
 

Efficient Online Scheduling of Electric Vehicle Charging Using
a Service-Price Menu
Citation for published version (APA):
Mathioudaki, A., Tsaousoglou, G., Varvarigos, E., & Fotakis, D. (2021). Efficient Online Scheduling of Electric
Vehicle Charging Using a Service-Price Menu. In 2021 International Conference on Smart Energy Systems and
Technologies (SEST) Article 9543430 Institute of Electrical and Electronics Engineers.
https://doi.org/10.1109/SEST50973.2021.9543430

DOI:
10.1109/SEST50973.2021.9543430

Document status and date:
Published: 27/09/2021

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/SEST50973.2021.9543430
https://doi.org/10.1109/SEST50973.2021.9543430
https://research.tue.nl/en/publications/9dda694b-7f72-48f7-baae-0bea7ff4fa9b


Efficient Online Scheduling of Electric Vehicle
Charging Using a Service-Price Menu

Angeliki Mathioudaki∗, Georgios Tsaousoglou†, Emmanouel Varvarigos∗ and Dimitris Fotakis∗
∗School of Electrical and Computer Engineering, National technical University of Athens, Greece

Email: tmathiou@corelab.ntua.gr, vmanos@mail.ntua.gr, fotakis@cs.ntua.gr
†Eindhoven University of Technology, the Netherlands, Email: g.tsaousoglou@tue.nl

Abstract—Along with high penetration of Electric Vehicles
(EVs), charging stations are required to service a large amount
of charging requests while accounting for constraints on the
station’s peak electricity consumption. To this end, a charging
station needs to make online charging scheduling decisions often
under limited future information. An important challenge relates
to the prioritization of EVs that have unknown valuations for
different levels of charging services. In this paper, we take into
consideration the inability of EV users to express these valuations
explicitly. We consider a paradigm where a menu of possible
charging schedules and corresponding prices is generated online.
By letting the EV users pick their most preferable menu
option, the proposed algorithm commits on each EV’s charging
completion time upon its arrival, achieves a near optimal total
weighted charging completion time, and prevents the users from
strategically misreporting their preferences, while offering a
practical and implementable solution to the problem of EVs -
charging station interaction.

Index Terms—Electric Vehicles, Charging Scheduling, Prompt
Scheduling, Online Algorithms, Truthfulness

I. INTRODUCTION

A. Motivation and Background

The electrification of urban transportation poses new chal-
lenges towards accommodating the charging requirements of
Electric Vehicles (EVs). This has motivated the development
of Charging Stations (CSs), which are envisaged as facilities
that offer charging services to EVs. An EV features certain
flexibility regarding its charging profile, e.g., an EV user can
choose to charge at a later time, in exchange for a smaller
payment. The CS can utilize this flexibility by scheduling the
charging of different EVs to achieve various objectives and sat-
isfy certain CS-level constraints. Such constraints relate to the
limited capacity of the CS’s transformer [1], the requirement
to satisfy an upper bound on the CS’s electricity consumption,
posed by the distribution system operator [2], etc. Since this
kind of constraints refer to the EVs’ aggregated consumption,
they are of the form of resource constraints.

The problem of EV-charging scheduling under resource
constraints bears a resemblance to the classical problem of
scheduling jobs (i.e., EVs’ charging requests) to machines
(i.e., charging slots). To achieve an efficient scheduling, the CS
needs to account for three important requirements: (1) acquire
certain characteristics of EV charging tasks (e.g., amount of

energy, power consumption, urgency), (2) incentivize the EV
users to reveal these characteristics truthfully and (3) process
the information as it (gradually) becomes available, i.e., in an
online fashion and without breaking the service commitments
of past decisions.

B. Relevant Literature

A significant volume of previous work on EV charging
has focused on maximizing either the total number of EVs
charged or the total amount of energy allocated, given the
energy available per timeslot and the EVs’ deadlines (see e.g.,
[3] and the references therein). In [4], the authors consider
a scheduling algorithm that helps the CS to minimize its
infrastructure cost while guaranteeing a certain quality of
service. In [5], the authors propose a max-min fair allocation of
charging services under a resource constraint. The authors in
[6] propose a scheduling algorithm that motivates users to se-
lect the required energy amount between a guaranteed energy
component and a low-priced non-guaranteed part produced by
renewable sources. Fewer studies (e.g. [7]) consider the online
scheduling problem of the CS, under limited information of
future EV arrivals.

