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Abstract
This article proposes modifications of the Parareal algorithm for its application to
higher index differential algebraic equations (DAEs). It is based on the idea of apply-
ing the algorithm to only the differential components of the equation and the compu-
tation of corresponding consistent initial conditions later on. For differential algebraic
equations with a special structure as, e.g. given in flux-charge modified nodal analy-
sis, it is shown that the usage of the implicit Euler method as a time integrator suffices
for the Parareal algorithm to converge. Both versions of the Parareal method are
applied to numerical examples of nonlinear index 2 differential algebraic equations.

Keywords Parareal · Differential algebraic equations · Index 2 ·
Modified nodal analysis

1 Introduction

The time-domain simulation of models from physics, finance or social sciences often
leads to systems with differential and algebraic equations. These systems can be both
time dependent differential equations, such as, e.g. in circuit models for the simu-
lation of microchips and energy networks [28], or space and time dependent partial
differential equations (PDEs), as is the case for the simulation of the electromagnetic
behaviour of electric machines [25]. In the latter one, typically the method of lines
is used. Here, first, a spatial discretisation method is applied to the PDE to obtain an
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only time dependent system of differential equations which is then solved in time as
an initial value problem (IVP).

The time domain simulation of large systems of equations, e.g. obtained from
fine meshes or systems with excitations having fast dynamics, which require small
time step sizes, together with large time windows, considerably increase simulation
time. In these cases, parallelisation methods allow reducing computation time. When
spatial parallelisation through domain decomposition methods is used up to satura-
tion or whenever the time domain dynamics is the bottleneck of the simulation time,
parallel-in-time methods [12, 21, 24, 29] can be used. Parareal is such an algorithm
that is based on the same idea as multiple shooting methods [12, 21].

Many initial value problems arising from physical systems such as, e.g. electric
networks, spatial discretisation of some approximations to Maxwell’s equations or
constrained mechanical systems such as the pendulum are systems of differential
algebraic equations (DAEs). These are systems that contain both ordinary differential
equations (ODEs) and algebraic constraints. They convey analytical and numerical
difficulties that do not arise when handling ODEs. This includes their potentially
large sensitivity towards small, high frequent perturbations [3, 20] as well as their
nontrivial selection of appropriate initial conditions [7, 20]. Their index, a natural
number ≥ 0, gives one way of classifying them according to the difficulties they
pose. Especially when using less standard algorithms on DAEs with higher index,
such as, e.g. Parareal, a correct handling of the equations is of utmost importance.
Otherwise, their convergence may not be ensured, deteriorated, or they may even not
be applicable. Low index problems have already been numerically solved by Parareal,
e.g. [4]. The relatively straightforward index-1 case was already discussed in [11, 27,
28]. This work focuses on the application of the Parareal algorithm to index 2 DAEs
and how they can be handled appropriately. In particular, the fulfilment of the hidden
and explicit algebraic constraints and the extraction of the dynamic components is
studied in the context of the Parareal algorithm.

The paper is structured as follows: Sections 1.1 and 1.2 introduce the classic
Parareal algorithm and the concept of differential algebraic equations, their tractabil-
ity index as well as the idea of consistent initial conditions for DAEs. A modification
of the Parareal algorithm is proposed in Section 2 for its application to index 2
tractable DAEs, and it is applied to a nonlinear toy example. In Section 3, the
behaviour of the implicit Euler scheme is shown on DAEs with a specific structure
and its significance for the Parareal algorithm is explained. The section ends with the
application of the Parareal algorithm to a nonlinear index 2 DAE arising from circuit
simulation. The paper concludes in Section 5 with a summary.

1.1 Parareal

In the following section, we will introduce the parallel-in-time method Parareal for ordi-
nary differential equations [21]. Let us consider the initial value problem of an ODE

Ax′ + b(x, t) = 0 (1)

x(t0) = x0 (2)
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with constant matrix A, detA �= 0, and x′ = dx/dt on time interval
. To apply the Parareal algorithm, first the time interval I is

partitioned into N smaller time windows In = (Tn−1, Tn] of size �T = (tend −
t0)/N , with T0 = t0 and TN = tend. In each iteration k, Parareal solves in parallel the
N initial value problems

A
d

dt
x(n,k) + b(x(n,k), t) = 0 , x(n,k)(Tn−1) = Xk

n−1 for t ∈ In , (3)

with Xk
0 = x0 and n = 1, . . . , N . This, however requires initial conditions for each

subwindow In, which are a priori unknown. Therefore, the algorithm has to start
with incorrect initial conditions at the interface points Tn. This yields jumps in the
solution across subwindows, which Parareal tries to iteratively eliminate by updating
the initial conditions. Thus, in addition to the parallel computation of the N initial
value problems described previously, Parareal performs an update formula for the
initial conditions which for the (k + 1)th iteration reads [14, 21]

Xk+1
n = F(Tn, Tn−1,Xk

n−1) + G(Tn, Tn−1,X
k+1
n−1) − G(Tn, Tn−1,Xk

n−1) , (4)

for n = 1, . . . , N . Here, F and G are solution operators of the initial value problem
called the fine and coarse propagator, respectively.

The fine propagator F(Tn, Tn−1,Xk
n−1) returns the solution of (3) at time step Tn.

It solves the problem in a very accurate way and is thus computationally expensive
to apply. However, as for the (k + 1)th iteration this solution only requires the initial
condition computed at the previous Parareal iterationXk

n−1, it is performed in parallel
on all subwindows In. Therefore, simulation time is still reduced with respect to a
sequential computation.

The second operator, G(Tn, Tn−1, �) gives the solution of the initial value problem
at time point Tn with initial condition � at Tn−1. However, X

k+1
n−1 is a solution of

the current Parareal iteration and thus cannot be computed in parallel. Therefore, the
coarse solver has to be applied sequentially. To ensure computation time is reduced
as much as possible, this operator has to be cheap to compute and as a consequence
less accurate. Here, for example a larger time step size can be employed (e.g. one
time step per window) or a reduced system can be solved.

