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Prefix Imputation of Orphan Events in
Event Stream Processing
Rashid Zaman*, Marwan Hassani* and Boudewijn F. Van Dongen

Process Analytics Group, Faculty of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven,
Netherlands

In the context of process mining, event logs consist of process instances called cases.
Conformance checking is a process mining task that inspects whether a log file is
conformant with an existing process model. This inspection is additionally quantifying
the conformance in an explainable manner. Online conformance checking processes
streaming event logs by having precise insights into the running cases and timely mitigating
non-conformance, if any. State-of-the-art online conformance checking approaches
bound the memory by either delimiting storage of the events per case or limiting the
number of cases to a specific window width. The former technique still requires
unbounded memory as the number of cases to store is unlimited, while the latter
technique forgets running, not yet concluded, cases to conform to the limited window
width. Consequently, the processing system may later encounter events that represent
some intermediate activity as per the process model and for which the relevant case has
been forgotten, to be referred to as orphan events. The naïve approach to cope with an
orphan event is to either neglect its relevant case for conformance checking or treat it as an
altogether new case. However, this might result in misleading process insights, for
instance, overestimated non-conformance. In order to bound memory yet effectively
incorporate the orphan events into processing, we propose an imputation of missing-
prefix approach for such orphan events. Our approach utilizes the existing process model
for imputing themissing prefix. Furthermore, we leverage the case storage management to
increase the accuracy of the prefix prediction. We propose a systematic forgetting
mechanism that distinguishes and forgets the cases that can be reliably regenerated
as prefix upon receipt of their future orphan event. We evaluate the efficacy of our
proposed approach through multiple experiments with synthetic and three real event
logs while simulating a streaming setting. Our approach achieves considerably higher
realistic conformance statistics than the state of the art while requiring the same storage.

Keywords: event streamprocessing, online processmining, online conformance checking, prefix imputation, prefix-
alignments

1 INTRODUCTION

Process mining discipline bridges the gap between data science and process science (Van Der Aalst,
2016). Taking event data as input, its various techniques provide insights into the underlying
business process. An event, for process mining tasks, refers to the execution of activities as part of a
process instance, while process instances are referred to as cases. Process mining based on historical
event data, also referred to as post-mortem analysis, operates on static past event data consisting
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usually of completed cases. In contrast, online process mining
techniques are tailored to process event streams for continuously
discovering insights into running cases. Online conformance
checking techniques gauge the harmony between running
cases of the streaming event logs and the existing process
model, also referred to as the reference process model.

Event streams, being the input of online conformance
checking techniques, inherit the key characteristics of the data
streams (Golab and Özsu, 2003; Aggarwal, 2007; Bifet et al.,
2010). The source of an event stream is a business process where
the process activities exhibit some behavioral relation, for
instance, causality. The events generated as a result of the
execution of these business process activities accordingly
embody the source relation. Online conformance checking
techniques, rather than individual events, look at a group of
events related under the notion of a case. This behavioral relation
between events belonging to the same process instance
consequently results in added complexity for dealing with
event streams.

Referring to Figure 1, multiple event sources emit events at a
very high rate on the event stream. A stream event minimally
contains the relevant case id and the name of the activity executed
in the context of this case. The events on the stream are observed
by the stream conformance checking system. For the sake of
illustration, we have uniquely color-coded the events belonging to
the same case. Observed events are stored in the memory of the
system by appending them to the prefixes of their relevant cases
already existing in the memory. If the prefix for a relevant case of
an observed event does not exist in the memory, then a new entry

for the relevant case is created implying that a fresh case has been
initiated. In either situation, the case is then subjected to a
comparison with the reference process model, by the prefix-
alignment–based conformance checking technique, to highlight
deviations, if any. The prefix-alignments of the cases keep
evolving with the evolution of the cases, i.e., through
observing their future events.

Burattin and Carmona (2017) summarized the key
assumptions from literature for dealing with streams (Hassani,
2015). Two of these assumptions are related to the bounded
nature of the available memory and stated as “algorithms
processing data streams should be able to process an infinite
amount of data, without exceeding memory limits” and “the
amount of memory available to an algorithm is considered
finite and typically much smaller than the data observed in a
reasonable span of time.” However, the majority of the state-of-
the-art online process mining approaches do not take into
consideration these assumptions in spirit.

State-of-the-art online conformance checking techniques
bound memory through delimiting either the number of
events or the number of cases to be simultaneously retained in
memory. In other words, these techniques keep forgetting events
or cases in overflow situations. Delimiting the number of events
to be retained per case still requires an unlimited number of cases
to be stored. Limiting the number of cases, as adapted by Burattin
et al. (2018), forgets cases on the basis of inactivity. The cases that
have not been updated for long are considered to be inactive and
therefore deemed the most suitable candidates to be forgotten.
Referring to Figure 1, the system has n bounded memory, i.e., a

FIGURE 1 | Schematic overview of the bounded-memory online conformance checking.
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maximum of n number of cases can be stored simultaneously. In
an overflow situation, i.e., the number of observed cases
surpassing the memory limit, cases are forgotten out of the
memory on the criteria of inactivity.

The inactivity-based forgetting criteria may not always be
optimal as, due to a variety of contextual factors, different
cases exhibit a different temporal distribution of events. The
forgotten cases may not necessarily be completed or permanently
halted, and events belonging to these cases may pop up in the
future. We refer to such events as orphan events and their
respective cases as prefix-missing cases. Afterwards, orphan
events corresponding to the forgotten cases are observed on
the stream. Processing such prefix-missing cases as they are
may result in elicitation of unreliable insights into the business
process. As depicted in Figure 1, in the future, along with fresh
cases, orphan events for the cases forgotten because of the
memory constraint are observed on the stream. Upon
subjection to prefix-alignment–based online conformance
checking, the orphan events, having lost their prefix, are
declared as non-conforming to the reference process model.

A simple approach to deal with prefix-missing cases would be
to adapt the listwise deletion mechanism by neglecting them for
conformance checking. This approach is problematic for at least
two reasons. First, as proposed by van Zelst et al. (2019), we need to
keep track of the forgotten cases so that we may ignore any future
residual events belonging to these cases. This record-keeping may
itself grow unbounded with the passage of time, or stream to be
precise. Second, in some process execution environments, the
arrival rate of new process instances may be high such that, at
any point in time, the number of process instances running in
parallel surpasses the case bounds imposed on the memory. The
proposed listwise deletion in this scenario will affect a considerable
portion of the observed cases. Particular variants of cases, such as
those having a sparse distribution of events, may always be
forgotten and accordingly not be taken into consideration.

To keep the memory bounded but at the same time counteract
its missing-prefix effect, we propose a novel two-step solution in
this work. In the forgetting step, we tactfully forget the cases in
accordance with set criteria, when required. In the imputation
step, through positioning in a normative process model, the
observed orphan events are imputed with a suitable prefix.
The forgetting mechanism provides leverage for the
imputation step by selectively forgetting cases that can be
reliably reproduced. Through this inter-twined approach, we
ensure on the one hand to bound the memory and on the
other hand to enable the orphaned cases to be properly
handled in conformance checking.

To evaluate the efficacy and viability of our approach, we
conduct extensive experimental evaluations with both synthetic
and real event data. The results are promising. In our
experimental setup, we have placed the proposed approach as
overlay on the prefix-alignment–based online conformance
checking technique of van Zelst et al. (2019). Nevertheless, the
approach is generic and can be tailored to any online process
mining technique.

To summarize, the contributions of this work are 1) devising a
systematic forgetting mechanism to bound memory in event

stream processing systems and 2) developing a process-
model–based prefix-imputation technique to treat prefix-
missing cases by leveraging the forgetting mechanism for this
purpose.

The rest of this paper is organized as follows. In Section 2, we
present a broad overview of the related work. Section 3 provides
the definitions and necessary details of the concepts fundamental
to our proposed approach. Section 4 presents the key idea and
components of our proposed approach. Section 5 discusses the
implementation, experiments, results, and key findings of the
experiments. Section 6 concludes this paper along with some
reflection on the opportunities for future work.

2 RELATED WORK

With process mining matured as a discipline, online process
mining is its emerging branch. Burattin et al. (2014) and Hassani
et al. (2015) are the two pioneering works in the field of online
process discovery. Hassani et al. (2019) explored the potential
application of sequential pattern mining in online process
discovery. In contrast to online process discovery, the online
conformance checking has received sufficient attention from the
research community. Burattin and Carmona (2017) and Burattin
(2017), using regions theory, extended the transition system of
the reference process model with potential deviations and
associated them with costs larger than zero. A transition
system is a basic process modeling notation, consisting of
states and transitions (Van Der Aalst, 2016). Traces, the
sequences of recorded events for cases, are replayed on the
extended transition system, and those accumulating non-zero
costs are considered non-conformant.

