂i

∣∣∣∣∣ , (1)

where ŷi and yi are the predicted and ground-truth class for sample i, respectively. Furthermore, p̂i is the
confidence of predicted label for sample i, parameter N is the number of samples in the mini-batch and β is a
weight scalar. The function 1(·) denotes the unity function if the embedded expression holds. In the conducted
experiments, an empirically determined value of β = 15 is used.

In addition to the method proposed Liang et al., the Dynamically Weighted Balanced (DWB) Loss proposed
by Fernando et al.27 is employed, instead of the default CE loss function. This DWB loss function is used for
comparison and is composed of two terms, a dynamically weighted CE and a regularization component equal to
the entropy of the Brier Score. The latter term can be considered as a reliability component that leads to better
calibration. The loss (LDWB) is computed by:

LDWB = − 1

N

N∑
i=1

c∑
j=1

w
(1−pij)
j yij log(pij)− pij(1− pij), (2)

where wj is the class weight of Class j, while yij and pij are the jth element of the one-hot encoded label and
predicted probability for sample i, respectively. Furthermore, N is the number of samples in the mini-batch.
The class weights are computed as follows:

wj = log

(
max(nj |j ∈ c)

nj

)
+ 1, (3)

where nj is the frequency of samples from Class j.

2.6 Evaluation Metrics

2.6.1 Classification

Six metrics are employed for classification performance evaluation. Using the confusion matrix for the two-class
classification task illustrated by Table 3, the first five metrics can be defined. Accuracy (Acc) is defined as the
total fraction of correct predictions:

Acc =
TP + TN

TP + FP + FN + TN
· 100%. (4)



Table 3. Confusion matrix for the two-class classification problem.

Ground Truth Class
Predicted Class Pre-Malignant (P) Benign (N)

Pre-Malignant (P) TP FP
Benign (N) FN TN

Sensitivity (Sens) is the fraction of positive (P) samples that are correctly predicted:

Sens =
TP

TP + FN
· 100%, (5)

while Specificity (Spec) is the fraction of negative (N) samples that are correctly predicted:

Spec =
TN

TN + FP
· 100%. (6)

Negative Predictive Value (NPV ) is the fraction of correct negative (N) predictions from the total number of
negative predictions:

NPV =
TN

TN + FN
· 100%. (7)

Positive Predictive Value (PPV ) is the fraction of correct positive (P) predictions from the total number of
positive predictions:

PPV =
TP

TP + FP
· 100%. (8)

A receiver operating characteristic curve (ROC) summarizes the relationship between sensitivity and specificity.
The area under the curve (AUC) for the ROC concludes the employed classification performance metrics.

2.6.2 Calibration

Five error metrics are used for calibration performance evaluation, all calculated from reliability diagrams.24

The reliability diagram is a visual tool that summarizes the accuracy versus the average predicted confidence of
samples. A reliability diagram is obtained by grouping predictions into M bins of size 1/M , where Bm is the
set of indices whose predicted confidence falls into the interval Im =

(
m−1
M , m

M

]
. The accuracy A for each bin is

calculated by:

A(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi), (9)

where ŷi and yi are the predicted and ground-truth class for sample i, respectively. The average predicted
confidence C of each bin is calculated by:

C(Bm) =
1

|Bm|
∑
i∈Bm

p̂i, (10)

where p̂i is the confidence of predicted label for sample i. Using Eqns. (9) and (10), the employed calibration
error metrics can be defined. Firstly, the Expected Calibration Error (ECE) is the weighted average of the
calibration error across all bins, which is computed as:

ECE =

M∑
m=1

Bm

n
|A(Bm)− C(Bm)|, (11)

where n is the total amount of samples in the test set. Furthermore, the Average Calibration Error (ACE)
giving the average error across the bins, is defined as:

