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Decomposition of a Positive Definite Matrix
Function that is Continuously Differentiable

Chris Verhoek, Patrick J.W. Koelewijn,
Roland Tóth, Sofie Haesaert

I. INTRODUCTION

When studying nonlinear problems in a quadratic form, it
can be of interest to decompose a continuously differentiable,
positive definite matrix function A, which maps from X ⊆ Rn

to Rn×n into a constant matrix that is pre- and and post multi-
plied with another matrix function that maps from X ⊆ Rn to
Rn×n, i.e., for all x ∈ X we have A(x) = B(x)>QB(x). In
this document, we show that this can be accomplished under
certain assumptions.

II. PROBLEM DEFINITION

Consider the matrix function A : X 7→ Rn×n, where X ⊆ Rn,
n ∈ N, and assume that A admits the following properties

• ∀x ∈ X , we have that A(x) is real, symmetric and
bounded.

• A(x) is a C1 function, i.e., A(x) and ∂A(x)
∂x are continuous

functions.
• There exist two constants 0 < c1 ≤ c2 such that ∀x ∈ X ,
c1I 4 A(x) 4 c2I .

Note that the last property ensures that A(x) is positive definite
for all x ∈ X . The problem is to show that A(x) can always
be decomposed as

A(x) = B(x)>QB(x),

where the matrix Q is positive definite, i.e., 0 ≺ Q ∈ Rn×n,
and the matrix function B : X 7→ Rn×n is a C1 function which
is non-singular for all x ∈ X , i.e., ∀x ∈ X , det(B(x)) 6= 0.

III. RESULT

We now show that this decomposition is possible under the
assumptions in Section II. First, denote the set of all real,
symmetric matrices by S and the set of all positive definite
matrices by P. Note that P is open in the n(n+1)

2 –dimensional
real vector space S. The positive definite square-root function
g(A) = A

1
2 is well-defined on P [1]. In fact, given A, its

positive definite square-root is uniquely determined by the
Lagrange interpolation polynomial that maps each distinct
eigenvalue λ of A to

√
λ.

Now, let A0 be any positive definite matrix and let B0 = A
1
2
0 .

Note that B0 is positive definite. Define f(B) = B2 on S.
Then f is C1 and its Fréchet derivative Df : X 7→ BX+XB
is non-singular at B0. Note that X is the argument of Df here,
and serves as a dummy variable. As the Fréchet derivative of f
is non-singular at B0, by the inverse function theorem, f has a
C1 local inverse defined on some neighbourhood W containing
A0. Since P is open, we may assume that W ⊆ P. As this

local inverse of f gives a positive definite square-root function
on W, it must agree with g. Hence, g is C1 on W. It follows
that g is C1 on P because A0 is arbitrary.

Finally, when A is a C1 function of x, its square root
A(x)

1
2 = g(A(x)) is also C1, by the chain rule. Therefore,

the matrix function A(x) can always be decomposed as
A(x) = B(x)>QB(x) by taking B(x) := A(x)

1
2 and Q = I .
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