Alignments (Adriansyah, 2014) are considered the de facto
standard underlying technique for conformance checking of
traces. Prefix-alignments, a variant of conventional alignments
able to deal with incomplete cases, have been adapted by van Zelst
et al. (2019) for conformance checking in streaming
environments. Burattin et al. (2018) proposed a less compute-
intensive conformance checking approach, as compared to
alignments, for streaming event environments. Their proposed
approach gauges the non-conformance of cases through
comparing the behavioral patterns of the observed events with
the patterns constituting the reference process model.

Dealing with unbounded evolving data streams through
bounded memory has been one of the major challenges. The
problem is more aggravated in the case of event streams as the
data points, i.e., events, are behaviorally connected. Hassani et al.
(2019), similar to the techniques prevalent in data stream
processing such as summarization (Bahri et al., 2021; Gomes
et al., 2019), suggested maintaining an abstract intermediate
representation of the stream to be used as input for various
process discovery techniques. Online conformance checking
techniques in general assume unbounded memory. Burattin
et al. (2018) limited the number of in-memory cases by
forgetting inactive cases. Although their behavioral-
pattern–based conformance checking mechanism can deal
with incomplete cases, the reported conformance statistics are
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no more global optimum. Furthermore, the case-related
completeness and confidence scores, complementary to the
conformance statistics, are over- or underestimated. Forgetting
traces on vague criteria such as inactivity leads to themissing-prefix
problem. A variant of van Zelst et al. (2019) bounds the number of
events (or moves in terms of alignments) per trace to be revisited
during the appropriation of their previously calculated alignments,
but the number of traces to store is still boundless.

Event data quality issues have been adequately researched in
the perspective of historic data with supposedly completed cases.
Jagadeesh Chandra Bose et al. (2013) made the first effort to
exhaustively list the potential event data problems. Wang et al.
(2013) presented a pioneering work for treating noisy event data
and proposed a backtracking algorithm for the recovery of a case.
Andrews et al. (2018) envisioned an event log query language that
directly detects log imperfection issues. Suriadi et al. (2017)
adapted a pattern-based approach to identify and repair event
log quality issues. Sim et al. (2019) proposed an event chain–based
solution to repair missing activities as well as missing resources
and attributes. Kong et al. (2019) predicted missing events
through identifying sound conditions in the log. Dixit et al.
(2018) proposed a solution for repairing ordering-related
imperfections in event logs. Almost all of these mentioned
works are model-agnostic.

Rogge-Solti et al. (2013) presented a model-based approach that
combines stochastic Petri nets, alignments, and Bayesian networks
to predict missing events and their timestamps. Cheng and Kumar
(2015) proposed a technique to sanitize noisy logs by first building a
classifier on a subset of the log and then applying the classifier rules
to remove noisy traces from the log. The above-mentioned noise-
cleaning techniques mostly treat single event noise, with access to
intra-case and inter-case events. In contrast, our prefix-imputation
approach is aimed at streaming environments and making
imputation decisions on the basis of a single orphan event.

Regarding event data quality issues in stream processing, van
Zelst et al. (2020) built a probabilistic automaton to model a time-
evolving subset of the behavior of the total event stream to filter
out spurious events. In a memory-bounded stream setting, the
mentioned approach will most probably treat the orphan events
as spurious and, in line with pairwise deletion, filter them out. In
contrast, our proposed approach restores the utility of orphan
events. Awad et al. (2020) used window and speculative-based
techniques for discovering reliable directly-follows graphs even
with events arriving out-of-order. To the best of our knowledge,
missing prefixes have been investigated as an event data quality
issue neither in historic data nor in the context of event streams.
This is the first work that actually addresses memory
boundedness in event stream processing through a holistic
approach by systematically forgetting cases and accordingly
imputing the prefix-missing cases with a suitable prefix, on the
basis of the reference process model.

3 PRELIMINARIES

In this section, we provide the definitions and necessary details of
some concepts which are fundamental to our proposed approach.

3.1 Process Model
Business process models are one of the first-class citizens in
process mining analysis and are required as input in almost all
sorts of process mining techniques. A business process model
formally represents a real-life process. Business process models as
Petri nets are represented with a tuple N � (P, T, F, λ), where P
represents a finite set of places, T is a finite set of transitions, and
F ⊂ (P × T) ∪ (T × P) is a set of flow relations between places and
transitions. λ is a labeling function assigning transitions T with
labels from the set of the activity labels Λ.

The state of a process instance is represented through a
marking M, as a multiset of tokens over the places P in the
process model N, i.e., M: P→N. Furthermore, Mi is an initial
marking and Mf is a final marking. Elements of P ∪ T are called
nodes. For a node y ∈ P ∪ T, a node x is said to be its input node if
there is a direct arc f ∈ F from x to y. A node z is said to be the
output node of y if there is a direct arc f ∈ F from y to z. •y
represents the set of all input nodes of y, while y• represents the
set of all of its output nodes. Silent transitions τ (taus) are
essentially used for the completion of routing in Petri nets.

Figure 2 depicts an example process model as a Petri net. The
circles {p1, p2, . . . } represent places. Rectangle-shaped transitions
{t1, t2, . . . } map the process model to the corresponding process
activities through labels {A, B, C, . . . }. Places and transitions are
connected through directed arcs F, conventionally without labels.
Behaviorally, transitions t1 and t2 are in a sequential relation and,
in some processes, may be in a causal relation. Transitions {t3, t4}
are in a sequential relation but in a choice relation with transitions
{t5, t6}. Transition t12 enables looping, i.e., multiple runs, of {t3, t4}
and {t5, t6}. Transitions {t8, t9, t10} are in a parallel or concurrency
relation. The output arcs of transition t7 instantiate an AND-split
pattern which enables concurrency, while the AND-join pattern
constituted by the input arcs of t11 synchronizes the concurrent
behavior. With the start place pi having a single token, the Petri
net is in the initial marking [pi

1], or simply [pi].
A marking M can simply be represented in terms of the input

or output places of the transitions. A transition t having a token in
each of its input places •t is said to be enabled, i.e., •t ≤ M. An
enabled transition can fire, thereby consuming a token from each
of its input places •t and accordingly producing a token in each of
its output places t•, resulting in a new markingM′ �M −• t + t•.
This firing is denotedM[ t〉M′. In this work, we refer to the set of
transitions enabled in the initial marking Mi as case starters Tini.
The consecutive firing of a set of (enabled) transitions starting
from amarkingM is referred to as a firing or execution sequence of
M. We will be using the two terms interchangeably in this work. A
markingM is reachable from the initial markingMi if and only if
there exists a sequence of enabled transitions whose firing leads
Mi to M. Typically, the set of firing sequences PN for a process
model N is finitely large in the absence of loops and infinitely
large in the presence of a loop. A firing sequence starting fromMi

and ending in Mf will be referred to as a complete firing
sequence of N.

We define the transition prefixes for a transition t ∈ T as the set
of prefixes Pt ⊂ PN consisting of the firing sequences
corresponding to all the reachable markings M of Mi which
includes at least •t, i.e., •t ≤ M. As with PN, Pt can be infinitely
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large in the presence of loops preceding the transition t. The
length of a prefix pref ∈ Pt, i.e., the number of transitions in the
firing sequence, is denoted |pref|. Furthermore, a prefix
preft ∈ Pt is a shortest prefix for transition t if for all
pref ∈ Pt it holds that |pref| ≥ |preft|. We introduce the
notion of non-deterministic transition in this work. A
transition is considered non-deterministic if at least one of its
prefixes pref ∈ Pt leads to a marking M such that M − •t ≠ ∅.

Referring to Figure 2, in the initial marking Mi of the process
model, only transition t1 is enabled and therefore is the only case
starter, i.e., Tini � {t1}. Firing t1 results in the marking [p1]. 〈t1, t2,
t3〉 is one of the infinite sets of firing sequences of this process
model, resulting in the marking [p3]. The marking [p3] is
therefore a reachable marking of the initial marking Mi. The
firing sequence 〈t1, t2, t3, t4, t12, t5, t6, t7, t8, t9, t10, t11〉 represents
one of the possible complete firing sequences. The set of firing
sequences {〈t1, t2, t3, t4〉, 〈t1, t2, t3, t4, t12, t3, t4〉, 〈t1, t2, t3, t4, t12, t5,
t6〉, . . . } represents the transition prefixes for transition t7, with
〈t1, t2, t3, t4〉 being the shortest prefix. In the context of our
proposed approach, transition t8 is an example of a non-
deterministic transition as firing any of its transition prefixes
results in a marking that contains tokens in places additional to
p6. For instance, the shortest prefix 〈t1, t2, t3, t4, t7〉 results in a
marking [p6, p7, p8].

Soundness, liveness, and boundedness are some important
and desirable properties of a Petri net, which are out of the scope
of this paper, and interested readers are referred to Van Der Aalst
(2016). We will be mainly considering workflow nets in this paper
which are Petri nets having a distinct source place start and a
distinct sink place end, and all other nodes are on a path from
start to end.