Combining the parallel computation of the expensive and accurate fine propagator
with the sequential computation of the cheap coarse propagator yields each Parareal
iteration to require less computation time than the sequential simulation approach.
This establishes a link to other parallelisation methods such as multiple shooting
methods (see [12] for an historical overview) or multigrid approaches [10].

1.2 Differential algebraic equations

In this section, we introduce the concept of differential algebraic equations. For that,
we consider initial value problems consisting of quasilinear DAEs of the form

A(x, t)x′ + b(x, t) = 0 , (5)

on time interval I = [t0 tend] with , ndof the number of degrees of
freedom and initial condition x(t0) = x0. Here, detA(x, t) can be zero, which yields

391



Numerical Algorithms (2022) 91:389–412

a system of equations containing both differential equations as well as algebraic
constraints.

Differential algebraic equations are typically classified according to their index [3,
17, 20], which allows evaluating the analytical and numerical difficulties the system
may convey. Higher index systems (index ≥ 2) require a special numerical handling.
There are different types of index definitions that essentially coincide for linear sys-
tems [23]. In this paper, we use the projector-based tractability index [20] as it allows
a separation of the degrees of freedom and equations into the purely differential and
the algebraic ones.

Following [5, 7], we consider DAEs with a special structure and therefore take the
following assumption.

Assumption 1 We assume the spaces kerA(x, t) and ImA(x, t) are independent of
the degrees of freedom x and depend smoothly on t .

Remark 1 This assumption is mild, as many DAEs arising from physical systems
fulfil those requirements. Later on, it is shown that, e.g. RLC circuits described with
modified nodal analysis have this property (see [7, 9]) or even space discretised
partial differential algebraic equations such as, e.g. the eddy current problem [26].
Similar assumptions are taken, e.g. in [19] and ensure that the BDF method integrates
index 2 problems well.

Following [7], we consider DAEs fulfilling Assumption 1 and their corresponding
projectors Q(t) onto kerA(x, t) as well as its complementary P(t) = I − Q(t). We
introduce the matrices

B(y, x, t) := ∂

∂x
(A(x, t)y) + ∂

∂x
b(x, t) (6)

A1(y, x, t) := (A(x, t) + B(y, x, t)Q(t))
(
I − P(t)P′(t)Q(t)

)
, (7)

and the projectors Q1(y, x, t) onto kerA1(y, x, t) and P1(y, x, t) = I − Q1(y, x, t).
Finally, the matrix

G2(y, x, t) := A1(y, x, t) + B(y, x, t)P(t)Q1(y, x, t) (8)

is defined. As we only focus on index 2 systems, we present the tractability index
definition accordingly. However, it can be generalised to systems with index > 2 (see
[20]).

Definition 1 (Tractability index [20]) A quasilinear DAE (5) fulfilling Assumption 1
with sufficiently smooth solution vector has tractability index

• 0, if A(x, t) is nonsingular,
• 1, if A(x, t) is singular and A1(y, x, t) is nonsingular,
• 2, if A(x, t) and A1(y, x, t) are singular and G2(y, x, t) is nonsingular.
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Example 1 We present a simple example of a linear DAE system to exemplify the
concept of tractability index and the projectors that are involved. For that, we consider
the DAE

x′
1 = x1 + x2 (9)

0 = x1 − sin(t) , (10)

with degrees of freedom x� = (x1, x2). Note that here the DAE is defined by the
matrices

A =
(
1 0
0 0

)
and b(x, t) =

( −x1 − x2
−x1 + sin(t)

)
.

Projectors onto kerA and respectively along kerA are

Q =
(
0 0
0 1

)
and P =

(
1 0
0 0

)
.

Here, Qx projects onto x2 and thus the variable that does not appear differentiated
in time in the original DAE, whereas Px projects onto x1, which corresponds to the
degree of freedom that is time differentiated in (9). Furthermore,

B =
( −1 −1

−1 0

)
and therefore A1 =

(
1 −1
0 0

)
.

The projectors onto kerA1 and respectively along kerA1 are

Q1 =
(
1 0
1 0

)
and P1 =

(
0 0

−1 1

)
.

The DAE (9)–(10) has index 2 as A1 is singular and

G2 =
(

0 −1
−1 0

)

is nonsingular.

For the rest of the paper, we will choose a specific projector Q1, which fulfils a
property that is especially helpful in the setting of the implicit Euler method. This
particular choice can be taken without the loss of generality (see [7]).

Assumption 2 (Canonical projector [7]) We define Q1 to be the canonical projector,
that is for a projector Q̃1(y, x, t) onto kerA1(y, x, t), we choose

Q1(y, x, t) = Q̃1(y, x, t)G2(y, x, t)−1B(y, x, t)P(t) . (11)

Note that here the projector fulfills the following property [7]

Q1(y, x, t)Q(t) = 0 . (12)

Remark 2 The projector Q1 of Example 1 is already the canonical projector and
fulfills Q1Q = 0.
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1.3 Consistent initialisation

The aim is to apply the Parareal algorithm to an initial value problem arising from
a system of differential algebraic equations. For that, we introduce the concept of
consistent initialisation for DAEs.

In contrast to initial value problems arising fromODEs, DAEs cannot be initialised
with arbitrary initial conditions x0, as the algebraic constraints imposed by the system
have to be fulfilled by the solution at every time point t ∈ I. In this context, we
introduce the concept of consistent initial conditions.

Definition 2 (Consistent initial condition c.f. [3]) Let us consider an initial value
problem consisting of the DAE (5) on the time interval t ∈ I. Then, an initial con-
dition x0 at t0 is called consistent, if there exists a solution of (5)
fulfilling x∗(t0) = x0.