ACE =
1

M+

M∑
m=1

|A(Bm)− C(Bm)|, (12)



where M+ is the amount of non-empty bins. Moreover, the Maximum Calibration Error (MCE) determines the
largest error across the bins and is defined by:

MCE = max
m∈1,...,M

|A(Bm)− C(Bm)|. (13)

Additionally, the Over-Confidence Error (OE) is the weighted average of the errors across bins where confidence
exceeds accuracy, which is computed by:

OE =

M∑
m=1

Bm

n
[C(Bm) ·max (C(Bm)−A(Bm), 0 ) ] . (14)

Lastly, a reliability diagram can be mapped into a single value, by adding up the calibration errors for all bins.
The computation is the same as for ACE, without taking the average by dividing by the number of non-empty
bins, which is referred to as the cumulative calibration error (CUMU).

2.6.3 Prediction Uncertainty

The uncertainty attached to a prediction can be expressed by the entropy of the predicted probability vector.
The average entropy (H̄(X )) for test set X , based on the predicted probability vectors, is calculated as:

H̄(X ) = − 1

N

∑
x∈X

∑
c∈y

p̂(y = c|x) log ( p̂(y = c|x) ) , (15)

where p̂(y = c|x) is the predicted probability for Class c given Sample x and N denotes the total number of
samples in test set X . Some reference values for single samples are: H([0.05, 0.95]) ≈ 0.199, H([0.1, 0.9]) ≈ 0.325
and H([0.15, 0.85]) ≈ 0.423. As can be observed from the reference values, the more confident the predictions,
the lower the resulting entropy. A low entropy value is only desired when the accuracy of the model matches the
average predicted confidence for the samples, otherwise the model is considered over-confident and inherently
being poorly calibrated. To separate this issue from the entropy calculation, we adopt an alternative calculation.

We propose to use ∆H̄(X ) as a metric to measure the calibration performance of the model, by capturing
the absolute difference between achieved average entropy and the expected entropy. The expected entropy is
calculated with Eqn. (15), by assuming perfect calibration. This implies that the average predicted confidence
matches the achieved accuracy, e.g. with an accuracy of 85% the average predicted confidence for the predicted
class should be 0.85. As such, the average predicted vector should be [0.15, 0.85] or [0.85, 0.15] for pre-malignant
and benign samples, respectively. Consequently, an expected entropy of ≈ 0.423 is obtained when using Eqn. (15).
The closer ∆H̄(X ) is to zero, the better the average predicted confidence reflects the actual correctness likelihood,
inherently pointing to a better calibration.

3. EXPERIMENTAL RESULTS

The classification and calibration results for models with and without a calibration method are presented in
Tables 4 and 5, respectively, while the resulting reliability diagrams are depicted in Fig. 5.

DCA Auxiliary Loss: Models trained using DCA auxiliary loss with a value of β = 15, gain on average
0.26% and 1.49% for accuracy and sensitivity, respectively, while losing 4.09% for specificity. The calibration
metric results show that application of DCA auxiliary loss significantly reduces the error metrics ECE, ACE,
MCE, OE and CUMU on average by 33.86% (−0.01648 ± 0.01085), 48.33% (−0.04415 ± 0.01731), 50.57%
(−0.11423±0.00680), 61.68% (−0.01553±0.00204) and 48.27% (−0.22074±0.08652), respectively. Furthermore,
H̄(X ) is slightly increased on average by 14.23% (0.03914 ± 0.00366), while an average reduction of 32.00%
(−0.04374 ± 0.01238) for ∆H̄(X ) is obtained. All above-mentioned results follow from the comparison with
their uncalibrated equivalents. Moreover, the reliability diagrams from models trained with DCA auxiliary loss
(middle column) show that overall the achieved accuracies of the bins are closer to the ideal diagonal, compared
to the diagrams of the uncalibrated models (left column).



Table 4. Classification results for the proposed network with and without DCA auxiliary loss (β = 15) or DWB loss.