3.2 Events
Along with a process model, event logs and its related concepts
such as cases, activities, and timestamps are also treated as first-
class citizens in process mining analysis. The execution of
activities in an organizational business process leaves a
footprint in the information system of the organization in the

form of events. Typically, this information is extracted from the
information system as an event log under the notion of cases. A
case refers to a particular process instance on the level of a process
or system. For instance, in the business process of an insurance
company, an individual insurance claim is referred to as a case.

An event refers to the atomic execution of a specific activity as
part of a business process. An event eminimally consists of 1) the
case or process instance identifier to which the event belongs, 2)
the corresponding activity name represented as #activity(e), and 3)
the timestamp of the execution of the corresponding activity
represented as #time(e). It is important to note that every event is
unique and distinct. Events referring to exactly the same activity,
having the same timestamp, and belonging to the same case of a
process are by context two different and distinct events.

The sequence of events σ corresponding to activities executed
in the perspective of a particular case is treated collectively under
the notion of a trace. |σ| denotes the length, i.e., the number of
events, of a trace. Two event sequences can be concatenated,
i.e., σ1 · σ2. Similarly, an event e can be concatenated to a
sequence, i.e., σ · e. For the sake of simplicity, we represent
traces as a sequence of the respective activities of the events. In
some contexts, the terms trace and case are used interchangeably.
For a trace σ of length n, we define its prefixes Pσ as the set
containing all of its length k heads where 0 ≤ k ≤ n. We call Pσ the
trace prefixes of σ. An event log L is a partially ordered list of
events e belonging to a single or multiple cases of a business
process. Event logs can also be simply represented as a multiset of
traces. Each trace in this multiset is referred to as a trace variant.
For simplicity, as with events, we represent event logs as a
multiset of traces containing sequences of the respective
activities of the events, i.e., #activity(e).

Table 1 depicts an excerpt of example log L obtained through
the firing of some firing sequences of the process model of
Figure 2. Each row in Table 1 represents an event e. For
instance, the first row is an event e1 with the event id of “1”
and corresponds to execution of the activity #activity(e) � A in the
context of Case “7” and at timestamp #time(e) � “2021−01−17 12:
45.” Events e7, e8, and e9 constitute a trace which corresponds to

FIGURE 2 | An example of a process model represented as a Petri net N, consisting of places {p1, p2, . . . } and transitions {t1, t2, . . . } labeled with activity names
{A, B, . . . } and inter-connected through directed arcs F.
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Case “21,” which in essence is a firing sequence of the process
model depicted in Figure 2. The trace corresponding to Case “7”
can simply be denoted in the sequence of activities as 〈A, B, C,G〉.
The event log of Table 1 can be represented simply, i.e., a multiset
of trace sequences, as L � [〈A,B,C,G〉1, 〈A,B,C〉1, 〈A,B,E〉1]. It is
relevant to note that Case “7” and Case “13” are running in
parallel. Streaming event environments are characterized by a
large number of such in-parallel running cases.

3.3 Event Streams
An event log is a static and scoped view of the process
where further addition of cases or events is not possible. In
contrast, an event stream is a dynamic and evolving view of the
events, with already observed cases evolving and new cases being
added to the stream. Formally, let C be the universe of case
identifiers and A be the universe of possible activities. An event
stream S is an infinite sequence of events over C ×A,
i.e., S ∈ (C ×A)

*
. A stream event is usually represented as

(c, a) ∈ C ×A, denoting that activity a has been executed in
the context of case c. As with events in general, every stream
event is unique and distinct, even if their respective activities, the
case identifiers, and even the arrival times are exactly the same.
Observed stream events are stored under the notion of
their respective cases in a case administration DC. The case
administration DC can be bounded by the maximum number
of cases it is allowed to store. We consider a stream event as an
orphan o � (c, a) if a trace prefix for its case c does not exist in the
case administration DC and its activity a does not match the label
of any of the transitions in case starters, i.e., Tini. Accordingly, the
case c of the orphan event o will be referred to as a prefix-
missing case.

Event streams are characterized by continuous and
unbounded emission of stream events (c, a) by in-parallel
running cases. Event stream processing systems are equipped
with finite memory and limited processing capabilities.
Additionally, their response time is required to be bounded.
Due to memory limitations, such systems cannot store all
previously observed events. Similarly, due to the constraints
on response times and limited processing capabilities, the
stored events are supposed to be accessed and processed in a
single pass (Hassani, 2015; Hassani et al., 2019). Event stream

processing systems lack any access or explicit knowledge about
future events.

3.4 Prefix-Alignments
Alignments are considered the de facto standard technique for
conformance checking of cases. Alignments explain the sequence
of events (or simply activities) in a trace through a complete firing
sequence of the reference process model (Carmona et al., 2018). A
case is considered completely conformant or fitting if a complete
firing sequence of the process model that fully explains its trace
can be discovered. Otherwise, the trace is reported as non-
conformant. The extent of the non-conformance of cases is
then measured through the difference of their trace from a
maximally explaining complete firing sequence.

Consider the trace for Case “7,” i.e., 〈A, B, C, G〉, of the event
log’s excerpt depicted in Table 1. Figure 3 shows two of the many
possible alignments of this trace with the Petri net of Figure 2.
The trace part of the alignment (neglecting≫’s) is the same as the
trace for Case “7,” while the model part of the alignment
(neglecting ≫’s) is a complete firing sequence of the Petri net.
A pair of the corresponding trace and model entry in the
alignment is known as a move, for instance, (A, A). The
moves with no skip symbol ≫ in either part of the pair are
termed synchronous moves. Synchronous moves imply that an
enabled transition with the same label as the trace activity of the
pair is available in the marking reachable by firing the transitions
in the preceding pairs. In both alignments of Figure 3, the first
three activities can be explained by transitions in a firing sequence
of the process model.

Moves with ≫ in the trace part of the pair are referred to as
model moves and illustrate that the trace is missing an activity for
the transition enabled in the marking reachable by firing the
transitions in the preceding pairs. For instance, the fourth move
in the left alignment of Figure 3 is a model move as the transition
with label D is enabled but an event with activity D is missing in
the trace at the required position. Similarly, moves with≫ in the
model part of the pair are referred to as log or activity moves. Log
moves signal the missing of an enabled transition in the process
model for the trace activity of the pair. For instance, in the right
alignment of Figure 3, after the first three synchronous moves, an
enabled transition with label G cannot be found for the activity G
of the trace.

As evident from Figure 3, multiple alignments are possible for
a trace and model. Therefore, moves are associated with a move
cost in order to manipulate and rank different alignments of a
trace. Usually, synchronous moves and model moves with silent
transitions (≫, τ) are assigned a zero cost. The sum of the costs of
all the individual moves of an alignment is referred to as the (raw)
trace fitness cost. Conformance checking looks for an optimal
alignment copt which bears the least trace fitness costs. In
Figure 3, the left alignment is optimal with respect to the
right alignment, assuming a cost of 1.0 for log, model moves
and 0.0 for synchronous moves and model moves with silent
transitions (≫, τ). It is worth mentioning that multiple optimal
alignments may exist for the same trace.

Conventional alignments assume the cases to be completed
such that no further events are to be observed for these cases.

TABLE 1 | An example event log excerpt. Each row is an event and corresponds
to the execution of an atomic activity in the process. An event shall minimally
contain the values for a case identifier, an activity name, and a timestamp.

Event ID Case ID Activity Timestamp

1 7 A 2021-01-17 12:45
2 13 A 2021-01-17 13:03
3 7 B 2021-01-18 10:07
4 13 B 2021-01-18 10:57
5 7 C 2021-02-03 14:31
6 13 C 2021-02-03 17:29
7 21 A 2021-03-19 16:49
8 21 B 2021-03-19 16:59
9 21 E 2021-03-20 11:23
10 7 G 2021-03-21 17:07
« « « «

Frontiers in Big Data | www.frontiersin.org October 2021 | Volume 4 | Article 7052436

Zaman et al. Prefix Imputation of Orphan Events

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Therefore, alignments take into consideration complete firing
sequences of the reference process model for explaining the traces
of these cases. In event streams, the cases continuously evolve and
the corresponding traces may essentially not represent a complete
firing sequence of a Petri net, but rather a prefix. For checking the
conformance of such evolving cases, the prefix-alignment variant
of the conventional alignments is more appropriate. Prefix-
alignments explain the sequence of events (or simply activities)
in a trace through a firing sequence of the process model, rather
than a complete firing sequence. The rest of the concepts, such as
moves and their associated costs, are common with the
conventional alignments.

