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ABSTRACT
The European and United States Pharmacopoeia demand a noninferiority study on the detection of
microorganisms when an alternate qualitative microbiological method is intended to replace the com-
pendial microbiological method. However, without imposing any modeling assumptions or constraints,
noninferiority studies require large numbers of test samples for a proposed noninferiority criterion of 0.7
or higher for each microorganism. When we can assume that the accuracy of the alternate method with
respect to the compendial method is homogeneous across microorganisms, a joint statistical analysis of
the data from all microorganisms can be used to help reduce the sample size dramatically. For this situation,
we provide a test statistic for noninferiority, an optimal spiking experiment, and a sample size calculation
approach under only mild modeling assumptions of the microorganism-specific detection proportions.
We illustrate our approach on a real dataset and demonstrate good performance of our method using
simulation studies.
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1. Introduction
According to international guidelines USP < 1223 > and EP
5.1.6, validation of a qualitative rapid microbiological method
(RMM) requires an illustration of noninferiority compared
to the compendial method (CM) on two validation parame-
ters: specificity and limit of detection. The European (EP) and
United States Pharmacopoeia (USP) define specificity as the
ability to detect the required range of microorganisms that
may be presented in the test sample. They emphasize that
extraneous matter in the test system (e.g., growth medium)
should not interfere with the test. Thus, specificity is strongly
related to false positives. The limit of detection (LOD) is
defined in the EP and USP as the lowest number of microor-
ganisms in a test sample that can be detected under the
stated experimental conditions with at least 95% confidence.
In other areas of science, the LOD is associated with the sen-
sitivity of the test method (e.g., for chemical analyses). The
EP also indicates that accuracy can replace the LOD under
certain circumstances and they define accuracy as the close-
ness of test results between the alternative and compendial
method.

These three validation parameters are all related to the
probability of detecting microorganisms, but they do not pro-
vide direct information on the probability of detecting exactly
one microorganism. This detection proportion (IJzerman-Boon
and Van denHeuvel 2015) will naturally depend on the type
of microorganism, the microbiological method, and possibly
other types of factors. If this detection proportion is the main
parameter that is affecting positive and negative test result, we

CONTACT Mona Emampour m.s.emampour@tue.nl Eindhoven Department of Mathematics and Computer Science, University of Technology, 5612 AZ Eindhovn,
Netherlands.

could just study this one parameter in the validation study.
In this setting, we could define accuracy as the ratio of the
two detection proportions between the RMM and the CM
for each microorganism and ignore the LOD and specificity.
The RMM is then considered noninferior with respect to
the CM if this accuracy parameter exceeds some predefined
amount (say 70%), the so-called noninferiority margin, for each
microorganism.

Estimation of this accuracy parameter is not trivial without
making modeling assumptions on the probability of detect-
ing microorganisms, since we can not spike test samples
with exactly one microorganism. Using a Binomial form for
the detection probability, IJzerman-Boon and Van denHeuvel
(2015) used maximum likelihood estimation and constructed
an approximate 95% confidence interval with good coverage,
opening the way for noninferiority studies on this accuracy
parameter. However, when only one type of microorganism is
being tested, the authors demonstrated that they need approx-
imately 200 test samples per microbiological method to reject
the null hypothesis of 100% accuracy in favor of 70% accuracy
(α = 0.05 and β = 0.20). Clearly, designing an experiment
with 200 test samples per microbiological method is probably
doable when a very small set of microorganisms is being tested
in a validation study, but it is not feasible for a large set of
microorganisms.

Alternatively, it may be assumed that the accuracy
across microorganisms is homogeneous or consistent, while
allowing for unique detection proportions for the different
microorganisms. When the RMM uses similar principles of
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detecting microorganisms, this assumption seems warranted.
For instance, certain RMM’s use a combination of the detection
principle of the compendial method with modern technology
(e.g., cameras and specialized software) to detect growth of
microorganisms that can not yet be seen with the naked eye),
making the method faster in detecting organisms than the
compendial method that does not use this modern technology.
Under this assumption we may pool all the data from all
microorganisms to determine noninferiority of the RMM with
respect to the CM across a large set of microorganisms and
potentially reduce the total sample size dramatically. This article
will study the optimal design for such a noninferiority study
and provide a minimum sample size calculation formula that
would guarantee noninferiority with a particular power and a
specific Type I error rate. Simulation studies will demonstrate
the performance of our approach.

Section 2 contains the statistical details on the probability
detection model, the formulation of accuracy and noninferi-
ority, our optimal design, and the sample size calculation. In
Section 3, we present a simulation study where we studied the
performance of our theory for different sets or distributions of
detection proportions. Section 4 demonstrates a real case study
where we implemented our theory in practice. Then, the final
section contains a summary and a discussion.

2. Statistical Methodology

Let Yijk ∈ {0, 1} be a binary random variable representing the
absence and presence of microorganisms in test sample k ∈
{1, 2, . . . , n} obtained with microbiological method j ∈ {1, 2}
(j = 1: CM; j = 2: RMM) for type of microorganism i ∈
{1, 2, . . . , m}. We further assume that Xijk is the true latent or
hidden number of microorganisms for type of microorganism i
in test sample k that is allocated to method j. We assume that the
conditional probability of a positive test result in test sample k,
given the true number of microorganism Xijk = x, is equal to

P(Yijk = 1|Xijk = x) = 1 − (1 − πij)
x, (1)

where πij is the so-called detection proportion for type of
microorganism i and method j, since it represents the prob-
ability of detecting one microorganism (Van den Heuvel and
IJzerman-Boon 2013; IJzerman-Boon and Van denHeuvel 2015;
Manju et al. 2019), that is, πij = P(Yijk = 1|Xijk = 1). A
detection proportion of πij = 1 implies that microbiological
method j is able to detect microorganism i perfectly (i.e., the
limit of detection is equal to one), but when πij is not perfect
(πij < 1), the microbiological method will detect on average less
microorganisms than actually present in a test sample. Model
(1) is called the binomial detection mechanism, as proposed by
others (Abbott 1925; Cochran 1950; Ridout, Fenlon and Hughes
1993; IJzerman-Boon and Van denHeuvel 2015).

We now assume that the detection proportion of the RMM
(j = 2) satisfies the following relation with respect to the CM
(j = 1):

πi2 = θπi1, ∀i ∈ {1, 2, . . . , m}, (2)

with θ ≤ min{π−1
11 , π−1

21 , . . . , π−1
m1 } to maintain πi2 ≤ 1 for all i.

This restriction would be automatically guaranteed when θ ≤ 1.

The parameter θ can be viewed as the accuracy or recovery of the
RMM with respect to the CM on detecting one microorganism
in a test sample. It is considered homogeneous or constant
over all m different types of microorganisms, while maintaining
potentially different detection proportions π11, π21, . . . , πm1 for
the CM on the set of microorganisms. Under assumption (2) it
is more convenient to use the notation πi = πi1.

The RMM is considered to be noninferior when the accuracy
parameter θ is above some predefined noninferiority margin δ,
that is, leading to noninferiority hypothesis

H0 : θ ≤ δ versus H1 : θ > δ. (3)

For microbiological methods it is not uncommon to use a
noninferiority margin equal to δ = 0.7 (see Sutton, Knapp and
Dabbah) or δ = 0.8 (which can be derived from an absolute
margin of 0.2 on differences in proportions in USP < 1223 >).

To test this noninferiority hypothesis, m different types of
microorganisms are being tested. We will assume that for each
type of microorganism a single spike solution is being created
from which 2n test samples of equal volume are being collected.
These 2n test samples are randomly divided into two groups
each with n test samples. One group of n test samples are tested
with the RMM and the other group with the CM. We will
assume that the total volume of all 2n test samples is relatively
small compared to the volume of the spiked solution, so that
we can assume that test samples are approximately independent
(Cochran 1950; Wyshak and Detre 1972; Van den Heuvel 2011).
We further assume that the microorganisms are randomly dis-
tributed in the spiked solution, implying that the true number
of microorganisms Xijk in test sample k follows approximately
a Poisson distribution with mean spike λ (Cochran 1950; Van
den Heuvel 2011; IJzerman-Boon and Van denHeuvel 2015;
Manju et al. 2019). Combining these assumptions with binomial
detection probability (1), the probability that a test sample is
tested positively, also called the positive rate, is then equal to

P(Yi1k = 1) = 1 − exp (−λπi) and
P(Yi2k = 1) = 1 − exp (−λθπi). (4)

Our research question is to optimally test hypothesis (3)
using data {Yijk} having probability distribution (4) and with
π1, π2, . . . , πm being treated as nuisance parameters. More
specifically, we would like to know how to choose λ and n such
that the null hypothesis for a given noninferiority margin δ can
be rejected using a Type I error rate of α and a power of 1 − β .

