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Summary

Signal propagation in an optical fiber suffers from fiber effects that distort the transmitted sig-
nal. These effects are modeled by the nonlinear Schrödinger equation (NLSE) [1, Ch. 2]. One
of the simplest variants of the NLSE accounts for three main physical effects: attenuation,
group velocity dispersion (GVD), and Kerr nonlinearities [1, Ch. 2]. Attenuation and GVD
can be efficiently compensated with amplifiers and linear filters [2], respectively. Digital
compensation techniques that also account for nonlinearities also exist, however, they suffer
from high computational complexity [3]. A possible method for alleviating this complexity
is to design receivers based on simplified analytical representations of the NLSE solution [4].
Some receivers [5] have been developed based on regular perturbation (RP) on the Kerr coef-
ficient [6, 7], which is an approximated solution of the NLSE. The RP method is a technique
used to simplify differential equations by assuming that one term of the equation has lower
impact on the final solution than the others. In the RP on the Kerr coefficient, such term is
the nonlinear one. Therefore, the approximation given by that model is inaccurate in the
highly-nonlinear regime, as shown in [6, 7].

To reduce the complexity and optimize elements of an optical system, machine learning
(ML) can be used. ML-optimized receivers, such as learned digital backpropagation (LDBP)
[8], have proven in simulations to achieve close or higher performance than its standard
counterpart, digital backpropagation (DBP) [8, 9]. LDBP performance in deployed fibers
or experiments is still being investigated in the literature [10, 11]. ML can also be used to
improve the design of certain transceiver subsystems. Examples of this are the optimization
of geometrical shaping (GS) [12, 13] and probabilistic shaping (PS) [14]. The ideal designs
of GS and PS when the signal is propagated in the NLSE are still unknown in the literature.

In this thesis, we address two problems: (i) finding an analytical approximated solution
of the NLSE in the highly-nonlinear regime; and (ii) investigating the performance of ML-
optimized optical systems. The main contributions are four:

1. we use the NLSE as a starting point to obtain a new approximate closed-form analytical



vi Summary

solution based on RP. The resulting model is called RP on the GVD parameter and has
high accuracy in the low-dispersive highly-nonlinear regime [15, 16].

2. we improve the accuracy of the RP on the GVD parameter model by introducing a new
analytical model that is a perturbation on the same parameter. In this new approach,
we replace RP by a method called frequency logarithm perturbation [17, 18].

3. we investigate the experimental performance of an ML receiver for optical communi-
cations based on the DBP method. The resulting LDBP is shown to achieve the same
performance as DBP but with significantly less complexity [19].

4. we use ML to optimize an end-to-end optical system and find a high-performance PS
and GS designs. In addition, the optimization is performed in a multi-channel trans-
mission for each channel individually [20, 21]. We were able to optimize for the first
time a 10 bits/4D symbol constellation.
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8 Introduction

1.1 Motivation
The way society has used the internet over the past three decades has significantly changed.
From sending text or image messages, the internet is now used to stream high-resolution
videos and even to perform remote real-time surgeries [22]. This change results in an increase
of end-user data rates from the order of kilobits per second (kbps) to the order of gigabits per
second (Gbps). This increase was only possible with the advent of optical fibers.

Optical fibers are the backbone of global communication, carrying approximately 99% of
today’s internet traffic. The large available bandwidth and low power loss allow optical fibers
to transmit terabits of information per second over thousands of kilometers. Many of these
cables are located in the bottom of oceans and connect all continents. Currently, there are
over 400 subsea cables in operation [23]. Although each of these cables transmit an immense
amount of data, the current growth of internet traffic might reach the rate limits of optical
fiber transmission, an effect known as the “capacity crunch” [24].

One of the main factors that limit optical fiber transmission are the fiber effects that
emerge during the signal propagation. These effects can be represented by the nonlinear
Schrödinger equation (NLSE) [1, Ch. 2] (see Sec. 3.2). The NLSE determines how the input
signal evolves during fiber propagation. There are three main physical effects that are usually
used to model transmission: attenuation, CD, and Kerr nonlinearities [1, Ch. 2]. The attenua-
tion is a linear effect that reduces the signal power after transmission over a certain distance.
This effect can be undone by the use of optical amplifiers within the transmission link. CD
is also a linear effect and is modeled as an all-pass filter [1, Ch. 3]. This effect can also be
corrected by using an all-pass filter with the opposite transfer function and even efficiently
compensated by FIR filters [2]. However, in the presence of nonlinearities, CD mixes with
nonlinearities giving rise to a distortion that is nonlinear on the transmitted signal and whose
correction can be challenging. This effect is one of the major limitations in the fiber trans-
mission rates [25]. To overcome the limits on fiber transmission, a deeper understanding on
how fiber effects affect the propagated signal is needed.

1.1.1 Modeling Nonlinear Effects
The NLSE is capable of representing the previously described fiber effects via a differen-
tial equation. Although the representation via a differential equation might be sufficient for
building numerical simulation methods, an analytical model is preferred for modeling distor-
tions in the propagated signal. With an analytical expression, one could estimate the system
performance via closed formulas (as done in [26]) or design low-complexity receivers (as
done in [5]). The NLSE has no explicit analytical solution for an arbitrary transmitted signal,
therefore approximations are needed to solve the equation.

The most employed approach to extract analytical models from the NLSE is perturbation
theory. Perturbation theory consists in assuming that the contribution of one of the terms in
an equation can be considered small enough to be neglected in a first instance. This term
is subsequently added to the final solution by solving a simpler equation than the original



1

1.1 Motivation 9

one. There are many types of perturbation techniques that can be applied in an equation, with
the most common in the optical community being the regular perturbation (RP) [6] and the
logarithmic perturbation (LP) [7] methods. In the NLSE context, the effect that is usually
considered small is the Kerr nonlinearities. By applying a perturbation on the nonlinear Kerr
coefficient, one obtains the RP on the Kerr nonlinear coefficient model [6], which is accurate
in operation regimes that are typical for most optical communication systems [27]. This
model usually considers a first-order perturbation approach [7]. Increasing the order of the
perturbation results in a more accurate model at the cost of increased analytical complexity.

By considering a small Kerr effect, RP on the Kerr nonlinear coefficient will present
limitations in the signal modeling for the highly nonlinear regime, i.e. where transmit powers
are sufficiently high to make the Kerr effect the dominant one in pulse propagation. This
regime is of great interest when trying to increase the capacity of fiber transmission. To
obtain models that are accurate in the presence of high nonlinear effects, a new approach is
needed when obtaining approximated solutions for the NLSE.

1.1.2 Mitigating Nonlinear Effects

Efficiently correcting or mitigating the nonlinear effects is still an active area of research.
Some techniques, such as DBP [28], can undo most of the fiber impairments. The principle
behind DBP is to divide the fiber into small segments and revert the fiber propagation by dig-
itally undoing each effect separately on those segments. DBP demands high computational
complexity, which is prohibitive in most practical communication systems.

Many alternatives have been proposed in the literature to reduce DBP complexity. Some
of those approaches are: using fewer steps per span and an enhanced DBP algorithm [29];
using perturbation models [5]; and using ML to optimize short FIR filters that replace the
linear operations of DBP [8]. The latter approach is referred to as LDBP. LDBP is a promising
technique since it has potential to correct effects that are even not modeled by the NLSE, such
as transceiver impairments or more complex fiber effects. Some works have already proven
its efficiency with experimental results [10, 30].

1.1.3 Embracing Nonlinear Effects

Instead of trying to mitigate the nonlinear effects at the receiver, another approach to increase
information rates is to adapt the transmitted signal to the nonlinear channel. One way to
achieve this adaptation is by changing the geometry of the transmitted constellation and/or
changing the a priori probabilities of each constellation point.

By changing the constellation geometry, it is possible to generate signals that are more
nonlinearly tolerant, such as constant modulus constellations [31, 32]. Changing the a priori
probabilities has also shown to be efficient to increase transmission rates in the optical chan-
nel, even when these probabilities are optimized for the linear regime [33]. Testing all the
possible constellation geometries and probabilities is unfeasible due to computational com-
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plexity. Therefore, only a finite set of the possible constellations and probabilities are consid-
ered for a numerical optimization. One optimization approach is to use ML and approximate
the nonlinear channel by fiber models [13, 34].

1.2 Thesis Scope and Organization
This thesis is divided into two parts. Part I is an introduction where the theory behind the
topics treated in this thesis is presented. This first part is composed by Chapters 3 and 4,
which address analytical models for fiber propagation and machine learning theory, respec-
tively. Part II contains 6 papers. Papers A, B, C, and D are related to analytical models for
the weak dispersion highly-nonlinear regime. To the best of our knowledge, this was the first
time these models were proposed in the literature, resulting in one of the main contributions
of this thesis. Papers E and F are about machine learning techniques applied to optical fiber
communications. In these 6 papers, we try to answer the following research questions (RQs)
related to optical channel modeling, nonlinearity compensation, and GS/PS for the nonlinear
channel.

RQ-1 How to obtain an analytical fiber model that is accurate in the very high
nonlinear regime without increasing the perturbation order of RP on the
Kerr coefficient?

Paper A: “Regular perturbation for the weak-dispersion regime” - ICTON 2019
Paper B: “Regular perturbation on the group-velocity dispersion parameter for
nonlinear fibre-optical communications” - Nature Communications

We develop a new model for the highly-nonlinear regime by applying RP on the group-
velocity dispersion (GVD) parameter instead of on the Kerr coefficient. By following
this approach, the nonlinear Kerr effect is no longer considered a minor effect and
signals at very high input power can be accurately modeled. However, this new model
considers the chromatic dispersion (CD) a minor effect and can only be accurate when
the accumulated dispersion is low. The accuracy of the model is compared with RP
on the Kerr coefficient when varying system parameters such as fiber length, GVD
parameter, Kerr coefficient, input power, and modulation format.

RQ-2 How to improve the accuracy of RP on the GVD parameter to tolerate more
accumulated dispersion and higher input powers?

Paper C: “Logarithmic perturbation models in the weak-dispersion regime with
applications to passive optical networks” - ECOC 2020
Paper D: “Frequency logarithmic perturbation on the group-velocity dispersion
parameter with applications to passive optical networks” - Journal of Lightwave
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Technology

The LP method can be used to try to achieve a model with higher accuracy than the
models obtained via RP. This is the case for the RP on the Kerr coefficient: by applying
LP on the Kerr coefficient, one obtains a more accurate model than the RP one. The
same approach, however, is not as efficient for the GVD parameter. Therefore, we
propose a frequency LP (FLP) approach for the GVD parameter which yields a model
with significantly higher accuracy than RP on the GVD parameter. The regime where
FLP on the GVD parameter is accurate is similar to the one of passive optical networks
(PONs). The accuracy of the proposed model is evaluated in continuous time in [17,
18]. In [18], an additional evaluation is made in discrete time, where the model is used
to obtain decision regions for the highly-nonlinear regime.

RQ-3 How does LDBP perform in experiments?

Paper E: “Revisiting efficient multi-step nonlinearity compensation with machine
learning: an experimental demonstration” - Journal of Lightwave Technology

In [19] we test the performance of LDBP in a transmission experiment where a single
channel is launched into a multi-span optical link. Experimental impairments such as
transceiver noise, phase-noise, and IQ imbalance are present in the transmission. Due
to these and other impairments, the performance of both DBP and LDBP saturates
quickly after using a few number of steps per span and both methods present similar
performance. Nevertheless, the performance of DBP and LDBP is higher than linear
receivers with only CDC, for example. This improved performance shows that DBP
and LDBP are able to compensate for nonlinear effects in the link. The number of filter
taps needed for the linear step of LDBP is also evaluated, where we show that LDBP
can achieve the same performance as DBP with a low number of filter taps.

RQ-4 Which are the best 4D symbol constellations and a priori probabilities when
transmitting a signal in the nonlinear fiber?

Paper F: “High-cardinality hybrid shaping for 4D modulation formats in optical
communications optimized via end-to-end learning” - in arXiv:2112.10471

We built an autoencoder system where all the system structures are differentiable.
With this framework, we were able to jointly optimize the symbol constellation, a
priori probabilities, input power, and receiver. The system was optimized for a multi-
span multi-channel link. Although we cannot guarantee that we obtained the optimal
system structures, we were able to outperform polarization-multiplexed (PM) quadra-
ture amplitude modulation (QAM) constellations (PM-16QAM, PM-32QAM, and PM-
64QAM) with a 4D 10 bits/symbol optimized constellation.
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In this chapter, we define the metrics used in this thesis to evaluate the performance of
optical systems. Some of these metrics will be presented in the context of ML, where they are
used to optimize system components such as constellation geometry and receiver structure.

2.1 Normalized Square Deviation
The normalized square deviation (NSD) is a metric used to compare two waveforms, where
one of them is taken as the reference waveform. This metric consists in taking the energy of
the error between the two waveforms and dividing it by the energy of the reference waveform.

In this thesis, we consider functions of both time t and distance z, written as A(t, z). If
we assume that A is our reference waveform and AM is a second given waveform, then the
error ξ between AM and A is

ξ(t, z) = AM (t, z)−A(t, z). (2.1)

Based on (2.1), we define the NSD as [6]

NSD ,

∫∞
−∞|ξ(t, z)|2dt
∫∞
−∞ |A(t, z)|2dt

, (2.2)

where we assume A and AM are finite energy signals. A high NSD value would mean that
the waveform AM differs significantly from A. A low NSD value would mean that AM is
very similar to A. We define that NSDs below 0.1% are considered low and above 0.1% are
considered high.

2.2 Signal-to-Noise Ratio
One commonly used metric to evaluate system performance is the signal-to-noise ratio (SNR).
The SNR consists in calculating the power of the transmitted signal, Ps, and dividing it by
the power of the noise added by the system, Pn, as

SNR =
Ps
Pn

. (2.3)

The SNR from (2.3) can be computed in discrete time for linearly-modulated systems, via the
transmitted and received symbols in a given transmission system. If we transmit Ns symbols
xk ∈ S ⊂ C, 1 ≤ k ≤ Ns, obtained from a constellation set S, a possible calculation of the
SNR is

SNR =

∑Ns
k=1 |xk|2∑Ns

k=1 |yk − xk|2
, (2.4)

where yk ∈ C is the received symbol when transmitting xk.
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Sometimes the received symbols associated to a specific constellation symbol might have
a different expected value from that original constellation symbol. This difference could be
originated from a rotation or attenuation/amplification of the received symbols with respect
to the transmitted ones, for example. In other words, denoting by sk a symbol from the M
possible ones drawn from the constellation S, we could have E[Y |X = sk] 6= sk, where X
and Y are the random variables associated to the transmitted and received symbols, respec-
tively. In these cases, this might be easily corrected by the receiver DSP and (2.4) would
underestimate the SNR. To address these cases, the SNR definition can be slightly changed
to account only for the variance of the received noise per constellation point. This new SNR
definition for a constellation with M symbols is defined as

SNR =

∑M
m=1 |ȳm|2∑M

m=1
1
Nm

∑Nm
k=1 |ykm − ȳm|2

, (2.5)

where ȳm = 1
Nm

∑Nm
k=1 ykm is the average received symbol corresponding to the m-th con-

stellation point, Nm is the number of times the m-th constellation point was transmitted, and
ykm is the k-th received symbol given a fixed transmitted m-th constellation point. The SNR
in (2.5) is used in Paper B to validate analytical models in discrete time.

2.3 Mutual Information
For some applications, such as constellation or symbol probabilities optimization, the SNR
is not an effective metric. If we only transmit a single symbol, or if all the symbols are
the same, we could still have a reasonable SNR, while the transmitted data rate would be
extremely low. For these situations, other metrics that give an indication of the transmission
rates in a channel are more suitable. In this chapter, we will present two of them: the mutual
information (MI)—in this section—and the generalized mutual information (GMI)—in the
next section.

Consider two N -dimensional random variables X and Y, representing the transmitted
and received symbols, respectively. The MI between X and Y is defined as [35, Eq. (3)]

I(X;Y) = EX,Y

[
log2

pX,Y(X,Y)

PX(X)pY(Y)

]
, (2.6)

where pX,Y, PX(X), and pY(Y) denote the joint probability density function (PDF) of X
and Y, the probability mass function of X, and the PDF of Y, respectively. In this thesis,
we are interested in maximizing metrics using ML. Optimizing MI via ML has been done
in [21]. However, this paper is not included in the thesis. We keep this MI description in
order to introduce the GMI in Sec. 2.4 and to present Paper F, which is an extension of [21].
For the MI estimation in the ML system, we use a Monte Carlo method based on (2.6). For
Ns 4D transmitted symbols from C2, we can write
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I(X;Y) = EX,Y

[
log2

pX|Y(X|Y)

PX(X)

]
(2.7)

=

M∑

k=1

∫

C2

pX,Y(xk,y) log2

(
pX|Y(xk|y)

PX(xk)

)
dy (2.8)

≈ 1
∑M
k=1Dk

M∑

k=1

Dk∑

d=1

log2

(
pX|Y(xk|yd,k)

)
+ H(X), (2.9)

where Dk is the number of received samples from the k-th constellation symbol in the Monte
Carlo estimation and H(X) = −∑M

k=1 P (xk) logP (xk) is the entropy of X. The prob-
abilities pX(xk) are known a-priori and therefore H(X) is also known. The probabilities
pX|Y(xk|yd,k) are estimated by the ML system. This approach is equivalent to what has
been done in [36].

2.4 Generalized Mutual Information
Consider a transmission scenario where each symbol has m = log2M bits and B is the
random variable representing the transmitted bits of a symbol. This binary representation of
each symbol is referred as its binary labeling. When optimizing the MI, the binary labeling of
each symbol is not taken into account. This could lead to a sub-optimal bit-error-rate (BER)
for the system. Therefore, we need a new metric that can account for the symbol labeling.
One of these metrics is the generalized mutual information (GMI).

Consider the N -dimensional random variable Y representing the received symbols. The
GMI between B and Y is [35, Eq. (12)]

GMI = max
s≥0

EB,Y

[
log2

q(B,Y)s∑
b∈{0,1}m pB(b)q(b,Y)s

]
, (2.10)

where the metric q(B,Y) can be defined as pY|B(Y|B).
Similarly to the MI, in this thesis we use an approximation of (2.10) to use in the context

of ML. For the GMI estimation, our approach is the same as that used in [13]. Given K
transmitted symbols, the GMI is approximated as [13]

GMI ≈ H(X) +
1

K

K∑

k=1

m∑

i=1

[bi,k log(ri,k) + (1− bi,k) log(1− ri,k)] , (2.11)

where bi,k is the i-th bit of the k-th transmitted symbol, and ri,k is the probability p(bi,k =
1|yk) given the received symbol yk. The probability p(bi,k = 1|yk) is usually unknown. In
the ML context, this probability is estimated while maximizing (2.11).
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3.1 Introduction
In this chapter, we will address some of the analytical models present in the literature for
optical fiber propagation. The difference between the models is on the type of approxima-
tion made on the common basis equation, the NLSE [1]. Depending on the approximation,
a model could have a simple closed-form expression. However, due to the approximation
simplicity, the solution obtained from the model could deviate significantly from the true
solution of the NLSE. Therefore, a tradeoff between accuracy and simplicity for analytical
manipulations exists when approximating solutions of the NLSE.

3.2 The Nonlinear Schrödinger Equation
The noiseless propagation of the optical field E at the retarded time frame t and distance z
for a single polarization in a single-mode fiber can be represented by the NLSE [1]

∂E(t, z)

∂z
= −α

2
E(t, z)

︸ ︷︷ ︸
attenuation

−jβ2

2

∂2E(t, z)

∂t2︸ ︷︷ ︸
chromatic dispersion

+jγ|E(t, z)|2E(t, z)︸ ︷︷ ︸
Kerr effect

, (3.1)

where α is the attenuation coefficient, β2 the group-velocity dispersion (GVD) parameter,
and γ the nonlinear coefficient. The first term in (3.1) is responsible for the signal attenuation
along the fiber. Typical values for α are around 0.2 dB/km for an SSMF, which is extremely
low compared to the attenuation of other channels such as coaxial cables, which can achieve
attenuation values from 7 to 1700 dB/km depending on the cable type and frequency [37].
For model derivations, it is common to normalize the field E via

E(t, z) = A(t, z)e−
α
2 z, (3.2)

which simplifies (3.1) to

∂A(t, z)

∂z
= −jβ2

2

∂2A(t, z)

∂t2︸ ︷︷ ︸
linear term

+ jγe−αz|A(t, z)|2A(t, z)︸ ︷︷ ︸
nonlinear term

, (3.3)

where (3.3) is referred to as the normalized NLSE. From now on, every time we mention the
name NLSE, we will be referring to (3.3). The right-hand side of (3.3) has two terms: a linear
and a nonlinear one.

If we consider dual-polarization transmission, (3.3) is replaced by the normalized Man-
akov equation [38]

∂A(t, z)

∂z
= −jβ2

2

∂2A(t, z)

∂t2
+ j

8

9
γe−αz ‖A(t, z)‖2 A(t, z), (3.4)
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where A(t, z) = [Ax(t, z), Ay(t, z)] is the dual-polarization transmitted signal and Ax and
Ay are the signal components in the x and y polarizations, respectively. When considering
dual-polarization signals, other effects not modeled in (3.4), such as birefringence, could be
present in the transmission.

In the remaining of this chapter, we consider only the single-polarization NLSE in (3.3).
The Manakov equation in (3.4) will only be considered in Chapter 4.

3.2.1 Chromatic Dispersion Effect
The linear term in (3.3) is analogous to the second term in (3.1) and represents the CD. To
better understand CD, one can solve the simplified NLSE (setting γ = 0) given only by

∂A(t, z)

∂z
= −jβ2

2

∂2A(t, z)

∂t2
. (3.5)

The solution of (3.5) in the frequency domain can be expressed as

ÃCD(ω, z) = Ã(ω, 0)e−
jβ2
2 ω2z, (3.6)

where ω is the angular frequency and Ã is the Fourier transform1 ofA. As shown in (3.6), this
solution is an all-pass filter. The solution in (3.6) can also be expressed in the time domain as

ACD(t, z) = (A(·, 0) ∗ h(·, z)) (t) = Dz{A(·, 0)}(t). (3.7)

In (3.7), ∗ represents convolution, h is given by

h(t, z) =
1√

j2πβ2z
e−

j
2β2z

t2 , (3.8)

and Dz is the dispersion operator defined as

Dz{f}(t) , (f ∗ h(·, z)) (t), (3.9)

where f is a function of t.
As shown in (3.6), the CD effect only affects the phase of the input signal Ã(·, 0). The

amplitude of Ã(·, 0) is kept intact since (3.6) implies
∣∣∣ÃCD(ω, z)

∣∣∣ =
∣∣∣Ã(ω, 0)e−

jβ2
2 ω2z

∣∣∣ =
∣∣∣Ã(ω, 0)

∣∣∣ . (3.10)

Therefore, since Ã(·, 0) represents the spectrum of the input pulse, there is no spectral broad-
ening or narrowing induced by the CD effect only. On the other hand, CD distorts the am-
plitude of the input pulse A(·, 0) in time domain. To visualize the time-domain amplitude

1We define the Fourier transform of a function A(·, z) as Ã(ω, z) ,
∫∞
−∞A(t, z)e

+jωtdt, which depends

on the angular frequency ω and is evaluated at distance z. The inverse Fourier transform of Ã(·, z) is A(t, z) =
[1/(2π)]

∫∞
−∞Ã(ω, z)e

−jωtdω.
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Figure 3.1: Amplitude of a sinc signal before and after transmission in 80 km of a CD-only
fiber (3.6) with β2 = −21.667 ps2/km. CD distorts the amplitude in the time domain of
the transmitted signal, while keeping its amplitude in the frequency domain unchanged (see
(3.10)).

change, Fig. 3.1 shows the propagation of a sinc pulse in 80 km of a CD-only fiber with
β2 = −21.667 ps2/km (i.e., CD is the only effect taken into account). The sinc pulse used in
the simulation is given by sin(2πf0t)/(2πf0t), where f0 = 10 GHz. As shown in Fig. 3.1,
the amplitude of the signal is significantly changed by CD, which can disrupt signal recov-
ery. To reduce the impact of CD in the signal recovery, usually CD compensation (CDC) is
employed. CDC consists on applying the inverse CD operator, given by D−z , to the received
signal A(·, z).

3.2.2 Kerr Effect

The nonlinear term in (3.3) is similar to the third term in (3.1), where the latter represents the
Kerr effect. The only difference is that, in the nonlinear term of (3.3), the Kerr effect is scaled
by a factor e−αz . To better understand Kerr nonlinearity, we will follow the same approach
as for CD. By neglecting the linear term in (3.3), one obtains

∂A(t, z)

∂z
= jγe−αz|A(t, z)|2A(t, z), (3.11)
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Figure 3.2: Amplitude of the spectrum of a sinc signal before and after transmission in 80
km fiber with only the nonlinear effect in (3.3), with α = 0.2 dB/km and γ = 1.2 1/W/km.
The nonlinear effect changes the amplitude in the frequency domain of the transmitted signal,
while keeping its amplitude in the time domain unchanged (see (3.13)).

whose solution is
A(t, z) = A(t, 0)ejγ|A(t,0)|2G(z), (3.12)

where G(z) = (1− exp(−αz))/α is the effective length.
As suggested by (3.11), the Kerr effect is strongly dependent on the amplitude of the

signal |A(t, z)|2. Since this term represents the squared signal amplitude, signal attenuation
would decrease the influence of the Kerr effect as the signal propagates in the fiber. By
analyzing the signal amplitude only, one can note that

|A(t, z)| =
∣∣∣A(t, 0)ejγ|A(t,0)|2G(z)

∣∣∣ = |A(t, 0)| . (3.13)

(3.13) shows that the amplitude of the transmitted signal A(·, 0) does not change in the time
domain when only the nonlinear term is considered in (3.3). Only the amplitude of the spec-
trum of the transmitted signal is affected by the nonlinear term. The change in the spectral
amplitude is shown in Fig. 3.2, where the same sinc pulse as used in Sec. 3.2.1 is now sub-
jected to the nonlinear effect only. As illustrated in Fig. 3.2, the spectrum of the transmitted
signal is broadened, which could affect neighbor channels in WDM transmissions.
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In the case where there is no CD, one can recover the transmitted signalA(·, 0) simply by
undoing the nonlinear phase rotation on A(·, z). When CD is considered, compensating for
nonlinear effects becomes challenging, since both effects interact with each other, as it will
be seen in Fig. 3.5.

3.3 Split-step Fourier Method
In the previous section, we analyzed each effect of the NLSE separately. In this section, we
will present the split-step Fourier method (SSFM), which is a numerical method to approxi-
mate the received signal when both CD and nonlinearities are considered together.

The SSFM consists in dividing a fiber span into N small spacial steps, each of them with
length zk, 1 ≤ k ≤ N . On each of these spacial steps, the CD effect and the nonlinear
effect are applied separately. Since the nonlinear effect depends on the amplitude of the input
signal (as seen in (3.12)), amplitude attenuation should be taken into account when adding
nonlinearities on each step. Therefore, we define a nonlinear operator as

Nzn{A(·, zn−1)} , A(t, zn−1)ejγΓn|A(t,zn−1)|2G(zn), (3.14)

Γn = e−α
∑n−1
k=1 zk , (3.15)

where the factor Γn is responsible for decreasing the amplitude of |A(t, zn−1)|2, thus emu-
lating the signal attenuation. Using the operatorsNz and Dz in (3.9) and (3.14), respectively,
the output of the SSFM given an input signal A(·, 0) is

A(t, z) = NzN {DzN {NzN−1
{DzN−1

{· · · {Nz1{Dz1{A(t, 0)}}} · · · }}}}, (3.16)

where z =
∑N
k=1 zk. The procedure described by (3.16) is called the asymmetric SSFM and

is illustrated in Fig. 3.3. When the lengths zn are constant, i.e., zm = zn for all 1 ≤ m,n ≤
N , we say that the SSFM has uniform step sizes. The higher the number of stepsN , the more
accurate is the SSFM [39].

To reduce the number of steps necessary to achieve a certain accuracy, one could change
the steps’ distribution. The steps zn can assume many different distributions depending on
the application. One common distribution is the logarithmic distribution, given by [39]

zn = − 1

cα
ln

(
1− nδ

1− (n− 1)δ

)
, (3.17)

where δ = (1−exp(−cαz))/N , c is a correction factor to adjust the logarithmic distribution,
and z =

∑N
k=1 zk. Another approach to improve the accuracy of the SSFM is to change to

the symmetric SSFM [1, Ch. 2]. The symmetric SSFM consists on applying the nonlinear
operator in the middle of each dispersion step, i.e.,

A(t, z) = D zN
2

{
NzN

{
D zN+zN−1

2

{
NzN−1

{
· · ·
{
Nz1

{
D z1

2
{A(t, 0)}

}
· · ·
}
. (3.18)
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Figure 3.3: Asymmetric implementation of the SSFM. The fiber is divided into N spacial
steps. For the n-th spacial step, we apply Nzn{Dzn{·}} to the output of the (n − 1)-th
spacial step.

z1 z2 z3 · · · zN−1 zN

z =
∑N

k=1 zk

D z1
2

Nz1

D z1+z2
2

Nz2

D z2+z3
2

Nz3

D zN−1+zN
2

NzN−1

D zN
2

NzN

Figure 3.4: Symmetric implementation of the SSFM. The nonlinear operator is applied in the
middle of each dispersion step.