Towards acquiring the charging characteristics and prefer-
ences of EV users, the majority of relevant studies typically
make two fundamental assumptions: (1) the EV user is as-
sumed to truthfully report his/her preferences, which facilitates
the scheduling algorithm to optimize the scheduling and (2) the
EV user is assumed to be able to express his/her preferences
in a closed-form utility function.

Under these two assumptions, decomposition algorithms can
solve the scheduling problem to optimality if, additionally,
the utility functions are convex. The first assumption can be
relaxed by considering users that can act strategically (and
selfishly), trying to manipulate the charging schedule in their
favour (so that they either get more energy at a lower price or
finish earlier, e.g. [3], [8]). When selfish EV users are involved,
the charging schedule should incentivize them to act accord-
ing to their true charging characteristics. Motivated by such
considerations, [9] proposes a scheduling algorithm where
the user is incentivized to behave truthfully by leveraging
techniques from algorithmic mechanism design. The algorithm
in [9] can also accommodate non-convex utility functions. [8]
proposed a scheduling algorithm and a pricing scheme, which
offers discounted electricity prices to users willing to delay978-1-7281-7660-4/21/$31.00 ©2021 IEEE



their consumption. Similarly, [3] presents an online scheduling
algorithm which commits, upon arrival of each EV, on the
amount of energy that the EV will receive up to its specified
deadline. They consider a direct revelation mechanism, where
each EV user reports their charging characteristics to the CS.

Departing from previous work, we seek to optimize the
overall quality of service, naturally formalized by the objective
of minimizing the total weighted completion time (and conse-
quently, the average completion time and the average number
of users in the system, for the case of equal weights). From
an algorithmic viewpoint, scheduling a set of jobs to minimize
their weighted completion time has been extensively studied.
Under the classical multiprocessor environment, completion
time minimization is NP-hard [10], while weighted completion
time minimization is NP-hard, even on a single machine [11].
For a single machine and unit weights, the Shortest Remaining
Processing Time (SRPT) rule results in a preemptive schedule
of minimum completion time [12]. On multiple identical ma-
chines, SRPT results in a 2-approximate preemptive schedule
for weighted completion time minimization [10]. [13] provides
an excellent survey of scheduling algorithms with the objective
to minimize (weighted) completion time.

Completion time minimization becomes even harder, if self-
ish tasks are involved. [14] proposed a truthful 3

2 -approximate
algorithm, when the tasks arrive simultaneously and only their
duration is private. In an orthogonal setting, [15] proposed a
truthful 4.83-approximation algorithm for weighted comple-
tion time minimization, when only the task weights are private.

Most of the previous work on online scheduling to minimize
(weighted) completion time may keep postponing the execu-
tion of a task, if shorter tasks arrive, or even may migrate it
to a different machine, in case of preemptive algorithms (see
e.g., [16] and the references therein). Eden et al. [17] were
the first to propose a prompt and online truthful scheduling
algorithm, based on a menu of possible scheduling intervals.
The algorithm commits on the completion time of each task
upon arrival and achieves a logarithmic competitive ratio.

The idea of menu-based scheduling can be naturally applied
to the EV charging setting, since EV users can neither express
their preferences in closed-form utility functions, nor report
their charging preferences to facilitate a truthful scheduling.
In contrast, they can make an intuitive choice when provided
with a menu of available options. A relevant approach is taken
in [18], although in a different setting, where the EV users have
a hard energy and deadline constraint and are asked to pick
their preferred CS from a set of nearby ones, trading-off CS
distance with CS requested payment. An online menu-based
pricing scheme is also proposed in [19], where the users select
a charging contract to maximize the station’s profit without
considering the scheduling aspect.

