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ABSTRACT
Many approaches for solving problems in business and industry are based on analytics and statistical
modeling. Analytical problem solving is driven by the modeling of relationships between dependent (Y)
and independent (X) variables, and we discuss three frameworks for modeling such relationships: cause-
and-effect modeling, popular in applied statistics and beyond, correlational predictive modeling, popular
in machine learning, and deductive (first-principles) modeling, popular in business analytics and operations
research. We aim to explain the differences between these types of models, and flesh out the implications of
these differences for study design, for discovering potential X/Y relationships, and for the types of solution
patterns that each type of modeling could support. We use our account to clarify the popular descriptive-
diagnostic-predictive-prescriptive analytics framework, but extend it to offer a more complete model of the
process of analytical problem solving, reflecting the essential differences between causal, correlational, and
deductive models.
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1. Introduction

1.1. Three Frameworks for Analytical Problem Solving

The World Economic Forum (2020) lists problem solving as one
of the essential skills that current generations of professionals
in business and industry need to master. Problem solving in
its broad sense is the task of figuring out how to go from an
unwanted to a wanted situation. Solving problems is the crux
of many tasks in management, engineering and science, and
methods, techniques and procedures for solving business and
engineering problems are studied in various fields.

Many approaches for solving problems are based on analytics
and statistical modeling, and many techniques in statistics are
intended to support problem solving (Hoerl and Vining 2020).
In business and industry, the traditional framework for statistical
problem solving is based on cause-and-effect modeling. Highly
influential is Juran’s (1998) distinction between a Diagnostic
Journey, where the causes of a problem are established, and
a subsequent Remedial Journey, where the identified causes
drive the design of solutions. The notion that solving problems
is based on the modeling of causal relations between depen-
dent (Y) and independent variables (X’s) permeates Six Sigma’s
DMAIC method (De Mast and Lokkerbol 2012), Shainin’s Statis-
tical Engineering system (Steiner, MacKay, and Ramberg 2008),
and scientific studies of the problem-solving process (Smith
1988, 1998; MacDuffie 1997; De Mast 2013). Trying to design
a solution without first establishing a problem’s causes is often
portrayed as bad practice and relying on make-shift or stopgap
solutions.

CONTACT Jeroen de Mast jdemast@uwaterloo.ca University of Waterloo, Faculty of Mathematics, M3, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/TAS.

In recent years, this causal framework has gotten more and
more competition from an alternative framework for solving
problems based on analytics, which on the surface seems to have
many similarities, but which, we believe, is essentially differ-
ent. This is the framework of purely predictive, nonexplanatory
modeling popular in data science and machine learning. Also
in this framework, problems are solved by modeling relations
between dependent and independent variables, but the relation-
ships are not claimed to be causal, and usually are instead corre-
lational. Although both frameworks use partly similar modeling
techniques, such as regression, the distinction between causal
and correlational models has crucial ramifications for the type
of studies needed to model them and the types of solutions that
they allow. Correlational predictive models and causal models
are contrasted in Breiman (2001), Shmueli (2010), and Hernan,
Hsu, and Healy (2019).

Both in cause-and-effect models and machine-learning-style
correlational models, relationships between dependent and
independent variables are modeled using data. There are, how-
ever, many problems where these relationships can be derived
from theory and universal laws by mathematical deductions,
and this constitutes a third framework for analytical problem
solving. Many problem-solving methods in operations research
(OR) and business analytics are not based on data-driven mod-
eling of relationships, but instead, relationships are derived
from mathematics or probability theory, either analytically or
by means of simulation (Den Hertog and Postek 2016). In engi-
neering, relationships are often derived from the laws of physics,
and such first-principles or white-box models are contrasted to

© 2022 American Statistical Association
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empirical or black-box models, where relationships are estab-
lished by fitting functions with data (Estrada-Flores et al.
2006).

1.2. Purpose of the Article

All three frameworks for problem solving—referred to as causal
modeling, correlational modeling and deductive modeling—try
to solve problems by modeling relationships between depen-
dent (Y) and independent variables (the X’s). These Y=f (X)

relationships predict the effects of interventions in the X’s and
are the basis for designing a solution. In this article, we seek
to understand, contrast and integrate these three frameworks
for analytical problem solving. Various fields have a traditional
predisposition towards one of the three frameworks: causal
modeling in business and industrial applications of statistics,
correlational predictive modeling in machine learning, and
deductive, nondata-driven modeling in business analytics and
OR. But these predispositions are by no means exclusive, as
many models in statistics are noncausal, machine learning has
recently started to embrace causal inference, and the OR com-
munity is integrating data-driven modeling more and more
as an alternative to deductive models. These integrative ambi-
tions would be greatly assisted by a clarification of the differ-
ences and commonalities between them. An attempt at inte-
gration is Gartner’s Maturity Model for Data and Analytics
(discussed in Lepenioti et al. 2020), which discerns descrip-
tive, diagnostic, predictive, and prescriptive analytics. The pop-
ularity of Gartner’s model attests to its helpfulness, but we
believe that it needs further development. For example, diag-
nostic analytics refers to causal modeling, and the Gartner
model presents it as an antecedent to predictive modeling,
but the model does not clarify whether predictive analytics
should be based on a causal model, and it does not acknowl-
edge the important differences between predictions based on
a causal model versus predictions based on a correlational
model.

The distinction between predictive and prescriptive analytics
is popular in business analytics. Den Hertog and Postek (2016),
however, note a gap between these two subfields, where pre-
dictive analytics typically involves data-driven model building
as done in statistics and machine learning, while prescriptive
analytics seems to focus on the mathematical optimization of
nondata-driven, first-principles models. The authors state that
“(…) the deep relation between predictive and prescriptive ana-
lytics is neither understood nor exploited” (Den Hertog and
Postek 2016).

Since the methods and notation systems used in the three
frameworks are so similar, the three types of models are easily
confused, or their relations misunderstood. Clarifying the dif-
ferent types of modeling in analytical problem solving is the
first purpose of this article. The differences between causal,
correlational and deductive models have ramifications for data
collection, study design, and the types of solutions that can
be derived from them. These ramifications are underappre-
ciated, resulting in flawed analyses and conclusions. Flesh-
ing out these ramifications is the second purpose of the
article.

1.3. Analytical Problem Solving

Following Ackoff and Vergara (1981), a problem is a choice sit-
uation where the problem owner is dissatisfied with the current
state of affairs, and is in doubt about which course of action to
take. Analytical problem solving, as we take it, are approaches to
solving problems driven by the modeling of X/Y relationships.
Based on Ackoff and Vergara (1981), the elements of a problem
are:

1. Controllable variables XC in the system, which are under the
control of the problem solver.

2. Uncontrollable variables XU , governed by a probability dis-
tribution FU .

3. The outcome, which are one or more variables Y that depend
on the XC and XU .

4. A problem owner with her value system, who attaches posi-
tive or negative value V(Y , XC, FU) to a state (XC, FU) and its
implied outcome Y .

5. Constraints, to which some of the XC may be subject.

Strategies for analytical problem solving work out how the out-
comes Y depend on the XC and XU variables, and then use
the modeled Y=f (XC, XU) relationships as a predictive device
to assess the results of various interventions. The task for the
problem solver is to determine an intervention in terms of the
controllable XC variables that maximizes the problem owner’s
value V(Y ,XC,FU).