Remark 3 Higher index DAEs (≥ 2) present hidden constraints that appear only after
time differentiation of the original system and thus are not explicitly accessible. This
complicates the choice of appropriate initial conditions, as they have to fulfil both the
explicit as well as the hidden constraints.

Example 2 To illustrate the concept of consistent initialisation and hidden constraints
in high index DAEs, we consider again the linear index 2 system of the previous
section (9)–(10):

x′
1 = x1 + x2

0 = x1 − sin(t) .

To choose an initial condition at time t0, clearly the explicit algebraic constraint in
(10) has to be fulfilled and thus x1(t0) = sin(t0).

Differentiation of the explicit constraint and inserting it into the differential equa-
tion leads to a second, hidden, constraint which also needs to be fulfilled by the
solution, that is x2(t0) = cos(t0)− sin(t0). In particular, in this example the DAE is a
purely algebraic equation with no dynamics, as all degrees of freedom are prescribed
by either explicit or hidden constraints.

Example 2 illustrates that initial conditions for DAEs cannot be chosen entirely
free. This is bad news for Parareal, since it is based on the idea of iteratively
correcting initial values (see (4)).

Following [7, 20, 22], we make usage of the projectors defined for the tractability
index to separate the degrees of freedom of the DAE system and extract the purely
differential components. Their ICs are freely choosable as they are not characterised
by any type of algebraic constraint. Furthermore, when they are prescribed together
with the DAE (5), a uniquely solvable initial value problem arises [22]. They can be
extracted with

xdiff(t) := PP1(y, x, t)x(t)
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and, if they are fixed, the rest of the components, all of them algebraic, are uniquely
determined by the values of xdiff and time t [7]. Note that, for index 2 systems, two
projectors are required to extract the differential components. Here a further reduc-
tion within the explicitly differentiated Px components is made by further applying
the P1(y, x, t) projector.

With a second projector T(y, x, t) onto Im Q(t)Q1(y, x, t), the index 2 vari-
ables of the DAE can be extracted. For the differential index, the index 2 variables
are the parts of x that require one time differentiation of the original system to
be characterised by (hidden) algebraic constraints [3]. Its complementary projec-
tor U(y, x, t) = I − T(y, x, t) allows to extract the purely differential components
together with the index 1 variables, that is the ones prescribed by the explicit con-
straints of the system. Thus, we can separate the degrees of freedom into three types
(see [7])

x = PP1(y, x, t)x︸ ︷︷ ︸
index 0

+PQ1(y, x, t)x + QU(y, x, t)x
︸ ︷︷ ︸

index 1

+T(y, x, t)x
︸ ︷︷ ︸

index 2

. (13)

Example 3 Again for illustration proposes we consider the index 2 DAE (9)–(10)

x′
1 = x1 + x2 (14)

0 = x1 − sin(t) . (15)

As computed in Example 1, the index 2 variables are characterised by ImQQ1 and

QQ1 =
(
0 0
1 0

)
with projector T =

(
0 0
0 1

)
.

As Tx projects onto the index 2 components whose algebraic behaviour is char-
acterised by hidden constraints, we obtain that x2 is an index 2 variable. This is
consistent to the results obtained in Example 2, where x2 was described by the hidden
constraint x2 = cos(t) − sin(t).

Furthermore, even though

P =
(
1 0
0 0

)

(see Example 1) projects onto x1 as it appears differentiated in time in (14), from
Example 2 we know that all variables are algebraic. As

PP1 =
(
0 0
0 0

)
and PQ1 =

(
1 0
0 0

)
,

the DAE has no differential components and x1 is an index 1 variable.
The degrees of freedom x� = (x1 x2) in (9)-(10) can be decomposed as

x =
(
0 0
0 0

)
x

︸ ︷︷ ︸
index 0

+
(
1 0
0 0

)
x +

(
0 0
0 0

)
x

︸ ︷︷ ︸
index 1

+
(
0 0
0 1

)
x

︸ ︷︷ ︸
index 2

. (16)

We have summarised the projectors introduced to separate the degrees of freedom
of index 2 DAEs in Table 1.
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Table 1 Summary of important projectors for the (theoretical) decomposition of the degrees of freedom
of index 2 DAEs

P Projector onto the degrees of freedom that appear explicitly

differentiated in time within the original DAE.

Q Projector onto the degrees of freedom that appear only algebraically

within the original DAE.

U Projector onto the index 0 and index 1 degrees of freedom.

T Projector onto the index 2 degrees of freedom.

PP1 Projector onto the purely differential components (index 0) of the DAE.

2 Parareal for DAEs

The application of the Parareal algorithm for nonlinear ordinary differential equations
and its convergence is already studied [13]. However, for the case of higher index
DAEs, its convergence has not been studied yet and its applicability is not ensured.

Example 4 In this example, we illustrate the consistency problem that arises when
applying the Parareal update formula (4) to compute initial conditions for nonlinear
DAEs. Let us consider the nonlinear DAE

x′
1 = f (x, t) (17)

0 = g(x, t) (18)

with x = (x1, x2). If ∂g/∂x2 �= 0 then the DAE is index 1. If ∂g/∂x2 = 0 but the
hidden constraint

h(x, t) := ∂g(x, t)
∂x1

f (x, t) = 0 (19)

fulfills ∂h/∂x2 �= 0 then it is index 2. Now, two consistent initial values xc and xf at
time tn, e.g. obtained by a coarse and fine propagator, may fulfill the constraints

g(xc, tn) = 0 and g(xf, tn) = 0 (20)

or

h(xc, tn) = 0 and h(xf, tn) = 0 (21)

separately but their linear combination xc + xf can in general violate the constraints
and is therefore not a consistent initial condition.

As it can be seen in Example 4, especially for nonlinear DAEs, it can happen that
the update formula (4) yields an inconsistent initial condition for the fine solver. This
may lead to divergence of the algorithm, slower convergence or an incorrect solution.

