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Abstract
We study the problem of preclustering a set B of imprecise points in R

d : we wish to
cluster the regions specifying the potential locations of the points such that, no matter
where the points are located within their regions, the resulting clustering approxi-
mates the optimal clustering for those locations. We consider k-center, k-median, and
k-means clustering, and obtain the following results. Let B := {b1, . . . , bn} be a col-
lection of disjoint balls in R

d , where each ball bi specifies the possible locations of
an input point pi . A partition C of B into subsets is called an ( f (k), α)-preclustering
(with respect to the specific k-clustering variant under consideration) if (i) C consists
of f (k) preclusters, and (ii) for any realization P of the points pi inside their respec-
tive balls, the cost of the clustering on P induced by C is at most α times the cost of
an optimal k-clustering on P . We call f (k) the size of the preclustering and we call
α its approximation ratio. We prove that, even in R

1, one may need at least 3k − 3
preclusters to obtain a bounded approximation ratio—this holds for the k-center, the
k-median, and the k-means problem—and we present a (3k, 1) preclustering for the
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k-center problem in R
1. We also present various preclusterings for balls in R

d with
d ≥ 2, including a (3k, α)-preclustering with α ≈ 13.9 for the k-center and the
k-median problem, and α ≈ 193.9 for the k-means problem.

Keywords Computational Geometry · Clustering · Imprecise Points

1 Introduction

Clustering is one of the most important and widely studied problems in unsupervised
learning. It comes in many different flavors, depending on the type of data to be
clustered, the measure used to assess the quality of a clustering, and so on. In this
paper we are interested in geometric clustering, where the data are points in R

d , and
we consider three well-known centroid-based clustering methods, namely k-center,
k-median, and k-means, on so-called imprecise points.

In (the geometric version of) centroid-based clustering one is given a set P of n
points in R

d , where d is a fixed constant, and an integer k. The goal is to partition
P into k subsets P1, . . . , Pk and assign a centroid qi to each cluster Pi such that the
cost of the resulting clustering is minimized. In the k-center problem the cost of the
clustering is defined as max1≤i≤k maxp∈Pi |pqi |, where |pq| denotes the Euclidean
distance between two points p and q. In the k-median problem the cost of a cluster-
ing is defined as

∑
1≤i≤k

∑
p∈Pi |pqi |, and in the k-means problem it is defined as

∑
1≤i≤k

∑
p∈Pi |pqi |2. Given a collection of centroids it is always optimal to define

the clusters by assigning each point in P to its nearest centroid. Thus an equivalent
definition of the k-center problem, for instance, is to find a collection of {q1, . . . , qk}
as centroids that minimizes maxp∈P min1≤i≤k |pqi |. In other words, we want to find
k congruent balls of minimum radius that together cover all points in P .

The k-center problem inRd isNP-hard for d ≥ 2when k is part of the input [17]. For
theEuclidean k-center problemaPTASexists, as shownbyAgarwal andProcopiuc [1].
(For the k-center problem in general metric spaces, a PTAS does not exists; for this
case an r -approximation algorithmwith r < 2 is not possible unless P=NP, and several
2-approximation algorithms are known [8,21].) The k-median and k-means problems
are also NP-hard for d ≥ 2 [16,17], and they admit a PTAS as well [2,6,9,12].

In the traditional setting the locations of the input points are known exactly. In
practice this may not always be the case: typically locations are measured using GPS
or other devices that are not completely accurate, or the pointsmaymove around inside
a given region. This leads to the study of geometric algorithms on so-called imprecise
points. Here, instead of specifying the exact coordinates of each input point, we specify
a region for each point where it may be located. For points in the plane the regions are
typically disks or squares. Over the past decade, many problems have been studied for
imprecise points, including convex hulls (compute the smallest (or largest) possible
convex hull of a set of imprecise points [10,15]), Delaunay triangulations (preprocess
a set of imprecise points such that for any given instantiation of the points in the
given regions we can compute the Delaunay triangulation quickly [4]), separability
problems [20], and more [13,14,18].
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As already mentioned, the regions where each point can be located are typically
considered to be disks. A common assumption is that these disks are pairwise disjoint.
In other words, one assumes that the imprecision in the locations of the points is
relatively small compared to the inter-point distances. Note that if one would allow all
disks to have a non-empty common intersection, then they do not give any information
about the relative positions of the points. Hence, for most problems one cannot obtain
interesting results when the disks are allowed to intersect. This is also the case for
our problem (as we remark below, after defining the problem more precisely) and so
we will assume that the disks (or balls, in R

d ) that specify the locations are pairwise
disjoint.

One may try to overcome the disjointness condition by using a statistical model, for
example where the potential location of each point is given by a Gaussian distribution.
See [7,11] for some examples of papers studying the clustering problem in such a
setting. A probabilistic setting by itself does not solve the problem, however: if all
distributions are essentially the same—for example, all Gaussians are centered at
(almost) the same point—then the distributions do not give any information about the
relative positions of the points. Hence, additional assumptions are also needed here.
Also note that the goal of a probabilistic analysis (including smoothed analysis [22])
is, in some sense, to get rid of worst-case examples. We, on the other hand, want to
deal with worst-case placement of the points inside their imprecision region.

We remark that, besides the notion of imprecise points that we use, there has also
been work on so-called uncertain points. Here each point has a finite set of possible
locations (rather than a region where the point may lie), each with an associated prob-
ability. A special case is the existential model, where there is only one location whose
probability is smaller than 1, so that with a certain probability the point is not present
at all. The uncertain-points model typically leads to substantially different questions
and results from the imprecise-points model, because the former has probabilities
associated with the locations (so it is closer to the statistical models mentioned above)
and because of its discrete nature.

Finally, we mention the notion of perturbation resilience introduced by Bilu and
Linial [3]. In the context of clustering, this notions means that one can change the
inter-point distances by at most a given factor, without changing the optimal solution;
see for example [5] and the references therein. This is somewhat related to our model,
since the disks specifying the possible point locations can be seen as regions in which
an adversary is allowed to move a point. However, we do not assume that these disks
are such that the optimal solution does not change—for this disjointness is far from
sufficient—and thus consider different questions from the ones studied in the papers
dealing with perturbation resilience.

Problem statement and notation In this paper we study the k-center, k-median, and
k-means problem for imprecise points. The input is a set B := {b1, . . . , bn} of disjoint
(closed) balls in R

d , each representing the possible locations of an input point. Our
goal is to compute a preclustering of the imprecise points, that is, a partition of B into
a collection C of subsets called preclusters that gives a good clustering for any possible
realization of the points inside the input balls. Next we define this more formally.
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For a (precise) point set P , let Opt∞(P, k) denote the cost of an optimal k-center
clustering on P , that is,

Opt∞(P, k) := min
q1,...,qk∈Rd

max
p∈P

min
1≤i≤k

|pqi |.