All three frameworks discussed above use analytical models
Y=f (X) that relate Y to X, but the relations can be causal,
correlational or mathematical-deductive. We discuss each of
these frameworks, in turn, in the next three sections, partly aim-
ing to capture how they work as problem-solving approaches,
and partly aiming to identify relevant differences. Each section
begins with two examples, and then discusses how X variables
are discovered, how the Y=f (X) relationship can be modeled,
and what sort of solutions can be based on the modeled Y=f (X)

relationship.

2. Problem Solving Based on Cause-and-Effect
Relations

In problem solving based on cause-and-effect modeling, the
design of a solution is driven by identified X variables that
causally affect Y . Rubin (1974, 2005), Holland (1986) and Pearl
(2009) offer formal definitions of causal relations. A less precise
definition capturing the essential idea in simpler terms is this:
X has a causal effect on Y if modifying X (keeping everything
else constant) implies that the probability distribution of Y will
change as a consequence. Below, we describe problem solving
driven by causal modeling. After introducing two stereotypical
examples, we discuss how potential causes can be identified, how
their effects can be modeled, and what sort of solutions can be
based on the modeled relationships.

2.1. Stereotypical Examples

2.1.1. Paper Helicopters
A famous example in statistics are George Box’s paper heli-
copters (Box and Liu 1999). The problem is to improve the
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design of paper helicopters such that the predicted flight time
Y is maximized. In analytical problem solving, this is done by
establishing a model Y=f (XC

1 , XC
2 , XC

3 ) that relates the flight
time to various design parameters such as the wing length (XC

1 ),
paper weight (XC

2 ) and tail length (XC
3 ). The relationship is

causal, as modifying, say, the wing length will change the flight
times as a consequence. Typical analytical strategies involve
statistically designed experiments, resulting in a 1st- or 2nd-
order polynomial model that approximates Y=f (XC

1 , XC
2 , XC

3 ).
Based on this model, the problem solver determines settings for
the X’s, within given constraints, that maximize the predicted
mean flight time Y , and thus, V

(
Y ,XC,FU

) =μY|XC
1 , XC

2 , XC
3

(the
mean flight time for given choices of wing length, paper weight
and tail length).

2.1.2. Variation Reduction
In modern manufacturing, tolerances on product characteristics
such as dimensions are tight, and thus, a common type of
problems in manufacturing is that of excessive variation in prod-
uct characteristics (MacKay and Steiner 1997). Such variation
typically has a multitude of causes, but it is also typical that a
few of these causes have disproportionate influence. Identifying
what these dominant causes of variation are, can be a challeng-
ing detective process. The relevant causal relationship here is
Y=f (XU

1 , XU
2 , XU

3 , . . .), where Y is a product characteristic such
as a dimension, and the XU

i are uncontrollable factors in the pro-
duction process, whose variability causes variation in Y . Typical
value functions are inversely related to the variance of Y , that is,
V(Y , XC,FU)∝ (

σ 2
Y
)−1, or to the probability that the character-

istic Y is within its tolerances: V(Y , XC, FU) ∝P(tl≤Y≤tu). The
modeled Y=f (XU

1 , XU
2 , XU

3 , . . .) relation shows how σ 2
Y depends

on the variances σ 2
Xi

of the uncontrollable variables XU
i , and it

allows one to evaluate various solution scenarios, such as enforc-
ing narrower tolerances on inputs in the production process.
Other solution scenarios, such as a feedback or feedforward
control mechanism, will be discussed below.

2.2. Identifying the X’s

For solving the two problems above, namely, finding optimal
settings in the design of paper helicopters or reducing the
variability in a product characteristic transmitted from vari-
ous variation sources, the problem solver may use a statisti-
cally designed experiment or observational data to model the
Y=f (X) relationships. Before such study can be undertaken,
however, it is often necessary to first identify potential causal
influence factors (X’s) that should be included as factors in the
experiment or whose values should be measured in an observa-
tional study. Various strategies for discovering potential causes
are presented in Table 1 (largely derived from De Mast 2013).

The first approach, Exploratory data analysis, has the problem
solver identify potential X’s from datasets, where correlations
between X and Y variables flag the X’s as potential influence
factors. Other salient patterns in data, such as clusters, could also
help the problem solver to discover potential X’s (De Mast and
Kemper 2013).

Restricting oneself to such data-driven approaches, however,
one is likely to miss potential causes for which such data are not
available. One will also miss X’s that do not vary during the study,
and therefore, leave no traces of their effects in the dataset. For
example, when paper helicopters are exclusively built from 80
g/m2 paper, paper weight will not emerge as a potential influence
factor for flight time in studies driven by observational data.
The second approach in Table 1, labeled Experiential knowledge,
therefore complements data-driven approaches. This approach
capitalizes on earlier experiences with similar problems, and
causal influence factors identified in those earlier problems may
be taken as candidate X’s for the problem under study. Domain
experts are likely to recognize analogies with earlier problems,
and the problem solver herself may try to match the problem
at hand with earlier cases documented in a library, such as the
expert literature, taxonomies of known problems, or even an
internet search.

Finding the causal influence factors of a problem can be
challenging when the search space is extensive, complex or ill-
defined. It’s easy, then, to get overwhelmed by the multitude
of possibilities or to get bogged down in the wrong part of
the search space. In various fields, efficient strategies have been
proposed for causal diagnosis that try to narrow down the search
by a sequence of studies designed to eliminate whole classes of
potential causes at once. Such strategies are called hierarchical
diagnosis in AI (Chittaro and Ranon 2004), branch-and-prune in
De Mast (2011), and eliminate-and-home-in by Shainin (1993).
Table 1 lists such approaches under the name Sequence of hier-
archical elimination studies. Approaches numbered 4. and 5. in
Table 1 will be discussed in subsequent sections.

2.3. Modeling the Y = f (X) Relationship

Given a list of candidate X’s, data from an experiment (i.e., an
interventional study) are ideal for modeling their causal effects
on Y . Well-designed, randomized and controlled experiments
directly demonstrate cause-and-effect relations (Holland 1986;
Pearl and MacKenzie 2018). Experiments range from simple A/B
tests to complex, multi-factor experiments in irregular exper-
imental regions designed by optimal design algorithms (Goos
and Jones 2011). Response-surface methodology advises against
model building on the basis of single, one-shot experiments,
because the design of an experiment hinges on many assump-
tions concerning the relevant ranges of variables, the presence

Table 1. Approaches for identifying candidate X ’s.

1. Exploratory data analysis X ’s are identified from correlations, clusters and other salient patterns in data
2. Experiential knowledge (domain experts, case libraries) X ’s are identified as they were relevant in similar problems previously studied
3. Sequence of hierarchical elimination studies X ’s are identified by a narrowing-down process, driven by a sequence of studies aimed at ruling out

classes of potential X ’s
4. Feature engineering X ’s are created by merging and transforming features in data sources
5. Deduction from theory X ’s are derived from (axiomatic) theory
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of higher-order effects, and the reliability of the Y measurements
(De Veaux, Hoerl, and Snee 2016). Instead, a sequence of smaller
experiments is suggested, where the design of later studies is
driven by the findings of earlier studies (Myers, Montgomery,
and Anderson-Cook 2009).