Parareal has been successfully applied to DAEs previously. For example, in [4],
the algorithm is applied to a system of DAEs without a special handling. In [27] it is
applied to index 1 DAEs with a special structure and in [11] with a modified Parareal
algorithm. Both approaches are special cases and are covered by the theory given in
this paper.
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First, a modification of the Parareal algorithm is presented here that works for
general index 2 DAEs as (5). The method is similar to the one given in [18, 19] for
multiple shooting methods. There it is ensured that the algorithm works by means
of extending the Jacobian that is computed to update the initial conditions to avoid
it being singular. This is achieved by including an equation for the calculation of
consistent initial conditions. The idea behind the method here is to only apply the
Parareal algorithm on the purely differential components of the DAE and compute, if
necessary, the rest of the degrees of freedom accordingly. For that, the update formula
(4) is restricted to

X̂k+1
n = PP1(X̃k

n, Tn)X̃k
n + PP1(X̄k+1

n , Tn)X̄k+1
n − PP1(X̄k

n, Tn)X̄k
n , (22)

where X̃k
n := F(Tn, Tn−1,Xk

n−1) and X̄k
n := G(Tn, Tn−1,Xk

n−1). That is, only the
purely differential components (index 0 components) of the DAE are updated within
the Parareal algorithm. This corresponds to the freely choosable components of the
degrees of freedom that are not constrained by algebraic equations. The resulting
solution X̂k+1

n is then used to compute the consistent initial condition Xk+1
n such that

PP1(Xk+1
n , Tn)

(
Xk+1

n − X̂k+1
n

)
= 0 . (23)

That is, a consistent initial condition is computed that has the same differential com-
ponents as obtained from the Parareal update. This can either be done analytically
for simple DAEs or with numerical techniques as proposed, e.g. in [7, 8]. The algo-
rithm of [8] is implemented in a Python package called InitDAE1, which is able to
numerically compute consistent initial conditions for DAEs.

In a nutshell, to properly handle the algebraic constraints imposed by DAEs, we
propose a modified Parareal algorithm for differential algebraic equations. Here,
the Parareal update on each iteration k is only to be performed on the differential
components of the degrees of freedom as in (22). The new initial condition at the cor-
responding time points t = Tn is obtained by means of computing a consistent initial
condition with the same differential components than the solution of the modified
Parareal update (see (23)).

Remark 4 Note that the modified Parareal algorithm for DAEs proposed within
this section requires, for each iteration, the computation of the projectors P(t) and
P1(x, t) explicitly for the modified update (22). Furthermore, for each window In

and iteration, consistent initial conditions need to be computed.

This approach can also be performed on DAEs with index higher than two. In that
case, the projectors to extract the purely differential components in (22) and (22)
have to be adapted accordingly (see [20]).

1https://www2.mathematik.hu-berlin.de/∼lamour/software/python/InitDAE/html/InitDAE
Integration2020 3 7/
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2.1 Numerical example

In the following, the modified Parareal algorithm for DAEs from the previous section
is applied to an index 2 toy example

x′
0 + g(x2) = 0 (24a)

x′
1 − x2 = 0 (24b)

x1 − 0.015 sin(2π10t) = 0 , (24c)

with degrees of freedom x� = (x0, x1, x2) and nonlinear function

g(x) =

⎧
⎪⎨

⎪⎩

0 if x ≤ 1 ,

e−(x−1)−2
if 1 < x ≤ 2 ,

e−(x−1)−2 − 1
8e

3
4 e−(x−2)−2

otherwise.

(25)

Here, the projector matrices P, P1(x, t) are

P =
⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠ and P1(x, t) =
⎛

⎝
1 ∂

∂x2
g(x2) 0

0 0 0
0 −1 1

⎞

⎠ . (26)

Remark 5 Note that this example is an artificially created DAE without dynamics.
Due to the definition of the nonlinear function g(x) and the fact that x2 = x′

1 =
0.3π cos(2π10t) ≤ 1, we have that x′

0 = 0. Therefore, x0 is a constant function that
equals its initial condition.

To study the proposed modification of the Parareal algorithm, we apply the
variants:

– PR Trapez
In the first algorithm, no special handling is implemented, that is classic Parareal
with the implicit trapezoidal rule as time integrator is applied with a small time
step size δt for the fine solver and a larger one �T for the coarse propagator.

– PR Init T
For the second simulation, the time integration is still performed with the trape-
zoidal rule. However, in the update formula, we only consider the PP1(x, t)
components as in (22). Afterwards, the corresponding consistent initial condition
with the same PP1(x, t) components as in (23) is computed.

For this particular example, the Parareal update (22), with PP1 as shown in (26), is

(x̂0)
k+1
n = (x̃0)

k
n + ∂

∂x
g(x)

∣
∣
∣
(x̃2)

k
n

(x̃1)
k
n + (x̄0)

k+1
n + ∂

∂x
g(x)

∣
∣
∣
(x̄2)

k+1
n

(x̄1)
k+1
n

−(x̄0)
k
n − ∂

∂x
g(x)

∣
∣∣
(x̄2)

k
n

(x̄1)
k
n .
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Once the updated value (x̂0)
k+1
n is obtained, the consistent initial condition is

computed analytically with

(x2)
k+1
n = 0.3π cos(20πTn)

(x1)
k+1
n = 0.015 sin(20πTn) ,

and using (23) with projector matrices (26) the differential variable is obtained

(x0)
k+1
n = (x̂0)

k+1
n + ∂

∂x
g(x)

∣
∣
∣
(x2)

k+1
n

(0 − (x1)
k+1
n ) .

For both simulations, N = 25 processors are chosen and the simulation time
window I = [0 1). The time step size of the fine trapezoidal rule propagator is set
to δt = 10−5 and the coarse solver is chosen to perform one time step per window
and thus has time step size �T = 1/N . The Parareal algorithm is iterated until the
l2 norm of the difference between the PP1 components of the solution at the end of
interval In−1 and the initial condition of In for all Tn is below a relative tolerance of
5 · 10−8 and an absolute tolerance of 10−15 (see error norm of [16]).