The cost of an optimal solution for the k-median and k-means problem on a set P
are denoted byOpt1(P, k) andOpt2(P, k), respectively.1 Now consider an imprecise
point set specified by a set B = {b1, . . . , bn} of balls. A point set P := {p1, . . . , pn}
such that pi ∈ bi for all 1 ≤ i ≤ n is called a B-instance. A preclustering C of the set
B into preclusters Bi induces a clustering on any B-instance P in a natural manner,
namely by creating a cluster Pi := {p ∈ P : p ∈ Bi } for every precluster Bi ∈ C. The
cost of the preclustering C on P , denoted by C-Cost∞(P) for the k-center problem,
is defined as the cost of the induced clustering on P if we choose the centroid of
each cluster Pi optimally, namely by solving the 1-clustering problem on Pi . (We use
the term preclustering since we already perform the partitioning into clusters before
we know the actual (precise) location of the points. The computation of the optimal
centers for each of the clusters Pi , which we can only do after the actual locations
are known, can be considered the postprocessing step of the clustering.) So for the
k-center problem we have

C-Cost∞(P) := max
Bi∈C

min
q∈Rd

max
p∈Pi

|pq|.

The preclustering costs for the k-median and k-means problem are denoted by
C-Cost1(P) and C-Cost2(P), respectively, and they are defined similarly. To quan-
tify the quality of a preclustering C on B (with respect to the k-clustering problem
under consideration) we define C to be a ( f (k), α)-preclustering if

– C consists of f (k) preclusters,
– C-Cost(P) ≤ α · Opt(P, k) for any B-instance P .

We call f (k) the size of the preclustering and we call α its approximation ratio.
Observe that if the balls in B would have a non-empty common intersection, then any
preclustering with fewer than n preclusters may have an arbitrarily bad approximation
ratio, even for the 2-center problem. This is the reason that we assume (as mentioned
earlier and as is often done in papers on imprecise points) that the balls in B are
disjoint.

Our results Ideally, we would like to have a (k, 1)-preclustering, but this is typically
impossible. This leads to the question: what is the smallest value for f (k) such that
we can always obtain an ( f (k), 1)-preclustering? More generally, which trade-offs
are possible between the size f (k) of the preclustering and its approximation ratio α?

In Sect. 2 we study this problem in R
1. We show that there are input sets B that

require at least 3k − 3 preclusters to get a bounded approximation ratio; this holds

1 The subscript ∞ in Opt∞ refers to the fact that if di denotes the distance of point pi ∈ P to its nearest
center, then we are minimizing the norm of the vector 〈d1, . . . , dn〉 in the �∞-metric. For k-median and
k-means we are minimizing the norm in the �1-metric and in the squared �2-metric, respectively.
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ε1 1 bibj

Fig. 1 Illustration of the lower-bound construction for k = 5: a collection of k − 1 groups of three intervals
(in grey), each group consisting of a left and right interval of length 1 separated by a gap of length ε, and a
middle interval inside this gap. The points in the B-instance used in the proof are shown slightly above the
intervals for clarity

for the k-center problem, the k-median problem, as well as the k-means problem.
We complement this result by proving that any set B of intervals in R

1 admits a
(3k, 1)-preclustering for the k-center problem. This preclustering can be computed in
polynomial time.

In Sect. 3 we consider the d-dimensional version of the problem for d ≥ 2.We give
an example showing that here a (3k, 1)-preclustering does not always exist, and we
present a (3k, α)-preclustering with α ≈ 13.9 for the k-center and k-median problem,
and α ≈ 193.9 for the k-means problem. A different parameterization of the strategy
gives a (6k, 3)-preclustering for k-center and k-median, and a (6k, 9)-preclustering
for k-means in R2.

Because we allow f (k) > k it may also be possible to obtain an approxima-
tion factor α < 1. In Sect. 4, we study the question whether we can achieve any
approximation factor ε > 0 by choosing f (k) large enough or not. We first prove the
following negative result. It is not always possible to obtain any given approximation
ratio ε > 0 for the k-median and the k-means problem, with a preclustering size f (k)
that is independent from n. After that we obtain tight asymptotic bounds on the size
of the preclustering needed to obtain any given approximation ratio ε > 0 for the
k-center problem. In particular, we prove that Θ(	√d/ε�d · k) preclusters are always
sufficient and sometimes Ω(	1/(ε√d)�d · k) preclusters are necessary to obtain an
approximation ratio ε.

2 The 1-Dimensional Problem

We begin by proving that even in R
1—here the input balls are disjoint intervals

on the line—preclusterings with only k preclusters cannot always guarantee a good
approximation ratio. In fact, we sometimes need as much as 3k − 3 preclusters in any
preclustering with bounded approximation ratio.

Theorem 1 For any integer k ≥ 2 and any given α, there is a set B of disjoint intervals
in R

1 that does not admit a (k′, α)-preclustering with k′ < 3k − 3. This holds for k-
center, k-median, as well as k-means clustering.

Proof Let B be a collection of 3k − 3 disjoint intervals in R
1 consisting of k − 1

groups of three intervals each. The left and right interval in each group have length 1
and are at distance ε from each other, where ε is a sufficiently small number that will
be specified later. The middle interval from the group lies in the gap between the left
and right interval with its center at the center of the gap; see Fig. 1.

Now consider a preclustering C = {B1, . . . , Bk′ }. If k′ < 3k − 3, then there is at
least one precluster containing two consecutive intervals, bi and b j . Assume without
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loss of generality that length(bi ) ≥ length(b j ), and consider the B-instance in which
each point pt is placed in its interval bt ∈ B as follows.

– If t = i or bt is a middle interval, then pt lies at the center of bt .
– If t = i and bt is a left interval, then pt lies at the right endpoint of bt .
– If t = i and bt is a right interval, then pt lies at the left endpoint of bt .

Note that with this placement we have |pi p j | ≥ 1/2. We will argue that by choosing ε

appropriately we get the desired result.
First consider the k-center problem. Note that Opt∞(P, k) ≤ ε/2. Indeed, by

putting a centroid at the center of each of the k−1 gaps and one centroid at pi , all points
in P are at distance atmost ε/2 fromacentroid.On theother hand,C-Cost∞(P) ≥ 1/4
since the centroid for the cluster containing pi and p j is at distance at least 1/4 from
pi or p j . Hence,

C-Cost∞(P)

Opt∞(P, k)
≥ 1/4

ε/2
= 1

2ε
.

For ε < 1/(2α) we thus enforce an approximation ratio greater than α.
The argument for k-median and k-means is similar. For k-median we have

Opt1(P, k) ≤ 2(k − 1)(ε/2) and C-Cost1(P) ≥ 1/2, so ε < 1/(2(k − 1)α) enforces
an approximation ratio greater than α, while for k-means we have Opt2(P, k) ≤
2(k−1)(ε/2)2 andC-Cost2(P) ≥ 2(1/4)2, so it suffices to have ε <

√
1/(4(k − 1)α).

��
Remark 1 The construction in the proof of Theorem1 uses an input set B of size 3k−3.
We can easily generate an input set with the same behavior for any n ≥ 3k − 3, by
adding another n − 3k + 3 tiny intervals inside one of the gaps between a left and a
right interval from the same group.

Theorem 1 states that for some problem instances any preclustering with fewer than
3k−3 preclusters has arbitrarily large approximation ratio.Wenow showhow to obtain
a 1-approximation with only 3k preclusters for the k-center problem.We assume from
now on that n > 3k, otherwise we can trivially create a zero-cost solution with at most
3k preclusters.