Observational, as opposed to experimental, data are a more
challenging basis for demonstrating causal effects, as they
primarily show correlations. The introduction of additional
assumptions and premises sometimes allows one to substantiate
a cause-and-effect claim from observational data (Lederer et al.
2019; Hernan, Hsu, and Healy 2019). Pearl’s structural causal
models, which integrate and generalize such approaches as path
analysis, structural equations modeling and Rubin’s potential-
outcome framework, allow problem solvers to do this in a sys-
tematic manner (Pearl 2009, Pearl and MacKenzie 2018). In this
approach, the problem solver reasons from domain knowledge
to speculate about potential causal relations and their structure,
which she visualizes by means of directed graphs. Causal struc-
tures are composed of three types of junctions, namely chains,
forks and colliders, that imply different conditional probabilities,
which may be observable in the system under study. Therefore,
it may be possible to rule out alternative potential causal struc-
tures from observational data and thereby corroborate a single
causal interpretation of the correlations observed between the
variables.

2.4. Designing Solutions Based on Causal Y = f (X)

Relationships

Once candidate X’s have been identified and their effects (if any)
onto Y have been modeled, the Y=f (X) model is then used as a
basis to design a solution. The literature in industrial engineer-
ing and applied statistics describes many standard solution pat-
terns based on Y=f (X) models (e.g., Myers, Montgomery, and
Anderson-Cook 2009; MacKay and Steiner 1997). Five solution
patterns are listed in Table 2.

Fitted models are often 1st- or 2nd-order polynomial approx-
imations of the general form

Y = β0 +
∑

βjXj +
∑

βjjX2
j +

∑∑
βijXiXj + ε

where ε is the model’s error term. Such models are called
response surfaces (Box and Draper 1987; Myers, Montgomery,
and Anderson-Cook 2009), which are prediction devices that
predict Y or characteristics of its probability distribution given
X= (X1, . . . , Xk)

′. The first standard solution pattern, named
Response-surface optimization in Table 2, is where you use the
final model to find settings for the X’s giving the desired pre-
dicted mean Y value μ̂Y . In the helicopters case, the objective
is to find X0= arg maxX1,...,Xk μ̂Y (X1, . . . , Xk), that is, the com-
bination of X settings that maximizes the predicted mean flight

Table 2. Generic solution patterns based on Y=f (X) relationships.

1. Response-surface optimization Find settings for the XC yielding satisfactory μ̂Y
2. Robust design Find settings for the XC minimizing σ 2

Y
3. Tolerance design Reduce variation σ 2

j in one or more of the XU
j

4. Decision optimization Use predicted Y to guide decisions
5. Predictive control Compensate for drifts in Y by adjusting a

control variable XC

time μ̂Y . Since response surface models are lower-order poly-
nomials, such optimization problems, given the final model, are
often rather straightforward (Derringer and Suich 1980).

The second solution pattern, called Robust design in Table 2,
or desensitizing the process to input variation in MacKay and
Steiner (1997), aims to solve a variation problem, as in the sec-
ond example introduced above (Variation Reduction). The con-
cept of robust design is that some of the independent variables
are controllable variables, which have a fixed setting under the
control of the problem solver, and other independent variables
are uncontrollable variables that randomly vary. Since uncon-
trollable variables have an effect on Y , their variability may
partly be transmitted to Y . Consider a simple case with only one
controllable and one uncontrollable variable:

Y=β0+β1XC
1 +β2XU

2 +β12XC
1 XU

2 +ε

with XU
2 ∼ N

(
μ2, σ 2

2
)

and ε ∼ N(0, σ 2) (all random variables
independent). Then, σ 2

Y = (
β2 + β12XC

1
)2

σ 2
2 +σ 2, and the first

term on the right-hand side is the variation transmitted from
XU

2 to Y . Note that the chosen setting for the control variable XC
1

affects how much of the variance of XU
2 is transmitted to Y . The

setting XC
1 = − β2

β12
would completely eliminate variation from

XU
2 transmitted to Y , and is called a robust setting. This exploita-

tion of interaction effects for the reduction of variation transmit-
ted to Y is the essential element of Taguchi’s robust-design pro-
cedure (Kackar 1985; Myers, Montgomery, and Anderson-Cook
2009), which was highly influential in industrial engineering in
the 1980s and 90s.

The third strategy, Tolerance design, also aims at variation
reduction. Where robust design reduces σ 2

Y by selecting robust
settings for the control variables XC, in tolerance design we
reduce variation in the uncontrollable variables XU

j themselves.
Let

Y=β0+β1XU
1 +β2XU

2 +ε,

with XU
1 ∼N(μ1, σ 2

1 ), XU
2 ∼N(μ2, σ 2

2 ) and ε∼N(0,σ 2) indepen-
dent. Then σ 2

Y=β2
1σ 2

1 +β2
2σ 2

2 +σ 2. This shows us which of the
XU

j have the largest contribution to the variation in Y , which
depends on the variance σ 2

j of the XU
j and on their effects βj. It is

these dominant causes of variation that are prime candidates for
efforts to reduce variance. Variation in the XU

j is often controlled
by imposing tolerance limits on them. Models such as the one
above are used to evaluate a set of tolerance limits for each of
the XU

j and adjust them such that the resulting variance of Y is
acceptable.

Table 2 lists a fourth and a fifth standard solution pattern,
Decision optimization and Predictive control, which are not pri-
marily based on a causal Y=f (X) model, and for that reason will
be discussed in the next section.

3. Prediction Machines Based on Correlations

When Y=f (X) relations are modeled based on observational
(as opposed to experimental) data, they often do not make
a causal claim. Such models reflect the correlation structure
among variables. They can predict Y for the population from
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which the data were sampled, but they cannot predict the
effects of interventions (as we discuss below). Since most of
the solutions in Table 2 are based on interventions, the options
for solving problems based on correlational models are more
limited.

In machine learning and AI, models and algorithms that
develop a correlational predictive Y=f (X) model from obser-
vational data are called supervised learning. They include ran-
dom forests, support-vector machines, regularized regression
and neural networks. Typically, these models are much more
complex than the models used in traditional cause-and-effect
modeling, both in the number of X’s that they have and in
the number of model parameters. Random forests and neural
networks may have thousands or millions of parameters. This
allows them to handle high-dimensional data streams that have
emerged as sensors, storage and computing power have become
easily available. Such models are also better in handling non-
linear relationships, which makes them effective for modeling
Y=f (X) relationships where the X’s are not numerical variables,
but less structured information such as images and natural-
language text.

3.1. Stereotypical Examples

3.1.1. Predicting Passenger Numbers
A railway company develops an app that helps passengers find
empty seats in the train. At the heart of the application is a
correlational predictive model, that predicts the number Y of
passengers in a train compartment from measured CO2 levels
in the air and other X’s. CO2 is a good predictor for the number
of passengers, but it is not a causal influence factor: increasing
CO2 levels by artificially releasing extra CO2 would not increase
the number of passengers. The cause-and-effect mechanism is
actually the reverse, with passengers as causal influence and CO2
as the effect.