An illustration of the symmetric SSFM steps is given in Fig. 3.4.
With the SSFM, one can obtain the received signal after propagation in a fiber consider-

ing both CD and Kerr nonlinearity simultaneously. The result for the propagation of the sinc
pulse used in the previous sections is presented in Fig. 3.5. As depicted in Fig. 3.5, when
both effects are considered, the amplitude in both the time and frequency domain can change
significantly from the amplitude obtained when considering the effects independently. There-
fore, the interaction of CD and Kerr effects can be non-negligible, and a better understanding
on how this interaction occurs is essential.

3.4 Perturbation Models
In Sec. 3.2.1 and 3.2.2, we obtained approximated analytical solutions for the NLSE by ne-
glecting one of the two fiber effects present in (3.3). In this section, we present analytical
approximated solutions in closed- or integral-forms considering both effects. These solutions
can sometimes provide a better insight into how the fiber effects change the input signal than
the SSFM expressions in (3.16) or (3.18).

The approximated solutions in this section are obtained via perturbation theory. Roughly
speaking, the perturbation method consists on expressing an unknown function into a power
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Figure 3.5: Amplitude in time and frequency domain of a sinc pulse before and after trans-
mission in a 80 km fiber β2 = −21.667 ps2/km, γ = 1.2 1/W/km, and α = 0.2 dB/km. The
amplitudes of the received signal differ significantly from the ones obtained when only CD
or Kerr effect were considered.

series of functions that are easier to obtain. There are many ways in which this series could
be constructed. Two of them are hereby presented: the RP and the LP. The power series is
also related to a coefficient, usually present in the initial equation of the unknown function.
The chosen coefficient will determine which term in the initial equation should be considered
a minor effect. These coefficients could be γ or β2 in the NLSE case, originating models
where the nonlinearities or the dispersion are a minor effect, respectively. We measure the
accuracy of each model using the NSD described in Sec. 2.1, where the reference waveform
is taken as the output of the SSFM.

3.4.1 Regular Perturbation on γ

The RP on γ was first derived in [6, 7]. To approximate the solution of (3.3), the RP on γ
represents the signal by a power series of γ, which can be written as

A(t, z) =

∞∑

k=0

γkA
(γ)
k (t, z). (3.19)

To obtain the functions A(γ)
k , (3.19) is substituted into (3.3) and the terms multiplied by

the k-th power of γ are equated. An approximate solution for (3.3) can be obtained by
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considering only the functions A(γ)
0 and A(γ)

1 . This approximation is the first-order RP on
γ [6, Eqs. (7), (9)], [7, Eq. (12)]

A(t, z) ≈ A(γ)
RP (t, z) = A

(γ)
0 (t, z) + γA

(γ)
1 (t, z), (3.20)

where

A
(γ)
0 (t, z) = Dz{A(·, 0)}(t), (3.21)

A
(γ)
1 (t, z) = j

∫ z

0

e−αuDz−u
{
|A0(·, u)|2A0(·, u)

}
(t)du. (3.22)

In (3.20), the first term A
(γ)
0 is the zeroth order. A(γ)

0 is the same as in (3.7) and accounts for
the CD effect only. The second term A

(γ)
1 is the first-order perturbation term and accounts

for the combined nonlinear and CD effects. The derivation of the first-order RP on γ can be
found in Sec. A.1.

RP on γ is one of the perturbation models with most applications for optical fiber com-
munications. This model has been used to derive low-complexity receivers [5] and also to
predict system performance [40, 41]. The latter application is exemplified by the Gaussian-
noise (GN) and enhanced GN (EGN) models. The GN/EGN models are a tool to obtain the
variance of the nonlinear noise. The nonlinear noise is the signal component that cannot
be corrected by CDC and is not related to the amplified spontaneous emission (ASE) noise.
With the variance of the nonlinear noise, one can estimate the effective SNR for optical fiber
transmission as

SNReff =
σ2
S

σ2
ASE + σ2

NL
, (3.23)

where σ2
S is the variance of the signal and σ2

ASE and σ2
NL are the variance of the ASE and

nonlinear noises, respectively. In (3.23), signal-noise nonlinear interactions are neglected.
The use of RP on γ to derive σ2

NL made it possible to notice that σ2
NL is approximately pro-

portional to the cube of the signal power PS , i.e., σ2
NL can be expressed as ηP 3

S , where η is
the nonlinear interference coefficient, which depends on the system parameters.

3.4.2 Enhanced Regular Perturbation on γ

Since the termA
(γ)
1 in (3.22) is proportional to the cube of the signal amplitude, RP on γ starts

to diverge from the true solution of the NLSE when the input power increases. A possible
way to reduce this problem is to switch to the enhanced RP (ERP) on γ model [6]. The ERP
on γ model can be obtained by first performing in (3.3) the change of variables [6]

A(t, z) = AP (t, z)ejγP0G(z), (3.24)



3

28 Analytical Models for Nonlinear Fiber Propagation

where P0 is here defined as the average power of the signal A(t, 0), given by

P0 = lim
T→∞

1

2T

∫ T

−T
|A(t, 0)|2dt. (3.25)

After some algebra, substituting (3.24) in (3.3) results in

∂AP (t, z)

∂z
= −jβ2

2

∂2AP (t, z)

∂t2
− jγe−αzP0AP (t, z) + jγe−αz|AP (t, z)|2AP (t, z).

(3.26)
Applying the RP method to (3.26), i.e., expressing AP as a power series of γ, the first-order
RP is

AP (t, z) ≈ (1− jγP0G(z))A
(γ)
0 (t, z) + γA

(γ)
1 (t, z), (3.27)

which combined with (3.24) forms the ERP on γ model

A(t, z) ≈ A(γ)
ERP(t, z) =

[
(1− jγP0G(z))A

(γ)
0 (t, z) + γA

(γ)
1 (t, z)

]
ejγP0G(z). (3.28)

The accuracy of ERP on γ versus other perturbation models is analyzed in Paper D. For
the same input power, ERP on γ is closer to the true solution of the NLSE than RP on γ.
However, ERP on γ still deviates from that true solution when the input power increases.

3.4.3 Logarithmic Perturbation on γ

Another approach to increase the accuracy of RP on γ is to perform the LP on γ. LP on γ
consists on representing the propagated signal as

A(t, z) = A
(γ)
0 (t, z) exp

( ∞∑

k=1

γkψ
(γ)
k (t, z)

)
, (3.29)

where the functions ψ(γ)
k can be obtained from the RP on γ terms [7]. To show that ψ(γ)

k

can be obtained via the RP terms, we expand (3.29) in a Taylor series and equate it to (3.19),
resulting in

∞∑

n=0

γnA(γ)
n (t, z) = A

(γ)
0 (t, z)

∞∑

m=0

1

m!

( ∞∑

k=1

γkψ
(γ)
k (t, z)

)m
. (3.30)

The functions ψ(γ)
k are now obtained by equating the terms on the right with the ones on the

left that are multiplied by the same power of γ. The first-order LP on γ (i.e., truncating (3.29)
at k = 1) is

A(t, z) ≈ A(γ)
LP (t, z) = A

(γ)
0 (t, z) exp

(
γ
A

(γ)
1 (t, z)

A
(γ)
0 (t, z)

)
. (3.31)
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3.4.4 Regular Perturbation on β2

The previous perturbation models were all obtained by applying perturbation theory to the γ
coefficient. This resulted in models that consider a low nonlinear effect2 and that can tolerate
high accumulated dispersion, but losing accuracy while the input power increases. To obtain
models for the opposite regime, i.e., accurate for weak-dispersion highly-nonlinear regimes,
the perturbation methods can be applied on the β2 parameter.

Similar to RP on γ, one can also express the solution A of (3.3) as a power series of β2

A(t, z) =

∞∑

k=0

βk2A
(β2)
k (t, z). (3.32)

The terms A(β2)
k can also be found by substituting (3.32) in (3.3) and equating the terms with

the same power of β2. By truncating (3.32), one obtains the first-order RP on β2

A(t, z) ≈ A(β2)
RP (t, z) = A

(β2)
0 (t, z) + β2A

(β2)
1 (t, z), (3.33)

where

A
(β2)
0 (t, z) = A(t, 0)ejγ|A(t,0)|2G(z), (3.34)

and

A
(β2)
1 (t, z) = B(t, z)ejγ|A(t,0)|2G(z), (3.35)

with B given by

B(t, z) =−M(t)z +G1(z)R(t) +G2(z)P (t)

− 2jγA(t, 0)<{A∗(t, 0)V (t, z)}, (3.36)
V (t, z) = G(z) [M(t)z −G1(z)R(t)−G2(z)P (t)]

−G1(z)M(t) +G2(z)R(t) +G3(z)P (t), (3.37)

2For a precise quantification on the models’ accuracy versus linear and nonlinear effects, please see Papers B and
D.
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M(t) =
j

2

∂2A(t, 0)

∂t2
, (3.38)

R(t) =
γ

2
A(t, 0)

∂2|A(t, 0)|2
∂t2

+ γ
∂A(t, 0)

∂t

∂|A(t, 0)|2
∂t

, (3.39)

P (t) =
jγ2

2
A(t, 0)

(
∂|A(t, 0)|2

∂t

)2

, (3.40)

G1(z) =
αz + e−αz − 1

α2
, (3.41)

G2(z) =
2αz + 4e−αz − e−2αz − 3

2α3
, (3.42)

G3(z) =
6αz + 18e−αz − 9e−2αz + 2e−3αz − 11

6α4
. (3.43)

The derivations of the above equations can be found in the Appendix.
The mathematical expressions for A(β2)

0 and A(β2)
1 show two main advantages of the RP

on β2 model over RP on γ. The first one is that the complexity of the model is independent
of z since G, G1, G2, and G3 are closed-form expressions, while in RP on γ increasing z
results in a larger integration domain for (3.22). The second advantage is that the model only
depends on derivatives, while (3.22) needs an integral. In addition, only two derivatives are
needed, namely ∂A(·, 0)/∂t and ∂2A(·, 0)/∂t2, since

∂|A(t, 0)|2
∂t

= 2<
{
A∗(t, 0)

∂A(t, 0)

∂t

}
(3.44)

and

∂2|A(t, 0)|2
∂t2

= 2<
{
A∗(t, 0)

∂2A(t, 0)

∂t2

}
+ 2

∣∣∣∣
∂A(t, 0)

∂t

∣∣∣∣
2

. (3.45)

This fact might also result in reduced computational complexity for RP on β2. Another
interesting fact from RP on β2 is that the term −M(·)z from B(·, z) represents the inverse
Fourier transform of the first Taylor expansion term of the function in (3.6).

3.4.5 Frequency Logarithmic Perturbation on β2

To increase the accuracy of RP on β2, the frequency LP (FLP) method can be applied. This
method consists on applying LP in the frequency domain. FLP on β2 is represented in the
frequency domain as

Ã(ω, z) = Ã
(β2)
0 (ω, z) exp

( ∞∑

k=1

βk2 ζ̃
(β2)
k (ω, z)

)
, (3.46)
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where the functions ζ̃k are obtained from the functions Ã(β2)
k similarly to (3.30). By truncat-

ing (3.46) at k = 1, one obtains the first-order FLP on β2

Ã(ω, z) ≈ Ã(β2)
FLP (ω, z) = Ã

(β2)
0 (ω, z) exp

(
β2
Ã

(β2)
1 (ω, z)

Ã
(β2)
0 (ω, z)

)
. (3.47)

The expression in (3.47) is similar to (3.31), where the former is in the frequency domain
while the latter is in the time domain.

Analogously to LP on γ, one can use the LP method for the β2 perturbation. However,
in the β2 case, the LP method should be applied in the frequency domain instead of the time
domain for a better accuracy, which represents the FLP method. The opposite is also true
for the γ perturbation. The reason behind that fact might lie in the NLSE solutions for Kerr
or CD only. As shown in (3.12), the Kerr-only solution is the input signal multiplied by an
exponential in the time domain. Since the LP method relies on representing the signal as
the exponential in the time domain of a power series of functions (see (3.29)), (3.12) might
indicate that LP on γ is more accurate than FLP on γ. On the other hand, the CD-only solution
(3.6) is given by the input signal multiplied by an exponential in the frequency domain. Since
the FLP method is also obtained by an exponential in the frequency domain, (3.6) might
indicate that FLP on β2 is more accurate than LP on β2. A further analysis on the accuracy
of LP on γ, FLP on γ, LP on β2, and FLP on β2 can be found in Paper D.
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Nonlinear Fiber Optics
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As mentioned in the previous chapter, fiber-optical propagation is governed by the NLSE.
The NLSE can be numerically modeled by the SSFM or analytically modeled, for example,
by the analytical models discussed in the previous chapter. Now, we would like to use these
modeling tools to increase the transmitted data rate in an optical fiber system. These tools
could be used to design receivers or other system components, such as symbol constellations
and symbol probabilities, for example. Although these components are aided by the NLSE
based models, there is no guarantee that these components are optimally designed.

To try to approach “close to optimum” receivers or constellations, machine learning tech-
niques can be used. In Paper E, a receiver was designed using machine learning and a vari-
ation of the SSFM. This receiver used experimental data, which demands additional DSP
operations to the received signal. Therefore, in this chapter, we also explain some of the DSP
used to recover the received signal in the presence of experimental impairments.

4.1 Basics of Machine Learning

Neural networks (NNs) are structures capable of mimicking functions that many times are
unknown a priori. This capability gives NNs the title of universal function approximation
[42]. This approximation is built by using training examples of input and output data for
the NN. These example data are responsible for the information on the underlying function
that should be mimicked. The right choice of training examples is fundamental for the NN
performance [43]. In the NNs here studied, we have a system with a certain number of
parameters that can change their value in order to minimize a function called “loss”. In the
next sections, we present the way these parameters are organized and how they change their
values according to a certain loss function. A more detailed explanation can be found on [44].

4.1.1 Nodes and Activation Functions

The basic structure of an NN are the layers, which are a set of nodes. There are three types
of layers: input layers, hidden layers, and output layers. Each of these layers could have their
own dimensions, i.e., number of nodes. To simplify the explanation, an NN with one input
layer, one hidden layer and one output layer will be used as example, as shown in Fig. 4.1(a).
Consider an input vector x = [x1, x2, · · · , xN ]. The input layer will take the entries of x
and pass to every node of the hidden layer, represented by the green circles in Fig. 4.1(a).
When passing the i-th entry to the k-th node in the hidden layer, the entry xi is multiplied
by a weight wi,k. For each node in the hidden layer, the sum

∑
i xiwi,k is computed and a

bias factor bk is added. The result is then used as the argument of the activation function ϕk,
which results in the output

ok = ϕk

(∑

i

xiwi,k + bk

)
, (4.1)
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Figure 4.1: Schematic of an NN. (a) Representation of an NN structure with three layers. (b)
Operations performed inside a hidden node.

as illustrated in Fig. 4.1b. This process is now repeated for the hidden layer and the output
layer, where each hidden node output ok is fed into all the output nodes, with their respective
weights, biases, and activation functions. The result of the output layer will be the vector
y = [y1, y2, · · · , yK ], which is fully determined as a function of the NN weights and input x.

The weight and bias in the NN define a linear operation between the input and the output
of the nodes. To allow the NN to perform nonlinear operations, the activation function is
used. Some of the possible activation functions are the ReLU [45]

ϕReLU(x) =

{
0, if x ≤ 0,

x, if x > 0,
(4.2)

the sigmoid [45]

ϕsigmoid(x) =
1

1 + e−x
, (4.3)

and the linear activation function [45]

ϕlin(x) = x. (4.4)

The activation functions should be differentiable (at least almost everywhere) since we will
need to compute the gradient of these functions, as will be described in Sec. 4.1.4. For
example, ReLU functions are differentiable everywhere but at 0. Although the expression in
(4.2) is simple, NNs that use ReLU activation functions are capable of approximate arbitrary
convex functions [46].

4.1.2 Loss Function
In a machine learning problem, we usually want to minimize (or maximize) a certain metric.
This metric is represented by a function called the loss function, which we will denote by L.
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The image of L is the real numbers, since we will need to calculate the gradient of this loss
with respect to the NN parameters. In each problem, we might have a different loss function
that has to be minimized over the NN parameters. In the problems described in this thesis,
we have an input vector x and an output vector y from which we compute the loss L(x,y).

Some examples of loss functions in which x and y have the same dimension K are the
mean squared error [47]

L(x,y) =
1

K
‖x− y‖2 , (4.5)

the binary cross-entropy [47]

L(x,y) =
1

K
(xᵀ log(y) + (1− x)ᵀ log(1− y)) , (4.6)

and the MI and GMI between x and y described in Chapter 2.

4.1.3 Batches and Epochs
The training procedure consists of updating the weights wi,k and biases bk of hidden and
output layers to minimize the loss function. The loss is calculated each time a set of input
vectors is fed into the NN, as will be explained later in this section. In addition, the NN
weights and biases are updated. These steps determine an iteration of the training procedure.

The whole dataset used for training can be considered as a set X of vector of samples xn.
From the set X , one can build subsets x(k) consisting of m elements from X drawn from a
uniform distribution. The subsets x(k) are called minibatches, where m is the minibatch size.
At each training iteration, a set B of minibatches is used to compute the loss and update the
weights. After all the elements of X are used for training, we say that an epoch has passed.
In the next epoch, new minibatches are extracted from X to continue the optimization.

4.1.4 Stochastic Gradient Descent
One possible procedure to update the weights and biases of an NN is the stochastic gradient
descent (SGD) [44, Ch. 5]. The SGD is applied in each optimization step and we denote the
set of parameters, weights, and biases in the whole NN for that step as θθθ. In the first step,
the weights and biases can be randomly initiated according to a given distribution or set to
pre-defined values [48]. Given a set of minibatches B = [x(1),x(2), · · · ,x(B)], the gradient
is calculated as

g(θθθ) =
1

B
∇θθθ

B∑

k=1

L(x(k),y(k);θθθ), (4.7)

where ∇θθθ is the gradient operation with respect to θθθ, y(k) is the NN system output given the
input minibatch x(k), and g(θθθ) has the same dimension as θθθ. Once the gradient is obtained,
the set of parameters is updated to

θθθnew = θθθ − lg(θθθ), (4.8)
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where l is a scalar called learning rate.
To calculate the gradient of the loss with respect to a certain parameter, the backpropaga-

tion algorithm is usually used [44, Ch. 6]. With this algorithm, the gradient is “backpropa-
gated” through the NN, until it reaches the desired parameter. This backpropagation is based
on the chain rule for differentiation. For example, consider a parameter θ, an intermediary
variable r such that r = g(θ) for a certain function g, and the loss function L(r). With the
backpropagation algorithm, the gradient of the loss with respect to θ is calculated by

∇θ =
∂L

∂r

∂r

∂θ
, (4.9)

which, in practice, is performed by first calculating the gradient of L with respect to r and
only then the gradient of r with respect to θ.

4.1.5 Adam Optimizer

The learning rate introduced in the end of Sec. 4.1.4 can change over the training epochs. A
common approach is to start with a large learning rate and decrease it as the training evolves.
The idea behind this procedure is to avoid local minima and speed up the training in the
beginning, while performing a fine-tuning in the end of the training. The changes in the
learning rate over the epochs can be heuristically determined or can follow an algorithm. The
learning rate and the gradient could also follow expressions more elaborated than (4.8).

In the works described in this thesis, we used the Adam optimizer [49] instead of SGD.
The Adam algorithm is momentum-based and updates the parameters θθθ in a different manner
than in (4.8). The detailed description of the Adam optimizer can be found in [49] and its
algorithm is shown in Algorithm 4.1.

4.1.6 One-Hot Vectors

In many problems where we need to classify data according to a finite number of categories,
it is common to use one-hot vectors (OHVs). OHVs consist of a binary representation of the
class to which a certain data belongs where only one entry of the vector is 1 and the others
0. For example, consider a problem where we need to classify if an object is blue, green, or
yellow. By creating the following map

v1 = [1 0 0]→ blue, (4.10)
v2 = [0 1 0]→ green, (4.11)
v3 = [0 0 1]→ yellow, (4.12)

one can represent the color of a certain object with only the binary vectors v1, v2, and v3.
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Algorithm 4.1: Adam optimization algorithm [49]
Data: α: Stepsize
Data: β1, β2 ∈ [0, 1): Exponential decay rates for momentum estimates
Data: g: Gradient calculation
Data: θθθ0: Initial set of parameters.
Result: θθθE : Final set of optimized parameters after E epochs

1 m0 ← 0
2 v0 ← 0
3 t← 0
4 for t← 1 to E do
5 t← t+ 1
6 gt ← g(θθθt−1)
7 mt ← β1mt−1 + (1− β1)gt
8 vt ← β2vt−1 + (1− β2)g2

t

9 m̂t ←mt/(1− βt1)
10 v̂t ← vt/(1− βt2)

11 θθθt ← θθθt−1 − αm̂t/(
√
v̂t + ε)

12 end

4.2 Experimentally Learned Digital Backpropagation
In this section, we describe the main concepts used in Paper E, which are related to the ex-
perimental demonstration of LDBP. We start by describing the principle behind LDBP in
Sec. 4.2.1. In Sec. 4.2.2, we describe an algorithm used in Paper E that corrects C2 rotations
that are applied to the signal during propagation. This algorithm also has learnable coeffi-
cients, which are learned inside the algorithm and not using SGD (or its variations) within
the NN. The propagated signal has two polarizations and is governed by (3.4). Other ef-
fects not modeled in (3.4) are also present during the experimental propagation, such as the
aforementioned C2 rotations.

4.2.1 Backpropagating the Received Signal
LDBP is based on the DBP method, which consists of digitally propagating the received
signal back in the fiber. This procedure follows the same concept as the SSFM described in
Sec. 3.3. However, we invert the sign of the fiber parameters in DBP. In the LDBP approach,
the sign of γ and α is also inverted. The main difference between those two methods is that in
LDBP we replace the linear operator Dz by finite impulse response (FIR) filters, which will
be the base structure of an NN. The input of the NN are the received signal samples A[n],
while the output are the estimated transmitted symbols.

Consider received signal samples A[n] = [Ax[n], Ay[n]], where A is an Ns × 2 complex
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matrix. The k-th step of LDBP can be represented as

Ak+1 = (Ak[n] ∗ h[n]) · ej 8
9γ
′‖Ak[n]∗h[n]‖2G(z), (4.13)

where h = [h−M , h−(M−1), · · · , h0, · · · , hM−1, hM ]ᵀ is an FIR filter of length 2M + 1,
γ′ = −γ, and the squared norm ‖A[n]‖2 = |Ax[n]|2 + |Ay[n]|2 is taken element-wise. The
elements hi of h[n] are the learnable parameters of the NN. The γ′ parameter can also be
learned. The elements of h[n] are equivalent to the weights of an NN, while the exponential
multiplication in (4.13) represents the nonlinear activation function. The length of the filter is
important to determine the overall complexity of LDBP, together with the number of LDBP
steps. In Paper E, we vary both the size of the FIR filter and the number of steps to verify
how these parameters impact the method performance.

After performing all the LDBP steps, the signal is matched-filtered and sampled. A phase
rotation is also applied after sampling to undo the residual phase offset from the channel
propagation. These operations result in the estimated transmitted symbols. The estimated
symbols, together with the transmitted ones, will be the arguments of the loss function. In
the work of Paper E, the chosen loss function was the SNR, as calculated in (2.4). After
calculating the loss, the Adam method in Sec. 4.1.5 is applied and the FIR filters updated.

4.2.2 Multiple Modulus Algorithm
During fiber propagation, the signal A = [Ax, Ay] can be rotated in C2 due to birefringence.
These rotations occur along the fiber and estimating their distance evolution might be chal-
lenging. However, the accumulated rotation can be undone at the receiver by known DSP
algorithms. The algorithm used in Paper E was the multiple modulus algorithm (MMA) [50],
which can be applied to constellations whose symbols might have different amplitudes from
each other.

In the MMA, a bank of four FIR filters is trained to undo the rotation in the sampled input
signal A[n]. We will denote these FIR filters by hx,x, hx,y, hy,x and hy,y, each of them with
size Ntaps. These filters are usually initialized as

hx,x = [0, 0, · · · , 1, · · · , 0, 0]ᵀ, (4.14)
hx,y = [0, 0, · · · , 0, · · · , 0, 0]ᵀ, (4.15)
hy,x = [0, 0, · · · , 0, · · · , 0, 0]ᵀ, (4.16)
hy,y = [0, 0, · · · , 1, · · · , 0, 0]ᵀ. (4.17)

For the filters’ training, usually only a contiguous subset of A[n] is used, here denoted by
A′[n]. From the reduced input signal A′[n], we extract all the T possible connected subsets
of size Ntaps where the center sample is aligned with the symbol sampling. These subsets are
denoted by A′k, 1 ≤ k ≤ T . The MMA is therefore performed over T iterations, which each
start by obtaining
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âx =
〈
hx,x, A

′
k,x

〉
+
〈
hx,y, A

′
k,y

〉
(4.18)

ây =
〈
hy,x, A

′
k,x

〉
+
〈
hy,y, A

′
k,y

〉
(4.19)

where âx and ây are the estimated symbols for the two polarizations given the transmitted ax
and ay symbols, respectively, and A′k,x and A′k,y are the x and y polarization components of
A′k. Each hc,z, c, z ∈ {x, y}, has size Ntaps × 1 and A′k = [A′k,x,A

′
k,y] has size Ntaps × 2,

with each Ak,x and Ak,y having size Ntaps × 1. The error associated with the current filters
is calculated by

εx = 2(|âx|2 − |ax|2)âx (4.20)

εy = 2(|ây|2 − |ay|2)ây (4.21)

when using an aided estimation for the error. The magnitude of the error (4.20) and (4.21) in-
creases when the amplitude of the estimated symbols also increases. Therefore, lowering the
magnitude of the error in those equations is equivalent to minimizing the difference between
the modulus of the estimated and transmitted symbols. When there is no information on the
transmitted symbols ax and ay, the algorithm uses the closest symbol amplitude to âx and ây
given the possible amplitudes in the transmitted symbol set. Using the errors εx and εy, the
filters are updated by

hx,x = hx,x − µεx(A′k,x)∗ (4.22)

hx,y = hx,y − µεx(A′k,y)∗ (4.23)

hy,x = hy,x − µεy(A′k,x)∗ (4.24)

hy,y = hy,y − µεy(A′k,y)∗, (4.25)

where µ is the MMA learning rate. After running the algorithm for all A′k, 1 ≤ k ≤ T ,
the filters are applied to the whole signal A[n]. We consider that the time interval corre-
sponding to the duration of A[n] is small enough such that the rotation induced by the fiber
is approximately constant during that interval.

4.3 Shaping Using an Autoencoder
In the LDBP method, the FIR filters at the receiver were optimized by an NN. The NN used
as input only the received signal, and the gradient in the Adam method only had to propagate
in the receiver structure. However, if we want to optimize the geometry or probabilities of
the transmitted constellation, for example, the gradient would need to backpropagate over the
channel all the way back to the transmitter. In this case, a structure where all the elements
until the transmitter are differentiable is needed. In addition, this structure would also need
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to generate new inputs, since the input symbols would be modified on every iteration by the
learning process. This structure is categorized as an autoencoder [44, Ch. 14]. The results for
the autoencoder described in this section can be found in Paper F, Chapter 10.

4.3.1 Autoencoder System for Fiber Propagation
The autoencoder system for fiber propagation can be seen in Fig. 4.2. In Fig. 4.2, the red
blocks comprise NN learnable parameters. The system is capable of performing multi-
channel transmission, where each channel has its own constellation, probabilities, launch
power, and receiver structure. The symbol probabilities, constellation, and bit probability
estimation blocks are all built using fully connected layers. Each channel has its own set of
layers for each of these blocks. The launch power of each channel is represented by a scalar.
The loss function chosen for this structure was the GMI described in Sec. 2.11, which is
calculated for each channel separately.

The symbol probability, labeled constellation, and bit probability estimation blocks have
the following properties:

• Symbol probabilities

– Input: OHVs of dimension M ;

– Output: Logarithm of the symbol probability for the given symbol represented by
the input OHV;

– Number of hidden layers: 3;

– Number of nodes in hidden layers: 128 or 256 (depending on M );

– Hidden layer activation function: ReLU;

– Output layer activation function: Linear, as in (4.4).

• Labeled constellation

– Input: OHVs of dimension M ;

– Output: Transmitted symbol of 2 or 4 real dimensions;

– Number of hidden layers: 2;

– Number of nodes in hidden layers: 128 or 256 (depending on M );

– Hidden layer activation function: ReLU;

– Output layer activation function: Linear, as in (4.4).

• Symbol probability estimation

– Input: Received symbol of real dimension 2 or 4;

– Output: m = log2(M) set of disconnected NNs outputting one of the probabili-
ties p(bk = 1|y) for each bit bk in the transmitted symbol;
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Figure 4.2: Autoencoder system used to learn the geometry and a priory probability of the
transmitted symbols. The red blocks are learned by the system. The channel is modeled by
the SSFM.

– Number of hidden layers: 3;

– Number of nodes in hidden layers: 128 or 256 (depending on M );

– Hidden layer activation function: ReLU;

– Output layer activation function: sigmoid.

By using the system in Fig. 4.2, all the learnable blocks can be optimized simultaneously.
This approach is preferred over optimizing each block individually since the last approach
might not result in the best overall result when the blocks are combined. The optimisation
is performed jointly over all channels, with separate NNs for each channel in the transmitter
and receiver.

