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On data-driven control: informativity of noisy
input-output data with cross-covariance bounds

Tom R.V. Steentjes, Mircea Lazar, Paul M.J. Van den Hof

Abstract— In this paper we develop new data informativ-
ity based controller synthesis methods that extend existing
frameworks in two relevant directions: a more general noise
characterization in terms of cross-covariance bounds and
informativity conditions for control based on input-output
data. Previous works have derived necessary and suffi-
cient informativity conditions for noisy input-state data with
quadratic noise bounds via an S-procedure. Although these
bounds do not capture cross-covariance bounds in general,
we show that the S-procedure is still applicable for obtain-
ing non-conservative conditions on the data. Informativity-
conditions for stability, H∞ and H2 control are developed,
which are sufficient for input-output data and also neces-
sary for input-state data. Simulation experiments illustrate
that cross-covariance bounds can be less conservative for
informativity, compared to norm bounds typically employed
in the literature.

Index Terms— Data-driven control, LMIs, linear systems

I. INTRODUCTION

WHEN mathematical models of dynamical systems are
not available, data plays an essential role in the process

of learning system characteristics. Indeed, data can contain
information about the system from which a model of the
system can be derived or a controller can be learned, either
from a data-based model or directly from the data. A key
problem for data-driven control is to determine whether a set
of data collected from a system contains enough information
to design a controller, independent of the methodology.

An indirect approach for controller design from data con-
sists of two steps: obtaining a model from data through system
identification [1] and subsequently designing a controller via a
model-based method. In the field of identification for control,
the problem of determining a suitable model for controller
design is considered [2], aiming at minimizing performance
degradation due to model mismatching. If the data used for
obtaining a model are sufficiently rich for identification, is
determined by a property called informativity.

Even if data are not informative for identification, data
can still be informative for controller design. Necessary and
sufficient conditions for informativity of data for control were
developed in [3] for noiseless input-state data. These results
were extended in [4] for noisy input-state data with prior
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knowledge on the noise in the form of quadratic bounds, via a
matrix variant of the S-procedure. Quadratic noise bounds play
a key role in data-driven controller design [4], [5], [6], dis-
tributed controller design [7] and dissipativity analysis [8], [9]
from data, and represent, for example, magnitude, energy and
variance bounds on the noise.

In this paper, we consider the problem of determining
informativity of input-output and input-state data for control
with prior knowledge of the noise in the form of a sample
cross-covariance type bound with respect to a user-chosen
instrumental signal. Bounds on the sample cross-covariance
were introduced in [10] as an alternative to magnitude bounds
in parameter bounding identification, given its overly conser-
vative noise characterization, cf. [11] for a comparison of in-
stantaneous and (quadratic) energy type bounds for data-driven
control. Our approach to data-driven control extends existing
frameworks in two relevant directions: a more general noise
characterization in terms of cross-covariance bounds with
practical relevance and informativity conditions for control
based on input-output data. We provide sufficient conditions
for informativity for stabilization, H∞ and H2 control, which
are also necessary for input-state data.

II. INPUT-OUTPUT DATA: CROSS-COVARIANCE BOUNDS

Consider a class of linear systems described by

A(q−1)y(t) = B(q−1)u(t) + e(t), (1)

with A(ξ) ∈ Rp×p[ξ] and B(ξ) ∈ Rp×m[ξ] polynomial
matrices, given by A(ξ) = I + A1ξ + A2ξ

2 + · · · + Anξ
l

and B(ξ) = B0 + B1ξ + B2ξ
2 + · · · + Blξ

l and q−1 is
the delay operator, i.e., q−1x(t) = x(t − 1). By defining
ζ(t) := col(y(t − 1), . . . , y(t − l), u(t − 1), . . . , u(t − l)),
Ā := row(−A1, . . . ,−Al) and B̄ := row(B1, . . . , Bl), we
can write (1) equivalently as

y(t) = B0u(t) + e(t) +
[
Ā B̄

]
ζ(t), (2)

Hence, with ζ ∈ Rn as a state, a state-space representation is

ζ(t+ 1)=


Ā B̄
I 0 0 0
0 0 0 0
0 0 I 0


︸ ︷︷ ︸

=:Az

ζ(t) +


B0

0
I
0


︸ ︷︷ ︸

=:Bz

u(t) +


I
0
0
0


︸ ︷︷ ︸

=:Hz

e(t),

y(t) =
[
Ā B̄

]
ζ(t) +B0u(t) + e(t), (3)

Notice that (3) is a non-minimal representation of or-
der n = (p + m)l. Defining the data matrices Z− :=



[
ζ(0) · · · ζ(N − 1)

]
, Y− :=

[
y(0) · · · y(N − 1)

]
and

U−, E− accordingly, we obtain the data equation

Y− =
[
Ā B̄

]
Z− +B0U− + E−, (4)

where Ā, B̄, B0 are unknown system matrices. We consider
the noise not to be measured, i.e., E− is unknown, while prior
knowledge on the cross-covariance of the noise with respect
to an instrumental variable is available.