3.1.2. Predictive Maintenance
One of the challenges in maintenance of systems like trains is
timing when a component should be replaced. If the replace-
ment is scheduled too late, the component breaks down in the
field, which may result in very high costs. Therefore, compo-
nents are preferably replaced preventively, when this can be done
at a convenient moment and in a convenient place. However,
premature replacement wastes useful lifetime of the component,
so the preventive replacement should be scheduled as late as pos-
sible. Predictive maintenance is based on a model that predicts
when a breakdown is imminent, for example, by monitoring
a condition such as vibration patterns or the concentration of
ferrous particles in lubrication (Carden and Fanning 2004). In
our framework, the solution strategy is driven by a correla-
tional predictive model Y=f (XU), with Y the probability of a
breakdown in the next epoch, and XU a predictor such as a
vibration characteristic or particles concentration. The control-
lable variable XC is the timing of the replacement. We try to
minimize the total expected cost, which is a weighted average
of the cost of a breakdown in the field and the cost of a preven-
tive replacement (weighed by the probability that a breakdown
occurs).

3.2. Identifying the X’s

Before a model Y=f (X) can be fitted, we first need to iden-
tify potential predictors. Often in machine learning practice,
the data for fitting a model are assumed given, and the col-
lection of new data is deemed impossible or not needed (De
Veaux, Hoerl, and Snee 2016). Identifying the X’s, then, boils
down to selecting, merging, transforming and rescaling fea-
tures recorded in the available data sources into variables to be
used in the model-building effort, a task, that is, described as
Feature engineering in Table 1. Feature engineering is done by
human analysts, but the promise of deep-learning techniques
is that stacked neural networks can be trained to recognize
structure and features in raw data automatically, at least within
certain domains such as image recognition and natural-language
processing.

In addition to feature engineering, frameworks for data sci-
ence such as CRISP-DM (Chapman et al. 2000) recommend to
consult domain experts, which is similar to approach number 2
in Table 1 (Experiential knowledge). Domain experts may help
identify X’s not yet represented in available data sources, for
which it may yet be possible to obtain data either by initiat-
ing new measurements or by acquiring data sources in which
they are represented. Other approaches suggested in machine
learning are techniques such as principal-components analysis,
t-SNE and auto encoders, which facilitate the discovery of can-
didate X’s by revealing structure in data through clustering and
dimensionality reduction (James et al. 2013). Such techniques
for unsupervised learning are similar to Exploratory data analysis
(approach number 1 in Table 1).

3.3. Modeling the Y = f (X) Relationship

Random forests, neural networks, support-vector machines and
other models popular in machine learning do not make a causal
claim. The predictions are essentially based on the correlation
(association) structure of X and Y variables: high CO2 levels co-
occur with large numbers of passengers, but they do not cause
them, and ferrous particles may predict a breakdown, but they
do not cause it.

This has important ramifications for inference. First, the
model should be fitted on a representative dataset, in which
the correlation structure is representative for the correlations in
the target population (the universe of future observations that
the model is claimed to predict). This implies that, in general,
experiments are unsuited, since by deliberately setting the levels
of the X’s, they break the correlation structure among the X’s
and potentially the Y . For example, a randomized controlled
experiment studying the effect (sic) of CO2 on the number
of passengers would have the experimenter manipulate CO2
levels according to an experimental design, and then measure
the corresponding passenger numbers (note how inappropriate
the term effect is in this context of correlational modeling). By
manipulating the CO2 levels, their relationship with passenger
numbers is perturbed, and the algorithm cannot be used to pre-
dict passenger numbers in normal situations. Second, the fitted
model can only be trusted within the population from which
the dataset was sampled. The algorithm predicting passengers
from CO2 levels does not give reliable predictions for passenger
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numbers in different types of train compartments (or for aircraft
cabins, boat cabins, etc.).

Instead of causality, machine learning focuses on predictive
accuracy and generalizability (James et al. 2013). The latter refers
to the model’s predictive accuracy for a new dataset generated by
the same data generating mechanism. Machine learning uses a
variety of metrics for expressing predictive accuracy, such as the
mean-squared error MSE, the coefficient of determination R2,
or the precision and recall pair. To guard against the detrimental
effect overfitting has on generalizability, machine learning uses
the train-test split method and cross-validation to regulate a
model’s complexity.

3.4. Designing Solutions Based on Correlational Y = f (X)

Models

Correlation models do not support solutions based on interven-
tions in the X’s: the fact that lower CO2 levels co-occur with
lower passenger numbers does not imply that reducing the CO2
level would make the compartment less crowded. Correlation
models can only make predictions where all X’s were generated
by the same data-generating mechanism as in the target popula-
tion, with the same correlation structure among the X’s. Making
predictions about situations where the X’s are not generated
by the data-generating mechanism, but by an intervention by
the experimenter, is called counterfactual prediction (Hernan,
Hsu, and Healy 2019) or interventional inference (Pearl 2009).
Pearl (2009) also introduced the “do” notation to discriminate
between P(Y|X) (where both Y and X are generated by the data-
generating mechanism of the target population) and P(Y|do(X))

(where X is set by an intervention, such as a randomization
procedure in an experiment, or a problem solver setting it to
a specific value X=x0). Causal models allow the calculation
of P(Y|do(X)), whereas correlational models only allow the
calculation of P(Y|X). For this reason, correlational models are
not a sound basis for the first three solution patterns in Table 2
(response-surface optimization, robust design, and tolerance
design).

Business analytics and data science often conceptualize the
utility of predictive models in decision-theoretic frameworks,
where the utility of a predictive model is in informing decision
making. Thus, knowing the passenger numbers (and, conse-
quently, the availability of seats) in train compartments allows
passengers to make more informed decisions on where to look
for a seat. Let Yi be the number of available seats in compart-
ment i, which is predicted by Ŷi=f

(
XU

i
)
, with XU

i the (uncon-
trollable) CO2 in that compartment. The controllable variable
XC, here, is in which compartment a passenger will look for
a seat. A simple algorithm that tells passengers to go to the
compartment with the highest predicted number of available
seats (XC = arg maxi Ŷi) maximizes the probability to find an
available seat. Similarly, for maintenance planning, the value
function V

(
Y , XC, FU

)
is the inverse of the expected total cost.

The decision variable XC is the timing of the replacement, which
is optimized based on the predicted probability Y of a break-
down in the next epoch, which is predicted from a predictor XU

such as a vibration characteristic or particles concentration. In
Table 2, such solutions are called Decision optimization (pattern
no. 4).

The final pattern in Table 2 is Predictive control. The setting
here is that we aim to reduce variation in Y , for example, a
process variable that continues to drift away from its target
value. Predictive control combines a model that forecasts drifts
in Y with a causal model that informs us how to intervene and
compensate for the drift. Let

Y=β0+β1XU
1 +β2XC

2 +ε,

with XU
1 an uncontrollable random variable that causes Y to

drift away from target, and XC
2 a controllable variable that we

use to readjust the process. In a feedforward control mechanism,
we predict Y from the measured uncontrollable variable XU

1 . If
XU

1 deviates by �1= 1 from its nominal value, then the model
predicts that Y will deviate by �Y=β1 from its target, which
we compensate by an adjustment of �2= −β1

β2
in XC

2 of the
controllable variable. Note that, while the relationship between
XU

1 and Y does not need to be causal, but can be correlational, the
relationship between the adjustment variable XC

2 and Y needs to
be one of cause and effect.

Also feedback control is based on such adjustments by a
controllable variable XC

2 , but now the predicted �Y is not based
on a model relating it to variation in an uncontrollable variable
XU . Instead, the predicted �Y is based on an ARIMA or other
time-series model (Box, Jenkins, and Reinsel 1994). The output
value Yt at time t is predicted from output values at previous
time instants Yt−1, Yt−2, . . . . Equations for optimal adjustment
schemes have been derived in statistics (Box and Kramer 1992)
and control engineering (Åström and Hägglund 2001).