C. Contributions and Organization

To the best of our knowledge, this is the first time that
an efficient truthful online algorithm, operating through a
price-service menu, is proposed for EV charging scheduling

to minimize the sum of weighted completion times. Our
contributions can be summarized as follows:
• We provide a formal model for EV charging scheduling

based on weighted completion time minimization.
• We extent the framework of [17] and present an online

truthful scheduling algorithm, which interacts with the
EV users through a service-price menu. Thus, EV users
select their most preferable option, without resorting to
direct revelation. Moreover, upon an EV’s arrival, the CS
commits to the quality of service in its chosen option.

• We prove that our algorithm achieves a reasonable (and
essentially best possible) competitive ratio against adver-
sarial EV arrivals. Our experimental evaluation further
shows that our algorithm is very efficient in practice.

• We simplify the analysis of [17] and show an improved
(though still logarithmic) competitive ratio.

Overall, our online algorithm is prompt, i.e. it guarantees
the exact time that the vehicle will be scheduled. Therefore,
the user will know as to when the charging will start and
finish. Moreover, since some information may be intrinsic to
the users, such as their urgency weight, the idea of a service-
price menu exempts them from quantifying and reporting their
preferences.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a CS responsible for serving a set of EVs
N = {1, 2, . . . , |N |} in a time horizon T = {1, 2, . . . , |T |},
where each EV n ∈ N is characterized by lower/upper bounds
xn, xn on its power consumption, an arrival time an, an
energy requirement En and an urgency parameter wn ∈ [0, 1].
The CS needs to make a decision, towards the charging
schedule of each EV. Let binary variable yn,t denote whether
n charges at timeslot t, and continuous variable xn,t denote
the corresponding charging power. It is

yn,t · xn ≤ xn,t ≤ yn,t · xn, ∀t ∈ T, n ∈ N. (1)

The CS draws electricity from the grid through a local
transformer, whose capacity imposes an upper bound L on
the aggregated electricity consumption at each timeslot:∑

n∈N
xn,t ≤ L, ∀t ∈ T. (2)

We note here that the case of a time varying bound L(t) on the
aggregated consumption is also possible under our framework,
even though it is not considered in the present paper. Each EV
n cannot charge before its arrival time an:

yn,t = 0, t < an. (3)

The EV departs upon receives its required energy En. Let
the binary variable un,t denote whether EV n departs from
the station at timeslot t. Variable un,t cannot become 1 before
the EV receives its required energy, i.e., it is forced to 0, for
as long as the EV’s charged energy until t is less than En:

t∑
t′=an

xn,t′ ≥ un,tEn, ∀n ∈ N, t ∈ T (4)



Also, the EV can only depart from the station once, i.e.∑
t∈T

un,t = 1, ∀n ∈ N. (5)

If all information was available beforehand, then the optimal
charging schedule could be computed by minimizing the sum
of the weighted charging completion times, while respecting
the transformer’s limits, as in:

min
xn,t,un,t

∑
n∈N

∑
t∈T

wn · un,t · t

s.t. (1)− (5).
(6)

Problem (6) can be regarded as a problem of scheduling
tasks to machines. However, since EVs arrive at CS over
time, we consider an online variant of problem (6), where
the decision about which EV starts charging at any time
t depends on the set of EVs arriving at or before t. The
analysis of an online algorithm typically involves comparing
its performance to the optimal offline solution. An online
algorithm is c-competitive if its objective value is at most c
times the objective value of the optimal algorithm in-hindsight.
Ignoring a factor of 2 in the competitive ratio, we compare the
performance of our algorithms to the performance of SRPT.

An additional challenge towards tackling problem (6) is that
the parameters En and wn are intrinsic to the EV user and
not known to the CS (even the users may not know them
accurately). In practice, the users can neither conceptualize
and report their impatience by providing a number, nor answer
iteratively to a series of queries (as inherently assumed by
decomposition approaches). Rather, the users are able to
intuitively interpret their preferences by choosing among a
given finite set of options.