A. Cross-covariance noise bounds
Consider the sample cross-covariance with respect to

the noise e ∈ Rp and a variable r ∈ RM , given by
1√
N

∑N−1
t=0 e(t)r(t)> = 1√

N
E−R

>
−. The variable r is instru-

mental and can be specified by the user (as discussed at the end
of this subsection), i.e., it is a given variable in the upcoming
analysis. We assume prior knowledge on the noise of the form

1

N
E−R

>
−R−E

>
− � Hu, (5)

where Hu is an upper-bound on the squared sample cross-
covariance matrix 1√

N
E−R

>
−. In a generalized form, we write[

I
R−E

>
−

]> [
Q11 Q12

Q>12 Q22

] [
I

R−E
>
−

]
� 0, (6)

with Q22 ≺ 0. For Q11 = NHu, Q12 = 0 and Q22 = −I ,
the bound (5) is recovered. Note that (6) can be rewritten as
the bound in [4, Assumption 1] with Φ22 = R>−Q22R−, but
in general only Φ22 � 0 holds, while Φ22 ≺ 0 is assumed
in [4]. This means that the data informativity results of [4]
cannot be used to establish data informativity for general
cross-covariance noise bounds. However, the matrix S-lemma
in [4, Theorem 13] can still be exploited to obtain necessary
conditions for informativity of input-state data with cross-
covariance bounds, as shown in Proposition 1 of this paper.

In the state-space representation (3), the state-space matrices
Az and Bz contain unknown parameters Ā, B̄ and B0. Write

Az =


Ā B̄
0 0
0 0
0 0


︸ ︷︷ ︸

=:Λe

+


0 0 0 0

Ip(l−1) 0 0 0
0 0 0 0
0 0 Im(l−1) 0


︸ ︷︷ ︸

=:J1

(7)

and Bz =


B0

0
0
0


︸ ︷︷ ︸

=:Be

+


0
0
Im
0


︸ ︷︷ ︸

=:J2

, (8)

so that Λe and Be are unknown parameter matrices, concate-
nated with zero rows, and J1 and J2 are binary matrices. The
set of all pairs (Λe, Be) that are compatible with the data is

ΣRQ(U,Y ) :={
[
Ā B̄
0 0

]
,
[
B0
0

]
) | ∃E− such that (6) and (4) hold}.

Lemma 1 Let Qe :=
[
HzQ11H

>
z HzQ12

Q>12H
>
z Q22

]
and consider I

Λ>e
B>e

> I HzY−R
>
−

0 −Z−R>−
0 −U−R>−

Qe
I HzY−R

>
−

0 −Z−R>−
0 −U−R>−

>  I
Λ>e
B>e

 � 0.

(9)

It holds that ΣRQ(U,Y ) ⊆ {(Λe, Be) | (9) holds}. Moreover,
if R−[Z>− U>− ] has full column rank, then ΣRQ(U,Y ) =

{(Λe, Be) | (9) holds}.
Proof: The first statement follows from (4), (6), and the

definition of ΣRQ(U,Y ). Full-column rank of R−[Z>− U>− ] and (9)
imply that the last ml+p(l−1) rows of [Λe Be] = col(M1, 0)
are zero and E− := Y− −M1[Z>− U>− ] satisfies (6). Hence,
(Λe, Be) ∈ ΣRQ(U,Y ) so that ΣRQ(U,Y ) = {(Λe, Be) | (9) holds}.
We denote all (Az, Bz) that are compatible with the data by

Σ̄RQ(U,Y ) := {(Λe + J1, Be + J2) | (Λe, Be) ∈ ΣRQ(U,Y )}.

We have provided a parametrization of (a superset of)
ΣRQ(U,Y ) based on the data equation (4). One can equivalently
parametrize Σ̄RQ(U,Y ) on the basis of the state data equation
Z+ = AzZ− + BzU− + HzE−. This leads to an equal
set Σ̄RQ(U,Y ), but the ‘repeated’ data in the parametrization
contained in Z+ :=

[
ζ(1) · · · ζ(N)

]
, would render the

evaluation numerically sensitive. Design methods in [4], [6]
can yield a parametrization Σ̄RQ(U,Y ) based on this state data
equation, but with limited applicability to cross-covariance
bounds (6), i.e., only if the dimension of r satisfies M ≥ N .

