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Crosstalk-Free Excitation Scheme for
Quantitative OH Laser-Induced Fluorescence
in Environments Containing Excited CO

Maik Budde1,2 and Richard Engeln1

Abstract
Spectral overlap in the single-photon laser-induced fluorescence between the 3064 Å system of OH and the third positive
system of CO is detected in a highly-excited environment, namely, a CO2-H2O plasma. The overlap is distorting excitation and
fluorescence spectra as well as fluorescence time decays of commonly used excitation transitions of OH. As a consequence,
systematic errors are introduced into the determination of temperatures, gas compositions, and absolute number densities. The
P1(2) transition is proposed to circumvent the distortion while still allowing for quantitative measurements due to the
availability of non-radiative rate coefficients.
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Introduction

The hydroxyl radical OH is relevant in various fields of re-
search, e.g. from atmospheric processes1 and plasma medi-
cine2 over to combustion3 and plasma conversion,4 due to its
high reactivity. Among the diagnostic techniques used to
detect OH, laser-induced fluorescence (LIF) spectroscopy has
been proven to be a powerful method to measure OH space-
and time-resolved even in challenging environments.5–7

Besides absolute number densities, in case of a proper
calibration, further quantitative measurements like the con-
version of an input gas or the rotational temperature of OH
are possible.4,8 The quantification of LIF experiments is based
on the simulation of experimental outcomes like the time-
dependent decay of the emitted fluorescence after laser
excitation, that is, the fluorescence pulse, or the spectrally
resolved fluorescence spectrum.9–11 Models used for that
purpose delicately rely on the used state-to-state-dependent
rate coefficients for collisional processes.

Particularly, OH LIF is a special case since commonly used
exciting lasers with nanosecond pulse duration have narrow
band widths allowing to populate a single rotational level in the
electronically excited state.12 This nascent rotational distri-
bution can become a Boltzmann distribution if redistribution
across the other rotational levels by a sufficient number of
rotational energy transfer collisions occurs before the excited
state is depopulated by (non-)radiative processes. Depending
on whether the rotational distribution is thermalized, that is,
Boltzmann, or not yet, thermal13 or non-thermal12 rate

coefficients must be used, due to the state-to-state depen-
dence of these coefficients. In conclusion, an important aspect
in the selection of a LIF excitation scheme, when striving for
quantitative measurement, is the availability of (non-)thermal
rate coefficients.

Another crucial consideration in the selection of a certain
transition for excitation or as observable in the experiment is
potential overlap with the absorption or emission of other
(excited) species, respectively. Usually, such overlap is
complicating the analysis of data and must thus be circum-
vented if possible, for example, by selecting another transition.

One molecule that is often encountered together with OH
is carbon monoxide, for example, in combustion3 or CO2

plasma conversion research.5,14 Their coexistence is not only
important from a chemical point of view, for example, due to
their exothermic reaction CO+OH → CO2+H

15 but also
from a spectroscopic point of view, that is, due to the spectral
overlap in particular excitation schemes of both species.
The spectral overlap in the excitation of the 3064 Å system
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of OH (single-photon) and the fourth positive system of
CO (two-photon) with laser radiation around 283 nm is
known. Nevertheless, the different resulting fluorescence
wavelengths permit crosstalk-free measurements of both
molecules with the same laser.3,16 Similar issues with other
CO systems are not discussed in literature. In particular,
studies on laser excitation of the CO third positive system
(TPS) CO{a3Π}↔CO{b3Σ+} are scarce. The available
studies tend to report single-photon LIF on the TPS even
though the lower triplet state CO{a3Π} is populated
through absorption of at least one more laser photon
beforehand, for example, in 2+1 multiphoton ionisation
experiments.17,18

In the present study, we demonstrate spectral crosstalk
between the 3064 Å system of OH and the TPS of CO not
only in the excitation wavelength, that is, around the P1(3)
line of OH at 2830.93 Å but also in the wavelength range of
detection, that is, from 305 nm to 320 nm containing the
(0,0) and the (1,1) band,9 and the systematic error intro-
duced with improper consideration of the overlap. Fur-
thermore, real single-photon LIF on the CO TPS is shown
because the CO{a3Π} population apparently is sufficient
without the need for an additional pumping laser. Eventually,
a method to still measure OH quantitatively without spectral
crosstalk is proposed. For clarity throughout this letter we
use curly braces { } for states and transitions of CO while
brackets ( ) are used for OH. The given wavelengths are
vacuum wavelengths.