Consider the trace for Case “7,” i.e., 〈A, B, C, G〉, of the event
log’s excerpt depicted in Table 1. Figure 4 shows three of the
possible prefix-alignments of this trace with the Petri net of
Figure 2. The trace part of the prefix-alignment (neglecting
≫’s) still corresponds to the trace, while the model part of the
prefix-alignment (neglecting ≫’s) is a prefix of a complete firing
sequence of the process model of Figure 2. As with conventional
alignments, different types of moves in prefix-alignments are also
associated with move costs in order to manipulate and rank
prefix-alignments of a trace for identifying the optimal one. The
optimal prefix-alignment evolves and changes with the evolution
of the trace. Interested readers are referred to Carmona et al.
(2018) for a deeper understanding of conformance checking,
alignments, prefix-alignments, and related concepts.

4 MODEL-BASED PREFIX IMPUTATION

In this section, we present the details of our proposed approach.
We are scoping our approach to the case-based memory bounds
where we have a fixed window of width n, i.e., we choose n to be
the maximum number of cases allowed to be stored in DC

simultaneously. Additionally, we are considering the inactivity-
based case forgetting in memory overflow situations as our

competitor approach. The prefix-alignment approach of van
Zelst et al. (2019) is used by default for online conformance
checking, unless stated otherwise.

Consider an event streaming environment where the
number of in-parallel running cases can surpass the upper
bound n of DC. The events arrive with varying distribution for
different cases. The dotted chart visualization of CCC’19
event data (Munoz-Gama et al., 2019) in Figure 5 can be
considered a snapshot of such a stream. Every dot in the chart
represents an event, with each event type having a distinct
color. This dotted chart illustrates the variation in the
temporal distribution of the events among the cases. The
majority of the cases covered by the red-colored box are
running in parallel.

4.1 Missing-Prefix Problem
Consider the state of the event stream processing system where
n distinct cases have already been observed and accordingly
stored in DC. An event (c, a) belonging to a case other than the
already stored n cases, i.e., c ∉DC, is observed. Let us refer to this
case as the (n + 1)th case. As per the competitor approach for
forgetting cases, a (supposedly) inactive case in some
intermediate marking M ≠ Mf is forgotten and memory is
freed up for the recently observed (n + 1)th case. Let us refer
to the forgotten case as cfrg. The inactivity of cases may be
attributed to the sparse event distribution of cases, but the
criteria for inactivity do not take into consideration such
factors. At some point in the future, an orphan event o in
the perspective of cfrg is observed on the stream, i.e., πc(o) � cfrg.
The orphan event o has lost its trace prefix, and hence, its
corresponding case will be referred to as the prefix-missing case.
To store this orphan event o belonging to cfrg, a space has to be
freed up by forgetting a (supposedly) inactive case out of the n
cases in DC. This forgotten case may potentially be in a marking
M ≠Mf, thereby resulting in an additional prefix-missing case. It
is important to mention here that not every single observed

FIGURE 3 | Two example alignments for Case “7” of event log of Table 1with the process model of Figure 2. Both example alignments relate the trace of Case “7”
with a complete firing sequence of the process model but differ in the number of synchronous, model, or log moves.

FIGURE 4 | Three example prefix-alignments for Case “7” of event log of Table 1with the process model of Figure 2. All these example prefix-alignments relate the
trace of Case “7” with a partial firing sequence of the process model but differ in the number of synchronous, model, or log moves.
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event may necessitate forgetting a case. Due to varying event
distribution, a sequence of observed events may belong to the
cases already existing in DC.

During conformance checking of the orphan event o, the
prefix-alignments will treat the case corresponding to the
orphan event πc(o) � c as an altogether new case starting with
activity a, i.e., πa(o) � a. Since an orphan event does not
correspond to any of the activities represented by the
transitions enabled in the initial marking of the process model
Tini, the prefix-alignments will mark this orphan event as a log
move and hence its corresponding case as non-conformant. The

case and accordingly its alignment may evolve with observing any
further events of cfrg. The exact nature of the evolving alignment
depends on multiple factors, for instance, the length of the
forgotten trace, the length of the observed trace, and the
possible orientation in the process model.

Table 2 demonstrates for an example trace some possible
combinations of a forgotten trace, events observed after
forgetting, and subsequent prefix-alignments with the process
model of Figure 2. In general, an orphan event o and its
succeeding events will be marked as log moves (as they are
less costly) until we get a sequence of events where the sum of
the costs of the model moves for the missing prefix and
synchronous moves for the observed sequence of events is less
than the cost for declaring the whole observed sequence of events
as log moves. For instance, consider the second row of Table 2
where 〈A, B〉 is the forgotten trace for a case. An orphan event C
for this case is observed. Considering a unit cost of 1.0 for model
and logmoves, declaring the orphan event as a log move has a raw
trace fitness cost of 1.0, while positioning it as a synchronous
move, i.e., 〈(≫, A), (≫, B), (C, C)〉, has a raw trace fitness cost of
2.0; therefore, it will be declared as a log move. Upon observing
the event D for the same case makes the observed sequence of
events as 〈C, D〉, but the prefix-alignments still declare these two
events as log moves. If the next observed event happens to be G,
then the prefix-alignments declare the sequence 〈C, D, G〉 as

FIGURE 5 | Dotted chart visualization of the CCC’19 event data. Cases are depicted with respect to their actual arrival time. Each point corresponds to an event,
and each color corresponds to a distinct class of events. Events for cases are horizontally distributed.

TABLE 2 | Example prefix-alignments for case “7” of event log of Table 1 with
inactivity-based forgetting at different prefix lengths.

Forgotten trace Orphan event(s) Prefix-alignments

〈A〉 〈B〉 〈(B, ≫)〉
〈B, C〉 〈( ≫, A), (B, B), (C, C)〉

〈A, B〉 〈C〉 〈(C, ≫)〉
〈C, D〉 〈(C, ≫), (D, ≫)〉
〈C, D, G〉 〈( ≫, A), ( ≫, B), (C, C), (D, D), (G, G)〉

〈A, B, C〉 〈D〉 〈(D, ≫)〉
〈D, G〉 〈(D, ≫), (G, ≫)〉
〈D, G, H〉 〈(D, ≫), (G, ≫), (H, ≫)〉
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synchronous moves with model moves for A and B. In the
example, although conformant by origin, the case is still
penalized due to the missing prefix caused by the inactivity-
based forgetting mechanism.

In the example mentioned in the previous paragraph, we
assumed the trace observed after forgetting the prefix to be
completely conformant. Consider again the second row of
Table 2 but this time with the observed events 〈C, H, I〉
after forgetting 〈A, B〉. In this scenario, the prefix-
alignments will treat all the observed events as log moves
〈(C, ≫), (H, ≫), (I, ≫)〉 with a raw trace fitness cost of 3.0,
instead of maximally synchronizing them 〈(≫, A), (≫, B), (C,
C), (≫, D), (≫, G), (H, H), (I, I)〉 with a cost of 4.0. Depending
on the distribution of the events, some cases may possibly be
forgotten more than once, thereby increasing their probability
to be maximally reported as non-conformant. For instance, the
cases in the blue-colored box of the dotted chart of Figure 5 are
probable candidates for multiple forgetting due to their sparse
distribution of events.

We highlighted the missing-prefix problem in the
perspective of a single case. In an event stream and n-
bounded DC, every (n + k)th distinct case where 1 ≤ k ≤ ∞
will cause a case in DC to be forgotten. Depending on the
number of parallel running cases and their event distribution,
multiple (and most probably distinct) cases will suffer from the
missing-prefix problem. Consider a worst-case scenario. At any
point in time, at least n + k where k ≥ 1 distinct cases are
executing in a round-robin fashion such that the ith event for
any of these n + k cases is observed only after the (i − 1)th event
has been observed for all of these cases. In this particular
scenario, after observing the first event for all the n cases,
every subsequent observed event will imply forgetting a case

out of DC to accommodate the case corresponding to the last
observed event. Assuming all the cases to be starting with an
activity corresponding to one of the transitions in Tini, except
the first event for all these cases, any other event will be reported
as a log move.

Our proposed solution tackles the missing-prefix problem
through two inter-twined steps: prefix imputation and
impactful forgetting mechanism.

4.2 Prefix Imputation
Consider again the state of the event stream processing system
we sketched in the last section where n distinct cases have
already been observed and accordingly stored in DC. An event
(c, a) belonging to a case other than the already stored n cases,
i.e., c ∉ DC, is observed. Let us refer to this case as the (n + 1)th
case. The forgetting mechanism of our proposed approach, to be
detailed in the next section, systematically forgets one of the
cases stored in DC to free up space for the recently observed (n +
1)th case. In short, for forgetting cases, our forgetting
mechanism gives priority to the cases whose current marking
M can most probably be reproduced later on observing the
orphan event for the case. Let us refer to the forgotten case as
cfrg. Imagine, at some point in the future, an orphan event o in
the perspective of cfrg is observed on the stream, i.e., πc(o) � cfrg.
The orphan event o has lost its trace prefix, and hence, its
corresponding case will be referred to as the prefix-missing case.
To store this orphan event o belonging to cfrg, a space has to be
freed up by forgetting a suitable case out of the n cases inDC, and
this cycle continues.