The second algorithm (PR Init T) requires 2 Parareal iterations to converge. How-
ever, the first algorithm (PR Trapez), which does not handle the DAE in a special
manner, does not manage to converge before having used N = 25 iterations, which
corresponds to the amount of windows that are employed. The obtained solutions for
the purely differential component x0 and the index two variable x2 are depicted in
Fig. 1.

Even in this simple case without real dynamics, the classic algorithm requires 25
iterations in contrast to the 2 iterations employed by the modified Parareal algorithm
for DAEs.

3 Parareal and implicit Euler

As the update (22) in the Parareal algorithm is performed sequentially, the computa-
tion of the initial conditions Xk+1

n out of the obtained solution after the update X̂k+1
n

must be done in a sequential manner. This requires the explicit computation of the
projector matrices PP1(x, t) as well as of consistent initial conditions. If this oper-
ation is computationally expensive, then it can considerably increase the simulation
time of the Parareal algorithm. Furthermore, one of the advantages of the Parareal
method is that, as it is not intrusive, it can even be applied to black box simulators (as
long as you can prescribe initial values). In such cases, obtaining or modifying the
matrices of the DAE system that is solved might not be possible.

These two inconveniences can be overcome for DAEs with a specific structure by
means of using the implicit Euler method as a time integrator. For that we first make
an introduction into these types of DAEs as well as a special property of the implicit
Euler method.
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Fig. 1 Solution of the Parareal algorithm after different iterations for the classic algorithm ‘PR Trapez’
and the modified algorithm for DAEs ‘PR Init T’

3.1 Simplified structure

In the following, we consider DAEs with a simplified structure. For that, we impose
some additional requirements on the index 2 components.

Assumption 3 (Simplified structure [7]) We assume that our DAE is index 2
tractable with linear index 2 components and constant matrix A, that is the system
can be re-written as

Ax′ + b1(Ux, t) + B2Tx︸ ︷︷ ︸
=:b(x,t)

= 0 . (27)

Furthermore, the projectors P, Q, T and U are constant. Without loss of generality
(see [7]), we consider the projector T to fulfill TP = 0.

The previous assumption as well as the structure in (27) implies that the index 2
components Tx appear linearly within the original DAE system. However, this struc-
ture is only required for the derivation of theoretical results within the following
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section and the system does not need to be explicitly rewritten as (27). Therefore,
neither b1(Ux, t), B2 nor U and T need to be computed.

Assumption 4 (Constant Q1) We assume the index 2 tractable DAE in (27) has a
constant projector Q∗

1 onto ImQ1(Ux, t) and define P∗
1 = I − Q∗

1.

Remark 6 In particular, systems of DAEs, e.g. arising from the description of nonlin-
ear RLC circuits fulfil the structural assumptions presented here. This example will
be detailed later to demonstrate that the assumptions cover relevant problems.

Before discussing several special properties of the implicit Euler scheme, some
important characteristics of the projectors are presented.

Proposition 1 (Projectors c.f. [7]) We consider a DAE as in (27) with its correspond-
ing projectors fulfilling Assumptions 2, 3 and 4. Then it holds that

(i) PP1(Ux, t)P = PP1(Ux, t) ,

(ii) UQP1(Ux, t)P = 0 ,

(iii) G2(Ux, t)−1A = P1(Ux, t)P ,

(iv) G2(Ux, t)−1B2T = T ,

(v) PP1(Ux, t) = PP1(Ux, t)PP∗
1 ,

where the matrix G2(Ux, t) is defined as (8).

Proof Property (i) follows from the feature of the canonical projector shown in
Assumption 2 and (ii) from the definition of the projector T. In [7, Chapter 2.3],
Property (iii) is shown and proven and for (iv) the equivalent expression B2T =
G2(Ux, t)T is derived by applying the definitions of the projectors, Assumption 3
and (i). Finally, (v) follows from the definition of Q∗

1 that implies P1(Ux, t)P∗
1 =

P1(Ux, t) (see [1, Appendix A.1]).

Proposition 2 (IERODE, [20]) A regular DAE (27) fulfilling Assumption 3 with
tractability index ν ≤ 2 has an inherent explicit regular ODE (IERODE) which can
be expressed only in its purely differential components xdiff(t).

Following the results of Proposition 2, Parareal can be applied to the inherent ODE
which is formulated only in the differential variables. In this case, convergence is
guaranteed by [13] and the index 1 and index 2 components can be post-processed.
While this gives us a theoretical justification to apply Parareal to index 2 DAEs, it
is commonly not helfpul in practice since the inherent ODE is not computable or
at prohibitively high cost. Therefore, we study the application of the implicit Euler
method directly to the original DAE system (27).

3.2 Implicit Euler

Given a DAE (27) defined on the time interval I with consistent initial condition x0
at initial time t0, it can numerically be integrated with the implicit Euler method. For
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time steps t0, t1, . . . , tn with tn = tend, step size ti+1 − ti = h and approximated
solutions x0, . . . , xi , the implicit Euler method performs for the (i + 1)th time step
the approximation

A
xi+1 − xi

h
+ b(xi+1, ti+1) = 0 .

Proposition 3 (Implicit Euler with inconsistent initial condition) We consider a DAE
that can be written as (27), with the corresponding projectors fulfilling Assumptions
2, 3 and 4 and two initial conditions at t0, the first one, x0, being inconsistent

x(t0) = x0 (28)

and the second one, x0, being consistent

x(t0) = x0 . (29)

Let x2 be the solution obtained at time point t2 after two implicit Euler steps of the
IVP (27) with inconsistent IC (28) and x2 the one obtained with consistent IC (29)
both with the same time step sizes. If both initial conditions are such that

PP∗
1x

0 = PP∗
1x0 , (30)

then x2 = x2.

