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Chapter 1

Introduction

The behavior of flows at planetary scales is a complex phenomenon that is char-
acterized by many features. These flows are confined in spherical geometries
(e.g. interiors of gas giants [1,2]), many have approximately flat domains (hori-
zontal length scales much larger than vertical ones, e.g. ocean circulation [3–6],
atmospheric flow [7]). Magnetic fields can also play a crucial role (e.g. Earth’s
liquid metal outer core [8–11]). All of them, though, are driven by buoyancy
and strongly influenced by rotation. Moreover, all these flows have extremely
large length scales and are very difficult to measure directly.

A basic model system that combines the principal effects of both buoyant
forcing and rotation into a well-defined problem is rotating Rayleigh–Bénard
convection (RRBC): the flow in a fluid layer confined between two horizontal
plates, heated from below and cooled from above, while the whole system
rotates about its vertical axis.

The study of (non-rotating) Rayleigh–Bénard convection (RBC) started
from the studies of Henri Bénard and Lord Rayleigh more than a century ago.
While Bénard observed a regular pattern of hexagonal cells in a thin layer of
fluid heated from below [12–14], Rayleigh performed the theoretical analysis of
the convective instability of a layer of fluid and found a critical parameter that
determined the onset of convective flow [15]. This parameter that defines the
strength of the buoyancy forcing is the Rayleigh number Ra (it will be formally
defined in Chapter 2); it indicates the ratio of buoyancy and dissipation in
the fluid. As we mentioned earlier, in this work classical Rayleigh–Bénard
convection is modified with the addition of rotation. Rotational influence can
be quantified with many critical dimensionless numbers, for example the Ekman
number E (also, formally defined in Chapter 2) that indicates the ratio between
viscous and Coriolis force; it is inversely proportional to the rotational strength.

Rotating Rayleigh–Bénard convection is, therefore, a simple but relevant
model to investigate the interplay between these two forces that can give us
deeper insights into geophysical and astrophysical flows, other than being a
very intriguing flow configuration of fundamental interest. Buoyancy leads to
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Chapter 1 Introduction

3D (three-dimensional) turbulence, while rotation wants to stabilize the flow
giving it coherence along the rotation axis. This means that when the rotational
influence is much stronger than buoyancy, convection does not set in and there
is a specific threshold (a critical Rayleigh number, RaC) where it starts; at the
other end of the spectrum, where rotation is not relevant anymore, we have
non-rotating turbulent Rayleigh–Bénard convection. Our analysis lies between
these two extremes.

As a result of their vast proportions, geophysical and astrophysical flows are
governed by extreme values of the dimensionless parameters defined before,
with Ra & 1015 and E . 10−10 [5, 16–18]. At the same time, the critical
Rayleigh number RaC for onset of convective motion is significantly higher
when strong rotation is applied: for water (the working fluid used in this
work) linear stability theory gives the asymptotic result RaC = 8.6956E−4/3

in the limit of small E [19]. So, despite the huge Ra values most of these
natural flows are still dominated by rotation, implying that the supercriticality
Ra/RaC retains more modest values. This rotational constraint leads to the
dominant force balance being between pressure gradient and Coriolis force,
the so-called geostrophic balance [20]. In recent years it was found that this
geostrophic state of rotating convection displays a diverse set of flow structures
(cells, convective Taylor columns (CTCs), plumes and geostrophic turbulence
(GT)) [21, 22] that we will describe in detail below. Each of these flow states
is expected to display characteristic scaling behavior for flow statistics, like
the convective heat transfer, intensity of temperature and velocity fluctuations
and mean temperature gradient.

Flow states of rotating convection

It is known from previous studies [24–26] that rotation induces different regimes
in Rayleigh–Bénard convection, but the subdivision of the geostrophic regime of
rotating convection into different flow states is of more recent interest [22,27,28].
The states are listed and described below, from the one closest to the onset of
convection (rotation dominated) to the one closest to non-rotating Rayleigh–
Bénard convection (buoyancy dominated):

• Cells: in this state the flow takes the form of narrow cells, vortical struc-
tures aligned with the vertical axis and arranged on a quasi-steady grid
(Fig. 1.1(a)).

• Convective Taylor columns (CTC): this state shows columnar structures,
where each column is surrounded by a “shield” of oppositely-signed

2



(a) Cells (b) Convective Taylor columns

(c) Plumes (d) Geostrophic turbulence

Figure 1.1: Temperature fluctuations for direct numerical simulations in the regimes of (a)
cells, (b) convective Taylor columns, (c) plumes, (d) geostrophic turbulence from Ref. [23].
The computational domain is taller than it is wide, for the purpose of these visualizations
they have been stretched horizontally into a cubic geometry. The color scale is chosen to
highlight the flow features, where red (blue) indicates temperatures above (below) average.
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Chapter 1 Introduction

vorticity and temperature. The shielding prevents collisions between
columns, that are thus long-lasting structures that move around the
domain (Fig. 1.1(b)).

• Plumes: at higher thermal forcing, the shields vanish and more vortex-to-
vortex interaction is allowed. The flow partially loses its vertical coherence
(Fig. 1.1(c)).

• Geostrophic turbulence (GT): in this state also the coherence of the
plumes is lost, and a fluctuating turbulent flow state is present. An inverse
energy cascade can be triggered, leading to large-scale vortices (LSVs),
quasi-two-dimensional vortices that grow to fill the domain (Fig. 1.1(d)).

• Rotation-influenced turbulence (RIT): this novel state, described in fur-
ther detail in the rest of the thesis, is a state where heat transfer and
temperature gradient scalings made it appropriate to distinguish it as a
separate regime from GT.

• Rotation-affected turbulence: here the geostrophic balance is no longer
the leading balance, but rotation still accounts for some features like the
loss of the large-scale circulation (LSC) [29], a characteristic feature of
non-rotating Rayleigh–Bénard convection [30].

Scope of the thesis

To enter these flow states one needs to resort to specialized tools: asymptotically
reduced models (e.g. Refs. [21, 31]), large-scale numerical simulations on fine
meshes (e.g. Refs. [32–34]) or large-scale experiments [27].

Heat transfer measurements have shown that the geostrophic regime expands
in size with increasing rotational constraint (decreasing E) [22,35,36]. Models
that include infinite rotational forces (E → 0) could characterize this regime
and its flow states in more depth, even though in idealized settings [37]. Direct
numerical simulations (DNS) can explore, at present day, only up to certain
rotational influence (a minimum E of 10−7), because of computational limi-
tations [28, 38]. While simulations need to resolve the smallest active length
scales to tackle the geostrophic regime, laboratory experiments can intrinsically
“resolve” all the scales, even for features that are too small to detect. Laboratory
experiments are thus a particularly appropriate approach to investigate the
geostrophic regime at those extreme values of the key parameters.

Our work aims to investigate the geostrophic regime in an experimental setup,
TROCONVEX, designed to maximize the coverage of that regime in parameter
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space. That is why we employ a tall setup that can reach very large Ra and
very small E at the same time. TROCONVEX can reach up to Ra ≈ 2× 1014

and can go as low as E ≈ 5× 10−9, that is about an order of magnitude more
extreme than any previous rotating convection experiment [27].

A typical way to categorize flow behaviors is to measure the heat transfer
efficiency: different states likely steer the flow towards different ways of heat
transport. We present such measurements together with flow visualizations
and an analysis of the mean temperature gradient across the system. Next
to temperature measurements, there is a great demand for experimental flow
analysis of geostrophic convection; here we also present the first results in
that direction with the use of in situ flow measurements. We employ the
technique of stereoscopic particle image velocimetry (stereo-PIV), which can
measure the three components of the velocity field in a planar section. Stereo-
PIV measurements are convenient for both identifying the flow structure and
acquiring velocity statistics that describe the flow and its anisotropy.

Thesis outline

This thesis is structured as follows. Chapter 2 introduces the theoretical back-
ground of rotating Rayleigh–Bénard convection needed for this study. In Chap-
ter 3 we present our experimental setup in the configuration used for the tem-
perature measurements as well as the one used for the stereo-PIV experiments.
From Chapter 4 we start with our analysis of the results and we show our
flow visualizations and heat transfer measurements of the different flow states.
Chapter 5 introduces our stereo-PIV measurements and gives an overview of
the velocity and vorticity fields of seven rotating Rayleigh–Bénard convection
cases and a non-rotating case. Then, Chapter 6 presents an analysis on the spa-
tial autocorrelation of vertical velocity and vertical vorticity, introducing the
quadrupolar vortex, a large-scale structure that arises in our confined geometry.
An investigation of the energy spectra of the cases with an insight on energy
transfer through the different length scales is presented in Chapter 7. Finally,
in Chapter 8, we provide an overall conclusion including an outlook to future
possibilities in the research and characterization of rotating Rayleigh–Bénard
convection.
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Chapter 2

Theoretical Background

In this chapter we shortly describe the theoretical background that is needed for
the following chapters. We start from the equations of motions of our prob-
lem under study, rotating Rayleigh–Bénard convection, the key dimensionless
quantities, and we address the effects of rotation and buoyancy in the bulk
and near the boundaries of the flow domain and how these reflect in the flow
phenomenology.

2.1 Equations of motion

The Rayleigh–Bénard convection setup consists of a fluid layer confined be-
tween two parallel horizontal plates, where the bottom one is heated and the
top one is cooled. The temperature difference between the plates induces a
buoyancy driven flow. This flow is generally described employing the Oberbeck-
Boussinesq approximation [39, 40]. In this approximation we assume that the
properties of the fluid are constant and independent of the fluid temperature
and that the variations of density are only important in the buoyant forcing
term and are linearly dependent on the temperature

ρ(T ) = ρ(T0)(1− α(T − T0)) , (2.1)

where ρ is the fluid density, T is its temperature, T0 is a reference temperature
and α is the thermal expansion coefficient of the fluid. This approximation holds
reasonably well for small temperature differences (α∆T . 0.2 is often used as a
rule of thumb [27,41,42]). Within this context, we can write the equations for
conservation of mass, momentum and energy for an incompressible Newtonian
fluid as

∇∇∇ · uuu = 0 , (2.2)

∂uuu

∂t
+ (uuu · ∇∇∇)uuu = −∇∇∇p+ ν∇2uuu+ gαT ′ẑzz , (2.3)

7



Chapter 2 Theoretical Background

∂T ′

∂t
+ (uuu · ∇∇∇)T ′ = κ∇2T ′ , (2.4)

where uuu is the velocity, t is time, p is the pressure (with the mean density
incorporated in the pressure term), ν is the kinematic viscosity of the fluid, g
is the gravitational acceleration, T ′ in this case is the temperature relative to
some reference temperature (T ′ = T − T0, from now on we will refer to it as T
for simplicity), κ is the thermal diffusivity of the fluid and ẑzz the unit vector in
the vertical direction.

Equations (2.2) to (2.4) are valid for inertial frames of reference. Since we
are studying rotating convection, we are interested in the application of these
equations in a rotating system. A detailed description of the derivation of the
following equations are found in [20, 43]. We start by defining a coordinate
system that rotates relative to the inertial frame with constant angular velocity
ΩΩΩ. The derivative of the position vector rrr (thus, the velocity) in the rotating
frame is related to the derivative of the position vector rrr′ in the inertial frame
by

drrr′

dt
=

drrr

dt
+ ΩΩΩ× rrr . (2.5)

Following the same approach we can derive acceleration as

d2rrr′

dt2
=

d

dt

(
drrr′

dt

)
+ ΩΩΩ×

(
drrr′

dt

)
=

=
d2rrr

dt2
+ 2ΩΩΩ× drrr

dt
+ ΩΩΩ×ΩΩΩ× rrr

(2.6)

or
aaa′ = aaa+ 2ΩΩΩ× uuu− Ω2rrr⊥ (2.7)

where aaa′ and aaa are respectively the accelerations in the inertial and the ro-
tating frames, and rrr⊥ denotes the projection of the position vector rrr on the
plane perpendicular to ΩΩΩ = Ωẑzz. The last two terms of Equation (2.6) and
Equation (2.7) represent the Coriolis and the centrifugal accelerations, respec-
tively. The centrifugal term can be rewritten as a gradient (Ω2rrr⊥ =∇∇∇(1

2Ω2rrr2
⊥)

and incorporated in the pressure gradient term of the momentum conserva-
tion equation, so that ∇∇∇p → ∇∇∇(p − 1

2Ω2rrr2
⊥), the so-called reduced pressure.

In the end, the momentum equation that describes rotating Rayleigh–Bénard
convection becomes

∂uuu

∂t
+ (uuu · ∇∇∇)uuu+ 2ΩΩΩ× uuu = −∇∇∇p+ ν∇2uuu+ gαTẑzz . (2.8)
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2.2 Dimensionless numbers

2.2 Dimensionless numbers

We have presented the equations of motion using dimensional quantities, but
they can be rewritten in a nondimensional fashion to reduce the parameter
space and better understand the ratios of the forces involved. To do so, we
normalize lengths by the distance between the two plates H, velocities by a
characteristic velocity scale U (that will be further analyzed later), time by
H/U , temperature by the temperature difference between the two plates ∆T
and pressure by ρ0U

2. Thus, Equations (2.2), (2.4) and (2.8) become

∇∇∇ · uuu = 0 , (2.9)

∂uuu

∂t
+ (uuu · ∇∇∇)uuu+

2ΩH

U
ẑzz × uuu = −∇∇∇p+

ν

UH
∇2uuu+

gα∆TH

U2
Tẑzz , (2.10)

∂T

∂t
+ (uuu · ∇∇∇)T =

κ

UH
∇2T . (2.11)

where all the symbols now represent nondimensionalized quantities.

In Rayleigh–Bénard convection it is customary to use the free-fall velocity
Uff =

√
gα∆TH as the characteristic velocity scale, since it is assumed that

the buoyancy term is the leading one and so gα∆TH/U2 ∼ O(1) [44]. This
velocity is an upper bound that would represent the case where all the heating
power is transferred into fluid motions [45–47]. We can now introduce the two
dimensionless groups that are classically related to Rayleigh–Bénard convection,
the Rayleigh number and the Prandtl number, and one that is related to
rotating flows, the Rossby number [19]:

Ra =
gα∆TH3

νκ
, (2.12)

Pr =
ν

κ
, (2.13)

Ro =
U

2ΩH
. (2.14)

The Rayleigh number indicates the strength of the buoyancy forcing, the
Prandtl number describes the diffusive properties of the fluid and the Rossby
number indicates the ratio between inertial and Coriolis forces. With the choice
of U = Uff we can redefine the Rossby number as a convective Rossby number

RoC =

√
gα∆T/H

2Ω
(2.15)

9



Chapter 2 Theoretical Background

and rewrite the equations as
∇∇∇ · uuu = 0 , (2.16)

∂uuu

∂t
+ (uuu · ∇∇∇)uuu+

1

RoC
ẑzz × uuu = −∇∇∇p+

√
Pr

Ra
∇2uuu+ Tẑzz , (2.17)

∂T

∂t
+ (uuu · ∇∇∇)T =

1√
PrRa

∇2T . (2.18)

It is also possible to indicate the strength of the rotation influence by a number
of other dimensionless numbers: in fact, for our studies, we will use mainly the
Ekman number, defined as

E =
ν

2ΩH2
= RoC

√
Pr

Ra
, (2.19)

which provides the ratio of viscous to Coriolis forces. This quantity has the
advantage of not depending on the velocity scale U , and it is useful when com-
paring different rotating convective flows with different characteristic velocity
scales. It should also be noted that both Ro and E are inversely proportional to
the rotation rate, i.e. they are small when the rotational influence is strong. It
is also possible to introduce an alternative velocity scale: the viscous diffusion
velocity

Uν = ν/H . (2.20)

It indicates the rate at which viscous forces significantly diffuse the fluid mo-
mentum over the characteristic length scale. This scale can be convenient since
it does not depend on the Rayleigh number. Two final important dimensionless
control parameters that we need to introduce, since we will describe turbulent
convection bounded in a cylindrical cell, is the aspect ratio of the set up and
the Froude number, defined respectively as

Γ =
D

H
, (2.21)

Fr =
Ω2D

2g
, (2.22)

where D is the diameter of the cylindrical cell of radius R. While the aspect
ratio describes the geometry of the volume, the Froude number is the ratio
between centrifugal and gravitational acceleration. In order to properly study
rotating Rayleigh–Bénard convection it is important to keep the Froude number
small enough in order to exclude centrifugation as another relevant parameter.

The typical output measures of Rayleigh–Bénard convection are usually the

10



2.3 Geostrophic balance

dimensionless Nusselt number

Nu =
qH

k∆T
, (2.23)

where q is the measured heat flux and k the thermal conductivity, and the
Reynolds number

Re =
uRMSH

ν
, (2.24)

where uRMS is the magnitude of the velocity fluctuations, i.e. the root-mean-
square velocity uRMS ≡

√
〈u2〉 − 〈u〉2. The Nusselt number represents the

ratio between the total heat transfer (convection and conduction) and the
heat transferred through conduction, in absence of convection, whereas the
Reynolds number represents the ratio between inertial and viscous forces or
the “strength” of turbulence.

Rotation and convection are the two main forces of rotating Rayleigh–Bénard
convection, and they give opposite effects to the flow. While rotation wants to
make the fluid more stable, convection has a strong mixing action. This means
that for low enough values of E (or Ro) the flow is so stable that no convection
takes place, and heat is only transferred via conduction (in this case Nu = 1),
but at a certain critical Rayleigh number RaC we have the onset of convective
motions. This RaC is given by

RaC = 8.7E−4/3 , (2.25)

for a rapidly rotating (E . 10−3) laterally unbounded fluid layer and for
Pr ≥ 0.68 [19, 48]. In these fluids, like water, convection sets in as steady
convection cells. The characteristic horizontal wavelength of these structures
(for the case of the rapidly rotating unbounded layer) is given (again, for fluids
with Pr ≥ 0.68) by [19,49,50]

λC/H = 4.8E1/3 . (2.26)

In this work we will frequently resort to the definition of the supercriticality
Ra/RaC , in order to indicate the “distance” of our study cases from the critical
value for onset of convection at the selected Ekman number.

2.3 Geostrophic balance

We have discussed the Navier-Stokes equations for rotating flows in their com-
plete form with the use of the Boussinesq approximation. Now we introduce

11



Chapter 2 Theoretical Background

another simplification of the system, considering a quasi-steady flow, with in-
ertial forces that are negligible compared to Coriolis forces (Ro � 1) and
analyzing the bulk where viscous effects are negligible (E → 0). The equation
of momentum conservation is reduced to

2Ωẑzz × uuu =∇∇∇p+ gαTẑzz , (2.27)

or, in its component form

− 2Ωv = −∂p
∂x

, (2.28)

2Ωu = −∂p
∂y

, (2.29)

0 = −∂p
∂z

+ gαT (2.30)

with uuu = (u, v, w). Equations (2.28) and (2.29) are the so-called geostrophic
balance between Coriolis force and pressure gradient, that is representative
for planetary scale flows. This implies that isobars are streamlines and fluid
parcels move along them. Equation (2.30) represents the hydrostatic balance,
where temperature sets the density having used the Boussinesq approximation.