4. Deductive Relationships Y = f (X)

Optimizing the design of paper helicopters by empirically mod-
eling the Y=f (X) relations is a popular example in statistics.
Engineers, however, may object to such “black-box” approach,
and point out that much of the behavior of paper helicopters
could be derived from the laws of aerodynamics and other
physics theory. White-box or first-principles models are not based
on data, but are derived from theory. Also, gray-box or hybrid
models are partly derived from theory, and partly based on
empirical model-building. Annis (2005), for example, models
the behavior of paper helicopters by combining a deductive
analysis based on aerodynamics theory with empirical models
based on statistically designed experiments.

First-principles models follow the logic of Hempel’s
deductive-nomological theory (Hempel and Oppenheim
1948; Woodward 2019). This model was the culmination of
philosophy of science in the first half of the 20th century, and
championed by Karl Popper and Carl Hempel. It was an attempt
to capture scientific explanation in a framework that avoids the
concept of causality, but yet allows interventional prediction. In
the deductive-nomological framework, we start with universal
laws, such as the laws of physics, the laws of probability, or the
axioms of mathematics. Given a set of particular circumstances,
we then derive the phenomena to be explained or predicted
from the universal laws by mathematical deduction.

Laws typically do not specify a causal direction, but instead,
they state that the ratios of certain variables are constant, as in
the general gas law pV=cT (the product of the pressure and
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volume of an ideal gas is equal to its absolute temperature times
a constant). Since laws are universal (i.e., exceptionless), they
can be used, however, to predict the effect of an intervention.
From the general gas law, we can predict that if we heat up a
gas contained in a cylinder with a frictionless piston, its volume
will increase (the pressure remaining constant), thus preserving
the equality stated in the law. From the same law, we can also
predict that if we compress the gas, the temperature and/or the
pressure will go up (depending on the boundary conditions
imposed on the system). Note that in the second intervention
the causal direction is the reverse of the direction in the first
intervention, thus demonstrating that laws themselves do not
specify a causal direction. When used in analytical problem
solving, such conservation or differential equations models are
rewritten to reflect that some characteristics are outcomes (Y),
taking the remaining characteristics as independent variables
(X).

After the 1960s, the deductive-nomological model was seen
more and more as an idealized rather than realistic version
of scientific explanation, although it seems to apply rather
well to modern physics. Both causal and deductive models are
explanatory models, as they give understanding by showing how
observed phenomena were to be expected as consequences of
either a cause-and-effect mechanism or a universal law (Kitcher
1998; Woodward 2019).

4.1. Stereotypical Examples

4.1.1. Optimizing Appointment Schedules
Too tight scheduling of appointments (e.g., in outpatient clinics)
results in congestion and waiting queues. If the appointment
time slots are too long, however, the service provider may be
idle too often. The goal is to achieve a good balance between
expected waiting time for customers and idle time for service
providers by optimizing the appointment times (Kuiper et al.
inpress). The relation between expected waiting and idle time
(the Y ’s) and the appointment times (XC), given unpredictability
in service times, no-shows and random walk-ins (the XU), could
be determined empirically by running an experiment (causal
modeling) or by training a machine-learning algorithm on a his-
torical dataset (correlational model). But given the distribution
of the service times, the expected waiting and idle time implied
by any combination of appointment times can be deduced from
probability theory, and this is what most OR experts would
do. This is an explanatory model in the deductive-nomological
framework, where the mean waiting and idle times are derived
from queueing theory (universal laws) and the service-time
distribution and a set of appointment times (particular circum-
stances).

4.1.2. Bin-Packing Problems
The objective in bin-packing problems (Korte and Vygen 2006)
is to pack N items of various, known volumes into K bins,
whose volumes are also given, using as few bins as possible.
In this classic OR problem, a solution is an allocation XC

i ∈
{1, . . . , K} the bin number to which item i is assigned. A fea-
sible solution is a solution where the sum of the volumes of
the assigned items per bin does not exceed the volume of that

bin. The Y variable is the number of bins used in a solution,
Y

(
XC

1 , . . . , XC
N
) = n-unique(XC

1 , . . . , XC
N), and the objective is

to find
(
x0

1, . . . , x0
N
) = arg min Y(XC

1 , . . . ,XC
N). Note that in this

problem, the identification of the X’s and the modeling of their
relationship with Y are not driven by data. Instead, it is rather
straightforward to derive the Y=f (X) relationship from math-
ematics. The nontrivial part of this problem is, given Y=f (X),
finding the optimum

(
x0

1, . . . , x0
N
)
. Where finding an optimal

set of appointment times requires the optimization of a convex
function (Kuiper et al. in press), the computation of an optimal
allocation of items to bins is NP-hard, which means that solving
the problem is at least as hard as the hardest problems in NP. This
in turn means that there is no known algorithm that computes
an optimal feasible solution in polynomial time. The challenge
is to find an algorithm that finds an optimal feasible solution in
acceptable computation time for as many instances as possible
and a near-optimal feasible solution for the other instances.

4.2. Identifying the X’s and Modeling the Y = f (X)

Relationship

The Y=f (X) relationship is not empirically modeled from a
dataset consisting of observed (X, Y) tuples. Instead, the rela-
tionship is derived by deductive reasoning from an axiomatic
theory, such as queueing theory, the laws of physics, or combi-
natorial mathematics.

Sometimes it is possible to fully derive the Y=f (X) func-
tion analytically from premises, mathematics and laws. When
this becomes intractable, however, one approach is to resort
to approximations. For example, the relation between wait-
ing and idle times and appointment times can be determined
by approximating the probability distributions of the service
times by phase-type distributions (which are convolutions of
the exponential distribution and, therefore, analytically conve-
nient; Kuiper et al. in press). Alternatively, one could develop
a simulation model that relates Y to X values. Discrete-event
simulation is often used to obtain the expected waiting and idle
time for given appointment times (Ahmadi-Javid, Jalali, and
Klassen 2017).

Note that data are not used to model the relationship between
X and Y , although you may need some data to estimate some
constants in the equations. For example, laws that relate waiting
and idle time to appointment times typically have constants
such as the coefficient of variation of the service times, which
you would need to estimate from data. Nondata-driven model
building is standard practice in OR and business analytics. On
the one hand, if it is possible to reduce the behavior of a system
to a logical consequence of a set of universal laws, you could
say that this gives a superior sense of understanding than an
ad-hoc empirical model fitted in isolation. This thought may
capture the uneasiness sometimes expressed by mathematicians
and engineers about models fitted empirically. Also, Schölkopf
et al. (2021) argue that models derived from first principles
generalize better across different environments and tasks. On
the other hand, Den Hertog and Postek (2016) and Simchi-
Levi (2014) appeal to the OR community to become more data
driven, and they argue for the advantages of empirical model
building, especially when it is difficult to derive complex and
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hidden constraints and relations from theory alone, or when the
complexity of the system under study makes deductive model
building unwieldy.

4.3. Designing Solutions Based on Deductive Y = f (X)

Models

Although deductive models may not directly appeal to causality,
their being derived from universal laws warrants using them to
make interventional predictions. Therefore, they are a solid basis
for any of the solution patterns in Table 2.