Proof The proof uses the splitting procedure employed in [7, Chapter 2.5] for the
illustration of how the different components of the degrees of freedom within lin-
ear index 2 DAEs affect the computation of consistent initial conditions for index 2
DAEs. The superscript i is used to denote the solutions of the implicit Euler method
for time step ti starting with inconsistent initial condition x0 and subscript i for the
solutions with consistent initial condition x0.

Application of the implicit Euler scheme yields for the first time step with step
size h

A
x1 − x0

h
+ b1(Ux1, t1) + B2Tx1 = 0 (31)

A
x1 − x0

h
+ b1(Ux1, t1) + B2Tx1 = 0 . (32)

The equations are then multiplied byG2(Ux1, t1)−1 andG2(Ux1, t1)−1, respectively,
which leads to

P1(Ux1, t1)P
x1 − x0

h
+ G2(Ux1, t1)−1b1(Ux1, t1) + Tx1 = 0 (33)

P1(Ux1, t1)P
x1 − x0

h
+ G2(Ux1, t1)−1b1(Ux1, t1) + Tx1 = 0 (34)

due to Proposition 1 (iii) and (iv).
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Now, we multiply both equations by T and U to split them into the parts defining
Tx1 (respectively Tx1) and Ux1 (respectively Ux1). Thus, we have

TP1(Ux1, t1)P
x1 − x0

h
+ TG2(Ux1, t1)−1b1(Ux1, t1) + Tx1 = 0 (35)

UP1(Ux1, t1)P
x1 − x0

h
+ UG2(Ux1, t1)−1b1(Ux1, t1) = 0 (36)

and

TP1(Ux1, t1)P
x1 − x0

h
+ TG2(Ux1, t1)−1b1(Ux1, t1) + Tx1 = 0 (37)

UP1(Ux1, t1)P
x1 − x0

h
+ UG2(Ux1, t1)−1b1(Ux1, t1) = 0 . (38)

Application of Proposition 1 (ii), (i) and (v) together with equality PP∗
1x

0 = PP∗
1x0

to the equations defining the U components, and PT = 0 yields

TP1(Ux1, t1)PU
x1 − x0

h
+ TG2(Ux1, t1)−1b1(Ux1, t1) + Tx1 = 0 (39)

UPP1(Ux1, t1)
x1 − x0

h
+ UG2(Ux1, t1)−1b1(Ux1, t1) = 0 (40)

and

TP1(Ux1, t1)PU
x1 − x0

h
+ TG2(Ux1, t1)−1b1(Ux1, t1) + Tx1 = 0 (41)

UPP1(Ux1, t1)
x1 − x0

h
+ UG2(Ux1, t1)−1b1(Ux1, t1) = 0 . (42)

Here, (40) and (42) are to be solved to obtain the solutions for Ux1 and Ux1, respec-
tively. It can be seen that both equations are equivalent and their solution only
depends on PP∗

1x0. Therefore, they yield the same solution, i.e. Ux1 = Ux1.
To obtain Tx1 and Tx1, (39) and (41) have to be solved. Again, both equations

are equivalent; however, whereas the first one depends on Ux1 and Ux0, the second
one depends on Ux1 and Ux0. Due to the previous step, Ux1 = Ux1, but, Ux0 is not
necessarily equal to Ux0. Thus, if Ux0 = Ux0, then Tx1 = Tx1 and only one implicit
Euler step is required to obtain the same solution with both initial conditions x0 and
x0.

If Ux0 �= Ux0, then the analogous procedure is repeated to obtain the solution
for t2. This time, the index 2 components Tx2 and Tx2 are again defined by the
same equation and depend on Ux1 and Ux2 or Ux1 and Ux2, respectively. Due to the
previous step, Ux1 = Ux1 and, analogously as before, we obtain Ux2 = Ux2 and
thus x2 = x2.

Remark 7 Note that, as the implicit Euler scheme starting with a consistent initial
condition yields solutions that are consistent for semiexplicit index 2 DAEs, x2 is
consistent [3]. Therefore, as x2 = x2, x2 is a consistent solution that is obtained
after two implicit Euler steps with an inconsistent initial condition. In practice, this
consistency is only obtained up to a certain tolerance which depends, e.g. on the
accuracy of the Newton scheme.

403



Numerical Algorithms (2022) 91:389–412

In [7], a similar result is shown for the implicit Euler scheme. However, for
schemes starting with only inconsistent index 2 variables, that is schemes where
Ux0 = Ux0 (in fact, only Px0 = Px0 is required). We have extended this result to
consider DAEs, where also the PQ∗

1 components might be inconsistent. Furthermore,
we have shown that the PP∗

1 components of the initial condition are “remembered”
by the time integration scheme.

3.3 Implicit Euler as propagator

In the following, we present an alternative to the modified Parareal for DAEs of
Section 2 for DAEs of type (27).

Proposition 4 (Parareal with implicit Euler) We consider a DAE that can be written
as (27) and the corresponding projectors fulfilling Assumptions 2, 3 and 4 and apply
Parareal with the implicit Euler scheme on the coarse and the fine level. If

– for index 1 at least one time step is used on the fine level,
– for index 2 at least two time steps are used on the fine level,

Parareal is applicable without the requirement of explicitly making the initial
conditions consistent.

Let us consider the DAE (27) fulfilling Assumptions 3 and 4, as required in Propo-
sition 3. Here, a constant projector PP∗

1 onto the differential components exists, and
thus the classic Parareal update

X̂k+1
n = X̃k

n + X̄k+1
n − X̄k

n (43)

implies

PP∗
1X̂

k+1
n = PP∗

1X̃
k
n + PP∗

1X̄
k+1
n − PP∗

1X̄
k
n . (44)

Implicit Euler yields a consistent solution after at most two time steps (see Proposi-
tion 3). Furthermore, its solution corresponds to the one obtained with a consistent
initial condition where the PP∗

1 coincide, that is

PP∗
1

(
Xk+1

n − X̂k+1
n

)
= 0 . (45)

Thus, if on the fine level at least two Euler steps are performed, the solution at the end
of the interval is equivalent to first computing the consistent initial condition Xk+1

n

and then starting the simulation with it. On the coarse level, already one implicit
Euler step suffices, as only the PP∗

1 components are relevant for the update and those
are remembered by the time integration method also in the first time step, as shown
in the proof of Proposition 3.