Before we describe our preclustering strategy, we first generalize the k-center prob-
lem in R

1 from points to intervals. In this generalization the input is a collection B
of n disjoint intervals, and the goal is to find a collection I := {I1, . . . , Ik} of inter-
vals that together cover all intervals in B and such that the maximum radius of the
intervals in I is minimized. (The radius of an interval is half its length.) We denote
the value of an optimal solution I to the k-center problem on B by Opt∞(B, k), so
Opt∞(B, k) := maxIi∈I radius(Ii ).

Our preclustering algorithm is now as follows.

PreClustering-1D(B, k)

1. Sort the intervals in B by radius, such that radius(b1) ≥ · · · ≥ radius(bn).
2. For each k′ ∈ {0, . . . , 2k} do the following.

123



Algorithmica (2022) 84:1467–1489 1473

(a) Let {B1, . . . , B(3k−k′)}be anoptimal (3k−k′)-center clusteringon {bk′+1, . . . , bn},
and let Opt∞({bk′+1, . . . , bn}, 3k − k′) be its cost.

(b) Let C(k′) be the preclustering {{b1}, . . . , {bk′ }, B1, . . . , B(3k−k′)}.
3. Of all preclusterings C(0), . . . , C(2k) found in Step 2, let C(k′) be the one that

minimizes Opt∞({bk′+1, . . . , bn}, 3k − k′). Let C := C(k′) and return C.
Theorem 2 Let B be a set of disjoint intervals in R

1. Then B admits a (3k, 1)-
preclustering for the k-center problem and such a preclustering can be computed
in polynomial time.

Proof Obviously PreClustering-1D(B, k) gives a preclustering C with 3k preclus-
ters. Next we prove that C has approximation ratio 1. Let P be a B-instance, and let
Q ∈ {q1, . . . , qk} be an optimal set of centroids for the k-center problem on P . Thus
by placing an interval of radius Opt∞(P, k) centered at each centroid qi ∈ Q, we
cover all points in P . By assigning each point in P to its nearest centroid in Q, with
ties broken arbitrarily, we obtain a partition of P into k clusters. This partition induces
a preclustering C∗ of size k on B. We use C∗ to define two types of intervals: outer
intervals, which are the leftmost or rightmost interval in any of the preclusters Bi ∈ C∗,
and inner intervals, which are the remaining intervals. Note that the number of outer
intervals is at most 2k. Define k∗ as the largest k′ such that b1, . . . , bk′ are all outer
intervals, where b1, . . . , bn is the sorted set of intervals obtained in Step 1 of the
algorithm. Since bk∗+1 is an inner interval, we have

Opt∞(P, k) ≥ radius(bk∗+1). (1)

The preclustering C := C(k′) returned by our algorithm minimizes the value of
Opt∞({bk′+1, . . . , bn}, 3k − k′). Note that

C-Cost∞(P) ≤ Opt∞({bk′+1, . . . , bn}, 3k − k′),

since the intervals b1, . . . , bk′ are all in singleton preclusters and an interval covering
all intervals in a precluster Bi obviously covers all points from P in those interval.
Hence,

C-Cost∞(P) ≤ Opt∞({bk∗+1, . . . , bn}, 3k − k∗).

It remains to argue that Opt∞(P, k) ≥ Opt∞({bk∗+1, . . . , bn}, 3k − k∗). To this end,
we create a collection I of intervals as follows.

– For each outer interval b j with j > k∗ we create an interval equal to b j .
– For each precluster Bi ∈ C∗ that has at least one inner interval, we create a
minimum-length interval covering all inner intervals of Bi .

Note that I contains at most 3k − k∗ intervals, and that these intervals together cover
all intervals in {bk∗+1, . . . , bn}. Hence,

max
I∈I

radius(I ) ≥ Opt∞({bk∗+1, . . . , bn}, 3k − k∗).
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(i) (ii) (iii) (iv)

p3

p4

p1

p2

b3

b4

Fig. 2 The seven balls shown in the figure do not admit a (3k, 1)-preclustering for k = 2

Moreover, Opt∞(P, k) ≥ radius(I ) for any I ∈ I. Indeed, if I is equal to an
outer interval b j with j > k∗ then Opt∞(P, k) ≥ radius(b j ) by Inequality (1),
and otherwise I is the minimum-length interval covering all inner intervals of some
precluster Bi . (In the latter case we also haveOpt∞(P, k) ≥ radius(I ) because in any
B-instance the cluster of BI includes a point in both outer intervals) We conclude that

Opt∞(P, k) ≥ max
I∈I

radius(I ) ≥ Opt∞({bk∗+1, . . . , bn}, 3k − k∗).

It remains to argue that PreClustering-1D(B, k) can be implemented to run in
polynomial time. Themost time-consuming step is Step 2a, which can be implemented
to run in O(n2k) time using dynamic programming in a straightforward manner. ��
Theorem 2 only holds for the k-center problem. In the next section we present a more
general algorithm, which not only works in higher dimensions but also for k-median
and k-means. The size of the computed preclustering will not be as good as what is
provided by Theorem 2.

3 The d-Dimensional Problem

In the previous section we saw that for some problem instances any preclustering
with fewer than 3k − 3 preclusters has an arbitrarily large approximation ratio. The
result is stated for R1 but it also holds in R

d for d > 1: we can use exactly the same
construction, replacing the intervals by d-dimensional balls whose centers lie on the
x1-axis. We also presented an algorithm giving a (3k, 1)-preclustering for intervals
in R1, for the k-center problem.

Figure 2 shows that a (3k, 1)-preclustering is not always possible for the k-center
problem in R

2. The figure shows a set B of seven unit balls, with one central ball
touching the other six balls. For k = 2 a preclustering of size 3k would use five
singleton preclusters and one precluster with two balls. There are four combinatorially
distinct ways of choosing the precluster of two balls, indicated by the dark grey balls
in parts (i)–(iv) of the figure. For each case, a B-instance is shown (the black dots),
and the optimal solution to the 2-center problem for the instance is shown (the two
black circles). The best preclustering is the one in part (ii). Here the two points p1, p2
in the dark grey balls are placed at distance 4 from each other, so C-Cost∞(P) = 2.
The point p3 inside the ball b3 is placed as close to p1 as possible, while p4 is
placed as close to p2 as possible. The other points are placed such that they are either
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contained in the ball with diameter p1 p3 or in the ball with diameter p2 p4. Hence,
Opt∞(P) = (

√
13 − 1)/2. The balls in this construction are not disjoint, but we

can slightly scale them to obtain an instance where any (3k, α)-preclustering has
α ≥ 2/((

√
13 − 1)/2) − ε ≈ 1.54.

We now present a preclustering strategy that works for k-center, k-means and k-
median in any dimension. It is similar to, and actually somewhat simpler than, the
preclustering algorithm we presented for the 1-dimensional k-center problem.

PreClustering-dD(B, k)

1. Sort the balls in B by radius, such that radius(b1) ≥ · · · ≥ radius(bn).
2. Define Bsmall := {b2k+1, . . . , bn}; we call the balls in Bsmall small. Let

{P1, . . . , Pk} be an optimal k-center (or k-median, or k-means) clustering on the
point set centers(Bsmall) := {c j : 2k + 1 ≤ j ≤ n}, where c j is the center of the
ball b j . Let {B1, . . . , Bk} be the preclustering on Bsmall induced by it.