In response-surface modeling, the final model is
usually a lower-order polynomial. Finding the optimum
X0= arg maxX1,...,Xk μ̂Y (X1, . . . , Xk), then, can be done in
polynomial time. Finding an optimal allocation of items to bins
in the bin-packing problem is an example of a much harder
optimization problem, where there is no known polynomial-
time algorithm to compute an optimal solution. Business
analytics and OR discern several classes of computational
complexity of solving such optimization problems, such as
P, NP and PSPACE (Arora and Barak 2009). When there is
no known polynomial-time algorithm, the challenge is to
identify an algorithm that finds an optimal or near-optimal
feasible solution in acceptable computation time. A widely
employed approach to meet this challenge uses heuristics.
For example, for the bin-packing problem the literature offers
a rich edifice of heuristics and approximation algorithms
such as the Harmonic-k algorithm (Lee and Lee 1985). More
general methods like Mixed Integer Programming (Wolsey
1998), Constraint Programming (Baptiste, Le Pape, and Nuijten
2001), Local Search, and Large Neighborhood Search (Godard,
Laborie, and Nuijten 2005) are used to solve NP-hard problems.

Models deduced from first-principles theory may be fully
deterministic, as in the bin-packing problem. This means that
the model’s terms do not include random variables, and the
model’s “predictions” (for lack of a better word), therefore, are
a fixed value for Y . Other models do contain random compo-
nents, either because some of the X’s are random variables or
because the model contains a random error term. The model,
then, does not return a fixed Y value, but parameters of its
distribution FY such as the mean μY , the variance σ 2

Y or the
probability P(tl≤Y≤tu) that Y is within its tolerance limits. In
the appointment-scheduling problem, the service times as well
as the arrivals of clients are random variables, and consequently,
the model does not predict fixed waiting and idle times, but
their means. The classical bin-packing problem treats the items’
volumes as fixed and given, but a more realistic version of the
problem acknowledges that the volumes are subject to random
measurement error, and this could be incorporated as a random
component in the problem’s modeling.

5. Discussion and Conclusions

We have discussed three frameworks for analytical problem
solving in business and industry: cause-and-effect modeling,
correlational predictive modeling, and deductive modeling.
Below, we recapitulate relevant differences between these three

types of modeling, and flesh out their implications for the
problem-solving process.

5.1. Essential Differences Between the Three Types of
Models

The differences between causal, correlational and deductive
models have consequences for the design of the analysis and for
the solution strategy.

5.1.1. Appropriate Study Design for the Analysis
The first essential difference is the type of study or data needed to
establish the Y=f (X) relation. For causal models, experiments
are ideal, and the validity of models based on such studies hinges
on the proper application of the principles of experimental
design, such as randomization, blocking and replication (Box
and Draper 1987). Observational studies could be used provided
that these can be augmented to warrant causal inference, for
example, using structural causal modeling (Lederer et al. 2019;
Pearl 2009).

For correlational predictive models, experiments are gener-
ally unsuited, as they disrupt the correlation structure, and you
need observational data sampled from a data-generating mech-
anism that is representative for the target population. Careful
definition of the target population and an appropriate sampling
mechanism make or break the validity of such models (MacKay
and Oldford 2000; De Veaux, Hoerl, and Snee 2016).

Mathematical deductive models are not based on statistical
studies, whether experimental or observational, but instead are
derived from axiomatic theory. The challenge here is in finding
a model that is simple enough to be tractable, and at the same
time complex enough to capture essential characteristics and
produce useful predictions. Typical strategies to make complex
relations tractable include approximation and simulation. When
the complexity of the system under study makes analytical mod-
eling problematic, or when theory and first principles are not
complete enough to derive complex constraints and relations,
problem solvers should consider resorting to experimental or
observational studies to model all or part of the relationships
(Den Hertog and Postek 2016).

5.1.2. Type of Solution Strategy
The second essential difference between the three types of mod-
els, is which solution strategies they support. Causal models and
deductive models allow interventional predictions (i.e., predic-
tions in “what if ” scenarios), and therefore are a good basis for
optimizing settings for the XC parameters, such as determining
an optimal combination of settings for the design parameters of
paper helicopters, or optimal appointment times in a schedule.
The first three solution patterns in Table 2 (response-surface
optimization, robust design, and tolerance design) need a causal
or deductive model.

Solution patterns 4 and 5 (decision optimization and pre-
dictive control) can be based on either a causal or deductive
model, or a correlational model. Correlational models, such as
a supervised learning model from machine learning, may often
have an edge here. Namely, when it comes to predictive accuracy,
causal and deductive models are often outperformed by the more
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Table 3. Overview of the process of analytical problem solving.

1. Find Y (“What are the relevant outcome variables?”)

2. Find X (“What are relevant independent variables?”)

Causal model Correlational model Deductive model
• Exploratory data analysis
• Experiential knowledge
• Hierarchical elimination studies

• Exploratory data analysis (unsupervised
learning)

• Experiential knowledge
• Feature engineering

• Deduction from theory

3. Find FY and FU (“What is the current state?”)

4. Find Y=f (X) (“How are Y and X related?”)

Causal model Correlational model Deductive model
• Randomized controlled experiments
• Structural causal modeling based on

observational data

• Observational study (supervised learning),
based on representative sample from target
population

• Deductive derivation from axiomatic theory
• Approximation
• Simulation

5. Find V(Y , XC , FU) (“What is the objective?”)

6. Find max V(Y , XC ,FU) (“How will we solve the problem?”)

Causal model Correlational model Deductive model
• Response-surface optimization
• Robust design
• Tolerance design
• Decision optimization
• Predictive control

• Decision optimization
• Predictive control

• Response-surface optimization
• Robust design
• Tolerance design
• Decision optimization
• Predictive control

complex predictive models used in machine learning, which can
use any measurable feature as a potential predictor, whether its
relationship with Y is causal or not.

Thus, the choice between a causal, correlational or deductive
model could be driven by the type of solution strategy that one
aims for, which in turn will then determine what sort of study is
needed to establish the Y=f (X) model. Reversely, it could also
be the (im)possibilities to collect data that drive the choice for
a type of model, which then in turn may limit the options for a
solution strategy. Namely, if randomized controlled experiments
are not feasible, and if it is not possible to collect observational
data suitable for causal inference, this rules out causal modeling.
If the system under study is too complex to be approximated
well by deductions from first principles, this makes a deduc-
tive approach unwieldy. And if representative data are unavail-
able and cannot be gathered by doing experiments, deriving
the Y=f (X) model deductively from theory may be the only
option.

Table 3 places the three types of Y=f (X) models and their
essential differences in the context of the process of problem
solving. The literature proposes many models for the process
of analytical problem solving and the tasks that it comprises.
These models range from practical models, such as Six Sigma’s
DMAIC model in operations improvement and industrial engi-
neering (De Mast and Lokkerbol 2012) and CRISP-DM in data
science (Chapman et al. 2000), and models in the academic
literature, including Smith (1988) and Marksberry, Bustle, and
Clevinger (2011). The online supplemental material discusses
the problem-solving tasks enumerated in Table 3 in more detail,
linking the table to the academic literature.

5.2. Descriptive, Predictive and Prescriptive Analytics

Gartner (Lepenioti et al. 2020) and Davenport and Harris (2017)
popularized the widely embraced categorization of problems
into descriptive, predictive and prescriptive analytics. We believe

that our account has the potential to clarify what sort of analytics
tasks these categories involve, and where this framework should
be augmented in order for it to reflect essential differences
between various types of analytics.