By taking the derivative of Equation (2.28) with respect to y, and Equa-
tion (2.29) with respect to x and subtract the two equations, we arrive at

− 2Ω

(
∂u

∂x
+
∂v

∂y

)
= 0 (2.31)

which, in combination with the incompressibility condition ∇∇∇ · uuu = 0, gives

∂w

∂z
= 0 . (2.32)

If we take the derivative of Equations (2.28) and (2.29) to z and make use of
Equation (2.30), we arrive at

2Ω
∂v

∂z
= gα

∂T

∂x
, (2.33)

2Ω
∂u

∂z
= −gα∂T

∂y
, (2.34)

that together with Equation (2.32) can be rewritten as

∂uuu

∂z
=
gα

2Ω
ẑzz ×∇∇∇T , (2.35)
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2.4 Boundary layers

that is the thermal wind balance [51]. This means that, under the assumptions
that we made, vertical velocity gradients can only be caused by horizontal
temperature gradients and that vertical gradients of w are zero.

For a barotropic fluid, with density independent of temperature, we have

∂uuu

∂z
= 0 , (2.36)

that is the Taylor-Proudmann theorem [52, 53]. This implies that for an
isothermal fluid, under the mentioned conditions, vertical variation of velocity
is not permitted and that the flow is essentially two-dimensional, away from
the boundaries.

2.4 Boundary layers

In Section 2.3 we saw that when viscous effects are negligible and rotation
is dominant (Ro � 1) the horizontal motion of the flow is governed by the
geostrophic balance (Eqs. (2.28) and (2.29)). Since these equations are based
on the assumption that viscosity can be neglected, they are only valid away
from the boundaries. In our case, though, rotating Rayleigh–Bénard convection
is heavily influenced by its (no-slip) walls and in different ways: the boundary
layer that emerge in the proximity of the bottom and top plates are called
the Ekman boundary layers, while the zone close to the sidewalls is called the
Stewartson boundary layer.

Ekman boundary layer

The equations describing the velocities inside the Ekman boundary layer can be
derived from the Navier-Stokes equations with some simplifications: we assume
that the bulk flow is in geostrophic balance, we assume that the flow is quasi-
steady (i.e. ∂/∂t→ 0) and we apply the usual boundary-layer approximation
that wall-normal derivatives are much larger than derivatives along the wall.
The components of the velocity can then be expressed as [20,43]

uE = uB − [uB cos (z/δE) + vB sin (z/δE)] e−z/δE , (2.37)

vE = vB + [uB sin (z/δE)− vB cos (z/δE)] e−z/δE , (2.38)

wE =
ωBδE

2

{
1− e−z/δE [sin (z/δE) + cos (z/δE)]

}
, (2.39)

13



Chapter 2 Theoretical Background

where uE ,vE and wE are the velocities inside the Ekman boundary layer, uB,vB
and wB are the velocities in the bulk, δE =

√
ν/Ω is the Ekman boundary

layer thickness and ωB = ∂vB/∂x − ∂uB/∂y is the vertical vorticity in the
bulk. We can also see that

δE
H
∼ E1/2 . (2.40)

Notice that we derived the vertical velocity equation using the horizontal ones,
the incompressibility condition and integrating with uuu = 0 at z = 0. Instead,
far outside the boundary layer (z/δE →∞), where uuu = uuuB, we find that

lim
z/δE→∞

wE = wB =
ωBδE

2
, (2.41)

implying that the Ekman boundary layer actively influences the bulk flow
through vertical motion with a magnitude that is set by the bulk vorticity. For
ωB > 0 there is a flux from the boundary layer into the bulk (Ekman pumping),
whereas for ωB < 0 we have the opposite (Ekman suction). Eq. (2.41) is valid
near the bottom wall, while for the top wall we need to add a minus sign. This
says that the Ekman layer can drive a secondary flow, since there is a flux of
magnitude O(δE ∼ E1/2) through the layer whenever ωB 6= 0.

Stewartson boundary layer

As we noticed in the previous section, the bottom and top Ekman layer can
cause a secondary circulation. For laterally bounded geometries (like, in our
case, a cylinder) that circulation must be closed. This is done with a boundary
layer on the sidewall, the Stewarson boundary layer [20,54–56].

In a cylindrical geometry like our experimental setup, we can assume to have
a geostrophic bulk and Ekman layers next to the top and bottom plates. If the
geostrophic flow has, for example, a constant negative vorticity ωB, there is a
net radial outward flux of O(E1/2) in each of the Ekman layers generated by
the Ekman suction. These fluxes go into the sidewall, in the Stewartson layer
that therefore must have an O(E1/2) vertical flux. From [54–56] we know that
we can expect a layer of thickness

δS,1/4/H ∼ E1/4 (2.42)

that carries this vertical flux. To connect also to the sidewall where the az-
imuthal velocity is zero, we find an additional layer within the E1/4 layer, with
a thickness of

δS,1/3/H ∼ E1/3 (2.43)
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2.5 Convective turbulence

from the sidewall. The flows inside these two nested layers close the circulation
set by the Ekman layers.

2.5 Convective turbulence

We have described rotating convection in the limit of strong rotational influence
(Ro � 1), but geostrophic flows at extreme parameters can show turbulent
behavior at small scales. In rotating Rayleigh–Bénard convection, the flow
becomes turbulent for high enough Ra. The buoyancy forcing continuously
gives energy to a range of active scales, and this energy is transferred to smaller
scales through nonlinear processes (vortex stretching) until it is dissipated into
heat. If the system is in an equilibrium state, the constant input of energy
is matched by dissipation. We therefore have two important quantities in
convective turbulence, the dissipation rates of kinetic energy ε and of thermal
variance N defined as [57]

ε ≡ ν|∇∇∇uuu|2 , (2.44)

N ≡ κ|∇∇∇T |2 . (2.45)

The smallest active length scales of velocity and temperature fields are respec-
tively the Kolmogorov length η and the Batchelor length ηT . They are defined
according to [57]

η ≡
(
ν3

ε

)1/4

, (2.46)

ηT ≡ η
√
κ

ν
=

(
νκ2

ε

)1/4

. (2.47)

These quantities can be rewritten in a dimensionless form as

ε =

√
Pr

Ra
|∇∇∇uuu|2 , N =

1√
PrRa

|∇∇∇T |2 , (2.48)

η =

(
Pr

Ra

)3/8

ε−1/4 , ηT = ηPr−1/2 =
(
Ra3Prε2

)−1/8
, (2.49)

where all the symbols now represent nondimensionalized quantities. The dis-
sipation rates are local quantities, and they may vary considerably between
the bulk and the boundary regions of the flow. Global averaged quantities
(averaged over time and volume of the considered domain) can be derived for
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Chapter 2 Theoretical Background

(non)rotating Rayleigh–Bénard convection as [58,59]

〈ε〉 =
Nu− 1√
PrRa

, 〈N〉 =
Nu√
PrRa

. (2.50)
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Chapter 3

Experimental Setup

In this chapter, we introduce our experimental setup TROCONVEX used in
this work. First, we present the setup in the configuration used to acquire
temperature measurements, explaining its characteristics and some specifics of
the measurement techniques that we employ. We then present a complete list
of the explored cases for the heat transfer measurements. In the last section, we
describe the changes for the configuration used for the stereo-PIV measurements
and the parameters of the selected cases.

3.1 Experimental apparatus for temperature
measurements

1

TROCONVEX (Fig. 3.1) is a rotating convection apparatus designed and
constructed at Eindhoven University of Technology. The experimental vessel
is a Lexan cylinder of height H up to 4 m and constant diameter D = 0.39
m, filled with water and held between copper plates which form the upper
and lower boundaries. The mean temperature of the water is kept at 31◦C,
corresponding to Pr ≈ 5.2 (see Table 3.1 for exact conditions per run). The
adverse temperature gradient is imposed at the top and bottom boundaries:
heat is passed into the system through the bottom plate by an electrical
resistance heater and extracted from the top plate via a water-cooled heat
exchanger. The heater, connected to a custom-made power supply, supplies
between 4 and 1200 W to the system for this study. The top heat exchanger
consists of a double-wound spiral passage through which water recirculates
from an external coupled Thermoflex 2500 chiller/Sahara AC200 thermostated
bath system. The Lexan cylinder is split up vertically into multiple segments,

1The contents of this section have been adopted from J. S. Cheng, M. Madonia, A. J.
Aguirre Guzmán, and R. P. J. Kunnen. Laboratory exploration of heat transfer regimes
in rapidly rotating turbulent convection. Phys. Rev. Fluids, 5(11):113501, 2020 [60]; some
symbols have been changed from the article to match with the current notation.
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Chapter 3 Experimental Setup

Figure 3.1: (a) A photograph of the 4 m high rotating convection setup TROCONVEX. A
several centimeter thick layer of black insulating foam covers the experimental vessel. (b) A
cutout showing the strip heaters underneath the outermost layer of foam. These heaters match
the temperature of the fluid layer to minimize sidewall thermal losses. (c) Sidewall thermistor
placements. (d) Example of a normalized temperature profile from the E = 1.00 × 10−8,
Ra = 8.66× 1012 case. The temperatures at each height are averaged over time and space.
The quantity −∂zT

∣∣
z=0.5

is derived from a linear fit through the middle six temperatures.

allowing us to use H = 0.8, 2.0 and 4.0 m tank heights (aspect ratio Γ =
D/H ≈ 1/2, 1/5 and 1/10, respectively) to cover broader parameter ranges.
We conduct many experiments that overlap in parameter values at different
tank heights (see Table 3.1) which have, thus far, shown no significant effect
of aspect ratio Γ on the heat transfer.

As is clear in Fig. 3.1d, the bulk region of the fluid can contain significant
temperature gradients. In order to control heat losses through the sidewall
with precision, each segment is further subdivided vertically into two or three
sections [Fig. 3.1b], each of which is wrapped in insulating foam, covered with
an aluminium heat shield in contact with a flexible resistance strip heater
(eleven sections total at Γ = 1/10). Two negative temperature coefficient
(NTC) resistance thermistors are placed at the mid-height of each section,
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3.2 Temperature measurement techniques

opposite one another (i.e., separated by 180◦), to measure the temperature of
the fluid layer; their average temperature is then used as a set point for the
corresponding heater. Layers of insulation separate and surround all of these
components such that the heaters only passively follow the set point without
actively heating the fluid layer. Losses through the Lexan sidewall are therefore
minimized even in the presence of large vertical temperature gradients. The
sidewall thermistors also turn out to be an important diagnostic tool, described
in Section 3.2.

The experimental vessel, power supply, and measurement instruments and
controllers are all mounted on the rotating table. Rotation is powered by
a Lenze geared motor and gearbox which is connected to a large gear fixed
under the table. This allows for precise control of the rotation rate, necessary
for maintaining specific Ekman numbers E. For the purpose of this study,
centrifugal effects are an unwanted externality, and we seek to reduce them
as much as possible. Centrifugation is characterized by the Froude number,
Fr = Ω2D/2g, the ratio between centrifugal forcing at the sidewall of the tank
and gravitational acceleration. We maintain Fr < 0.12 throughout all cases
(see Table 3.1), meaning gravity is roughly an order of magnitude stronger
than centrifugal acceleration even at the sidewall. Ref. [61] argue, though,
that centrifugation is significant as long as Fr & Γ/2, with simulation results
showing the temperature gradient at the sidewall experiencing much greater
vertical asymmetry than that measured in the bulk. The E = 10−8 cases at
Γ = 1/10 then exceed this limitation by a factor of two. However, temperature
profiles (such as the example shown in Fig. 3.1d, where Fr = 0.115) lack the
strong vertical asymmetry predicted by [61], and we believe that centrifugation
plays a minimal role in our cases.

3.2 Temperature measurement techniques
2

The results in Chapter 4 are mainly derived from temperature measurements
by NTC resistance thermistors installed in the top, bottom, and sidewall bound-
aries of the vessel, within 0.7 mm of the fluid layer [Fig. 3.1c]. The top and
bottom boundaries have identical configurations of eight thermistors spaced
out horizontally across the copper plates, while the sidewall thermistors are
arranged two per height. The number of sidewall measurements therefore de-

2The contents of this section have been adopted from J. S. Cheng, M. Madonia, A. J.
Aguirre Guzmán, and R. P. J. Kunnen. Laboratory exploration of heat transfer regimes
in rapidly rotating turbulent convection. Phys. Rev. Fluids, 5(11):113501, 2020 [60]; some
symbols have been changed from the article to match with the current notation.
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Chapter 3 Experimental Setup

pends on Γ, with n = 2, 5, and 11 measurement heights for the Γ = 1/2, 1/5,
and 1/10 tanks, respectively. Measurements are taken once per second, simul-
taneously across all thermistors, for N = O

(
104 − 105

)
seconds3 . Global heat

transfer parameters Nu and Ra rely on our measurements of ∆T = Tbot−Ttop,
where Tbot and Ttop are the horizontally averaged temperatures at the bottom
and top boundaries, respectively. We calculate the fluid properties of water
based on the average temperature, Tmean = (Tbot + Ttop) /2, and using formulae
from [62].

Heat flux through the fluid layer, needed to calculate the Nusselt number Nu,
is measured by a Hioki PW3335 power meter. A small amount of heating power
is lost from the other side of the heat pad and the sidewalls and dissipated
to the room instead of contributing to heating the fluid layer. We estimate
these heat losses by manually inputting a temperature setpoint of 31◦C at top,
bottom, and sidewall of the fluid layer, and observing the amount of heating
power that must be supplied by the bottom heater to maintain this state.
This quantity (about 0.58 W for the 2 m tank setup, and estimated to be
approximately twice as large for the 4 m setup) is then subtracted from the
total heating power for calculating Nu. The analysis of the statistical error in
quantities measured over long times is detailed in Section 4.2.

As with the top and bottom boundary temperatures, sidewall temperatures
are averaged over time and between the (two) thermistors at the same ver-
tical position h. The raw temperature profile for each case can be written
[Tbot, T (h1), T (h2), ..., T (hn), Ttop]. We normalize this profile as

T =
T − Ttop

∆T
. (3.1)

The mid-height temperature gradient −∂zT
∣∣
z=0.5

is then defined as a best-fit

linear trend of T versus z for temperatures in the vicinity of z = 0.5H: we use
T (h1, h2) for Γ = 1/2, T (h1, h2, ..., h5) for Γ = 1/5, and T (h3, h4, ..., h8)
for Γ = 1/10.

We note that previous studies in nonrotating convection report different tem-
perature profiles at the sidewall versus the axial region of the vessel [63]. This
is not the case, however, in rotating convection: in Fig. 3.2 we plot −∂zT

∣∣
z=0.5

versus Ro for cylindrical rotating DNS with non-slip boundaries conducted
in [24] and [38]. Unlike nonrotating convection, the sidewall and axial temper-
ature gradients match closely when rotation affects the flow (RoC . 1 and

3These time scales correspond to a range of τκ = O
(
10−3 − 10−2

)
in thermal diffusion

time scale units (τκ = H2/κ) and τff = O
(
103 − 104

)
in free-fall time scale units

(τff = H/Uff )
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3.2 Temperature measurement techniques

Figure 3.2: The mid-height temperature gradient (3.1) at the wall (r = D/2, circles) and at
the central axis (r = 0, pluses) in cylindrical rotating convection DNS with non-slip boundary
conditions. Data from [24] (blue symbols): Ekman numbers range from 3.6 × 10−6 ≤ E ≤
2.0 × 10−4 at constant Ra = 109 and Pr = 6.4. Data from [38] (green symbols): Rayleigh
numbers 5.0 × 1010 ≤ Ra ≤ 4.3 × 1011 at constant E = 10−7 and Pr = 5.2. The sidewall
and axial temperature gradients match closely for large part of the RoC range. They start
to diverge only when rotation starts dominating (for RoC . 10−2 in [38]) or when rotational
influence is mostly lost (for RoC & 1 in [24]).

Fr � 1) [45]. Only when rotation starts dominating the flow, in the columnar
flow regime, do we see axial and sidewall gradients diverge a bit again (at
RoC . 10−2 for [38]). Note that the majority of our rotating data exist in
the intermediate range where the gradients are equal irrespective of the radial
position.
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Table 3.1: Experimental data from TROCONVEX. Γ = 0.494, 0.195, and 0.097 cases are from the 0.8 m, 2 m, and 4 m high setups,
respectively. Nonrotating cases are listed first. Some cases do not have −∂zT

∣∣
z=0.5

values because they were conducted prior to
implementation of sidewall temperature measurements (by the NTC resistance thermistors).