Let pn = En/xn be the time that n spent charging, when it
charges at its maximum rate (the assumption that EVs always
charge at their maximum rate is justified by our objective of
minimizing weighted completion time). The time that an EV
completes charging is denoted by cn. Note that cn ≥ an+pn.
Upon arrival, an EV n is presented with a menu of charging
options. A menu entry is of the form ([b, e], π), with b ≥ an,
which means that the time interval [b, e] is available for n’s
charging at an urgency payment π. This urgency payment is
in addition to the payment λ ·En for the electricity consumed,
assuming a flat price λ per unit of electricity. (The case of a
time varying electricity price is not considered in the paper to
simplify analysis.) Then, the cost of EV n with urgency weight
wn and charging time pn for choosing option ([b, e], π) is an
increasing function of b+pn, wn, and π. We should highlight
that the price π just quantifies the externality that n causes to
other EVs due to its urgency. Towards facilitating the analysis,
we assume a particular utility form:

κn(b) = (b+ pn) · wn + π + λ · En. (7)

Other choices for the function κn(b) are also possible (e.g.,
ones involving deadlines set by the users), but the choice
made above will lead to the minimization of the weighted
sum of the completion times, an important QoS metric. Also,

the electricity cost λ ·En under flat pricing will not affect the
scheduling of the users and therefore in what follows we will
set λ = 0 wlog. A user is not able to know and report wn,
but can however interpret it by selecting the option ([b, e), π)
that minimizes its cost κn(b), once provided with a menu.

Next, we present a truthful online algorithm, which builds
a menu of possible amounts of energy, completion times
and respective prices, from which the user chooses its most
preferable option. Truthfulness follows from the fact that the
EV users do not reveal anything about their preferences to the
algorithm. The next two sections are devoted to the detailed
description of the algorithm and its analysis.

III. OUTLINE OF THE APPROACH: PROMPT SCHEDULING
WITH UNIT WEIGHTS

We first present a solution for the simpler case of unit
urgency weights, where we do not need to charge EVs for
their urgency. Hence, the option menu for an EV n simply
consists of charging intervals [b, e), with b ≥ an, (7) becomes
κn(b) = b + pn, and EV n simply selects the option with
earliest b, subject to e− b ≥ pn. To facilitate the presentation
and the analysis, and without loss of generality, we consider
charging intervals [b, e) whose length l = e− b is a power of
2. Note that the actual duration of each timeslot in T can be
arbitrarily small (e.g., it could last for just few seconds).

Setting up a Sequence of Charging Intervals. Following
[17], we generate the charging intervals, from which the menu
options are built, by exploiting a carefully structured integer
sequence S. To formally introduce S, we first define the
following family of sequences:

S0 = 〈1〉
S1 = S0||S0||〈21〉 = 〈1, 1, 2〉
S2 = S1||S1||〈22〉 = 〈1, 1, 2, 1, 1, 2, 4〉
...

Sk = Sk−1||Sk−1||〈2k〉

where || denotes concatenation and k is any integer.
By construction, each Sk consists of 2k+1 − 1 integers, all

powers of 2. Specifically, for each nonnegative integer d ≤
k, 2d (and the corresponding subsequence Sd) appears 2k−d

times in Sk . We sometimes let Sk[i] be the i-th element of Sk.
Moreover, we note that all appearances of 2d in Sk sum up to
2k, and the sum of all integers appearing in Sk is (k + 1)2k.
Formally,

∑
i:Sk[i]=2d Sk[i] = 2k and

∑
i Sk[i] = (k + 1)2k.

We let pmax = maxn∈N En/xn denote the maximum
charging time of EVs, assuming that they charge at their
maximum rate. For simplicity of the analysis, we assume that
pmax is a power of 2 and let emax = log2 pmax. Our basic
sequence S is simply Semax :

S = Semax
= 〈1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . . , pmax〉 .

Based on S, we create a sequence S∗, which covers the entire
time horizon |T |, by concatenating S with itself an appropriate
number of times We sometimes index the different copies of S



Algorithm 1 Prompt Online Scheduling with Unit Weights

1: Given a sequence S∗ and its corresponding intervals.
2: Let EV n arrive at the station at time an .
3: ` = 0
4: repeat
5: Let [b, e) be the earliest feasible interval in S∗ with
b ≥ an and e− b ≥ 2`.