Model CLAHE PT Calib. Acc Sens Spec NPV PPV AUC

Eff-B4 × × × 85.27% 86.07% 82.46% 62.67% 94.54% 0.91
Eff-B4 X × × 86.05% 87.06% 82.46% 64.38% 94.59% 0.91
Eff-B4 X X × 85.27% 86.57% 80.70% 63.01% 94.05% 0.91

Eff-B4 × × DCA 86.05% 88.06% 78.95% 65.22% 93.65% 0.91
Eff-B4 X × DCA 85.66% 87.56% 78.95% 64.29% 93.62% 0.91
Eff-B4 X X DCA 85.66% 88.56% 75.44% 65.15% 92.71% 0.91

Eff-B4 × × DWB 82.17% 84.08% 75.44% 57.33% 92.35% 0.89
Eff-B4 X × DWB 82.95% 84.58% 77.19% 58.67% 92.90% 0.90
Eff-B4 X X DWB 84.88% 85.57% 82.47% 61.84% 94.51% 0.91

Table 5. Calibration results for the proposed network with and without DCA auxiliary loss (β = 15) or DWB loss.

Model CLAHE PT Calib. ECE ACE MCE OE CUMU H̄(X ) ∆H̄(X )

Eff-B4 × × × 0.02848 0.05866 0.22590 0.01926 0.29330 0.28367 0.13433
Eff-B4 X × × 0.06098 0.12100 0.27534 0.02677 0.60499 0.29675 0.10730
Eff-B4 X X × 0.03976 0.08531 0.18740 0.03089 0.42654 0.25090 0.16710

Eff-B4 × × DCA 0.02479 0.03623 0.10737 0.00634 0.18113 0.32696 0.07709
Eff-B4 X × DCA 0.03075 0.05622 0.15581 0.00888 0.28110 0.33113 0.07996
Eff-B4 X X DCA 0.02423 0.04007 0.08276 0.01510 0.20037 0.29064 0.12045

Eff-B4 × × DWB 0.10629 0.18139 0.35330 0.09373 0.90695 0.17555 0.29326
Eff-B4 X × DWB 0.10909 0.16173 0.29044 0.09979 0.80867 0.15149 0.30519
Eff-B4 X X DWB 0.09022 0.13655 0.21728 0.07781 0.68276 0.16765 0.25713

DWB Loss: Models trained with DWB loss lose on average 2.20%, 1.82% and 3.51% for accuracy, sensitivity
and specificity, respectively. The calibration metric results show that the application of DWB loss significantly
increases error metrics ECE, ACE, MCE, OE and CUMU on average by 159.67% (0.05879±0.01348), 100.98%
(0.07157± 0.03643), 25.94% (0.05746± 0.04982), 270.44% (0.06480± 0.01266) and 100.98% (0.11524± 0.47507),
respectively. Furthermore, H̄(X ) is significantly decreased on average by 40.08% (−0.11221± 0.02548), while an
average increase of 118.87% (0.14895±0.04459) for ∆H̄(X ) is obtained. All above-mentioned results follow from
the comparison with their uncalibrated equivalents. Moreover, the reliability diagrams from models trained with
DWB loss (right column) show that overall the achieved accuracies of the bins have larger discrepancies from
the ideal diagonal, compared to the diagrams of the uncalibrated models (left column).

4. DISCUSSION

The DCA auxiliary loss is fruitful in decreasing the calibration error without or slightly hurting the classification
performance. The improved calibration performance is demonstrated by the considerably reduced values for all
five employed calibration-error metrics, the decrease in the absolute difference between the achieved and the
expected average entropy (∆H̄(X )), as well as the diminished distance between the obtained accuracy of the
bins and the ideal diagonal in the reliability diagrams. The increase of average prediction uncertainty (H̄(X )),
in terms of the average entropy of predictions, is a logical consequence of proper confidence calibration, since
over-confidence is corrected and illustrated by the amplitude reduction (red bars) of over-confidence gaps in the
reliability diagrams. The obtained results show that the trainable DCA auxiliary loss term, proposed by Liang
et al.,26 minimizes the calibration error in the loss directly and is extremely successful for performance and
facilitation of calibration.