Γ E Fr Ra Nu Pr Tmean [◦C] ∆T [◦C] −∂zT
∣∣
z=0.5

0.494 ∞ 0 8.49 (±0.20) ×109 121 (±3) 5.99 25.48 0.85 0.052

0.494 ∞ 0 1.41 (±0.02) ×1010 146 (±2) 6.00 25.41 1.41 0.068

0.494 ∞ 0 2.75 (±0.02) ×1010 165 (±1) 6.65 21.50 3.51 –

0.494 ∞ 0 4.25 (±0.03) ×1010 199 (±1) 6.65 21.52 5.41 –

0.494 ∞ 0 6.87 (±0.07) ×1010 238 (±2) 5.99 25.45 6.86 0.038

0.494 ∞ 0 8.41 (±0.06) ×1010 253 (±2) 6.73 21.10 11.00 –

0.494 ∞ 0 1.45 (±0.01) ×1011 292 (±2) 6.75 20.99 19.07 –

0.494 ∞ 0 2.43 (±0.04) ×1011 345 (±5) 5.73 27.21 21.97 0.035

0.494 ∞ 0 2.69 (±0.03) ×1011 363 (±3) 6.33 23.33 30.38 –

0.195 ∞ 0 1.89 (±0.04) ×1011 298 (±7) 5.21 31.01 0.87 0.109

0.195 ∞ 0 3.41 (±0.06) ×1011 334 (±6) 5.21 31.06 1.57 0.079

0.195 ∞ 0 6.64 (±0.07) ×1011 448 (±5) 5.21 31.01 3.06 0.069

0.195 ∞ 0 1.11 (±0.01) ×1012 534 (±6) 5.21 31.04 5.13 0.059

0.195 ∞ 0 1.90 (±0.02) ×1012 643 (±7) 5.18 31.30 8.64 0.051

0.195 ∞ 0 3.80 (±0.03) ×1012 781 (±5) 5.21 31.03 17.49 0.045

0.195 ∞ 0 6.49 (±0.06) ×1012 921 (±8) 5.22 30.98 29.94 0.042

0.097 ∞ 0 8.75 (±0.36) ×1011 519 (±27) 5.22 30.98 0.51 0.150

0.097 ∞ 0 1.74 (±0.04) ×1012 639 (±17) 5.22 30.98 1.01 0.118

0.097 ∞ 0 3.45 (±0.97) ×1012 778 (±23) 5.22 30.99 1.99 0.093
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Γ E Fr Ra Nu Pr Tmean [◦C] ∆T [◦C] −∂zT
∣∣
z=0.5

0.097 ∞ 0 8.66 (±0.07) ×1012 996 (±19) 5.22 30.98 5.01 0.080

0.097 ∞ 0 1.73 (±0.01) ×1013 1279 (±9) 5.22 31.00 9.99 0.071

0.097 ∞ 0 3.46 (±0.03) ×1013 1593 (±15) 5.22 30.99 20.00 0.066

0.097 ∞ 0 5.19 (±0.06) ×1013 1820 (±20) 5.22 31.00 29.99 0.061

0.097 ∞ 0 6.83 (±0.09) ×1013 1993 (±25) 5.00 32.78 36.44 0.063

0.494 2.88×10−7 0.092 1.12 (±0.02) ×1010 25 (±1) 5.22 30.94 0.84 0.193

0.494 2.88×10−7 0.092 1.47 (±0.02) ×1010 44 (±1) 5.21 31.07 1.10 0.213

0.494 2.86×10−7 0.092 1.96 (±0.02) ×1010 71 (±1) 5.18 31.25 1.45 0.211

0.494 3.00×10−7 0.106 2.43 (±0.02) ×1010 89 (±1) 5.92 25.91 2.36 0.205

0.494 2.89×10−7 0.092 3.15 (±0.02) ×1010 111 (±1) 5.24 30.79 2.39 0.225

0.494 2.90×10−7 0.092 3.94 (±0.02) ×1010 125 (±1) 5.26 30.64 3.01 0.249

0.494 2.98×10−7 0.106 4.20 (±0.02) ×1010 135 (±1) 5.86 26.28 4.00 0.245

0.494 2.89×10−7 0.092 5.57 (±0.02) ×1010 152 (±1) 5.23 30.86 4.21 0.280

0.494 2.90×10−7 0.092 6.17 (±0.03) ×1010 158 (±1) 5.26 30.64 4.71 0.287

0.494 2.99×10−7 0.106 6.59 (±0.04) ×1010 171 (±1) 5.90 26.02 6.36 0.284

0.494 2.90×10−7 0.092 8.58 (±0.06) ×1010 189 (±1) 5.24 30.77 6.51 0.288

0.494 2.88×10−7 0.092 1.026 (±0.006) ×1011 208 (±1) 5.22 30.98 7.72 0.279

0.494 2.97×10−7 0.106 1.242 (±0.007) ×1011 233 (±1) 5.85 26.41 11.75 0.266

0.494 3.00×10−7 0.106 1.98 (±0.01) ×1011 285 (±2) 5.91 25.95 19.19 0.242

0.494 2.93×10−7 0.106 3.47 (±0.03) ×1011 346 (±3) 5.75 27.04 31.75 0.212

0.195 2.99×10−7 0.002 1.89 (±0.04) ×1011 296 (±6) 5.23 30.92 0.87 0.24523
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Γ E Fr Ra Nu Pr Tmean [◦C] ∆T [◦C] −∂zT
∣∣
z=0.5

0.195 3.00×10−7 0.002 3.30 (±0.04) ×1011 346 (±4) 5.25 30.75 1.54 0.214

0.195 3.00×10−7 0.002 1.14 (±0.01) ×1012 508 (±6) 5.26 30.67 5.35 0.146

0.195 2.99×10−7 0.002 3.90 (±0.03) ×1012 756 (±6) 5.23 30.85 18.10 0.091

0.195 2.98×10−7 0.002 6.53 (±0.07) ×1012 908 (±9) 5.21 31.04 30.06 0.079

0.195 5.00×10−8 0.074 1.06 (±0.04) ×1011 51 (±3) 5.22 30.99 0.49 0.371

0.195 5.00×10−8 0.074 1.49 (±0.04) ×1011 74 (±3) 5.22 30.99 0.69 0.335

0.195 5.00×10−8 0.074 2.14 (±0.04) ×1011 115 (±2) 5.22 30.99 0.99 0.318

0.195 5.01×10−8 0.074 3.29 (±0.04) ×1011 169 (±2) 5.22 30.94 1.52 0.307

0.195 5.00×10−8 0.074 5.05 (±0.04) ×1011 227 (±2) 5.21 31.04 2.33 0.319

0.195 5.01×10−8 0.074 6.37 (±0.05) ×1011 273 (±2) 5.22 30.95 2.95 0.319

0.195 5.00×10−8 0.074 8.79 (±0.06) ×1011 331 (±2) 5.22 31.00 4.05 0.315

0.195 4.99×10−8 0.074 1.11 (±0.01) ×1012 371 (±3) 5.21 31.05 5.09 0.316

0.195 5.00×10−8 0.074 1.42 (±0.01) ×1012 418 (±3) 5.21 31.05 6.54 0.307

0.195 5.00×10−8 0.074 2.23 (±0.02) ×1012 533 (±4) 5.21 31.02 10.27 0.285

0.195 5.03×10−8 0.073 4.22 (±0.02) ×1012 696 (±4) 5.23 30.86 19.59 0.247

0.195 5.00×10−8 0.074 6.93 (±0.05) ×1012 856 (±6) 5.21 31.00 31.95 0.212

0.195 4.85×10−8 0.074 8.40 (±0.08) ×1012 904 (±8) 5.03 32.48 36.22 0.195

0.097 5.01×10−8 0.005 3.47 (±0.06) ×1012 627 (±12) 5.22 30.98 2.01 0.255

0.097 4.99×10−8 0.005 8.66 (±0.05) ×1012 871 (±6) 5.22 30.98 5.01 0.222

0.097 5.00×10−8 0.005 1.73 (±0.01) ×1013 1165 (±8) 5.22 30.98 10.00 0.158

0.097 4.98×10−8 0.005 3.41 (±0.03) ×1013 1486 (±12) 5.18 31.28 19.43 0.122
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Γ E Fr Ra Nu Pr Tmean [◦C] ∆T [◦C] −∂zT
∣∣
z=0.5

0.097 1.00×10−8 0.115 2.26 (±0.03) ×1012 122 (±3) 5.22 30.98 1.31 0.259

0.097 1.00×10−8 0.115 3.47 (±0.03) ×1012 218 (±5) 5.22 30.98 2.01 0.290

0.097 1.00×10−8 0.115 5.20 (±0.07) ×1012 297 (±8) 5.22 30.98 3.01 0.301

0.097 1.00×10−8 0.115 7.80 (±0.12) ×1012 421 (±5) 5.22 30.98 4.51 0.302

0.097 1.00×10−8 0.115 8.66 (±0.09) ×1012 463 (±4) 5.22 30.98 5.00 0.304

0.097 9.98×10−9 0.115 1.16 (±0.03) ×1013 546 (±5) 5.20 31.15 6.67 0.303

0.097 1.00×10−8 0.115 1.73 (±0.07) ×1013 715 (±10) 5.22 30.99 10.01 0.298

0.097 1.00×10−8 0.115 3.46 (±0.02) ×1013 1059 (±11) 5.22 30.99 20.00 0.265

0.097 1.00×10−8 0.115 5.19 (±0.03) ×1013 1316 (±15) 5.22 31.00 29.99 0.231

0.097 9.56×10−9 0.115 6.80 (±0.05) ×1013 1457 (±5) 4.95 33.20 35.60 0.224
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3.3 Experimental apparatus for flow measurements
4

Different from the heat transfer measurements, for the flow measurements we
now employ a custom-made transparent acrylic cylinder section and we use
H = 2 m exclusively for an aspect ratio Γ ≈ 1/5. A picture and a sketch of
the stereo-PIV arrangement are shown in Fig. 3.3. A custom-made water-filled
prism around the cylinder enables optical access from outside without too much
diffraction on the cylinder surface. A laser light sheet≈ 3.5 mm thick crosses the
tank horizontally at mid-height, pulsing at frequencies of 7.5 or 15 Hz; chosen
according to the typical flow speeds. The water is seeded with polyamid seeding
particles of nominal size 5 µm. The illuminated particle images are recorded
with two cameras (Jai SP-500M-CXP2; 5 Mpixel) placed on opposite sides of
the cylinder at an angle of ≈ 45◦ with the vertical. Scheimpflug adapters [65]
rotate lens and image plane so that the full intersection area is imaged in
focus. This stereoscopic arrangement allows for stereo-PIV evaluation [65] of
all three velocity components in the light sheet plane; the resulting velocity
field fits 122 vectors in the diameter at a vector separation of 3.2 mm in both
horizontal directions. Here we analyse between 3000 and 9000 vector fields per
experiment, a duration of 200− 600 s.

We have selected seven operating conditions that capture various flow sub-
regimes. These settings are indicated in a phase diagram in Fig. 3.4 with red
crosses. The mean temperature Tmean = (Tbot + Ttop)/2 is kept at 31 ◦C, i.e.
Pr = 5.2. A constant rotation rate Ω = 1.9 rad/s is applied, i.e. E = 5× 10−8.
For the experiments discussed here Fr = 0.07; at this value we could not
observe significant up/down asymmetry in our sidewall temperature measure-
ments [60] pointing at negligibly small impact of centrifugal buoyancy.

We set bottom and top temperatures such that Ra ∈ {0.11, 0.22, 0.43, 0.65,
1.1, 2.2, 4.3}× 1012, or, correspondingly, Ra/RaC ∈ {2.3, 4.7, 9.1, 14, 23, 47, 91}.
Note that it is hard in practice to get to smaller Ra/RaC values in large
setups like TROCONVEX, given that the small temperature differences re-
quired (∆T < 0.5 ◦C) cannot be controlled accurately enough at these scales
(Section 3.1 and [27]). That is why we cannot enter the cellular state and
only partially the CTC state. In addition, we consider one nonrotating case at
Ra = 6.5× 1011 for comparison.

4The contents of this section have been adopted from M. Madonia, A. J. Aguirre Guzmán,
H. J. H. Clercx, and R. P. J. Kunnen. Velocimetry in rapidly rotating convection: Spatial
correlations, flow structures and length scales. Europhys. Lett., 135(5):54002, 2021 [64];
some symbols have been changed from the article to match with the current notation.
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3.3 Experimental apparatus for flow measurements

Figure 3.3: Picture and sketch of the stereo-PIV arrangement. A water-filled acrylic prism
surrounds the cylinder. The laser light sheet (green line) crosses the cylinder at mid-height.
The 45◦ oblique planes of the prism facilitate imaging of the intersection area of the laser
sheet with the cylinder using the cameras.
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Chapter 3 Experimental Setup

Figure 3.4: Phase diagram for rotating convection in water. The expected flow structures
and transitions between them (based on heat-flux and temperature measurements from
TROCONVEX in Chapter 4) are labeled in the diagram. The velocimetry experiments
discussed in this thesis are indicated with red crosses.
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Chapter 4

Heat Transfer Regimes in Rapidly
Rotating Turbulent Convection

1

In this chapter, we report heat transfer and temperature profile measurements
in laboratory experiments of rapidly rotating convection in water under un-
precedentedly strong rotational influence (Ekman numbers E as low as 10−8).
Measurements of the mid-height vertical temperature gradient connect quanti-
tatively to predictions from numerical models of asymptotically rapidly rotating
convection, separating various flow phenomenologies. Past the limit of validity
of the asymptotically-reduced models, we find novel behaviors in a regime we re-
fer to as rotationally-influenced turbulence, where rotation is important but not
as dominant as in the known geostrophic turbulence regime. The temperature
gradients collapse to a Rayleigh-number scaling as Ra−0.2 in this new regime.
It is bounded from above by a critical convective Rossby number Ro∗C = 0.06
independent of domain aspect ratio Γ, clearly distinguishing it from well-studied
rotation-affected convection.

4.1 Introduction

Convectively driven, rotationally constrained flows are the foundation of many
geophysical and astrophysical processes, from dynamo action in Earth’s molten
iron core [66] to atmospheric patterns in gas giants [67]. These systems are mas-
sive and complex; our understanding of their flows depends on greatly simplified
models. Much can be learned by distilling the physics down to the canonical
problem of rotating Rayleigh-Bénard convection: a layer of fluid subject to an
unstable vertical temperature gradient, rotating about a vertical axis. Even

1The contents of this chapter have been adopted from J. S. Cheng, M. Madonia, A. J.
Aguirre Guzmán, and R. P. J. Kunnen. Laboratory exploration of heat transfer regimes
in rapidly rotating turbulent convection. Phys. Rev. Fluids, 5(11):113501, 2020 [60],
leaving out some introductory parts that have already been covered in this thesis; some
symbols have been changed from the article to match with the current notation.
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Chapter 4 Heat Transfer Regimes in Rapidly Rotating Turbulent Convection

in this reduced problem, though, vastly different flows emerge depending on
the relative strength of rotational and convective forces, whose properties must
be understood before extrapolating results to geophysical settings. Though
rotating convection is well-studied at moderate degrees of thermal forcing and
rotation in laboratory experiments [68–71] and direct numerical simulations
(DNS) [46,72], a massive parameter gap separates such studies from the extreme
conditions in planets [17,73].

Recent studies aiming to bridge this gap have employed large-scale exper-
imental setups [35, 36, 74, 75] and high resolution simulations [32, 33, 75, 76].
Though gains may appear marginal in the planetary context, these studies
have, in fact, manifested a plethora of previously unobserved behaviors. Of par-
ticular interest are regimes where both thermal forcing and rotation (described
respectively by the Rayleigh number, Ra, and Ekman number, E, defined in
Chapter 2) strongly affect the flow but neither dominates. Parameter estimates
for planetary fluid layers indicate that understanding these regimes may be the
crux to solidifying the relationship between rotating convection models and
geophysical systems [18, 36]. Achieving strong enough rotational influence to
establish these regimes, though, is no easy task: to date, our understanding of
them relies primarily on simulations of the asymptotically-reduced equations,
a set of equations rescaled in the limit of infinitely rapid rotation [31].

In this chapter, we analyze 70 new nonrotating and rotating convection
experimental data points from the TROCONVEX laboratory setup [27]. Our
data expandRa by roughly a decade and reduce E by a factor of three compared
to previous laboratory studies in water (and at significantly reduced influence of
centrifugal acceleration), allowing us to make closer comparisons to asymptotic
studies – and geophysical settings – than ever before. Using measurements of
heat transfer and temperature gradients at the mid-height of the fluid layer,
we demonstrate that asymptotically-predicted transitions between different
flow regimes [21,77] are quantitatively reproduced in laboratory settings. We
confirm that the range of “geostrophic turbulence” (described below) expands
as rotational influence increases. Our data also extend into regimes of thermal
forcing stronger than is allowed by the asymptotic equations, i.e. thermal
forcing is strong enough to weaken the rotational constraint. In this previously
unexplored regime, we observe a novel scaling in the heat transfer and the mid-
height temperature gradient, which could identify the existence of a new scaling
range in between the ranges that have been studied previously. Furthermore,
we observe that this new regime also becomes more and more prominent as
rotation is increased (E is reduced).

30



4.2 Error analysis

4.2 Error analysis

The results presented in this chapter are based on statistics of long time series
of temperature measurements. A careful error analysis is warranted to extract
appropriate error intervals for the mean values, which can then be propagated
to errors in the dimensionless parameters.

The errors in the Rayleigh number, Ra = αg∆TH3/νκ, and the Nusselt
number, Nu = qH/k∆T , depend primarily on ∆T , Tmean and the error in heat
flux, q. We formally propagate the errors for these quantities (e.g., Section
3.11 in [78]), and report the uncertainties in Ra and Nu in Table 3.1. For
the top and bottom temperatures, the spread in temperature across different
thermistors is larger than that of any single thermistor, and so the error in
Tbot (Ttop) is taken as the standard deviation σ across the set of all bottom
(top) thermistors. The error in q is estimated as the standard deviation of the
timeseries as well. Ultimately, the error bars in Nu and Ra are smaller than
the marker sizes in the figures.

In contrast to the global parameters, interpretation of our laboratory results
of −∂zT

∣∣
z=0.5

requires careful error analysis. For a series of independent obser-

vations x, the standard deviation of the mean σ(x) = σ/N1/2 is often used to
characterize the error in x. In our study, though, temperatures are maintained
through PID loop controls which enforce a roughly periodic behavior on time
scales of O

(
103
)

seconds. To formulate proper error estimates we employ Neff ,
the number of observations over which measurements are ‘effectively’ indepen-
dent [79]. This replaces N in the formulation for standard deviation of the
mean [79,80]:

σ(x) =
σ

N
1/2
eff

. (4.1)

[80] write Neff in terms of elements of the autocorrelation function rk, where:

Neff =
N

1 + 2
Nc∑
k=1

(
1− k

N

)
rk

. (4.2)

The summation is truncated at the so-called limiting lag, Nc < N − 1. We
determine the value of Nc for each temperature timeseries by finding the first
transit through zero of rk [80]:

Nc = min {k| (rk > 0 ∧ rk+1 < 0)} . (4.3)

In each case, the error on each time-averaged thermistor measurement is given
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Chapter 4 Heat Transfer Regimes in Rapidly Rotating Turbulent Convection

by (4.1). Since temperature data are horizontally averaged, σ(T ) at every height
is the root-mean-square combination of σ for every thermistor at the same
height. We then formally propagate errors in temperature into the normalized
temperature profile following (3.1). Note that errors in not only the sidewall
thermistors but also in Tbot and Ttop figure into the error in T .

−∂zT
∣∣
z=0.5

is calculated as a best-fit slope for T vs. z, and so we employ the

weighted least squares method to translate error bars in T into error bars in
−∂zT

∣∣
z=0.5

[78]. For a set of sidewall heights hi, corresponding to normalized

temperatures T i with standard deviations σi, the weight factors are given by
wi = 1/σ2

i . The standard deviation in −∂zT
∣∣
z=0.5

is then written as:

σgradient =


∑
i
wi

∑
i
wi
∑
i
wih2

i −
(∑

i
wihi

)2


1/2

, (4.4)

which we interpret as the error bars for −∂zT
∣∣
z=0.5

. Errors are evidently small

enough that trends in −∂zT
∣∣
z=0.5

can be meaningfully discerned, though they
may grow large as ∆T becomes small.