Descriptive analytics, characterized by Davenport and Harris
(2017) by questions such “What happened?,” “How many, how
often, when?” and “What exactly is the problem?,” are problems
involving some or all of the tasks 1, 2, and 3. in Table 3, and they
seek to describe the current state, summarize or identify relevant
outcomes, or link them to independent variables. In the process
of analytical problem solving, this is a preliminary stage, where a
problem is identified and defined in terms of X and Y variables.

Predictive analytics involve the establishment of a Y=f (X)

model as in task 4. in Table 3. This may be a correlational pre-
dictive model, which bases predictions on correlations between
predictors and outcomes. It could also be an explanatory model,
which grounds predictions in an understanding of why things
happen by relating outcomes either to their causes (cause-and-
effect model) or to the laws from which they can be derived
(deductive model). Establishing an explanatory Y=f (X) model
as a prelude to prediction is called diagnostic analytics in the
Gartner model.

Prescriptive analytics refers to tasks 5. and 6. in Table 3 (deter-
mine the objective and design a solution strategy). Davenport
and Harris (2017) mainly seem to have interventional solutions
in mind, described as “experimental design” and “optimization”
by them, which are equivalent to our response-surface optimiza-
tion, robust design and tolerance design. Note that solutions
may also be reactive, as in decision optimization and predictive
control, and these strategies do not require a causal or deductive
model.

5.3. Conclusions

The discussion in this article showcases the diversity of the ana-
lytical and statistical disciplines, and we have emphasized their
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complementarity. The statistical sciences bring to the table con-
cepts and techniques for modeling and inference under uncer-
tainty and stochasticity. Machine learning and statistical learn-
ing offer powerful algorithms for correlational predictive model-
ing. Applied statistics has traditionally focused on causal model-
ing and sophisticated experimentation strategies (although also
many models in applied statistics are correlational). Business
analytics and OR bring a rich edifice of techniques for “hard”
optimization tasks, as well as frameworks for structuring the
problem-solving process.

The word analysis means: an investigation of the component
parts of a whole and their relations in making up the whole.
Analytical problem solving revolves around the idea to relate the
behavior of an outcome Y to the factors that cause or at least
predict it and then design a solution informed by these Y=f (X)

relationships. This mirrors the traditional motto of empirical
research, the purpose of which is often described as to explain
empirical phenomena, which allows us to predict and therefore
control them (see typical introductions into empirical research,
such as Kerlinger and Lee 2000). This traditional notion has
gotten competition from purely correlational, nonexplanatory
models, which are unsuited for interventional solution strate-
gies, but which allow solutions driven by decision optimization
and predictive control.

Funding

Stefan Steiner acknowledges support from the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada Discovery grant program
(grant # 105240).

References

Ackoff, R. L., and Vergara, E. (1981), “Creativity in Problem Solving and
Planning: A Review,” European Journal of Operational Research, 7, 1–13.
[52]

Ahmadi-Javid, A., Jalali, A., and Klassen, K. (2017), “Outpatient Appoint-
ment Systems in Healthcare: A Review of Optimization Studies,” Euro-
pean Journal of Operational Research, 258, 3–34. [57]

Annis, D. H. (2005), “Rethinking the Paper Helicopter: Combining Statisti-
cal and Engineering Knowledge,” The American Statistician, 59, 320–326.
[56]

Arora, S., and Barak, B. (2009), Computational Complexity: A Modern
Approach, Cambridge: Cambridge University Press. [58]

Åström, K. J., and Hägglund, T. (2001), “The Future of PID Control,” Control
Engineering Practice, 9, 1163–1175. [56]

Baptiste, P., Le Pape, C., and Nuijten, W. (2001), Constraint-Based Schedul-
ing: Applying Constraint Programming to Scheduling Problems, New York:
Springer. [58]

Box, G. E. P., and Kramer, T. (1992), “Statistical Process Monitoring and
Feedback Adjustment: A Discussion,” Technometrics, 34, 251–267. [56]

Box, G. E. P., and Liu, P. Y. T. (1999), “Statistics as a Catalyst to Learning by
Scientific Method, Part I – An Example,” Journal of Quality Technology,
31, 1–15. [52]

Box, G. E. P., and Draper, N. R. (1987), Empirical Model-Building and
Response Surfaces, London: Wiley. [54,58]

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994), Time Series Analysis,
New Jersey: Prentice Hall. [56]

Breiman, L. (2001), “Statistical Modelling: The Two Cultures,” Statistical
Science, 16, 199–231. [51]

Carden, E. P., and Fanning, P. (2004), “Vibration Based Condition Monitor-
ing: A Review,” Structural Health Monitoring, 3, 355–377. [55]

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. R.,
and Wirth, R. (2000), CRISP-DM 1.0: Step-by-step Data Mining Guide,
The CRISP-DM Consortium. [55,59]

Chittaro, L., and Ranon, R. (2004), “Hierarchical model-Based Diagnosis
Based on Structural Abstraction,” Artificial Intelligence, 155, 147–182.
[53]

Davenport, T., and Harris, J. (2017), Competing on Analytics: The New
Science of Winning (updated ed.), Boston, MA: Harvard Business School
Press. [59]

De Mast, J. (2011), “The Tactical Use of Constraints and Structure in
Diagnostic Problem Solving,” Omega, 39, 702–709. [53]

(2013), “Diagnostic Quality Problem Solving: A Conceptual Frame-
work and Six Strategies,” Quality Management Journal, 20, 21–36.
[51,53]

De Mast, J., and Kemper, B. P. H. (2013), “Principles of Exploratory Data
Analysis: What Can We Learn From a Well-Known Case?,” Quality
Engineering, 21, 366–375. [53]

De Mast, J., and Lokkerbol, J. (2012), “An Analysis of the Six Sigma DMAIC
Method from the Perspective Of Problem Solving,” International Journal
of Production Economics, 139, 604–614. [51,59]

De Veaux, R. D., Hoerl, R. W., and Snee, R. D. (2016), “Big Data and
the Missing Links,” Statistical Analysis and Data Mining, 9, 411–416.
[54,55,58]

Den Hertog, D., and Postek, K. (2016), “Bridging the Gap Between Pre-
dictive and Prescriptive Analytics—New Optimization Methodology
Needed,” Research Report, Tilburg University. [51,52,57,58]

Derringer, G., and Suich, R. (1980), “Simultaneous Optimization of Several
Response Variables,” Journal of Quality Technology, 12, 214–219. [54]

Estrada-Flores, S., Merts, I., De Keterlaere, B., and Lammertyn, J. (2006),
“Development and Validation of “Grey-Box” Models for Refrigeration
Applications: A Review of Key Concepts,” International Journal of Refrig-
eration, 29, 931–946. [52]

Godard, D., Laborie, P., and Nuijten, W. (2005), “Randomized Large Neigh-
borhood Search for Cumulative Scheduling,” Proc. 15th International
Conference on Automated Planning and Scheduling (ICAPS 05), pp. 81–
89. [58]

Goos, P., and Jones, B. (2011), Optimal Design of Experiments: A Case Study
Approach, London: Wiley. [53]

Hempel, C., and Oppenheim, P. (1948), “Studies in the Logic of Explana-
tion,” Philosophy of Science, 15 135–175. [56]

Hernan, M. A., Hsu, J., and Healy, B. (2019), “A Second Chance to Get
Causal Inference Right: A Classification of Data Science Tasks,” Chance,
32, 42–49. [51,54,56]