The DWB loss function is unsuccessful in decreasing the calibration error. On the contrary, the error is sig-
nificantly increased while also a decreased classification performance is observed. The augmented miscalibration



Figure 5. Overview of reliability diagrams. (Top row) Eff-B4 without CLAHE application and without PT. (Middle row)
Eff-B4 with CLAHE application and without PT. (Bottom row) Eff-B4 with CLAHE application and with PT.
From left to right: No Calibration, DCA and DWB.

is demonstrated by the significantly increased calibration-error metrics, the increase in the absolute difference
between the achieved and the expected entropy (∆H̄(X )), as well as the enlarged distance between the obtained
accuracy of the bins and the ideal diagonal in the reliability diagrams. The significant decrease of average pre-
diction uncertainty (H̄(X )), in terms of the average entropy of predictions, is a consequence of the predictions
being more over-confident, illustrated by the extremely deteriorated OE metric and the larger over-confident
gaps in the reliability diagrams.

An explanation for the unsatisfactory results may be that the DWB loss is mainly focused on handling class-
imbalances, while to a lesser extent confidence calibration. The results in the work of Fernando et al.27 show
that the DWB loss is able to achieve improved calibration performance for multi-class (> 2) highly imbalanced
datasets, compared to other loss functions such as Weighted Cross-Entropy and Focal Loss. However, the
calibration performance of the proposed method was not compared to methods purely designed for model-
confidence calibration. Furthermore, the dataset in our work is not multi-class, while also not being highly
imbalanced due to sub-sampling measures on the majority class during model training. Altogether, these factors
may cause the disappointing calibration performance of the DWB loss in our case.

5. CONCLUSIONS

CADx systems for in-vivo characterization of colorectal polyps are clinically valuable to avoid unnecessary
removal of polyps and to enable adoption of new medical protocols, thereby reducing complication risks for
patients and costs attached to histopathological analysis. Current research towards deep learning-based CADx



systems lack methods to improve reliability in order to provide optimal assistance for clinicians during clinical
procedures.

In this paper, reliability improvement of a Convolutional Neural Network for the two-class colorectal polyp
classification is addressed by confidence calibration. Confidence calibration is desirable because deep learning
models tend to produce over-confident results, thereby limiting reliability and correct interpretation of classifi-
cation results, which can be misleading for clinicians when being assisted by such an algorithm. Well-calibrated
models produce classification confidence scores that reflect the actual correctness likelihood of the model, thereby
providing reliable predictions by trustworthy and informative confidence scores. In our work, two recently pro-
posed trainable calibration methods are employed for the purpose of model confidence calibration. More specifi-
cally, we have compared DCA Auxiliary Loss and the DWB Loss, adopted for generic medical imaging and tuned
in this paper for colorectal polyp classification. These techniques are considered to give valuable guidance to the
clinicians for polyp classification. The method by Liang et al.26 significantly reduces the calibration error of the
proposed CNN, in terms of all five employed metrics (ECE, ACE, MCE, CUMU and OE) while even slightly
increasing the classification performance.

A limitation of this study is the relatively small size of the test set used for performance evaluation on unseen
data, with only a classification improvement of 0.5% and 1.75% to each sample for sensitivity and specificity,
respectively. However, only limited conclusions can be drawn about generalization on unseen data. Therefore,
for future research a larger and more balanced dataset is desired, which can significantly increase the already
feasible results. In summary, this work shows that the proposed confidence-calibration method can provide
support to clinicians with in-vivo characterization of CRPs, by trustworthy and informative confidence scores.
Furthermore, promising points of engagement are shown towards further research into reliable, well-calibrated
deep learning-based CADx systems for CRP characterization.
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