4.3 Results

4.3.1 Flow visualizations

We set the stage by presenting flow visualizations from the Γ = 1/5 setup
(Fig. 4.1). We seed the water with neutrally buoyant rheoscopic particles [81]
and illuminate with a vertical light sheet. Fig. 4.1(a,b) show the turbulent flows
at high Ra and no rotation. For these cases, increasing Ra decreases the scale
of flow structures. Under rotation, Fig. 4.1(c–f), the dominant flow structures
evolve differently as Ra increases. In the context of asymptotic simulations
where E,Ro→ 0 [18,21], panel (c) corresponds to “convective Taylor columns”
(Ra = 2RaC) where narrow structures span the tank vertically, panel (d) to
“convective plumes” (Ra = 18RaC) where the columns interact laterally and
become wavy, and panel (e) to “geostrophic turbulence (GT)” (Ra = 34RaC),
where convective forces have destroyed the columnar structure but flows remain
constrained to rotational length scales. Asymptotic simulations display the
transition between columns and plumes at [77]:

Ra = 55E−4/3 = 6.3RaC . (4.5)

32



4.3 Results

No such prediction can be made with sufficient confidence for the plumes to GT
transition, however: for lowE (. 10−6), GT exists at the limit of accessibility for
asymptotic simulations and DNS. It remains largely uncharacterized at Pr 6= 1
and with poorly constrained scaling properties even at Pr = 1 [21,32,33,35].

The onset horizontal scale λC – believed to accurately describe flows in
Fig. 4.1(c–e) – serves as a necessary condition for deriving the asymptotically-
reduced equations [31]. This assumption persists until buoyancy takes over the
horizontal length scale, theorized to occur at [37,82]:

Ra ∼ E−8/5Pr3/5 . (4.6)

Fig. 4.1(f) (Ra = 70RaC) lies beyond this upper bound, demonstrating different
flow morphology. Flows at Ro . 1 are well-studied at moderate E, but their
properties change fundamentally as E decreases: for example, Nu overshoots
above the non-rotational heat transfer efficiency (Nu0(Ra)) in this range for
E & 10−6 [29, 71], but becomes suppressed below Nu0 as E is lowered [36].
Our laboratory experiment is uniquely well-suited to exploring high Ra/RaC
values at simultaneously low E [27], offering significantly lower E than other
setups while achieving higher Ra/RaC than is possible in simulations using
the asymptotically reduced equations.

4.3.2 Heat transfer

Before considering rotating convection at extreme parameters, we consider non-
rotating turbulent heat transfer for validations. Fig. 4.2 shows our nonrotating
data in terms of Nu versus Ra. We achieve a maximum Ra = 7×1013 – nearly
a decade higher than any previous Pr > 1 study (e.g. [36]). Nonrotating data
[Fig. 4.2(a)] follow a best-fit scaling

Nu0 = 0.11
(

+0.02
−0.01

)
Ra0.308±0.005 , (4.7)

agreeing with previous scaling exponents ∼ 0.3−0.33 found in water [36,83,84]
and other fluids [41,85,86]. They are also consistent with the classical prediction
Nu ∼ Ra1/3 where the bulk is sufficiently turbulent as to be approximately
isothermal, with the temperature gradient confined to the upper and lower
thermal boundary layers [87]. There is no evidence of transition to a steeper
scaling that would indicate ‘ultimate’ convection; the state of convection where
the boundary layers have become turbulent [30, 88] with more efficient heat
transfer evident from a steeper scaling exponent γ > 1/3 in the scaling relation
Nu ∼ Raγ . The transition location Ra ∼ 1011–1013 where ultimate convection
sets in is disputed [89, 90]. Note that our comparatively narrow geometry
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Figure 4.1: Flow field visualizations in a vertical slice of the Γ = D/H = 1/5 tank.
Panels (a,b): nonrotating convection at Ra = (a) 1.4 × 1011, (b) 2.2 × 1012. Panels (c–f):
rotating convection at E = 5× 10−8 and Ra = (c) 9.6× 1010 (convective Taylor columns),
(d) 8.6× 1011 (plumes), (e) 1.2× 1012 (geostrophic turbulence), (f) 3.3× 1012 (rotationally-
influenced turbulence). The vertical black line remarks the separation between non-rotating
and rotating cases on the first row.
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Figure 4.2: Nusselt number (Nu) plotted versus Rayleigh number (Ra) for (a) nonrotating
and (b) rotating convection experiments. In both panels, marker shape represents tank aspect
ratio Γ; the solid line our nonrotating convection fit (4.7). Data from previous studies are
included as open grey circles [92] and triangles [36]. In panel (b), color represents Ekman
number (E), RaC in each case is marked by ‘×,’ and black-outlined symbols are within
our new postulated scaling range (to be precisely defined later). Dotted lines represent the
columns–plumes transition (4.5) from [77]; dashed lines represent the transition (4.6) where
the asymptotically reduced equations are projected to break down, it is the flow transition
from GT to the postulated new scaling range.

(Γ = 1/10) is possibly detrimental to the transition to ultimate convection;
from recent numerical simulations in a similar geometry [91] no transition could
be observed either.

We now present our heat transfer data of rotating convection as Nu(Ra)
graphs at three different Ekman numbers,E = 10−8, 5×10−8 and 3×10−7. Each
curve [Fig. 4.2(b)] follows a characteristic succession of ever shallower slopes as
Ra increases (as postulated in [27]), eventually merging with the nonrotating
scaling (4.7). As is characteristic for low E, rotational Nu values lie below the
nonrotating Nu0 values until well beyond onset. This separation becomes more
pronounced as E decreases: the E = 3 × 10−7 trend first comes within 10%
of the nonrotating trend at Ra ≈ 40RaC , while for E = 5 × 10−8 this does
not occur until Ra ≈ 400RaC . This confirms that the so-called geostrophic
regime of rotation-dominated convection, with its reported subdomains as cells,
columns, plumes and GT, expands as E is lowered.

It is technically difficult to connect our lowermost experimental data point
at Ra = 1.12 × 1010, E = 3 × 10−7 to the onset of convection (green ‘×’ on
the horizontal axis); the minute temperature differences required cannot be
stably maintained [27, 75]. But it is clear that a steep Nu(Ra) scaling in the
cellular and columnar regimes is required. This picture is consistent with direct
numerical simulation (DNS) studies at low E and Pr ' 3–10 [32,36,75] that
do observe steep Nu(Ra) scaling. However, there is an important difference
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in domain composition: these studies typically use rectilinear domains with
periodic boundary conditions in the horizontal directions rather than a cylinder.
Recent simulations and experiments have indicated the persistent presence of
so-called wall modes in confined rotating convection [38, 93–95]: a sidewall
recirculation (absent in periodic DNS domains) leading to increased Nu, the
effect more pronounced at lower Ra/RaC [38]. These complicate quantitative
comparison of heat flux between experiment and DNS.

It is anticipated that the different regimes of flow phenomenology can be
recognized as specific power-law scaling ranges with characteristic scaling expo-
nents [27]. Here we illustrate that the Nu(Ra) scaling alone does not provide
conclusive evidence for regime transitions in Fig. 4.3, where Nu is compen-
sated by the nonrotating Nu0 fit (4.7), and Ra is compensated by several
transition arguments. In contrast to previous studies [35, 36], none of these
arguments definitively collapse data across multiple E values in our extreme
parameter range. Compensating Ra by (4.5) gives little evidence of collapse
[Fig. 4.3(a)]. Compensating with (4.6) collapses the near-onset trends while
inducing spread in the GT range [Fig. 4.3(b)]; compensating by RoC does the
opposite [Fig. 4.3(c)]. In the latter panel there is satisfactory collapse of our
higher RoC data, with a clear transition at Ro∗C = 0.06 [see inset in Fig. 4.3(c)]
that is independent of aspect ratio Γ.

We argue that Ro∗C = 0.06 could mark the upper boundary of a new scaling
range. The transition point is significantly distinct from the well-documented
transition from rotation-affected to nonrotating convection [96]: the latter
transition has been shown to be strongly dependent on Γ and the predictedRoTC
(RoTC = {1.2, 0.40, 0.16} for Γ = {1/2, 1/5, 1/10}, respectively) is significantly
higher than Ro∗C = 0.06 [see inset in Fig. 4.3(c)]. Thus, we anticipate that
for Ro∗C < RoC < RoTC we have recovered rotation-affected convection where
rotation does not significantly affect the heat transfer scaling; the data points
approach the nonrotating Nu(Ra) curve as Ra increases. We note that a
qualitatively similar collapse is found in [35], but at a significantly higher
transition value Ro∗C = 0.35. The most prominent difference is the working
fluid and associated Prandtl number; Ecke & Niemela [35] used low-temperature
helium with Pr = 0.7 while we use water at Pr = 5.2.

We shall argue in Sec. 4.3.3 that the lower boundary of the new scaling range
is given by Eq. (4.6): Ra ≥ E−8/5Pr3/5. An indicative fit of heat transfer in
the new regime results in Nu/Nu0 ∼ Ro0.39

C or Nu ∼ Ra0.52 (Nu ∼ Raγ∗ with
γ∗ = 0.52).

Additionally, we can consider heat transfer in the regimes characterized
by plumes and geostrophic turbulence, the range between dotted and dashed
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C

C

C

Figure 4.3: Nu compensated by nonrotating scaling Nu0 as per Eq. (4.7) versus: (a)
Ra/(55E−4/3) as per Eq. (4.5) [77]; (b) Ra/(E−8/5Pr3/5) = Ra/(2.7E−8/5) as per Eq.
(4.6) [37], and (c) RoC [45]. Bullet color and shape are the same as in Fig. 4.2, with additional
points from [36]: numerical E = 1× 10−6 cases are yellow crosses, numerical E = 1× 10−7

cases are cyan crosses, lab E ' 10−7 cases are empty cyan triangles, and lab E ' 3× 10−8

cases are empty indigo triangles. The inset in panel (c) shows our rotating data for which
Ra > E−8/5Pr3/5; see also Eq. (4.6). A change in slope occurs at Ro∗C ≈ 0.06, which we
argue is the upper limit of the new scaling range.

37



Chapter 4 Heat Transfer Regimes in Rapidly Rotating Turbulent Convection

Figure 4.4: (a) Zoomed-in view of the Nu data points of Fig. 4.2(b) in the plumes/GT
range, plotted as Nu/Nu0 as a function of Ra for clarity. Weighted least-squares power-law
fits are included with solid black lines. Bullet color and shape as in Fig. 4.2. (b) Corresponding
Nu(Ra) scaling exponents γ as a function of E. The error bars indicate one standard deviation
error intervals resulting from the weighted least-squares fits. The red dashed line indicates
γ∗ = 0.52, the previously discussed scaling exponent of the new scaling range beyond the
GT regime.

vertical lines in Fig. 4.2(b). These datapoints also display an approximate
power-law scaling Nu ∼ Raγ ; the scaling exponent γ is generally larger than
for the previously discussed new scaling range and shows a clear dependence
on E. A close-up view of the data points in this range is plotted in Fig. 4.4(a),
where we plot Nu/Nu0 as a function of Ra to have the points lie closer together.
Solid black lines are weighted least-squares power-law fits. Fig. 4.4(b) presents
the corresponding scaling exponents γ as a function of E. Though the range is
not extensive, it is clear that steeper scaling is observed for smaller E. This is
again in line with the projected succession of scaling ranges with descriptive
exponents per flow state [27]. Compared to the reported asymptotic scaling
γ = 1.5 for geostrophic turbulence [37] our exponents are small, but increasing
as E is reduced.

4.3.3 Mid-height temperature gradient

In lieu of further transition information from globally-averaged parameters, we
shift focus to the time-averaged vertical temperature gradient −∂zT

∣∣
z=0.5

. In
nonrotating turbulent convection, the temperature profile is sharply divided
between the bulk, which is nearly isothermal (−∂zT ≈ 0), and the thermal
boundary layers, within which nearly all of the temperature drop ∆T occurs
[30,97]. In rotating convection, however, the shape of the temperature profile
evolves as Ra/RaC changes and with it the flow morphology, giving it diagnostic
properties [21,33,77,98]. The aforementioned wall modes of confined convection
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[38, 93, 94] actually do not affect long-time averaged temperature values; their
symmetrical structure (azimuthal distribution into a ‘colder’ and a ‘warmer’
half) and gradual azimuthal precession [38] make it so that the wall mode
signature can be nicely averaged out in the sidewall thermistor time series.
Hence the time-averaged sidewall gradient still nicely follows that of the bulk,
independent of the presence of the wall mode.

We want to make a remark on the error bars. The error in −∂zT
∣∣
z=0.5

,
obtained with the procedure detailed in Section 4.2 can be seen to increase
towards small values of Ra/RaC . This is mainly due to the smaller ∆T values
used there with correspondingly larger relative error; ∆T is used for normal-
ization in −∂zT

∣∣
z=0.5

. Furthermore, the error also grows towards small values

of −∂zT
∣∣
z=0.5

that are found at the largest Ra/RaC values. There, the tem-
perature difference over the bulk reduces with larger relative error as a result.

Fig. 4.5(a–c) show that the temperature gradient measured at mid-height,
−∂zT

∣∣
z=0.5

, is indeed a robust tool for determining regime transitions at each
E value. Remarkably, the transitions found in asymptotic simulations show ex-
cellent quantitative agreement with the transitions we observe in our measured
−∂zT

∣∣
z=0.5

, regardless of differences in domain composition and boundary con-
ditions. In the cellular and columnar regimes, increasing Ra leads to a decreas-
ing temperature gradient. At the transition point described by Eq. (4.5) this
trend reverses, indicating that increasing Ra/RaC now forces more of the tem-
perature gradient into the interior as the horizontal rigidity of bulk flow struc-
tures relaxes. Visualizations of the flow and Nu(Ra) data do not reveal where
the plumes–GT regime transition takes place, but asymptotic studies posit
that GT corresponds to −∂zT

∣∣
z=0.5

flattening with increasing Ra/RaC [21].
Our results do appear to manifest such a flattening at Ra/RaC ' 15 at each
E value. This abruptly gives way to a decreasing trend at the transition point
described by Eq. (4.6), which could be considered the lower boundary of the
new scaling regime that we postulate. A factor E−4/15 separates Eqs. (4.6)
and (4.5), identifying that the parameter range of GT expands as E decreases
toward geophysical values.

In Fig. 4.5(d) we plot −∂zT
∣∣
z=0.5

data for all E values versus Ra rescaled
by (4.6) using 1 as prefactor. Overplotting separate E trends collapses all data
in this regime into an approximate −∂zT

∣∣
z=0.5

∼ Ra−0.21 scaling, in sharp

contrast to the Ra0 scaling reported for the traditional rotationally-affected
regime (see Table 2 of Ref. [99], the authors labeled it the ‘weakly rotating’
regime). We thus postulate Eq. (4.6) as the lower bound of a novel scaling range
that displays temperature statistics different from previously identified scaling
ranges: both “rotationally-affected convection” and GT. Data points belonging
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to the new scaling range are marked by black outlines in Figs. 4.2–4.5. The
scaling exponent of −∂zT

∣∣
z=0.5

in this range is a novel result that we cannot
currently explain. We speculate that nonrotating-style thermal boundary layers
have formed beyond this transition, such that increasing Ra causes stronger
mixing in the bulk and isolates more of the temperature gradient into the
boundary layers.

In the following chapters we use flow measurements, in particular stereo-
scopic particle image velocimetry, to get more insight into the flow statistics
in the different flow regimes and in particular to formulate a better under-
standing of the flow in the proposed new RIT scaling range. Our companion
numerical study, performed in a laterally unbounded domain, retains similar
results for both heat transfer and temperature gradient measurements in the
RIT regime [100].

4.4 Conclusion

Our novel rotating convection survey demonstrates the emergence of several
distinct regimes as E is pushed lower than any previous study in water. Scalings
between Nu and Ra show consistency with previous results at moderate param-
eter values while extending them to more extreme values. To determine precise
transition locations, the mid-height temperature gradient −∂zT

∣∣
z=0.5

serves as
a robust tool: transitions almost invisible in Nu(Ra) plots [Figs. 4.2 & 4.3] are
expressed as pronounced changes in the −∂zT

∣∣
z=0.5

vs. Ra/RaC trend [Fig. 4.5].
Our data confirm that the GT range expands as E decreases. They also sug-
gest the existence of an additional, previously unidentified scaling regime just
beyond GT, for Ra > E−8/5Pr3/5 and RoC < Ro∗C = 0.06 (Fig. 4.3). The
new range displays behaviors differentiating it from both the GT regime at
asymptotically small E [21] and the rotationally-affected regime at moder-
ately large E [29,71]: temperature gradients collapse as −∂zT

∣∣
z=0.5

∼ Ra−0.21

(Fig. 4.5d) and heat flux as Nu/Nu0 ∼ Ro0.39
C (Fig. 4.3c). In the regime of

plumes and GT, we observe that the heat flux scaling is generally steeper than
that, with increasing exponent as E is reduced. Furthermore, we show that the
mid-height temperature gradient can be used to identify regime transitions in
remarkable quantitative agreement with transition predictions from asymptotic
simulations, despite different domain composition and boundary conditions.

These results show that the parameter space of turbulent convection, from
nonrotating to asymptotically rapid rotation, may show an even richer subdi-
vision than known so far. We argue that there are signs of a new intermediate
regime separating “rotationally-dominated” convection (GT) from traditional
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Figure 4.5: Normalized mid-height temperature gradient −∂zT
∣∣
z=0.5

versus Ra/RaC for

(a) E = 3 × 10−7, (b) E = 5 × 10−8, and (c) E = 1 × 10−8. Symbol shapes represent Γ as
in Fig. 4.2. Dotted lines represent Eq. (4.5); dashed lines Eq. (4.6). (d) Normalized gradient
−∂zT

∣∣
z=0.5

versus Ra/(E−8/5Pr3/5) = Ra/(2.7E−8/5) as per Eq. (4.6), for all three E values.
A fit to the black-bordered points (those lying in the new scaling range) across all E values
gives −∂zT

∣∣
z=0.5

∼ Ra−0.21.
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“rotation-affected convection”. Extrapolating the scaling arguments supported
in this chapter, the spaces between transitions widen as E decreases: the plumes
/ GT range expands as Ra ∼ E−4/15 while the proposed new scaling range
expands as Ra ∼ E−2/5. In the geophysical context, estimates for planetary
fluid layers give E ∼ 10−19 − 10−12 [17] and Ra/RaC ∼ 102 − 103 [101]. Ro-
tating convection in these layers then invariably inhabits either geostrophic
turbulence or turbulence exhibiting the new scaling. Large-scale laboratory
experiments can aid to bridge the gap between asymptotic studies and direct
numerical simulations, while at the same time exploring the parameter space
currently out of reach for both simulation approaches.
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Chapter 5

Flow Statistics

In this chapter, we give an overview of different flow statistics of rotating
Rayleigh–Bénard convection from stereo-PIV measurements, in a parameter
range that has never been analyzed before. Our investigation focuses on seven
rotating cases and a non-rotating one for comparison. We present mean flow
fields in which we compensate for the azimuthal drift of the sidewall circulation
that show the division into an outer part composed by two lobes of oppositely-
signed vertical velocity and an inner part characterized by a quadrupolar vortex.
Radial profiles of root-mean-square velocities and vertical vorticity show an
increase of overall magnitude with higher thermal forcing, as well as increasing
thickness of the sidewall boundary layer. The velocity fluctuations in the bulk
flow show a scaling that is in between visco-Archimedean-Coriolis and Coriolis-
inertial-Archimedean force balance arguments. The vorticity scaling follows that
of the velocity fluctuations. The rotating cases exhibit also a velocity distribution
that is nearly isotropic, in contrast with the non-rotating case which has a clear
preference for the vertical components.

