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In 1954, Asakura and Oosawa1 explained that nonadsorbing
macromolecules can induce attractive forces between colloidal par-
ticles in a single page paper in this journal. The effective pair
interaction between the colloidal particles mediated by the non-
adsorbing species is nowadays often termed the Asakura–Oosawa
(AO) potential.2 Figure 1 illustrates such a colloid–polymer mixture
and its tendency to phase separate into a phase enriched in colloids
and a phase concentrated in polymers due to the attraction mediated
by nonadsorbing polymer chains.

This special issue of The Journal of Chemical Physics contains
a collection of papers related to the concept introduced by Asakura
and Oosawa. We are very honored that the late professor Oosawa
contributed to this issue with a historical overview3 on the origin
of the Asakura–Oosawa theory. In his synopsis, he explains that
he came to Nagoya to “do some unorthodox physics” and that
experimental results have stimulated him to theoretically consider
the effects of adding macromolecules to colloids.

Kurihara and Vincent4 discussed how, after a lag time of about
20 years, the theory was rediscovered in the 1970s via experimental
studies on colloid–polymer mixtures.5,6

In the same period, Vrij7 independently found that excluded
volume interactions in a colloidal dispersion containing an addi-
tional component have important consequences for the effective
interactions, structure,8 and phase stability.9,10 Vrij explicitly intro-
duced the description of penetrable hard spheres (PHSs) to describe
the nonadsorbing polymers, which was implicitly proposed by
AO. In hindsight, the delayed recognition clarifies that Asakura
and Oosawa were ahead of their time. Since the 1980s, espe-
cially in the 1990s, attention concerning the influence of non-
adsorbing macromolecules on the interaction between colloidal
particles and the resulting phase behavior of colloid–polymer and
binary colloidal mixtures gained increasing interest (see Fig. 2 in
Ref. 4).

In 1980, the term “depletion”11 was introduced to describe the
effect of nonadsorbing species near a surface. In the field of colloid
chemistry, the accumulation of species (ions, polymers, and pro-
teins) at (colloidal) surfaces received quite some attention after the
1960s (see, for instance, Refs. 12 and 13). Terms such as positive and
negative adsorption were common, and the latter was also termed
depletion.
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FIG. 1. Snapshots of an animation of a colloid–polymer mixture. The spheres are
the colloidal particles that are mixed with the nonadsorbing polymer chains. The
upper animation reflects the system just after mixing. The lower sketch shows
that the dispersion gets inhomogeneous after some time if the concentration of
the nonadsorbing polymers (sometimes called depletants) is sufficiently high. See
also the simplified animation on http://youtu.be/tEsvuSnW-9Y.

In the decades that followed the work of Vincent5,6,14,15 and
Vrij7–10 and their co-workers, various theoretical tools were applied
to better understand the microstructure, pair depletion interactions,
and phase stability of colloid–polymer mixtures. We summarize
these below with a focus on bulk properties. For some relevant refer-
ences on the interface physics in colloid–polymer mixtures, see Refs.
16–22.

A key step was the application of thermodynamic perturbation
theory by Gast, Hall, and Russel23 to predict the phase behavior of
colloid–polymer mixtures to interpret systematic experiments24,25

that were performed in several laboratories. At the same time,
field theoretical methods were employed to understand the detailed
polymer physics related to depletion.26–28 Shaw and Thirumalai29

formulated a reference interaction site model for colloids and com-
bined it with the Edwards model for polymers to explain depletion
stabilization effects:11,30,31 at high polymer concentrations, repulsive
contributions to the pair interactions appear.

Methods such as free volume theory (FVT),32 polymer ref-
erence interaction site model (PRISM) integral equation theory,33

integrating out the depletant using an effective one-component
Hamiltonian,34 density functional theory (DFT),35–37 and a Gaus-
sian core model38 were applied to gain insight into depletion effects.
Many theories treat polymers as effective soft spheres, which can
be useful when considering dilute solutions of polymers much
smaller than the particles, the so-called “colloid limit.” New physics
emerges in polymer semidilute solutions and melts, and it was

found that the solvent quality also matters. Accounting for poly-
mer physics is also relevant particularly in the “protein” limit,39–41

where the particles are small with respect to the polymer chains.
The “protein” limit regime is of particular interest also for (cell)
biology.