4.3.2 Gumbel-Softmax Trick
One of the main challenges in implementing the system in Fig. 4.2 is to backpropagate the
gradient to the symbol probabilities in the first block. The difficulty is due to the non-
differentiability of the distribution sampling. For example, given a symbol distribution where
each symbol from a set of M possible symbols has probability pi, one could sample from
this distribution by performing the Gumbel-Max trick [51, 52]

s = OH (arg maxi{gi + log pi}) , (4.26)

where the function OH(i) outputs a OHV whose i-th position is 1, and gi ∈ G with G =
{g1, · · · , gM} is a set of independent and identically distributed samples drawn from Gumbel(0, 1)
[53]. The problem with (4.26) comes from the fact that the arg max operator is not differen-
tiable. Therefore, the gradient cannot be backpropagated to the symbol probabilities pi.

A solution to this problem was introduced by [54], called the Gumbel-Softmax trick.
Instead of using the OH and arg max operators, the sampling vector s = [s1, · · · , sM ] is now
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given by

si =
exp((log(pi) + gi)/τ)

∑M
k=1 exp((log(pk) + gk)/τ)

, (4.27)

where τ is a constant called temperature. The vector s is no longer an OHV. However, as
the temperature approaches zero, the distribution of s approaches an OHV with probabilities
identical to pi [54].

To apply the Gumbel-Softmax trick in the system of Fig. 4.2, one additional step was
performed. After obtaining the vector s, we apply

s′ = OH(arg maxi{si}) (4.28)

to obtain an OHV, since we should only choose one symbol at a time. This last proce-
dure is known as the straight-through Gumbel-Softmax estimator [54]. Since (4.28) is not
differentiable, the backpropagated gradient bypasses this last step. The gradient is able to
backpropagate until the probabilities pi since it is applied to the differentiable expression in
(4.27).
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Abstract

We present a novel analytical model for the lossless fiber in the weak-dispersion regime. The
model is compared to three other models via simulations using the split-step Fourier method.
These simulations explore the validity of the models with respect to parameters that affect the
signal after the fiber propagation. In one of the systems under consideration, the proposed
model is accurate until 8.7 dBm while the others are accurate only until 2.4 dBm. The impact
of the modulation format is analyzed for three of the models. Our results show differences up to
1.82 dB in the maximum power in which the proposed model remains accurate when changing
from quadrature phase shifting keying to 8-ary quadrature amplitude modulation.

5.1 Introduction
The transmission of a signal in an optical fiber is characterized by linear and nonlinear effects
[1, Ch. 2]. The linear effects are related to attenuation and chromatic dispersion [1, Ch.
3]. The nonlinear effect can be modeled by the Kerr effect [1, Ch. 4]. The attenuation
can be neglected when considering ideal Raman amplification, which maintains the signal
power constant during propagation [55]. In that case, the only linear effect remaining is
the chromatic dispersion, which can be easily compensated at the receiver by a linear filter,
referred to as electronic dispersion compensation (EDC) [56].

An EDC receiver has a better performance for low input powers [56], since in this case
the channel is predominantly linear. However, when the input power is high, the Kerr effect
becomes significant. In this scenario, to significantly improve the transmission rates, the
receiver should also consider the nonlinear effect [57]. To build such a receiver, one may use
a mathematical model for the optical channel. These models are generally obtained from the
nonlinear Schrödinger equation (NLSE) [1, Ch. 2]. So far in the literature, the solutions of the
NLSE are obtained by approximations, which can be numerical or analytical. One of the most
accurate approximations is obtained numerically by the split-step Fourier method (SSFM)
[58]. In the SSFM, the fiber is represented by a set of small segments, called steps, in which
the linear and nonlinear effects can be applied separately. The same method can be applied
with the inverse parameters at the receiver and/or transmitter, a process called digital back-
propagation (DBP) [28, 59]. DBP can partially compensate the nonlinear and linear effects
by choosing a sufficient number of steps. Increasing the number of steps also increases the
receiver’s computational complexity. To design low-complexity receivers, analytical models
are highly desirable.

Analytical models usually consider that either the nonlinear or the linear effect is pre-
dominant. In models obtained by degenerated solutions of the NLSE, one of the effects is
completely neglected. For example, in the dispersion-only model, the nonlinearity is ignored
by setting the nonlinear coefficient γ to zero in the NLSE [1, Ch. 3]. In the nonlinear phase
noise (NLPN) model, the chromatic dispersion is ignored by setting the group-velocity dis-
persion (GVD) parameter β2 to zero [1, Ch. 4], [60]. Analytical models that consider both
effects can be obtained by regular perturbation (RP) theory. A well-known model that uses



5

5.2 Optical Channel Models 49

this theory is the RP on the nonlinear coefficient γ [6, 7]. RP on γ considers a low nonlinear
effect. This model is appropriate for many known communication systems, and has been used
for performance prediction and design of receivers [5, 40]. When parameters such as power
and γ increase, the model loses its accuracy [6]. In that regime, a new model is necessary.
Such a model is not available in the literature yet and will be addressed on this paper.

In this paper, we present a novel model based on RP on the GVD parameter β2 for a
lossless NLSE. In contrast to the RP on γ, the proposed model considers a low dispersion
effect and can represent fiber transmission in the highly nonlinear regime. We compare this
model with the dispersion-only, NLPN, and RP on γ models and analyze their accuracy
for different input powers and modulation formats. The proposed model shows excellent
performance for input powers greater than−1 dBm when compared to the other three models.
The limits of the model with respect to the bandwidth and fiber length are also analyzed.

5.2 Optical Channel Models

In this section, we present four models for the optical channel. The two first models are
degenerated solutions of the NLSE. The third is an RP on the nonlinear coefficient γ and the
fourth is our proposed model, an RP on the GVD parameter β2.

The NLSE for the lossless and noiseless propagation at the retarded frame t and distance
z is [1, Ch. 2]

∂A(t, z)

∂z
= −jβ2

2

∂2A(t, z)

∂t2
+ jγ|A(t, z)|2A(t, z), (5.1)

where γ is the nonlinear Kerr coefficient and β2 is the GVD parameter. We obtain the solution
A of (5.1) numerically using the SSFM. To compare this solution with the signalAM obtained
from a model, the normalized square deviation (NSD) metric is used. The NSD is defined
as [6, eq. 27]

NSD ,

∫∞
−∞|AM (t, z)−A(t, z)|2dt

∫∞
−∞ |A(t, z)|2dt

. (5.2)

A model will be considered accurate if it has an NSD lower than 0.1 %. The power in which
a model has that value of NSD is defined as P0.1% in this paper.

5.2.1 Dispersion-only Model

If we set γ = 0, (5.1) becomes

∂AM (t, z)

∂z
= −jβ2

2

∂2AM (t, z)

∂t2
, (5.3)
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which admits a solution, given in the Fourier domain by [1, Ch. 3]

ÃM (ω, z) = Ã(ω, 0)e
jβ2
2 ω2z. (5.4)

We call the solution of (5.4) the dispersion-only model. This model is an all-pass filter, and
causes pulse-width variation [1, Ch. 3], [61, Sec. 3.1.1].

5.2.2 Nonlinear Phase Noise Model
By setting β2 = 0, the NLSE in (5.1) turns into

∂AM (t, z)

∂z
= jγ|AM (t, z)|2AM (t, z), (5.5)

which also admits an analytical solution [1, Ch. 4]

AM (t, z) = A(t, 0)ejγ|A(t,0)|2z. (5.6)

The solution (5.6) is called the NLPN model. In analogy with the dispersion-only model,
the NLPN model does not affect the amplitude of the time-domain signal. In the frequency
domain, (5.6) causes spectral variation [1, Ch. 4], [61, Sec. 3.1.2].

5.2.3 Regular Perturbation on γ

The first order of a regular perturbation on γ is a model that consider the dispersion effect as
the main fiber effect. The model is described in the frequency domain as [6]

ÃM (ω, z) = Ã(ω, 0)e
jβ2
2 ω2z + jγ

∫ z

0

e
jβ2
2 ω2(z−u)S̃(ω, u)du, (5.7)

where S̃ is the Fourier transform of

S(t, z) = |A0(t, z)|2A0(t, z), (5.8)

and A0(t, z) is the inverse Fourier transform of Ã(w, 0)e
jβ2
2 w2z in (5.4). The first term in the

right-hand side of (5.7) accounts only for the dispersion effect. The second term considers
the nonlinear and the dispersion effects together. This can be seen by the similarity between
the function S and the last term in (5.1).

5.2.4 Proposed Model: Regular Perturbation on β2

We present a first-order RP on β2. In this model, the main effect is nonlinearity. The model
is given by
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AM (t, z) = A(t, 0)e+jγ|A(t,0)|2z + β2B(t, z)e+jγ|A(t,0)|2z, (5.9)

where

B(t, z) = −
∫ z

0

F (t, u)du− 2jγA(t, 0)<
{
A∗(t, 0)

∫ z

0

(z − u)F (t, u)du

}
, (5.10)

F (t, z) =
j

2

∂2

∂t2

{
A(t, 0)e+jγ|A(t,0)|2z

}
e−jγ|A(t,0)|2z. (5.11)

The first term in the right-hand side of (5.9) accounts for the nonlinear effect only. The second
term also accounts for the mix of dispersion and nonlinear effects. The relationship between
this last term and the dispersion is observed in the second-order derivative in (5.11). In this
paper, we motivate the model by numerical simulations, deferring the theoretic analysis to a
future publication due to space constrains.

5.3 Numerical Analysis

5.3.1 System Parameters

In the system under consideration, we transmit symbols using M -ary quadrature amplitude
modulation (M -QAM). The value of M is varied to analyze the impact of the modulation
format on the models. For M = 4, the 4-QAM modulation is called quadrature phase-shift
keying (QPSK). The symbols modulate the amplitude of root-raised cosine (RRC) pulses with
a roll-off factor of 0.1. The resulting signal is transmitted over a nonzero dispersion-shifted
fiber (NZDSF) with parameters given in Table 5.1.

Table 5.1: Fiber parameters
Parameter Value

Wavelength λ [nm] 1550
Symbol Rate [Gbaud] 10

Fiber Length [km] 60
β2 [ps2/km] −5.42
γ [1/W/km] 1.46

In an NZDSF, the value of |β2| is lower than in a standard single-mode fiber (with typi-
cally β2 = −21.67 ps2/km). This fact provides a regime where the accumulated dispersion
is low for the respective fiber length and symbol rate. Changing these two last parameters
significantly affect the model accuracy. This will be investigated in the next section.
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Figure 5.1: Simulation results for the system given by the parameters in Table 5.1. (a) NSD
versus input power for the four different model with QPSK modulation. (b) Difference ∆
between P0.1 % for M -QAM modulation (M ≥ 8) and QPSK.

5.3.2 Simulation Results

Fig. 5.1(a) shows the NSD in (5.2) versus input power for the four models with QPSK mod-
ulation. As depicted in Fig. 5.1(a), the dispersion-only and NLPN models have a worse
performance than the RP on β2 in the entire simulated range of powers. While for RP on β2

P0.1% ≈ 8.7 dBm, the second highest P0.1% is approximately 2.4 dBm, for RP on γ. This
difference shows that the RP on β2 is accurate until powers more than 6.3 dB greater than the
other models. The higher P0.1% of RP on β2 shows more tolerance to power changes, even
though RP on γ is more accurate for powers below −2 dBm. Fig. 5.1(a) also illustrates the
dispersion-only model with rectangular 8-QAM modulation in a reduced range of powers.
The change in the modulation format introduces a difference ∆ between P0.1% for 8-QAM
and QPSK of −1.57 dB.

The difference ∆ is generalized in Fig. 5.1(b) for other modulation formats, always with
respect to QPSK. Fig. 5.1(b) illustrates the difference ∆ between M -QAM modulation for-
mats and QPSK for the dispersion-only, RP on γ and RP on β2 models. The NLPN is not
considered in this figure since it does not cross the 0.1 % threshold (see Fig. 5.1(a)). As shown
in Fig. 5.1(b), the three models have a negative ∆ for M ≥ 8. For M ≥ 16, RP on γ has a
lower ∆ than the other models. The lowest ∆ for the three models occurs atM = 8, which is
the most nonsquareM -QAM. For that modulation format, RP on β2 presents a P0.1% 1.82 dB
lower than for QPSK. Nevertheless, the other nonsquare modulation formats (odd log2M )
converge to a higher ∆ than the square ones (even log2M ). This behavior is depicted with
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Figure 5.2: NSD for RP on β2 at different symbol rates and fiber lengths. We considered a
QPSK signal with 5 dBm input power.

dashed lines for RP on β2, with ∆ = −0.79 dB and ∆ = −1.00 dB, respectively.
Fig. 5.2 shows the NSD for RP on β2 at different combinations of symbol rate and fiber

length, considering QPSK. As illustrated in Fig. 5.2, increasing the fiber length and/or the
symbol rate deteriorates the performance of the model. This behavior can be justified using
(5.4). The dispersion effect increases with the distance and square of the signal bandwidth,
and the later increases linearly with the symbol rate. Therefore, the approximation made by
RP on β2 becomes worse, increasing the NSD. Using the same symbol rate of 10 Gbaud used
in the previous example, the fiber could be extended to approximately 87.4 km keeping the
model accurate ( in Fig. 5.2). Fixing the fiber length to 60 km, the symbol rate could be
increase to only 13.4 Gbaud ( ). When targeting higher symbol rates, the reach distance is
significantly decreased. For 30 Gbaud, the model is accurate for a maximum fiber length of
17.0 km ( ).

5.4 Conclusions
We presented in this paper a novel model for the weak-dispersion regime in a lossless fiber,
which can be used even with high nonlinearity. The proposed model accurately represents the
fiber output until an input power of 8.7 dBm in the system under consideration. The modu-
lation format impacts the performance of the models, especially when comparing QPSK and
8-QAM. The effect of changes in the symbol rate and fiber length was also analysed, which
showed a high sensitivity of the model to these two parameters. Deriving a receiver based on
the proposed model and finding higher-order perturbations on β2 are possible extensions of
the work.
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Abstract

Communication using the optical fibre channel can be challenging due to nonlinear effects that
arise in the optical propagation. These effects represent physical processes that originate from
light propagation in optical fibres. To obtain fundamental understandings of these processes,
mathematical models are typically used. These models are based on approximations of the
nonlinear Schrödinger equation, the differential equation that governs the propagation in an
optical fibre. All available models in the literature are restricted to certain regimes of operation.
Here, we present an approximate model for the nonlinear optical fibre channel in the weak-
dispersion regime, in a noiseless scenario. The approximation is obtained by applying regular
perturbation theory on the group-velocity dispersion parameter of the nonlinear Schrödinger
equation. The proposed model is compared with three other models using the normalized square
deviation metric and shown to be significantly more accurate for links with high nonlinearities
and weak dispersion.

6.1 Introduction

Optical fibre propagation can be modelled by the nonlinear Schrödinger equation (NLSE) [1].
The NLSE is a partial differential equation that has three main effects: attenuation, second or-
der dispersion, and Kerr nonlinearity. When considering the three effects together, the NLSE
has no analytical solution for an arbitrary input pulse. The solution is obtained via a numeri-
cal method known as split step Fourier method (SSFM) [1, 58]. The SSFM divides the fibre
in small segments, known as steps, and increasing the number of steps increases the method’s
accuracy [39, 58]. For a high number of steps, the method’s computational complexity is a
limiting factor [29]. To overcome this limitation, analytical models are generally used.

An analytical model that is easily mathematically manipulable is highly desirable as it
can be used for improving fibre-optical transmission. Since models are approximations of
the NLSE, they can be used to build improved receivers and mitigate fibre effects [5, 62–64],
design signal shaping and coding [65, 66], to estimate channel capacity [66–70], and even
to predict system performance [40, 41]. An extensive review on optical channel models can
be found in [66]. Each model will have a regime of operation based on the approximation
used to derive it. The regimes classify models with respect to the group-velocity dispersion
parameter β2 (which in this paper we refer to as the linear coefficient), the Kerr nonlinear
coefficient γ, and the input power.

Some of the main regimes of operation and models present in the literature are schemat-
ically represented in Fig. 6.1. If both the linear and nonlinear coefficients are zero, the fibre
degenerates to an additive Gaussian noise (AWGN) channel (in the presence of noise), and no
interesting effects of the fibre propagation appear. One of the simplest regimes that accounts
for fibre propagation effects is when the linear coefficient is zero (β2 = 0), represented by the
green region 2© of Fig. 6.1. In this case, the NLSE is modelled by a nonlinear phase shift [1],
known as the nonlinear phase noise (NLPN) model [60, 67]. The assumption of a zero lin-
ear coefficient results in a memoryless channel. This assumption was used in the literature,
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Figure 6.1: Validity region for different models for the nonlinear Schrödinger equation. Each
region is characterized by a combination of |β2| and γ values. The models are derived by
using approximations based on the magnitude of these two parameters.

for example, when chromatic dispersion is completely compensated [71]. The same premise
was considered when analysing the highly nonlinear regime, i.e., when the nonlinearities are
predominant and may be an important effect to take into account [68, 72]. As will be seen in
the Results section, even in that regime the dispersion can deteriorate the performance of the
model.

Another simple model arises when the nonlinear coefficient is zero (γ = 0), represented
by the blue region 1© of Fig. 6.1. In this case, the NLSE again admits an exact solution given
by the so-called dispersion-only model [1]. This model considers the fibre propagation as an
all-pass filter, whose phase response grows with the square of the frequency. Since the model
considers zero nonlinearities, it is ideal for low power regimes, where the dispersion is the
major effect.

For high power regimes, if the nonlinear coefficient is low but nonzero, the dispersion-
only model becomes inaccurate, as will be shown in the Results section. In such scenario,
regular perturbation (RP) theory on the nonlinear coefficient [6,7,27] becomes a more suitable
model, represented by the yellow region 3© in Fig. 6.1. The nonlinearities depend on the
signal times the square of the absolute value of the signal, as will be seen in the nonlinear
term of equation (6.3). This dependence makes the nonlinearities grow with the cube of the
signal power, thus compromising the accuracy of the RP for high powers [6, 7]. As will be
shown in the Results section, RP on the nonlinear coefficient is accurate for a wider range
of powers than the dispersion-only model. This wider range allows the RP model to model
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∫
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z

Figure 6.2: Schematic of NSD and SNR calculations. The transmitted symbols (x1, · · · , xK)
are filtered by a root-raised-cosine (RRC) filter, originating the input signal A(·, 0). This in-
put signal is processed either by the SSFM or by an analytical model (AM), resulting in
the outputs A(·, z) and AM (·, z), respectively. The NSD is obtained from the SSFM output
A(·, z) and a model output AM (·, z), while the SNR is obtained from the transmitted sym-
bols (x1, · · · , xK) and with the received symbols (y1, · · · , yK) from the SSFM or from an
analytical model. To obtain the received symbols, the output waveforms are submitted to an
optional chromatic dispersion compensation (CDC) block, followed by a matched filter (MF)
and sampling.

many communication systems [27, 64]. The assumption of low nonlinearity is also used for
other models, such as logarithmic perturbation [7] and Volterra series [73]. With respect to
the Volterra series model, it was proved in [6] that its (2n + 1)-th order is equivalent to the
n-th order RP on the nonlinear coefficient model.

The mentioned models only cover regions 1©, 2©, and 3© of Fig. 6.1. Models for the
red region 4© and the brown region 5© do not exist in the published literature. The latter
represents regimes where both the linear and nonlinear coefficient are high, and might not be
achievable by perturbation models since, by the RP’s definition, one of the coefficients should
be low. In region 4©, the absolute value of the linear coefficient is low; therefore, performing
a regular perturbation is a reasonable approach.

In this paper, we propose a perturbation on the linear coefficient of the NLSE, providing
a model for the weak-dispersion regime represented by region 4©. The proposed RP on the
linear coefficient covers regimes where the nonlinear coefficient is high, and in contrast to
the NLPN model, small amounts of dispersion are allowed. The RP on the linear coefficient
is a model in closed mathematical form, and depends on the input field and the fibre pa-
rameters. A closed-form equation is derived for the continuous-time fibre output with single
polarization. The proposed model is compared with the RP on the nonlinear coefficient, the
dispersion-only, and the NLPN models. For comparison purposes, the fibre and simulation
parameters (such as bandwidth and span length) are varied to identify regimes where each
model is accurate. As will be shown in this paper, the RP on the linear coefficient is accu-
rate for a wider range of powers than the RP on the nonlinear coefficient in low accumulated
dispersion systems.
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6.2 Results

6.2.1 Fibre propagation and metrics

The noiseless propagation of the optical field E at the retarded time frame t and distance z
for a single polarization in a single-mode fibre can be represented by the NLSE [1]

∂E(t, z)

∂z
= −α

2
E(t, z)− jβ2

2

∂2E(t, z)

∂t2
+ jγ|E(t, z)|2E(t, z), (6.1)

where α is the attenuation coefficient, β2 the group-velocity dispersion parameter, and γ the
nonlinear coefficient. When normalizing the field E via

E(t, z) = A(t, z)e−
α
2 z, (6.2)

equation (6.1) is simplified to

∂A(t, z)

∂z
= −jβ2

2

∂2A(t, z)

∂t2︸ ︷︷ ︸
linear term

+ jγe−αz|A(t, z)|2A(t, z)︸ ︷︷ ︸
nonlinear term

. (6.3)

By writing the NLSE as equation (6.3), the RP method can be more easily applied.
This version of the NLSE disregards dual-polarization effects, such as polarization-mode

dispersion, as well as other effects like stimulated Raman scattering. The latter can be rea-
sonably ignored given the low bandwidth scenarios studied in this paper [1]. We chose to
analyse the single-polarization equation as a first step towards RP on β2. Nevertheless, single-
polarization transmission is still attractive for low cost optical systems [74].

The first and second terms on the right-hand side of equation (6.3) are linear and nonlinear
terms in the NLSE. In this paper, for simplicity, we will refer to them as linear and nonlinear
terms, respectively, even though they refer to a normalized version of equation (6.1). When
both the linear and nonlinear terms are considered together, there is no analytical solution for
equation (6.1) for an arbitrary input pulse A(·, 0). However, by setting β2 = 0 or γ = 0,
it is possible to obtain simple analytical solutions [1]. These solutions are the basis of the
models described below, and each of them has a regime where they can predict well the
NLSE solution of equation (6.3).

In this paper, to quantify how well a model approximates the solution of the NLSE in
equation (6.3), we will use a metric that relates the error between two waveforms: the nor-
malized square deviation (NSD) (previously used in [6]). The output of the SSFM algorithm
will be considered as the solution A of equation (6.3). The NSD calculation between A(·, z)
and its approximation made by a certain model AM (·, z) is illustrated in Fig. 6.2. For a
certain propagation distance z > 0, the error ξ between the model and the fibre output A is

ξ(t, z) = AM (t, z)−A(t, z). (6.4)
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Based on equation (6.4), we define the NSD as

NSD ,

∫∞
−∞|ξ(t, z)|2dt
∫∞
−∞ |A(t, z)|2dt

. (6.5)

The NSD captures the average of the squared absolute error over the time dimension, which
corresponds to the error energy. To enable a fair comparison between different input powers,
the NSD is normalized by the energy of the fibre output A(·, z). Following [7], we will use
a threshold of 0.1% for comparing models. We will say that a model is precise if it gives an
NSD below 0.1%.

In addition to the NSD, which characterizes the continuous-time performance, we also
observe the discrete-time output, for which the signal-to-noise ratio (SNR) is a suitable met-
ric. As shown in Fig. 6.2, we transmit a sequence of K symbols (x1, · · · , xK), shaped by
a root-raised-cosine (RRC) filter. The receiver consists of an optional chromatic dispersion
compensation (CDC) block, followed by a matched filter and sampling. Even though no
noise is added to the system, the received symbols are not exactly the transmitted ones. This
difference is due to limitations on the linear receiver we assume, which cannot undo the fi-
bre propagation effects on the signal. Therefore, the SNR only accounts for signal–signal
interactions in this case.

The SNR for a constellation with M symbols is defined as

SNR =

∑M
m=1 |ȳm|2∑M

m=1
1
Nm

∑Nm
k=1 |ykm − ȳm|2

, (6.6)

where ȳm = 1
Nm

∑Nm
k=1 ykm is the average received symbol corresponding to the m-th con-

stellation point, Nm is the number of times the m-th constellation point was transmitted, and
ykm is the k-th received symbol given a fixed transmittedm-th constellation point. This SNR
calculation assumes that we know the corresponding transmitted symbol for a given received
symbol, and that the mean values ȳm would be the signal components with ideal reception.

Notation convention: throughout this paper, we use A(·, z) to represent the evaluation of
a two-variable functionA that depends on the retarded time frame, evaluated at distance z. In
other words, we use this notation to emphasize that A(·, z) is still a function of the retarded
time frame. The complex conjugate of A is denoted by A∗. <{·} and ={·} give the real and
imaginary parts of a complex number, respectively. Operators are denoted by calligraphic
letters.

The numerical examples we will present investigate the limits and the operational regimes
of each model. To vary the group-velocity dispersion, two types of fibre were consid-
ered: standard single-mode fibre (SSFM) and nonzero dispersion-shifted fibre (NZDSF). The
SSMF has α = 0.2 dB km−1, β2 = −21.67 ps2 km−1, and γ = 1.2 W−1 km−1, while
the considered NZDSF has α = 0.22 dB km−1, β2 = −5.42 ps2 km−1, and γ = 1.46
W−1 km−1. Except in the symbol rate variation analysis, all the simulations consider a sym-
bol rate of 10 Gbaud. The modulation format is 64-ary quadrature amplitude modulation
(64-QAM) unless otherwise stated.
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In what follows, we review 3 models available in the literature and then, present the RP
on β2.

Dispersion-only model
When considering γ = 0, equation (6.3) simplifies to [1]

∂AM (t, z)

∂z
= −jβ2

2

∂2AM (t, z)

∂t2
, (6.7)

which has the exact solution [75]

AM (t, z) = (A(·, 0) ∗ h(·, z)) (t) = Dz{A(·, 0)}(t). (6.8)

In equation (6.8), ∗ represents convolution, h is given by

h(t, z) =
1√

j2πβ2z
e−

j
2β2z

t2 , (6.9)

and Dz is the dispersion operator defined as

Dz{f}(t) , (f ∗ h(·, z)) (t), (6.10)

where f is a function of t. The solution in equation (6.8) is called the dispersion-only model,
and is a linear, time-invariant all-pass filter. It corresponds to 1© in Fig. 6.1.

Example 6.1. Figure 6.3a shows the NSD vs. input power for the dispersion-only model for
the SSMF and an NZDSF. As shown in Fig. 6.3a, the model is an accurate approximation
of the fibre output in this system for power lower than +2 dBm for the 10 km fibre. This is
as a regime where the nonlinearities are not predominant. As the input power increases, the
NSD increases approximately by 2 dB/dBm. This figure also shows that a change in β2 of ap-
proximately 4 times does not considerably change the NSD. By increasing the distance from
10 to 80 km, the NSD grows almost one order of magnitude, which can be justified by the
extended interaction between the nonlinearities and the chromatic dispersion, not modelled
in this solution.

6.2.2 Nonlinear phase noise model
For β2 = 0, equation (6.3) simplifies to [1]

∂AM (t, z)

∂z
= jγe−αz|AM (t, z)|2AM (t, z), (6.11)

which has the exact solution

AM (t, z) = A(t, 0)ejγ|A(t,0)|2G(z), (6.12)
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where

G(z) =

∫ z

0

e−αudu =
1− e−αz

α
(6.13)

is the effective length. The solution in equation (6.12) is called the nonlinear phase noise
(NLPN) model, and is a memoryless, signal-dependent phase shift. This model is 2© in
Fig. 6.1.

Example 6.2. Figure 6.3b shows the NSD of the NLPN model for the same scenario as
Example 6.1. For the NLPN, increasing the value of |β2| (changing from NZDSF to SSMF)
can deteriorate the NSD by a factor of almost ten times for the same distance at 0 dBm. This
effect can be justified by the increased dispersion contribution to the signal, not modelled by
this solution. Furthermore, the accumulated dispersion is also increased when extending the
fibre length from 10 to 80 km, which increases the NSD by two orders of magnitude. This
last increase can also be seen by the fact that, at long distances, G(z) ≈ 1/α and equation
(6.12) barely changes with respect to z. However, this result is not consistent with the actual
fibre output, which still depends on the distance z in the presence of chromatic dispersion.
Although only the 10 km NZDSF presented an NSD below the threshold of 0.1%, the NLPN
model has an NSD almost constant for powers lower than 10 dBm.

6.2.3 Regular perturbation on γ

The RP method consists of representing the solution of an equation with an expansion in
terms of simplified solutions and a coefficient. In the RP on γ, the general solution can be
written as [6, 27]

A(t, z) =

∞∑

k=0

γkAk(t, z), (6.14)

where the functions Ak are functions that depend on the initial field A(·, 0). In the first order
RP on γ, equation (6.14) is truncated at k = 1, and the functions A0 and A1 are given in
the next theorem. The result of Theorem 6.1 is well known in the literature (see [6, 7, 27]).
However, we include its proof in the Appendix for consistency with the notation.

Theorem 6.1. Let A be the solution of the NLSE in equation (6.3) with initial condition
A(·, 0). Then, A can be approximated by AM , the first order RP on the nonlinear coefficient
γ of equation (6.3), written as

AM (t, z) = A0(t, z) + γA1(t, z), (6.15)

where
A0(t, z) = Dz{A(·, 0)}(t) (6.16)

is the dispersion-only solution in equation (6.8) and

A1(t, z) = j

∫ z

0

e−αuDz−u
{
|A0(·, u)|2A0(·, u)

}
(t)du. (6.17)
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The proof is given in the Appendix.