5.1 Introduction

In Chapter 4 we have used temperature measurements to investigate the dif-
ferent states of rotating Rayleigh-Bénard convection based on two different
quantities, the Nusselt number and the midheight vertical temperature gradient.
From this chapter on, we analyze data obtained from velocity measurements.
As described in Section 3.3 we have performed stereo-PIV measurements of
rotating RBC at different buoyancy forcing strengths and one non-rotating
case as benchmark.

Velocity measurements can be used to characterize in further details the
different behaviors of the states of rotating Rayleigh–Bénard convection. With
this investigation, we can gain more insights into these states as well as the
novel state of RIT, described in Chapter 4. With flow measurements, we have
a new tool to try and distinguish RIT from the rotation-affected state.
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In previous literature, alongside numerical simulations [21,23,32,34,77,93,
102–104], flow velocities of rotating Rayleigh–Bénard convection have been
measured in experimental setups [24,105–108], with analysis that focused on
different characteristics of rotating Rayleigh–Bénard convection.

From previous studies [38,93,94] we know that a secondary flow, the sidewall
circulation, sets in in laterally confined domains (such as cylinders). This gener-
ates a boundary circulation that modifies the general heat transfer properties
of the system. Moreover, the overall flow in a cylindrical domain precesses
anticyclonically with a specific angular velocity. This drift changes with the
different parameters of the flow; specifically, Ref. [38] connects the angular
velocity with the Rayleigh number, while Ref. [93] relates it also to Pr, E and
the aspect ratio.

In rotating Rayleigh–Bénard convection, there are many predictions of root-
mean-square (RMS) velocity scalings depending on which force balance is
at play [23,99,109]. The visco-Archimedean-Coriolis (VAC) balance assumes
that the Taylor-Proudmann (TP) constraint (see Eq. (2.36)) is broken by
viscous forces, while the Coriolis-inertial-Archimedean (CIA) balance assumes
that the TP constraint is broken by inertia. Velocity measurements at low
E can give a hint on which balance is present in experiments at extreme
parameters, where the VAC balance predicts velocity fluctuations to scale as
uRMS ∼ Ra1/2E1/3(Nu− 1)1/2/Pr and CIA balance instead predicts uRMS ∼
Ra2/5E1/5(Nu− 1)2/5/Pr4/5.

The distribution of such RMS velocities (horizontal vs. vertical) can also
be a tool to identify the flow states of rotating Rayleigh–Bénard convection
[24,70,105,107].

In this chapter we analyze a subset of the cases treated in Chapter 4, all taken
with a tank height of 2 m, composed by seven cases of rotating Rayleigh–Bénard
convection at constant rotation rate (E = 5× 10−8) with varying temperature
differences (Ra = {0.108, 0.216, 0.432, 0.648, 1.08, 2.16, 4.32} × 1012) and one
case of Rayleigh–Bénard convection with Ra = 6.48× 1011 for comparison.

Velocities, with stereo-PIV, are measured in cartesian components (ux, uy,
uz), but we choose to express them in terms of cylindrical components (ur,
uθ, uz) given the cylindrical flow domain domain, that makes the latter more
intuitive and appropriate to use.

In this chapter we express the results in a dimensionless form by scaling
with viscous units Uν = ν/H and τν = H2/ν for a natural comparison of cases
at different Rayleigh number (see also Section 2.2).

The remainder of the chapter is structured as follows. In Section 5.2 we
show how we calculate the precession speed of the sidewall circulation and the
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averaged flow fields taking into account this drift. In Section 5.3 we present
radial profiles of RMS velocities and vertical vorticity of our selected cases.
In Section 5.4 we plot the different definitions of sidewall boundary layer size
and see how they compare to predictions. In Section 5.5 we focus on the RMS
velocities and vorticities in the inner part of our domain, comparing our findings
with velocity scalings hypothesized in previous research, and see how much the
cases deviate from the isotropic distribution of velocities. Finally, in Section 5.6
we present our conclusions.

5.2 Precession averaged fields

Figure 5.1: Time-angle plots of vertical velocity at constant E = 5× 10−8 for different Ra.
Velocity is normalized by the viscous velocity Uν = ν/H, time is normalized using the viscous
time τν = H/Uν . The blue line indicates the precession as predicted from Eq. (5.1)

In order to study the mean flow pattern set up by the interplay of bulk and
sidewall circulation [38], it is worthwhile to take into account the precession
speed ωprec induced by the drift of the sidewall circulation. Failing to do so
may result in canceling some of the features of the pattern that emerge in
RRBC in a cylinder. To track the orientation of the sidewall circulation, we
define a circle of 200 equally spaced points close to the sidewall and we observe
the evolution in time of the vertical velocity: from our prior work [38], the two
lobes of the sidewall circulation are most easily identified from this quantity.
The radial position of these points is initially chosen from an estimate of the
thickness of the sidewall circulation, and then adjusted to give the clearest data.
The velocity in these points is estimated through bilinear interpolation from
the 4 nearest data points. We plot the vertical velocity values in these points
with their angular position on the horizontal axis and time on the vertical axis,
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obtaining a time-angle plot. We normalize the time with the viscous time unit
τν = H/Uν = H2/ν (with Uν = ν/H as defined in Eq. (2.20)). In Fig. 5.1
we can see the temporal evolution of the sidewall circulation and evaluate the
precession speed ωprec: the division into two lobes is clear, as is the clockwise
drift. We can also observe some turbulent interruptions of this trend where
the precession has some disturbance, as seen also in [102]. A line can be drawn
along the interface between blue and red. This line indicates the precession of
the sidewall circulation. Over time, it precesses anticyclonically, i.e. against the
direction of rotation of the cylinder. The slope of the line is ωprec. As it can be
seen from the pictures and as expected from literature [38,102] ωprec increases
with Ra. Also, we found great agreement with our data and the precession rate
found from [102],

ωprec/Ω = 0.03Γ0Pr4/3RaE5/3 (5.1)

represented by the line in the figure that nicely follows the division of the lobes.
The estimate from [38] does not match our data. That study used a different
and constant value of E = 10−7. It is clear from Eq. (5.1) that ωprec is strongly
dependent on E. We use the angular speed (5.1) determined by Zhang et al.
[102] when we apply orientation-compensated averaging. For the low Ra cases,
since the precession is slower and we have a shallower slope, it is a bit harder
to see a clear precession from the figure, but the precession averaged plots in
Fig. 5.2 show that we do capture the right angular speed of the structures.

As we set ωprec we can analyze orientation compensated fields. For each time
step, we rotate the flow field by the angle required to put the two lobes in their
original position. This method allows us to find the mean field structures of
the flow throughout the cross-sectional plane. Fig. 5.2 shows the precession
averaged fields of the vertical, radial and azimuthal velocities for three RRBC
cases at different Ra and one non-rotating RBC case. The results show great
similarities with the same procedure applied to simulation results [38]. For
the rotating cases the two lobes of oppositely signed velocities attached to the
sidewall are clearly seen from the vertical velocity plots. We also see their thick-
ness increase with increasing Ra. This relation is going to be further analyzed
in Section 5.3. This phenomenon of the sidewall circulation, investigated in
literature before, using direct numerical simulations [38,93] and experimentally
through temperature measurements [38, 110] is now, for the first time, seen in
experimental velocity measurements. We can also see a secondary inner layer of
oppositely signed lobes, although less prominent. These secondary structures
are more defined and localized for lower Ra, while they become more diffuse
at higher temperature differences, blending in with the bulk flow as it becomes
more turbulent.
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Figure 5.2: Precession averaged fields of the vertical, radial and azimuthal velocities for
different Ra. Velocity is normalized by the viscous velocity Uν = ν/H.
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One caveat should be taken into account: these measurements are done in a
section of the cylinder that was not as well insulated as it is for heat transfer
measurements (see Chapter 4) and some heat might be leaking through the
sides, an occurrence that is also not considered in simulations with adiabatic
sidewalls. This might explain some of the irregularities and asymmetries of the
sidewall circulation pattern for vertical velocity.

From the radial velocity plots, we can immediately identify a four quadrant
division: there is flow entering the bulk of the cylinder from the position where
the two lobes of the sidewall circulation meet. This inward flow is compensated
by a radially outward flow perpendicular to these intrusions. These inward jets
may be the main cause of the absence of a clear quasi-steady vortex grid that
is generally expected at lower Ra, where the bulk flow should be characterized
by convective Taylor columns [21, 111]. Averaged azimuthal velocity fields
complete the picture, showing also clear similarities with [38]. The bulk zone
is also divided into quadrants of oppositely signed velocities. Wherever the
azimuthal velocity displays a maximum, the radial velocity is zero, suggesting
a quadrupolar state where four vortices fill the cylinder section. This flow state
is analyzed in more detail in Chapters 6 and 7 of this thesis.

The non-rotating case in Fig. 5.2(d) shows a clear division into two halves of
oppositely signed vertical velocity, a clear signal of the large-scale circulation
of RBC [30].

5.3 Azimuthally averaged statistics

In Section 5.2 we have averaged the velocity fields over time taking into account
the precession speed of the sidewall circulation. We can clearly see the division
between a bulk area and a sidewall zone from the plot of the vertical velocity
and a hint of a general circulation in the inner part. Another way of analyzing
this separation is to see how quantities behave if we also average azimuthally.
Here we consider the radial dependency of different quantities, after averaging
with respect to time and azimuthal angle. For our binning procedure, we divide
the section in 65 concentric circular shells, so each shell would represent a ring
of thickness 3 mm comparable to the resolution of our PIV vector field spacing
(3.2 mm). We first analyze the root-mean-square (RMS) value of the vertical
velocity fluctuations defined as uRMS

z ≡
√
〈u2
z〉 − 〈uz〉2, where 〈·〉 denotes

angle- and time-averaging. This quantity is chosen to highlight the radially
dependent behavior that emerges from the fluctuations around the mean value.
We compare this quantity with the horizontal RMS velocity defined as uRMS

hor ≡√
〈u2
x〉+ 〈u2

y〉 where we assumed the mean of horizontal velocity to tend to zero.
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Figure 5.3: (a) Radial dependence of uRMS
z (solid lines) and uRMS

hor (dashed lines) for
different Ra, normalized by the characteristic velocity scale Uν = ν/H. Black crosses indicate
the beginning of the sidewall boundary layer following Eq. (5.2). (b) Radial dependence of
ωRMS
z at mid-height for different Ra, normalized using the viscous time scale τν = H2/ν.

All the quantities displayed in Fig. 5.3 are shown from half the cylinder radius onward for
clarity.

In Fig. 5.3(a) we plot them, normalized by the characteristic velocity scale Uν ,
that can be interpreted as a Reynolds number Re = uRMS/Uν = uRMSH/ν,
see Eq. (2.24). Both quantities show an overall trend of larger values for larger
Ra, as expected, with the exception of the two lowest Ra cases that are almost
identical. We believe this behavior is due to the fact that for low thermal
forcing the overall dynamics is dominated by the sidewall circulation and
its jets impinging into the bulk. This results in smaller changes in vertical
velocity, while for higher Ra the inner turbulent flow is of higher significance.
The distinction between the inner and outer portions of the domain is clear
from both quantities: the RMS vertical velocity and RMS horizontal velocity
profiles both suggest a generally constant value that is independent of the
radial position for the bulk part, away from the lateral sidewall, and a change
of behavior close to this sidewall. Close to the sidewall we see an increase in
uRMS
z , where the sidewall circulation sets in. The black crosses in Fig. 5.3(a)

indicate the thickness of the sidewall boundary following the equation

δuRMS
z,min

/R = ARa0.15±0.02 , (5.2)
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where A = (3± 1)× 10−3 is found in Ref. [38]. Here we use A = 2× 10−3 as
a prefactor and 0.15 as the exponent for Ra. This will be better explained in
Section 5.4. This definition agrees well with our data as it indicates the start
of the change in behavior of velocities, for both uRMS

z and uRMS
hor , where for

the latter we see the beginning of the decay to zero, instead of a growth into
a maximum close to the sidewall.

The non-rotating case (black curve in Fig. 5.3(a)) shows three main points
of interest:

1. a different trend, with a decay to zero close to the sidewall without any
previous increase,

2. much higher values of vertical velocity compared to the rotating case
with the same Ra (see black and purple curves in Fig. 5.3(a)), a clear
indication that heavy influence of rotation makes the flow less turbulent,
suppressing both vertical and horizontal RMS velocities,

3. a more pronounced difference between vertical and horizontal velocities,
with the bulk vertical velocity being higher than the horizontal one, as
expected from the strong anisotropy of RBC.

These differences will be analyzed in more detail in Section 5.5.
From our data we can also extract information on vertical vorticity. In

Fig. 5.3(b) we plot RMS vertical vorticity defined as ωRMS
z ≡

√
〈ω2
z〉 − 〈ωz〉2,

normalized using the viscous time τν . The same trends as for vertical RMS
velocities are reflected here, with the two cases with lowest Ra being almost
identical and profiles that increase for higher Ra. Also here we see higher values
for the non-rotating case compared to its corresponding rotating counterpart,
even though the difference is less than the one we see for vertical velocities. The
non-rotating case also shows a localized peak close to the sidewall, while the
rotating cases have a wider radial region where the vorticity increases before
dropping down at the wall.

All the quantities displayed in Fig. 5.3 are shown from half the cylinder
radius onward for clarity. The inner part keeps showing a constant behavior
down to approximately 1

10R, a circle of around 2 cm around the axis of the
cylinder where the azimuthal averaging does not give meaningful data.

5.4 Thickness of the sidewall circulation

In previous literature [38,93,102] different approaches have been used to define
the thickness of the sidewall boundary layer. In Fig. 5.4 we plot the different
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Figure 5.4: Various thicknesses of the sidewall layer evaluated at different Ra. Definitions are
indicated in the text. The red dotted line indicates the Stewartson boundary layer thickness
δ/R = 2

Γ
(2E)1/3. The blue dotted line indicates the trend from Eq. (5.2).

distances from the wall (the thickness δ) as a function of Ra following various
definitions based on the velocity field:

• δ0, where the azimuthal velocity averaged with respect to time and angle
〈uθ〉t,θ is zero,

• δumaxθ
, where 〈uθ〉t,θ is at its maximum,

• δuRMS
z

, where uRMS
z is at its maximum,

• δuRMS
θ

, where uRMS
θ is at its maximum,

• δuRMS
z,min

, where uRMS
z has its near-wall minimum or point of inflection.

Positions of maxima are determined from parabolic fits to the near-wall profiles
of mean and RMS velocity components. From the graph we can clearly see
how the δuRMS

z,min
agrees well with the trend from [38], with δuRMS

z,min
∼ Ra0.15.

Here we choose A = 2 × 10−3 as the prefactor of Eq. (5.2), where in [38]
the prefactor A = 3 × 10−3 was used. This is explained by the different E
used in that study (E = 10−7) compared to the one used in this chapter
(E = 5 × 10−8). The dependence on the Ekman number is not studied in
either analysis and it is hidden in the prefactor, whereas the dependence on
the Rayleigh number is confirmed. Also, δuRMS

z
and δumaxθ

comply with the
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Figure 5.5: (a) Vertical (uRMS
z ) and horizontal (uRMS

hor ) velocities (red, left ordinate) and
vertical vorticities (ωRMS) (blue,right ordinate) at mid-height vs Ra. The solid lines represent
power-law fits uRMS

z ∼ Ra0.70±0.06, uRMS
hor ∼ Ra0.65±0.07 and ωRMS ∼ Ra0.63±0.05. (b)

Kinetic energy anisotropy Aen = 1
2
(uRMS
z )2/Ktot versus Ra. The dashed line indicates the

value that this quantity has in a totally isotropic case (Aen = 1
3
). In both panels the dotted and

the dash-dotted lines represent the transitional Ra between CTCs and plumes and between
GT and RIT, respectively, while open symbols represent the values for the non-rotating case.

studies on sidewall Stewartson boundary layers [24, 25, 56, 112], with δ/R =
2
Γ(2E)1/3. As noted in [38], the definition based on the azimuthal average of
uθ is highly sensitive to the exact structure of the sidewall layer that happens
to develop at the chosen parameter values. The presence of four distinct lobes
with alternating sign of uθ makes its azimuthal average a strongly fluctuating
quantity over time, which after time averaging can be quite erratic when varying
Ra.

5.5 Bulk flow

After focusing on the sidewall part, we end the chapter with the analysis of the
bulk flow. All the quantities analyzed in Section 5.3, uRMS

z , uRMS
hor and ωRMS

z ,
are approximately constant in the inner part of the cylinder. From that we
can extract for every Ra an average that represents the mean value of that
quantity in the bulk. The bulk average is obtained by excluding the wall zone
defined by Eq. (5.2) and a circle of radius 2 cm from the cylinder axis, an area
where radial averaging does not give trustworthy data (see also Section 5.3).

In Fig. 5.5(a) we plot these averaged data as a function of Ra, with the error
bars that represent the standard deviations of these means. As we mentioned
before, the lower Ra cases, both in the CTC regime, show very similar values.