3. Return the preclustering C := {{b1}, . . . , {b2k}, B1, . . . , Bk}.
Before we analyze the algorithm’s approximation ratio, we note that, depending on the
dimension d and the value of k, wemay not be able to implement Step 2 efficiently [16,
17]. However, instead of computing an optimal k-clustering on the centers of the small
balls, we can also compute a (1+ ε′)-approximation of the optimal clustering. For an
appropriate ε′ = O(ε) this increases the approximation ratio by only a factor 1 + ε,
as explained later.

Obviously PreClustering-dD(B, k) gives a preclustering of size 3k. To analyze
the approximation ratio, we use the following lemma.

Lemma 3 For any B-instance P the output C := {{b1}, . . . , {b2k}, B1, . . . , Bk} of the
algorithm satisfies:

(i) C-Cost∞(P) ≤ Opt∞(P, k) + 2 · radius(b2k+1)

(ii) C-Cost1(P) ≤ Opt1(P, k) + 2
∑n

j=2k+1 radius(b j )

(iii)
√
C-Cost2(P) ≤ √

Opt2(P, k) + 2
√∑n

j=2k+1 radius(b j )2.

Proof We first prove part (i) of the lemma. Let P be any B-instance, let p j ∈ P
denote the point inside b j , and let c j be the center of b j . Recall that Pi ⊂ P is the
subset of points in the instance corresponding to the precluster Bi . Define Psmall :=
{p2k+1, . . . , pn} to be the set of points from P in the small balls, and define Csmall :=
{c2k+1, . . . , cn}. Note that Psmall = P1 ∪ · · · ∪ Pk and that

|p j c j | ≤ radius(b j ) ≤ radius(b2k+1) (2)

for all p j ∈ Psmall. We define the following sets of centroids:

– Let Q := {q1, . . . , qk} be the set of centroids in an optimal k-center solution for
the entire point set P . We have

max
p j∈Psmall

min
qi∈Q

|p jqi | ≤ max
p j∈P

min
qi∈Q

|p jqi | = Opt∞(P, k). (3)
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– Let Q′ := {q ′
1, . . . , q

′
k} be the set of centroids in the optimal k-center clustering

on Csmall used in Step 2 of the algorithm. Thus

max
ci∈Csmall

min
q ′
j∈Q′

|ciq ′
j | = Opt∞(Csmall, k) ≤ max

ci∈Csmall
min
q j∈Q

|ciq j |. (4)

– Let Q′′ := {q ′′
1 , . . . , q ′′

k }, where q ′′
i is the optimal centroid for Pi . Note that for all

Pi we have
max
p j∈Pi

|p jq
′′
i | ≤ max

p j∈Pi
|p jq

′
i |. (5)

Since the total cost of the singleton preclusters is trivially zero, we have

C-Cost∞(P)

= max1≤i≤k maxp j∈Pi |p jq ′′
i |

≤ max1≤i≤k maxp j∈Pi |p jq ′
i | (Inequality (5))

≤ max1≤i≤k maxp j∈Pi

(|p j c j | + |c jq ′
i |
)

(triangle inequality)
≤ radius(b2k+1) + max1≤i≤k maxp j∈Pi |c jq ′

i | (Inequality (2))
≤ radius(b2k+1) + maxc j∈Csmall minq ′

i∈Q′ |c jq ′
i | (definition of Q′)

≤ radius(b2k+1) + maxc j∈Csmall minqi∈Q |c jqi | (Inequality (4))
≤ radius(b2k+1) + maxp j∈Psmall minqi∈Q

(|c j p j | + |p jqi |
)
(triangle inequality)

≤ 2 · radius(b2k+1) + maxp j∈Psmall minqi∈Q |p jqi | (Inequality (2))
≤ 2 · radius(b2k+1) + Opt∞(P, k) (Inequality (3))

To prove part (ii) of the lemma, which deals with the k-median problem, we define the
sets Q, Q′ and Q′′ as above, but now for the k-median problem. Note that Inequal-
ity (2) still holds while Inequalities (3)–(5) hold if we replace the max-operator by a
summation. Part (ii) can thus be derived using a similar derivation as for part (i).

To prove part (iii), which deals with the k-means problem, we need to work with
squared distances. We define Q,Q′, Q′′ as above, but now for the k-means problem.
Note that Inequality (2) still holds, while Inequalities (3)–(5) hold if we replace the
max-operator with a summation and all distance values with their squared values. We
denote these variants by Inequalities (3∗)−(5∗). For squared distances the triangle
inequality does not hold. Instead we use the triangle inequality for �2-metric, which
is called Minkowsky Inequality. A similar computation as above can now be used to
prove part (iii); we have

√
C-Cost2(P)

=
√∑k

i=1
∑

p j∈Pi |p jq ′′
i |2

≤
√∑k

i=1
∑

p j∈Pi |p jq ′
i |2 (Inequality (5))

≤
√∑k

i=1
∑

p j∈Pi

(|p j c j | + |c jq ′
i |
)2 (triangle inequality)

≤
√∑k

i=1
∑

p j∈Pi |p j c j |2 +
√∑k

i=1
∑

p j∈Pi |c jq ′
i |2 (Minkowsky inequality)

≤
√∑n

j=2k+1 radius(b j )2 +
√∑k

i=1
∑

p j∈Pi |c jq ′
i |2 (Inequality (2))
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On the other hand

√∑k
i=1

∑
p j∈Pi |c jq ′

i |2
≤

√∑
c j∈Csmall

minq ′
i∈Q′ |c jq ′

i |2 (definition of Q′)

≤
√∑

c j∈Csmall
minqi∈Q |c jqi |2 (Inequality (4))

≤
√∑

c j∈Csmall
minqi∈Q

(|c j p j | + |p jqi |
)2 (triangle inequality)

≤
√∑

c j∈Csmall
|c j p j |2 +

√∑
c j∈Csmall

minqi∈Q |p jqi |2 (Minkowsky inequality)

≤
√∑n

j=2k+1 radius(b j )2 +
√∑

c j∈Csmall
minqi∈Q |p jqi |2 (Inequality (2))

≤
√∑n

j=2k+1 radius(b j )2 + √
Opt2(P, k) (Inequality (3))

By adding up the above inequalities we conclude part (iii) of the lemma. ��

Remark 2 Note that algorithm PreClustering-dD computes an optimal clustering
on centers(Bsmall), which may be expensive. Instead we can also work with a (1 +
ε)-approximation to an optimal clustering, for some ε > 0. Then the statement of
Lemma 3 becomes

(i) C-Cost∞(P) ≤ (1 + ε) · Opt∞(P, k) + (2 + ε) · radius(b2k+1)

(ii) C-Cost1(P) ≤ (1 + ε) · Opt1(P, k) + (2 + ε) · ∑n
j=2k+1 radius(b j )

(iii)
√
C-Cost2(P) ≤ √

1 + ε ·√Opt2(P, k)+(1+√
1 + ε)·

√∑n
j=2k+1 radius(b j )2.