Example 6.3. In Fig. 6.3c, the NSD results for SSMF and NZDSF fibres are presented. This
figure shows that the NSD scales as 4 dB/dBm, which is twice as much as the value found for
the dispersion-only model example (see Fig. 6.3a). This behaviour might be explained by the
cubic signal power dependence of the nonlinear term and A1 (see nonlinear term in equation
(6.3)). Despite this faster growth of the NSD, the crossing point of the curves with the 0.1%
threshold happens at higher powers compared with the dispersion-only case. This shows that
the RP on γ model has a wider range of validity than the dispersion-only model. Figure 6.3c
also shows that, for the RP on γ model, just like for the dispersion-only case, increasing |β2|
slightly improves the NSD. The increase in the fibre length also deteriorates the performance
of the RP on γ. As expected, the NSD grows when the power of the input signal is increased.
To reduce the approximation error, more terms of the expansion in equation (6.14) can be
considered. This comes at the cost of a higher model complexity, as done in [6].

6.2.4 Proposed model: regular perturbation on β2

We now present the proposed model, which was derived based on the RP method to accurately
represent the NLSE in the highly nonlinear regime, illustrated by region 4© in Fig. 6.1.

In analogy with the RP on γ, the RP method can be applied to β2. The only difference is
that now the expansion of A is written in terms of β2 as

A(t, z) =

∞∑

k=0

βk2Ak(t, z). (6.18)

The terms A0 and A1 for the first order RP on β2 are given in the next theorem, which is the
main contribution of this paper.

Theorem 6.2. Let A be the solution of the NLSE in equation (6.3) with initial condition
A(·, 0). Then, A can be approximated by AM , the first order RP on the linear coefficient β2

of equation (6.3), written as

AM (t, z) = A0(t, z) + β2A1(t, z), (6.19)

where

A0(t, z) = A(t, 0)ejγ|A(t,0)|2G(z), (6.20)

and

A1(t, z) = B(t, z)ejγ|A(t,0)|2G(z), (6.21)
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with B given by

B(t, z) =−M(t)z +G1(z)R(t) +G2(z)P (t)

− 2jγA(t, 0)<{A∗(t, 0)V (t, z)}, (6.22)
V (t, z) = G(z) [M(t)z −G1(z)R(t)−G2(z)P (t)]

−G1(z)M(t) +G2(z)R(t) +G3(z)P (t), (6.23)

M(t) =
j

2

∂2A(t, 0)

∂t2
, (6.24)

R(t) =
γ

2
A(t, 0)

∂2|A(t, 0)|2
∂t2

+ γ
∂A(t, 0)

∂t

∂|A(t, 0)|2
∂t

, (6.25)

P (t) =
jγ2

2
A(t, 0)

(
∂|A(t, 0)|2

∂t

)2

, (6.26)

G1(z) =
αz + e−αz − 1

α2
, (6.27)

G2(z) =
2αz + 4e−αz − e−2αz − 3

2α3
, (6.28)

G3(z) =
6αz + 18e−αz − 9e−2αz + 2e−3αz − 11

6α4
. (6.29)

The proof is postponed to the Appendix.
By comparing equation (6.19) and equation (6.20) with equation (6.12), it is clear that the

RP on β2 corresponds to the NLPN solution perturbed by the dispersion. The perturbation
term A1 in equation (6.21) is in closed form and it depends on the derivatives of the input
field A(·, 0). Note also that both A1 and A0 are multiplied by the same phase rotation, as
shown in equation (6.20) and equation (6.21).

The functions A0 and A1 depend on elementary functions of z (see equations (6.13),
(6.27), (6.28), and (6.29)). This results in the same calculation time forAM at any distance z,
in contrast to the SSFM, for which the number of necessary steps increases with the distance.
For this reason, RP on β2 calculations are significantly faster than SSFM calculations for the
parameters simulated in this paper.

Example 6.4. Figure 6.3d presents the NSD for the RP on β2 for the SSMF and the NZDSF.
As shown in Fig. 6.3d, the NSD is approximately constant below a certain input power (0
dBm in this case). In addition, changes in the amount of dispersion severely impact the NSD.
For example, at 0 dBm, increasing β2 (going from NZDSF to SSMF) in the 80 km system, the
NSD rises more than 2 orders of magnitude. This model is also very sensitive to the distance.
Increasing the fibre length from 10 to 80 km in the SSMF system, the NSD rises more than 3
orders of magnitude for 0 dBm.
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Figure 6.3: NSD for the four described models as a function of the input power. Two fibre
lengths (10 and 80 km) and two types of fibre (NZDSF and SSMF). a Dispersion-only model
given by (6.8). b NLPN model given by (6.12). c RP on γ model given by (6.15). d RP
on β2 model given by (6.19). Each model has a different accuracy, measured in NSD, for a
specific set of input powers, β2 coefficient, and distance. The black horizontal line represents
a constant 0.1% NSD, which is used for comparison between models.

As discussed above, the RP on β2 in equation (6.19) is the sum of the NLPN solution
(A0) and a term accounting for the dispersion (β2A1). Therefore, some similarities in the
NSD curves of these two models are expected (in analogy to the RP on γ and the dispersion-
only model, discussed in Example 6.3). By comparing Fig. 6.3d with Fig. 6.3b, the RP on β2

is an improved version of the NLPN model, just like the RP on γ is an improved version of
the dispersion-only model.
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Figure 6.4: NSD for the four models in 80 km of an NZDSF. a With attenuation (α = 0.22
dB km−1). b Without attenuation (α = 0 dB km−1). The power gap in dB between the
NSD curves is related to different input powers that allow each model to achieve 0.1% NSD.
In the system without attenuation (b), this gap is increased when comparing RP on γ with RP
on β2.

Example 6.5. Figure 6.4a presents a comparison of the four models for an 80 km NZDSF.
As shown in Fig. 6.4a, only the dispersion-only, the RP on γ, and the RP on β2 models have
NSDs below the threshold of 0.1% for some powers. The dispersion-only model crosses the
threshold at −2 dBm, while the RP on γ crosses it at 6.2 dBm, presenting a gain of 8.2 dB.
The RP on β2 crosses the threshold at even higher powers (9.2 dBm), with a gain of 3 dB
with respect to the RP on γ.

In systems with distributed Raman amplification, the power profile is approximately flat
[76] and the attenuation term in (6.1) is often neglected. In this case, a simpler analytical
form for B(t, z) when compared to equation (6.22) is achieved. This simplification is given
in the next theorem.

Theorem 6.3. With ideal distributed amplification, the functions A0 and A1 in equation
(6.20) and equation (6.21) can be written as

A0(t, z) = A(t, 0)ejγ|A(t,0)|2z, (6.30)

A1(t, z) = B(t, z)ejγ|A(t,0)|2z, (6.31)

where

B(t, z) = −M(t)z +
z2

2
R(t) +

z3

3
P (t)

− 2jγA(t, 0)<
{
A∗(t, 0)

[
z2

2
M(t)− z3

6
R(t)− z4

12
P (t)

]}
.

(6.32)
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Figure 6.5: NSD for the RP on γ and the RP on β2 for different values of |β2| and γ. The
system consists of an 80 km fibre with fixed input power 5 dBm, symbol rate of 10 Gbaud,
α = 0.2 dB km−1, and negative β2. a Regular Perturbation on γ. b Regular Perturbation
on β2. Region 3© represents low γ and large |β2| values (see Fig. 6.1). Region 4© represents
low |β2| and large γ values. Region 5© represents large γ and large |β2| values. The thick
black line of constant 0.1% NSD is used as a threshold for accuracy comparison. The results
indicate, as expected, that RP on γ is accurate for region 3© and RP on β2 is accurate for
region 4©. Both models yield low accuracy in region 5©.

and where M(t), R(t), and P (t) are given by equation (6.24), equation (6.25), and equation
(6.26), respectively.

The proof is postponed to the Appendix.

Example 6.6. Figure 6.4b shows the NSD for the four models with the same parameters as
in Example 6.5, except that in this case there is no attenuation. For powers below −5 dBm,
the NLPN model and the RP on β2 present almost the same NSD compared with Fig. 6.4a.
This behaviour could be justified by the small impact of the nonlinearities for low powers.
The NSD values in that regime become close to each other, since the attenuation is mostly
connected to the nonlinear effect (as can be seen in equation (6.3)). The curves cross the
threshold at lower powers compared to Fig. 6.4a, excluding the NLPN model, which remains
above the threshold for all analysed powers. We believe that the lower threshold crossing
happens due to the additional interactions between nonlinearities and dispersion present in
the lack of attenuation. While the RP on γ crosses the threshold at 0 dBm, the RP on β2

crosses at 5 dBm, representing a gain of 5 dB (2 dB more compared to the attenuation case).

In the previous examples, the parameters γ and β2 were fixed, along with the simulation
bandwidth and the fibre length. These parameters are further investigated in the next exam-
ples, where the four models are compared with each other in systems with attenuation. For
the next simulations, most of the parameters given in the previous examples are still consid-
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Figure 6.6: NSD versus fibre length and symbol rate for the four models. The system consists
of an NZDSF with fixed input power 5 dBm. a NSD versus fibre length at a symbol rate of
10 Gbaud. b NSD versus symbol rate for a fibre length of 80 km. Changes in fibre length or
symbol rate result in a wider range of NSD variation for RP on β2 than for RP on γ.

ered; however, some of them will be changed. We will discuss fibre length variation, symbol
rate variation, and β2 and γ variation.

6.2.5 Variation of β2 and γ

To analyse the impact of changes in β2 and γ, we consider a fibre length of 80 km with fixed
input power of 5 dBm, symbol rate of 10 Gbaud, and α = 0.2 dB km−1. In this analysis,
only the RP on γ and β2 will be considered. Figure 6.5a shows the NSD for the RP on γ
for different values of |β2| (negative β2) and γ. As depicted in Fig. 6.5a, variations in β2

practically do not affect the accuracy of the model, while changes in γ have a major impact.
In analogy with Fig. 6.1, the lower region of Fig. 6.5a is equivalent to region 3©, where the
model is accurate (NSD < 0.1%). This region covers values of γ of up to approximately
1.78 W−1 km−1 for this system. Making the same analysis for RP on β2 leads to Fig. 6.5b,
which shows the NSD for the same range of γ and β2 values. In this case, the area where the
model is accurate is vertical, in analogy to region 4© in Fig. 6.1. The NSD for the RP on β2

changes mostly with the value of β2; however, changes in γ can also significantly affect the
performance, specially for high |β2| values. The intersection of the areas that are not accurate
for any of the models is related to region 5© in Fig. 6.1.
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6.2.6 Fibre length variation
For the fibre length variation analysis, we consider an NZDSF with fixed input power of 5
dBm and a symbol rate of 10 Gbaud. Figure 6.6a shows the NSD versus fibre length for
the four different models. All the four models increase the NSD when increasing the fibre
length; however, the dispersion-only and the RP on γ seem to converge to a constant NSD
value. This convergence is due to the attenuation on the nonlinear term in equation (6.3): for
high distances, the nonlinearities do not considerably affect the signal, and the major effect
is the dispersion. Since these two models fully predict the dispersion effect, they do not
lose accuracy in that regime. The RP on β2, for this system, can reach approximately 120
km within the NSD threshold of 0.1%, and for fibre lengths lower than 90 km, the model
outperforms the RP on γ.

6.2.7 Symbol rate variation
For the symbol rate variation analysis, we consider 80 km of an NZDSF with fixed input
power of 5 dBm. Figure 6.6b depicts the NSD variation with respect to the symbol rate.
As shown in Fig. 6.6b, the dispersion-only model and the RP on γ do not change their ac-
curacy when varying the symbol rate. On the other hand, the NLPN model and the RP on
β2 drastically drop the NSD when decreasing the symbol rate. For bandwidths lower than 4
Gbaud, even the NLPN can outperform the RP on γ. This behaviour may be justified by the
decreasing influence of the dispersion on the signal, since according to equation (6.7), higher
frequencies are more affected by dispersion due to their high second derivative.

6.2.8 Fibre length versus symbol rate
The previous two sections analysed the NSD by varying the fibre length and symbol rate
separately. Both of these parameters influence the accumulated dispersion. Therefore, given
a fibre length or a symbol rate, we can find the values for the other parameter in which RP on
β2 is accurate [15].

Figure 6.7 depicts the NSD given a fibre length and a symbol rate for an NZDSF with
fixed input power 5 dBm. As shown in Fig. 6.7, the model can accurately handle arbitrarily
large fibre lengths if the symbol rate is small enough and vice versa. By fixing a fibre length
of 80 km, the maximum symbol rate in which RP on β2 is still accurate is 12.55 Gbaud
(see triangular marker in Fig. 6.7). If the distance is reduced to 20 km, the symbol rate can
be increased until 27.38 Gbaud (see square marker in Fig. 6.7). These values show that by
reducing the fibre length by a factor of 4, the symbol rate can be increased by a factor of
approximately 2.18. This difference in scaling factors was already expected considering that
the accumulated chromatic dispersion increases linearly with the distance and with the square
of the signal bandwidth.

The thick solid line in Fig. 6.7 at an NSD of 0.1% can be seen as a conservative thresh-
old. Choosing other metrics, such as signal-to-noise ratio (SNR), might motivate different
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Figure 6.7: NSD for RP on β2 for different values of fibre length and symbol rate. The system
consists of a 80 km NZDSF with fixed input power 5 dBm. The triangular marker on the top
of the figure is associated with the distance of 80 km and symbol rate of 12.55 Gbaud. The
square marker on the bottom right is associated with the distance of 20 km and symbol rate
of 27.38 Gbaud. Both markers lie on the thick black line representing a constant 0.1% NSD.

conclusions. For example, we will show in the discrete-time performance section (ahead),
RP on β2 can have an SNR close to that of the SSFM, even though RP on β2 yields an NSD
in the order of 30% in that scenario.

6.2.9 Modulation format impact

The previous simulations were based on 64-QAM. For different modulation formats, the
transmitted signal statistics change. Since signal statistics impact the nonlinear effect, the
NSD curves can be different for other modulation formats [15].

Figure 6.8 illustrates the NSD versus input power for three modulation formats on 80
km of an NZDSF with a symbol rate of 10 Gbaud. As shown in Fig 6.8, quadrature phase-
shift keying (QPSK) yields lower NSD than the other two modulation formats. We believe
this behaviour is justified by the QPSK’s high tolerance to nonlinearities, which reduces the
error in the first-order RP approximation. The performance of star 8-QAM and 64-QAM are
almost the same for the considered input powers. The gap between QPSK and 64-QAM for
the 0.1% threshold crossing is 0.8 dB for RP on β2 and 1.1 dB for RP on γ. The higher gap
for RP on γ might indicate that this model is more sensitive to changes in the modulation
format than RP on β2.
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Figure 6.8: Impact of QPSK, star 8-QAM, and 64-QAM modulation formats on the NSD
versus input power. The system consists of an 80 km NZDSF with 10 Gbaud symbol rate. The
modulation format impact is measured by the power gap in dB between the crossing points
of the NSD curves for each modulation format with the horizontal black curve representing a
constant 0.1% NSD.

6.2.10 Discrete-time performance

As discussed in the ‘Fibre propagation and metrics’ section, the analysis of the received
symbols might bring insightful conclusions about the models. In order to clearly visualize
the fibre effects on the received constellations, the SNR simulations were based on QPSK
modulation over a 20 km NZDSF. At the receiver, we considered two cases: with and without
CDC, followed by matched filtering and sampling (see Fig. 6.2). We emphasize that these
operations at the receiver are applied to the continuous-time output of the models and SSFM,
and we are not using discrete-time analytical models.

Figure 6.9a shows the SNR for SSFM, RP on γ, and RP on β2 at 10 Gbaud for both
receivers. As depicted in Figure 6.9a, for input powers lower than 6 dBm, the SNR for the
receiver with CDC is higher than the one without CDC. The latter converges to approximately
35.9 dB. This convergence could be explained by the uncompensated dispersion effect, which
does not depend on the signal power (a linear effect). For input powers greater than 8 dBm,
the systems with and without CDC are equivalent in SNR performance. This behaviour might
be explained by the predominance of the nonlinear effect at these input powers. For input
powers greater than 11 dBm, the SNR is higher for RP on γ than for SSFM and RP on β2. In
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Figure 6.9: SNR versus input power for the symbol rates 10 and 40 Gbaud, and received
constellations for SSFM, RP on γ, and RP on β2, with their respective PDFs. On the SNR
results, receivers with (w/) and without (w/o) CDC were considered for a QPSK modulation
over a 20 km NZDSF. The constellations were obtained for 40 Gbaud with CDC at 16 dBm.
a SNR results for the three models at a symbol rate of 10 Gbaud. b SNR results for the three
models at 40 Gbaud. c Received RP on β2 constellation and respective PDF. d Received
SSFM constellation and respective PDF. e Received RP on γ constellation and respective
PDF. The arrows pointing to the markers in a and b represent which curves are overlapped in
those parts of the figure. In c, d, and e, the respective SNR values are shown on top of each
of them. For c and e, the NSD values are also displayed.
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this power regime, RP on β2 can be seen as a more accurate model for SNR calculations.
Figure 6.9b illustrates the SNR for SSFM, RP on γ, and RP on β2 at 40 Gbaud for both

receivers. At this symbol rate and input powers lower than 15 dBm, RP on β2 with CDC does
not follow the SNR of SSFM and RP on γ. This difference might be related to the precarious
estimation of the dispersion effect by the RP on β2 for this higher bandwidth scenario (see
Fig. 6.7). With a poor estimation of the chromatic dispersion, the CDC will not compensate
the exact dispersion effect predicted by the RP on β2 model. For the system without CDC, the
performance of RP on β2 is close to the SSFM performance for all displayed input powers.
The SNR for RP on γ for systems with and without CDC diverges again from the SSFM
performance at input powers higher than 11 and 16 dBm, respectively. Meanwhile, at input
powers higher than 16 dBm, the performance of RP on β2 for the CDC system approaches
the SSFM performance.

For an input power of 16 dBm in the 40 Gbaud system with CDC, the received con-
stellations for RP on β2, SSFM, and RP on γ are shown in Figures 6.9c, 6.9d, and 6.9e,
respectively, with their corresponding probability density functions (PDFs). As illustrated in
these figures, the constellation for RP on β2 approximately preserves the circular shape of the
SSFM’s constellation, which is not observed in the constellation for RP on γ. This preserva-
tion could be explained by the better prediction of nonlinear effects at this high input power
by the RP on β2. The received symbols for RP on γ are mostly outside the unitary square
given by |y| ≤ 1, which shows a high gain of energy when using this model. In addition,
the PDF for RP on γ shows that its symbols are highly concentrated towards a single point,
which was expected by its high SNR. Even though the SNR for RP on β2 is close to the
SNR of SSFM (8.49 and 8.29 dB, respectively), the received constellation shapes are slightly
different. For example, as observed in the constellation PDFs, the RP on β2 received symbols
are more spread than the SSFM symbols. This contrast means that the SNR alone might not
indicate precisely the accuracy of the model. On the other hand, a high NSD for RP on β2

(37.13%) may not indicate that the received signal in discrete time is severely different from
the reference given by the SSFM, showing that our proposed model is accurate in scenarios
where nonlinearities are the dominant effect.

6.3 Discussion
This paper presented a new closed form analytical approximation for the solution of the
NLSE: the regular perturbation on β2. The derived approximation is a suitable model for low
symbol rates, low fibre lengths, and/or high input powers. The regular perturbation on β2 was
compared with three other models with respect to variations in the bandwidth, fibre length,
input power, and fibre parameters.

The main comparison was with the regular perturbation on γ, a well-known model in the
literature that is accurate in the regime of high dispersion and low nonlinearities. In a nonzero
dispersion-shifted fibre of 80 km with attenuation, the regular perturbation on β2 can be used
as an accurate model until input powers of 9 dBm, while the regular perturbation on γ is
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accurate only to input powers lower than 6 dBm. In addition, the regular perturbation on β2 is
accurate for high γ values where the regular perturbation on γ is not. Thus, the new proposed
model is convenient for the opposite regime, where the nonlinearities are predominant, and
the dispersion plays a minor effect.

As all simplified models, the proposed model has a limited range of validity. At the
moment, the main applicability of the model is for applications that rely on low bandwidths
(below 11 GHz) and short distances (below 80 km). This includes, for example, passive
optical networks [77]. Another short-distance low-bandwidth application is hybrid fibre coax
systems [78]. The model is in its present form not intended for long-haul or wavelength-
division-multiplexed systems.

Another drawback of the proposed model is that it neglects the noise. This effect has been
considered in the literature for the regular perturbation on γ in [27], where noise was added
in the zeroth order linear equation, followed by a Karhunen–Loève expansion to account for
nonlinear signal–noise interactions. The same approach for the regular perturbation on β2

would lead to cumbersome equations, since the zeroth order equation is nonlinear in this
case.

This paper represents the first steps in the theory of the proposed model. Possible exten-
sions of this work are designing a receiver based on the regular perturbation on β2, deriving
higher-order perturbations of the model, and adding noise within the regular perturbation
analysis. The derivations were conducted for a single-polarization system, and the equations
for dual-polarization are still a subject of further investigation. Separating the contribution
of individual pulses and finding a discrete model are also left as future work. Although the
focus of this paper was on optical-fibre communications, we believe that our model can be
applied to other fields where the nonlinear Schrödinger equation is applicable.

6.4 Methods

6.4.1 Simulation specifications
The simulations were conducted in Matlab® and considered 215 symbols randomly chosen
from different constellations during the paper. The constellations were generated with unitary
energy. To generate the constellation figures and PDFs in Fig. 6.9c, 6.9d, and 6.9e, we used
220 symbols for a smoother plot. The colour for each received symbol was attributed from
a colormap according to the PDF values. The symbols were oversampled by 16 samples per
symbol. After oversampling, the signal was shaped by an ideal RRC filter, with roll-off factor
of 0.1, implemented in the frequency domain. After filtering, the signal was scaled to adjust
to the desired input power. The resulting waveform was used as the input of either the SSFM
or one of the models. For the SSFM case, we considered a symmetric SSFM implementa-
tion, with step-size 0.1 km. The step-size and the simulation bandwidth substantially impact
the SSFM accuracy [39, 58]. Further reducing the step-size and increasing the simulated
bandwidth by increasing the numbers of samples per symbol did not impact the displayed
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results, which indicates 0.1 km step-size and 16 samples per symbol are accurate enough for
the systems in this paper. For the RP on γ model, the integral of equation (6.17) was evalu-
ated numerically using an integration step of also 0.1 km. For the RP on β2, the derivatives
were obtained in the frequency domain. The dispersion operator was ideally implemented in
the SSFM and in all simulated equations in the frequency domain. The chromatic dispersion
compensation was implemented in the frequency domain with the dispersion operator applied
with negative fibre length. Before the matched filter, the signal was scaled with the inverse
scaling factor used in the transmission to adjust the input power. The matched filter was the
same RRC filter as used in the transmission.
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Abstract

Three novel analytical models derived using logarithmic perturbation are presented. The best
proposed model achieves a gain of 1.5 dB when comparing its normalised square deviation with
other models in a passive optical network.

7.1 Introduction

Perturbation models have been proposed in the literature to approximate the optical fibre
propagation, which is governed by the nonlinear Schrödinger equation (NLSE) [6, 7]. The
NLSE can be described by attenuation, chromatic dispersion and the Kerr effect [1]. The Kerr
effect is characterised by a nonlinear coefficient, while the chromatic dispersion by the group-
velocity dispersion (GVD) parameter. Perturbative models based on the nonlinear coefficient
have been widely used in the literature to predict system performance [27,40] or design low-
complexity receivers [5], for example. Recently, we proposed a perturbative model on the
GVD parameter [15, 16].

The most studied perturbative methods in optical fibre communications are the regular
perturbation (RP) and the logarithmic perturbation (LP) [7, 79]. RP has been presented in
the literature for the nonlinear coefficient γ [6] and the GVD parameter β2 [16], while LP
has only been performed for γ [7, 80]. Therefore, in this paper, we present for the first
time the LP on β2 model. The performance of this model, however, can be improved by
performing LP in the frequency domain, which is a new approach that we call frequency
logarithmic perturbation (FLP). FLP should not be confused with the frequency resolved
logarithmic perturbation (FRLP) proposed in [81, 82]. FRLP still applies the LP method in
the time domain, whereas FLP applies this method in the frequency domain. To the best of
our knowledge, this is the first time that FLP models are presented in the literature.

In total, six models arise from the mentioned perturbations. Three of them were already
known in the literature: RP on γ, RP on β2, and LP on γ. In this paper, we present three
new other models: LP on β2, FLP on γ, and FLP on β2. We compare these six models in
terms of normalised square deviation (NSD) in a passive optical network (PON). This system
presents low accumulated dispersion due to its short distance, which makes it more suitable
for perturbations on the GVD parameter. In addition, the system can operate in the highly
nonlinear regime due to high input powers. The results show that FLP on β2 yields the best
performance in the highly nonlinear regime.
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7.2 Channel Model and Performance Metric
The normalised NLSE for noiseless propagation of an optical field E for a retarded time
frame t and distance z is [6]

∂zA(t, z) =− (jβ2/2)∂ttA(t, z)

+ jγe−αz|A(t, z)|2A(t, z), (7.1)

where α is the attenuation coefficient. The first term on the right-hand side of (7.1) represents
the chromatic dispersion and the last term represents the Kerr nonlinearity.

A numerically very accurate solution of (7.1) is obtained by the SSFM and denoted by A.
We denote the output of a model M by AM and compare it with A in the time domain. The
metric used for this comparison is the NSD, defined as [6]

NSD ,

∫∞
−∞|AM (t, z)−A(t, z)|2dt

∫∞
−∞ |A(t, z)|2dt . (7.2)

The NSD integrates the absolute error squared over the entire propagated time, and nor-
malises it with the power of the signal A. The lower the NSD, the more accurate is the
analytical model.

7.3 Regular Perturbation
The RP method consists of representing a signal by a power series of a certain coefficient.
For the first order RP on γ, this series is truncated after the first two terms. The resulting first
order RP on γ model is then given by

A(t, z) ≈ A(γ)
RP (t, z) = A

(γ)
0 (t, z) + γA

(γ)
1 (t, z), (7.3)

where A(γ)
0 and A(γ)

1 represent the zeroth and first order RP on γ terms [6, 7]. Analogously,
the first order RP on β2 is obtained by truncating the power series of the linear coefficient β2

after the first two terms. The first order RP on β2 is written as

A(t, z) ≈ A(β2)
RP (t, z) = A

(β2)
0 (t, z) + β2A

(β2)
1 (t, z), (7.4)

where A(β2)
0 and A(β2)

1 represent the zeroth and first order RP on β2 terms [16].

7.4 Logarithmic Perturbation
LP is a mathematical technique similar to RP. LP on γ was first presented in [7, 80] and can
be shown to have a higher convergence ratio than RP on γ. LP functions can be obtained
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Figure 7.1: System setup based on PONs. Due to the short transmission distance, the system
has low accumulated dispersion. The range of input powers allow the system to operate in a
highly nonlinear regime.

directly by the RP functions A(γ)
k or A(β2)

k . Following an approach similar to [7], the first
order LP on γ is written as

A
(γ)
LP (t, z) = A

(γ)
0 (t, z) exp

(
γ
A

(γ)
1 (t, z)

A
(γ)
0 (t, z)

)
, (7.5)

where the terms A(γ)
0 and A(γ)

1 are the RP terms in (7.3). Since the LP only depends on the
RP terms, LP on β2 can also be derived following the steps in [7], resulting in

A
(β2)
LP (t, z) = A

(β2)
0 (t, z) exp

(
β2
A

(β2)
1 (t, z)

A
(β2)
0 (t, z)

)
, (7.6)

where A(β2)
0 and A(β2)

1 are the RP terms in (7.4).

7.5 Frequency Logarithmic Perturbation

The linearity of (7.3) and (7.4) with respect to the functions A(γ)
k and A(β2)

k , respectively,
suggests another approach to obtain a different LP solution. The new approach consists on
performing the same steps on the LP derivation presented in [7] in the frequency domain,
which we refer to as FLP. By using this approach, we can obtain two new models not yet
presented in the literature, namely FLP on γ and FLP on β2. The first order FLP on γ is
given by

Ã
(γ)
FLP(ω, z) = Ã

(γ)
0 (ω, z) exp

(
γ
Ã

(γ)
1 (ω, z)

Ã
(γ)
0 (ω, z)

)
, (7.7)
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Figure 7.2: NSD versus input power PTx for the six analytical models presented in this paper.
The transmission is performed in C-band. A schematic of the system is shown in Fig. 7.1.

where Ã(γ)
0 and Ã(γ)

1 are the Fourier transforms of A(γ)
0 and A(γ)

1 in (7.3), respectively. The
first order FLP on β2 is given by

Ã
(β2)
FLP (ω, z) = Ã

(β2)
0 (ω, z) exp

(
β2
Ã

(β2)
1 (ω, z)

Ã
(β2)
0 (ω, z)

)
, (7.8)

where Ã(β2)
0 and Ã(β2)

1 are the Fourier transforms of A(β2)
0 and A(β2)

1 in (7.4), respectively.