From the plumes regime onward, all the quantities display a steeper trend,
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that appears not to vary between the plumes/GT and RIT states: uRMS
hor ∼

Ra0.65±0.07, uRMS
z ∼ Ra0.70±0.06 and ωRMS ∼ Ra0.63±0.05. From the literature

concerning velocity scalings in different regimes of rotating convection (for
example [99, 109]) we can expect two types of balance that might apply
to our case: the visco-Archimedean-Coriolis (VAC) balance, that indicates
the dominance of the viscous, buoyant and Coriolis forces, and the Coriolis-
inertial-Archimedean (CIA) balance, that instead has the Coriolis, inertial
and buoyancy term as the leading ones. The VAC balance predicts a velocity
scaling that goes as uRMS ∼ (RaNu)2/5, while the CIA scaling would be
uRMS ∼ (RaNu)1/2 [113]. We can use theNu dependency derived from our heat
transfer experiments (Chapter 4) that shows Nu ∼ Ra0.64 for the plumes/GT
regime (Nu ∼ Ra0.52 for the RIT regime). We end up with a predicted scaling
of uRMS ∼ Ra0.82 (uRMS ∼ Ra0.76) for the VAC balance and uRMS ∼ Ra0.66

(uRMS ∼ Ra0.61) for the CIA balance in the plumes/GT regime (RIT regime).
Our exponents for the velocity scalings are in this range, closer to the CIA
trend than to the VAC scaling, but not giving a conclusive answer on the exact
dominant force balance of our flow. We are probably in a state where both
inertial and viscous forces play a role: turbulent enough that inertial forces are
relevant, but not yet turbulent enough to reach the diffusion-free scaling. The
vorticity scaling ωRMS

z ∼ Ra0.63 nicely follows the one of horizontal velocity.
From this information we can infer that the characteristic horizontal length
scale ` for velocity fluctuations does not change much with Ra, employing
the estimate ωz ∼ uhor/`. This will be further analyzed in Chapter 6. Also,
we see that the vorticity does not follow previous trends measured in the
rotation-affected regime of rotating convection, where vorticity scaling does
not follow velocity scaling [24]. Additionally, in the rotation-affected range
vertical velocities are stronger than the horizontal ones [24, 107], indicating
once more that our current results are definitely representative of a different
regime (the geostrophic regime).

We can see another clear difference between RRBC and non-rotating RBC:
without rotation, values are overall higher, as we could see from the previous
sections, but also the relative magnitudes of uRMS

z , uRMS
hor and ωRMS

z are very
different from the rotating cases. Vertical velocities, as expected from RBC,
are stronger than the horizontal ones and the overall values are much higher
than the corresponding rotating case at the same Ra.

To study the degree of anisotropy in the bulk flow, we plot in Fig. 5.5(b)
the kinetic energy anisotropy for each case, defined as Aen = 1

2(uRMS
z )2/Ktot,

where Ktot = 1
2((uRMS

z )2+(uRMS
hor )2) is the total fluctuation kinetic energy. The

uncertainties are calculated through error propagation from the error bars of
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Fig. 5.5(a). In the isotropic case, where the energy is equally distributed among
the three components, this value would be 1

3 . As we see from Fig. 5.5(b), the
non-rotating case is far away from that value, while the rotating cases display
values very close to the isotropic one, with the exception of the case with
Ra = 6.48× 1011, possibly a point of transition between different states of the
geostrophic regime, or instead the point where the sidewall circulation has its
minimum amplitude, as also discussed in Ref. [38]. The effect of rotation is
to suppress the large anisotropy for non-rotating Rayleigh–Bénard convection,
ending up in near-isotropy.

5.6 Conclusions

We present flow statistics that result from the stereo-PIV measurements of
seven rotating Rayleigh–Bénard convection cases and one non-rotating case.
From the two-dimensional averaged fields, taking into account the precession
of the flow structures, we can clearly connect our measurements with Eq. (5.1),
finding a good agreement. We identify a wall zone and a bulk zone whose
size and appearance change with growing Ra for rotating Rayleigh–Bénard
convection, and behave very differently from the non-rotating case: where in
classical RBC the flow is clearly divided into the two lobes of the LSC, for the
rotating cases we have a four quadrant division.

With the azimuthal averages, we analyzed the radial profile of different quan-
tities, by plotting the RMS quantities of vertical velocity, horizontal velocity
and vertical vorticity. Also here we can clearly distinguish two different flow re-
gions, the bulk and the wall mode, and we can compare our data with Eq. (5.2),
finding nice agreement. We see that for both velocities and vorticities higher
Ra corresponds to higher values of these quantities, and at the same Ra the
non-rotating case exhibits larger magnitudes than the corresponding rotating
one.

Focusing on the sidewall zone, we find that definitions based on vertical
(RMS) velocities are a better tool to fully grasp the phenomenon, where def-
initions based on the azimuthal velocity can at best recover the thickness of
the Stewartson boundary layer. As in [38], we identify in δRMS

z,min the best defi-
nition to capture the growing size of the wall zone, and we find the same Ra
dependency, albeit with a different prefactor that is explained by the different
E chosen for this study.

Within the bulk region, for the states from plumes to RIT, the velocity
scalings follow a trend that lies in the range of CIA and VAC scaling predictions,
being closer to the former. The vorticity scaling follows the same trend as the
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horizontal velocity, indicating that this is a different regime from earlier studies
in rotation-affected convection. We also plot the energy contributions of the
vertical velocity compared to the total fluctuation kinetic energy, finding that
in rotating Rayleigh–Bénard convection the energy is distributed in a nearly
isotropic way, in contrast to non-rotating Rayleigh–Bénard convection where
the vertical component is strongly preferred.

The ultimate goal of our experimental setup is to recover the diffusion-free
regime of rotating Rayleigh–Bénard convection predicted by theory [99, 109]
and analyzed in models [21,114]. Our first results of stereo-PIV measurements
show that this is quite a hard task to achieve. Our confined geometry promotes
the presence of a wall mode, that even though it can be of lesser influence for
higher RaC , still influences the flow. The very low Ekman value employed in
these runs is probably not low enough for reaching the “ultimate” diffusion-free
geostrophic turbulent regime of rotating convection, as we can see from our
velocity scalings, but we are definitely approaching its trend, getting closer
to the CIA predictions. Yet, we still show the first flow measurements at
such extreme parameters and we can clearly see differences with earlier works
on rotation-affected convection. We do observe that the velocity scaling is
moving towards the ultimate diffusion-free scaling. Moreover, we see the first
experimental sign of a quadrupolar vortex state, that will be further analyzed
in the following chapters.
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Chapter 6

Spatial Correlations, Flow Structures
and Length Scales

1

Rotating Rayleigh–Bénard convection is an oft-employed model system to eval-
uate the interplay of buoyant forcing and Coriolis forces due to rotation, an
eminently relevant interaction of dynamical effects found in many geophysical
and astrophysical flows. These flows display extreme values of the governing
parameters: large Rayleigh numbers Ra, quantifying the strength of thermal
forcing, and small Ekman numbers E, a parameter inversely proportional to
the rotation rate. This leads to the dominant geostrophic balance of forces in
the flow between pressure gradient and Coriolis force. The so-called geostrophic
regime of rotating convection is difficult to study with laboratory experiments
and numerical simulations given the requirements to attain simultaneously large
Ra values and small values of E. Here, we use flow measurements using stereo-
scopic particle image velocimetry in a large-scale rotating convection apparatus
in a horizontal plane at mid-height to study the rich flow phenomenology of the
geostrophic regime of rotating convection. We quantify the horizontal length
scales of the flow using spatial correlations of vertical velocity and vertical
vorticity, reproducing features of the convective Taylor columns and plumes
flow states both part of the geostrophic regime. Additionally, we find in this
horizontal plane an organisation into a quadrupolar vortex at higher Rayleigh
numbers starting from the plumes state.

1The contents of this chapter have been adopted from M. Madonia, A. J. Aguirre Guzmán,
H. J. H. Clercx, and R. P. J. Kunnen. Velocimetry in rapidly rotating convection: Spatial
correlations, flow structures and length scales. Europhys. Lett., 135(5):54002, 2021 [64],
leaving out some introductory parts that have already been covered in this thesis; some
symbols have been changed from the article to match with the current notation.
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6.1 Introduction

In this chapter we employ our large-scale convection apparatus TROCON-
VEX [27,60] to obtain experimental flow data with extensive coverage of the
geostrophic regime, achieving unprecedented values of the governing parame-
ters. The measurement method is stereoscopic particle image velocimetry [65],
a technique that resolves full three-component flow velocity vectors in a planar
cross-section. We explore the various flow features that make up the geostrophic
regime and quantify their characteristic horizontal length scales using spatial
correlations of vertical velocity and vertical vorticity, testing recent scaling ar-
guments [109,114] for the horizontal length scale of rapidly rotating convection.
This correlation procedure has been employed to interpret results of numerical
simulations [77]. We have successfully applied this method to experimental
velocimetry results from a smaller experiment [106]. We distinguish the differ-
ent flow structures from these spatial autocorrelations and the related length
scales. At the same time, we search for so-called large-scale vortices (LSVs):
simulations have shown that the GT state can develop a striking upscale energy
transfer leading to the growth of domain-filling LSVs [21,33,34,76,115]. LSVs
are so far only observed in numerical simulations of RRBC without lateral
confinement: depending on the fluid and the operating parameters, a single
LSV or a large dipolar vortex could be observed [34,116]. It is thus not clear
whether LSVs can manifest in RRBC experiments, too. Finally, with these flow
measurements we explore the regime of rotation-influenced turbulence (RIT)
that we inferred from our earlier heat flux and temperature measurements [60],
with largely unknown flow properties.

6.2 Spatial autocorrelation

We can quantify and evaluate the spatial structure of the flow features by
using spatial autocorrelations. This procedure has been applied to geostrophic
convection results from simulations [77], where the authors have shown that
the autocorrelation nicely recovers the typical radial structure of flow features
like cells and CTCs, and later also to experimental data based on PIV and 3D-
PTV (three-dimensional particle tracking velocimetry) [106]. Here we define
the spatial autocorrelation of a scalar variable f as

Rf (r) =
〈f(x)f(x + r)〉A,t
〈f2(x)〉A,t

, (6.1)
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where r is the separation vector with length r = |r|. The angular brackets
〈. . .〉A,t denote a spatial averaging over all available positions x within the
cylinder cross-section A and all possible r emanating from there, and we apply
averaging in time t as well. The effective area A for the autocorrelation is
deliberately reduced to exclude the wall mode that is found near the sidewall
[38, 93, 94, 98, 102, 110]; the thickness measure from [38] is employed. Within
this reduced area we assume horizontal homogeneity; r can be the vector
connecting any two points within that area. We use zero padding and 2D fast
Fourier transforms to calculate Rf , where the resulting (axisymmetric) 2D
correlation graphs are converted to 1D using binning with circular shells of
width 3.7 mm.

Once the spatial autocorrelation Rf (r) is known, we can compute the char-
acteristic correlation length (or integral length scale [117]) as

Lf =

∫ ∞
0

Rf (r) dr . (6.2)

Nieves et al. [77] considered primarily correlations of temperature fluctua-
tions T , but also of vertical velocity uz and vertical vorticity ωz = (∇× u)z,
where u = (ux, uy, uz) is the velocity vector. Rajaei et al. [106] could only
consider correlation of ωz from their regular PIV measurements. Here we shall
consider both uz and ωz. We expect from theoretical models describing the cel-
lular and CTC states as single-wavenumber modes [118,119] that T , uz and ωz
lead to very similar correlation graphs. For plumes and GT (and possibly RIT)
the correlations for uz and ωz may develop significant differences in correlation
length [77].

6.3 Flow snapshots

To get a first impression of the flow field that develops, we present instanta-
neous snapshots of velocity and vorticity at three different Ra/RaC values in
figure 6.1. Panels (a,d) are in the range where CTCs are expected. We do
observe vortices present in this flow, though the shields are hard to distinguish.
One contributing factor is that we measure at mid-height where the columns
are expected to be weaker; their vertical structure is torsional, with positive
(cyclonic) vertical vorticity at one vertical end and negative (anticyclonic) vor-
ticity at the other end [111,118,119]. Here we observe in animations of the flow
(see the supplementary material [120]) that the flow state is quite dynamical;
no quasi-steady vortex grid is formed. Instead, the vortices wander around and
can interact with other vortices and the wall mode, making them not as long-
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Figure 6.1: (a–c) Flow velocity snapshots at mid-height at E = 5× 10−8 for (a) Ra/RaC = 2.3, (b) Ra/RaC = 14, (c) Ra/RaC = 91.
The background colour indicates vertical velocity in mm/s; arrows represent the in-plane velocity components. Only one ninth of
the total number of vectors is plotted for clarity of the images. (d–f) Snapshots of vorticity ωz in 1/s (red is cyclonic and blue is
anticyclonic) at mid-height for (d) Ra/RaC = 2.3, (e) Ra/RaC = 14, (f) Ra/RaC = 91.
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6.3 Flow snapshots

lived. Near the sidewall, the signature of the wall mode [38,93,94,98,102,110]
can be seen: the top right half of the circumference displays a prominent verti-
cally upward flow (red colour), while the opposite side shows downward flow
(blue colour; though not as prominent in this snapshot). A prominent dynam-
ical feature of this wall mode is the presence of two jets emanating from the
azimuthal positions where the up- and downward lobes meet pointing radially
inward [38]. These jets, more easily identified in animations of the flow (see
supplementary material [120]), appear to play an important role in setting the
flow structures in the bulk in motion. Similar structures have been found in
(high Hartmann) magnetoconvection simulations [121,122].

At the higher Ra/RaC = 14 (figure 6.1b,e), representative of plumes, a
qualitatively similar flow field is observed. Velocities are larger given that the
thermal forcing is stronger. It is readily observed that the vertical velocity is
partitioned into larger patches, i.e. a larger correlation length is anticipated.
At the same time, the vorticity remains confined to narrow patches. The wall
mode is still quite prominently visible, though the fluctuations in the bulk have
increased in magnitude compared to the amplitude of the wall mode [38] so
that its relative dynamical significance is diminished.

Figures 6.1(c,f) display a snapshot at the highest Ra/RaC = 91 considered
here, in the RIT range. Velocities are even larger than in the previous panel
due to stronger thermal forcing. The correlation length of vertical velocity
has become even larger. Contrarily, the vorticity field still reveals finer scales
comparable to the previously discussed cases (figure 6.1d,e).

An interesting new feature — that can be recognised from animations of the
flow field as a function of time (see supplementary material [120]) — is the
organisation into a quadrupolar vortex state that fills the cross-sectional area
with two cyclonic and two anticyclonic swirls. This flow arrangement forms a
secondary large-scale flow somewhat reminiscent of LSV dynamics as previously
observed in simulations in laterally unbounded domains. The wall mode couples
to this quadrupolar vortex state (or the other way around) to organise the
entire flow field into a pattern that displays a slow azimuthal drift [38]. This
drift makes simple time-averaging ineffective to further illustrate this structure.
Instead, we employ an orientation averaging similar to Ref. [38] and introduced
in Chapter 5. We determine the phase angle of the wall mode at each time step
by tracking the precession of the vertical velocity signal on a circular trajectory
close to the sidewall. Each snapshot is rotated by its corresponding phase angle
so that the orientation matches for each snapshot, then the velocity field is
averaged to get a clear view of the mean flow profile. Figure 6.2 shows the
result of such averaging, an orientation-compensated mean vorticity field for
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Figure 6.2: Orientation-compensated mean vorticity field (in 1/s) at Ra/RaC = 47.

the experiment at Ra/RaC = 47. There is an organisation as a quadrupolar
vortex with four cores of vorticity that fill the central part of the domain.

For the nonrotating reference case (animation in the supplementary mate-
rial [120]) the well-known large-scale circulation (LSC [30]; not to be confused
with LSV) of nonrotating confined convection can be observed: a principal par-
titioning of vertical velocity into two patches (one with positive and one with
negative vertical velocity) that cover the entire cross-section of the cylinder.
Therefore, the largest correlation length is expected in this case, of the order
of the radius of the cylinder.

6.4 Results: autocorrelations

We plot spatial autocorrelation graphs for the rotating convection cases and
the nonrotating reference case in figure 6.3. In these plots we also indicate
units of λC , the wavelength of convective instability (λC = 4.8154E1/3H for
Pr > 0.68 [19]) that plays an important role throughout the geostrophic
regime as a characteristic horizontal scale [21,31]. For Ruz , the autocorrelation
of vertical velocity, we see that the correlation is reduced as r increases, reaches
a negative minimum, then approaches zero at large r. As Ra/RaC increases,
stronger thermal forcing and more vigorous turbulence, the correlation length
increases considerably. This is true even more so for the nonrotating case,
where the minimum is out of the plotting range at r/D = 0.57. In that case
the correlation length is determined by the presence of the LSC; it is of the
order of the cylinder radius. The Ruz results reported in Ref. [77] display a
similar elongation of the correlation as Ra/RaC increases. However, the regular
oscillatory behaviour for the CTC flow range is not reproduced here. We do not
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6.4 Results: autocorrelations

Figure 6.3: Spatial autocorrelations of (a) vertical velocity uz and (b) vertical vorticity
ωz. Length scales are normalised using the cell diameter D. Vertical dashed lines display
multiples of λC for reference. Note the different horizontal axis ranges.

see the development of a true ensemble of shielded Taylor columns. Instead, the
bulk flow structures are moving around in a secondary circulation that appears
to be set up by the strong wall mode in this flow range, with jets penetrating
the bulk from laterally opposite sides of the cylinder cross-section [38]. This
prevents the formation and preservation of a quasi-steady grid of CTCs as
observed in simulations on horizontally periodic domains, e.g. [21, 32], as well
as in smaller-scale experiments at larger E and Γ [106].

The vorticity correlations Rωz (figure 6.3b) decay on comparatively smaller
scales than Ruz , in agreement with the expectations based on the snapshots of
figure 6.1. The initial decrease at small r is quite similar for all the considered
cases. This is in line with a gradual transition from the structures of convection
at small supercriticality (e.g. the single-mode solutions [118,119]), where equal
scales are found for velocity and vorticity, to a situation in line with nonrotating
3D turbulence composed of thin vortex tubes (e.g. Ref. [123]) with the vorticity
correlation length roughly equal to the Kolmogorov length while the velocity
correlation scale is the largest length scale in the flow. Then, the cases at the
smallest values of Ra/RaC display a small oscillation that was expected for
the CTC state based on earlier simulations [77] and experiments [106]. Its
wavelength corresponds quite nicely with the convective wavelength λC . The
oscillation is not as pronounced here as in the other studies, presumably due to
the inability to form a quasi-steady CTC grid. For Ra/RaC = 9.1 and higher
(excluding the nonrotating case) we observe the occurrence of a larger length
scale on which some correlation can be seen: starting from r/D ≈ 0.05 these
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curves display a shallow downward slope, with a zero crossing at r/D ≈ 0.2. The
curves each reach a shallow minimum at r/D ≈ 0.26 − 0.30 then asymptote
to zero at large r. This correlation signature is a second indicator of the
organisation into a quadrupolar vortex consisting of two cyclonic and two
anticyclonic cells.