Free volume theory (FVT)32 (see also Ref. 42) is a simple,
yet insightful and reasonably accurate, theory for the macroscopic
phase behavior that also enables partitioning of colloids and deple-
tants over the phases to be predicted. For colloid–polymer mixtures
described as hard spheres plus PHS, the predicted phase diagrams
correspond to computer simulation results.43,44 FVT also allows
accounting for interactions between the depletants45,46 and to eval-
uate the rich phase behavior of anisotropic colloids mixed with
nonadsorbing polymers.47,48

Microscopic equilibrium theories of thermodynamics, struc-
ture, and phase separation of polymer–particle suspensions that
explicitly treat polymers and their conformational degrees of free-
dom were created by generalizing the PRISM integral equation
approach.33,49 The role of particle size (from the protein to colloid
limits), polymer concentration (dilute and semidilute good and theta
solvent conditions50 and dense melts51), arbitrary particle volume
fractions, and the full microstructural correlations were determined
in a unified manner.

Experimental work focusing on measuring (i) the pair inter-
action (see, e.g., Refs. 52–55), (ii) the structure of the dis-
persion mediated by nonadsorbing polymers,56 and the phase
behavior57,58 of well-defined colloid–polymer mixtures appeared.
PRISM equilibrium predictions were successfully confronted against
experiments.59,60

Soon, nonequilibrium phenomena in multi-component mix-
tures and the role of depletion effects61–64 gained interest from both
theoreticians and experimentalists.65 Knowledge of the structural
correlations computed using PRISM theory allowed microscopic
dynamical theories of slow colloid dynamics to be constructed, at
both the mode coupling and activated dynamics level. Quantitative
predictions for the structural relaxation time, formation of glasses
and gels, nonlinear rheology, and delayed gel collapse66–68 were
made and compared with experiments.69,70

The short-range and controlled strength of attraction induced
by the AO interactions also offers an ideal playground for studying
the glass transition and gelation of dense colloidal suspensions. In
2000, the mode-coupling theory (MCT), which is one of the most
successful first-principles theories to describe the slow dynamics of
the glass transition, has been applied to the hard-sphere system with
short-range attraction.71 It unveiled the existence of a series of sin-
gular dynamical ideal glass transitions as well as the re-entrance of
the repulsive-to-attractive glass transitions. The theoretical predic-
tion was soon verified by experiments for a mixture of colloidal
particles interacting via the AO potential induced by depletant
polymers.63,72

Progress on all the above elements was stimulated by com-
puter simulation. Several works have focused on the influence of
depletion-induced attraction on the structural and dynamical behav-
ior of colloids, highlighting, for example, the onset of attractive
and repulsive glasses and the occurrence of reentrant melting when
the range of the depletion attraction is very small.73,74 The idea to
tune the “sticky” interaction by changing the concentration of the
depletant has been extended to colloidal suspensions with lower
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densities and sparked a series of experimental and numerical stud-
ies on colloidal gels (see Refs. 75 and 76 and references therein).
These studies succeeded in explaining the route from the glass tran-
sition at high densities to gelation of colloidal particles by tuning the
concentration of depletant.

Another important research topic concerns the fate of the
attractive glass/gel line at lower densities and the interplay with
phase separation.77 For the latter, an appropriate combination of
simulations and confocal microscopy experiments was able to show
that such a line intersects the binodal at high densities, giving rise
to so-called arrested phase separation.76 Arrested states induced by
depletion have also been studied extensively in the context of hard-
sphere/star polymer78 or star/star mixtures.79 The introduction of
soft interactions is found to enrich the phenomenology of glass tran-
sitions and the interplay between the two species80 compared to
binary mixtures of hard spheres.81

As indicated above, the interest was broadening and systems
such as colloidal spheres plus multi-component depletants82 and
dispersions of star polymers (soft colloids) plus linear polymers
dispersions83,84 received interest, as well as mixtures of different
types of star polymers.85 Besides studying the effects of nonadsorb-
ing polymers as depletants, it is also of interest to treat colloids
themselves as depletants added to a dispersion of larger or differ-
ent colloids. Depletion effects also can be encountered in mixtures
of self-assembling block copolymers in a selective solvent under
the influence of nonadsorbing polymers.86,87 The phase behavior
of hard-sphere binary asymmetric mixtures gained attention in the
1990s.88–91 Fundamental studies using DFT37 helped to quantify
the effective interactions and microstructural effects.35 Studies of
depletion effects in mixtures of different particle shapes are also
gaining interest.92–94 It also became clear that more specific effects,
such as charges,95,96 the presence of polymer brushes,97,98 solvent
quality,99,100 and polydispersity,101–104 are important.

A very interesting research direction involves systems where
depletion attraction competes with a long-range repulsion, often
of electrostatic nature, giving rise to the onset of equilibrium clus-
ter phases and arrested states where clusters are dominant,105 with
important implications to understand features of solutions of glob-
ular proteins. Recent reviews on this topic can be found in Refs.
106 and 107. In addition, simulations have been very useful to
locate and characterize gas–liquid (colloid-rich/colloid poor) phase
separation of the Asakura–Oosawa effective potential,108 clarify-
ing that this belongs, as expected, to the Ising universality class.
Investigations on binary mixtures of colloids and polymers109 where
non-ideality effects of the polymer are taken into account have also
been explored.