Hoerl, R. W., and Vining, G. G. (2020). “The Journey to Establish the Dis-
cipline of Statistical Engineering,” Applied Statistical Models in Business
and Industry,1–12. [51]

Holland, P. W. (1986), “Statistics and Causal Inference,” Journal of the
American Statistical Association, 81, 945–960. [52,53]

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013), An Introduction
to Statistical Learning, New York: Springer. [55,56]

Juran, J. M. (1998), “The Quality Improvement Process,” in Juran’s Quality
Handbook (5th ed.), eds. J. M. Juran, A. B. Godfrey, New York: McGraw-
Hill, pp. 51–74. [51]

Kackar, R. N. (1985), “Off-Line Quality Control, Parameter Design and the
Taguchi Method” (with discussion), Journal of Quality Technology, 17,
176–209. [54]

Kerlinger, F. N., and Lee, H. B. (2000), Foundations of Behavioral Research
(4th ed.). Fort Worth, TX: Harcourt College Publishers. [60]

Kitcher, P. (1998). “Explanation,” in Routledge Encyclopedia of Philosophy,
ed. E. Craig, (vol. 3), London:Routledge. [57]

Korte, B., and Vygen, J. (2006), “Bin-Packing,” in Combinatorial Optimiza-
tion: Theory and Algorithms (chap. 18), New York: Springer. [57]

Kuiper, A., Mandjes, M., De Mast, J., and Brokkelkamp, R. (in press), “A
Flexible and Optimal Approach for Appointment Scheduling in Health-
care,” Decision Sciences Journal. DOI: 10.1111/deci.12517. [57]

Lederer, D. J., Bell, S. C., Branson, R. D., Chalmers, J. D., Marshall, R.,
Maslove, D. M., Ost, D. E., Punjabi, N. M., Schatz, M., Smyth, A. R., and
Stewart, P. W. (2019), “Control of Confounding and Reporting of Results
in Causal Inference Studies,” Annals of the American Thoracic Society, 16,
22–28. [54,58]

Lee, C. C., and Lee, D. T. (1985), “A Simple On-Line Bin-Packing Algo-
rithm,” Journal of the ACM, 32, 562–572. [58]

https://doi.org/10.1111/deci.12517


THE AMERICAN STATISTICIAN 61

Lepenioti, K., Bousdekis, A., Apostolou, D., and Mentzas, G. (2020), “Pre-
scriptive Analytics: Literature Review and Research Challenges,” Inter-
national Journal of Information Management, 50, 57–70. [52,59]

MacDuffie, J. P. (1997), “The Road to ‘Root Cause’: Shop-Floor Problem-
Solving at Three Auto Assembly Plants,” Management Science, 43, 479–
502. [51]

MacKay, R. J., and Oldford, R. W. (2000), “Scientific Method, Statistical
Method, and the Speed of Light,” Statistical Science, 15, 254–278. [58]

MacKay, R. J., and Steiner, S. H. (1997), “Strategies for Variability Reduc-
tion,” Quality Engineering, 10, 125–136. [53,54]

Marksberry, P., Bustle, J., and Clevinger, J. (2011), “Problem Solving for
Managers: A Mathematical Investigation of Toyota’s 8-Step Process,”
Journal of Manufacturing Technology Management, 22, 837–852. [59]

Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M. (2009),
Response Surface Methodology: Process and Product Optimization Using
Designed Experiments (4th ed.), London: Wiley. [54]

Pearl, J. (2009), “Causal Inference in Statistics: An Overview,” Statistical
Surveys, 3, 96–146. [52,54,56,58]

Pearl, J., and MacKenzie, D. (2018), The Book of Why—The New Science of
Cause and Effect, New York: Basic Books. [53,54]

Rubin, D. (1974), “Estimating Causal Effects of Treatments in Randomized
and Nonrandomized Studies,” Journal of Educational Psychology, 66,
688–701. [52]

(2005), “Causal Inference Using Potential Outcomes,” Journal of the
American Statistical Association, 100, 322–331. [52]

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal,
A., and Bengio, Y. (2021), “Towards Causal Representation Learning,”
Proceedings of the IEEE, 109, 612–634. [57]

Shainin, R. (1993), “Strategies for Technical Problem Solving,” Quality
Engineering, 5, 433-448. [53]

Shmueli, G. (2010), “To Explain or to Predict?,” Statistical Science, 25, 289–
310. [51]

Simchi-Levi, D. (2014), “OM Research: From Problem-Driven to Data-
Driven Research,” Manufacturing and Service Operations Management,
16, 2–10. [57]

Smith, G. F. (1988), “Towards a Heuristic Theory of Problem Structuring,”
Management Science, 34, 1489–1506. [51,59]

(1998), “Determining the Cause of Quality Problems: Lessons from
Diagnostic Disciplines,” Quality Management Journal, 5, 24-41. [51]

Steiner, S. H., MacKay, R. J., and Ramberg, J. S. (2008), “An Overview of the
Shainin System for Quality Improvement,” Quality Engineering, 20, 6–19.
[51]

Wolsey, L. A. (1998), Integer Programming, New York: Wiley. [58]
Woodward, J. (2019), “Scientific Explanation,” in The Stanford Encyclopedia

of Philosophy (Winter 2019 ed.), ed. E. N. Zalta, Stanford, CA: Stan-
ford University, available at https://plato.stanford.edu/archives/win2019/
entries/scientific-explanation. [56,57]

World Economic Forum (2020), The Future of Jobs Report 2020, Geneva:
WEF. [51]

https://plato.stanford.edu/archives/win2019/entries/scientific-explanation
https://plato.stanford.edu/archives/win2019/entries/scientific-explanation

	Abstract
	1.  Introduction
	1.1.  Three Frameworks for Analytical Problem Solving
	1.2.  Purpose of the Article
	1.3.  Analytical Problem Solving

	2.  Problem Solving Based on Cause-and-Effect Relations
	2.1.  Stereotypical Examples
	2.1.1.  Paper Helicopters
	2.1.2.  Variation Reduction

	2.2.  Identifying the X's
	2.3.  Modeling the Y=f(X) Relationship
	2.4.  Designing Solutions Based on Causal Y=f(X) Relationships

	3.  Prediction Machines Based on Correlations
	3.1.  Stereotypical Examples
	3.1.1.  Predicting Passenger Numbers
	3.1.2.  Predictive Maintenance

	3.2.  Identifying the X's
	3.3.  Modeling the Y=f(X) Relationship
	3.4.  Designing Solutions Based on Correlational Y=f(X) Models

	4.  Deductive Relationships Y=f(X)
	4.1.  Stereotypical Examples
	4.1.1.  Optimizing Appointment Schedules
	4.1.2.  Bin-Packing Problems

	4.2.  Identifying the X's and Modeling the Y=f(X) Relationship
	4.3.  Designing Solutions Based on Deductive Y=f(X) Models

	5.  Discussion and Conclusions
	5.1.  Essential Differences Between the Three Types of Models
	5.1.1.  Appropriate Study Design for the Analysis
	5.1.2.  Type of Solution Strategy

	5.2.  Descriptive, Predictive and Prescriptive Analytics
	5.3.  Conclusions

	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Adobe Gray - 20% Dot Gain)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.20
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.20
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ([Based on 'TandF-preview-FP'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