2.1. Maximum Likelihood Estimation

Our test statistic for noninferiority hypothesis (3) will be based
on a lower confidence limit (Hahn and Meeker 1991; Wellek
2010) for the maximum likelihood estimator of θ (or alterna-
tively for a transformation of this estimator). Thus, we need to
study the maximum likelihood estimators for θ and πi first. We
do not have to estimate the spike parameter λ since the spike
level is normally set by the experimenter (although it is difficult
to set this spike level precisely). In the rare case that no informa-
tion on λ would be available we would estimate the parameter
π̃i = λπi for microorganism i. The interpretation of π̃i is then
lost, but we could still estimate the common accuracy θ .
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The log-likelihood function for the set of observations {Yijk}
under the earlier stated model assumptions is equal to

L =
m∑

i=1

2∑
j=1

(
Yij. log (1 − exp (−λθjπi)) − λθjπi(n − Yij.)

)
,

(5)

where accuracy parameter θj is given by θj = θ when j = 2
and θj = 1 when j = 1, and where Yij. = ∑n

k=1 Yijk is the
number of positively tested samples for type of microorganism
i and method j. The set of likelihood equations for estimation of
θ and πi is then given by

L̇θ = ∂L
∂θ

= ∑m
i=1

(
λπiYi2.

1−exp (−λθπi)
− nλπi

)
= 0,

L̇πi = ∂L
∂πi

= λYi1.
1−exp (−λπi)

+ λθYi2.
1−exp (−λθπi)

− nλ (θ + 1) = 0.
(6)

In case m = 1, the solution to the set of equations in (6) is
given by

θ̂ = log(1 − Ȳ12)

log(1 − Ȳ11)
and π̂1 = − log(1 − Ȳ11)

λ
, (7)

assuming that λ is (approximately) known and under restriction
of 0 < Ȳij < 1 for j ∈ {1, 2}, with Ȳij = Yij./n the average
number of positively tested samples or the observed positive rate
for microorganism i and method j. In case Ȳij is equal to a
boundary value {0, 1}, the estimators θ̂ and/or π̂1 may either
not exist or otherwise be unrealistic. For instance, when Ȳ11 = 1
both estimators θ̂ and π̂1 do not exist, while for Ȳ11 = 0 only the
estimator θ̂ does not exist. When Ȳ12 = 0 or Ȳ12 = 1, it may lead
to the unrealistic estimates θ̂ = 0 or θ̂ = ∞, respectively. Thus,
when we have only one type of microorganism, we can only
allow experiments with data satisfying 0 < Ȳ1j < 1, j ∈ {1, 2},
that is, for our approach both positive and negative samples
should occur for each method. It implies that the average spike λ

should be selected appropriately to avoid these boundary issues
as much as possible.

The probability that the observed positive rates for one of the
methods is equal to one of the boundaries is given by

PB(η) = exp (−nη) + (
1 − exp (−η)

)n (8)

with η = λπi for measuring microorganism i with the CM and
η = λθπi for the RMM. In Figure 1 this probability is visualized
as a function of the sample size for three levels of η. It shows
that large sample sizes may be needed to have a low probability
that the positive rates are away from the boundary, in particular
when η is larger.

In case m > 1, we may be less stringent on boundary issues
when at least one type of microorganism satisfies 0 < Ȳij < 1,
with j ∈ {1, 2}. Indeed, when the observed positive rates for
one type of microorganism are away from the boundary, this
microorganism already provides a proper estimate of θ (and
its standard error) and therefore, we may allow the observed
positive rates of other types of microorganisms to be equal to
the boundary. However, we demonstrate in Appendix A that we
still must ignore microorganisms when both observed positive
rates are equal to the same boundary (Ȳi1 = Ȳi2 = 1 or
Ȳi1 = Ȳi2 = 0) if we wish to obtain proper estimates of θ and πi

Figure 1. Visualization of the probability of observing only positive or only negative
test results.

(assuming that at least one type of microorganism has data away
from the boundaries), but we do not have to exclude data when
only one method has an observed positive rate at the boundary.

The (m + 1) × (m + 1) Fisher information matrix I is
determined by the following moments of the score functions
(see Appendix B)

var(L̇θ ) = ∑m
i=1

nλ2π2
i exp (−λθπi)

1−exp (−λθπi)

var(L̇πi) = nλ2
(

exp (−λπi)
1−exp (−λπi)

+ θ2 exp (−λθπi)
1−exp (−λθπi)

)
cov(L̇θ , L̇πi1) = nλ2θπi exp (−λθπi)

1−exp (−λθπi)

cov(L̇πs , L̇πr ) = 0, r �= s

(9)

Using the inverse of the Fisher information matrix I−1, the
asymptotic variance of θ̂ can be determined in a closed-form
expression (see Appendix B) and it is given by

τ 2
A ≡ var(θ̂) =

[ m∑
i=1

nλ2π2
i

(exp(λθπi) − 1) + θ2(exp(λπi) − 1)

]−1

.

(10)
An estimate τ̂ 2

A of this asymptotic variance can be obtained by
substituting the ML estimators θ̂ and π̂i in (10). Using this esti-
mated asymptotic variance, an asymptotic one-sided confidence
limit can be constructed by

LCLθ = θ̂ − z1−ατ̂A, (11)

with α being the significance level and zq the qth quantile
of the standard normal distribution. Then the noninferiority
hypothesis (3) is rejected when the lower confidence limit is
above the noninferiority margin δ, that is, LCLθ > δ.

Alternatively, we will use a lower confidence limit on the ML
estimator of the logarithmically transformed accuracy log(θ),
with log the natural logarithm, since we expect that the distri-
bution of a logarithmic transformation of an estimator of a ratio
(see (2)) may converge faster to a normal distribution than the
distribution of the ratio estimator itself. The lower confidence
limit on the logarithmic transformed estimator can be obtained
with the delta method (Cramér 1946), leading to

LCLlog(θ) = log(θ̂) − z1−αθ̂−1τ̂A. (12)
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In this case, the noninferiority hypothesis (3) is rejected when
this transformed lower confidence limit is above the logarith-
mically transformed noninferiority margin, that is, LCLlog(θ) >

log(δ). Note that this transformed approach leads to a multi-
plicative noninferiority test in the original scale of the accuracy
and could therefore have a better power than the test based
on (11).

2.2. Optimal Spiking Design

For our optimal spiking design, we will focus on an experiment
with a single spiked solution for each type of microorganism that
is then used to collect 2n samples. Since the detection propor-
tion πi for microorganism i is typically unknown at the design
stage, we would like to determine one optimal level for the mean
spike per test sample λ that is used for all microorganisms. In
other words, to maximize the power of our noninferiority test
in either (11) or in (12), we should minimize the variance τ 2

A in
(10) over the mean spike λ, while the detection proportions π1,
π2, ..., πm are being unknown and potentially arbitrary.

The variance τ 2
A in (10) can be bounded from below and from

above using minima and maxima values of the elements in the
sum in (10). Indeed, the sum in (10) is smaller than or equal to
m times the maximum element and larger than or equal to m
times the minimum element. These boundaries only include a
single detection proportion, making the form of the variance in
(10) somewhat easier to study. The boundaries for the variance
τ 2

A are given by

min
i

{
(exp(λθπi)−1)+θ2(exp(λπi)−1)

mnλ2π2
i

}
≤ τ 2

A

≤ max
i

{
(exp(λθπi)−1)+θ2(exp(λπi)−1)

mnλ2π2
i

}
.