As per our proposed approach, before subjecting the prefix-
missing case to conformance checking, its orphan event o is
positioned in the process modelN. The activity represented by the

Algorithm 1 | Model-based prefix imputation.
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orphan event, i.e., πa(o) � a, is mapped to a relevant transition t ∈
T in the process modelN such that a � λ(t). Next, a shortest prefix
preft for transition t is calculated as per the process model N. The
preft is transformed into the alphabetΛ and imputed as a prefix to
a to reproduce the trace for cfrg. Subjected to conformance
checking, although the prefix-alignments will treat this trace as
corresponding to an altogether new case, the case will not be
wrongly penalized. Algorithm 1 provides an algorithmic
summary of our proposed approach. Upon observing a stream
event (c, a), the approach (lines 3–9) makes sure if the event is an
orphan o. If found to be an orphan, the approach positions the
activity a in the process model (line 11) and accordingly imputes
the event with a suitable prefix preft (line 12).

Table 3 demonstrates some example scenarios. A trace is
forgotten at different prefix lengths and accordingly imputed with
a suitable trace prefix by our proposed approach. The prefix-
alignment of the imputed traces with the process model of
Figure 2 highlights the efficacy of our approach. For instance,
consider again the second row of Table 3 where 〈A, B〉 is the
forgotten trace. An orphan event C for this forgotten case is
observed. Our approach imputes the orphan event with the prefix
〈A, B〉 guided by the process model of Figure 2 (the imputed
prefix is represented in bold). The resulting trace 〈A,B, C〉 is fully
conformant and bears a raw trace fitness cost of 0.0. The future
alignment of this case mostly depends on the future events. For
instance, after observing the orphan event C and accordingly
imputing it with the prefix 〈A, B〉, we observe the sequence of
events 〈H, I〉 for this case. The prefix-alignments will result in a
prefix-alignment of 〈(A, A), (B, B), (C, C), (H,≫), (I,≫)〉 with a
raw trace fitness cost of 2.0, in comparison with a prefix-
alignment 〈(≫, A), (≫, B), (C, C), (≫, D), (≫, G), (H, H),
(I, I)〉 by the competitor approach with a cost of 4.0.

Our proposed approach is able to deal with the missing-prefix
problem for every (n + k)th distinct case observed on the event
stream, where k ≥ 1, subject to the condition that a suitable trace,
i.e., being reproducible as a prefix, is available in DC at the
moment of observing the first event of that (n + k)th case.
With a stream fulfilling the mentioned criteria, the number of
in-parallel running cases has a limited impact on our proposed
approach. Event distribution and the different noise associated
with events are critical factors influencing the correctness and the
quality of our imputed prefixes, as will be realized through the
experimental evaluation.

Positioning an orphan event in the process model, a
fundamental step in our proposed approach, may not always
be deterministic due to the reasons discussed in the next section.

4.2.1 Non-Determinism in Prefix Imputation
Determinism in prefix imputation refers to the situation where
the marking M at which a case is forgotten can be reproduced
with certainty once an orphan event o for the forgotten case is
observed. On the contrary, non-determinism in prefix imputation
refers to the situation where uncertainty exists regarding the
marking of the forgotten case and the marking which can be
reproduced through prefix imputation once an orphan event for
the forgotten case is observed.

Apparently simple and just a combination of limited places,
transitions, and arcs, Petri net–based process models are
behaviorally quite complex artifacts. This embedded behavioral
complexity of Petri nets is one of the major contributors to non-
determinism in our prefix-imputation approach that demands
some heuristic decisions during the imputation step.
Concurrency, looping, or a combination of these constructs is
by far the most complex phenomenon for our prefix-imputation
approach.

For instance, consider the AND-split pattern after transition t7
in Figure 2. This transition has three output places, i.e., t7• � {p6,
p7, p8}, which are accordingly leading to three parallel branches.
Although this process model has a single transition in each
parallel branch, other business process models may possibly
have multiple transitions in each parallel branch. Suppose an
orphan event corresponding to the activity represented by the
transition t10 is observed, which implies that t7 has already been
fired and, as a result, three tokens were produced in its three
output places. While the orphan event corresponding to
transition t10 deterministically hints at the position of the
token in place p8, the location of the rest of the two tokens is
still uncertain. The set of non-deterministic markings includes
{[p6, p7, p8], [p7, p8, p9], [p6, p8, p10], [p8, p9, p10]}. This
uncertainty may gradually decrease with the evolution of the
trace. Events corresponding to the activities represented by the
transitions in the other two parallel branches are observed,
thereby making the position of the other two tokens
deterministic. Alternatively, the event corresponding to the
activity represented by transition t11 is observed which is
basically the end of an AND-join pattern and synchronizes the

TABLE 3 | Example prefix-alignments for case “7” of event log of Table 1with our proposed imputation approach and forgetting at different prefix lengths. The imputed prefix
for each trace is represented in bold.

Forgotten trace Orphan events Trace
with prefix imputation

Prefix-alignments

〈A〉 〈B〉 〈A, B〉 〈(A, A), (B, B)〉
〈B, C〉 〈A, B, C〉 〈(A, A), (B, B), (C, C)〉

〈A, B〉 〈C〉 〈A, B, C〉 〈(A, A), (B, B), (C, C)〉
〈C, D〉 〈A, B, C, D〉 〈(A, A), (B, B), (C, C), (D, D)〉
〈C, D, G〉 〈A, B, C, D, G〉 〈(A, A), (B, B), (C, C), (D, D), (G, G)〉

〈A, B, C〉 〈D〉 〈A, B, C, D〉 〈(A, A), (B, B), (C, C), (D, D)〉
〈D, G〉 〈A, B, C, D, G〉 〈(A, A), (B, B), (C, C), (D, D), (G, G)〉
〈D, G, H〉 〈A, B, C, D, G, H〉 〈(A, A), (B, B), (C, C), (D, D), (G, G), (H, H)〉
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tokens in all the three parallel branches. The latter scenario also
makes the situation deterministic, by requiring the three tokens to
be in the three input places of t11, i.e., {p9, p10, p11}. For
convenience, a cluster of related non-deterministic transitions
is referred to as a non-deterministic region. For instance,
transitions t8, t9, and t10 in the process model of Figure 2
constitute a non-deterministic region.

Due to the highlighted problem, our forgetting mechanism
least favors the cases having a non-deterministic current
marking. Nevertheless, in some situations, such cases may be
the only good candidate(s) to be forgotten. We, therefore, devise
a token displacement technique to cope with the uncertainty
regarding the tokens in non-deterministic regions of a process
model. Once an orphan event o for such a case is observed,
initially we only impute a shortest prefix preft which at least
enables the transition bearing the label corresponding to the
activity represented by the orphan event. For instance, upon
observing an orphan event corresponding to transition t10, we
impute it with the prefix 〈A, B, C,D,G〉. Next, if we observe any
event corresponding to transition t8 or t9, the token position in
their respective branches becomes deterministic. Upon receiving
an event corresponding to transition t11, we check if any branch
exists where the token position is still non-deterministic. If so, we
keep firing the enabled transitions in those branches to displace the
tokens at their input places to the respective input places of t11,
resulting in a shift from a non-deterministic state to a
deterministic one.

In some Petri net process models, multiple transitions either
bear identical labels or semantically refer to the same activity of
the process, the concept referred to as label duplication. Dealing
with duplicate labels is also non-deterministic as multiple
transitions are candidates for mapping to the orphan event.
We adapt a heuristic approach to deal with duplicate labels
and map the orphan event to the transition bearing the
shortest prefix preft in comparison with the other candidates.
The rationale behind this heuristic approach is the fact that if a
shortest imputed prefix preft turns out to be incorrect, it will
probably contribute less to the wrongly estimated trace
fitness costs.

4.3 Impactful Case Forgetting
As discussed in the previous section, not all forgotten cases and
their respective markings M can be reproduced with certainty
upon observing their orphan events o. Therefore, we devise an
impactful forgetting mechanism that categorizes the cases
existing in DC according to their reproducibility score.
Accordingly, the case having the least uncertainty about its
reproduction is forgotten. The devised mechanism increases the
likelihood of correct imputation decisions, thereby providing
leverage to the imputation step discussed in the previous
section. Algorithm 2 summarizes our single-pass categorization
mechanism. The following steps briefly explain the various
conditions to determine the reproducibility scores of the cases
in DC:

Algorithm 2 | Searching suitable cases for forgetting.
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1) The first condition (line 2) is related to the length of traces.
A monuple (singleton) trace, i.e., the one consisting of a
single event, is the most ideal candidate as it by default
belongs to Tini and hence can be reproduced with high
certainty.

2) The second condition (line 4) takes into account the
imputation history of the cases in DC. Cases with an
imputed prefix and having their current marking being
unchanged after the imputation can be reproduced with
certainty. The latter part of the condition in essence
implies that no further events have been observed after
the imputation, and hence, the marking can be
reproduced. With reference to the discussion in the
previous section, cases with a deterministic current
marking are preferred over the cases with a non-
deterministic current marking (lines 5–8).