The proof of this modified version is the same as before. The only changes will appear
in Inequality (4), where we get an extra multiplicative factor 1 + ε for k-center and
k-median, and

√
1 + ε for k-means. We will use this modified version of Lemma 3

later, to prove the second part of Theorem 6.

The lemma above shows that our preclustering gives an additive error that depends
on the radii of the small balls. The following two lemmas will be used to turn this into
a multiplicative error.

For the next two lemmas, we define r∗
d as the smallest possible radius of any ball that

can intersect three disjoint unit balls in R
d (for instance, see Fig. 3). More formally,

we define

r∗
d := inf{radius(b) : b is a ball that intersects three disjoint unit balls in R

d}.

Lemma 4 We have

(i) Opt∞(P, k) ≥ r∗
d · radius(b2k+1)

(ii) Opt1(P, k) ≥ r∗
d · ∑n

j=2k+1 radius(b j )

(iii) Opt2(P, k) ≥ (r∗
d )2 · ∑n

j=2k+1 radius(b j )
2
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Proof For part (i) notice that by the Pigeonhole Principle an optimal clustering must
have a cluster containing at least three points from {p1, . . . , p2k+1}. The cost of this
cluster is lower bounded by the radius of the smallest ball intersecting three balls of
radius at least b2k+1, which is in turn lower bounded by r∗

d · radius(b2k+1).
For part (ii) let P1, P2, . . . , Pk be the clusters in an optimal k-median clustering

on P , and let qi be the centroid of Pi in this clustering. Let Bi be the set of balls
corresponding to the points in Pi . We claim that

∑

p j∈Pi

|p jqi | ≥ r∗
d ·

(( ∑

b j∈Bi
radius(b j )

)
− si

)
. (6)

where si is the sum of the radii of the two largest balls in Bi . To show this, let b(qi , r)
be the ball of radius r centered at qi , and let Pi (r) := {p j ∈ Pi : b j ∩ b(qi , r) = ∅}
be the set of points in Pi whose associated ball intersects b(qi , r), and let Bi (r) be
the set of their respective balls. Since for sufficiently large r we have Pi = Pi (r), it
suffices to show that for all r > 0 we have

∑

p j∈Pi (r)

|p jqi | ≥ r∗
d ·

(( ∑

p j∈Bi (r)
radius(b j )

)
− si (r)

)
.

where si (r) is the sum of the radii of the two largest balls in Bi (r). To prove this,
consider this inequality as r increases from r = 0 to r = ∞. As long as |Pi (0)| ≤ 2 the
right-hand side is zero and so the inequality is obviously true. As we increase r further,
b(qi , r) starts intersecting more and more balls from Bi . Consider what happens to
the inequality when b(qi , r) starts intersecting another ball b� ∈ Bi . Then p� is added
to Pi (r), so the left-hand side of the inequality increases by |p�qi |, which is at least r .
The right-hand side increases by at most r∗

d times the radius of the third-largest ball
in Bi (r). By definition of r∗

d , if three balls intersect a ball of radius r then the smallest
has radius at most r/r∗

d . Hence, the right-hand side increases by at most r and the
inequality remains true.

Recall that b1, . . . , b2k are the 2k largest balls in B. Hence, summing Inequality (6)
over all clusters P1, . . . , Pk gives

Opt1(P, k) = ∑k
i=1

∑
p j∈Pi |p jqi |

≥ r∗
d ·

(∑k
i=1

∑
b j∈Bi radius(b j ) − ∑2k

j=1 radius(b j )
)

= r∗
d · ∑n

j=2k+1 radius(b j ).

For part (iii) we define P1, P2, · · · , Pk as above, but now for the k-means problem.
Also we define qi as the centroid of Pi and Bi as the set of balls corresponding to the
points in Pi . Now the same proof as (ii) works if we replace all distances with squared
distances. In fact, the inequality (6) becomes

∑

p j∈Pi

|p jqi |2 ≥ (r∗
d )2 ·

(( ∑

b j∈Bi
radius(b j )

2
)

− si
)
.
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Fig. 3 The figure shows the
smallest possible ball
intersecting three disjoint unit
balls in 2D. The larger balls are
the unit balls and the radius of
the small ball is r∗

2 = 2√
3

− 1

where si is the sum of the squared radii of the two largest balls in Bi .
Therefore, we obtain

Opt2(P, k) = ∑k
i=1

∑
p j∈Pi |p jqi |2

≥ (r∗
d )2 ·

(∑k
i=1

∑
b j∈Bi radius(b j )

2 − ∑2k
j=1 radius(b j )

2
)

= (r∗
d )2 · ∑n

j=2k+1 radius(b j )
2.

��
Lemma 5 For all d ≥ 2 we have r∗

d = 2√
3

− 1.

Proof It is easy to see that r∗
d ≤ r∗

2 , since any configuration of three disjoint unit
disks in the plane, with a fourth disk intersecting all three, can be extended to R

d by
embedding the centers of the balls on a 2-dimensional plane inRd . Next we show that
r∗
d ≥ r∗

2 for all d ≥ 2, which implies that r∗
d = r∗

2 .
Let d ≥ 2 and let b, b′, b′′ be three disjoint unit balls in R

d . Let c, c′, c′′ denote
the centers of b, b′, and b′′, respectively, and let h be a 2-dimensional plane con-
taining c, c′, c′′. Let D be a smallest ball that intersects b, b′, b′′ and whose center is
restricted to lie on h. Then radius(D) ≥ r∗

2 . We claim that D is in fact a smallest ball
intersecting b, b′, b′′ even if we do not restrict the center of this ball to be on h. Indeed,
if a ball D′ with center q /∈ h intersects b, b′, b′′, then the ball of the same radius as
D′ and whose center is the orthogonal projection of q onto h also intersects b, b′, b′′.

It remains to show that r∗
2 = 2√

3
−1. The configurationminimizing the radius of the

smallest ball intersecting b, b′, b′′ is where b, b′, b′′ are pairwise touching, resulting
in the claimed bound—see Fig. 3. ��

We are now ready to prove the following theorem.

Theorem 6 Let B be a set of disjoint balls in Rd with d ≥ 2. Then

(i) there exists a (3k, 7+4
√
3)-preclustering for the k-center and the k-median prob-

lem,
(ii) there exists a (3k, 97 + 56

√
3)-preclustering for the k-means problem.

Moreover, (3k, 7 + 4
√
3 + ε)-preclusterings for the k-center problem and for the k-

median problem, can be computed in polynomial time. For the k-means problem, we
can compute a (3k, 97+ 56

√
3+ ε)-preclustering in polynomial time, assuming d is

a constant.
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Proof Parts (i) and (ii) follow immediately by putting together Lemmas 3–5. More
precisely, for the k-center problem we have

C-Cost∞(P) ≤ Opt∞(P, k) + 2 · radius(b2k+1)

≤
(
1 + 2

r∗
d

)
· Opt∞(P, k) = (7 + 4

√
3) · Opt∞(P, k).