Clearly, the maximum and minimum variance are reached at
different values of the detection proportion and the two bound-
aries will become equal to each other when all detection propor-
tions are equal (π1 = π2 = ... = πm = π). The variance of the
ML estimator θ̂ then reduces to

VE = (exp(λθπ) − 1) + θ2(exp(λπ) − 1)

mnλ2π2 . (13)

It can be shown that VE in (13) is a convex function with
respect to π , λ, and λπ (Appendix C), which implies that it has
a unique minimum for λ. However, the solution for λ would
depend on the detection proportion π and the accuracy θ and
it does not come in a closed-form expression. On the other
hand, we know that the optimal solution for λ is of the form
λ = λ0π−1, since the variance in (13) is a function of λπ . The
solution of the optimal λ0 for the minimum variance in (13)
can be found by setting the derivative of (13) with respect to λπ

equal to zero, and thus satisfies the following equation

(θλ0 −2) exp(θλ0)+θ2(λ0 −2) exp(λ0)+2(1+θ2) = 0. (14)

Table 1 shows the optimal values λ0 for different values of
accuracy θ using the Newton–Rhapson procedure (Süli and
Mayers 2003).

The optimal spike λ can be selected approximately when
there would be knowledge on the average detection proportion

Table 1. Optimal values of λ0 for different levels of accuracy θ and optimal sample
sizes mn for 80% power.

Accuracy (θ ) 0.80 0.85 0.90 0.95 1.00

Optimal λ0 = λπ 1.768 1.721 1.677 1.634 1.594
mn for LCLθ 1232 616 388 276 213
mn for LCLlog(θ) 1079 509 303 205 151

π̄ = ∑m
i=1 πi/m for the CM, because the first-order approxima-

tion of
∑m

i=1([nλ2π2
i ]/[exp(λθπi) − 1 + θ2(exp(λπi) − 1)]) in

(10) is equal to [mnλ2π̄2]/[exp(λθπ̄) − 1 + θ2(exp(λπ̄) − 1)].
Thus, the first-order approximation of the variance in (10) is
given by (13) with the detection proportion π replaced by π̄ .
If however information on the (average) detection proportion
is lacking, then it should be noted that what is actually needed,
is some knowledge on the product λπi. This can be obtained
for a particular organism by performing a pilot experiment in
which a laboratory uses a compendial enumeration method to
estimate λ̂i of the spike λ for microorganism i, assuming that the
detection proportion πi = 1 for the compendial enumeration
method. If the latter assumption is not fulfilled, then λi actually
estimates the product λπi, which can be used to design the study.

A minimum sample size mn that provides power 1 − β for
testing hypothesis (3) using the proposed confidence limit in
(11), can be calculated with the well-known sample size formula
for a simple hypothesis test based on normality (Donner, Birkett
and Buck 1981; Hsieh 1988; Julious 2004)

mn = [z1−α+z1−β ]2[exp(θλ0)−1+θ2(exp(λ0)−1)]
λ2

0(θ−δ)2 . (15)

When we would use the logarithmically transformed test statis-
tic in (12), the corresponding sample size formula would be
equal to (15) with (θ − δ)2 replaced by θ2(log(θ) − log(δ))2.
Since log(1 + x) > x[1 + x]−1 for all positive x, we obtain that
log(θ) − log(δ) > 1 − δ/θ for all θ > δ. Hence, the sample size
will be smaller for the logarithmically transformed test statistic
compared to the nontransformed test statistic when the accu-
racy is beyond the noninferiority margin. Or in other words, the
logarithmically transformed test will have more power than the
nontransformed test when applied to the same dataset.

Several sample sizes mn are presented in Table 1 for different
values of accuracy θ for a selected noninferiority margin of
δ = 0.7. It demonstrates that the total sample size can stay
below 400 test samples when the true accuracy is at least 0.9
and an optimal spike can be selected. However, the sample sizes
are calculated under ideal settings (an optimal spike and equal
detection proportions) and it requires an evaluation when the
settings would be different in practice. Figure 2 shows that the
variance (13) and the sample size (15) may substantially change
with the value λπ , especially for values below 1 or above 3,
which may be an issue when exact information on the average
detection proportion is lacking. In the following section we
will conduct simulations to better understand the influence of
unequal detection proportions on our testing procedure.

3. Simulation

To simulate data for our (optimal) spiking experiment, we need
to select different detection proportions for the CM. We will fol-
low two different approaches. First of all, we will assume that the



202 M. EMAMPOUR ET AL.

Figure 2. The variance VE (with mn = 1) and the sample size mn (α = 0.05, β = 0.20, δ = 0.7) as a function of λπ for different values of θ .

Figure 3. Density functions for the simulation of detection proportions (left: logistic-normal; right: beta).

detection proportions are drawn randomly from a probability
distribution. This means that for each simulation run we draw a
new set of detection proportions. We used the logistic-normal
LN(μ, σ) and the beta B(a, b) distribution. For the logistic-
normal distribution, the detection proportion for the CM is set
to πi = exp(Zi)/(1 + exp(Zi)), with Zi drawn from a normal
distribution, Zi ∼ N(μ, σ 2), and for the beta distribution the
detection proportion is set to πi = Ui, with Ui ∼ B(a, b).
For both distributions, we used two different settings: (μ, σ) =
(1, 0.25) and (0.5, 0.5), and (a, b) = (5, 1) and (1, 1), respec-
tively. The density functions for these choices of distributions
are given in Figure 3. The mean detection proportions π̄ for
these four distributions are equal to 0.73, 0.62, 0.83, and 0.5,
respectively. Second, we will consider different sets of fixed
detection proportions. For these settings, the proportions will
remain the same for each simulation run. One set of detection
proportions consists of the quantiles πi = F−1(i/(m + 1)),
with F one of the logistic-normal or beta distributions and m
the number of microorganisms. The second set of detection
proportions consists of a small detection proportion between 0.1
and 0.2 and the other detection proportions above 0.5 such that
the average of the detection proportions is equal to the mean
detection of one of the four distributions F. For this settings
we only consider m = 5 different types of microorganisms.
For the distribution LN(1, 0.25), the detection proportions are
chosen equal to 0.15, 0.75, 0.83, 0.91, and 0.99, with an average
of π̄ = 0.73. For the distribution LN(0.5, 0.5), the detection
proportions are chosen equal to 0.15, 0.7, 0.725, 0.75, and 0.775,
with an average of π̄ = 0.62. For the beta distribution B(5, 1),
the detection proportions are selected equal to 0.2, 0.975, 0.983,
0.991, and 0.999 with an average of π̄ = 0.83 and, finally, for the

distribution B(1, 1) the detection proportions are selected equal
to 0.15, 0.5, 0.56, 0.62, and 0.68, with an average of π̄ = 0.5.

3.1. Simulation of Spiking Experiment

We select different numbers for the types of microorganism
(m ∈ {5, 10, 15}) and use three levels for the homogeneous
accuracy (θ ∈ {0.8, 0.9, 1.0}). We also choose θ = 0.7 equal to
the noninferiority margin δ = 0.7 to investigate the Type I error.
After selecting m and θ , we draw the detection proportions π11,
π21, ..., πm1 for the CM using one of the four distributions for
the random case. For the fixed setting of detection proportions,
we just use the set of values we indicated above. Moreover we
determine πi2 = θπi1 for the RMM. Then, the sample size n is
taken such that mn is equal to the optimal sample size in Table 1
using test statistic LCLθ . In case n would not be an integer we
rounded n to the nearest integer value larger than n. Then, for
each microorganism i and method j, we simulated the numbers
of microorganisms Xij1, Xij2, ...,Xijn in the n test samples using
a Poisson(λ) distribution, with λ being the average number of
microorganisms in the test samples (λ ∈ {1.5, 2.0, 2.5, 3.0, 3.5}).
These numbers of microorganisms are assumed to be indepen-
dent. Then, the observed binary outcomes Yij1, Yij2, ..., Yijn, are
independently generated with a Bernoulli distribution using the
conditional distribution P(Yijk = 1|Xijk) = 1 − (1 − θjπi1)

Xijk ,
with θj = 1 if j = 1 and θj = θ if j = 2. This procedure
is repeated 1000 times, to obtain multiple simulated spiking
experiments under the same settings and investigate the power
of our test statistics. The simulation of this spiking experiment
was conducted with SAS software, version 9.4.
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3.2. Analysis of Simulated Spiking Experiment

For each simulated dataset, we calculated the observed positive
rate Ȳij for microorganism i and method j. To be able to estimate
the parameters θ and πi and to conduct the noninferiority tests
for each simulated spiking experiment, we first had to clean
the data and eliminate types of microorganisms with observed
positive rates at the boundary. Any type of microorganism with
either only negative (Ȳi1 = Ȳi2 = 0) or otherwise only positive
samples (Ȳi1 = Ȳi2 = 1) were removed from the data when we
had at least one type of microorganism with data 0 < Ȳij < 1
(Appendix A). Information on the number of microorganisms
that were available for the analysis will be reported.