We can further quantify and compare these autocorrelation results by de-
riving characteristic length scales from them. We consider the integral scales
Luz and Lωz as defined before. Additionally, we define length scales based on
the correlation magnitude: `0.5,uz and `0.5,ωz for the r where the corresponding
autocorrelation has the value 0.5, and `0,uz where Ruz crosses zero for the first
time. The zero crossing is not as informative for Rωz given the longer posi-
tive correlation that is observed. These length scales are plotted as a function
of Ra/RaC in figure 6.4. It is clear that the vorticity-based scales are always
smaller than their velocity-based counterparts. While Lωz shows some variation
with Ra/RaC , the smaller `0.5,ωz remains more or less constant throughout.
Indeed, the initial decay of Rωz is quite similar in all cases. At the two smallest
Ra/RaC values considered here the velocity-based scales Luz and `0.5,uz are
of comparable size to their vorticity-based counterparts, as expected based on
prior results for the CTC state [77,106,118,119]. For larger Ra/RaC & 9 the
velocity-based scales become increasingly larger. Based on this observation we
expect that the CTC-to-plumes transition takes place between Ra/RaC = 4.7
and 9.1. This is in agreement with the reported transition RaE4/3 = 55 (or
Ra/RaC = 6.3) for the asymptotic simulations and fully in line with conclu-
sions based on our earlier heat-flux and temperature measurements in the same
setup [60]. Beyond that transition, in the plumes state, the velocity correlation
widens, though for the highest two Ra/RaC values some saturation can be
observed. The correlation graphs for these cases, in the RIT range, are in line
with the plumes cases in terms of shape. The saturation of `0,uz at such length
is in line with the organisation into a quadrupolar structure, where correlation
up to about one fourth of the diameter is expected. Note the significant differ-
ence with the nonrotating case, where correlation continues up to about half
the diameter due to presence of the LSC with the cross-sectional area divided
into one half upward and one half downward flow.

Two recent works have considered the horizontal length scale of convection
in the geostrophic regime. Guervilly et al. [114] combine results of various

numerical models to find an effective scaling ` ∼ Ro1/2
U ∼ (RaE2/Pr)1/2 with

the Rossby number RoU based on a measured velocity scale U . In our notation
this amounts to ` ∼ RoC . They only find this scaling at very small E . 10−9.
Aurnou et al. [109] provide theoretical scaling arguments based on the so-
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Figure 6.4: Correlation length scales as a function of Ra/RaC at E = 5× 10−8. Included
are integral length scales L for vertical velocity and vertical vorticity, as well as length scales
` based on the respective correlation graphs reaching certain values. The line segments with
open symbols are the corresponding results for the nonrotating reference case (same symbols
and colours; not to scale in terms of Ra/RaC). Error intervals (not plotted) are equal to
the symbol size or smaller. The horizontal dashed line indicates the convective wavelength
λC . Vertical dotted lines indicate the regime transitions of figure 3.4. The black solid line
indicates the scaling ` ∼ Ra1/2; the black dashed line is a fit ` ∼ Ra0.38 to the data.

called CIA (Coriolis–Inertial–Archimedean) force balance that also predict
` ∼ RoC . In our experiments at constant E with variation of Ra this translates
to ` ∼ Ra1/2. This scaling slope is included in figure 6.4 with the solid black
line; a trend clearly steeper than our data. A power law fit to our data for
4.7 ≤ Ra/RaC ≤ 47 (dashed black line) renders a scaling ` ∼ Ra0.38. Looking
at figure 4(b) of Guervilly et al. [114], our shallower scaling corresponds nicely
to the shallower trend of their data for 10−9 . E . 10−7, which indeed encloses
our E value. While the scaling of the length scale is similar, comparison of the
magnitude is not possible due to differences in domain (sphere vs. cylinder)
and Pr value (0.01 vs. 5.2).

6.5 Conclusion

We have performed stereoscopic particle image velocimetry measurements in
rotating thermal convection in the geostrophic regime at small Ekman number
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E = 5×10−8 where the effects of rotation are prominent. The flow phenomenol-
ogy has been quantitatively analysed using spatial correlations of vertical ve-
locity and vertical vorticity. The correlation length scales based on vertical
vorticity remain reasonably constant over the considered range of supercriti-
cality values 2.3 ≤ Ra/RaC ≤ 91, in line with observations that the critical
wavelength λC for onset of convection is an important horizontal length scale
throughout the geostrophic regime. Correlation length scales of vertical veloc-
ity grow with increasing Ra/RaC and can be used to identify different flow
states: the state of convective Taylor columns (CTC) for Ra/RaC . 6, the
plumes state for Ra/RaC & 6 changing gradually into the previously uncharac-
terised state of rotation-influenced turbulence (RIT), in good agreement with
earlier results from reduced numerical models in the same E range [114]. The
plumes/GT and RIT ranges display an interesting new organisation into a
quadrupolar vortex (recognised from orientation-compensated mean vorticity
fields) which is presumably preferred over a single LSV or a dipole [34,116] in
this confined domain.

Throughout these measurements we can identify the wall mode, a coherent
vertical flow structure near the sidewall consisting of one lobe with upward
transport on one half of the circumference and one downward lobe on the
other half. The prominence of the wall mode relative to the fluctuations in
the interior diminishes at higher Ra/RaC . At low Ra/RaC the jets emanating
from the wall mode set the vortical structures in horizontal motion; contrary
to the results from horizontally periodic simulations no quasi-steady CTC grid
forms. The nature and origin of the coupling of the wall mode and the interior
flow, at both high and low limits of Ra/RaC , is an open question that we want
to address later.

The study of rotating convection in the geostrophic regime poses challenges
to experimentalists and numericists alike. Nonetheless, recent numerical works
have elucidated the rich flow phenomenology that develops in this convection
setting. Here, we contribute experimental results at more extreme values of the
governing parameters that expand our understanding of this intriguing and
geo-/astrophysically relevant flow problem, despite the influence of unexpected
yet intriguing features like the persistent wall mode and its interaction with
the bulk flow.
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Chapter 7

Energy Transfer

In this chapter, we analyze energy spectra and energy transfer of the seven ro-
tating Rayleigh–Bénard convection cases and the non-rotating Rayleigh–Bénard
convection case that we described in the previous two chapters. The results are
divided in two parts. Kinetic energy spectra are shown with a division into
vertical and horizontal contributions, showing the different behavior of the two
components and the prominence of the quadrupolar structure. A k−5/3, with
k the wavenumber, scaling range can be identified in all the rotating and non-
rotating spectra, while a short k−3 scaling for smaller wavenumbers is found
in the rotating cases. The scale-by-scale flux of energy is then calculated at dif-
ferent length scales, showing a different behavior between the cases with lower
thermal forcing, dominated by the influence of the intruding jets originating
from the sidewall circulation, and the ones at stronger thermal forcing that
are more turbulent, where the quadrupolar structure is probably generated by
an upscale transfer of energy. A traditional, purely direct energy cascade is
observed for the non-rotating case.

7.1 Introduction

In the previous two chapters we saw that the flow in rotating Rayleigh–Bénard
convection in our experimental setup tends to form a large-scale structure
that we called the quadrupolar vortex. In Chapter 5 we could notice that,
even though the different cases taken into account reside in different regions of
the parameter space, all of them show a four-sector division for the horizontal
velocity components. In Chapter 6, instead, we noticed from the movies that the
quadrupolar structure is clearly noticeable for higher buoyant forcings (higher
Ra/RaC). In this chapter we consider the energy spectrum and transfer of
energy across the scales in order to investigate the quadrupolar vortex and its
generation in more detail.

The analysis of the energy spectrum E(k) — where k is the wavenumber
related to the wavelength λ = 2π/k of structures in the velocity field — is
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a well-known tool in turbulence research. It describes how kinetic energy is
distributed over the spatial scales of the flow field. Turbulent three-dimensional
flows exhibit a scaling of E(k) ∼ k−5/3 in the inertial range, delimited by the
scale on which the energy is injected into the system (the forcing scale) and the
scale of viscous dissipation (the Kolmogorov scale) [43,124]. This scaling is due
to the energy cascade, a process through which kinetic energy is transferred
(without dissipation) from the larger scales to the smaller scales, until it reaches
the scale at which it is dissipated by viscous forces [43].

Rotating flows, on the other hand, can under specific circumstances show a
different kind of process, an inverse energy cascade, that transfers energy to
the largest scale of motion in the system. It generates large-scale structures
that fill the entire domain, not unlike the inverse energy cascade characteristic
for 2D turbulence [43,125,126].

The distribution of energy over the spatial scales in rotating and non-rotating
Rayleigh–Bénard convection have previously been explored. For example, exper-
imentally through measurements of second-order structure functions [127,128]
or by measuring proper kinetic energy spectra [129,130].

Previous numerical studies, performed in laterally unbounded domains, have
shown that rapidly rotating Rayleigh–Bénard convection at high enough Ra,
highly turbulent flows that are also strongly influenced by rotation, show a
quasi-two-dimensional (Q2D) flow, with an upscale transfer of kinetic energy.
This transfer to the largest scale is eventually balanced by friction in finite size
domains and accumulates in large-scale structures, called large-scale vortices
(LSV), vortex condensates that revolve parallel to the rotation axis of the
system [21,33,34,76,115,131].

In this chapter we present an analysis of the energy spectra of the same cases
investigated in Chapter 5 and Chapter 6 using stereo-PIV, showing the total
kinetic energy as well as the contributions by horizontal and vertical velocity
components. Moreover, we analyze the energy flux to see how the energy is
transferred scale by scale.

The rest of the chapter is structured as follows: Section 7.2 first describes
the methods we use to calculate the energy spectra and then shows the graphs
of the total kinetic energy and the kinetic energy contributions due to the
horizontal and the vertical velocity components. Section 7.3 is likewise divided
into two parts, with the first describing the methods and the second reporting
the results of the energy flux across the scales in the horizontal plane and how
they possibly connect with the mechanisms of energy transfer. In Section 7.4
we present our concluding remarks.
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7.2 Energy spectra

7.2.1 Methods

To compute the energy spectra we employ 2D fast Fourier transforms of the
velocity field, after padding the signals with zeros up to 512 grid points per
dimension to avoid artifacts due to implied periodicity in the Fourier trans-
form [132]. Each grid point of the vector field is spaced ∆x = 3.2 mm apart,
making the domain a square with side L ≈ 1.64 m after the zero padding. This
means that our lowest k value is kL = 2π/L ≈ 3.83 m−1, and the maximum k
value is k∆x = 2π/2∆x ≈ 982 m−1. All the k values are integer multiples of kL.
Nevertheless, the smallest physically relevant k is determined by the diameter
D of our circular domain: that would be given by kD = 2π/D ≈ 16.1 m−1,
but since all the wavenumbers are multiples of kL, our first relevant value is
kmin ≈ 19.2 m−1.

To discuss our maximum relevant k we need a bit more explanation. Pre-
vious literature [133, 134] has shown that the window averaging applied in
PIV measurements acts as a low-pass filter in Fourier space with a cut-off
wavenumber that depends on the size of the measurement window X (in our
case X = 2∆x = 6.4 mm). The PIV filtering amounts to a multiplication in
Fourier space of the real signal with a squared cardinal sine function

sinc2(kX/2) =

(
sin kX/2

kX/2

)2

. (7.1)

We can then correct for it, with our “real” energy spectra becoming

Ecorr =
Emeasured

sinc2(kX/2)
, (7.2)

where Emeasured is the spectrum measured from the PIV data and Ecorr being
the corrected one, which we show in this chapter.

Given that sinc2(kX/2) → 0 as kX/2 → π, direct application of Eq. (7.2)
may cause practical difficulties. Additionally, any measurement noise will be
severely amplified when approaching the zero of the denominator. To deal
with this, we employ the rule of thumb proposed in Ref. [133] to cut off the
spectra at a maximum kmax = 2.8/X. At this k value the filter function
sinc2(kmaxX/2) ≈ 0.5, i.e. the filtering reduces the measured spectrum by 50%.
In our case kmax = 437 m−1.
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7.2.2 Results

In Fig. 7.1 we show the energy spectra of seven rotating Rayleigh–Bénard
convection cases (Figs. 7.1(a) to 7.1(g)) and a non-rotating case (Fig. 7.1(h)).
We plot the total energy spectrum (Etot) of each case together with its vertical
(Evert) and horizontal (Ehor) contributions.

The rotating cases show common features. In all of them Etot exhibits
a peak at k ≈ 35 m−1, that corresponds to the physical length scale λ ≈
0.18 m, approximately the size of one of the four vortices that compose the
quadrupolar structure discussed in the previous chapters. These peaks are
clearly determined by the horizontal energy contributions; Ehor shows a peak
of the same magnitude and at the same location as Etot. As we saw in Chapter 5
and in Chapter 6 the quadrupolar vortex is generated by the horizontal velocity
field, and this is a further confirmation of it.

The shape of the remaining part of each spectrum is strongly dependent on
the vertical energy contribution. As Ra/RaC increases, the peak in Evert goes
towards smaller k (larger length scales), another feature that we could see in
Chapter 6 where in Fig. 6.4 we show that the length scale based on vertical
velocity increases with Ra. We could think of that scale as the scale at which
buoyancy is most prominently adding energy into the turbulent motion. The
spectral scaling, from the maximum of Evert toward larger k values, shows
for all cases a very good agreement with the predicted scaling for turbulent
flows E(k) ∼ k−5/3. Their contributions also modify the total energy spectra
(the sum of both vertical and horizontal contributions) and the shape of the
vertical-energy spectrum is reflected in the shape of the total energy spectrum,
causing a shoulder on the main peak of the quadrupolar structure.

The horizontal spectra, in fact, all show a scaling trend of E(k) ∼ k−3 from
the approximate location of the peak of Evert to smaller wavenumbers, ending
on the maximum of Ehor. The k−3 scaling could be a sign of an (nonlocal)
inverse cascade [21,34].

The non-rotating Rayleigh–Bénard convection case, instead, shows a very
different situation. The peak of the overall spectrum is at kmin, and it is
dominantly due to the contribution of Evert. It is a sign of the presence of the
LSC: in this configuration it is the vertical velocity that defines the structure
of two lobes that fill the entire cylinder cross-section. This corresponds to a
wavelength of approximately the size of the diameter of the cylinder, that in
the k-space is translated to kmin. Here both the vertical and the horizontal
contributions follow the k−5/3 scaling.
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7.3 Energy Transfer

After having seen the spectra, we now want to analyze how the energy is
transferred between scales. This can help us understand the mechanisms that
generate the quadrupolar vortex. We focus on the scale-by-scale energy transfer.
This analysis is performed in the physical space instead of the spectral space
giving that a spectral transfer analysis of our PIV results did not give conclusive
results.

7.3.1 Methods

We define the energy transfer term as follows [57,124,135]

Π(r) =
1

4
∇∇∇r · 〈(δuuu)2 δuuu〉 . (7.3)

Here, δuuu = uuu(x + r) − uuu(x) represents the velocity increment between two
points x and x+r in the measurement plane with separation vector r and∇∇∇r

is the gradient operator with respect to the separation vector r; 〈·〉 represents
spatial and ensemble average. We note that the dependence on the position
(x) drops only for statistically homogeneous turbulence; here we assume lo-
cal homogeneity only. From the RMS velocity curves in the bulk shown in
Chapter 5 this should be a reasonable assumption, after having excluded the
sidewall boundary zone from the calculation. Moreover, we assume that we
are in a statistically stationary state, so that we can use time averaging as a
replacement for ensemble averaging. The spatial average implicitly includes
azimuthal averaging; transfers Π(r) are treated to have only dependence on
the separation length r = |r| within the set assumptions.

The value of Π(r) quantifies the flux of energy from scales smaller than r
towards scales larger than r. If Π(r) < 0 we have a direct cascade of energy,
from larger scales to smaller scales; on the contrary if Π(r) > 0 we have an
inverse transfer from smaller to larger scales.

Following Ref. [135], we can decompose the flux into its horizontal and
vertical contributions:

Π = Π⊥ + Π‖ =
1

4
∇∇∇⊥ · 〈(δuuu)2 δuuu⊥〉+

1

4
∇‖〈(δuuu)2 δu‖〉 , (7.4)

with ∇∇∇⊥ = x̂∂rx + ŷ∂ry and ∇‖ = ∂rz . Here, we focus on the first term
of the energy transfer and on horizontal separation vectors. This is due to
our experimental settings (with our current stereo-PIV configuration we can
only analyze the xy-plane). Also, highly rotational systems would give vertical
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Figure 7.2: Nondimensional horizontal energy flux Π⊥(r) · H/(uRMS
hor )3 as a function of

nondimensional horizontal separation r/R. The shaded grey area represents the approximate
range of the sizes of the sidewall circulation thickness, calculated in Chapter 5.

coherence and therefore Π‖ ≈ 0. For our rotating cases, we consider that vertical
coherence can be broadly assumed, at least for the bulk flow. We calculate the
horizontal energy flux Π⊥ along the principal coordinate directions x and y of
the stereo-PIV results, where we average them assuming isotropy in the bulk
zone of the cross-section.

7.3.2 Results

In Fig. 7.2 we plot the horizontal energy flux Π⊥(r) normalized by (uRMS
hor )3/H.

We can observe that all the cases have Π⊥ < 0 at small r. This represents a
direct downscale cascade at smaller scales, in line with Ref. [135]. The non-
rotating case (black curve) never presents a positively signed zone: as already
mentioned, here we expect a mechanism of a direct cascade from large to small
wavelengths at all scales.

The rotational cases, instead, show a different behavior with a part where
Π⊥ becomes positive at larger r/R. For small Ra/RaC we clearly see that
there is a positive peak around the size of the sidewall circulation thickness
that we indicate with a shaded gray area, calculated using the data shown in
Fig. 5.4 and taking into account that the value shifts with Ra. This thickness
is approximately the size of the jets that enter into the bulk pointing radially
inwards from the positions where the two vertical-velocity lobes of the sidewall
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circulation meet and interfere with the bulk flow. These jets are described
in more detail in Section 5.2. We can see that the position of that first peak
is quite locked, especially for the two lowest-Ra cases that are in the CTC
state, that we know are strongly influenced by the intrusion of these jets (as
seen in Chapter 5). These peaks might be the cause of the formation of the
quadrupolar vortex structure for these cases at low supercriticality Ra/RaC .
The jets impose a secondary circulation in the bulk that for our geometrical
boundaries ends up in a four-sector division.

As Ra/RaC grows this peak reduces in magnitude and gets broader until it
basically disappears for the two cases with the highest supercriticalities, that
are in the RIT state. Here the part where Π⊥(r) is positive is very broad and in
a clearly different scale range, suggesting a quite different origin. We anticipate
that these broad positive regions could be hinting at an upscale energy transfer
from small to large scales that generates the quadrupolar vortex structure for
the highly turbulent cases, not unlike the formation of the LSVs [21,34]. Here
the geometry also plays a role, giving this large-scale structure the same overall
shape of the secondary circulation generated by the jets, but induced by a very
different production mechanism: inverse energy transfer instead of jet forcing
from the sidewall circulation.

We already have some hints of an inverse cascade given by the energy spectra
that show a k−3 scaling: now the energy transfer data give further confirmation
to this hypothesis. This is an issue that deserves further exploration. We do
see the signs that an inverse energy transfer mechanism is at work here, but
due to geometry this is expressed rather differently than in the DNS studies
on horizontally periodic domains [21,33,34,76,115,131].