Therefore, for DAEs fulfilling the requirements of Proposition 3 it is not neces-
sary to use the modified Parareal update (22) and the subsequent computation of a
consistent initial condition. Here, the usage of the implicit Euler as coarse propaga-
tor and performing at least two implicit Euler steps on the fine level are sufficient for
the Parareal algorithm to converge.
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Remark 8 If we know that a DAE fulfils Assumptions 3 and 4, then no projec-
tors need to be computed nor any special handling is required. It suffices to use the
implicit Euler method as a time integrator within the classic Parareal algorithm to
ensure that the algorithm handles the algebraic constraints appropriately.

In [27], the implicit projection property of the implicit Euler method is observed
for an index 1 DAE with constant mass matrix in the context of Parareal. This is a
special case of the theory presented in Section 3.3 and is extended here to index 2
systems including hidden constraints. On the other hand, the approach taken in [11],
is a special case of the algorithm proposed in Section 2 for index 1 DAEs. There,
all the components are added in the Parareal update formula (4), which is equivalent
to (22) if the projector P is constant and the algebraic variables are made consistent
afterwards.

3.3.1 DAE with nonlinear index 2 components

Let us come back to the DAE of the first numerical example in Section 2.1

x′
0 + g(x2) = 0 (46a)

x′
1 − x2 = 0 (46b)

x1 − 0.015 sin(2π10t) = 0 , (46c)

note that the index 2 component x2 appears nonlinearly in the original system. There-
fore, this example cannot be rewritten as (27) and Proposition 4 does not hold. This
implies that starting the Euler scheme with an inconsistent initial value x0 does not
yield the same solution after two time steps than starting with the consistent initial
condition x0 with the same PP1(x0, t) components.

To exemplify this behaviour, a counterexample is presented. Let us consider the
inconsistent initial condition x0 = (0, −1, 0)� at t0 = 0. Its corresponding
consistent initial condition x0 with

PP1(x0, t)(x0 − x0) = 0

is x0 = (0, 0, 0.3π)�. After two implicit Euler steps with, e.g. time step h = 1/3
and starting with the inconsistent initial condition x0,

x2 = −g(0.045 sin(20π/3) + 3)/3 �= 0

is obtained. The same scheme for consistent initial value x0, however, yields the
different solution

x2 = 0

which differs from x2, i.e. x2 �= x2.
Therefore, for this DAE, the implicit Euler scheme does not ‘remember’ the

PP1(x, t) (or differential) components of inconsistent initial conditions and the clas-
sic Parareal algorithmwithout special handling for DAEs leads in this case to a slower
convergence.
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4 Application

To exemplify the theoretical results presented in Sections 3.2 and 3.3 as well as
demonstrate that the assumptions that are taken hold for DAEs arising from real-life
applications, we further present an example describing an electric network. Before
presenting the simulation results of applying classic as well as the DAE-modified
Parareal algorithm, we introduce a system of DAEs that describes the dynamic
behaviour of RLC-circuits.

4.1 Modified nodal analysis

We consider electric networks containing capacitors (C), inductors (L), resistors
(R) and independent voltage (V) and current (I) sources. In modified nodal anal-
ysis (MNA), networks are described by means of incidence matrices A�, � ∈
{C,L,R,V, I} that characterise the branch-to-node relation of the underlying graph
for the corresponding elements. Applying Kirchhoff’s current law and the lumped
parameter models of the different components, we obtain the following system of
DAEs [9, 15]

ACq′ + ARgR(A�
R e, t) + ALiL + AViV + AIis(t) = 0 (48a)

q − qC(A�
C e, t) = 0 (48b)

φ′ − A�
L e = 0 (48c)

φ − φL(iL, t) = 0 (48d)

A�
Ve − vs(t) = 0 . (48e)

Here, the system of DAEs is given in the flux-charge formalism. In this formu-
lation, the degrees of freedom are , the vector of node potentials,

, the vector of currents through branches containing the element
, the vector of charges in capacitances and , the vec-

tor of fluxes in inductances. Finally, qC(·), φL(·), gR(·), is(·) and vs(·) are (nonlinear)
functions describing the lumped parameter relations for the different elements. The
vector of node potentials and the incidence matrices allow extracting the voltages
across the branches containing a given element � with the relation v� = A�

� e.
The tractability index of this system has already been analysed (see, e.g. [9]) and

is in the worst case 2. This result is given by only topological properties of the
underlying graph.

The index analysis in [9] shows that the possible index 2 components of the sys-
tem are currents through voltage sources iV and voltages across inductances A�

L e.
These two degrees of freedom appear linearly in the original system (48) and thus
flux-charge MNA has linear index 2 components [2]. Therefore, system (48) is, in
the worst case, an index 2 tractable DAE with linear index 2 components and con-
stant matrix A and thus can be written as (27). Finally, in [9], it is also shown that
Assumption 4 is fulfilled, as ImQ1(Ux, t) is constant. This allows the application of
Proposition 3 to the system of DAEs obtained from flux-charge MNA and thus the
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implicit Euler scheme returns a consistent solution after at most two time steps even
if an inconsistent initial condition is given.

4.2 Numerical example

We consider a nonlinear index 2 DAE arising from a circuit described with flux-
charge modified nodal analysis. It’s a nonlinear index 2 circuit shown in Fig. 2 with
parameters R1,1 = 10−2 Ω , R1,2 = 10−2 Ω , L1 = 10−4 H and current source

i1(t) = (100 sin(100πt) + 50 sin(400πt))A .