It is expected that the detection proportions that are ran-
domly drawn for each simulation run will typically result in
less extreme results than for the fixed settings. The reason is
that in the fixed settings several proportions are really close to
one (especially for the distributions B(5, 1) and LN(1.0, 0.25)),
which may result in positive rates for microorganisms equal to
the boundary one for the corresponding microorganisms. Thus,
the consequence is that more datasets may be eliminated in the
fixed settings compared to the random settings.

After eliminating microorganisms, the model parameters are
estimated and the noninferiority tests are performed. In prac-
tice, laboratories are often able to provide an estimate λ̂i of the
spike λ for microorganism i using a compendial enumeration
method. This estimate can be used in the analysis by substituting
λ by this estimate. In the simulation study we used λ̂i = [X̄i1 +
X̄i2]/2 as proxy, with X̄ij = ∑n

k=1 Xijk/n the simulated average
in the test sample. The analysis of the data was conducted with
SAS software, version 9.4, using procedure NLMIXED. Both the
Type I error and the power of the noninferiority test will be
reported.

3.3. Simulation Results

In this section, we only report the results of the detection
proportions that were drawn randomly from the four distribu-
tions for each simulation run. The results of the fixed detection
proportions are reported in Appendix D. The conclusions for
these different ways of selecting detection proportions are not
fundamentally different. The Type I error rates between these
two approaches are very comparable, but the power values are
somewhat lower in the fixed settings for higher values of the
spike level λ. This can be fully explained by the higher numbers
of datasets that must be eliminated (as we described in Appendix
A). Our sample sizes are calculated under the assumption that
none of the data is being eliminated. Thus, if then substantial
amounts of data must be removed because they cannot con-
tribute to the estimation of the parameters, the sample sizes have
been underestimated, leading to lower powers that may drop
below 80%.

Table 2 shows the average, the minimum, the maximum, and
the 5% quantile of the numbers of microorganisms that were
not removed from the simulated spiking experiment (m = 15,
λ = 3.5) for the four distributional choices and for two levels of
accuracy. For the other chosen settings, all with lower m, λ, and
θ , less data had to be removed since these settings had a lower
chance of obtaining boundary values (see (8)).

Table 2. Summary statistics of the included number of microorganisms for random
detection proportions.

Distribution θ = 0.9 θ = 1.0

Mean Min Max q0.05 Mean Min Max q0.05

LN(1, 0.25) 14.85 11 15 14 13.61 10 15 12
LN(0.5, 0.5) 14.94 13 15 14 14.34 11 15 13
B(5, 1) 14.16 10 15 13 11.77 6 15 9
B(1, 1) 14.69 11 15 14 13.80 7 15 12

It shows that it is unlikely to remove more than 6 types
of microorganisms in a spiking experiment with 15 microor-
ganisms (i.e., a quantile of 9 for distribution B(5, 1)), but in
most settings it is expected to remove substantially less data.
Clearly, the relative small sample size of n = 15, calculated
for an accuracy of θ = 1, is more likely to provide data at the
boundaries frequently when the average spike would be larger
(see (8) and Figure 1), but this is less of an issue when the sample
size is larger and the accuracy is smaller, for example, when
n = 26 and θ = 0.9.

The performance of the two noninferiority tests is provided
in Figures 4–7. Figure 4 provides the simulated Type I error rate,
while the other three figures provide the power of the tests for
different levels of accuracy (at significance α = 0.05). In each
figure we show the results of the four choices of distribution
functions for the detection proportions and the three settings
for the number of microorganisms (m ∈ {5, 10, 15}) with the
corresponding sample sizes n.

Figure 4 shows that the significance level of 5% is nicely
achieved. This may not be a surprise, since we used a sample
size mn that was calculated under assumption that the accuracy
is equal to θ = 0.7. The fluctuations of the Type I error rates
seem to be random and unrelated to the choices of distributions.

The results on power demonstrate that the noninferiority test
LCLlog(θ) is more powerful than LCLθ (as expected). For the first
three distributions, a power of 80% is achieved for LCLlog(θ) in
most settings when the average spike λ can be maintained within
2 to 3 colony forming units per test sample (CFU/sample). This
does not always occur for test LCLθ , even though we used
the sample size calculation for this test. Spiking levels at λ =
1.5 and/or λ = 3.5 CFU/sample may diminish the power,
depending on the mean detection proportion of the distribution
in combination with the accuracy. Indeed, the distributions with
lower mean detection proportions (LN(0.5, 0.5) and B(1, 1))
seem to benefit from a somewhat higher spike, in particular
when the accuracy is lower. This is not surprising since the first-
order approximation of variance τ 2

A in (10) is equal to VE in (13)
with π replaced by π̄ (see Section 2.2). The two distributions
with a higher mean detection proportion seem to do better for
lower spike levels, but a level of 1.5 CFU/sample still seems to
be too low. This is not surprising either, since a spike lower
than 1.593 would be less optimal even when the mean detection
proportion would be equal to one (see Table 1).

A power of 80% does not seem to be attained for any
spike level when the accuracy is θ = 0.8 and the detec-
tion proportions follow a uniform distribution (B(1, 1)). We
think this may be caused by detection proportions close to
zero. The variance VE for the accuracy estimator for detec-
tion proportions close to zero would have extreme standard
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Figure 4. Type I error rate of the two noninferiority test (θ = 0.7) as a function of λ for different distributions and number of microorganisms when detection proportions
are selected randomly.

Figure 5. Power of the two noninferiority tests (θ = 0.8) as a function of λ for different distributions and number of microorganisms when detection proportions are
selected randomly.

errors (see Figure 2). Thus, just one small detection proportion
may affect the power of the test negatively. For lower values
of θ this effect is enhanced compared to accuracies closer
to one.

The form of the density for the detection proportions also
seems to affect the power of the noninferiority test on accuracy,
which is probably caused by the likelihood of a small detection
proportion. The distributions LN(0.5, 0.5) and B(1, 1) do not
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Figure 6. Power of the two noninferiority tests (θ = 0.9) as a function of λ for different distributions and number of microorganisms when detection proportions are
selected randomly.

Figure 7. Power of the two noninferiority tests (θ = 1) as a function of λ for different distributions and number of microorganisms when detection proportions are selected
randomly.

just have a lower mean, they also show more variability, with
a higher probability of generating small detection proportions.
Based on our past experiences with the CM, we expect that
the LN(1.0, 0.25) and B(5.0, 1.0) are more realistic distributions

on detection proportions in practice than the other two. Hav-
ing detection proportions below 0.3 for microorganisms with
the CM seems less likely, unless the microorganism is highly
stressed and unwilling to grow.
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4. Case Study

Our approach has been implemented in practice, where a spe-
cific RMM was compared to the CM. The company who per-
formed the validation study decided to test m = 16 different
types of microorganism and used noninferiority margin δ =
0.7. Although there is no reason to assume that the RMM is
inferior to the CM, the accuracy will be considered less than 1
to avoid being too optimistic. It was assumed that the accuracy
was in the range θ ∈ [0.85, 0.95]. This leads to a sample size
in the range of n ∈ [18, 39], using test statistic LCLθ and
Table 1. It was therefore decided to take n = 30 test samples
per microorganism and method, allowing for a true accuracy
of just below 0.9. The optimal λ0 should be chosen between
1.634 and 1.721 CFU/sample. Assuming that the mean detection
proportion may be close to 0.5, since a few difficult to test
microorganisms are being tested, a spike λ in the range of 3
CFU/sample was recommended.