Existing guidelines [10] recommend choosing an instru-
mental variable r that is correlated with the input u, but
uncorrelated with the noise e. Hence, this suggests the choice
of (filtered/delayed versions) of the input for r in an open-loop
case for data collection, and an external reference/dithering
signal for r in a closed-loop case. Moreover, Lemma 1
provides an additional guideline for the choice of r to reduce
conservatism in the case of input-output data, i.e., R−[Z>− U

>
− ]

has full column rank only if the number of instrumental
variables M satisfies M ≥ pl +m(l + 1).
B. Output-feedback control

Consider a (dynamic) output feedback controller described
by the difference equation of the form [5]

C(q−1)u(t) = D(q−1)y(t), (10)

with C(ξ) ∈ Rm×m[ξ] and D(ξ) ∈ Rm×p[ξ] polynomial
matrices given by C(ξ) = I + C1ξ + C2ξ

2 + · · ·+ Cnξ
l and

D(ξ) = D1ξ + D2ξ
2 + · · · + Dnξ

l. We define a state ζc for
(10) as ζc := col(u(t−1), . . . , u(t− l), y(t−1), . . . , y(t− l)),
yielding a state-space representation for the controller:

ζc(t+ 1) =


C̄ D̄
I 0 0 0
0 0 0 0
0 0 I 0

 ζc(t) +


0
0
I
0

 y(t), (11)

u(t) =
[
C̄ D̄

]
ζc(t),

with C̄ := row(−C1, . . . ,−Cl) and D̄ := row(D1, . . . , Dl).
It follows that ζc = [ 0 I

I 0 ] ζ, which implies that u(t) =[
C̄ D̄

]
ζc(t) =

[
D̄ C̄

]
ζ(t). Hence, the closed-loop system

described by (3) and (11) has a representation

ζ(t+ 1) =


Ā+B0D̄ B̄ +B0C̄
I 0 0 0

D̄ C̄
0 0 I 0


︸ ︷︷ ︸

=:Acl

ζ(t) +


I
0
0
0

 e(t).
(12)



With K :=
[
D̄ C̄

]
, the closed-loop system matrix Acl

satisfies Acl = Az + BzK. For some (Az, Bz) ∈ Σ̄RQ(U,Y ),
we say that the controller (10) stabilizes (1) if the closed-loop
system (12) is stable, i.e., if all eigenvalues of Az +BzK are
in the open unit disk, since this implies stability of the closed-
loop system (1) and (10). The notion of stabilization with
respect to the state-space representation (3) was introduced
in [5] for data-driven stabilization. We note that in the single-
input-single-output case, (Az, Bz) is controllable if and only
if A(ξ) and B(ξ) are coprime [5].

III. INFORMATIVITY FOR STABILIZATION

A. Informativity of input-output data
Definition 1 The data (U, Y ) are said to be informative for
quadratic stabilization by output-feedback controller (10) if
there exist a K and P � 0 so that

Σ̄RQ(U,Y ) ⊆ {(A,B) | (A+BK)P (A+BK)> − P ≺ 0}.

By (7)-(8), we find that the existence of K and P � 0 so that
(Az + BzK)P (Az + BzK)> − P ≺ 0, is equivalent to the
existence of K and P � 0 such that (13) holds true. Now, for
the data (U, Y ) to be informative for quadratic stabilization,
we require the existence of K and P � 0 so that (13) holds
for all (Λe, Be) ∈ ΣRQ(U,Y ). This is precisely a problem that
can be solved by the S-procedure; more specifically, by the
matrix-valued S-lemma [4].
Theorem 1 The data (U, Y ) are informative for quadratic
stabilization by output feedback controller (10) if there exist
L ∈ Rm×n, P � 0, α ≥ 0 and β > 0 so that (14) holds true.
Moreover, for L and P such that (14) is satisfied, Acl = Az +
BzK is stable for all (Az, Bz) ∈ Σ̄RQ(U,Y ) with K := LP−1.

Proof: Let L, P � 0, α ≥ 0 and β > 0 exist so that (14)
holds true and consider the matrix Π defined in (13). By the
Schur complement, (14) is equivalent to

Π− αΛ �
[
βI 0
0 0

]
, where K := LP−1 and

Λ :=

I HzY−R
>
−

0 −Z−R>−
0 −U−R>−

Qe
I HzY−R

>
−

0 −Z−R>−
0 −U−R>−

> .
Hence, (13) holds true for all (Λe, Be) ∈ ΣRQ(U,Y ), cf. [4,
Theorem 13]. This concludes the proof.