3) The third condition (line 9) is related to the conformance,
i.e., trace fitness costs of the cases, and their resemblance
to the corresponding shortest prefix as per the reference
process model. First, we check if a trace is completely
conformant, i.e., having a raw trace fitness cost of 0.0.
Then, we check if the n − 1 length trace prefix of the
length n trace is the same as the shortest prefix of the
transition corresponding to the activity of the event at
position n in the trace. If both checks are fulfilled, then
the trace can be reproduced with certainty. Again, cases
with deterministic current marking are preferred over
the cases with non-deterministic current marking (lines
10–13).

4) Concomitantly, we keep track of the case with the minimum
trace length in DC (lines 14–16).

Ideally, we look for a monuple trace, and if found, further
categorization is not required. Otherwise, we keep traversing DC

and labeling the cases with a reproducibility score on the basis of
the mentioned conditions. After completely traversing DC, we
select the case with the maximum certainty regarding its
reproduction, i.e., minimum reproducibility score as per the
above-mentioned conditions. If a suitable candidate is not
found, then the case with the minimum trace length in DC is
selected to be forgotten with the rationale that a wrong prefix
imputation for its orphan event will cause the least damage,
i.e., wrongly estimated non-conformance. It is important to
mention that we make an assumption about the orphan event
to be legitimate and noise-free. This basic assumption bridges the
two steps of our proposed approach. Noisy events observed as
orphan events can negatively affect the quality of prefix
imputation, as observed in the experimental evaluation.

5 EVALUATION

In this section, we discuss the implementation of our proposed
approach followed by the details on the experimental setup, the
purpose, and the results of the conducted experiments.

5.1 Implementation
The proposed approach is evaluated through a prototype
implementation1 on top of the PROM2 framework. The
prototype requires a Petri net process model N and its initial
and final markings Mi, Mf as input. An oracle, be it an expert or
algorithm, marks the non-deterministic regions in the process
model. To keep the run-time computations minimal, all the
process model–related computations are performed a priori in
an offline set-up phase, for instance, the calculation of the shortest
prefixes. The prototype uses the prefix-alignments approach of
van Zelst et al. (2019) for conformance checking. The
experiments are conducted on a standard machine installed
with Windows 10 64 bit, an Intel Core i7-7700HQ 2.80 GHz
CPU, and 32 GB of RAM.

5.2 Experimental Setup
Process models and event data, the two first-class citizens of
conformance checking, are quite diverse artifacts. The complexity
of process models ranges from a simple sequence of activities to a
combination or nesting of loops, choices, and concurrency, with
duplicate labels as an add-on. The degree of these constructs is
also directly related to the complexity of a process model. Event
data can be diverse on the level of individual events and on the
case level. Events within a case can have a single type or multiple
types of noise, such as missing, redundant, or dislocated (out-of-
order) events associated with them. On a higher level, multiple
cases can be running in parallel. The efficacy of our proposed
approach, in terms of the quality or accuracy of the predicted
prefixes and accordingly the resulting estimated conformance
statistics, is correlated with the aforementioned dynamics of the
process models, events, and cases. The following experiments are
designed such that the impact of these three types of complexity
sources on our proposed approach, either in isolation or in
combination, can be discovered. The foremost criteria to select
event logs for these experiments are the arrival rate of new cases
such that the number of cases running in parallel cases surpasses
our memory limits. We briefly explain the purpose of each type of
experiment in Section 5.3.

TABLE 4 | Details of the event data used in the experimental evaluation.

Event log Cases Events Event classes Remarks

CCC’19 300 7,800 29 Synthetic event log
BPIC’12 application process 13,087 60,849 10 Real event data
BPIC’12 application and offer processes 13,087 92,093 17 Real event data
Road traffic fine management process 150,370 561,470 11 Real event data

1https://github.com/rashidzaman84/MBprefiximputation.
2www.processmining.org.
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Table 4 provides the general details of the event data used
in the experiments. For generating the synthetic event data,
we modeled and simulated the normative process model of
the Conformance Checking Competition 2019 (CCC’19)
event log (Munoz-Gama et al., 2019) in CPN Tools.3 In line
with the purpose of the experiment with synthetic event data, no
noise is introduced during the simulation to keep all the cases
100% conformant with the process model. The event distribution
of this synthetic event log is provided as a dotted chart in
Figure 5. We control the arrival rate of cases such that a
surge in cases (highlighted in the red-colored box) causes the
number of in-parallel running cases to surpass the memory
bound. In all our experiments, we are using n � 100 as an
upper bound on the number of cases allowed to be stored
simultaneously in DC, unless stated otherwise. As visible in the

dotted chart of Figure 5, along with the cases initiated in the surge
period, the pre-surge cases located in the blue-colored box are still
active.

The second and third event logs belong to Business Process
Intelligence Challenge (BPIC’12) (van Dongen, 2012). These real
event data belong to a Dutch Financial Institute regarding the
applications for personal loans or overdraft within global
financing organization data. The process consists of a
backbone application process and its integral offer sub-process.
The application process bears some distinguishing characteristics
in isolation and in combination with the offer sub-process.
Therefore, we analyze the application event data individually
as well as in combination with the offer event data as a holistic
process. The normative process models used in these experiments
have been developed by a business process modeling expert in
consultation with the domain knowledge experts from the
financial institute. These process models are provided in the
Supplementary Material. The fourth event log consists of real

FIGURE 6 |Results of the experiment with the CCC’19 synthetic event data. (A) Prefix-alignments without our prefix-imputationmethod. (B) Prefix-alignments with
our prefix-imputation method.

3https://cpntools.org.
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event data extracted from an information system responsible for
managing road traffic fines (de Leoni and Mannhardt, 2015). The
process model used in the experiment has been discovered from
the event data by a process mining expert, with further
enrichment through the domain knowledge and information
regarding traffic regulations. The mentioned process model is
provided in the Supplementary Material.

We realize an event stream by dispatching events in a log one
at a time on the basis of their actual timestamps so that the case
and event distribution of the event log is preserved. We use the
default unit cost of 1.0 for both log and model moves, while
synchronous and silent transition τ model moves incur a cost of
0.0. The non-zero costs of all the individual log and model moves
for a trace are combined to calculate the raw trace fitness cost. A
zero raw trace fitness cost indicates that the trace is fully
conformant with the reference process model, while a non-zero
cost hints at some non-conformant behavior in the case. The
magnitude of the cost indicates the level of non-conformance, such
that a lower trace fitness cost, as a result of a high number of
synchronous moves in the optimal alignment, indicates higher
conformance of the trace with the reference process model.

5.3 Results
We evaluate our approach with respect to combinations of
varying complexities of the process model, events, and cases.
Our aim is to answer questions regarding different quality aspects
of our proposed approach. Through our first experiment with the
noise-free synthetic event log CCC’19, we answer the following
question in Section 5.3.1: “Can our approach perform as good as
an offline approach bearing unlimited memory with noise-free
event data?” Related to the robustness of our proposed approach,
the next set of experiments with real event data of BPIC’12
investigates in Section 5.3.2: “How do different types of noise,
in isolation and in combination, together with process models of
complex constructs affect the quality of our prefix-imputation
decisions?”. Our final experiment with the real event data of
the road traffic fine management process evaluates the scalability
of our approach in Section 5.3.3 through validating our claim
that “The number of cases running in parallel has a limited impact
on our approach”.

5.3.1 Synthetic Data Study
In our first experiment, we ascertain the peak accuracy of our
proposed approach with the CCC’19 synthetic event log and its
very straightforward process model. The relevant process model
is quite sequential and does not bear any complex constructs.
Similarly, all the cases in the event data are noise-free and fully
compliant with the relevant process model. As depicted in the
dotted chart of Figure 5 of these event data, the cases are diversely
distributed and a single surge of in-parallel running cases is
simulated in order to surpass the memory limit of n � 100.
The surge necessitates forgetting in-parallel running cases. The
majority of the cases initiated during the surge are short-lived so
that we can observe the post-surge effect as well.

We perform the experiment with the streaming version of
prefix-alignments of van Zelst et al. (2019) without prefix
imputation, and then with the same streaming version of

prefix-alignments of van Zelst et al. (2019) with our proposed
prefix-imputation approach in place. The prefix-alignments
without prefix imputation forget cases in overflow situations
on the basis of inactivity criteria, and therefore, this
configuration is considered the competitor. In contrast, our
prefix-imputation approach uses the proposed impactful
forgetting mechanism.