Another rich direction of work in simulations is to calcu-
late effective interactions between colloids immersed in differ-
ent kinds of solutes that are more complex than polymers. This
can be achieved by umbrella sampling or by exploiting virtual
moves in Monte Carlo simulations. With these methods, deple-
tion induced by soft spheres or microgels has been investigated.110

The latter have also been recently used in experiments to mod-
ify the depletion interactions in situ, exploiting the thermore-
sponsive character of microgels.111,112 Furthermore, a promising
class of depletants involves a self-assembling medium, such as a
patchy co-solute, forming supramolecular chains113–115 or clusters116

or even in the vicinity of a critical point,117,118 thus providing

a connection between depletion interactions and critical Casimir
forces.

Colloid synthesis has evolved to such a degree119,120 that it
is nowadays possible to make colloidal particles of a wide range
of shapes.121–125 This, and the fact that anisotropic shapes occur
in nature, has triggered studies on mixtures of non-spherical col-
loids plus added nonadsorbing polymers. Hence, insights have
been obtained into the phase behavior in mixtures of rods,93,126–129

platelets,47,130–132 and cubes133–135 plus added polymers. In addition,
nonequilibrium phenomena are quite relevant here.136,137

Insights into depletion effects inspired by the Asakura–Oosawa
concepts have also gained attention in the life science field. Already
at an early stage,138–140 it was appreciated that the large volume
fraction occupied by the macromolecules in living cells has con-
sequences. Walter and Brooks141 suggested that macromolecular
crowding is the basis for microcompartmentation. As summarized
a few years ago,142 excluded volume effects are thought to be of
importance to explain several intracellular processes.143,144 Hence,
depletion effects are suggested to mediate several types of biological
processes, including dynamics.145,146

It is abundantly clear that macromolecular crowding affects
all aspects of biological processes ranging from transcription to
self-organization of the molecules of life. Nowhere is it more trans-
parent than in crowding-driven structural transitions in protein-like
polymers,147,148 conformational switches between active states of
RNA,149 and depletion effects on the conformations of DNA.150–152

Depletion effects play a similar role in protein dispersions153,154 and
dispersed bacteria155 as in colloidal suspensions. There are many
more biological processes in which crowding effects, especially the
consequences of polydispersity, have not been explored at all. Quan-
tifying the effects of entropic forces in biology remains a virgin area
for additional research.

In materials science, depletion effects were used in various
ways to self-organize colloidal systems. An example is to select
the strength of the attraction by introducing colloidal surface
roughness,156–158 which allows the creation of colloidal micelles.159

The use of the different shapes can help to tune the strength of the
depletion attraction. This can facilitate the use of depletion effects to
make colloidal “key-lock” systems.160 An interesting element that is
gaining interest in this field is the influence of colloidal shape on the
self-assembly of colloidal particles119,161 and how shape can induce
“entropic patchiness.”

It is clear that the depletion field has begun to develop in many
different new directions, of which we mention a few that connect to
the contributions in this special issue:

● Influence of solvent quality and solvation on depletion
effects mediated by polymers (see Refs. 162 and 163).

● Macromolecular crowding. In this issue, some novel insights
are presented (see Refs. 164–169).

● Interesting findings on charged colloids, proteins, and bac-
teria upon addition of nonadsorbing polymers, while also
specific effects of polyelectrolytes are considered (see Refs.
170–174).

● Confinement of multi-component mixtures (see Refs. 175
and 176).

● Complex (hard/patchy) colloidal mixtures (see Refs. 177
and 178).
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● Fundamental insights into (i) the fluid–fluid phase transi-
tions using DFT (see Refs. 179 and 180) and (ii) equilibrium
cluster fluids.181

● Anisotropic colloids and depletion effects (see Refs.
182–185).

● Glasses in colloid–polymer mixtures (see Refs. 186–188).
● Nonequilibrium phenomena in colloidal mixtures (see Refs.

189 and 190).

After almost 70 years, it turns out that the classical theory
of Asakura and Oosawa is very much alive. This collection of
papers highlights the relevance of the Asakura–Oosawa theory and
shows its promise to further understand multi-component soft mat-
ter systems, with significant relevance for science, technology, and
biology.

We thank associate editors John E. Straub, Francesco Sciortino,
David R. Reichman, and Carlos Vega for enabling the assembly of
this special edition. We also acknowledge the Editor-in-Chief Tim
Lian and appreciate the help of Jenny Stein and Judith Thomas.
Finally, we thank all authors who contributed.
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