For the k-median problem we have

C-Cost1(P) ≤ Opt1(P, k) + 2
∑n

j=2k+1 radius(b j )

≤
(
1 + 2

r∗
d

)
· Opt1(P, k) = (7 + 4

√
3) · Opt1(P, k).

For the k-means problem we have

√
C-Cost2(P) ≤ √

Opt2(P, k) + 2
√∑n

j=2k+1 radius(b j )2

≤
(
1 + 2

r∗
d

)
· √

Opt2(P, k)

and therefore,

C-Cost2(P) ≤
(

1 + 2

r∗
d

)2

· Opt2(P, k) = (97 + 56
√
3) · Opt2(P, k).

It remains to argue thatwe can compute a preclusteringwhose approximation ratio is
as claimed in polynomial time.Recall that both k-center and k-median, and k-means for
constant d, admit a PTAS [1,2,6,9,12,19], that is, for any given ε′ > 0 we can compute
a (1 + ε′)-approximation to an optimal clustering in polynomial time. To obtain the
result, in Step 2 of PreClustering-dD(B, k) we compute a (1 + ε′)-approximation
of the optimal clustering for appropriate ε′ that will be introduced later. The resulting
algorithm runs in polynomial time. Then the statement of Lemma 3 becomes (see
Remark 2 above):

(i) C-Cost∞(P) ≤ (1 + ε′) · Opt∞(P, k) + (2 + ε′) · radius(b2k+1)

(ii) C-Cost1(P) ≤ (1 + ε′) · Opt1(P, k) + (2 + ε′) · ∑n
j=2k+1 radius(b j )

(iii)
√
C-Cost2(P) ≤ √

1 + ε′·√Opt2(P, k)+(1+√
1 + ε′)·

√∑n
j=2k+1 radius(b j )2.

Using inequalities of Lemma 4 we get

(i) C-Cost∞(P) ≤ (1 + ε′ + 2+ε′
r∗
d

) · Opt∞(P, k)

(ii) C-Cost1(P) ≤ (1 + ε′ + 2+ε′
r∗
d

) · Opt1(P, k)

(iii) C-Cost2(P) ≤ (
(
√
1 + ε′ + 1+√

1+ε′
r∗
d

)
)2 · Opt2(P, k).

By taking ε′ := ε/(1+ 1
r∗
d
) for the k-center and k-median problem the approximation

ratio for the whole algorithm will increase by ε.
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For the k-means problem, given a positive ε, we need an ε′ such that

((√
1 + ε′ + 1 + √

1 + ε′
r∗
d

))2

≤
(

1 + 2

r∗
d

)2

+ ε

Note that the left-hand side goes to (1+ 2
r∗
d
)2 as ε′ → 0, so by choosing ε′ sufficiently

small, as a function of ε we can satisfy the inequality. ��
Generalizing the solutionWe can generalize the above theorem in order to control the
number of preclusters for various approximations. Let r pd be the minimum possible
value for the radius of a ball being tangent to p disjoint unit balls in R

d for d ≥ 2.
Notice that r3d = r∗

d . We can generalize the above result for appropriate p as follows.
The algorithm is similar to PreClustering-dD, but in Step 2 we replace b2k+1 by

b(p−1)k+1 and inStep3we return thepreclusteringC := {{b1}, . . . , {b(p−1)k}, B1, . . . , Bk}.
Note that Lemmas 3 and 4 still hold if we replace 2k + 1 with (p − 1)k + 1 and r∗

d
with r pd . Detailed proofs for the generalized lemmas are presented in the appendix.

Theorem 7 Let B be a set of disjoint balls in Rd with d ≥ 2. Then

(i) there exists a (pk, 1+ 2
r pd

)-preclustering for the k-center and the k-median problem.

(ii) there exists a (pk,
(
1 + 2

r pd

)2
)-preclustering for the k-means problem.

Moreover, (pk, 1 + 2
r pd

+ ε)-preclusterings for the k-center problem and for the k-

median problem, can be computed in polynomial time. For the k-means problem,a
(pk,

(
1 + 2

r pd

)2 + ε)-preclustering can be computed in polynomial time when d is a

constant.

For instance, if we set d = 2 and p = 6, then we have r62 = 1 since the following
observation is well known. (For other bounds on r pd , see at [23].)

Observation 8 InR2, for any six disjoint unit balls, the radius of any ball intersecting
all the six balls, is at least 1.

Indeed, the familiar configuration in which a unit ball touches six unit balls around
it, shows that r62 is not greater than one. Theorem 7 together with Observation 8 lead
us to the following corollary.

Corollary 1 Any set of disjoint balls in R
2 admits a (6k, 3)-preclustering for the k-

center and the k-median problem, and a (6k, 9)-preclustering for k-means problem.

4 Approximation by an Arbitrarily Small Factor

In this section we study ( f (k), ε)-preclusterings for approximation factor ε < 1.
We start by proving that for an arbitrarily small ε, there is no ( f (k), ε)-preclustering

for the k-median and the k-means problem,where f (k) is independent from the number
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0 1 2

4

n/2

B1: n/2 tiny intervals

B2: n/4 tiny intervals
B3: n/8 tiny intervals

Blogn: single tiny interval

I1 I2 I3 In/2

Fig. 4 Illustration for the proof of Theorem 9. The intervals Ii are indicated in grey

of imprecise points. More precisely, we prove that for an arbitrarily small ε, in any
( f (k), ε)-preclustering for the k-median and the k-means problem, we have f (k) =
Ω(log n), where n is the number of imprecise points.

Theorem 9 There exists a set B of n disjoint balls inR1 and a real number ε > 0 such
that for the k-median and the k-means problem, in any ( f (k), ε)-preclustering of B,
we have f (k) = Ω(log n).

Proof We present the proof for the k-median problem. The proof for the k-means
problem is similar with some minor changes, and is presented in the appendix.

Observe that it suffices to prove the lower bound for k = 1; for larger k we can
simply copy the construction k times and put the copies sufficiently far from each
other. Now for k = 1, let n = 2t − 1 and for every 1 ≤ i ≤ t let Bi be a set of
2t−i tiny intervals all very close to the point 2i−1 in R

1. Define B as the union of
B1, B2, · · · , Bt . It is not difficult to see thatOpt1(B, 1) = (t −2) ·2t−1 +1 (which is
achieved e.g. by taking the point x = 1 as the center). On the other hand assume thatwe
precluster B into f (1) preclusters, using q1, q2, · · · , q f (1) as centers. For 1 ≤ i ≤ t ,
let Ii be an open interval of length 2i−2 whose midpoint is 2i−1. Note that I1, I2, · · · It
are disjoint. Thus, at least t − f (1) of the intervals I1, I2, · · · It do not contain any of
the centers qi . But when Ii does not contain a center, this means the total cost for Bi
is at least 2t−i · 2i−3 = 2t−3. Therefore, the total cost for any preclustering of B into
f (1) preclusters is at least (t − f (1)) · 2t−3. For an ( f (1), ε)-preclustering we should
have

(t − f (1)) · 2t−3 ≤ ε · ((t − 2) · 2t−1 + 1).