6: Include interval [b, e) in n’s menu.
7: ` = 1 + log2(e− b)
8: until EV chooses interval (i.e., until pn ≤ e− b)

as S0, S1, S2, . . ., according to their appearance in S∗. Then,
S∗ = S0||S1||S2|| · · · ||Sq|| · · · .
S∗ naturally partitions the time horizon into a sequence of

charging intervals. For each subsequence Sq of S∗, b(Sq) =
q(emax + 1)2emax denotes the starting time and e(Sq) =
(q+1)(emax+1)2emax denotes the finishing time of the corre-
sponding interval. Then, thinking of each Sq as covering the
time interval [b(Sq), e(Sq)), we get a first coarse partitioning
of the time horizon with intervals induced by S∗. We further
partition each time interval [b(Sq), e(Sq)) into a sequence
of intervals [bq1, e

q
1), . . . , [b

q
i , e

q
i ), . . ., where bq1 = b(Sq), the

length of the i-th interval is Sq[i], and i = 1, . . . , 2emax+1−1.
Formally, the starting and finishing times of these intervals are
defined inductively as follows: bq1 = b(Sq), and eqi = bqi+Sq[i]
and bqi+1 = eqi , for each i.

To provide some intuition behind the definition of S∗ and
the corresponding partitioning of the time horizon, we may
think of how SRPT would work in the offline case. With
prior knowledge about the input and to avoid delaying of short
charging requests, SRPT would schedule the charging request
in increasing order of their remaining charging time. However,
since this is not possible in the online case, the idea behind
S∗ is to keep enough short intervals vacant earlier in time, in
case some shorter charging requests appear in the future. The
definition of S ensures that each different charging time that
is a power of 2 gets its fair share in each [b(Sq), e(Sq)).

Building the Menu. Upon the arrival of EV n at an, its
charging option menu is generated by sequentially considering
the available charging intervals in S∗, starting from the first
interval [b, e) with b ≥ an. An interval is called feasible, if less
than C = bL/xc EVs have been already scheduled to charge
in it, where x = maxn∈N{xn} is the maximum charging rate.
With this definition of x and C, the CS can always serve at
least C EVs at any time. The earliest feasible interval [b, e)
of each length is included in n’s menu and n selects the one
with earliest b, under the constraint that pn ≤ e− b (see also
Fig. 1). Algorithm 1 formalizes the procedure.

By maintaining the earliest feasible interval for each length
2`, ` = 0, . . . , log pmax, Algorithm 1 can be implemented so
that an EV’s menu can be computed in O(log pmax) time,
for each arriving EV n, and in O(m log pmax) time, in total,
where m is the total number of EVs. Hence, the running time
of Algorithm 1 scales almost linearly with the number of EVs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

t = 3

S S

pn

Fig. 1: EV n with pn = 2 arrives at an = 3. Let pmax = 4.
Grey cells represent infeasible intervals. Yellow cells represent
the intervals included in EV n’s menu. n selects the interval
marked red, i.e. the earliest feasible interval of length ≥ pn.

Competitive Ratio. Next, we analyze the performance of
Algorithm 1, by comparing its total completion time to the
completion time of the preemptive schedule produced by
SRPT, which is a 2-approximation to the optimal total com-
pletion time. For the analysis, we assume that all EVs have the
same maximum charging rate, i.e. that xi = x, for all i ∈ N .
We can remove this assumption by increasing the competitive
ratio by a factor of maxn∈N{xn}/minn∈N{xn}.

Theorem 1. Algorithm 1 is O(log pmax)-competitive.

Proof. We first state the proof for C = 1. At the end, we
explain how the analysis can be generalized to any integer C.
We start with the following technical lemma, which follows
from the structure of S and the definition of Algorithm 1.

Lemma 1. Let ` ∈ {0, . . . , emax} and let S` be any subse-
quence of some Sq in S∗ (S` coincides with Sq , if ` = emax).
If there is an EV n with pn = 2d ≤ 2`, such that an ≤ b(S`)
and cn > e(S`), then the total charging volume of EVs i with
pi ≤ 2d already scheduled in S` by Algorithm 1 is at least 2`.

We consider an EV n with pn = 2` ≤ 2emax arriving at time
an. Let cn (resp. c∗n) be n’s completion time at the schedule of
Algorithm 1 (resp. SRPT). We show that cn/c∗n ≤ O(emax).