Demonstration of the Spectral Overlap Between OH
and CO

In Fig. 1, the excitation spectra are shown. These spectra are
recorded in a glow discharge in CO2 to which different
amounts of water are added. The setup used to record these
spectra has been described in detail elsewhere;19 hence only
the most important components, namely, the exciting laser
and the plasma source, are recapped here. The exciting laser
is a dye laser (Sirah Cobra Stretch) filled with rhodamine 590
dye dissolved in ethanol which is pumped by the second
harmonic of a neodymium-doped yttrium aluminum garnet
(Nd:YAG) laser (Spectra Physics Quanta Ray Pro 290–30).
The resulting laser radiation is frequency-doubled to obtain
tunable radiation around 283 nm. The laser light passes in
axial direction through the glow discharge reactor that
consists of a 23 cm long Pyrex tube with 2 cm inner diameter.
A plasma is ignited by applying a pulsed voltage (5 ms on,
11.67 ms off) with a high-voltage amplifier (Trek 10/40A-HS)
yielding a discharge current of 50 mA. The pressure in the
reactor is kept constant at 6.67 mbar by providing CO2 gas
(Linde 4.5 Instrument, 99.995%) through mass flow con-
trollers (Bronkhorst F-201CV) either in dry condition or
enriched with water by guiding the gas stream through a
controlled evaporator mixer (Bronkhorst W-101A). By
mixing dry and humid gas streams different water admixtures

are realized. Fluorescence is collected under a 90° angle with
respect to the laser, dispersed in a spectrometer (Andor
Shamrock SR-303i) and detected temporally resolved with a
photomultiplier tube (PMT) (Hamamatsu H11526-20-NF).

The distortion of the OH laser-induced fluorescence signal
is shown with the aid of the excitation spectra in Fig. 1. The
spectra are obtained by scanning the excitation laser wave-
length while keeping the detection window, selected with the
spectrometer, constant around 305 nm–320 nm. For each
laser wavelength the time-dependent fluorescence pulse is
measured with the PMT. Integration of the pulse over time
gives the corresponding point in the excitation spectrum.

In Fig. 1 the amount of admixed water is changed from 20%
to 0.1%. An admixture of < 0.1% corresponds to residual
water. The results of the measurements presented in this
letter are not aiming for quantitative reproducibility but for
illustrating the spectral distortion which is also why signal
strength is favored over maintaining LIF linearity with laser
energy per pulse. With small amounts of residual water it is
fortunately still possible to identify the underlying excitation

Figure 1. Excitation spectra for conditions with different amounts
of water admixed to the CO2 glow discharge. The laser is fired
while the plasma is on a) or when it is off b). The labels at the bottom
of b) indicate conventionally used OH transitions. Transitions of the
CO TPS are identified in (a).27,28
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spectra of OH. The scaling and smoothing (second-order
Savitzky–Golay with seven-point window) of the spectra fa-
cilitates the comparison of the overall spectral shape.

For the measurements in Fig. 1a, the delay between laser
shot and plasma pulse is set such that the plasma is on when
the laser is fired. Hence, electron impact can still lead to
excitation and formation of species. On the other hand, all
measurements in Fig. 1b are obtained while the plasma is off.
Thus, only species with a lifetime in the millisecond range, like
OH apparently, can be observed.

For large water admixtures, that is, the yellow line in both
figures, the plasma is clearly dominated by OH. The spectra
inside and outside the plasma look nearly identical, exhibiting
the clear features of an OH excitation spectrum in the
temperature range below 1500 K.20 With decreasing water
admixture many new lines appear, some of them overlapping
with the OH lines. It is important to point out that the peaks in
the excitation spectrum are indeed caused by interaction with
the laser and are not a consequence of plasma emission. The
latter would result in a baseline shift in the measured PMT
signal that is corrected for in the data processing.

When comparing the newly occurring lines at lower water
content with the line positions of the most prominent species
in a CO2–H2O glow discharge, it turns out that these lines
coincide with transitions in the third positive system of CO,
see the line assignments in Fig. 1a.21,22,27,28 In particular, a
number of CO lines is overlapping strongly with the P1(3) line
of OH at 2830.93 Å.9,21 The labeling of the CO lines is not
consistent between Asundi and Richardson, and Dieke and
Mauchly since the former identified them as quintets while the
latter argues that they are triplets.27,28 For the argumentation
here it is sufficient though to attribute the lines to the COTPS.
Additionally, the detection range from 305 nm to 320 nm that
is used to detect the (0,0) and the (1,1) band of OH overlaps
with the {0,2} band head of the CO TPS at 3131.47 Å.9,21 The
hypothesis that LIF on the CO TPS is observed, is further
corroborated in the Supplemental Material.

Apparently, the used glow discharge is a quite unique
environment with significant production of CO{a3Π} com-
pared to other types of plasma. This would explain why the
overlap with OH has, to our knowledge, not been reported in
literature before, for example, in a nanosecond repetitively
pulsed plasma for CO2 dissociation in the presence of water.

5

This theory is supported by recent studies in a comparable
glow discharge with experiments indicating the impact of CO
{a3Π} on the behavior of the discharge23 and modeling results
proving it.24,25 Nevertheless, the prominent observability of
the distortion in the used glow discharge does not detract
from the importance in other excited environments, where
the influence of CO is less obvious.