Due to the event and case distribution and to clearly observe
the pre-surge, in-surge, and post-surge effects, we are reporting
different statistics in terms of the number of cases within different
windows. Events belonging to the same date are reported
collectively as one window. For each window, we present the
maximum number of cases in memory, the distinct observed
cases, the conformant and non-conformant cases, and the
categorization of the observed cases with respect to their
arrival in the context of the surge as pre-surge, in-surge, or
post-surge. Figure 6A depicts the results of the competitor
approach. Correlating the dotted chart of Figure 5 of the
CCC’19 event data and the experimental results in Figure 6A,
a surge of (short-life) cases starts at Window 32 such that the
number of in-parallel running cases surpasses the memory bound
of n. The surge eventually diminishes at Window 43.

With the number of in-parallel running cases surpassing the
memory bound, the pre-surge and even some in-surge cases are
forgotten out of DC to accommodate subsequent cases. This cycle
continues till the influx of new cases and already running cases
stabilizes at or below the limit n. As the orphan events of the
forgotten pre-surge and in-surge cases are missing their prefixes,
starting at Window 33, the competitor approach reports them as
non-conformant. Depending on the event distribution of the
cases running in parallel, the curves of the distinct and non-
conformant cases coincide in some of the windows. The
(improper) penalization of prefix-missing cases even continues
post-surge till such cases are active. Once these prefix-missing
cases reach their final marking, the effect of missing-prefix
problem diminishes. Referring to Figure 6A, at Window 64
onward, only the post-surge and some of the in-surge cases
are active, and hence, no non-conformance is observed.

Figure 6B depicts the results of our proposed prefix-imputation
approach. As evident, the prefix imputation handles the surge by
wisely forgetting cases and then reproducing them as the missing
prefix of their orphan events. As a result, the prefix-alignments do
not report any incorrect non-conformance during the entire process.
As evident in the figure, the curves of the distinct and conformant
cases completely overshadow each other. Accordingly, the line of the
non-conformant cases is lying on the x-axis, which would also be the
case with an offline approach bearing unlimited memory.

5.3.2 Robustness Study
Through these experiments, we aim to check the behavior of our
approach in response to the different types of noise prevailing in the
event data and varying levels of complexity existing in the relevant
process models. We use two distinct sets of the real event data of
BPIC’12, primarily because of their distinct behaviors. Through the
experiment with the event data of the backbone application only
process of BPIC’12, we are exposing our approach to only dislocation
or out-of-order type of event noise contained in these event data. The
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relevant process model, provided in the Supplementary Material, is
relatively simple and equipped with all sorts of constructs, except for
looping and label duplication. The steady arrival of fresh cases results
in the number of in-parallel running cases to surpass the memory
limit of n � 100.

Through the experiment with the event data considering both the
backbone application process and its integral offer sub-process of
BPIC’12, we expose our approach to multiple types of event noise
and on the contrary to a high-level complex process model. Cases in
this event log contain missing and out-of-order types of event noise.
Some cases even contain both of these types of noise. The reference
process model, provided in the Supplementary Material, bears all
the characteristics of a complex model. This model has a high degree
of label duplication, such as four transitions sharing the label
A_DECLINED. Additionally, the model is not sound (Van Der
Aalst, 2016). Majority of the transitions belong to a non-
deterministic concurrent region. The non-deterministic region is
quite complex by virtue of nested loops, choices, and concurrency.

The arrival rate of fresh cases is consistent such that the number of
in-parallel running cases surpasses the memory limit of n � 100.

The experiments focus on the comparison of the conformance
estimation of the streaming version of prefix-alignments of van
Zelst et al. (2019) with and without our proposed prefix-
imputation approach in place against that of the non-
streaming version of prefix-alignments of PROM (to be
treated as the ground-truth). Both the non-streaming version
of prefix-alignments of PROM and the streaming version of
prefix-alignments of van Zelst et al. (2019) rely on the A+

shortest path algorithm (Hart et al., 1968) for searching
optimal alignments copt. The key difference between the two
approaches is related to their suitability for different
environments. The former is an offline approach that is well-
suited for the analysis of historic event data, while the latter is
optimized to be efficient in streaming environments. The prefix-
alignments without prefix-imputation configuration (competitor
approach) forget cases in overflow situations on the basis of

FIGURE 7 | Prefix-alignments with andwithout our prefix-imputationmethod for the application process of the BPIC’12 event data. (A)Cumulative raw trace fitness
cost. (B) Number of non-conformant cases.
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inactivity criteria, while our prefix-imputation approach uses the
impactful forgetting mechanism. The steady increase of fresh
cases results in the number of in-parallel running cases to be
greater than the memory limit. For this reason, we use in the
following the number and the cumulative raw trace fitness cost of
all non-conformant cases at different prefix lengths as our
comparison metrics.

Figure 7 depicts the result of our experiment with the real event
data of BPIC’12, taking into account only the backbone application
process and its related events. The competitor approach starts
deviating from the ground-truth by overestimating non-
conformance right at a prefix length of 3, as it highly suffers
from the missing-prefix problem. This overestimation keeps
increasing almost linearly with the increasing prefix length. Our
proposed approach and the ground-truth are in complete agreement
for all the cases till prefix length 5. Starting fromprefix length 6, there
is a surprising disparity between the ground-truth and our proposed
approach. Our approach underestimates non-conformance for some
of the cases.We investigate the cases with at least a prefix length of 6,
in light of the reference process model. As depicted in Figure 8, all
such cases bear the same set of activities {A_APPROVED,
A_REGISTERED, A_ACTIVATED} at their last three trace
indices, but in a random order such that these three activities
appear to be executed in parallel, while the relevant AND-split
pattern of the process model allows only {A_REGISTERED,
A_ACTIVATED} to be executed in parallel after the execution of
A_APPROVED.4

The ground-truth (always having the complete and true prefix)
treats the events not conforming to the mentioned pattern of the
process model as out-of-order arrived events and reports the cases as
non-conformant. Especially, the cases with two-step swapping where
A_APPROVED is observed after {A_REGISTERED,
A_ACTIVATED} are penalized the most with a raw trace fitness
cost of 2.0, by considering both A_REGISTERED and
A_ACTIVATED as log moves. On the contrary, as per our
proposed approach, the traces at a prefix length of 5 are
considered good candidates to be forgotten. Therefore, some of
the cases having the mentioned out-of-order event noise are
forgotten in case of memory overflow. While observing one of
the {A_REGISTERED, A_ACTIVATED} out-of-order events as
an orphan event, our approach imputes a prefix including
A_APPROVED, and therefore, the out-of-order noise of such
cases gets masked at prefix length 6. Once the swapped
A_APPROVED event is observed for such a case, it is reported as
a log move, and the trace gets a raw trace fitness cost of 1.0, which is
an underestimation in comparison with the cost of 2.0 of the
ground-truth. It may however be noted that, at prefix length 8,
which is the last event of the relevant cases, the number of cases
reported to be non-conformant by our approach resembles the
ground-truth.

Figure 9 refers to the results of our experiment with the real
event data considering both the backbone application process
and its integral offer sub-process of BPIC’12. As illustrated in the
figure, the competitor approach starts deviating from the
ground-truth by overestimating non-conformance right at
prefix length 3 due to suffering from the missing-prefix
problem. Interestingly, the approach is almost in agreement
with the ground-truth at prefix length 14. The reason for this
unexpected agreement lies in the fact that the majority of the

FIGURE 8 | Cases with a prefix length of at least 6 in the application process of the BPIC’12 event data.

4https://data.4tu.nl/articles/dataset/Conformance_Checking_Challenge_2019_
CCC19_/12714932/1.
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cases in the event log have a non-fitting (noisy) event at prefix
length 14 which are marked as non-conformant by the ground-
truth. Due to the missing-prefix problem, the competitor
approach also marks almost all of the cases at this prefix
length as non-conformant and hence in agreement with the
ground-truth.

In contrast, referring to Figure 9, our proposed approach in
most of the cases is in agreement with the ground-truth, except
for some cases in two regions. At prefix length 5, non-
conformance is overestimated, and starting at prefix length 9,
it is underestimated for some of the cases. Investigating the cases
having at least a prefix length of 5, along with taking into

FIGURE 9 | Prefix-alignments with and without our prefix-imputation method for the application process and its offer sub-process of the BPIC’12 event data. (A)
Cumulative raw trace fitness cost. (B) Number of non-conformant cases.

FIGURE 10 | Example cases with different noise types in the application process and offer sub-process of the BPIC’12 event data.
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consideration the reference process model, a combination of a
silent transition leading to an AND-split pattern and a duplicate
label bearing transition as its predecessor, causes the prefix-
alignments to find an optimal alignment for such traces only
at prefix length 6.

The investigation of underestimated non-conformance
starting at prefix length 9 reveals the masking of the different
types of noise prevailing in the event data as the major cause.
These different types of noise include missing events, out-of-
order events, and a combination of both. Only 17% of the cases
having a prefix length of 9 or more are fully conformant.
Furthermore, 55% of the remaining 83% non-conformant
cases are having events with a single noise type, while the
events of the remaining 45% bear multiple noise types. Some
cases follow a loop in the process model, and hence, multiple

instances of the same noise type exist in their traces. Figure 10
depicts one instance of each of the mentioned noise. The noise
appears only after prefix length 8, i.e., in the reachable markings
of marking [p3, pa5]. Looking at the markings of the cases
forgotten during the course of the experiment, approximately
27% of the cases are forgotten in a reachable marking of
[p3, pa5].