We defer the case where cn ≤ e(S0) to the full version, and
discuss here only the most interesting case where cn > e(S0).
Then, let k ≥ 0 and d ≥ 0, with k + d ≥ 1, such that:

b(Sk) < an + pn ≤ e(Sk)
b(Sk+d+1) < cn ≤ e(Sk+d+1)

I.e., the earliest possible completion time of EV n is after
b(Sk), while n completes its charging in the schedule of
Algorithm 1 by (k+ d+1)(emax +1)2emax . We observe that:

c∗n > k(emax + 1)2emax and c∗n > d 2emax

The first inequality follows from an + pn > b(Sk). For
the second inequality, we apply Lemma 1 to each of the
d subsequences Sk+1, . . . , Sk+d. EV n has arrived before
b(Sk+1) and has not completed its charging in the schedule
of Algorithm 1 by e(Sk+d). Therefore, by Lemma 1, the
total charging time of EVs i with pi ≤ 2` that have arrived
and scheduled before n by Algorithm 1 in Sk+1, . . . , Sk+d

is at least d 2emax . All these EVs must have completed their
charging before n in SRPT’s schedule.



Therefore 2c∗n ≥ (k(emax + 1) + d)2emax and

cn/c
∗
n ≤

(k + d+ 1)(emax + 1)

k(emax + 1) + d

= 1 +
(d+ 1)emax + 1

k(emax + 1) + d
≤ O(emax) .

For the generalization to any C ≥ 1, we observe that our
upper bounds on cn only depend on the interval in which EV
n is scheduled by Algorithm 1, while our lower bounds on c∗n
follow from the total charging volume scheduled before n by
SRPT (which is multiplied and divided by C ≥ 1).

IV. PROMPT SCHEDULING WITH URGENCY WEIGHTS

Generalizing the previous approach, we present a prompt
online algorithm that deals with urgency weights and op-
erates by computing online a service-price menu for each
EV. Towards this end, we let wmax = maxn∈N wn, vmax

be the smallest power of 2 such that vmax ≥ wmax, and
τmax = log2 vmax. Our generalized basic sequence V consists
of the concatenation of τmax + 1 copies of S:

V = Sτmax ||Sτmax−1|| · · · ||Sτ || · · · ||S0 .

Intuitively, we “discretize” urgency weights, using only powers
of 2, and have a copy of S for each power of 2 in vmax, . . . , 1.
In the definition of V , each Sτ is associated with value 2τ . As
in Section III, we create a sequence V ∗, which covers the en-
tire time horizon |T |, by concatenating V with itself an appro-
priate number of times. We let V ∗ = V 0||V 1|| · · · ||V q|| · · · .
As in Section III, V ∗ naturally induces a partitioning of
the time horizon T into a sequence of charging intervals,
where now each interval is associated with an urgency value
(inherited by the copy of S in which the interval is included
in). Abusing the notation, we identify subsequences of V ∗

with their corresponding intervals.
To deal with different urgency weights, we basically apply

Algorithm 1 for each length 2` to the part of V ∗ consisting of
subsequences Sτ only, for τ = 0, . . . , τmax. Then, the prices
are set by considering the time difference of intervals with the
same length and different value. More specifically, upon the
arrival of an EV n at an, the algorithm performs the following
steps for each ` = 0, . . . , emax:

• The algorithm locates the feasible interval [b`0, e
`
0) with

b`0 ≥ an and length e`0 − b`0 ≥ 2` in any S0 (i.e.,
the interval [b`0, e

`
0) is associated with value 1). These

intervals are included in the menu with price π`0 = 0.
• For each τ = 1, . . . , τmax, the algorithm locates the feasi-

ble interval [b`τ , e
`
τ ) with b`τ ≥ an and length e`τ−b`τ ≥ 2`

in any Sτ (i.e., the interval [b`τ , e
`
τ ) is associated with

value 2τ ). If b`τ−1 > b`τ , the interval [b`τ , e
`
τ ) is included

in the menu with price

π`τ = π`τ−1 + (b`τ−1 − b`τ ) 2τ (8)

TABLE I: Characteristics of popular EV types

EV Model Battery Max. Charging Charging
Capacity Capacity Time

Tesla Model S 75D 75 kWh 11kW - 16kW 5 h
Tesla Model X 75D 75 kWh 11kW - 16kW 5 h
Mitsubishi i-MiEV 16 kWh 3.7kW 6 h