7.6 Numerical Results
Fig. 7.1 shows the PON system setup under consideration. As depicted in the figure, we
consider a standard single mode fibre (SSMF) of 20 km, followed by a splitter of ratio 1 : 64
and a final fibre segment of 1 km. With this split ratio, the power budget is 22.2 dB. The
fibre input power PTx varies from 0 to 20 dBm, which leads to a received power PRx between
−22.2 and −2.2 dBm. The range of powers was chosen to cover launch powers for PON
systems according to [83, 84]. The SSFM has α = 0.2 dB·km−1, β2 = −21.67 ps2km−1,
γ = 1.2 W−1km−1, and operates at a wavelength of 1550 nm (C-band). The symbol rate
for the single transmitted channel was 10 Gbaud and the modulation format quadrature phase
shift keying (QPSK). The considered pulse shape was root-raised cosine (RRC), with a roll-
off factor of 0.1. We do not specify any particular receiver, since the study compares the
waveforms at the output of the fibre.
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Figure 7.3: NSD versus |β2| for the six analytical models presented in this paper. The input
power is fixed at 10 dBm for the system shown in Fig. 7.1 with negative β2. The models
present different rates of convergence when β2 approachs to zero.

To evaluate the impact of the nonlinearities, the NSD was calculated for the powers in
the highly nonlinear regime specified in Fig. 7.1. Fig. 7.2 shows the NSD versus PTx for
the six analytical models analysed in this paper. As shown in Fig. 7.2, both LP and FLP on
γ outperform RP on γ. The NSD of FLP on γ crosses the 0.1% NSD threshold at a PTx
1.1 dB higher than RP on γ. Analogously, both LP and FLP on β2 outperform RP on β2.
These results support that, either in the time or in the frequency domain, an (F)LP approach
converges faster to the true solution of (7.1) than the standard RP approach.

The results in Fig. 7.2 also show that LP on γ is more accurate than FLP on γ, while FLP
on β2 is more accurate than LP on β2. For example, the NSD of LP on γ crosses the 0.1%
NSD threshold at a PTx 3.6 dB higher than FLP on γ, while that of FLP on β2 crosses the
same threshold at a PTx 1.2 dB higher than LP on β2. We believe that the difference between
β2 and γ when comparing LP and FLP could be explained by the solution of (7.1) for only
the chromatic dispersion effect or only the Kerr effect [1]. The solution for the chromatic
dispersion effect only is an exponential in the frequency domain, which resembles the FLP
approach. Similarly, the solution for the Kerr effect only is an exponential in the time domain,
which resembles the LP approach.

From the six models, FLP on β2 is the one that presents best performance for PTx higher
or equal 8 dBm. This result suggests that FLP on β2 is more accurate for weak dispersion
and high nonlinearity. For a constant NSD of 0.1 %, FLP on β2 shows a gain of 1.5 dB in
terms of input power when compared to LP on γ. Larger gains are observed at lower NSDs.
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The effects of the dispersion on the models’ performance was also investigated. When
reducing the accumulated dispersion, the models LP on γ, RP on β2, LP on β2, and FLP
on β2 converge to the true solution of (7.1). This convergence can be analytically proved
by letting β2 → 0 in (7.4), (7.5), (7.6), and (7.8). However, their rate of convergence is
different. Fig. 7.3 shows the NSD versus |β2| for the six analysed models at PTx = 10 dBm
and negative β2. As depicted in Fig. 7.3, RP on β2, LP on β2, and FLP on β2 present a rate
of convergence higher than LP on γ. While the NSD of the three former models increases by
approximately 104 per decade, that of NSD for LP on γ increases by only 102 per decade.
The NSD for FLP on β2 is approximately 42 times lower than for RP on β2 (see also Fig. 7.2).
This gain is kept approximately constant for other values of β2. Only FLP on γ and RP on γ
have approximately constant NSD over the shown range of β2. The NSD for FLP on γ was
roughly 3 times lower than the NSD for RP on γ.

7.7 Conclusions
Three novel models based on logarithmic perturbation theory were presented. The validity
of the models was investigated in the C-band for a passive optical network. The frequency
logarithmic perturbation on β2 model demonstrated higher accuracy in the highly nonlinear
regime than the other models analysed in the paper. Building a receiver based on the proposed
model and finding higher order perturbations are possible extensions of this work.
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Abstract

Signal propagation in an optical fiber can be described by the nonlinear Schrödinger equation
(NLSE). The NLSE has no known closed-form solutionwhen both dispersion and nonlinearities
are considered simultaneously. In this paper, we present a novel integral-form approximate
model for the nonlinear optical channel, with applications to passive optical networks. The
proposed model is derived using logarithmic perturbation in the frequency domain on the group-
velocity dispersion (GVD) parameter of the NLSE. The model can be seen as an improvement
of the recently proposed regular perturbation (RP) on the GVD parameter. RP and logarithmic
perturbation (LP) on the nonlinear coefficient have already been studied in the literature, and are
hereby compared with RP on the GVD parameter and the proposed LP model. As an application
of the model, we focus on passive optical networks. For a 20 km PON at 10 Gbaud, the proposed
model improves the normalized square deviation by 1.5 dB with respect to LP on the nonlinear
coefficient. For the same system, histogram-based detectors are developed using the received
symbols from the models. The detector obtained from the proposed LP model reduces the
uncoded bit-error-rate by up to 5.4 times at the same input power or reduces the input power by
0.4 dB at the same information rate compared to the detector obtained from LP on the nonlinear
coefficient.

8.1 Introduction

ANALYTICAL models for optical fiber transmission have been widely studied in the
literature. These models are based on the equations that govern the optical field prop-

agation: the nonlinear Schrödinger equation (NLSE) [1, Ch. 2] and its variants. The NLSE
has no known exact solution for an arbitrary input waveform. One of the most efficient alter-
natives for approximated numerical solutions is the split step Fourier method (SSFM) [58],
which simulates the effects of fiber propagation. On the other hand, to analyse these effects
and design novel transceivers, analytical models are highly desirable.

Some of the NLSE’s most used analytical models are only valid under some restricted
values of two fiber parameters: the (Kerr) nonlinear coefficient γ and the group-velocity
dispersion (GVD) parameter β2. The validity1 of the models with respect to these parameters
is shown in Fig. 8.1. When γ is equal to zero, the NLSE admits an analytical solution, given
by the dispersion-only model [1, Ch. 3] and represented by the horizontal line at γ = 0
in Fig. 8.1. When β2 is set to zero, the NLSE also admits an analytical solution, given by
the nonlinear phase noise model (NLPN) [1, Ch. 4], [60], represented by the vertical line
at β2 = 0 in Fig. 8.1. If both parameters are nonzero, usually a perturbation approach is
used [7].

A perturbation on the nonlinear coefficient γ considers the nonlinearities a minor effect
[6, 7] and is accurate for high accumulated dispersion, where the accumulated dispersion
can increase with the signal bandwidth and with the product of β2 with the fiber length.

1The validity of a model is defined in this paper as the set of parameters values in which the model waveform
is sufficiently close to the true waveform obtained from the NLSE. Details on the metric that measures the distance
between the two waveforms are given in Sec. 8.3.
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0 Low High
0

Low

High

NLPN
[1,60]

RP on β2

[16]

RP on γ
[6,7]

Disp.-only
[1]

LP on γ
[7,80]

FLP on β2

([17] and this paper)

|β2|

γ

Figure 8.1: Illustration of the regions in the β2 vs γ plane where different models are valid.
This paper presents a new model for the region to the left of and under the green curve.

The development of a perturbation on γ, specifically the regular perturbation (RP) on γ,
was an important mark in the literature since it has been used in many applications. For
example, RP on γ is a key step in the derivation of the Gaussian noise [40] and enhanced
Gaussian noise [41] models. These two latter models have been widely used to estimate
system performance, even in the presence of effects such as stimulated Raman scattering [85].
RP on γ has also been used in the literature to build low-complexity receivers [5].

For the opposite regime, where the nonlinearities are the major effect and the accumu-
lated dispersion is low but nonzero, a perturbation on the GVD parameter can be performed.
The perturbation techniques usually considered for the optical fiber propagation are RP and
logarithmic perturbation (LP) [7]. It was shown in [80] that LP converges faster to the true
NLSE’s solution than RP. RP and LP on γ cover the area under the yellow and blue curves
in Fig. 8.1, respectively. Recently, we proposed RP on β2 in [16] and compared with RP on
γ. RP on β2 provided more accuracy in the weakly dispersive and highly nonlinear regimes,
represented by the area under the red curve in Fig. 8.1. A preliminary investigation of LP
on β2 was reported in our recent work [17], where LP methods on both γ and β2 were com-
pared on the waveform level. This paper is an extension of [17], to which we add two more
contributions. Our first contribution is to derive the two perturbative models on β2 presented
in [17]. These models are obtained applying LP in either time or frequency. The latter ap-
proach, which we call frequency logarithmic perturbation (FLP), is the most accurate of the
two for the β2 expansion.

The FLP on β2 covers the area under the green dashed curve in Fig. 8.1, which improves
upon RP on β2. FLP should not be confused with the frequency resolved logarithmic per-
turbation (FRLP) proposed in [81, 82, 86]. FRLP consists in applying LP on the frequency
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components of the time-domain signal individually and using the superposition principle to
combine them. However, FRLP still applies the LP principle in the time domain, whereas
FLP we study here applies this principle in the frequency domain. In this paper, the FLP on
β2 model is compared with the LP on γ, RP on γ, and RP on β2 models.

The second contribution of this paper is to demonstrate the applicability of the proposed
FLP on β2 model. To this end, we consider passive optical networks (PONs), wherein the
accumulated dispersion is typically low. PONs are usually short-reach fiber links where the
transmitted signal is split to numerous users [87]. The input power can increase significantly
when the split ratio is high, in order to compensate for the split loss [88, 89]. At a high input
powers, the transmission can enter a highly-nonlinear regime, where even pre-distortion using
digital backpropagation based on the SSFM has been proposed in the literature [90].

We use the models in a PON system to estimate optimum decision regions at the receiver.
Simulations are carried out in the C- and O-band, where the latter has a close-to-zero GVD
parameter β2. At a waveform level (continuous-time), the proposed FLP on β2 is shown
to outperform the other three models at powers higher than 7 dBm for both C- and O-band
systems. At a symbol level (discrete-time), decision regions obtained from LP on β2 result
in bit-error-rates (BER) more than five times lower than the ones obtained from LP on γ.
Finally, these decision regions are analysed in a system with forward-error-correction (FEC).

This paper is organized as follows: Section 8.2 provides the mathematical background
for the derivation of the models; Section 8.3 compares the models in both continuous- and
discrete-time; and Section 8.4 concludes the paper.

8.2 Mathematical Background
TheNLSE normalized by the attenuation factor for noiseless propagation of an optical fieldA
at a retarded time frame t and distance z for a single-polarization can be approximated as [6]

∂A(t, z)

∂z
=− jβ2

2

∂2A(t, z)

∂t2

+ jγe−αz|A(t, z)|2A(t, z), (8.1)

where α is the attenuation coefficient, β2 the GVD parameter, and γ the nonlinear coefficient.
The first term on the right-hand side of (8.1) represents the chromatic dispersion. This effect
on the waveform A is larger when the bandwidth and/or the fiber length is increased. The
last term represents the Kerr nonlinearity, which has a cubic dependence on the instantaneous
signal power and also increases with the fiber length. The solution A of (8.1) can be numer-
ically estimated by the SSFM [1, Ch. 2], [58]. Other effects, such as third-order dispersion
(TOD) [1, Ch. 3], are not taken into account in (8.1). TOD becomes significant for large
bandwidths or when β2 is low. This effect will be taken into account for our simulations in
the O-band, although it is not used in the derivation of the proposed model. For the C-band,
we consider solely the effects in (8.1).
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In what follows, we first review three models available in the literature. Sec. 8.2.1 and
Sec. 8.2.2 describe the RP on γ and on β2, respectively, while Sec. 8.2.3 presents the LP on
γ. Finally, Sec. 8.2.4 introduces the FLP on β2.

8.2.1 Regular Perturbation on the Nonlinear Coefficient
The RP on γ was first derived in [6, 7]. To approximate the solution of (8.1), the RP method
represents the signal by a power series of a certain coefficient. For the RP on γ, the RP
solution can be written as

A(t, z) =

∞∑

k=0

γkA
(γ)
k (t, z). (8.2)

To obtain the functions A(γ)
k , (8.2) is substituted into (8.1) and the terms multiplied by the k-

th power of γ are equated. An approximate solution for (8.1) can be obtained by considering
only the functions A(γ)

0 and A(γ)
1 . This approximation is the first-order RP on γ [6, Eqs. (7),

(9)], [7, Eq. (12)]

A(t, z) ≈ A(γ)
RP (t, z) = A

(γ)
0 (t, z) + γA

(γ)
1 (t, z), (8.3)

where

A
(γ)
0 (t, z) = Dz{A(·, 0)}(t), (8.4)

A
(γ)
1 (t, z) = j

∫ z

0

e−αuDz−u
{
|A0(·, u)|2A0(·, u)

}
(t)du, (8.5)

and the dispersion operator Dz is

Dz{f}(t) , (f ∗ h(·, z)) (t), (8.6)

h(t, z) =
1√

j2πβ2z
e−

j
2β2z

t2 . (8.7)

The function A(γ)
0 in (8.4) is called the dispersion-only solution of (8.1). This solution can be

seen as a model that is accurate only when the nonlinear effect is negligible. The first-order
RP on γ in (8.3) is accurate for low nonlinear effects and is illustrated by the yellow curve in
Fig. 8.1.

The RP on γ also benefits from a simple mathematical trick that yields an increased
accuracy. This trick was developed in [6] and is based on modifying (8.1) by making

A(t, z) = AP (t, z)ejγP0G(z), (8.8)
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where G(z) = (1− exp(−αz))/α. Although P0 was defined in [6] as the peak input power,
we use P0 as the average input power, which yields better accuracy in our simulations. After
substituting (8.8) in (8.1), one can apply the RP on γ method over the function AP instead of
A and obtain the first order RP approximation for AP . Multiplying the obtained approxima-
tion by ejγP0G(z), as in (8.8), yields

A(t, z) ≈ A(γ)
ERP(t, z)

=
[
(1− jγP0G(z))A

(γ)
0 (t, z) + γA

(γ)
1 (t, z)

]
ejγP0G(z), (8.9)

where A(γ)
0 and A(γ)

1 are given by (8.4) and (8.5), respectively. Another benefit from RP on
γ is that it can easily generate a solution that also accounts for TOD. This new solution is
derived from (8.1) with an additional term accounting for TOD [1, Eq. (3.3.1)]

∂A(t, z)

∂z
=− jβ2

2

∂2A(t, z)

∂t2
+
β3

6

∂3A(t, z)

∂t3

+ jγe−αz|A(t, z)|2A(t, z). (8.10)

The RP on γ with TOD is then obtained by replacing the operator Dz in (8.4) and (8.5) by

Tz{f}(t) , F−1
{
T̃ (·, z) · f̃

}
(t), (8.11)

T̃ (ω, z) = e(
jβ2
2 ω2+

jβ3
6 ω3)z, (8.12)

where F−1 denotes the inverse Fourier transform2, ω is the angular frequency, and f̃ is the
Fourier transform of the function f .

8.2.2 Regular Perturbation on the GVD Parameter
We recently proposed the RP on β2 in [16]. The same procedure as in (8.2) can be applied by
considering A as a power series of β2, i.e.,

A(t, z) =

∞∑

k=0

βk2A
(β2)
k (t, z). (8.13)

In analogy to RP on γ, the functions A(β2)
k are also obtained by replacing (8.13) in (8.1)

and equating the terms related to the k-th power of β2. For the first-order RP, involving the
functions A(β2)

0 and A(β2)
1 , an approximate solution for A can be obtained by

2We define the Fourier transform of a function A(·, z) as Ã(ω, z) ,
∫∞
−∞A(t, z)e

+jωtdt, which depends

on the angular frequency ω and is evaluated at distance z. The inverse Fourier transform of Ã(·, z) is A(t, z) =
[1/(2π)]

∫∞
−∞Ã(ω, z)e

−jωtdω.
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A(t, z) ≈ A(β2)
RP (t, z) = A

(β2)
0 (t, z) + β2A

(β2)
1 (t, z), (8.14)

where
A

(β2)
0 (t, z) = A(t, 0)ejγ|A(t,0)|2G(z), (8.15)

and
A

(β2)
1 (t, z) = B(t, z)ejγ|A(t,0)|2G(z), (8.16)

with B given by

B(t, z) =−M(t)z +G1(z)R(t) +G2(z)P (t)

− 2jγA(t, 0)<{A∗(t, 0)V (t, z)}, (8.17)
V (t, z) = G(z) [M(t)z −G1(z)R(t)−G2(z)P (t)]

−G1(z)M(t) +G2(z)R(t) +G3(z)P (t), (8.18)

M(t) =
j

2

∂2A(t, 0)

∂t2
, (8.19)

R(t) =
γ

2
A(t, 0)

∂2|A(t, 0)|2
∂t2

+ γ
∂A(t, 0)

∂t

∂|A(t, 0)|2
∂t

, (8.20)

P (t) =
jγ2

2
A(t, 0)

(
∂|A(t, 0)|2

∂t

)2

, (8.21)

G1(z) =
αz + e−αz − 1

α2
, (8.22)

G2(z) =
2αz + 4e−αz − e−2αz − 3

2α3
, (8.23)

G3(z) =
6αz + 18e−αz − 9e−2αz + 2e−3αz − 11

6α4
. (8.24)

Analogously to RP on γ, the function A(β2)
0 in (8.15) for RP on β2 is an accurate model

when dispersion is negligible, and is called the NLPN model [16, 60]. The first-order RP on
β2 in (8.14) is accurate for low accumulated dispersion and is illustrated as the red curve in
Fig. 8.1.

8.2.3 Logarithmic Perturbation
LP is a mathematical technique similar to RP. LP on γ was first presented in [7, 80] and can
be shown to converge faster to the true NLSE’s solution than RP on γ. LP functions can be
obtained directly by the RP functions Ak. For example, following an approach similar to [7],
consider that the signal A can be written as a power series of a coefficient θ (e.g., γ or β2 as
done in (8.2) and (8.13)) as

A(t, z) =

∞∑

k=0

θkA
(θ)
k (t, z), (8.25)
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Table 8.1: Summary of the first-order perturbation methods discussed in this paper

Coeff. θ

Perturbation method
1st order RP 1st order LP 1st order FLP

A(t, z) = A
(θ)
0 (t, z) + θA

(θ)
1 (t, z) A(t, z) = A

(θ)
0 (t, z) exp

(
θψ

(θ)
1 (t, z)

)
Ã(ω, z) = Ã

(θ)
0 (ω, z) exp

(
θζ̃

(θ)
1 (ω, z)

)

γ
A

(γ)
0 (t, z) Dz{A(·, 0)}(t)

ψ
(γ)
1 (t, z)

A
(γ)
1 (t, z)

A
(γ)
0 (t, z)

ζ̃
(γ)
1 (ω, z)

Ã
(γ)
1 (ω, z)

Ã
(γ)
0 (ω, z)A

(γ)
1 (t, z) (8.5)

β2

A
(β2)
0 (t, z) A(t, 0)ejγ|A(t,0)|2G(z)

ψ
(β2)
1 (t, z)

A
(β2)
1 (t, z)

A
(β2)
0 (t, z)

ζ̃
(β2)
1 (ω, z)

Ã
(β2)
1 (ω, z)

Ã
(β2)
0 (ω, z)A

(β2)
1 (t, z) (8.16)

where A(θ)
k is the k-th RP function. We now want to express A in its LP version, which takes

the form

A(t, z) = A
(θ)
0 (t, z) exp

( ∞∑

k=1

θkψ
(θ)
k (t, z)

)
, (8.26)

where the function ψ(θ)
k is the k-th LP function and A(θ)

0 is the 0-th order RP function. Rep-
resenting the exponential function in (8.26) by its Taylor expansion yields

A(t, z) = A
(θ)
0 (t, z)

∞∑

m=0

1

m!

( ∞∑

k=1

θkψ
(θ)
k (t, z)

)m
. (8.27)

The functions ψ(θ)
k can now be obtained by equating (8.27) with (8.25), and further equat-

ing the terms that have the same power of θ. For example, equating the terms multiplied by
θ1, we obtain the first-order LP function as

ψ
(θ)
1 (t, z) =

A
(θ)
1 (t, z)

A
(θ)
0 (t, z)

. (8.28)

Equating the terms multiplied by θ2 we can also obtain the second-order LP function

ψ
(θ)
2 (t, z) =

A
(θ)
2 (t, z)

A
(θ)
0 (t, z)

− 1

2

(
A

(θ)
1 (t, z)

A
(θ)
0 (t, z)

)2

. (8.29)

The functionψ(θ)
2 in (8.29) depends on the RP termA

(θ)
2 . For RP on γ,A(γ)

2 is well defined [6,
Eq. (11)], [7, Eq. (12)]. However, for RP on β2, A(β2)

2 is not known in the literature at the
time this paper is being written. Thus, we will restrict the analysis to first-order LP and RP
only.

Setting θ = γ or θ = β2 in (8.26) and (8.28) and truncating the sum in (8.26) at k = 1,
we obtain the first-order LP on γ and on β2, respectively. The first-order LP on γ is written
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as

A(t, z) ≈ A(γ)
LP (t, z) = A

(γ)
0 (t, z) exp

(
γ
A

(γ)
1 (t, z)

A
(γ)
0 (t, z)

)
, (8.30)

where A(γ)
0 and A(γ)

1 are given by (8.4) and (8.5), respectively. The accuracy of A(γ)
LP is

qualitatively illustrated by the blue curve in Fig. 8.1. The first-order LP on β2 is similarly
obtained as

A(t, z) ≈ A(β2)
LP (t, z) = A

(β2)
0 (t, z) exp

(
β2
A

(β2)
1 (t, z)

A
(β2)
0 (t, z)

)
, (8.31)

where A(β2)
0 and A(β2)

1 are given by (8.15) and (8.16), respectively.

8.2.4 Frequency Logarithmic Perturbation

The linearity of (8.25) with respect to the functions A(θ)
k suggests another approach to obtain

a different LP solution. The new approach consists of performing the same steps as in (8.25)–
(8.28) in the frequency domain, which we refer to as FLP. To obtain the FLP solution, we first
express (8.25) in the frequency domain, i.e.,

Ã(ω, z) =

∞∑

k=0

θkÃ
(θ)
k (ω, z), (8.32)

where Ã represents the Fourier transform of A and ω is the angular frequency. Analogous to
(8.26), now Ã is expressed in its FLP version as

Ã(ω, z) = Ã
(θ)
0 (ω, z) exp

( ∞∑

k=1

θk ζ̃
(θ)
k (ω, z)

)
, (8.33)

where the function ζ̃(θ)
k is the k-th FLP function and Ã(θ)

0 is the Fourier transform of the 0-th
order RP function.

In complete analogy with the procedure used to obtain (8.28), the first-order FLP function
is

ζ̃
(θ)
1 (ω, z) =

Ã
(θ)
1 (ω, z)

Ã
(θ)
0 (ω, z)

, (8.34)

which is used to obtain the first-order FLP on γ and on β2. The first-order FLP on γ is

Ã(ω, z) ≈ Ã(γ)
FLP(ω, z) = Ã

(γ)
0 (ω, z) exp

(
γ
Ã

(γ)
1 (ω, z)

Ã
(γ)
0 (ω, z)

)
, (8.35)
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Figure 8.2: PON system setup used for the simulations in this paper. This system presents
low accumulated dispersion and operates in the highly nonlinear regime for the used range of
input powers. The NSD is calculated using the fiber output A, obtained via the SSFM, and a
fiber model outputAM . The NSD exact formula given by (8.37). The BER is estimated using
the bits corresponding to the input symbols x and the bits corresponding to the estimated input
symbols x̂, where x, x̂ ∈ S and S is the set of constellation points. Demap.: demapping.

where Ã(γ)
0 and Ã(γ)

1 are the Fourier transforms of (8.4) and (8.5), respectively. The first-
order FLP on β2 is given by

Ã(ω, z) ≈ Ã(β2)
FLP (ω, z) = Ã

(β2)
0 (ω, z) exp

(
β2
Ã

(β2)
1 (ω, z)

Ã
(β2)
0 (ω, z)

)
, (8.36)

where Ã(β2)
0 and Ã(β2)

1 are the Fourier transforms of (8.15) and (8.16), respectively. The
qualitative behaviour of the accuracy of Ã(β2)

FLP is illustrated as the green dashed curve in
Fig. 8.1.

The functions ζ̃(θ)
k in (8.33) differ from the Fourier transform of ψ(θ)

k in (8.26), since
the exponential of the LP method was applied in the frequency domain. The expressions in
(8.28) and (8.34) are the simplest example of this fact, since they do not form, in general, a
Fourier transform pair. Therefore, we expect that these LP-based models result in a different
accuracy for each perturbation coefficient (γ or β2). As it will be seen later in Sec. 8.3, A(γ)

LP

is more accurate than A(γ)
FLP, while A(β2)

FLP is more accurate than A(β2)
LP . We believe that the

difference between β2 and γ when comparing LP and FLP could be explained by the solution
of (8.1) for only the chromatic dispersion effect or only the Kerr effect [1]. The solution
for the chromatic dispersion effect only is an exponential in the frequency domain, which
resembles the FLP approach. Similarly, the solution for the Kerr effect only is an exponential
in the time domain, which resembles the LP approach.

Calculating the waveforms for both LP and FLP leads to a numerical issue related to the
ratio in (8.28) and (8.34). When the denominator in one of those two equations tends to
zero, the respective model becomes inaccurate. To address this problem in the LP case, [80]
proposed to replace A(θ)

LP (t, z) by A(θ)
RP (t, z) whenever |A0(t, z)| < ε, where ε > 0 is a fixed

threshold. In our implementation, we chose to replace A(θ)
LP (t, z) by A

(θ)
RP (t, z) whenever
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Table 8.2: Fiber parameters for C- and O-band transmission

Parameter C-band O-band
Wavelength λ [nm] 1550 1310

α [dB/km] 0.2 0.4
β2 [ps2/km] −21.67 −0.2
γ [1/W/km] 1.2 1.4
β3 [ps3/km] − 0.0765

|A(θ)
LP (t, z)| > c |A(θ)

RP (t, z)| for a certain fixed real c > 0. Similarly, we replace Ã(θ)
FLP(ω, z)

with Ã(θ)
RP (ω, z) whenever |Ã(θ)

FLP(ω, z)| > c|Ã(θ)
RP (ω, z)| or |Ã(θ)

FLP(ω, z)| = 0, where Ã(θ)
RP is

the Fourier transform of A(θ)
RP . The value of c for each model was heuristically found and is

discussed in Sec. 8.3.4.
Together with the models in the previous sections, we obtained six perturbation models:

two RPs in (8.3) and (8.14); two LPs in (8.30) and (8.31); and two FLPs in (8.35) and (8.36).
Table 8.1 summarizes these six first-order perturbation methods. As shown in Table 8.1, LP
and FLP can be obtained using the RP terms.

8.3 Simulation Setup and Results
The model presented in this work is validated in a PON transmission scenario where the
accumulated dispersion is expected to be low. Fig. 8.2 shows the coherent PON system setup
under consideration. The fiber parameters are given in Table 8.2. As depicted in the figure,
we consider a standard single mode fiber (SSMF) of 20 km, followed by a splitter of ratio
1 : 64 and a final fiber segment of 1 km. With this split ratio, the total link loss is 22.3 dB
for the C-band and 26.5 dB for the O-band. The fiber input power PTx varies from 0 to 20
dBm, which leads to a received power PRx between −22.3 and −2.3 dBm in the C-band and
between −26.5 and −6.5 dBm in the O-band. The range of powers was chosen to cover
and go beyond launch powers for typical PON systems according to [83, 84]. All the results
were obtained using randomly generated bits which were mapped into symbols drawn from
a quadrature phase shift keying (QPSK) constellation S = (±1 ± j)/

√
2. The coherent

transmitter applies pulse shaping and scales the waveform such that the average transmitted
power is PTx. The coherent receiver undo the waveform scaling, and then applies matched
filtering and sampling, without chromatic-dispersion compensation. The symbol rate of the
transmitted signal is 10 Gbaud for both C- and O-band systems. The considered pulse shape
is a root-raised cosine (RRC), with a roll-off factor of 0.1. We consider a noiseless scenario
since for the considered bandwidth and received powers, nonlinear distortions dominate over
the shot noise [90, 91].

In the considered system setup, we want to evaluate the impact of nonlinearities and dis-
persion on the models. For evaluating the impact of the nonlinearities, the power was varied
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as specified before. The effect of the dispersion in the models is evaluated by comparing the
C-band and the O-band scenarios, which have different β2 values. We consider the effect of
the TOD in the O-band since in that regime values of β2 are low. Therefore, the equation
used for the SSFM simulation in the presence of TOD is (8.10). In addition, our LP on γ
results are also accounting for TOD by using (8.11).

We evaluate the model accuracy on two levels, comparing either the channel output wave-
forms or detected symbols. For the former, no receiver is considered. The accuracy is quan-
tified using the normalized squared deviation (NSD) metric [6, 16]

NSD ,

∫∞
−∞|AM (t, z)−A(t, z)|2dt

∫∞
−∞ |A(t, z)|2dt

, (8.37)

where AM is a model output (i.e., A(γ)
LP or A(β2)

FLP , for example) and A is the true fiber output
obtained from the SSFM. The NSD integrates the absolute error squared over the entire signal
duration, and normalizes it with the energy of the signalA. Therefore, the lower the NSD, the
more accurate is the waveform predicted by the model. The inputs for the NSD calculation
are illustrated in Fig. 8.2.