A swap at the input marking of a noisy event gets masked by
the prefix imputation, since the noise associated with an orphan
event cannot be established in the absence of its prefix. The high
percentage of the noisy events existing in the reachable markings
of marking [p3, pa5] and at the same time the large number of
forgetting in the reachable markings of [p3, pa5] increases the
likelihood of noisy events being masked by the prefix imputation.
On the contrary, the ground-truth, having knowledge of the

FIGURE 11 | Prefix-alignments with and without our prefix-imputation method for road traffic fine management process event data. (A) Cumulative raw trace
fitness cost. (B) Number of non-conformant cases.
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complete prefix, detects the noise associated with the events and
hence correctly estimates the non-conformance.

Along with the underestimation of non-conformance
discussed in the previous paragraphs, the label duplication of
the process model and our heuristic approach to deal with
orphan events bearing duplicate labels cause overestimated non-
conformance for a few cases. The orphan events of some of the
cases forgotten in the reachable markings of marking [p3, pa5]
are having duplicate labels. For an orphan event with a duplicate
label, our heuristic approach maps it to the transition bearing
the shortest prefix to be imputed. The mentioned orphan events
are therefore mapped to an incorrect duplicate labeled
transition, and the events following the orphan events are
marked as non-conformant. Such traces, therefore,
overestimate the non-conformance in comparison with the
ground-truth.

5.3.3 Scalability Study
As a final experiment, we expose our approach to a high degree
of in-parallel running cases through the event data of the road
traffic fine management process. These event data greatly
resemble the worst-case scenario we sketched in Section 4.
Besides a large number of process instances running in parallel,
many types of the process activities are executed in the batch
mode. This two-dimensional complexity enables us to stress the
forgetting and the imputation steps of our proposed approach.
The reference process model, provided in the Supplementary
Material, is also behaviorally quite diverse. The majority of the
transitions, such as {Payment1, Add penalty}, can be
fired an infinite number of times. The activity Payment is
having label duplication in the process model. Furthermore,
the part of the model starting at place p4 is flower-like (Van Der
Aalst, 2016). We adapt the same configuration regarding the
competitor approach and the ground-truth as in the previous
experiments with real event data of BPIC’12 for this
experiment.

As already established in Section 4 and illustrated in Figure 11,
the competitor approach reports the first event of all the cases as
conformant with synchronous moves. Starting from a prefix length
of 2, themajority of the subsequent events are reported as logmoves
due to the missing-prefix problem. In contrast, our proposed
approach finds most of the times a suitable trace, i.e., being
reproducible as a prefix, and hence, the curve is almost in
agreement with the ground-truth. As in the previous experiment
with real event data, some of the cases are having single or multiple
non-fitting events. Such noisy events get masked in some of
the forgotten cases, and hence, our proposed approach
underestimates their non-conformance. This slight disagreement
with the ground-truth is visible in Figure 11, especially at prefix
lengths of 5 and 6.

5.4 Discussion on the Results
We evaluated the efficacy of our proposed approach through
the experiments discussed in the previous section. The real
event data used in the experiments were selected such that,

on the one hand, the reference process models contain
a variety of complex behavioral and structural properties
and, on the other hand, the event data itself contain
almost all sorts of noise, with certain degree of in-parallel
running cases.

From the process model perspective, our proposed approach is
able to deal with non-determinism caused by behavioral
properties like concurrency. The non-determinism caused by
label duplication has the potential to negatively affect the
quality or correctness of our imputation decisions, resulting in
over- or underestimated non-conformance. Another important
aspect of the Petri net process models is the distinctiveness of the
shortest prefixes. On the one end of the spectrum, we have flower-
like process models where almost all the transitions in the process
model have the same shortest prefix. For instance, consider the
flower-like process model provided in the Supplementary
Material where 〈A〉 is the only shortest prefix for the
majority of the transitions in the process model. On the other
end of the spectrum, we have lucent Petri nets (van der Aalst,
2019) where, by definition, each marking is uniquely identified by
the set of enabled transitions, therefore implying distinct shortest
prefixes. Lucent Petri net–based process models are best suited for
our proposed approach.

As highlighted by the experiments, orphan events with an
associated noise have the potential to negatively affect the
quality of our imputed prefixes, resulting in over- or
underestimated non-conformance. Missing events can get
masked by the orphan events, resulting in underestimated
non-conformance. The magnitude of underestimation is
somehow related to the number of missing events. Although
the noise related to (consecutive) redundant events does not
exist in the event logs of our experiments, with cognizance
gained from the experiments, our approach is resilient toward
such redundant events as it maps the orphan event to the
transition bearing the shortest prefix. The potential of the
out-of-order (or swapped) events as orphan events to
negatively affect the quality of imputation depends on the
orientation of the out-of-order event and usually causes non-
conformance to be underestimated.

Building on the insights gained from the experiments, a
relatively severe kind of noise affecting our prefix-imputation
decisions would be spurious orphan events. An event is
considered spurious if it seemingly does not fit the context of
the rest of the trace (van Zelst et al., 2020). Highly out-of-order
arrived event or an event belonging to an unreachable marking
of the marking in which a case was forgotten is an example of
this type of noise. For instance, consider a scenario where we
forget a case X having the trace 〈A〉, with reference to the
process model of Figure 2. Later, we observe an event (X, K) as
an orphan event for case X. Our proposed prefix-imputation
approach will impute the prefix 〈A, B, C, D, G, H, I, J〉 to the
orphan event K for case X. Later, we observe the sequence of
events 〈B,C,D,G,H, I, J〉 for caseX, implying that the orphan event
(X, K) was spurious. Any event observed after the orphan event will
be marked as a log move, therefore causing a series of log moves and
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overestimated non-conformance. Interestingly, the prefix-
alignments without prefix imputation in place will mark the
spurious event as a log move, thereby correctly estimating the
(non)conformance for trace X. The rationale behind our heuristic
approach to deal with duplicate labels can be easily elaborated in this
particular scenario. Suppose the spurious orphan event can be
mapped to multiple transitions in the reference process model.
Our heuristic approach will map the orphan event to the
transition bearing the shortest prefix in comparison with the
other candidate transitions. The imputed prefix being shortest in
comparison with the other candidates will therefore cause less
(wrongly) overestimated non-conformance.

It is pertinent to mention here that the negative effect of
missing and out-of-order arrived orphan events is more
pronounced in our experiments as the stream produced from
static event logs does not get a continuous influx of new cases. The
effect is expected to be far less in real streaming environments
where new cases will keep arriving continuously and presumably
best candidates for forgetting will always be available, resulting in
a more favorable forgetting pattern.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel solution for bounding
memory in event stream processing systems without falling
prey to the missing-prefix problem. Our proposed approach
selectively forgets reproducible cases in memory overflow
situations and accordingly reconstructs the forgotten prefixes
with the help of the normative reference process model on
observing the orphan events. We evaluated the efficacy of
our approach with synthetic and real event data. Despite
some underestimation caused by noisy events, the results are
reliable and reasonable in comparison with those of the
approaches which lack a mechanism to deal with the
missing-prefix problem.

We identified some areas for improvement and enhancement
in our proposed approach. We envision an imputation decision
revision mechanism as a remedial action for dealing with
incorrect or partly correct imputation decisions resulting
mainly from spurious orphan events, or label duplication. Till
a certain event window after imputation, we shall observe if the
imputed prefix and non-imputed parts of the trace are still in
harmony, in light of the reference process model. If a disparity is
observed, then the imputations shall be revisited.

Information about missing events cannot be established a priori
as we lack knowledge about the past and future events of an orphan
event. As a solution to avoid the masking of missing events, besides
a process model, the statistical information of the events observed
over a past case–based or time-based window can be stored. On the
basis of this statistical information, an adaptive forgetting
mechanism shall be able to recognize the potential problematic
markings in the process model for which model moves are
prevalent and subsequently cases in such markings shall not be
forgotten.

In our proposed approach, we use the shortest model prefix for
imputation. In some classes of processes, the shortest prefix may not

always be optimal, and for such processes, the optimal prefix cannot
be ascertained only through a process model. Priority-based
processes, where different classes of customers are treated
differently, are an example of such processes. For predicting
optimal prefixes in such processes, in addition to a process
model, we need to take contextual information into
consideration. Therefore, we aim to incorporate all available
information sources of the process into a machine learning
predictive model to predict optimal prefixes for imputation of the
orphan events. Additionally, the process stakeholders may be
interested in high imputation precision in some critical parts of
the process while being flexible in other non-critical areas of the
process. A personalized forgetting mechanism, conceptualized by a
domain expert, is therefore conceived as a relevant future work area.
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