This shows that f (1) = Ω(t) since otherwise we can set ε to be small enough to
contradict the above inequality. ��

Theorem 9 shows that there is no chance to approximate the k-median and the
k-means problem by any ε using a constant number of preclusters. However, fortu-
nately this is not the case for the k-center problem. Next, we explain how to obtain a
(	√d/ε�d · k, ε)-preclustering for the k-center problem, by adding more steps to the
algorithm PreClustering-dD(B, k). We need the following lemma.

Lemma 10 For any point set P in Rd , any integer k ≥ 1, and any ε > 0 we have

Opt∞(P, cd(ε) · k) ≤ ε · Opt∞(P, k)

for cd(ε) = 	√d/ε�d .
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Fig. 5 n unit balls forming a
square in 2D

Proof First consider the case k = 1. Let q be the optimal centroid for P and let S be
the smallest hypercube centered at q and containing P . Note that the edge length of
S is at most 2 · Opt∞(P, 1). Partition S into 	√d/ε�d smaller hypercubes of edge
length at most 2ε · Opt∞(P, 1)/

√
d , and for each such hypercube make a cluster

containing all points in it. Note that each such cluster can be covered by a ball of
radius ε · Opt∞(P, 1). Hence,

Opt∞(P, 	√d/ε�d) ≤ ε · Opt∞(P, 1).

For k > 1 we can simply apply the result for k = 1 to each of the k clusters in an
optimal k-center clustering on P . ��

With this lemma in hand we can now run algorithm PreClustering-dD(B, k′) for
d ≥ 2 with the appropriate value of k′, namely k′ = cd(ε/(7 + 4

√
3)) · k and then

by Theorem 6 we get a (3k′, ε)-preclustering with k′ = Θ(	√d/ε�d · k). Also for
d = 1 we can run algorithm PreClustering-1D(B, k′) with k′ = cd(ε) · k and then
by Theorem 2 we get a (3k′, ε)-preclustering with k′ = 	√d/ε�d · k.
Theorem 11 For any set B of disjoint balls in Rd there exists a (Θ(	√d/ε�d · k), ε)-
preclustering for any positive constant ε.

Finally, we show that this number of preclusters is in range of O(dd) from best
possible cluster and aswe consider our problem in fixed diamension, its asymptotically
very close to the best number we can achieve for the k-center problem.

Theorem 12 There exists a set B of n disjoint balls in R
d such that in any ( f (k), ε)-

preclustering of B for the k-center problem, we have f (k) = Ω(	1/(ε√d)�d · k).

Proof Observe that it suffices to prove the lower bound for k = 1; for larger k we
can simply copy the construction k times and put the copies sufficiently far from each
other. Now, for k = 1 consider a set B of n1/d × · · · × n1/d unit balls arranged in a
grid-like pattern, as in Fig. 5. Note that

Opt∞(P, 1) ≤ √
d · n1/d
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Fig. 6 Clustering grid circles
into square-shaped clusters

for any B-instance P . Now partition the “grid” into 	1/(ε√d)�d “subgrids” as in
Fig. 6. For each subgrid, select the ball with the lexicographically smallest center
(shaded in Fig. 6), and let B∗ ⊂ B be the set of selected balls. If a preclustering uses
fewer than 	1/(ε√d)�d preclusters, two of the balls from B∗ will end up in the same
precluster. But then there is a B-instance P where C-Cost∞(P) > ε · √

d · n1/d .
Hence, any ( f (1), ε)-preclustering must have Ω(	1/(ε√d)�d) preclusters. ��

5 Concluding Remarks

In this paper, we introduced the concept of preclustering for imprecise points and
studied it for the k-center, k-median and k-means problems. It would be interesting
if one can fill the gap between lower and upper bounds for the number of preclusters
needed in order to approximate the optimum solution. Also studying the problem for
not necessarily disjoint balls would be interesting. Note that in this case one has to
restrict the amount of overlap by a parameter, in order to find non-trivial results.

A Generalizations of Lemmas 3 and 4

We present the generalizations of Lemmas 3 and 4 which are used in order to prove
Theorem 7. Note that p can take any value between 1 and n/k.

Lemma 13 Forany B-instance P thepreclusteringC := {{b1}, . . . , {b(p−1)k}, B1, . . . , Bk}
computed by the generalized algorithm satisfies:

(i) C-Cost∞(P) ≤ Opt∞(P, k) + 2 · radius(b(p−1)k+1)

(ii) C-Cost1(P) ≤ Opt1(P, k) + 2
∑n

j=(p−1)k+1 radius(b j )

(iii)
√
C-Cost2(P) ≤ √

Opt2(P, k) + 2
√∑n

j=(p−1)k+1 radius(b j )2.

Proof We first prove part (i) of the lemma. Let P be any B-instance, let p j ∈ P
denote the point inside b j , and let c j be the center of b j . Recall that Pi ⊂ P is the
subset of points in the instance corresponding to the precluster Bi . Define Psmall :=
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{p(p−1)k+1, . . . , pn} to be the set of points from P in the small balls, and define
Csmall := {c(p−1)k+1, . . . , cn}. Note that Psmall = P1 ∪ · · · ∪ Pk and that

|p j c j | ≤ radius(b j ) ≤ radius(b(p−1)k+1) (7)

for all p j ∈ Psmall. We define the following sets of centroids:

– Let Q := {q1, . . . .qk} be the set of centroids in an optimal k-center solution for
the entire point set P . We have

max
p j∈Psmall

min
qi∈Q

|p jqi | ≤ max
p j∈P

min
qi∈Q

|p jqi | = Opt∞(P, k). (8)

– Let Q′ := {q ′
1, . . . , q

′
k} be the set of centroids in the optimal k-center clustering

on Csmall used in Step 2 of the algorithm. Thus

max
ci∈Csmall

min
q ′
j∈Q′

|ciq ′
j | = Opt∞(Csmall, k) ≤ max

ci∈Csmall
min
q j∈Q

|ciq j |. (9)

– Let Q′′ := {q ′′
1 , . . . , q ′′

k }, where q ′′
i is the optimal centroid for Pi . Note that for all

Pi we have
max
p j∈Pi

|p jq
′′
i | ≤ max

p j∈Pi
|p jq

′
i |. (10)

Since the total cost of the singleton preclusters is trivially zero, we have

C-Cost∞(P)

= max1≤i≤k maxp j∈Pi |p jq ′′
i |

≤ max1≤i≤k maxp j∈Pi |p jq ′
i | (Inequality (10))

≤ max1≤i≤k maxp j∈Pi

(|p j c j | + |c jq ′
i |
)

(triangle inequality)
≤ radius(b(p−1)k+1) + max1≤i≤k maxp j∈Pi |c jq ′

i | (Inequality (7))
≤ radius(b(p−1)k+1) + maxc j∈Csmall minq ′

i∈Q′ |c jq ′
i | (definition of Csmall)

≤ radius(b(p−1)k+1) + maxc j∈Csmall minqi∈Q |c jqi | (Inequality (9))
≤ radius(b(p−1)k+1) + maxp j∈Psmall minqi∈Q

(|c j p j | + |p jqi |
)
(triangle inequality)

≤ 2 · radius(b(p−1)k+1) + maxp j∈Psmall minqi∈Q |p jqi | (Inequality (7))
≤ 2 · radius(b(p−1)k+1) + Opt∞(P, k) (Inequality (8))

To prove part (ii) of the lemma, which deals with the k-median problem, note that
Inequality (2) still holds while Inequalities (3)–(5) hold if we replace the max-operator
by a summation. Part (ii) can thus be derived using a similar derivation as for part (i).