For the symbol-level evaluation, decision regions are optimized according to each model
as described in Sec. 8.3.2. In that section, the accuracy is quantified in terms of BER (illus-
trated in Fig. 8.2), while in Sec. 8.3.3, the accuracy is quantified in terms of achievable in-
formation rate (AIR). Sec. 8.3.4 investigate numerical implementation aspects, such as time
complexity and the choice of the threshold c.

8.3.1 Waveform Comparison
Fig. 8.3 shows the NSD for RP, LP, and FLP on γ and on β2. As depicted in Fig. 8.3, FLP
on β2 (solid red line with squares) is the most accurate at powers higher than 7.5 dBm and
NSD below 0.1%, while LP on γ (solid blue line) is the most accurate at powers lower than
7.5 dBm. FLP on γ (solid blue line with squares) and LP on β2 (solid red line) have a
slightly better performance than RP on γ (dashed blue line) and RP on β2 (dashed red line),
respectively. However, we do not consider FLP on γ and LP on β2 further in this paper, since
their performance is surpassed by LP on γ and FLP on β2, respectively. RP on β2 crosses the
0.1% NSD line at an input power approximately 4.2 dB higher than RP on γ, at 14 and 9.8
dBm, respectively. This gap in favor of RP on β2 was expected since input powers greater
than 10 dBm and small distances such as 20 km put the fiber in the highly nonlinear regime
with low accumulated dispersion. The gap of 4.2 dB is reduced to 1.9 dB when comparing
ERP on γ and RP on β2. This reduction is justified by the change of variables made in (8.8),
which improves the nonlinear tolerance of that model with respect to RP on γ. As discussed
in [16], RP on β2 is accurate on this regime, while RP on γ loses accuracy at high powers.
If we change from RP on γ to LP on γ, the latter outperforms RP on β2 for powers below
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Figure 8.3: NSD for for RP, ERP, LP and FLP on γ and on β2 in the C-band using the system
in Fig. 8.2. The fiber parameters are given in Table 8.2.

16 dBm. This gain in accuracy by changing from the LP on γ to the RP on γ was previously
shown in [80]. In addition, LP on γ has its performance increased due to low accumulated
dispersion. By letting β2 → 0 in (8.30), LP on γ tends to the NLPN solution, which is
accurate in very low dispersion scenarios [16].

The dependence of the models on |β2| can be seen in Fig. 8.4, where four models are
compared at a fixed power of 10 dBm for different values of |β2| and the other parameters
for C-band transmission (with no TOD). All the simulated β2 values were negative. Among
the four models, RP and ERP on γ are the only ones that are virtually invariant to changes
in β2 for |β2| < 30 ps2/km. Nevertheless, RP on γ has worse accuracy than LP on γ for
all displayed values of β2. When increasing |β2|, LP on γ increases its NSD at a rate of
approximately 102 per decade. Although LP on γ outperforms RP on β2 at 10 dBm for the
C-band, the latter has an increasing rate of approximately 104 per decade, and surpasses the
accuracy of LP on γ for β2 values lower than −6 ps2/km. If we now also consider FLP on
β2, we can gain approximately 42 times in NSD accuracy with respect to RP on β2 at 10
dBm. This gap can also be seen in Fig. 8.3 and remains approximately constant for different
values of β2, since both RP and FLP on β2 have the same increasing rate of approximately
104 per decade. The higher increasing rate for RP and FLP on β2 when compared with LP on
γ shows that the two former models converge to the true solution of (8.1) faster than the latter
model when decreasing the accumulated dispersion. For β2 = −21.67 (C-band), FLP on β2

already outperforms LP on γ. In addition, we see back in Fig. 8.3 that FLP on β2 crosses the
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Figure 8.4: NSD versus |β2| (negative β2) for five models at an input power of 10 dBm. The
system is represented in Fig. 8.2. All considered models except RP on γ get higher accuracy
as |β2| decreases.

line for an NSD of 0.1% at an input power 1.5 dB higher than LP on γ. For high values of
|β2| > 30 ps2/km, the NSD for LP and for ERP on γ start to converge to a value closer to the
NSD for RP on γ.

The results for LP on γ, RP on β2, and FLP on β2 using the O-band parameters in Ta-
ble 8.2 are shown in Fig. 8.5, where the NSD is displayed as a function of the input power.
First, we consider a system without TOD (dotted and dashed dotted lines). As shown in
Fig. 8.5, the NSD for LP on γ and FLP on β2 significantly decay when reducing the input
power in the absence of TOD. On the other hand, RP on β2 converges to an NSD of approx-
imately 4.6 · 10−11% for powers lower than 2 dBm. This convergence to a non-zero NSD
value reflects the mismatch between (8.13) and (8.14) in the absence of nonlinearities. FLP
on β2 outperforms LP on γ for all the displayed input powers, while RP on β2 outperforms
LP on γ for input powers higher than 2.5 dBm. At 10 dBm, the difference in NSD between
RP and FLP on β2 is approximately 91 times, which is different from the 42 factor for the
C-band results at the same input power (see Fig. 8.4). This discrepancy is due to the new set
of γ and α values, which boost the difference between the two models at that input power.

The results for the O-band in Fig. 8.5 shows that when TOD is considered, RP and FLP
on β2 converge to a constant NSD of 10−9 for input powers lower than 3 dBm. This behavior
can be explained by the absence of TOD in the model derivations. The error introduced by
not accounting for TOD becomes approximately constant when input powers are lower than
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Figure 8.5: NSD for the four models in the O-band for the system in Fig. 8.2. Results without
TOD are also shown.

3 dBm, and dominates the error introduced by incorrectly modeling the other fiber effects.
From 0 to 20 dBm, the performance of RP and FLP on β2 in the system with TOD is worse
than without TOD. This behavior is expected, since for the system without TOD, RP and FLP
on β2 cross the constant NSD of 10−9 (TOD error floor for low powers) only at 14.7 dBm and
18.2 dBm, respectively. For LP on γ, the NSD for the system without TOD is virtually the
same as for the system with TOD since we already account for TOD in the model derivation,
as done in (8.11).

8.3.2 Decision Region Optimization

As discussed in [16], comparing models in discrete time can lead to slightly different con-
clusions than on a waveform level. For this reason, this section compares LP on γ, FLP on
β2, and SSFM results at the symbol level, measured by BER. The results are shown for the
C-band system with parameters given in Table 8.2. To obtain the received symbols, the out-
put waveform from these three models is filtered by a matched filter and sampled as done for
the signal A(·, z) in Fig. 8.2. We do not include chromatic dispersion compensation (CDC)
at the receiver due to the high amount of interaction between chromatic dispersion and non-
linearities which cannot be efficiently compensated by CDC. For example, the BER for this
setup with a CDC block is virtually the same as the BER without CDC when using a mini-
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mum distance symbol detector. The resulting complex samples are used to optimize decision
regions for each model, originating a symbol detector. Finally, SSFM simulations are per-
formed to validate the accuracy of each symbol detector when receiving the true (SSFM)
output waveform.

The decision region optimization for the symbol detector is based on the histogram of
the received complex samples. This histogram-based (HB) detector follows the principle
of choosing the most probable transmitted symbol, given that the corresponding received
sample falls in certain area of the complex plane. This principle corresponds to the maximum
a-posteriori (MAP) rule

x̂ = argmax
sm∈S

Pr{X = sm | Y = y}. (8.38)

where X and Y are random variables associated with the transmitted symbols and received
samples (see Fig. 8.2), respectively, and sm ∈ S where S = {s1, · · · , sM} is the set of
constellation points with cardinality M and 1 ≤ m ≤M . The MAP rule, as stated in (8.38),
is optimal for a memoryless channel, and thus, suboptimal for the optical fiber channel, which
includes memory.

To build the HB detector and numerically approximate the rule in (8.38), training symbols
are transmitted through the fiber in order to obtain an estimation of the probability distribu-
tion. Their respective received samples will fall in a specific bin, which is an small area in
the complex plane. For each bin, we count the number nm,b of received samples that fall
inside the b-th bin and were drawn from the m-th constellation point, where 1 ≤ b ≤ B,
1 ≤ m ≤ M , and B is the total number of bins. The value of m = m̂b that maxi-
mizes nm,b is considered to be the most probable transmitted constellation point for that
bin. If maxm{nm,b} = 0, we replace b by the closest bin b′ in Euclidean distance such that
maxm{nm,b′} > 0, and decide m̂b = argmaxm{nm,b′}. After obtaining m̂b for all possible
b, the decision regions are defined and every time a received sample y is received in the b-th
bin, we assume that received symbol x̂ = sm̂b was transmitted. For computational reasons,
we only consider a subset A = {z ∈ C : |<{z}| < 2, |={z}| < 2} of the complex plane,
divided into B = 400 × 400 square bins of size 0.01. This region is sufficient to contain
virtually all the received samples in the simulation. We simulate 2000 times the transmission
of 218 symbols, totalling approximately 5.2 · 108 symbols to obtain histograms that define
nm,b. Each sequence of 218 symbols was randomly generated and the transmitted waveform
had an oversampling factor of 16 samples per symbol. The decision regions were optimized
for each transmitted power separately.

Fig. 8.6 depicts the decision regions obtained by using HB detectors for SSFM, FLP on
β2, and LP on γ at input powers PTx ∈ {15, 16, 17} dBm. The transmitted constellation
is illustrated with red crosses. Fig. 8.6 also includes contour plots of the histogram for the
received samples when transmitting the constellation point (1 − j)/

√
2. The decision re-

gions associated to this constellation point are represented in yellow and contain most of the
received samples shown by the contour plots. The samples that fall outside the yellow re-
gions are not classified as (1− j)/

√
2 since there are more received samples originating from
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Figure 8.6: Optimized decision regions obtained with HB detection after the propagation for
PTx ∈ {15, 16, 17} dBm of a QPSK constellation based on: (a) SSFM; (b) FLP on β2; (c) LP
on γ. Each of the four differently colored areas represents the decision region for a specific
constellation point. The respective constellation points are illustrated with red crosses. A
contour plot of the histogram for the received samples for the transmitted symbol (1− j)/

√
2

is plotted on top of each subfigure.

another constellation point in those specific bins.
The optimum decision regions are considered as the ones obtained via SSFM in Fig. 8.6(a).

At 15 dBm, the decision regions differ significantly from the four quadrants of the complex
plane that represent the minimum distance decision regions. This difference originates from
the nonlinearities, which creates a non-Gaussian distribution of the received samples. Due to
the high nonlinear effect present at 17 dBm, the SSFM decision regions and the contour plots
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power are also presented. Min. dist.: Minimum distance.

follow a spiral shape. The decision regions obtained by FLP on β2 are shown in Fig. 8.6(b).
At 15 dBm, these decision regions are similar to the SSFM ones for the same PTx. However,
at 17 dBm, these regions do not present a spiral shape, as in Fig. 8.6(a). This new behavior
can be explained by the contour plots. The curvature of the contour plots in Fig. 8.6(b) is
lower than the curvature in Fig. 8.6(a), which results in the symbols from the tail of the con-
tour plot falling in bins with a high number of points transmitted from another constellation
point. The curvature for the contour plot of symbols obtained via LP on γ in Fig. 8.6(c) is
even lower than for FLP on β2 in Fig. 8.6(b). This fact results in decision regions with less
accentuated curves in center of Fig. 8.6(c) for each PTx. At 15 dBm, the LP on γ decision
regions already differ significantly from the SSFM ones. For example, at both 15 and 16
dBm, a small lobe (red dashed circle) present in both SSFM and FLP on β2 decision regions
is not present in the LP on γ ones. The shape of the contour plots indicate that the decision
regions obtained with FLP on β2 might perform closer to the SSFM decision regions than the
ones obtained with LP on γ, as will be discussed next.

The HB detectors obtained using LP on γ, FLP on β2, and SSFM are compared in a
system whose fiber propagation is modeled by the SSFM. The results are shown in Fig. 8.7,
where the BER is evaluated for different launch powers using the obtained HB detectors.
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The latter are obtained using the SSFM for fiber propagation. The BER was estimated after
averaging the results for 100 realizations of randomly generated sequences of 217 symbols,
totalling approximately 1.3 · 107 symbols. As shown in Fig. 8.7, the SSFM HB detector
(black curve) shows the lowest BER for the displayed input powers. The minimum distance
HB detector gives the worst performance since it assumes a Gaussian distribution of the
received samples. This detector is obtained by minimum Euclidean distance from the received
samples to the possible transmitted symbols. Replacing the minimum distance HB detector
by the SSFM one at 16 dBm reduces the BER approximately 18 times (from 5.9 · 10−3 to
3.3 · 10−4). At 15 dBm, the BER for FLP on β2 is 4.6 times lower than for LP on γ. As
expected, results for FLP on β2 are closer to the SSFM results than LP on γ. The highest gap
between the SSFM and FLP on β2 occurs at 17 dBm, where the BER for FLP on β2 is 1.4
times higher than the BER for SSFM. The fact that a higher gap appears from 16.5 dBm could
be related to the high NSD observed in Fig. 8.3 for FLP on β2 at that range of input powers.
Fig. 8.7 also shows the performance of the SSFM detector obtained at 17 dBm when used
for other input powers. As the input power distance from 17 dBm increases, the performance
of the SSFM detector for 17 dBm decreases with respect to the performance of other SSFM
detectors obtained in those respective input powers. For example, at 15 dBm, the BER for
the 17 dBm SSFM detector is 5.7 times higher than the 15 dBm SSFM one, matching the
performance of LP on γ. Nevertheless, the BER of the 17 dBm SSFM detector is still lower
than the BER for minimum distance detection.

8.3.3 Achievable Information Rates

FEC is present in modern PON systems to improve system performance [92]. In Fig. 8.7,
pre-FEC BER thresholds are shown for two Reed-Solomon (RS) codes [93]. The considered
codes in Fig. 8.7 are RS(n, k) with k = 239, 223 and n = 255, where k and n are the
information and codeword lengths, resp. These two codes are typical low-complexity RS
codes used in PONs [92, 94] and have a code rate of 0.93 and 0.87, respectively.

Along with RS codes, also stronger FEC codes such as low-density parity-check codes
or staircase codes have been proposed for PONs in the literature [95–97]. In this section, we
evaluate the models for PON systems with hard-decision (HD) FEC in terms of achievable
information rates (AIRs) [35]. We consider the simple RS codes described above and a
theoretical HD limit for the AIR. The latter is close to the performance of strong HD FEC
codes [98, Fig. 8]. The AIRs are obtained by closed-form expressions based on pre-FEC
BER.

We consider a family of RS codes RS(n, k) with multiple coding rates, where k is varied
to obtain different code rates. We use a fixed codeword length (n = 255 symbols) in order
to constrain the code complexity. For every launch power, k is determined by finding the
highest k such that the post-FEC BER falls below a certain threshold. Following [83, Table
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IV.2], we use 10−12 as post-FEC BER threshold.

The post-FEC BER ppos can be approximated by substituting the pre-FEC BER p from
the system in Fig. 8.2 in the analytical expression for binary symmetric channels (BSCs) and
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bounded-distance decoders [99]

ppos ≈
1

n

n∑

r=t+1

(
p

ps
r +

1

2(t− 1)!

)(
n

r

)
prs(1− ps)n−r, (8.39)

where t = b(n − k)/2c is the RS error-correction capability, ps = 1 − (1 − p)m is the
(RS) symbol error probability, and m = dlog2(n+ 1)e is the number of bits per symbol. To
improve the total computation time, a binary search algorithm on k over all integers between
1 and 253 is performed. After finding k, the AIR for the RS system (AIRRS) is determined by

AIRRS = log2(M)
k

n
=

2

255
k, (8.40)

since M = 4 for QPSK. We call (8.40) an achievable information rate since we assume that
ppos < 10−12 can be considered virtually error-free for the system considered in this paper.

Since the expression in (8.39) is valid for BSCs, we need to modify the system in Fig. 8.2
to fulfill that property. The fiber channel in Fig. 8.2 presents memory due to the interaction
of dispersion and nonlinearities. Therefore, in our simulations we included a bit interleaver
and a bit deinterleaver so that the fiber channel in Fig. 8.2 is well-approximated by a BSC.
The resulting system, together with the RS encoding and decoding blocks, can be seen in
Fig. 8.8. The system in Fig. 8.8 was only simulated for ppos ≈ 10−5 and was used to validate
the results of (8.39). After this validation, (8.39) was used instead of simulating the system
in Fig. 8.8.

Fig. 8.9 depicts the AIRs for the RS system using (8.39). Before analyzing the results
for ppos ≈ 10−12, we validate (8.39) at ppos ≈ 10−5 to determine if the system in Fig. 8.8
can be well-approximated by a BSC. This validation is done assuming a minimum distance
detector and is shown by the dotted lines in Fig. 8.9. The results for the RS simulations of
the exact system in Fig. 8.8 at ppos ≈ 10−5 are shown with diamonds. An almost perfect
overlap with the results from (8.39) with the same ppos (shown with triangles) is observed.
The agreement between these curves suggest that the system in Fig. 8.8 can be approximated
by a BSC. Therefore, from now on only (8.39) is used for the RS systems at ppos ≈ 10−12.

We start by comparing the dashed lines in Fig. 8.9, which represent the AIRRS results in
(8.40). As shown in Fig. 8.9, using the decision regions obtained by SSFM in a RS system
can provide a gain of approximately 1.8 dB for a rate of 1.6 bits/symbol in terms of nonlinear
tolerance. The crossing point between the rate of RS(255, 223) with AIRRS for the SSFM
decision regions is at 16.5 dBm, which closely matches with the crossing point with BER
in Fig. 8.7. When comparing the models, the histogram-based detector obtained using FLP
on β2 outperforms the LP on γ one throughout the considered power range, analogously to
Fig. 8.7. Specifically for RS(255, 239), FLP on β2 outperforms LP on γ by approximately
0.4 dB.

The AIRRS is also compared with a theoretical bound on hard-decision bit-wise AIRs for
independent, identically distributed bit errors. The theoretical AIR (AIRTH) used in this paper
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is defined as [100]
AIRTH = log2(M) (1− Hb(p)) , (8.41)

where Hb(p) = −p log2(p)− (1− p) log2(1− p) is the binary entropy function for the given
pre-FEC BER p in the system of Fig. 8.2. The AIRTH from (8.41) can be approached by
strong FEC codes such as staircase codes, as reported in [98, Fig. 8].

As shown in Fig. 8.9, the theoretical bounds (solid lines) from (8.41) show significant
gains over the AIRRS results. These gains show that, by using codes more complex than
RS(255, k), higher code rates can be achieved or the input power can be improved for a
specific rate. For the same code rate as in RS(255, 223), the input power for the theoretical
bound on the SSFM decision regions is approximately 1.9 dB higher than the one for the RS
system. However, the complexity and latency of codes that perform close to the theoretical
bound should be carefully analysed for a PON system design. The results for the theoretical
bounds in in Fig. 8.9 also show that the histogram-based detector based on the FLP on β2

outperforms the one based on LP on γ.

8.3.4 Numerical Analysis

As mentioned in Sec. 8.2.4, LP on γ and FLP on β2 suffer from a numerical issue related to
the ratio between the first and zeroth RP order. In this section, this issue is further investi-
gated, more details on the models’ implementation are presented, and the time–complexity
tradeoff is discussed.

The time derivatives present in the β2 perturbation models were calculated in the fre-
quency domain by using fast Fourier transforms. Once the terms A(β2)

0 and A(β2)
1 were ob-

tained, they were used to build both RP and FLP on β2 models to avoid the recalculation of
those terms for FLP. This last trick was analogously done for RP and LP on γ. To obtain the
models RP and LP on γ, the integral in (8.5) was calculated using Gauss–Legendre quadra-
ture [101, Ch. 5], [102]. The minimum number of necessary quadrature points to achieve the
NSDs displayed for the C-band was only 2, while for the O-band this number increased to
4. The weights for the Gauss–Legendre quadrature were obtained from a look-up table. The
SSFM calculations previously presented in the paper were performed using uniform (con-
stant) spacial step sizes of 0.1 km. However, for the time complexity comparison in this sec-
tion, we used logarithmic step sizes to increase the accuracy for a given number of steps [39].
A multiplicative correction factor of 0.6 was used to adjust α in the logarithmic step size cal-
culation. This correction factor changes the distribution of the step sizes in order to improve
the few-steps SSFM NSD. The simulations were performed on a NVIDIA® Tesla®-P100 GPU
and the code written in MATLAB®. The code used for the models can be found in [103]. The
simulation setup in this section differs slightly from the one considered in Sec. 8.3.1. We
consider C-band simulations at a fixed 10 dBm input power. The splitter and the additional 1
km fiber are ignored in order to measure the time and accuracy of a single fiber segment for
each method.
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Figure 8.10: Average simulation time for most of the models considered in this paper. The
simulated system is a 20 km fiber in C-band with input power 10 dBm. The code used to
generate the models can be found on [103]. Few-steps SSFM simulations are also added to
the figure (circles).

Fig. 8.10 shows the simulation time versus NSD for most of the models considered on
this paper. The NSD values were averaged over 100 simulations, while the simulation time
was averaged over 3000 realizations of the MATLAB® function gputimeit© for each model.
In each simulation, 217 symbols were transmitted, with an oversampling factor of 16. Ran-
dom symbol sequences were generated when obtaining each NSD sample, while the input
waveform for the simulation time measurements was fixed for all models. The NSD for the
models and for SSFM simulations with a small number of spatial steps was calculated using
as the reference waveform SSFM simulations with 70 logarithmically spaced steps. These
steps were calculated using the symmetrized SSFM approach [1], where the nonlinear effect
is included in the middle of each step. The few-steps SSFM simulations also used sym-
metrized logarithmically spaced steps. As depicted in Fig. 8.10, 2 symmetric steps SSFM
simulations already yield higher accuracy in lower simulation time than all the other mod-
els in that figure for this system, except for RP on β2 which has a slightly lower simulation
time. Therefore, one might prefer using few-steps SSFM for numerical simulations instead
of analytical models for this system.

However, our motivation for developing new integral-form models is to focus on better
understanding fiber propagation instead of numerical aspects. Analogously to RP on γ, we
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Figure 8.11: Average NSD versus threshold c over 500 simulations for LP on γ and FLP on
β2. For c = 1.1, the average NSD is approximately the minimum for both models.

believe that the β2 perturbation models could also be used to build low-complexity receivers
and performance prediction formulas. When comparing analytical models, Fig. 8.10 shows
that changing from RP to ERP on γ requires virtually no increase in time, while yielding a
lower NSD. The NSD of ERP on γ is comparable to the NSD of RP on β2 at that input power.
Nevertheless, ERP on γ requires approximately 124% more simulation time than RP on β2.
The gap in time between RP and FLP on β2 is higher than the gap between RP and LP on γ.
This difference might be explained by the additional fast Fourier transforms required in the
FLP method and by the additional search Ã(β2)

0 (ω, z) = 0, as stated in Sec. 8.2.4. Although
having a lower gap from RP on γ, the simulation time for LP on γ is 50% higher than for
FLP on β2. In addition, FLP on β2 presents approximately 2.7 times lower NSD than LP on
γ.

The choice of the threshold c used for both LP and FLP methods is also investigated.
Fig. 8.11 illustrates the average NSD versus c over 500 simulations. As shown in Fig. 8.11,
for c < 0.02, the NSD of LP on γ and FLP on β2 converge to the NSD of their respective
RP models. For c > 10, the NSD of FLP on β2 starts to increase significantly. This increase
is due to high energy isolated points where the value of the zeroth order perturbation term is
significantly smaller than the first order one. The lower the value of c, the more these isolated
points are filtered. The same behavior happens for LP on γ for c > 103. At c = 1.1, the NSD
is virtually the minimum for both models and was the chosen threshold for simulations.
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8.4 Conclusions
In this paper we presented a novel model for optical fiber transmission and evaluated its
performance for a passive optical network system. The proposed model was derived as an
improved version of the regular perturbation on the GVD parameter model. The improvement
was obtained by applying frequency logarithmic perturbation on the GVD parameter. Both
regular and frequency logarithmic perturbation on the GVD parameter models are suitable
in the weakly dispersive and highly nonlinear regime, whereas the frequency logarithmic
perturbation is able to surpass the limitations of the regular perturbation.

Apart from the regular perturbation on the GVD parameter, the proposed model was com-
pared with two other models present in the literature: regular and logarithmic perturbation
on the Kerr nonlinear coefficient. For a fixed normalized squared deviation of 0.1%, the
proposed model was accurate at 1.5 dB higher input powers compared to logarithmic pertur-
bation on the Kerr nonlinear coefficient. Both frequency logarithmic and regular perturbation
on the GVD parameter exhibit the highest convergence rate to the split-step Fourier method
results when reducing the dispersion effect. The proposed model also proved to be more
suitable for symbol and bit detection, with and without FEC.

Possible extensions of this work are higher-order logarithmic perturbation models, pertur-
bation on the GVD parameter for dual-polarization systems, and nonlinearity-compensation
techniques based on the proposed model.



8



9

CHAPTER 9
Paper E: Revisiting Efficient
Multi-Step Nonlinearity
Compensation with Machine
Learning: An Experimental
Demonstration

V. Oliari et al., “Revisiting efficient multi-step nonlinearity compensation with machine
learning: an experimental demonstration,” in Journal of Lightwave Technology, vol. 38, no.
12, pp. 3114-3124, June, 2020.
DOI: 10.1109/JLT.2020.2994220, Copyright © 2020, IEEE.



9

112 Paper E

Abstract

Efficient nonlinearity compensation in fiber-optic communication systems is considered a key
element to go beyond the “capacity crunch”. One guiding principle for previous work on the
design of practical nonlinearity compensation schemes is that fewer steps lead to better sys-
tems. In this paper, we challenge this assumption and show how to carefully design multi-step
approaches that provide better performance–complexity trade-offs than their few-step counter-
parts. We consider the recently proposed learned digital backpropagation (LDBP) approach,
where the linear steps in the split-step method are re-interpreted as general linear functions,
similar to the weight matrices in a deep neural network. Our main contribution lies in an ex-
perimental demonstration of this approach for a 25 Gbaud single-channel optical transmission
system. It is shown how LDBP can be integrated into a coherent receiver DSP chain and suc-
cessfully trained in the presence of various hardware impairments. Our results show that LDBP
with limited complexity can achieve better performance than standard DBP by using very short,
but jointly optimized, finite-impulse response filters in each step. This paper also provides an
overview of recently proposed extensions of LDBP and we comment on potentially interesting
avenues for future work.

9.1 Introduction
Mitigating fiber nonlinearity is a significant challenge in high-speed fiber-optic communica-
tion systems. As transmission power is increased, the nonlinear Kerr effect degrades the sys-
tem performance, preventing operation at higher transmission rates, as would be expected in
a linear system [25]. This performance gap motivates the development of nonlinear compen-
sation techniques, whose design is usually based on analytical models for signal propagation
in an optical fiber.

Digital backpropagation (DBP) based on the split-step Fourier method (SSFM) [1] theo-
retically offers ideal compensation of deterministic propagation impairments including non-
linear effects [28, 104–106]. The SSFM is arguably the most popular numerical method to
solve the nonlinear Schrödinger equation (NLSE) and simulate fiber propagation, while DBP
essentially reverses the SSFM operators. Other digital techniques for nonlinearity compen-
sation include Volterra series approximations [73, 107–109] and recursive perturbation ap-
proaches [5, 110–112]. The main challenge for all these nonlinear compensation techniques
is to obtain significant performance improvement and a reasonable computational complex-
ity [113]. Indeed, several authors have highlighted the large computational burden associated
with a real-time digital signal processing (DSP) implementation and proposed various tech-
niques to reduce the complexity [3,4,8,28,112,114–118]. In many of these works, the number
of steps (or compensation stages) is used not only to quantify complexity but also as a general
measure of the quality for the proposed complexity-reduction method. The resulting message
appears to be that fewer steps are better and provide more efficient solutions.

While previous work has indeed demonstrated that complexity savings are possible by
reducing steps [3, 114, 117], the main purpose of this paper is to highlight the fact that fewer
steps are not more efficient per se. In fact, recent progress in machine learning suggests
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that deep computation graphs with many steps (or layers) tend to be more parameter-efficient
than shallow ones using fewer steps [119]. In this paper, we illustrate how this insight can be
applied in the context of fiber-nonlinearity compensation in order to achieve low-complexity
and hardware-efficient DBP. The main idea is to fully parameterize the linear steps in the
SSFM by regarding them as general linear functions that can be approximated via finite im-
pulse response (FIR) filters. All FIR filters can then be jointly optimized, similar to opti-
mizing the weight matrices in a deep neural network (NN) [8, 120]. Complexity is reduced
via pruning, i.e., progressively shortening the filters during the optimization procedure [121].
This can be seen as a form of model compression, which is commonly used in machine learn-
ing to reduce the size of NNs [122, 123]. We refer to the resulting approach as learned DBP
(LDBP) [8]. The nonlinear steps in LDBP can also be parameterized and jointly optimized
together with the linear steps [8]. In this paper, we assume for simplicity that the nonlin-
ear steps remain fixed throughout the optimization procedure (similar to a conventional NN
activation function).