Furthermore, Fig. 1b clearly proves that de facto single-
photon LIF in the CO TPS is observed. No distortion of the
excitation spectrum is noticed when the plasma is ex-
tinguished. Therefore, two-photon excitation followed by
intersystem crossing as observed by Mosburger and Sick

can be excluded.16 That process starts from the ground
state and should hence be more pronounced in the plasma-
off time. It must be stressed that the distortion-free fluo-
rescence in Fig. 1b is due to the absence of CO in the triplet
state, and not because there is no CO. During the residence
time in the reactor molecules experience over a hundred
plasma pulses thus ensuring the presence of CO at any
time.26

Crosstalk-Free Excitation Scheme for Quantitative
OH LIF

As mentioned in the introduction, the second aspect to take
into consideration when selecting an excitation transition is
the availability of non-radiative rate coefficients. There are
plenty of studies on thermal rate coefficients of OH13 (and
references therein) but publications on non-thermal rate
coefficients,12 for situations when the nascent rotational
population distribution right after excitation cannot ther-
malize before relaxation, are scarce. For that reason, the study
by Ceppelli et al. is chosen as guideline.12 They focus on the P1-
branch of the (0,1) band of OH and in particular on the P1(3)
line. Actually, that line is selected because it is well isolated.
The overlap with CO reported here has supposedly not been
considered before since it is less observable in environments
other than our glow discharge. However, another line than
P1(3) must be found for quantitative measurements since it
clearly overlaps substantially with CO as shown above. Hence,
the other P1 lines are tested by measuring excitation spectra
and searching for a line that is not distorted when the plasma is
on, i.e. in the presence of triplet CO, compared to the same
measurement when the plasma is off. To get clear OH lines
0.1% of H2O is admixed to the CO2, while 0.0% is used to get a
reference without OH.

Henceforth, we propose the use of the P1(2) line at
2826.63 Å for quantitative LIF measurements on OH in en-
vironments that also contain CO because that line is essen-
tially distortion-free as can be seen in Fig. 2. The absence of
CO lines taken from literature27,28 is confirmed by the water-
free measurements. Consequently, also the fluorescence
spectrum is unaffected. Hence, absolute OH number densities
and the gas composition can be determined by calibrated
measurements of the fluorescence pulse and by collision
energy transfer (CET)-LIF,4 respectively, without any influ-
ence of CO. For temperature determination combination
with the Q1(5) on the right was contemplated but as can be
seen in Fig. 3 that line also shows overlap with CO.
Thus, we recommend the conventional scheme, that is, the
Q12(1), Q2(1), Q1(6), Q12(3), and Q2(3) lines in the range
from 2829.9 Å to 2830.3 Å that are called the Q-group here,
for temperature determination only. An overview of the LIF
schemes is given in Table 1.

There is a distinct trade-off between the newly proposed
and the conventional excitation scheme. Non-thermal rate

Budde and Engeln 853

https://journals.sagepub.com/doi/supp/10.1177/00037028221088591


coefficients are only known at room temperature for P1(2)
while for the P1(3) the rate coefficients can be calculated in a
wide temperature range depending on the colliding species.12

This is only a technical obstacle though and it is the reason why
for now no OH number densities can be shown (the plasma is
certainly above room temperature19). The shown importance
of the P1(2) might motivate others to provide non-thermal
rate coefficients for that line.

Conclusion

Calibrated laser-induced fluorescence spectroscopy on OH
radicals provides valuable insights into a variety of processes,
for example, through temporally and spatially resolved
measurements of rotational temperatures, CO2 conversion
fractions and absolute OH number densities in CO2 con-
version plasmas in the presence of water.19 The quantification
of LIF relies on (i) the availability of proper rate coefficients

describing all relevant (non-)radiative processes and (ii) the
quality of the spectral data.

The spectrum of a molecule is often referred to as its
fingerprint allowing for the unique identification of the re-
spective molecule. In this letter, we show that the fingerprint
of OH is partially overlapping with the one of CO. In par-
ticular, the conventional excitation scheme in the 3064Å
system of OH with the excitation of the P1(3) line for density
measurements and of the excitation spectrum of the Q12(1),
Q2(1), Q1(6), Q12(3), and Q2(3) lines for temperature de-
termination is interfering with the third positive system of
CO. Therefore, we propose the use of the P1(2) line for OH
density and gas composition measurements, since, as we
demonstrate, there is no overlap with CO for this transition.
Due to the lack of other overlap-free OH transitions in the
close vicinity of the P1(2), no new LIF thermometry scheme
but the original group of lines is recommended at this point.

As a last point, it must be emphasised that the single-
photon LIF on the CO TPS, which to the best of our
knowledge is reported here for the first time, is not only a
complication of OH LIF experiments but also an opportunity
for further studies. The LIF ground state, that is, the excited
triplet state CO{a3Π}, is of crucial importance in the pre-
sented CO2 glow discharge.23–25 Therefore, CO TPS single-
photon LIF is considered a possibility to obtain a better
understanding of highly-excited systems generated from CO2

and H2O mixtures as well as to validate computer models
describing these systems.
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