For the nonlinear inductance, the model of [6] is used with nominal inductance
Lnom = 10−3 H, deep saturation inductance Ldeepsat = 8 · 10−4, smoothness factor
σ = 5 · 10−2 and current I ∗

L = 90A.
Again, we apply to Parareal variants:

– PR Euler
In the first variant, again, the classic Parareal method without any special han-
dling is implemented; however, this time, the implicit Euler scheme is used as a
time integrator with a small time step size δt for the fine solver and a larger one
�T for the coarse propagator.

– PR Init E
The second simulation is performed again with the implicit Euler method as time
integrator. However, the modified Parareal algorithm for DAEs is used, where
the update formula is computed only on the the PP1(x, t) components as in
(22). Afterwards, the corresponding consistent initial condition with the same
PP1(x, t) components as in (23) is computed.

The consistent initial conditions are not computed manually, but numerically with
the Python package InitDAE. For the ‘PR Init’ algorithm, the projectors PP∗

1 are
used for the update formula. In both simulations N = 15 processors are chosen and

Fig. 2 Index 2 circuit with nonlinear inductance L2(iL,2) as described in [6]. Figure based on [5]
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the simulation time window is set to I = [0, 0.2). For the fine solution, implicit
Euler with a time step size of δt = 10−5 is used and the coarse implicit Euler solver
performs one time step per window. The initial condition x0 is computed by starting
an implicit Euler scheme with an inconsistent value x−2 = 0 at time step t0−2δt and
performing two steps until t0. Exploiting Proposition 3, the obtained solution x0 for
the rest of the simulation is a consistent initial condition. The error is computed as in
the previous example and the relative tolerance is set to 10−4, whereas the absolute
tolerance is chosen to be 10−8.

Both algorithms require 4 Parareal iterations to reach the required tolerance. The
result is not surprising, as the DAE has the special structure presented in Section 3.2
such that the implicit Euler method is able to handle the algebraic constraints appro-
priately. Therefore, both algorithms perform the same update on the differential
PP1 components (and thus the transient part) of the system. Whereas the modified
Parareal algorithm for DAEs does this explicitly, the classic Parareal algorithm does
the same update implicitly by means of using the implicit Euler method as the time
integrator. Furthermore, both algorithms use the same step sizes and time integrators.

In Fig. 3, the purely differential component φL,1 and the index 2 component vL,2
of the fine solutions on the last two windows In, n = 14, 15 are depicted for the first

Fig. 3 Solution of the Parareal algorithm for the last two windows I14 and I15
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and the last Parareal iterations. It can be seen that in both cases the purely differential
component has a jump at the first iteration and becomes continuous at the last one,
which is a typical behaviour observed when applying the Parareal algorithm. As in
the previous example, the index 2 component has no jumps and is converged at the
first iteration for the ‘PR Init E’ algorithm, whereas ‘PR Euler’ starts with an incon-
sistent solution at the first step in the first iteration. Here, the behaviour of the implicit
Euler scheme when starting with inconsistent initial conditions can be observed: the
solution jumps to the correct value due to Property 3. This, however, does not nega-
tively affect the convergence of ‘PR Euler’, as the purely differential components are
handled equally in both algorithms.

Remark 9 Note that, even for a DAE fulfilling the requirements of Proposition 3,
it can happen that ‘PR Euler’ may reach the required tolerance for the differential
components, while the algebraic ones have not reached the required accuracy yet.
This inconvenience, however, can easily be overcome without requiring additional
Parareal iterations. Let us consider the solution at In. For index 1 components, it
suffices to take the result of the last time step of the previous window In−1 instead
of the initial value at the beginning of In to ensure a consistent value at time Tn−1.
The index 2 components would in addition require to either ignore the first (possibly)
inconsistent time step of In at Tn−1 + δt (with δt being the time step size of the fine
propagator), or perform one extra time step of the fine solution of In−1 to arrive at
the time Tn−1 + δt .

In Fig. 4, the convergence of the Parareal algorithm is plotted for the purely dif-
ferential component φL,1. Here, the error after the first Parareal iteration k = 1
with respect to the sequential solution both evaluated at time step T2, φ

2,1
L,1(T2) and

φ
seq
L,1(T2), respectively, is shown for different window sizes H . Both algorithms use

Fig. 4 Convergence plot for Parareal at iteration k = 1 and time T2 applied with different window sizes H
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the implicit Euler method as coarse propagator, whose local truncation error is of
order 2. The convergence rate is 2, which corresponds to the one expected from
the classic Parareal theory for ODEs (see [13]). This is not surprising, as the plot
is illustrating the convergence order of the purely differential components (index 0
component) of the DAE.

5 Conclusions

This article has presented a modification of the Parareal algorithm for its application
to quasilinear index 2 tractable DAEs. Its extension to higher index systems requires
extra care, however it follows analogously from the projector-based decoupling of
differential algebraic equations. For a large class of DAEs, i.e. linear index 2 com-
ponents and constant matrix A as given in flux-charge formulated modified nodal
analysis, a new property of the implicit Euler scheme is proven. This property allows
the usage of the classic Parareal algorithm, as long as the implicit Euler scheme is
used as the time integrator of both the first two time steps of the fine as well as for
the coarse propagator.

The theoretical results are backed up by numerical simulations of two DAEs, one
toy example with nonlinear index 2 components and the other one arising from a
flux-charge modified nodal analysis formulated circuit. As theoretically expected,
the modified Parareal algorithm speeds up the convergence when applied to a DAE
with nonlinear index 2 components.

In future works, the study of other time integration methods with similar projection
properties as the implicit Euler scheme could be performed. This would enable the
application of Parareal to DAEs without special handling for further, possibly higher
order, time stepping schemes.
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