This paper is an extension of [124], where we provided a tutorial-like introduction to
LDBP. LDBP was originally introduced in [8] and the novel technical contribution in this
paper lies in an experimental validation of this approach for a single-channel optical trans-
mission system. In particular, it is demonstrated that LDBP with limited complexity can
outperform standard DBP by using very short, but jointly optimized, FIR filters in each step.
During the review process of this paper, another experimental demonstration of LDBP was
published in [30]. Besides the different system parameters adopted for the experiments (such
as fiber length, symbol rate, and transmitted constellation), our work differs from [30] in
terms of the methodology followed in the LDBP pre-optimisation stage: whilst we used ex-
perimental data to optimize only the LDBP parameters, in [30] two MIMO filters are jointly
optimized together with LDBP. In another recent work, the authors in [125] propose a new
training method for LDBP in the presence of practical impairments such as laser phase noise.
Their approach relies on extracting the relevant impairment estimates from a standard DSP
chain based on chromatic dispersion (CD) compensation, which is similar to our approach
discussed in Sec. 9.4.3.

This paper is organized as follows. In Sec. 9.2, we review the theoretical background be-
hind optical fiber propagation and DBP. Sec. 9.3 introduces LDBP and shows how machine
learning can be applied in the context of fiber nonlinearity compensation. Sec. 9.4 presents
the experimental results and the comparison between DBP and LDBP. Sec. 9.5 provides a
tutorial-style overview of related works and indicates possible avenues for future work. Fi-
nally, Sec. 9.6 concludes the paper.

9.2 Background
In this section, we review the mathematical foundation for LDBP. The optical field propa-
gating in a fiber can be represented by a vector function of time t and distance z, E(t, z) =
[Ex(t, z), Ey(t, z)]>, which takes values in C2, where Ex and Ey are the components of the
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optical field over 2 arbitrary orthogonal polarization modes x and y. The evolution of E in a
birefringent optical fiber in the presence of polarization-mode dispersion (PMD) is described
by the Manakov-PMD equation [126] as

∂E(t, z)

∂z
=

(
−ααα(z)

2
− jβ2

2

∂2

∂t2
−∆β′(z)σσσ(z)

∂

∂t

)
E(t, z)

+ jγ
8

9
|E(t, z)|2E(t, z), (9.1)

where ααα ∈ R2×2 models the polarization-dependent attenuation and amplification effects in
a fiber link [127], β2 is the group-velocity dispersion coefficient, γ is the nonlinear coeffi-
cient, and ∆β′ is the delay per unit length along the 2 local principal states of polarizations
whose evolution is described by the matrix1 σσσ(z) ∈ SU(2). When polarization dependent
attenuation/amplification effects can be neglected, then ααα(z) = αI, where α ∈ R is the fibre
attenuation coefficient and I represents the identity matrix.

Although (9.1) does not have a known closed-form solution, an approximated solution
can be obtained using the Baker–Campbell–Hausdorff formula [128] as

E(t, z + h) ≈ exp

(∫ z+h

z

D̂(ξ)dξ

)

exp

(∫ z+h

z

N̂(ξ)dξ

)
E(t, z),

(9.2)

where D̂ and N̂ are the so-called linear and nonlinear operators, respectively, given by

D̂(z) = −ααα(z)

2
− jβ2

2

∂2

∂t2
−∆β′(z)σσσ(z)

∂

∂t
, (9.3)

N̂(z) = jγ
8

9
|E(t, z)|2. (9.4)

The error incurred using (9.2) as a solution of (9.1) is vanishingly small as h decreases [58].
This approximation is the main idea behind the SSFM, which underpins DBP.

In the SSFM, the linear and nonlinear operators in (9.2) are recursively applied in fre-
quency and time domain, respectively. The exponential of the nonlinear operator in (9.4)
corresponds instead, in the time-domain, to a multiplication by the term

exp

(
jγ

8

9

∫ z+h

z

|E(t, ξ)|2dξ
)
. (9.5)

1SU(2) denotes the special unitary group of degree 2.
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The exponential of the linear operator D̂(ξ) in (9.3) can be expressed in the Fourier domain
as a (frequency-dependent) matrix multiplication by

exp

(
−
∫ z+h

z

ααα(ξ)

2
dξ

)
exp

(
jω2 β2

2
h

)
J(ω, z), (9.6)

where J(ω, z) = exp
(
−
∫ z+h
z

jω∆β′(ξ)σσσ(ξ)dξ
)

is a unitary, frequency-dependent matrix,
commonly referred to as (local) Jones matrix. For small enough h, the Jones matrix can be
factorized as J(ω, z) = R(z)T(ω, z), where R is a unitary complex matrix which describes
the evolution of the polarization state of the optical field, and where

T(ω, z) =


 exp

(
−jω τ(z)

2

)
0

0 exp
(
jω τ(z)

2

)

 (9.7)

with τ(z) = ∆β′(z)h describes the delay over the two principal states of polarization at
section z. Together, R(z) and T(ω, z) contribute to define the evolution of PMD along the
link.

The conventional DBP algorithm aims to reconstruct the transmitted field E(t, 0) from
the received one E(t, z) using (9.2) recursively as2

Ê(t, 0) =

NDBP∏

n=1

exp

(
−
∫ zn+1

zn

D̂′(ξ)dξ
)

exp

(
−
∫ zn+1

zn

N̂(ξ)dξ
)
E(t, z),

(9.8)

where D̂′ = −α
2
− jβ2

2

∂2

∂t2
, zn and ∆zn = zn − zn−1 for n = 1, . . . , NDBP are the

propagation section and so-called DBP step size at iteration n, and NDBP is the number of
DBP steps. Like in the SSFM implementation, the two operators in (9.8) are typically applied
in frequency- and time-domain for the linear and nonlinear operators, respectively. This is
performed numerically via two fast-Fourier transforms (FFTs).

Comparing (9.2) with (9.8), we note that in the conventional DBP implementation, the
operator D̂′ does not exactly invert D̂ in (9.2), because D̂′ does not account for the effects
of R(z) and T(ω, z). Including these two matrices in D̂′ is challenging, since they are
stochastically distributed over an ensemble of fibres and unknown to the receiver. Failing to
invert R(z) and T(ω, z) in a distributed fashion results in a performance penalty due to the
uncompensated interaction between PMD and the Kerr effect [129, 130]. Combining DBP
(and LDBP) with distributed PMD compensation is discussed in more detail in Sec. 9.5.2.
However, distributed PMD compensation is not yet integrated into the experimental demon-
stration.

2Here,
∏N

i=1 Ai = A1A2 · · ·AN , in the operator product sense.
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9.3 Efficient Multi-Step Nonlinearity Compensation using
Deep Learning

For hardware-efficient and low-complexity DBP, the task is to approximate the solution of
the NLSE using as few computational resources as possible. As described in the previous
section, the SSFM computes a numerical solution by alternating between linear filtering steps
(accounting for CD and attenuation) and nonlinear phase rotation steps (accounting for the
optical Kerr effect). It was observed in [8] that this is indeed quite similar to the functional
form of a deep NN, where linear (or affine) transformations are alternated with pointwise
nonlinearities. In this section, we illustrate how this observation can be exploited by applying
tools from machine learning, in particular deep learning.

9.3.1 Supervised Learning and Neural Networks
We start by reviewing the standard supervised learning setting for feed-forward neural net-
works (NNs). A feed-forward NN with M layers defines a mapping ŷ = fθ(x) where the
input vector x ∈ X is mapped to the output vector ŷ ∈ Y by alternating between affine
transformations z(i) = W (i)x(i−1) + b(i) and pointwise nonlinearities x(i) = φ(z(i)) with
x(0) = x and x(M) = ŷ. The parameter vector θ comprises all elements of the weight ma-
trices W (1), . . . ,W (M) and vectors b(1), . . . , b(M). Given a training set S ⊂ X × Y that
contains a list of desired input–output pairs, training proceeds by minimizing the empirical
loss LS(θ) , 1

|S|
∑

(x,y)∈S `
(
fθ(x),y), where `(ŷ,y) is a real number that, given a pair

(x,y) ∈ S, determines the performance of the prediction ŷ = fθ(x) when y is the correct
output target. We call ` the loss function. In our case, x is a vector of received samples
after fiber propagation and some impairments compensations, y is the vector of transmitted
symbols, ŷ is the estimated symbol vector, and ` is the mean-squared error (MSE) function
`(ŷ,y) = ‖ŷ − y‖2, where ‖·‖ is the Euclidean norm. When the training set is large,
one typically optimizes θ using a variant of stochastic gradient descent (SGD). In particular,
mini-batch SGD uses the parameter update θt+1 = θt − α∇θLBt(θt), where α is the step
size and Bt ⊆ S is the mini-batch used in the t-th step.

Supervised machine learning is not restricted to NNs and learning algorithms such as
SGD can be applied to other function classes as well. In this paper, we do not further consider
NNs, but instead focus on approaches where the function fθ results from parameterizing a
model-based algorithm, in particular the SSFM. In fact, prior to the current revolution in ma-
chine learning, communication engineers were quite aware that system parameters (such as
filter coefficients) could be learned using SGD. It was not at all clear, however, that more com-
plicated parts of the system architecture could be learned as well. For example, in the linear
operating regime, PMD can be compensated by choosing the function fθ as the convolution
of the received signal with the impulse response of a linear multiple-input multiple-output
(MIMO) filter, where θ corresponds to the filter coefficients. For a suitable choice of the
loss function `, applying SGD then maps into the well-known constant modulus algorithm
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Figure 9.1: Experimental optical recirculating loop setup (ECL: external cavity laser, DP-IQ
Mod: dual polarization IQ Modulator, EDFA: erbium-doped fiber amplifier, AOM: acousto-
optic modulator, WSS: wavelength selective switch, DAC: digital-to-analog converter, ADC:
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Figure 9.2: DSP chain applied to the digitized fiber output detected by the coherent receiver
and analog-to-digital converter as shown in Fig. 9.1.

(CMA) [131]. For the experimental investigation in this paper, the CMA is used as part of
our receiver DSP chain as an adaptive equalizer (see Sec. 9.4.1).

9.3.2 Learned Digital Backpropagation

Real-time DBP based on the SSFM is widely considered to be impractical due to the com-
plexity of the FFTs commonly used to implement frequency-domain (FD) CD filtering. To
address this issue, time-domain (TD) filtering with finite impulse response (FIR) filters has
been suggested in, e.g., [28, 118, 132, 133]. In these works, either a single filter or filter pair
is designed and then used repeatedly in each step. However, using the same filter multiple
times is suboptimal in general and all the filter coefficients used by the DBP algorithm should
be optimized jointly. To that end, it was proposed in [8] (see also [120]) to apply supervised
learning based on SGD by letting the function fθ be the SSFM, where the linear steps are
now implemented using FIR filters. In this case, θ corresponds to the filter coefficients used
in all steps. The resulting method is referred to as LDBP.

The complexity of LDBP can be reduced by applying model compression, which is com-
monly used in ML to reduce the size of NNs [122, 123]. In this paper, we use a simple
pruning approach where the FIR filters are progressively shortened during SGD [121]. Our
main finding is that the filters can be pruned to remarkably short lengths without sacrific-
ing performance. As an example, consider single-channel DBP of a 10.7-Gbaud signal over
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25 × 80 km of standard single-mode fiber (SSMF) using the SSFM with one step per span
(StPS). For this scenario, Ip and Kahn have shown that 70-tap filters are required to obtain ac-
ceptable accuracy [28]. This assumes that the filters are designed using FD sampling and that
the same filter is used in each step. The resulting hardware complexity was estimated to be
over 100 times larger than for linear equalization. On the other hand, with jointly optimized
filters, it was previously demonstrated that one can achieve similar accuracy by alternating
between filters that are as short as 5 and 3 taps [120]. This reduces the complexity by almost
two orders of magnitude, making it comparable to linear equalization in this case.

At first glance, it may not be clear why multi-step DBP can benefit from joint optimiza-
tion of the filters. After all, the standard SSFM applies the same CD filter many times in
succession, without the need for any elaborate optimization. The explanation is that in the
presence of practical imperfections such as finite-length filter truncation, applying the same
imperfect filter multiple times can be detrimental because it magnifies any weakness. To
achieve a good combined response of neighboring filters and a good overall response, the
truncation of each filter needs to be delicately balanced. For a more detailed discussion, we
refer readers to [120, 134].

9.4 Experimental Results
For the experimental results presented in this section, our focus is on single-channel DBP
of a polarization-multiplexed (PM) 25 Gbaud signal over 1500 km of SSMF. To obtain the
results, we proceed in three steps:

1. Pre-train LDBP using data from split-step simulations and apply filter pruning to obtain
short FIR filters in each step.

2. Fine-tune the model using pre-processed experimental data traces.

3. Test the fully-trained model on raw experimental data traces, by integrating LDBP into
the receiver DSP chain.

The pre-processed experimental data traces mentioned in step 2 are obtained using the proce-
dures described in Sec. 9.4.3. This pre-processing is necessary in order to provide LDBP with
an estimation of effects such as phase noise and state of polarization. The raw experimental
data traces in step 3 are the digital domain samples of the fiber output. These raw traces are
processed by a different DSP chain, described in Sec. 9.4.1. In the following, we discuss
each step in more detail, starting with the experimental testbed and DSP algorithms used for
the experimental validation. Effective SNR is used throughout this section as the main fig-
ure of merit. We also note that the training procedure described in Sec. 9.4.2 and Sec. 9.4.3
is performed only once, since we only consider static effects, i.e., chromatic dispersion and
fiber nonlinearities. Moreover, the trained model is independent of the transmitted power, as
described in more detail below.
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9.4.1 Recirculating Loop Setup and DSP Chain
A schematic of the experimental recirculating loop setup is depicted in Fig. 9.1. A total of 851
traces were captured in the launch power range of −5 dBm to 6 dBm with steps of 0.5 dBm,
accounting for 37 traces per launch power. For each trace, we generate offline a sequence of
216 symbols, using the Permuted Congruential Generator XSL RR 128/64 random number
generator [135]. A new random seed is used for each sequence. The sequences are pulse-
shaped using a root-raised cosine (RRC) filter with 1% roll-off, digitally pre-compensated for
transmitter bandwidth limitations and uploaded to a 100-GSa/s digital-to-analog converter
(DAC). The 193.4 THz carrier is generated by an external cavity laser (ECL), modulated
by a dual-polarization IQ-modulator (DP-IQM) and amplified using an erbium doped fiber
amplifier (EDFA). Using acousto-optic modulators (AOMs), the optical signal is circulated
in a recirculating loop consisting of a loop-synchronised polarization scrambler (LSPS), a
75-km span of SSMF, an EDFA and an optical tunable filter (OTF) for gain equalization.

At the receiver, the optical signal is amplified with an EDFA, filtered using a 50 GHz op-
tical bandwidth wavelength selective switch (WSS) and detected using an intradyne coherent
receiver consisting of a local oscillator (LO), 90-degree hybrid and 4 balanced photodiodes
with 43 GHz electrical bandwidth. The resulting electrical signal is digitized by an 80-GSa/s
real-time oscilloscope with an electrical bandwidth of 36 GHz.

The receiver DSP consists of seven blocks, which are applied sequentially as represented
in Fig. 9.2. Orthonormalization using blind moment estimation is applied to the signal for
receiver optical front-end IQ compensation (gain imbalance and offset angle between the
in-phase and quadrature components). Rational resampling to 2 samples per symbol is then
applied. The next step is frequency-offset estimation and compensation to correct effects such
as frequency difference between the local oscillator and the signal laser and frequency offsets
introduced by the AOMs. After frequency-offset compensation, we apply either electronic
dispersion compensation (EDC), DBP, or LDBP. The signal is then adaptively equalized and
phase noise compensated. Here we use a MIMO equalizer trained with MSE metric. The
MIMO equalizer is used to recover the signal state of polarization and partially compensate
for other impairments, such as PMD. Within the update loop of the equalizer, blind phase
search using the known transmitted symbols removes phase noise. The equalized signal is
then downsampled to 1 sample per symbol and aligned with the transmitted sequence. Finally,
the effective SNR is estimated.

9.4.2 Pre-Training and Filter Pruning
Simulations are used for pre-training where the simulation parameters are closely matched to
the experimental setup. In particular, we assume single-channel transmission of a 25 Gbaud
signal (PM 16-QAM, 1% RRC) over 20×75.484 km of fiber (α = 0.2 dB/km, β2 = −20.87
ps2/km, γ = 1.3 rad/W/km), where EDFAs (noise figure 5.0 dB) compensate for attenuation
after each span. Forward propagation is simulated with 300 logarithmic StPS and 100 GHz
simulation bandwidth. No PMD or other hardware impairments are included in the simula-
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tions. At the receiver, the signal is low-pass filtered (30 GHz bandwidth) and downsampled
to 2 samples/symbol for further processing. LDBP is applied first, followed by a matched fil-
ter3 (MF) and phase-offset correction. LDBP is based on the symmetric SSFM using 3 StPS
and a logarithmic step size. When combining the adjacent linear half-steps, the overall model
has 61 linear steps. MSE is the loss function employed for training all FIR filters, defined as∑
p∈{x,y}‖yp − ŷp‖2/2, where yp and ŷp are the transmitted and estimated symbol vectors

of the p-polarization after the phase-offset correction, respectively. We assume that the filters
are symmetric and that different filters are used in each polarization. This is essentially the
same methodology as described in earlier work [8, 120].

Compared to most prior work on complexity-reduced DBP, it should be stressed that our
goal is not to reduce the number of steps, but instead to reduce the per-step complexity. This
is accomplished by employing filter pruning. All FIR filters are initialized with constrained
least-squares CD coefficients according to [2]. The approach in [2] minimizes the frequency-
response error of the FIR filter with respect to an ideal CD compensation filter within the
signal bandwidth, while constraining the out-of-band filter gain. The initial filter lengths are
chosen large enough to ensure good performance. The filters are then progressively pruned
to a given target length by forcing the outermost taps to zero at certain iterations during
SGD [121]. The zero forcing is done using a masking operation in TensorFlow. The iterations
where pruning occurs are predefined before the training begins. For the considered scenario,
the targeted model consisted of 22 filters with 7 taps and 39 filters with 9 taps. Training
is performed for 50000 iterations using the Adam optimizer [49], learning rate 0.0007, and
batch size 50, which took around two hours on our machine. In principle, the number of
iterations (and, hence, the training time) could be reduced, for example by setting a more
aggressive learning rate. However, we observed that larger learning rates can sometimes
lead to diverging MSE losses and numerical instabilities in our implementation. The filters
are trained considering data from different launch powers, randomly chosen from the set
P = {1, 1.5, 2, 2.5, 3} dBm, resulting in a single model that tolerates changes in the input
power.

9.4.3 Fine-Tuning with Experimental Data
The next step is to fine-tune the pre-trained and pruned LDBP model using experimental data
traces. The key challenge when training with experimental data is the presence of various
hardware impairments and time-varying effects such as PMD and carrier phase noise. Our
approach is to first estimate these impairments using the conventional DSP chain and then
properly pre-process the data. The actual training is then performed with the resulting pre-
processed data. In particular:

• The received data samples are pre-processed by applying receiver front-end compen-
sation and frequency-offset compensation. The frequency offset is estimated from the

3For the experimental setup, matched filtering is implicitly performed by the MIMO equalizer.
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standard DSP chain. DBP is then applied to the resulting signal to improve the estima-
tion of phase noise and the SOP.

• The data symbols used for supervised learning are circular-shifted for alignment with
the data samples.4 These data symbols are pre-processed using the estimated phase
noise process to de-rotate the symbols. More precisely, let eφ̂i for i = 1, . . . , N be the
estimated phase noise process, where N is the length of the data trace. Then, training
is performed using the pre-processed symbols e−φ̂ixi, i = 1, . . . , N , where xi are the
true data symbols.

• Finally, the filter taps for the adaptive MIMO equalizer after the first 60000 symbols
are extracted and saved for each data trace. The equalizer is then assumed to be static
for the rest of the trace. During LDBP training, the MIMO equalizer is integrated as a
static DSP component after the MF, where the saved filter coefficients are loaded and
applied. Note that the MIMO filter taps are not updated during the fine tuning of LDBP.

Fine-tuning using the above approach is performed for an additional 5000 iterations using
a learning rate 0.0007, and batch size 50. For training, we only consider 19 out of the 37
available traces for each launch power in the set P , where the remaining traces are reserved
for testing.

9.4.4 Testing
After fine-tuning is completed, the obtained model can then be used as a static nonlinear
equalizer in the standard DSP chain described in Sec. 9.4.1 (see middle block in Fig. 9.2).
During the testing phase, all DSP blocks are operated normally and the raw (i.e., not pre-
processed) experimental data is used. The obtained performance is shown in Fig. 9.3 with
circle and diamond markers for EDC, standard DBP (3 StPS), and LDBP (3 StPS). For DBP,
a well-known issue is that the nonlinearity parameter γ is usually not known precisely and
needs to be estimated [136]. We performed a simple grid search over γ, jointly with β2, in
order to optimize performance. For DBP with 3 StPS, the optimization was done at 2.5 dBm
launch power, which led to an optimal value ofγ = 1.21 rad/W/km and β2 = −20.90 ps2/km.
The latter is close to the experimentally estimated β2 = −20.87 ps2/km. Similar to γ and
β2, the fiber length is also usually not precisely determined. We already had an estimated
measure of 75.484 km for the span length, which was confirmed to be optimum after a grid
search. The optimum attenuation coefficient for DBP was α = 0.19 dB/km, the same as in
the fiber specifications. DBP with 3 StPS achieves a peak-SNR gain of2.1 dB over EDC. The
peak-SNR gain obtained by DBP is similar to those reported in prior experimental studies on
single-channel DBP [137, 138]. DBP also improves the optimum launch power with respect

4In principle, LDBP with asymmetric FIR filters could learn to recover a circular shift. However, due to the use
of symmetric filters, a manual shift has to be applied. For the pre-training in Sec. 9.4.2, no circular shift is necessary
since the sequences are already perfectly aligned.
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Figure 9.3: Experimental results for single-channel transmission of a 25 Gbaud signal with
PM 16-QAM over 1500 km.

to EDC by 4 dB, from−1.5 dBm to 2.5 dBm. By using LDBP, the peak-SNR gain is slightly
increased with respect to DBP. Further increasing the number of StPS or filter taps for LDBP
did not improve performance. The optimum launch power for LDBP remains the same as the
one for DBP. We also repeated the same procedure assuming 1 StPS for both DBP and LDBP,
in which case the LDBP model uses 21 filters per polarization, where 12 filters are pruned
to 23 taps and 9 filters to 21 taps. The results in Fig. 9.3 (square markers) show that in this
case LDBP achieves a performance improvement of around 0.35 dB with respect to DBP. For
DBP with 1 StPS, the optimum values for γ and β2 were found to be γ = 1.62 rad/W/km and
β2 = −21.41 ps2/km.

In terms of complexity, it has been shown that the power consumption and chip area
for time-domain DBP [139] and LDBP [121] are dominated by the linear steps, whereas the
nonlinear steps have efficient hardware implementations using a Taylor expansion. Therefore,
we focus on the linear steps for simplicity. As a simple surrogate measure for complexity, we
use the overall impulse response length of the entire LDBP model, which is defined as the
length of the filter obtained by convolving all LDBP subfilters. Since the same filter lengths
are used in both polarizations, one may focus on a single polarization. For the 3-StPS model,
we have 22 filters of length 7 and 39 filters of length 9. Hence, the overall impulse response
length is 2(22 · (7 − 1)/2 + 39 · (9 − 1)/2) + 1 = 445 taps. For the 1-StPS model, the
overall impulse response length is 2(12 · (23 − 1)/2 + 9 · (21 − 1)/2) + 1 = 445, i.e., the
same as the 3-StPS model. Thus, even though the number of steps is reduced by a factor of
3 and performance decreases by around 0.3 dB (see the inlet figure in Fig. 9.3), the expected
hardware complexity of the two models is roughly comparable. Moreover, the overall impulse
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Figure 9.4: Tensor representation of an L-tap S × S MIMO filter for DBP based on subband
processing, where S is the number of subbands (left); learned multi-step decomposition with
sparse subfilters (right).

response lengths should be compared to the memory that is introduced by CD. To estimate
the memory, one may use the fact that CD leads to a group delay difference of 2π|β2|∆fLtot
over a bandwidth ∆f and transmission distanceLtot. Normalizing by the sampling interval T ,
this confines the memory to roughly (2π|β2|∆fLtot)/T samples. For our scenario, we have
β2 = −20.87 ps2/km, Ltot ≈ 1510 km, and 1/T = 50 GHz. The bandwidth ∆f depends
on the baud rate, the pulse shaping filter, and the spectral broadening during propagation.
In order to obtain an estimate for ∆f , we quantified the effect of spectral broadening in
an ideal noiseless simulation environment for the same parameters as listed in Sec. 9.4.2.
The bandwidth percentage (with respect to 1/T ) that contained 99.9% of the received signal
power was found to vary between 51% for P = −4 dBm and 77% for P = 6 dBm. With
these numbers, the CD memory varies between 253 and 381 taps, which is comparable to the
impulse response length of LDBP. This is a major improvement compared to previous work
where the filter lengths in DBP are significantly longer than the CD memory, sometimes by
orders of magnitude [28, 140]. We also note that it is possible to further prune the filters at
the expense of some performance loss. To illustrate this, we further pruned the 3-StPS model
to 22 filters of length 5 and 39 filters of length 7. This gave a peak-SNR penalty of 0.32 dB
(see Fig. 9.3), making the performance comparable to the 1-StPS model, while at the same
time reducing the overall impulse response length to only 323 taps.

9.5 Outlook and Future Work
In this section, we give an overview of related work on LDBP that has previously appeared
in the literature and also comment on potentially interesting avenues for future work.

9.5.1 Sparse MIMO Filters for Subband Processing
The complexity of DBP with TD filtering is largely dominated by the total number of required
CD filter taps in all steps and this increases quadratically with bandwidth, see, e.g., [141,142].
Thus, efficient TD-DBP of wideband signals is challenging. One possible solution is to em-
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Figure 9.5: Tensor representation of anL-tap 4×4 MIMO filter for PMD compensation (left);
multi-step decomposition where 4-D rotations are alternated with short fractional-delay (FD)
filters accounting for DGD (right). Each FD filters is applied to both the real and imaginary
part.

ploy subband processing and split the received signal into S parallel signals using a filter
bank [141–148]. A theoretical foundation for DBP based on subband processing is obtained
by inserting the split-signal assumption u =

∑S
i=1 ui into the NLSE. This leads to a set of

coupled equations which can then be solved numerically. We focus on the modified SSFM
proposed in [149] which is essentially equivalent to the standard SSFM for each subband, ex-
cept that all sampled intensity waveforms |u1|2, . . . , |uS |2 are jointly processed with a MIMO
filter prior to each nonlinear phase rotation step. This accounts for cross-phase modulation
between subbands but not four-wave mixing because no phase information is exchanged.

The MIMO filters for subband processing can be relatively demanding in terms of hard-
ware complexity. As an example, in [148] we considered a scenario where a 96-Gbaud signal
is split into S = 7 subbands. For a filter length of 13, the MIMO filter in each SSFM step can
be represented as a 7 × 7 × 13 tensor with 637 real coefficients which is shown in Fig. 9.4
(left). The resulting complexity per step and subband would be almost 6 times larger than that
of the CD filters used in [148]. The situation can be improved significantly by decomposing
each MIMO filter into a cascade of sparse filters as shown in Fig. 9.4 (right). For a cascade of
3 filters, it was shown that a simple L1-norm regularization applied to the filter coefficients
during SGD leads to a sparsity level of round 8%, i.e., 92% of the filter coefficients can be
set to zero with little performance penalty. Note that this filter decomposition happens within
each SSFM step. In other words, complexity is reduced by further increasing the depth of the
multi-step DBP computation graph.

9.5.2 Distributed PMD Compensation

Different techniques have been proposed in previous works to embed the distributed compen-
sation of PMD in the DBP algorithm, when the knowledge of the PMD evolution in the link
is missing [129, 130, 150]. In this section, we describe how distributed PMD compensation
can be combined with LDBP in a hardware-efficient manner.

As discussed in Sec. 9.2, PMD can be modeled by dividing a fiber link of length Ltot
into M = Ltot/h sections, where for large enough M the link Jones matrix JLink(ω) can be
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factorized as

JLink(ω) , exp

(
−jω

∫ Ltot

0

∆β′(ξ)σσσ(ξ)dξ

)
=

M∏

i=1

R(i)T(i)(ω) (9.9)

where R(i) , R(ih) and T(i)(ω) , T(ih, ω) for i = 1, 2, . . . ,M . PMD compensation
(and polarization demultiplexing) then amounts to finding and applying the inverse J−1

Link(ω)
to the received signal. This is typically performed after CD compensation, e.g., using an
L-tap MIMO filter that tries to approximate J−1

Link(ω). Fig. 9.5 (left) shows the corresponding
tensor representation assuming a real-valued 4 × 4 filter that is applied to the separated real
and imaginary parts of both polarizations [151].

An efficient multi-step decomposition of this filter is depicted in Fig. 9.5 (right), which
essentially mimics (9.9) in a reverse fashion. Here, the matrices T(i)(ω) are approximated
with two real-valued fractional-delay (FD) filters employing symmetrically flipped filter coef-
ficients for different polarizations. The FD filters can be very short provided that the expected
DGD per step is sufficiently small (i.e., many steps are used). In [152], it was shown how to
integrate the decomposed filter structure into LDBP. The resulting multi-step PMD architec-
ture can be trained effectively using SGD. An important feature compared to previous work
is the fact that the employed approach does not assume any knowledge about the particu-
lar PMD realizations along the link, nor any knowledge about the total accumulated PMD.
However, more research is needed to fully characterize the training behavior, e.g., in terms of
convergence speed for adaptive compensation.