Kia Soul EV 27 kWh 6.6kW 4.5 h
Ford Focus Electric 23 kWh 6.6kW 4 h

NISSAN Leaf 24 kWh 6.6kW 4 h
BMW i3 27.2 kWh 11 kW 3 h

Mercedes-Benz B-Klasse 28 kWh 11kW 3 h
Chevy Spark 19 kWh 3.3kW 6 h

Fiat 500e 24 kWh 6.6kW 4 h

V. SIMULATIONS

In the simulations process we consider the efficient schedul-
ing of the EVs during a 16-hour time horizon. To create the
menu, we are interested in the charging times of the vehicles.
We use the charging times considering the battery capacity
and the maximum charging rates as summarized in [20] for
the popular EV models as in [3] (see Table I) and we assume
that they are uniformly distributed. We assume that the number
of cars arriving per hour follows a Poisson distribution with
hourly rates taken from [3].

We examine two demand scenarios: (a) when the arriving
vehicles demand full charging; and (b) when the charging
demand varies. The performance is measured wrt. the to-
tal completion time of the vehicles charging and is com-
pared against the total completion time of SRPT’s sched-
ule.Generally, higher performance is expected when the charg-
ing slots are enough to charge all of the arriving EVs. Recall
that at most C = bL/xc EVs can charge in the same interval.
Furthermore, prior knowledge on the arrival times as well as
the charging times of the arriving vehicles, could optimize
the design of the sequence S, which in turn could lead to a
better performance overall. Therefore, in our simulations we
examined these two key elements: (1) the impact of the number
of vehicles versus the number of available charging slots and
(2) the impact of the sequence design.

To investigate the performance of the proposed solution in
denser scenarios, we fluctuate the volume of the cars while
maintaining the peak intervals of the arrival rates and we
increase the charging slots C from 10 to 50. Furthermore,
to observe how the design of the sequence affects the perfor-
mance of the proposed algorithm, we examine different integer
sequences S, which have been optimized based on the actual
charging times in Table I.

As for the running time, for the setting considered in our
simulations, with the number of EVs up to 600 and pmax = 6,
Algorithm 1 runs in few msecs in a standard laptop.
Impact of Density. To investigate the impact of density on the
performance of the algorithm, we compare its total completion
time, given a sequence design, in different levels of C.
Comparing, in Fig. 2, the SRPT ratio of the algorithm in full
demand instances (left) and when the demand varies (middle),
we note that in the latter case the SRPT ratio decreases with C.
This is because the algorithm performs better in high demand-
high density scenarios, as it keeps less vacant intervals. For
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Fig. 2: SRPT ratio on full-time demand when the number of charging slots varies (left), SRPT ratio on variability in demand
when the number of charging slots varies (middle) and SRPT ratio comparison of two different sequence designs when charging
slots equal 10 for full-time demand (right).

full charging demand, we use the sequence 〈4, 4, 6〉, while for
the varying demand, the sequence is 〈2, 4, 6〉.
Impact of Sequence Design. In Fig. 2, right chart, we com-
pare two different sequences in the extreme case of C = 10.
Each line represent the algorithm performance expressed as
the total completion time for two different sequence designs.
It is clear that the design of the sequence plays a key role to the
performance of the algorithm. As expected, in both demand
scenarios, when the lengths of the intervals in S are closer to
the actual charging times, the SRPT is better.

VI. CONCLUSIONS

We presented an online algorithm for scheduling the charg-
ing of EVs in a CS aiming to optimize the weighted comple-
tion time. To prevent EVs from acting strategically, and since
in practice, they may not be able to accurately report their
charging characteristics, we present them with a menu of pos-
sible charging options. Thus EVs can intuitively choose their
most preferable option. We prove that our algorithm achieves a
reasonable competitive ratio. Our simulations further confirm
that the algorithm performs well in practice, especially in
scenarios where the requested energy and the number of
arriving EVs are large. In future work, it would be interesting
to consider a time-dependent transformer’s capacity bound
L(t) and to include time-varying electricity prices Another
interesting research direction would be to use our approach in
a network of multiple charging stations and to also consider
the economic profits of each individual station.
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