The collected number of positive test samples for the nonin-
feriority study are given in Table 3. The company also provided
an estimated or predicted spike level based on the compendial
enumeration method.

The model and methodology as explained in Section 2 was
used to estimate the accuracy and the detection proportions
for all microorganisms with the CM. We used the estimated
spike levels provided by the company in the analysis, but we
obtained the same conclusion on the accuracy when we ignored
this information. If the estimated spike would be somewhat
too low (or underestimated), we would obtain estimates for
the detection proportions that may be larger than one. This
is not an issue when interest is in the estimation and testing
of the accuracy, it merely shows that the predicted spike level
was not accurately determined. The SAS code is provided in
Appendix E.

The estimates of the individual detection proportions and
their 95% confidence intervals are given in Table 4. The esti-
mate of the logarithmically transformed accuracy with its 90%

Table 3. Numbers of positive test samples out of 30 test samples from a real
noninferiority study.

Microorganism Yi1. Yi2. λ̂i Microorganism Yi1. Yi2. λ̂i

E.coli 28 28 2.16 C.sporogenes 13 16 0.50
C.albicans 25 24 1.67 A.lwoffi 1 1 0.33
S.aureus 30 29 2.67 S.pyogenes 25 24 2.67
B.cereus 29 28 3.67 S.maltophilia 28 26 4.50
P.aeruginosa 20 16 1.00 K.rhizophila 30 26 2.00
B.cepacia 8 8 0.16 C.acnes 26 22 3.33
S.warneri 3 4 1.16 P.chrysogenum 1 1 1.50
B.subtilis 26 28 2.83 A.brasiliensis 27 27 1.50

Table 4. Estimated detection proportions with their 95% confidence intervals.

Microorganism πi LCL UCL Microorganism πi LCL UCL

E.coli 1.36 0.86 1.85 C.sporogenes 1.42 0.88 1.96
C.albicans 1.10 0.74 1.46 A.lwoffi 0.11 0.00 0.26
S.aureus 1.70 0.84 2.55 S.pyogenes 0.69 0.46 0.91
B.cereus 0.89 0.55 1.23 S.maltophilia 0.56 0.36 0.75
P.aeruginosa 0.99 0.64 1.34 K.rhizophila 1.50 0.93 2.07
B.cepacia 2.09 1.04 3.13 C.acnes 0.53 0.35 0.70
S.warneri 0.12 0.03 0.20 P.chrysogenum 0.02 0.00 0.06
B.subtilis 0.87 0.58 1.17 A.brasiliensis 1.66 1.09 2.23

confidence interval is given by −0.156 [−0.319, 0.007]. Since
the noninferiority margin in the log scale is equal to −0.357 ≈
log(0.7), we reject the null hypothesis on inferiority and con-
clude that the RMM is most likely noninferior to the CM. The
estimate of the accuracy with its 90% confidence interval is
θ̂ = 0.856 [0.727, 1.007].

5. Discussion and Conclusion

We have provided an optimal framework for a noninferiority
study on detection of microorganisms between two qualitative
microbiological methods where we have assumed that the accu-
racy or recovery parameter is homogeneous across all types of
microorganisms. We provided the optimal average spike level
for the test samples taken from a single solution experiment and
presented a sample size formula. Our simulation study showed
that the proposed noninferiority tests have a power that is close
to or better than the requested power. We recommend to use the
logarithmically transformed accuracy test in the analysis, but a
sample size calculation that is conducted for the accuracy test
in the original scale. The reason for this discrepancy is that our
calculations are somewhat optimistic since they are calculated
under ideal circumstances.

The main benefit of our approach is the potential of a
substantial reduction in sample sizes. IJzerman-Boon and Van
denHeuvel (2015) showed that a sample size of 200 test samples
per microbiological method for one microorganism is necessary
to obtain 80% power for a traditional hypothesis test on accuracy
when the true accuracy is 70%. For a homogeneous accuracy
setting, this number could theoretically be reduced to 213 test
samples for all microorganisms together, when the number of
microorganisms is limited to 7. The reason for this limit is that
with less than 30 test samples per microorganism, there is a
risk that the collected data on a microorganism is not suit-
able for noninferiority testing, because the positive rates likely
become equal to zero or one, excluding this microorganism
from participating in the noninferiority study. Our case study
demonstrated that a sample size of 30 test samples per method
for each microorganism is attainable and worked nicely and
we recommend not to go lower due to this risk of observing
boundary values. This is still a reduction in sample sizes of about
85% with current status quo.

Our analysis also demonstrated that an optimal average spike
is somewhere in between 2 and 3 CFU/sample when the detec-
tion proportions are larger than 0.5 and not all equal to one.
This is in line with the official guidelines (USP < 1223 > 2015),
who propose to choose a spike level such that the positive rate
for the compendial is between 50 to 75%, even though higher
spike levels have been recommended in the past. However, our
noninferiority test is different from these guidelines, which pro-
poses to use the most probable number (MPN) that is calculated
from multiple dilutions or a noninferiority test on the positive
rates. The MPN is less powerful than our test statistic and the
second test statistic is highly sensitive to the spike and may
falsely result in noninferiority when spike levels are selected
somewhat higher (IJzerman-Boon, Manju, and Van denHeuvel
2020).

The disadvantage of our approach is that it is not known
whether we may assume a homogeneous accuracy in practice.
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Figure 8. Type I error rate of the two noninferiority tests (θ = 0.7) as a function of λ for the different number of microorganisms when detection proportions are fixed at
the quantiles of a distribution.

Figure 9. Power of the two noninferiority tests (θ = 0.8) as a function of λ for the different number of microorganisms when detection proportions are fixed at the
quantiles of a distribution.

When the rapid and the compendial method have the same
detection principles or mechanisms, but the rapid method is
just faster than the compendial method in establishing a deci-
sion, it may not be unrealistic that there exists a consistent
ratio between the two methods on detecting a single organism

across different types of microorganisms. However, when detec-
tion mechanisms between the rapid and compendial method
are truly different it is unknown if a common accuracy is
realistic. Note that different detection proportions for detect-
ing different organisms can be assumed for a common or
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Figure 10. Power of the two noninferiority tests (θ = 0.9) as a function of λ for the different number of microorganisms when detection proportions are fixed at the
quantiles of a distribution.

Figure 11. Power of the two noninferiority tests (θ = 1) as a function of λ for the different number of microorganisms when detection proportions are fixed at the quantiles
of a distribution.

homogeneous accuracy as well as for heterogeneous accura-
cies. In case the assumption of a common accuracy is false or
there exists doubt on the assumption, different microorgan-
isms may possibly be grouped based on their expectation of

equal accuracy, but with different accuracies across groups. If
certain groups can be formed, then our noninferiority frame-
work can be applied to these groups separately and still result
in lower sample sizes. In the near future, we are planning to
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Figure 12. Type I error rate of the two noninferiority tests (θ = 0.7) as a function of λ for the number of microorganisms m = 5 when detection proportions are fixed with
one small value and an average equal to the distribution mean.

Figure 13. Power of the two noninferiority tests (θ = 0.8) as a function of λ for the number of microorganisms m = 5 when detection proportions are fixed with one
small value and an average equal to the distribution mean.

study statistical tests that could evaluate the assumption of
a homogeneous accuracy or otherwise determine the influ-
ence of heterogeneous accuracies on the noninferiority of
the rapid method compared to the compendial method for

a particular organism. This may complement the work we
provided here. It should be noted that in the presented case
study the likelihood ratio test for testing the null hypothe-
sis of one common accuracy was not rejected (p = 0.794),
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Figure 14. Power of the two noninferiority tests (θ = 0.9) as a function of λ for the number of microorganisms m = 5 when detection proportions are fixed with one
small value and an average equal to the distribution mean.

Figure 15. Power of the two noninferiority tests (θ = 1) as a function of λ for the number of microorganisms m = 5 when detection proportions are fixed with one small
value and an average equal to the distribution mean.

suggesting that homogeneity of accuracy was reasonable, but the
power (and Type I error) of the likelihood ratio test still need
evaluation.