9.5.3 Coefficient Quantization and ASIC Implementation
Fixed-point requirements and other DSP hardware implementation aspects for DBP have
been investigated in [118, 121, 139, 140, 153]. A potential benefit of multi-step architectures
is that they empirically tend to have many “good” parameter configurations that lie relatively
close to each other. This implies that even if the optimized parameters are slightly perturbed
(e.g., by quantizing them) there may exist a nearby parameter configuration that exhibits
similarly good performance to mitigate the resulting performance loss due to the perturbation.

Numerical evidence for this phenomenon can be obtained by considering the joint opti-
mization of CD filters in DBP including the effect of filter coefficient quantization. This has
been studied in [121] and the approach relies on applying so-called “fake” quantizations to
the filter coefficients, where the gradient computations and parameter updates during SGD
are still performed in floating point. Compared to other quantization methods, this jointly
optimizes the responses of quantized filters and can lead to significantly reduced fixed-point
requirements. For the scenario in [121], it was shown for example that the bit resolution
can be reduced from 8-9 coefficient bits to 5–6 bits without adversely affecting performance.
Furthermore, hardware synthesis results in 28-nm CMOS show that multi-step DBP based
on TD filtering with short FIR filters is well within the limits of current ASIC technology in
terms of chip area and power consumption [121, 139].
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9.6 Conclusions
We have illustrated how machine learning can be used to achieve efficient fiber-nonlinearity
compensation. Rather than reducing the number of steps (or steps per span), it was high-
lighted that complexity can also be reduced by carefully designing and optimizing multi-step
methods, or even by increasing the number of steps and decomposing complex operations
into simpler ones, without losing performance. We also avoided the use of neural networks
as universal (but sometimes poorly understood) function approximators. Instead, the con-
sidered learned digital backpropagation relied on parameterizing the split-step method, i.e.,
an existing model-based algorithm. We have performed an experimental demonstration of
this approach, which was shown to outperform standard digital backropagation with limited
complexity. Some extensions of the approach and steps towards possible future works were
also presented, showing that there is a possibility for further performance improvements in
these systems.
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Abstract

In this paper we carry out a joint optimization of probabilistic (PS) and geometric shaping (GS)
for four-dimensional (4D) modulation formats in long-haul coherent wavelength division mul-
tiplexed (WDM) optical fiber communications using an auto-encoder framework. We propose
a 4D 10 bits/symbol constellation which we obtained via end-to-end deep learning over the
split-step Fourier model of the fiber channel. The constellation achieved 13.6% reach increase
at a data rate of approximately 400 Gbits/second in comparison to the ubiquitously employed
polarization multiplexed 32-QAM format at a forward error correction overhead of 20%.

10.1 Introduction

JOINT optimization of transmitter and receiver digital signal processing (DSP) blocks,
such as coding, modulation, and equalization, can be challenging in optical communi-

cations. One possible way of jointly optimizing these blocks is using an autoencoder struc-
ture, as first proposed for wireless communications in [154]. In the context of optical fiber
communications, autoencoders were first introduced and experimentally demonstrated for
highly-nonlinear dispersive short-reach links [155]. The concept was then also applied for
long-haul coherent fiber systems, optimizing the modulation format using a simple approxi-
mated model of the nonlinear channel for 2D constellations [13,156,157]. Deep learning was
also used for obtaining 4D modulation formats in [32], where optimization was performed in
the linear regime and the performance was tested for the nonlinear optical fiber channel for
7 bits/symbol and constant modulus constellations. Beyond deep learning, many strategies
for geometric shaping (GS) optimization have been proposed in the literature. In [31], 4D 7
bits/symbol modulation formats were also considered.

In addition to optimizing the modulation format, another technique for improving data
rates is to optimize the symbol probabilities. In [33], symbol probabilities for polarization-
multiplexed (PM) quadrature amplitude modulation (QAM) constellations were optimized on
a simplified model and then tested on the nonlinear fiber channel. Finding the optimal modu-
lation format geometry and symbol probabilities is a challenging task and an open problem in
optical fiber communications [158]. On the other hand, as shown in [36,159] for the wireless
channels, deep learning and artificial neural networks (ANN) can provide viable alternatives
to the conventional approaches and enable joint GS and probabilistic shaping (PS), which is
called hybrid GS and PS.

In this paper, we perform hybrid GS and PS for optical fiber communications using the
split-step Fourier method (SSFM) for dual polarization as our channel model. SSFM is one
of the most accurate representations of the nonlinear propagation in optical fibers and has
already been used in the autoencoder framework [34]. However, in [34], the waveform is
optimized together with a 2D constellation format. The optimized constellations in this paper
are in 4D and have no constraints in terms of energy or symmetries. This is the first time, to
the best of our knowledge, that a 4D 10 bits/symbol constellation has been optimized for the
nonlinear optical channel using SSFM data. The results are validated via generalized mutual
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Figure 10.1: (A) Transmission system used to validated the performance of different modula-
tion formats. (B) Autoencoder setup used to obtain optimal constellation and a priori symbol
probabilities. The blocks for probabilistic shaping, geometric shaping, and demapper are
built using dense neural networks.

information (GMI) [35]. The optimized constellation demonstrates gains in terms of GMI
and transmission distance with respect to both PM-32QAM and PM-64QAM, which are 10
and 12 bits/symbol constellations, respectively.

10.2 End-to-end System and Performance Metric
The GS and PS optical fiber system considered in this paper is shown in Fig. 7.1 (a), where the
input bits are associated with a transmitted symbols drawn from a certain symbol distribution.
These symbols can use a different GS scheme for each transmission case. For example, reg-
ular QAM formats or deep learning optimized constellations can be used in the transmission.
These symbols are upsampled at 16 samples per symbol and pulse-shaped by a root-raised
cosine filter with 0.01 roll-off. The resulting filtered waveform is scaled to achieve a given
launch power and propagated in the fiber. The fiber is modeled by the Manakov equation for
dual polarization [38]

∂A(t, z)

∂z
= −jβ2

2

∂2A(t, z)

∂t2
+ j

8

9
γe−αz ‖A(t, z)‖2 A(t, z), (10.1)

where A(t, z) is the dual-polarization transmitted signal, β2 is the group-velocity disper-
sion parameter, γ is the nonlinear Kerr coefficient and α the attenuation coefficient. For
the simulations carried on this paper, we transmitted 5 channels, each of them at 50 Gbaud
and channel spacing of 51.5 GHz. We have chosen a small difference between symbol rate
and channel spacing in order to obtain high spectral efficiency. We considered β2 = −21.67
ps2/km, γ = 1.2 1/W/km, and α = 0.2 dB/km. The transmission is performed overNS spans
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of 80 km each, where an EDFA with noise figure of 5 dB is used at the end of each span.
After propagation, the receiver applies chromatic dispersion compensation, matched filter,
and sampling to the received signal, resulting in the received symbols. The received symbols
are given to a demapper, which estimates the transmitted bits. In the system of Fig. 7.1 (a),
we compare the different modulation formats in terms of the generalized mutual information
(GMI) [35]. The equation for the GMI was obtained by adapting [35, Eq. (36)] for different
a priori probabilities and 4D formats.

Fig. 7.1 (b) shows the autoencoder system used to optimize the constellation geometry
and symbol probabilities. The joint optimization of PS and GS follows the same idea de-
scribed in [36]. The optimization system has the same fiber link as the transmission system
described for Fig. 7.1 (a). The symbol probabilities are obtained from an ANN, whose in-
put are one-hot vectors (OHVs) representing each possible symbol. The ANN output is the
logits of the respective symbol probability [p1, p2, · · · , pM ] and each of the five channels has
its respective ANN. After obtaining all symbol probabilities, a distribution sampling based
on the straight-through Gumbel-Softmax estimator [54] outputs OHVs sampled according to
the previously obtained symbol probabilities. These OHVs are the input of another ANN,
labeled as Geometric Shaping in Fig. 7.1 (b). For each possible OHV, this ANN outputs a
transmitted 4D symbol represented by [rX, iX, rY, iY], where rX and iX are the in-phase and
quadrature components of the X polarization, and rY and iY are the respective components
of the Y polarization. Each of the five channels has its respective ANN for the 4D symbol
mapping. The transmitted symbols are pulse-shaped by the same filter as in Fig. 7.1 (a) and
the transmitted power for each channel is individually learned. For the training procedure, we
used the SSFM with a fixed number of spans NS = 50. The received signal is processed by
the DSP, resulting in the received symbols y = [r̃X, ĩX, r̃Y, ĩY]. These symbols are the input
of a set of ANNs, labeled as Demapper, where each of them estimates the bit probabilities
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p(bi = 1|y) for a specific bit i. Each channel has its own set of Demapper ANNs. This bit
probability estimation is similar to the procedure described in [13], in which p(bi = 1|y) is
used to estimate the GMI via [13, Eq. (2)]

GMI ≈ H(X) +
1

K

K∑

k=1

m∑

i=1

hb(bi,k, ri,k), (10.2)

whereH(X) is the entropy of the random vector X of the transmitted symbols, bi,k is the i-th
bit of the k-th transmitted symbol, ri,k is the estimated probability p(bi,k = 1|yk) given the
received symbol yk, m is the number of bits per symbol, and K is the number of transmitted
symbols. In (10.2), we use the function hb given by

hb(bi,k, ri,k) = bi,k log(ri,k) + (1− bi,k) log(1− ri,k). (10.3)

The GMI estimation in (10.2) is different from the one used in [35, Eq. (36)], for example.
Computing the expression in [35, Eq. (36)] for 4D modulation formats with 10 bits/symbol is
more computational demanding than (10.2), which is why we used (10.2) for the optimization
process. On the other hand, since (10.2) demands an ANN to compute the bit probabilities,
the adaptation of [35, Eq. (36)] for different a priori probabilities is used to compare the
performance of the different modulation formats.

In our system, the geometric shaping ANN has 3 layers with ReLU activation and a fi-
nal layer with linear activation, all densely connected and with 256 nodes. The probabilistic
shaping ANN has a similar structure, but with 2 layers with ReLU activation instead of 3,
and also an output layer with linear activation function. We use a linear activation function
for the output layer since first we obtain the logits and then the symbol probabilities. The m
demapper ANNs are composed by 4 densely connected layers with 256 nodes each, where the
first three activation functions are ReLU and the last one is a sigmoid, since their outputs are
bit probabilities. We sum the GMI estimation of each channel and use the result as the loss
function for the system. The training was performed using an ADAM optimizer as in [155]
with learning rate 0.0005, and exponential decays for first- and second-order moments given
by 0.9 and 0.999, respectively. The batch size was 2 and the number of symbols for each
channel per mini-batch was 213. The simulations were run in single precision for approxi-
mately 300000 optimization iterations. The low batch size, number of symbols per channel,
and the choice of single precision was due to memory limitations in the simulation.

We used two different systems, one for transmission and one for optimization. This is
to emphasize that the ANNs present in the optimization are only used to obtain the symbol
probabilities and constellation points. Therefore, the system complexity is the same as a
standard 4D transmission1.

1The demapper, which could be a burden for 4D modulation formats, could be implemented with a computation-
ally efficient ANN [32]. However, the tested transmission system was simulated without an ANN.
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Figure 10.3: GMI results versus input power (left) and net rates versus distance (right).

10.3 Results

Fig. 10.2 shows the normalized constellations in X and Y polarizations obtained via the au-
toencoder structure of Fig. 7.1 (b). The illustrated constellation is respective to one of the
outer channels. Although these constellations suggest symmetries in each polarization, these
patterns were all learned by the system without any constraint applied. Interestingly, the
probabilities for the learned constellations of all channels converged to uniform probabilities.
This uniform distribution might indicate that the geometry of the constellation is more impor-
tant than its probability distribution at optimum launch power for this relatively large number
of constellation points in 4D. Fig. 10.2 also depicts the energy of each symbol for the learned
constellation and for PM-32QAM, which also has 10 bits/4D-symbol. As shown in Fig. 10.2,
the symbols have a wide energy variation, indicating that an energy constrain might not be
necessary when optimizing for the nonlinear optical channel. The learned constellation is not
polarization-multiplexed as in the case of PM-32QAM. The energy of two specific symbols
(A and B) is also highlighted.

Fig. 10.3 depicts the average GMI over the 5 channels for the optimized constellation and
traditional QAM constellations. For these results, all channels were propagated with same
launch power since using the different learned launch powers per channel by the autoencoder
did not provide additional gains. The left part of Fig. 10.3 shows the GMI versus distance at
4000 km (NS = 50 spans). At this distance, the proposed constellation achieves an average
of approximately 400 Gbits/symbol or 8 bits/symbol, which yields a spectral efficiency of
approximately 7.76 bits/s/Hz. The proposed constellation also outperforms PM-32QAM by
0.3 bits/symbol at optimum launch power. In addition, this constellation shows better perfor-
mance than PM-32QAM in the linear regime. The performance of the optimized constellation
is close to the performance of PM-32QAM for NS = 44 spans (3520 km), which indicates a
13.6% reach increase.

Fig. 10.3 (right) shows the net rate per channel versus distance for the optimized constel-
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lation, PM-32QAM, PM-64QAM, and PM-PS64QAM. The latter modulation format corre-
sponds to probabilistic-shaped PM-64QAM using a Maxwell–Boltzmann distribution. These
results show that the optimized constellation outperforms both PM-16QAM and PM-32QAM
for all the displayed distances, and outperforms PM-64QAM for distances higher than 3500
km. Between 4000 and 4800 km, the forward error correction (FEC) overhead (OH) to ob-
tain the data rate given by the optimized constellation is between 20% and 25%, while for
PM-64QAM, a FEC OH between 32% and 37% is necessary to obtain similar data rates. At
6000 km, PM-64QAM can achieve approximately 334 Gbits/symbol with a respective FEC
OH of 44%. For the same net rate, the optimized constellation has a reach increase of ap-
proximately 520 km (8.7%) with respect to PM-64QAM and 340 km (5.5%) with respect
to PM-PS64QAM, while demanding a FEC OH of 33%. The increased distance indicates a
better nonlinear tolerance for the optimized constellation, while also keeping a lower FEC
complexity than PM-64QAM.

Other 4D modulation formats can be found on the literature, for example in [160]. How-
ever , as reported in [161], these constellations perform suboptimally in terms of GMI when
compared to PM-MQAM formats with the same number of bits/symbol. In addition, finding
a binary labeling for those 4D constellations is challenging [161].

10.4 Conclusions
We have presented a 4D 10 bits/symbol modulation format which outperforms standard PM-
32QAM and PM-64QAM at distances greater than 3500 km. The proposed constellation
was obtained via an autoencoder structure, where the split-step Fourier method was used as
the channel model. The gains were mainly driven by geometric shaping, since the symbol
probabilities converged to a uniform distribution. The resulting symbols had a wide en-
ergy variation, contradicting forced constant energy approaches used in the literature. Future
works include developing 4D modulation formats with even more than 10 bits/symbol and to
include additional fiber impairments.
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In this thesis, we studied analytical models for fiber propagation and how machine learn-
ing can be used in some optical system applications. The goal of the study was to answer
research questions related to the modeling of the nonlinear fiber propagation and to the opti-
mization of receivers and constellation geometry.

The first research question was

RQ-1 How to obtain an analytical fiber model that is accurate in the very high
nonlinear regime without increasing the perturbation order of RP on the
Kerr coefficient?

This research question was answered in Chapters 5 and 6, which represent papers [15]
and [16], respectively. In these papers, RP on β2 was proposed for the modeling of
fiber propagation on the highly-nonlinear regime. The performance of the model was
analyzed using the NSD metric, in which the model waveform is compared with the
SSFM output waveform.

When deriving RP on β2, the zero-th order solution resulted in the NLPN model, which
consists of the NLSE solution when only nonlinear effect is considered. This term
allows RP on β2 to maintain its accuracy almost constant until high input powers. The
dispersion effect is only considered in the first order term, in which the interaction of
both linear and nonlinear effects is modeled. However, the amount of accumulated
dispersion that RP on β2 can accurately model is limited. When increasing the fiber
length or signal bandwidth, the model starts to significantly decrease its accuracy.

The main conclusions of these works are

– RP on β2 is a first-order model capable of modeling the highly nonlinear regime;

– This model also requires low accumulated dispersion.

RQ-2 How to improve the accuracy of the proposed model to tolerate more accu-
mulated dispersion and higher input powers?

This research question was answered in Chapters 7 and 8, which represent papers [17]
and [18], respectively. In these papers, instead of applying RP theory, we used the
FLP approach on the β2 coefficient, which consists of applying LP on the frequency
domain. In RP models, the solution of the NLSE is expressed as a power series of a
certain coefficient. For the LP and FLP methods, the power series is considered inside
an exponential function. The terms of this series are functions of the RP terms.

FLP on β2 showed more tolerance to accumulated dispersion and nonlinear effects
than RP on β2. The performance of FLP on β2 was analyzed in a PON system and
the proposed model outperformed RP, LP, and ERP on γ models when considering a
0.1% NSD threshold. The proposed model was also used to heuristically generate de-
cision regions. These regions were obtained by approximating the probability density
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function of the received symbols when the channel was modeled by FLP on β2. The
performance of these decision regions was analyzed in terms of BER and AIR. From
the compared models, the results for FLP on β2 in this last analysis were the closest to
the SSFM results.

The main conclusions of these works are

– FLP on β2 has higher dispersion and nonlinear tolerance than RP on β2;

– FLP on β2 is also accurate when analyzing the performance in the discrete-time
domain.

RQ-3 How does LDBP perform in experiments, where other sources of impair-
ments are present?

This research question was answered in Chapter 9, which consists of paper [19]. In
[19], LDBP managed to achieve a slightly better performance than DBP. The perfor-
mance metric was the SNR and the system consisted of a single channel transmitted
over multiple spans.

In simulation results, DBP is capable of increasing its accuracy as the number of steps
per spans increase. However, when used with experimental data, the DBP performance
saturated at 3 steps per spans. This behavior might be justified by the presence of other
effects present in the experimental setup, such as transceiver noise. The performance
of LDBP also saturated slightly above DBP’s performance. Even for LDBP, increasing
the number of steps per span or the number of filter taps did not result in additional
gains. Although the performance of LDBP saturated, it was still able to achieve 2.1
dB gain in SNR over EDC by using only 445 filter taps. Additional increases in SNR
might still be possible if the compensation of other effects, such as PMD, are included
in the LDBP structure.

The main conclusions of this work are

– LDBP can provide gains over EDC which are comparable to DBP;

– These gains can be achieved using a low number of filter taps;

– Experimental effects not modeled in LDBP might saturate its performance.

RQ-4 Which are the best 4D symbol constellations and a priori probabilities when
transmitting a signal in the nonlinear fiber?

This research question was investigated in Chapter 10, which consists of paper [20].
In [20], a system based on machine learning was built to optimize the symbol constel-
lations and a-priori probabilities. The results showed gains over regular QAM constel-
lations.
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The machine learning system was built using an autoencoder structure. The system
generated its own input symbols with respective a priori probabilities. These sym-
bols were compared with the received ones after fiber propagation. Each transmitted
channel had its own constellation and a priori probabilities. The optimum a priori
probabilities converged to a uniform distribution, which might indicate that GS only is
sufficient at optimum launch power. The optimum constellation showed a large varia-
tion in terms of symbol energy, which contradicted some results in the literature where
the symbol energy is required to be constant.

The main conclusions of this work are

– The proposed autoencoder system was able to obtain state-of-the-art constella-
tions which performed better than standard QAM constellations;

– Since the optimization is machine learning based, we cannot guarantee this is the
optimal constellation for the system.
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Appendix: Derivation of RP
models

A.1 Proof of Theorem 1 from Paper B and Sec. 3.4.1
Proof. Substituting (6.14) in (6.3) yields

∞∑

k=0

γk
∂Ak(t, z)

∂z
+
jβ2

2

∞∑

k=0

γk
∂2Ak(t, z)

∂t2
=

jγe−αz
∞∑

m=0

∞∑

n=0

∞∑

p=0

γm+n+pAm(t, z)A∗n(t, z)Ap(t, z). (A.1)

Every term in (A.1) is multiplied by a term γl with l = 0, 1, . . .. We will solve (A.1) by
equating the terms with same power of γ for increasing values of l.

For γ0 (l = 0), we obtain

∂A0(t, z)

∂z
= −jβ2

2

∂2A0(t, z)

∂t2
, (A.2)

whose solution (with initial condition A0(t, 0) = A(t, 0)) is

A0(t, z) = Dz{A(·, 0)}(t). (A.3)

For γ1 (l = 1), we obtain

∂A1(t, z)

∂z
= −jβ2

2

∂2A1(t, z)

∂t2
+ je−αzS(t, z), (A.4)
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where
S(t, z) = |A0(t, z)|2A0(t, z). (A.5)

We solve (A.4) in the Fourier domain as

∂Ã1(ω, z)

∂z
=
jβ2ω

2

2
Ã1(ω, z) + je−αzS̃(ω, z). (A.6)

Grouping the terms related to A1, (A.6) is expressed as

∂
[
Ã1(ω, z)e−

jβ2
2 ω2z

]

∂z
= je−αze−

jβ2
2 ω2zS̃(ω, z). (A.7)

By using the initial condition A1(t, 0) = 0, (A.7) is solved as

Ã1(ω, z) = j

∫ z

0

e−αue
jβ2
2 ω2(z−u)S̃(ω, u)du. (A.8)

The last step in the proof is to take the inverse Fourier transform of (A.8). To do this, we
use the fact that the operator Dz in (6.10) can be represented in the frequency domain as

D̃z{f̃}(ω) = f̃(ω)e
jβ2
2 ω2z. (A.9)

Replacing f̃ by S̃(·, u) in (A.9) gives

D̃z{S̃(·, u)}(ω) = S̃(ω, u)e
jβ2
2 ω2z. (A.10)

Now, instead of applying the operator D̃z at distance z, we use it at distance z− u, obtaining

D̃z−u{S̃(·, u)}(ω) = S̃(ω, u)e
jβ2
2 ω2(z−u). (A.11)

The time-frequency dual representation of the operator Dz is

F−1{D̃z−u{f̃}}(t) = Dz−u{f}(t), (A.12)

and thus, the inverse Fourier transform of the left-hand side of (A.11) is

F−1{D̃z−u{S̃(·, u)}}(t) = Dz−u {S(·, u)} (t). (A.13)

Using (A.13) together with (A.8), we have

A1(t, z) = F−1{Ã1(·, z)}(t)

= F−1

{
j

∫ z

0

e−αue
jβ2
2 (·)2(z−u)S̃(·, u)du

}
(t)

= j

∫ z

0

e−αuF−1
{

e
jβ2
2 (·)2(z−u)S̃(·, u)

}
(t)du

= j

∫ z

0

e−αuF−1
{
D̃z−u{S̃(·, u)}

}
(t)du

= j

∫ z

0

e−αuDz−u
{
|A0(·, u)|2A0(·, u)

}
(t)du,

(A.14)
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where in the last step we used (A.5).

A.2 Proof of Theorem 2 from Paper B and Sec. 3.4.4
Proof. To obtain A0 and A1 in (6.20) and (6.21), we substitute (6.18) in (6.3), resulting in

∞∑

k=0

βk2
∂Ak(t, z)

∂z
+
jβ2

2

∞∑

k=0

βk2
∂2Ak(t, z)

∂t2
=

jγe−αz
∞∑

m=0

∞∑

n=0

∞∑

p=0

βm+n+p
2 Am(t, z)A∗n(t, z)Ap(t, z).

(A.15)

We now follow a procedure analogous to that in Sec. A.1 of the Appendix. First, we
equate the terms that depend on the 0-th power of β2. This gives

∂A0(t, z)

∂z
= jγe−αz|A0(t, z)|2A0(t, z), (A.16)

which has the same solution as the NLPN model in (6.12). The solution of (A.16) is (6.20),
with G given by (6.13) and using the input field as initial condition, i.e., A0(t, 0) = A(t, 0).

The next step is to obtain A1 by equating the terms that depend on β1
2 . This gives

∂A1(t, z)

∂z
+
j

2

∂2A0(t, z)

∂t2
=

jγe−αz(2|A0(t, z)|2A1(t, z) +A∗1(t, z)A2
0(t, z)). (A.17)

We now claim that (A.17) with the boundary condition A1(t, 0) = 0 is solved by

A1(t, z) = B(t, z)ejγ|A(t,0)|2G(z), (A.18)

where

B(t, z) = −
∫ z

0

F (t, u)du

− 2jγA(t, 0)<
{
A∗(t, 0)

∫ z

0

(G(z)−G(u))F (t, u)du
}
,

(A.19)

F (t, z) =
j

2

∂2A0(t, z)

∂t2
e−jγ|A(t,0)|2G(z). (A.20)

To prove that (A.18)–(A.20) solve (A.17), let

L(t, z) = ejγ|A(t,0)|2G(z). (A.21)
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Then, we can rewrite the first term in (A.17) using (A.18), (A.21) and (A.19) as

T1 =
∂A1(t, z)

∂z
= B(t, z)

∂L(t, z)

∂z
+ L(t, z)

∂B(t, z)

∂z

= jγe−αz|A(t, 0)|2B(t, z)L(t, z)− L(t, z)F (t, z)

− 2jγe−αzA(t, 0)L(t, z)<
{
A∗(t, 0)

∫ z

0

F (t, u)du
}
. (A.22)

The second term in (A.17) follows from (A.20) and (A.21) as

T2 =
j

2

∂2A0(t, z)

∂t2
= L(t, z)F (t, z). (A.23)

For the other two remaining terms, (6.21), (A.18), and (A.21) yield

T3 = 2jγ|A0(t, z)|2A1(t, z)e−αz

= 2jγ|A(t, 0)|2B(t, z)L(t, z)e−αz, (A.24)

T4 = jγA2
0(t, z)A∗1(t, z)e−αz

= jγA2(t, 0)L(t, z)B∗(t, z)e−αz. (A.25)

Now, combining the four terms to form (A.17), we obtain

−T1 − T2 + T3 + T4

= jγe−αz|A(t, 0)|2B(t, z)L(t, z)

+ 2jγe−αzA(t, 0)L(t, z)<
{
A∗(t, 0)

∫ z

0

F (t, u)du
}

+ jγA2(t, 0)L(t, z)B∗(t, z)e−αz

= jγe−αzL(t, z)A(t, 0)

[
2<
{
A∗(t, 0)

∫ z

0

F (t, u)du
}

+A∗(t, 0)B(t, z) +A(t, 0)B∗(t, z)

]

= jγe−αzL(t, z)A(t, 0)

·
[
2<
{
A∗(t, 0)

(∫ z

0

F (t, u)du+B(t, z)

)}]

= 0, (A.26)

where the last equation comes from the fact that A∗(t, 0)(
∫ z

0
F (t, u)du + B(t, z)) is purely

imaginary, which follows from using the definition of B in (A.19). This shows that (A.18)–
(A.21) are a solution of (A.17).
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Now, we will show that the integrals in (A.19) can be evaluated analytically. By substi-
tuting A0 from (6.20) in the expression for F in (A.20), we obtain

F (t, z) =
j

2

∂2A(t, 0)

∂t2
−G(z)

[
γ

2
A(t, 0)

∂2|A(t, 0)|2
∂t2

+ γ
∂A(t, 0)

∂t

∂|A(t, 0)|2
∂t

]

−G2(z)

[
jγ2

2
A(t, 0)

(
∂|A(t, 0)|2

∂t

)2
]

= M(t)−G(z)R(t)−G2(z)P (t), (A.27)

where M , R and P only depend on A(·, 0) and are respectively given by (6.24), (6.25), and
(6.26). Now, by denoting

G1(z) =

∫ z

0

G(u)du =
αz + e−αz − 1

α2
, (A.28)

G2(z) =

∫ z

0

G2(u)du =
2αz + 4e−αz − e−2αz − 3

2α3
, (A.29)

G3(z) =

∫ z

0

G3(u)du

=
6αz + 18e−αz − 9e−2αz + 2e−3αz − 11

6α4
, (A.30)

the function B in (A.19) can be written as

B(t, z) = −M(t)z +G1(z)R(t) +G2(z)P (t)

− 2jγA(t, 0)<{A∗(t, 0)V (t, z)}, (A.31)
V (t, z) = G(z) [M(t)z −G1(z)R(t)−G2(z)P (t)]

−G1(z)M(t) +G2(z)R(t) +G3(z)P (t), (A.32)

which completes the proof.

A.3 Proof of Theorem 3 from Paper B
Proof. For α = 0, the effective length G in (6.13) degenerates to

lim
α→0

G(z) = z (A.33)



A

148 Appendix

and similarly G1, G2, and G3 are given by

G1(z) =
z2

2
, G2(z) =

z3

3
, G3(z) =

z4

4
. (A.34)

Therefore, A0(t, z) in (6.20) and A1(t, z) in (6.21) are given by

A0(t, z) = A(t, 0)ejγ|A(t,0)|2z (A.35)

A1(t, z) = B(t, z)ejγ|A(t,0)|2z. (A.36)

The proof is completed by using (A.33) and (A.34) in (6.21) and (6.22), which yields (6.32).
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