To prove part (iii), which deals with the k-means problem, we need to work with
squared distances. Note that Inequality (2) still holds, while Inequalities (3)–(5) hold
if we replace the max-operator with a summation and all distance values with their
squared values. For squared distances the triangle inequality does not hold. Instead
we use the triangle inequality for L2 norm, which is called Minkowsky Inequality. A
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similar computation as above can now be used to prove part (iii); we have

√
C-Cost2(P)

=
√∑k

i=1
∑

p j∈Pi |p jq ′′
i |2

≤
√∑k

i=1
∑

p j∈Pi |p jq ′
i |2 (Inequality (10))

≤
√∑k

i=1
∑

p j∈Pi

(|p j c j | + |c jq ′
i |
)2 (triangle inequality)

≤
√∑k

i=1
∑

p j∈Pi |p j c j |2 +
√∑k

i=1
∑

p j∈Pi |c jq ′
i |2 (Minkowsky inequality)

≤
√∑n

j=(p−1)k+1 radius(b j )2 +
√∑k

i=1
∑

p j∈Pi |c jq ′
i |2 (Inequality (7))

On the other hand
√∑k

i=1
∑

p j∈Pi |c jq ′
i |2

≤
√∑

c j∈Csmall
minq ′

i∈Q′ |c jq ′
i |2 (definition of Csmall)

≤
√∑

c j∈Csmall
minqi∈Q |c jqi |2 (Inequality (9))

≤
√∑

c j∈Csmall
minqi∈Q

(|c j p j | + |p jqi |
)2 (triangle inequality)

≤
√∑

c j∈Csmall
|c j p j |2 +

√∑
c j∈Csmall

minqi∈Q |p jqi |2 (Minkowsky inequality)

≤
√∑n

j=(p−1)k+1 radius(b j )2 +
√∑

c j∈Csmall
minqi∈Q |p jqi |2 (Inequality (7))

≤
√∑n

j=(p−1)k+1 radius(b j )2 + √
Opt2(P, k) (Inequality (8))

By adding up the above inequalities we conclude part (iii) of the lemma. ��
Lemma 14 Let r pd be the smallest possible radius of any ball that intersects p disjoint
unit balls in Rd . Then

(i) Opt∞(P, k) ≥ r pd · radius(b(p−1)k+1)

(ii) Opt1(P, k) ≥ r pd · ∑n
j=(p−1)k+1 radius(b j )

(iii) Opt2(P, k) ≥ (r pd )2 · ∑n
j=(p−1)k+1 radius(b j )

2

Proof For part (i) notice that by the Pigeonhole Principle an optimal clustering must
have a cluster containing at least p points from {p1, . . . , p(p−1)k+1}. The cost of this
cluster is lower bounded by the radius of the smallest ball intersecting p balls of radius
at least b(p−1)k+1, which is in turn lower bounded by r pd · radius(b(p−1)k+1).

For part (ii) let P1, P2, . . . , Pk be the clusters in an optimal k-median clustering
on P , and let qi be the centroid of Pi in this clustering. Let Bi be the set of balls
corresponding the points in Pi . We claim that

∑

p j∈Pi

|p jqi | ≥ r pd ·
(( ∑

b j∈Bi
radius(b j )

)
− si

)
. (11)

where si is the sum of the radii of the p−1 largest balls in Bi . To show this, let b(qi , r)
be the ball of radius r centered at qi , let Pi (r) := {p j ∈ Pi : b j ∩ b(qi , r) = ∅} be
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the set of points in Pi whose associated ball intersects b(qi , r), and let Bi (r) be the
corresponding set of balls. Since for sufficiently large r we have Pi = Pi (r), it suffices
to show that for all r > 0 we have

∑

p j∈Pi (r)

|p jqi | ≥ r pd ·
(( ∑

p j∈Bi (r)
radius(b j )

)
− si (r)

)
.

where si (r) is the sum of the radii of the p − 1 largest balls in Bi (r). To prove this,
consider this inequality as r increases from r = 0 to r = ∞. As long as |Pi (0)| ≤ 2 the
right-hand side is zero and so the inequality is obviously true. As we increase r further,
b(qi , r) starts intersecting more and more balls from Bi . Consider what happens to
the inequality when b(qi , r) starts intersecting another ball b� ∈ Bi . Then p� is added
to Pi (r), so the left-hand side of the inequality increases by |p�qi |, which is at least r .
The right-hand side increases by at most r pd times the radius of the p-th largest ball
in Bi (r). By definition of r pd , if p balls intersect a ball of radius r then the smallest
has radius at most r/r pd . Hence, the right-hand side increases by at most r and the
inequality remains true.

Recall that b1, . . . , b(p−1)k are the (p − 1)k largest balls in B. Hence, summing
Inequality (11) over all clusters P1, . . . , Pk gives

Opt1(P, k) = ∑k
i=1

∑
p j∈Pi |p jqi |

≥ r pd ·
(∑k

i=1
∑

b j∈Bi radius(b j ) − ∑(p−1)k
j=1 radius(b j )

)

= r pd · ∑n
j=(p−1)k+1 radius(b j ).

For part (iii) the same proof as (ii) works if we replace all distances with squared
distances. ��

B Proof of Theorem 9 for the k-Means Problem

For the k-means problem, observe that it suffices to prove the lower bound for k = 1;
for larger k we can simply copy the construction k times and put the copies sufficiently
far from each other. Now for k = 1, let n = 22t+1−2

3 and for every 1 ≤ i ≤ t let Bi
be the set of 22t−2i tiny intervals all very close to the point 2i−1 in R

1. Also let
B−i be the set of 22t−2i tiny intervals all very close to the point −2i−1. Consider
B as the union of B−t , · · · , B−2, B−1, B1, B2, · · · , Bt . It is not difficult to see that
Opt2(B, 1) = 2t · 22t−2 (considering the origin as the center). On the other hand
assume that we precluster B into f (1) preclusters, using q1, q2, · · · , q f (1) as centers.
For 1 ≤ i ≤ t , let Ii be an open interval of length 2i−2 whose midpoint is 2i−1

and let I−i be an open interval of length 2i−2 whose midpoint is −2i−1. Note that
I−t , · · · , I−2, I−1, I1, I2, · · · It are disjoint. Thus, at least 2t − f (1) number of the
intervals I−t , · · · , I−2, I−1, I1, I2, · · · It are empty of a center. But when Ii (similarly
I−i ) is empty of a center, this means the total cost for Bi (similarly B−i ) is at least
22t−2i · (2i−3)2) = 22t−6. Therefore, the total cost for any preclustering of B into
f (1) preclusters is at least (2t− f (1)) ·22t−6. For a ( f (1), ε)-preclustering we should
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have

(2t − f (1)) · 22t−6 ≤ ε · 2t · 22t−2

which concludes f (1) = Ω(t).
One can easily generalize this example to any R

d by considering the balls with
diameters as the intervals in B introduced above.
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