Appendix A

Here, we discuss maximum likelihood estimation of the model parameters
θ and π1, π2, ..., πm for model (4) based on data {Yijk}, where part of the
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data may be at the boundary value (Ȳij ∈ {0, 1}), but at least one type of
microorganism has data that is not at the boundary (0 < Ȳij < 1, j ∈ {1, 2}).
We illustrate this for just two microorganisms, where one microorganism
may have observed boundary values (i = 1) and the other microorganism
has not (i = 2). We may assume λ = 1, because we could just replace
λπi by a new parameter ηi that should be estimated instead. The likelihood
equations from (6) are then reduced to the following three equations:

π1Ȳ12[1 − exp{−θπ1}]−1 + π2Ȳ22[1 − exp{−θπ2}]−1 = π1 + π2,
Ȳ11[1 − exp{−π1}]−1 + θ Ȳ12[1 − exp{−θπ1}]−1 = 1 + θ ,
Ȳ21[1 − exp{−π2}]−1 + θ Ȳ22[1 − exp{−θπ2}]−1 = 1 + θ .

(A.1)
The proof is built up in the following way. First, we demonstrate that

the MLE’s do not exist when Ȳ11 and Ȳ12 are at the same boundary. For
all remaining settings the MLE’s do exist. To demonstrate that claim, we
first discuss the solution π̂2(θ) for π2 using the third equation in (A.1). We
show its existence for each θ and study π̂2(θ) as function of θ , to determine
certain characterizations we need later in the proof. Then we study π̂1(θ)

in the second equation of (A.1) for different data scenarios of Ȳ11 and Ȳ12.
In these scenarios we also study the solution θ̂ for the first equation in (A.1)
when the solutions π̂1(θ) and π̂2(θ) are substituted.

The same boundary values for the first microorganism. In case Ȳ11 = 0
and Ȳ12 = 0, the second equation in (A.1) reduces to 0 = θ + 1, which
results in the unrealistic estimator of θ̂ = −1. When Ȳ11 = 1 and
Ȳ12 = 1, the second equation in (A.1) becomes equal to [exp{π1}− 1]−1 +
θ[exp{θπ1} − 1]−1 = 0, which has no finite solution for the detection
proportion π1. Thus, it is obvious that a microorganism can not have two
observed positive rates at the same boundary. Therefore, microorganisms
with either Ȳ11 = 0 and Ȳ12 = 0 or Ȳ11 = 1 and Ȳ12 = 1 should
be removed from the spiking experiment. For all other settings we will
demonstrate that the set of equations in (A.1) has solutions for θ , π1,
and π2.

Solution detection proportion for the second microorganism. The third
equation in (A.1) has a unique solution for π2 when the observed positive
rates satisfy 0 < Ȳ21 < 1 and 0 < Ȳ22 < 1 and when θ > 0 is fixed1. The
function Ȳ21[1 − exp{−π2}]−1 + θ Ȳ22[1 − exp{−θπ2}]−1 is a continuous
decreasing function in π2 > 0, since both parts are decreasing functions. It
converges to ∞ when π2 converges to 0 and when π2 converges to ∞, the
function converges to Ȳ21 + θ Ȳ22 < 1 + θ . Thus, there is just one unique
solution π̂2(θ) > 0 that solves the third equation in (A.1). It should be
noted that π̂2(1) = − log(1− Ȳ2), with Ȳ2 = [Ȳ21 + Ȳ22]/2. Hence, if both
methods are equal, that is, θ = 1, then the detection proportion π2 for the
second microorganism is estimated based on the average positive rates Ȳ2
of the two methods.

Due to the continuity of the function Ȳ21[1 − exp{−π2}]−1 + θ Ȳ22[1 −
exp{−θπ2}]−1 in π2 and θ , the function π̂2(θ) is continuous in θ . Further-
more, when θ converges to zero, θ Ȳ22[1 − exp{−θπ2}]−1 would converge
to infinity when π2 would be fixed. Thus, π2 needs to increase to compen-
sate for this increase and to become or maintain a solution for the third
equation in (A.1). This leads to limθ↓0 π̂2(θ) = ∞ and limθ↓0 Ȳ21[1 −
exp{−π2}]−1 = Ȳ21. Furthermore, we obtain that limθ↓0 θπ̂2(θ) = 0, from
the observation that

lim
θ↓0

θ Ȳ22[1 − exp{−θπ̂2(θ)}]−1 = 1 − Ȳ21 > 0,

after rewriting the third inequality in (A.1).
We will now demonstrate that θ0π̂2(θ0) < θ1π̂2(θ1) when 0 < θ0 <

θ1. We only need to address the situation where π̂2(θ0) ≥ π̂2(θ1), since
otherwise θ0π̂2(θ0) < θ1π̂2(θ1) is trivially obtained. When π̂2(θ0) ≥
π̂2(θ1) is true, we obtain the following inequality

1 − Ȳ21[1 − exp{−π̂2(θ0)}]−1 ≥ 1 − Ȳ21[1 − exp{−π̂2(θ1)}]−1, (A.2)

since [1 − exp{−π2}]−1 is a decreasing function in π2. Now assume that
also the alternative inequality θ0π̂2(θ0) ≥ θ1π̂2(θ1) is true, then we would

1This equation actually has a solution whenever the observed positive rates
Ȳ21 and Ȳ22 are not equal to the same boundary value as we will see for the
second equation in (A.1) in Scenarios 2 to 5. Thus, one of the positive rates
is allowed to be equal to the boundary, as long as the other is not. However,
characteristics of the solution depend on whether or not the positive rates
are at a boundary zero or not.

obtain the inequality

Ȳ22[1−exp{−θ0π̂2(θ0)}]−1 −1 ≤ Ȳ22[1−exp{−θ1π̂2(θ1)}]−1 −1, (A.3)

again using that [1−exp{−π2}]−1 is a decreasing function in π2. Rewriting
the third equation in (A.1) as

θ = (1 − Ȳ21[1 − exp{−π̂2(θ)}]−1)/(Ȳ22[1 − exp{−θπ̂2(θ)}]−1 − 1),

and using inequalities (A.2) and (A.3), we obtain the following contradic-
tion:

θ0 = 1 − Ȳ21[1 − exp{−π2(θ0)}]−1

Ȳ22[1 − exp{−θ0π2(θ0)}]−1 − 1

≥ 1 − Ȳ21[1 − exp{−π2(θ1)}]−1

Ȳ22[1 − exp{−θ1π2(θ1)}]−1 − 1
= θ1.

Thus, θπ̂2(θ) must be an increasing function in θ .
Finally, rewriting the third equation and letting θ converge to infinity,

we obtain

lim
θ→∞

Ȳ22
1 − exp{−θπ̂2(θ)} − 1 = lim

θ→∞
1
θ

(
1 − Ȳ21

1 − exp{−π̂2(θ)}
)

.

(A.4)
Since θπ̂2(θ) is an increasing function in θ , it either converges to infinity or
to some finite value. In both cases the left-hand side in (A.4) is a finite value.
Thus, the right-hand side in (A.4) must be a finite value too. If we define
ξ2 = limθ→∞(1−Ȳ21[1−exp{−π̂2(θ)}]−1)/θ as this finite limit, we obtain
that limθ→∞ θπ̂2(θ) = − log(1−Ȳ22/[1+ξ2]), with ξ2 ∈ [Ȳ22−1, 0). Note
that ξ2 can not be equal to zero. To demonstrate this, lets assume ξ2 = 0. In
this case, we would have that the expression on the left-hand side in (A.4)
would be positive for any value of θ , since θπ̂2(θ) is an increasing function,
[1−exp{−θπ̂2(θ)}]−1 is a decreasing function, and its limit is equal to zero.
Thus, the expression in the left-hand side of (A.4) approaches ξ2 = 0 from
above. We would also have that limθ→∞ π̂2(θ) = limθ→∞ −θ−1 log(1 −
Ȳ22) = 0, since Ȳ22 < 1. In combination with the fact that limθ↓0 π̂2(θ) =
∞, this means that we can find a value θ such that the expression on the
right-hand side in (A.4) becomes negative, since Ȳ21 > 0. Since the equality
in (A.4) should hold for any value of θ and not just for the limits, we have
created a contradiction. Thus, the value ξ2 must be negative.