7.4 Conclusions

We analyze higher-order quantities from seven rotating Rayleigh–Bénard con-
vection cases and one non-rotating Rayleigh–Bénard convection case, derived
from stereo-PIV measurements. We are the first to measure energy spectra from
velocity data at such high Ra numbers in rotating Rayleigh–Bénard convection.
From the energy spectra we can see a clear difference between the rotating and
the non-rotating experiments: while the canonical Rayleigh–Bénard convection
case shows a clear sign of an LSC in its vertical kinetic energy contribution,
rotating Rayleigh–Bénard convection cases have clear peaks on the horizontal
contributions that reflect the size of the quadrupolar vortex. Vertical contribu-
tions of the rotating cases also show a peak that shifts to larger length scales
with increasing Ra: this is in line with the findings reported in Chapter 6 where
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we saw that the vertical velocity structures grow with stronger buoyant forcing.
All the cases show a range where the total kinetic energy goes as ∼ k−5/3, and
this range gets larger as the flow becomes more turbulent (higher Ra). The
rotating cases also show a range at lower wavenumbers where E ∼ k−3. This
is a hint of an inverse energy cascade that can be the cause of the quadrupolar
vortex formation.

This hypothesis is further investigated with the analysis of the scale-by-scale
energy transfer. We see that the energy flux in our examined plane is negative
at small scales, for all the cases. This means that we have, as expected, a
direct energy cascade for small length scales. The non-rotating case always
shows a non-positive flux at all scales, indicating an overall transfer of energy
from larger to smaller scales. The rotating cases exhibit a different behavior
depending on the flow regimes they are in. Cases closer to RaC show a positive
peak at the scale of the size of the intruding jets. We interpret this as a scenario
where the jets may drive the circulation and cause the upscale transfer that
is translated in the four-vortex structure. For the cases at higher Ra/RaC ,
instead, the positive peak of the energy flux is broader and distributed over a
wider range of length scales. We believe this is a hint of a different mechanism:
an upscale energy transfer, not unlike the large-scale vortices (LSVs) seen in
DNS of rotating Rayleigh–Bénard convection on horizontally periodic domains.

The geometry of our experiment determines the shape of the overall cir-
culation, that it is bounded to be a four-sector structure, but the different
behaviors in the energy transfer graphs suggest a very different mechanism
of production of such a large-scale structure. We cannot further address this
open question based on the current results. A DNS in a cylindrical domain
would be welcome to shed more light on this issue; the energy transfers can be
studied in more detail and in spectral space when the full velocity information
across the domain is available.
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Chapter 8

Concluding remarks

In this thesis we analyze rotating Rayleigh–Bénard convection using a novel
experimental setup, TROCONVEX, that allows us to enter a parameter range
that was never explored before. This is quite important since the geostrophic
regime, the regime of rotating Rayleigh–Bénard convection that we want to in-
vestigate, becomes more pronounced only when very high rotational constraint
and very high buoyant forcing are reached simultaneously. In this final chap-
ter we recapitulate our main results and propose future directions for further
investigations.

8.1 Conclusions
Rotating Rayleigh–Bénard convection is studied using an experimental setup
that thanks to its height (up to 4 m) can reach unprecedentedly extreme values
of both Ra and E, using water as the working fluid (Pr ≈ 5.2). Through an
experimental campaign divided into two phases, consisting of heat transfer
measurements and flow measurements, we could visualize and characterize the
different flow states of the geostrophic regime of rotating convection. Below we
summarize our main findings.

Temperature measurements of 70 rotating and non-rotating Rayleigh–Bénard
convection cases with a minimum Ekman number as low as 10−8 have provided
an extensive survey of heat transfer efficiency (Nu) at different E, including
E =∞ data (non-rotating Rayleigh–Bénard convection) that we used as bench-
mark for our experimental setup. We confirm that the geostrophic regime does
indeed become wider with higher rotational force. The Nu measurements ap-
pear to be less useful than the mid-height temperature gradient if we want to
clearly identify the transitions between the states. During the survey, a novel in-
termediate state, between GT and rotation-affected turbulence (RAT) has been
identified: rotation-influenced turbulence (RIT). Its lower and upper bound-
aries are delineated by Ra ' E−8/5Pr3/5 and RoC ' 0.06 (Ra ' 0.062E−2Pr),
respectively. It appears to be a different state than GT, since it exists beyond
the values ofRa on which asymptotically reduced equations that postulated GT
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loose their validity [21], as well as a different state than the rotation-affected
regime of convection, since its transition is independent of the aspect ratio [96].
Moreover, RIT shows a clear scaling of the mid-height temperature gradient
of ∼ Ra−0.2 (different from the scaling ∼ Ra0 of RAT [99]) and a Nusselt
scaling of Nu/Nu0 ∼ Ro0.39

C . In the same examination we have also visualized
the different flow states, including the novel RIT state and two non-rotating
Rayleigh–Bénard convection cases with different Ra.

We start the discussion of the results of our stereo-PIV measurements with a
study of the flow statistics. A cross-section at half the height our cylindrical tank
is illuminated by a laser sheet and we measured the three velocity components
in that plane. We have performed stereo-PIV measurements for seven rotating
Rayleigh–Bénard convection cases at E = 5 × 10−8 with varying Ra and
one non-rotating Rayleigh–Bénard convection case, for comparison. Our flow
measurements recover the basic results from DNS in cylindrical domains, even
though our experiments are done at more extreme parameters that are not
achievable by current simulations. The flow in the section, for the rotating cases,
precesses with an angular speed that matches the one found in previous DNS
studies [102]. With that we could analyze the precession averaged fields of the
velocity, correcting for the azimuthal precession of the overall flow field. The
averaged fields show a clear division in an outer (close to the sidewalls) and an
inner zone (in the bulk). This phenomenon is ascribed to the recently studied
sidewall circulation [38,93], a secondary flow that develops close to the walls
in laterally confined domains that is also the cause of the global precession.
Another interesting feature that emerges for the horizontal velocities is a four-
sector division of the flow. The non-rotating case, instead, shows a clear LSC
structure outlined by the vertical velocity. The size δ/R of the sidewall zone
of the rotating cases is measured through different methods and we recover
two relations: δ/R ∼ Ra0.15 (based on the near-wall minimum of vertical RMS
velocity) and δ/R ∼ E1/3 (based on peak RMS values, matching with the
theoretical Stewartson boundary layer thickness), depending on the method.
We analyze the flow in the bulk as well, finding that for rotating Rayleigh–
Bénard convection cases horizontal RMS velocities, vertical RMS velocities
and vertical RMS vorticities follow similar scaling trends, uRMS

hor ∼ Ra0.65,
uRMS
z ∼ Ra0.70 and ωRMS ∼ Ra0.63, respectively. These trends indicate that

with the current parameters we are close to reaching the velocity scaling of
the “ultimate” diffusion-free geostrophic regime of rotating convection, but
not quite there yet. Our results, nevertheless, give us hints that we are indeed
getting closer than previous studies [24,107].

We continue our analysis on the stereo-PIV data with an insight on flow
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phenomenology, analyzing spatial correlation of vertical velocity and vertical
vorticity. The length scale based on vorticity remains constant at different
Ra/RaC , giving confirmation that the typical horizontal wavelength based on
the onset of rotating convection `C is an important parameter for all the states
in the geostrophic regime. Instead, the scale based on vertical velocity increases
with increasing Ra/RaC , a result that confirms what have been observed in
previous studies based on models [114]. Precession averaged vorticity fields
and movies [120] display a large-scale organization, divided into four vortices,
that we denominate the quadrupolar circulation.

We have finally analyzed energy spectra and energy transfer across the scales
from our flow measurements. For rotating and non-rotating Rayleigh–Bénard
convection cases, kinetic energy spectra E(k) show a range where E(k) ∼ k−5/3,
as one would expect from turbulent flows. The non-rotating case exhibits it
for a wider range of scales than any rotating case and also has a peak for
the vertical contribution at the length scale corresponding to the diameter
of the cylinder, a clear signature of the LSC. The rotating cases, instead,
present for the horizontal contribution a pronounced peak associated with the
quadrupolar circulation, while the vertical contributions display a peak that, in
confirmation with our autocorrelation findings, goes to larger scales for higher
Ra/RaC . Scale-by-scale energy transfer investigations give us a hint of the
mechanisms that generate the four-vortex structure: while for cases with lower
Ra/RaC the energy appears to be transferred to the larger structures by the
intruding jets that come from the sidewall zone, for higher Ra/RaC the data
suggest an upscale energy transfer at larger length scales, possibly related to
the inverse energy transfer that is known to generate LSVs [34,116].

This unique, large-scale setup has given results that are clearly a major
step into the understanding of the geostrophic regime. The various flow fea-
tures have been recovered and characterized by scaling of the heat transfer,
mean temperature gradient and velocity fluctuations. However, direct quan-
titative interpretation is severely complicated by the presence of the sidewall
circulation, that makes comparison with laterally unbounded simulations quite
complicated.

8.2 Outlook
This thesis is closed with a discussion of future directions in the study of rotat-
ing Rayleigh–Bénard convection, within the current context of TROCONVEX
but also with modifications or using different approaches.

Our investigation has one working fluid at a constant mean temperature,
leading to no differences in the Prandtl number Pr. We have followed this
approach in order to minimize the “disturbances” that a change in Pr could
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prompt in our measurements. Nevertheless, TROCONVEX can reach its lowest
possible Ekman value (E = 5×10−9) only if we increase the mean temperature
of the water from 31◦ C to ∼ 80◦ C, significantly modifying the Pr in the
process (from Pr ≈ 5.2 to Pr ≈ 2.1, [27]). The heat transfer setup is prepared
for these temperatures. This could be a way to get closer to the “ultimate”
diffusion-free regime theorized for planetary flows [114,136].

Another way to (drastically) change Pr within our setup would be to change
working fluid from water to air (Pr ≈ 0.7). TROCONVEX is designed to
maximize the accessible flow states using water, and air would only enable
access to the states further away from the onset (RA or possibly RIT).

Temperature measurements could be improved with addition of more ther-
mistors to enhance its diagnostic power at longer time scales in particular.
TROCONVEX, currently, hosts two arrays of temperature sensors inside the
plates and 11 pairs of thermistors in the sidewall, vertically distributed over
the height (all but one of the sections have 3 pairs of thermistors; see Fig. 3.1).
Other experimental setups, for example the U-boot in Goẗtingen [27,110], show
how a larger number of temperature probes placed inside the working fluid
at different radial and vertical positions are a promising tool for further flow
analysis. The drift of the sidewall circulation could be further analyzed in more
detail with additional temperature probes close to or inside the sidewall, while
an array of thermistors at various radial distances could give us indications on
its thickness. We did measure the properties of the sidewall circulation using
stereo-PIV data, but the strength of temperature measurements is that they
are more suitable for measurements that last for long time periods, and we
have seen that the drift of the sidewall circulation has a very low angular speed.
This strong quality about temperature measurements could also be useful if
we want to analyze other features of our flow: temperature signals have been
used to study the variation of temperature fluctuations in Rayleigh–Bénard
convection and probe, indirectly, velocity statistics by correlating the signals
of two thermistors spaced apart [41]. These measurements, although indirect,
could be recorded with ease for much longer times than with PIV.

The flow measurements setup is prepared for further extension of the study:
we have analyzed the case where the cross-section was at mid-height on a 2
m configuration, but the transparent segment can also be used in a 3 or 4 m
configuration, allowing for flow measurements at lower E that are closer to the
anticipated diffusion-free flow state. The transparent PIV segment can also
be turned upside down. This alternative configuration allows us to investigate
cross-sections that are closer to the top plate. Structures like CTCs and plumes
are originating from the Ekman boundary layers on the bottom and top plates

80



8.2 Outlook

and an analysis of the flow fields near the top plate similar to the one we did in
this thesis would certainly give more insights on the development and vertical
extent of these structures.

The transparent section is also ready to be used for other types of particle-
based velocimetry techniques [137], such as particle tracking or the recently
developed “Shake-the-box” technique [138]. It is of clear interest to measure
the velocities in the vertical plane to improve the energy transfer analysis. A
volumetric measurement technique would even give access to full volumetric
velocity data: three velocity components at many positions along the three
principal coordinate directions. This strongly reduces the number of assump-
tions required to analyze the scale-by-scale energy transfer, and may allow us
to discern between the 2D vertically-invariant modes and the 3D fluctuations.

Of course, further investigation on energy spectra and energy transfer mech-
anisms can be done with the aid of DNS: while it cannot reach these extreme
parameters, DNS provides information on the whole volume of the fluid. Sim-
ulations allow for a true scale-to-scale study on how the energy is transferred
between the modes. Recent studies [21,34] have shown that LSVs are generated
by a non-local upscale transfer to the largest scales of the domain: knowing
how such an analysis in a horizontal plane relates to the global flow through
data from simulations could help us interpret and extrapolate our current data
of a single slice of our domain. DNS on a cylindrical domain can be used
to discern the origin of the quadrupolar vortex observed in our experiments,
and determine whether it is generated by an upscale energy transfer, by the
intruding jets or by other causes that have not been considered yet.

Another open issue is the effect of the geometry on the turbulent convective
flow that develops. This is clear from the results presented in this thesis and
comparison with results from simulations on horizontally unbounded periodic
domains. We know that the presence of the sidewall circulation can strongly
interfere with both the global heat transfer and the velocities of the flow,
especially for cases not far from the onset [38,95,102,139], but possibly at high
Ra/RaC the influence is so little than we can directly compare our data with
idealized models without sidewalls, or, perhaps, the need of a different, less
slender, setup will clearly arise. There lies another opportunity where DNS
may prove to be more flexible than an experiment.

Considering that experiments can now explore regions of the parameter
space not accessible by numerical simulation, the combination of laboratory
experiments and simulations is a path that can lead to a better comprehension
of the astrophysical and geophysical flows that are so fascinating and relevant,
yet still ill-understood.
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[40] J. V. Boussinesq. Théorie Analytique de la Chaleur, volume 2. Paris:
Gauthier-Villars, 1903. (Cited on page 7.)

[41] J. J. Niemela, L. Skrbek, K. R. Sreenivasan, and R. J. Donnelly. Turbulent
convection at very high Rayleigh numbers. Nature, 404(6780):837–840,
2000. (Cited on pages 7, 33, and 80.)

86



Bibliography

[42] X. Chavanne, F. Chillà, B. Chabaud, B. Castaing, and B. Hébral. Turbu-
lent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids,
13(5):1300–1320, 2001. (Cited on page 7.)

[43] P. K. Kundu, I. M. Cohen, and D. Dowling. Fluid Mechanics. Elsevier,
6th edition, 2016. (Cited on pages 8, 13, and 68.)

[44] L. Prandtl. Meteorologische Anwendung der Strömungslehre. Beitr.
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Summary

Laboratory study of rotation-dominated convective
turbulence
The study of turbulent rotating convection is of paramount importance for
the understanding of many features of geophysical and astrophysical flows.
The apparently simple interplay of the two competing principal forces, buoy-
ancy and rotation, generates a variety of different regimes that span from
convective columns through geostrophic turbulence to the well-known (rotation-
unaffected) Rayleigh–Bénard convection. As we know from previous studies,
many and vastly unexplored flow behaviors appear beyond certain thresholds
of the rotational constraint.

These states are probed for the first time using a novel setup, TROCONVEX,
a cylindrical rotating convection cell. Its modular construction allows the
investigation of different regions of the parameter space, while its height (up to
4 m) enables an unprecedented view on the so-called geostrophic flow regime
that was difficult to study experimentally in the past. TROCONVEX can be
operated in two different configurations: a thermally insulated cell, used for
measurement of heat transfer and thermal properties of the flow; and an optical
accessible configuration for stereoscopic particle image velocimetry (stereo-PIV)
measurements, through which flow measurement is possible.

The first chapter of results shows heat transfer and temperature profile
measurements in laboratory experiments of rapidly rotating convection in
water. We can identify different geostrophic flow regimes: convective Taylor
columns (CTC), plumes, geostrophic turbulence (GT), and the novel state of
rotation-influenced turbulence (RIT). The different trends of the heat transfer
scaling for the known flow states agree well with previous studies, despite
differences in boundary conditions and domain composition. We also employ
the midheight temperature gradient as a tool to characterize the regimes and
we find good agreement with transitions predicted in the literature. The newly
explored regime of RIT is separated from GT by investigating the different
behavior of the midheight temperature gradient and its characteristic heat
transfer scaling.

The following part focuses on the overall flow statistics from stereo-PIV
measurements, showing the flow scaling properties of rotating convection at
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the extreme parameters reached by TROCONVEX. The measurements show
two different behaviors: for low thermal forcing the wall structure dominates the
flow, while for more turbulent cases four vortical structures (the quadrupolar
vortex) occupy most of the horizontal cross-section.

In the next part of the thesis we show a quantitative analysis of the flow phe-
nomenology using the spatial correlation of both vertical velocity and vertical
vorticity. The characteristic length scale of vertical vorticity exhibits a constant
behavior for the whole geostrophic regime, linked to the critical wavelength
of the columnar structures for onset of convection. On the contrary, for the
first time we could see the length scales of vertical velocity that instead grow
with increasing thermal forcing and can now be used as a novel tool to identify
flow states. The sidewall boundary region shows a wall mode, with two sepa-
rate lobes of coherent upward and downward vertical velocity, respectively. For
low thermal forcing, the inner region shows intrusion of jets propagated from
the colliding wall-mode lobes (at opposite sides of the cylinder circumference)
that prevent the formation of the typical rather well-organized array of convec-
tive Taylor columns shown for horizontally periodic simulations. For the RIT
regime, a remarkable quadrupolar organization of the flow, the quadrupolar
vortex mentioned above, is found instead of the well-known single large-scale
vortex or dipole observed in many horizontally periodic simulations (for certain
parameter settings).

In the last chapter this quadrupolar vortex structure is analyzed in more
detail. The energy transfer between different scales is investigated in order to
understand the main driving mechanism for this phenomenon.

Summarizing, this work analyses the dynamics of the geostrophic regime
of rapidly rotating convection. Thanks to the unique properties of the TRO-
CONVEX setup, we gain insights in a region of parameter space that was not
accessed before. This work reduces the gap between previous experimental and
numerical studies on rotating convection and planetary-scale flows at extreme
parameters, thus enabling extrapolation of our findings to these systems, a
task that is impossible at lower rotational constraints.
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Cover Illustration

Flow field visualization in a vertical slice of TROCONVEX in the the 2 m tank
configuration (Γ = 1/5) showing rotation-affected turbulence at E = 1× 10−7

and Ra = 2.1× 1012.
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