Solution detection proportion for the first microorganism. We will now
study the solution π1 from the second equation in (A.1) as a function of θ ,
assuming that Ȳ11 and Ȳ12 are not both equal to the same boundary. We will
make use of the same reasoning as for π2 where possible. We will study the
different settings for Ȳ11 and Ȳ12 and show that the first equation in (A.1)
also has a solution in θ̂ after we substituted the solutions π̂1(θ) and π̂2(θ)

in the first equation of (A.1).
Scenario 1 {0 < Ȳ11 < 1, 0 < Ȳ12 < 1}. This is the exact same

situation as for π2 and we thus obtain the same characteristics for π̂1(θ)

as for π̂2(θ). Since [1 − exp{−θπ̂i(θ)}]−1 converges to infinity when θ

converges to zero (since limθ↓0 θπ̂i(θ) = 0), we can find a value θ0 such
that Ȳi2[1 − exp{−θ0π̂i(θ0)}]−1 > 1 for i ∈ {1, 2}. For this value, it follows
for the left-hand side of the first equation in (A.1) that

π̂1(θ0)Ȳ12
1 − exp{−θ0π̂1(θ0)} + π̂2(θ0)Ȳ22

1 − exp{−θ0π̂2(θ0)} > π̂1(θ0) + π̂2(θ0). (A.5)

Additionally, similar to (A.4) for the second microorganism, Ȳi2[1 −
exp{−θπ̂i(θ)}]−1 converges to 1 + ξi < 1 when θ converges to infinity.
Thus, we can find a θ1 such that we have the opposite inequality in (A.5).
This implies that there exists a θ ∈ (θ0, θ1) that would give equality in (A.5),
since π̂i(θ) is a continuous function in θ .

Scenario 2 {Ȳ11 = 0, Ȳ12 > 0}. The second equation in (A.1) becomes
equal to θ Ȳ12[1 − exp{−θπ1}]−1 = 1 + θ and leads immediately to
the solution of π̂1(θ) = −θ−1 log(1 − θ Ȳ12/(θ + 1)). This solution
satisfies the same characteristics as the solution from Scenario 1. Indeed,
θπ̂1(θ) = − log(1 − θ Ȳ12/(θ + 1)) is an increasing function in θ with
limθ↓0 θπ̂1(θ) = 0 and limθ→∞ θπ̂1(θ) = − log(1 − Ȳ12), which could
be infinite when Ȳ12 = 1. Furthermore, the solution π̂1(θ) converges to
infinity when θ converges to zero. To demonstrate the existence of θ , we
can use the same reasoning as in Scenario 1. There is again a θ0 such that
inequality in (A.5) holds true, making use of limθ↓0 θπ̂i(θ) = 0, Ȳi2 > 0,
and 1 − exp{−θπ̂i(θ)} converges to zero when θ converges to zero. There
also exists a θ1 > θ0 such that the inequality in (A.5) is reversed when θ0 is
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replaced by θ1. Indeed, Ȳ22[1 − exp{−θπ̂2(θ)}]−1 converges to 1 + ξ2 < 1
and Ȳ12[1 − exp{−θπ̂1(θ)}]−1 converges to 1.

Scenario 3 {Ȳ11 > 0, Ȳ12 = 0}. The second equation in (A.1) becomes
equal to Ȳ11[1 − exp{−θπ1}]−1 = 1 + θ and leads immediately to the
solution of π̂1(θ) = − log(1 − Ȳ11/(θ + 1)). This solution is somewhat
different from the solution in Scenario 1, since limθ↓0 π̂1(θ) = − log(1 −
Ȳ11) < ∞ due to Ȳ11 > 0. Furthermore, we have that θπ̂1(θ) = −θ log(1−
Ȳ11/(θ +1)) is an increasing function in θ with limθ↓0 θπ̂1(θ) = 0 but with
limθ→∞ θπ̂1(θ) = ∞. We now need to show that there exists a solution θ

such that

Ȳ22[1 − exp{−θπ̂2(θ)}]−1 = 1 + π̂1(θ)/π̂2(θ). (A.6)

Since π̂1(0) is finite, π̂2(θ) converges to infinity when θ converges to zero,
and 1 − exp{−θπ̂2(θ)} converges to zero when θ converges to zero, we can
select a θ0 such that the left side in (A.6) with θ replaced by θ0 is larger
than the right-hand side in (A.6) with θ replaced by θ0. Furthermore, we
may find a θ1 such that the left side in (A.6) is lower than one, since 1 −
exp{−θπ̂2(θ)} converges to one when θ increases and Ȳ22 < 1, while the
right side is always larger than one. Thus, there exist a θ ∈ (θ0, θ1) that
would give equality in (A.6).

Scenario 4 {Ȳ11 = 1, Ȳ12 < 1}. Note that we may assume here that
Ȳ12 > 0, since the combination Ȳ12 = 0 and Ȳ11 = 1 has been addressed
in Scenario 3. Since the arguments for finding solution π2 is unaffected by
Ȳ21 = 1 when Ȳ22 < 1, the solution π̂1(θ) also exists for situation Ȳ11 =
1 and Ȳ12 < 1. We need to investigate if the same characteristics holds
for π̂1(θ) as for π̂2(θ). The continuity of π̂1(θ), limθ↓0 π̂1(θ) = ∞, and
being a nondecreasing function is not affected by Ȳ11 = 1 when Ȳ12 < 1.
Furthermore, for the asymptotics of θπ̂2(θ) we did not need that Ȳ21 < 1,
thus we also have limθ→∞ θπ̂1(θ) = − log(1 − Ȳ12/[1 + ξ1]), with ξ1 =
limθ→∞(1−[1− exp{−π̂1(θ)}]−1)/θ . The complication is to demonstrate
that limθ↓0 θπ̂1(θ) = 0 when Ȳ11 = 1. Rewriting the second equation in
(A.1) and making use of limθ↓0 π̂1(θ) = ∞, we obtain

lim
θ↓0

Ȳ12[1 − exp{−θπ̂1(θ)}]−1

= lim
θ↓0

(θ−1 + 1 − [1 − exp{−θπ̂1(θ)}]−1) = ∞.

This equality can only hold when limθ↓0 θπ̂1(θ) = 0. Thus, the proof now
follows Scenario 1.

Scenario 5 {Ȳ11 < 1, Ȳ12 = 1}. Note that we may assume here that
Ȳ11 > 0, since the combination Ȳ12 = 1 and Ȳ11 = 0 has been addressed
in Scenario 2. For the solution of π1, we may follow the proof of finding
solution π2 completely. The existence of π̂1(θ), the continuity of π̂1(θ),
limθ↓0 π̂1(θ) = ∞, limθ↓0 θπ̂1(θ) = 0 and θπ̂1(θ) being a nondecreasing
function in θ are all unaffected by Ȳ12 = 1. With Ȳ12 = 1, it follows that
limθ→∞ θπ̂1(θ) = − log(1 − Ȳ12/[1 + ξ1]) = − log(1 − 1/[1 + ξ1]). Now
using the proof of Scenario 1 for finding the solution θ , we also demonstrate
the existence of θ̂ in this scenario.

Appendix B

We will demonstrate that the variance of the maximum likelihood estimator
θ̂ is given by (10). Note that the log-likelihood function is given in (5) and
that the score functions are given in (6). They can be obtained by just taking
simple derivatives with respect to the parameters. Here, we will calculate
the variances and covariances of the score functions and then calculate the
inverse Fisher information to determine the variance of θ̂ .

First note that the expected value of the score functions are zero, since
E(Yij.) = n[1 − exp{−λθjπi}], with θj = 1 if j = 1 and θj = θ if j = 2.
Thus, the variance of L̇θ is now determined by

var(L̇θ ) = ∑m
i=1 var

(
λπiYi2.

1−exp(−λθπi)
− nλπi

)
,

= ∑m
i=1

(
λπi

1−exp(−λθπi)

)2
var (Yi2.) ,

= ∑m
i=1

nλ2π2
i exp(−λθπi)

1−exp(−λθπi)
,

since the variance of Yi2. is equal to n[1 − exp(−λθπi)] exp(−λθπi). The
variance of L̇πi is given by

var(L̇πi ) = E

(
λYi1.

1−exp(−λπi)
+ λθYi2.

1−exp(−λθπi)
− nλ (θ + 1)

)2
,

=
[

λ
1−exp(−λπi)

]2
var (Yi1.) +

[
λθ

1−exp(−λθπi)

]2
var (Yi2.) ,

= nλ2 exp(−λπi)
1−exp(−λπi)

+ nλ2θ2 exp(−λθπi)
1−exp(−λθπi)

,

since the variance of Yi1. is equal to n[1 − exp(−λπi)] exp(−λπi). Since
Yi1. and Yi2. are independent and data from different microorganisms are
independent, the covariance between L̇θ and L̇πi is now obtained as

cov(L̇θ , L̇πi ) = λ2θπi
[1−exp(−λθπi)]2 var(Yi2.),

= nλ2θπi exp(−λθπi)
1−exp(−λθπi)

,

and the covariance between L̇πi and L̇πi′ with i �= i′, is obviously zero.
The Fisher information matrix can now be written as

I =
[

I11 I12
I21 I22

]
, (B.1)

with
I11 = var(L̇θ ), I12 = (cov(L̇θ , L̇π1 ), ..., cov(L̇θ , L̇πm )),

and I22 =

⎡
⎢⎢⎢⎣

var(L̇πi ) 0 . . . 0
0 var(L̇π2 ) . . . 0
...

...
. . .

...
0 0 . . . var(L̇πm )

⎤
⎥⎥⎥⎦ .

Clearly, I11 and I22 are nonsingular and invertible. Since I11 − I12I−1
22 I21 is

also invertible, the inverse of I can be written as (Lu and Shiou 2002)

I−1 =
[ (

I11 − I12I−1
22 I21

)−1 − (
I11 − I12I−1

22 I21
)−1 I12I−1

22
− (

I22 − I21I−1
11 I12

)−1 I21I−1
11

(
I22 − I21I−1

11 I12
)−1

]
.

The variance of the MLE of θ is therefore given by var(θ̂) = (I11 −
I12I−1

22 I21)
−1, the first (top-left) element of the inverse Fisher information

matrix. We now obtain that
I12I−1

22 I21 = ∑m
i=1[cov(L̇θ , L̇πi )]2/var(L̇πi ),

= ∑m
i=1

(
nλ2θπi exp(−λθπi)

1−exp(−λθπi)

)2

(
nλ2 exp(−λπi)
1−exp(−λπi)

+ nλ2θ2 exp(−λθπi)
1−exp(−λθπi)

)−1
.

If we now introduce γij = 1 − exp(−λθjπi), we obtain that
exp(−λθjπi)/[1 − exp(−λθjπi)] = [1 − γij]/γij, exp(λθjπi)− 1 = γij/[1 −
γij], and the term within the sum of I12I−1

22 I21 can be rewritten into

nλ2θ2π2
i

(
1 − γi2

γi2

)2 (
1 − γi1

γi1
+ θ2 1 − γi2

γi2

)−1
.

Then we obtain that

I11 − I12I−1
22 I21 = nλ2 ∑m

i=1 π2
i

(1−γi2)
γi2

[
1 − θ2(1−γi2)γi1

γi2(1−γi1)+θ2γi1(1−γi2)

]
,

= nλ2 ∑m
i=1 π2

i

[
(1−γi2)(1−γi1)

γi2(1−γi1)+θ2γi1(1−γi2)

]
,

= nλ2 ∑m
i=1 π2

i [(exp(λθπi) − 1) + θ2(exp(λπi) − 1)]−1,
This leads to the variance in (10).

Appendix C
We will study the convexity of variance VE in (13) as a function of λπ . This
is the same as studying this variance as a function of π > 0 when λ = 1.
Since mn is a constant, we could also assume that it is equal to one. Thus,
we will study the function

VE(π) = exp(θπ) − 1 + θ2(exp(π) − 1)

π2 , π > 0. (C.1)

To demonstrate that this function is convex, we will study the first and
second derivative. The first derivative is equal to

exp(θπ)
(
θπ − 2 + 2 exp(−θπ)

) + θ2 exp(π)
(
π − 2 + 2 exp(−π)

)
π3

(C.2)
and its second derivative is equal to

g(x1) + θ2g(x2)

π4 , (C.3)
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where g(x) = exp(x)(x2 − 4x + 6 − 6 exp(−x)), x1 = θπ and x2 = π .
The function g(x) is an increasing function, since its derivative is g′(x) =
exp(x)(x2 − 2x + 2) and this function is always positive for any x. Since
g(0) = 0, we also obtain that g(x) > 0 when x > 0. This implies that the
second derivative in (C.3) is positive for π > 0. Hence, the variance VE is
a convex function in λπ , λ, and π .

Appendix D

Here we present the results of the simulation study for the case where
detection proportions were selected as fixed parameters for simulation runs
under the same simulation settings.

When the detection proportions are fixed at the quantiles of one of
the four distribution functions, Table 5 shows the summary statistics for
the available number of microorganisms in an experiment with m = 15,
λ = 3.5 and two accuracies θ = 0.9 and θ = 1. The results show that for
distribution B(5, 1), 5% of the simulation runs have less than 9 organisms,
while we started with m = 15 microorganisms and for a few simulations the
complete experiment was invalidated based on the criteria in Appendix A.
As we mentioned before, the relatively large detection proportions for this
distribution function provide a high probability that the number of positive
samples for both methods are at the same upper boundary, making the data
useless for our estimation procedure.

Figure 8 shows that the Type I error rate is close to the nominal value
of α = 0.05. The issues of eliminating data (also for settings with large
numbers of organisms removed) do not seem to affect the Type I error a lot.
Figures 9–11 show similar powers to the setting with the detection propor-
tions randomly drawn from the distribution (cf. Figures 5–7). The random
settings remove almost the same amount of data from an experiment as the
fixed settings, which explains the similarity in power. The power values are
at some settings below 80%, since the sample size calculation did not take
into account the loss of data.

For the case of one small detection proportion and four larger detection
proportions, we see similar results as for the detection proportions selected
at the quantiles. The summary statistics can be found in Table 6, the
Type I error can be found in Figure 12, while the power can be found in
Figures 13–15.

Appendix E

PROC NLMIXED DATA=VALIDATION QPOINTS=20 DF=
10000;

PARMS %DO I=1 %TO 16; DET&I=0.8 %END;
LOGTHETA=-0.1;

%DO I=1 %TO 16;

Table 5. Summary statistics of the included number of microorganisms for fixed
detection proportions based on quantile of the four distributions.

Distribution θ = 0.9 θ = 1.0

Mean Min Max q0.05 Mean Min Max q0.05

LN(1, 0.25) 14.87 13 15 14 13.69 10 15 12
LN(0.5, 0.5) 14.96 13 15 15 14.44 12 15 13
B(5, 1) 14.18 10 15 13 11.81 5 15 9
B(1, 1) 14.82 13 15 14 14.13 11 15 13

Table 6. Summary statistics of the included number of microorganisms for fixed
detection proportions with one small value and an average equal to the distribution
mean.

Distribution θ = 0.9 θ = 1.0

Mean Min Max q0.05 Mean Min Max q0.05

LN(1, 0.25) 5 5 5 5 4.89 3 5 4
LN(0.5, 0.5) 5 5 5 5 4.99 4 5 5
B(5, 1) 4.98 4 5 5 4.73 2 5 4
B(1, 1) 5 5 5 5 4.99 4 5 5

IF MICROORGANISM =&I THEN DO;
PC = 1-EXP(-DET&I.*LAMBDA_HAT);
PR = 1-EXP(-EXP(LOGTHETA)*DET&I.*
LAMBDA_HAT);

END;
%END;
P = (METHOD=’C’)*PC + (METHOD=’R’)*PR;
MODEL Y~BINARY(P);
ESTIMATE ’LOG ACCURACY’ LOGTHETA ALPHA=0.1;

RUN;

CODE 1. The SAS code for estimating the detection proportions and the common
accuracy.
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