We remark that if there is a Z so that Z̄>ΛZ̄ � 0 with Z̄ :=
col(I, Z), called the generalized Slater condition [4], then (14)
is also a necessary condition for informativity of input-output
data for quadratic stabilization, if R−[Z>− U

>
− ] has full column

rank (Lemma 1). Unlike in the case of input-state data, which
will be discussed next, we note that the generalized Slater
condition can in general not hold true in the input-output case

if l ≥ 1, since the noise affects a subspace of the extended
state space, yielding a degenerate matrix Λ. The combination
of noisy and noiseless states in ζ suggests that necessity could
potentially be proven in general by a ‘fusion’ of the matrix
S-lemma and matrix Finsler’s lemma [12].

B. Informativity of input-state data
We will now consider a special case, where input-state data

is available instead of input output data. That is, we measure
a state y(t) = x(t) and the class of systems considered is

x(t+ 1) = Ax(t) +Bu(t) + e(t), (15)

with the corresponding data equation

X+ = AX− +BU− + E−. (16)

All systems that explain the data (U−, X) for some E−
satisfying the cross-covariance bound (6) are in the set

ΣRQ(U−,X) := {(A,B) | ∃E− such that (6) and (16) hold}.

By (16), the set of feasible systems is ΣRQ(U−,X) =

{(A,B) | (A,B) satisfies (17)}, where I
A>

B>

> I X+R
>
−

0 −X−R>−
0 −U−R>−

Q
I X+R

>
−

0 −X−R>−
0 −U−R>−

>
︸ ︷︷ ︸

=:ΛX

 I
A>

B>

 � 0.

(17)
Remark 1 Consider a specific selection of M = N instru-
mental variables defined by ri(t) := δ(t−i+1), i = 1, . . . , N ,
and δ : Z → {0, 1} is the unit impulse defined as δ(0) = 1
and δ(x) = 0 for x ∈ Z \ {0}. It follows that R− = I for
this choice of instrumental signals. Then, with the generalized
quadratic cross-covariance bound (6), we observe that for this
special choice R− = I , we recover the set of feasible systems
in [4], and, hence, the informativity conditions in [4].

Definition 2 The data (U−, X) are said to be informative
for quadratic stabilization by state feedback if there exist a
feedback gain K and P � 0 so that

ΣRQ(U−,X) ⊆ {(A,B) | (A+BK)P (A+BK)> − P ≺ 0}.

We will now provide a necessary and sufficient condition
for informativity of input-state data for quadratic stabilization,
given prior knowledge on the cross-covariance (6). Consider
the generalized Slater condition[

I
Z

]>
ΛX

[
I
Z

]
� 0. (18)

Proposition 1 Suppose that there exists a Z so that (18) holds
true. Then the data (U−, X) are informative for quadratic

 I
Λ>e
B>e

> P − (J1 + J2K)P (J1 + J2K)> −(J1 + J2K)P −(J1 + J2K)PK>

−P (J1 + J2K)> −P −PK>
−KP (J1 + J2K)> −KP −KPK>


︸ ︷︷ ︸

=:Π

 I
Λ>e
B>e

 � 0 (13)



stabilization if and only if there exist L ∈ Rm×n, P � 0, α ≥ 0
and β > 0 so that

P − βI 0 0 0
0 −P −L> 0
0 −L 0 L
0 0 L> P

− α [ΛX 0
0 0

]
� 0. (19)

Moreover, K is such that A + BK is stable for all (A,B) ∈
ΣRQ(U−,X) if K := LP−1 with L and P � 0 satisfying (19).

Proof: (⇐) This is proven by the same argument as in
the proof of Theorem 1. (⇒) Let the data be informative for
quadratic stabilization, i.e., there exist K and P � 0 so that,
with Π defined in (13) with J1 = 0, J2 = 0: I
A>

B>

>Π (?) � 0 for all (A,B) with

 I
A>

B>

>ΛX (?) � 0,

where ΛX =

[
ΛX11 ΛX12

ΛX21 ΛX22

]
:=

 I X+R
>
−

0 −X−R>−
0 −U−R>−

Q (?)>.

We will now show that ker ΛX22 ⊆ ΛX12, such that necessity
follows by the matrix S-lemma [4]. First, notice that ker ΛX22 =
kerR−

[
X>− U>−

]
. Now, take any x ∈ ker ΛX22. Then

R−
[
X>− U>−

]
x = 0. Clearly, we have that (X+R

>
−Q22 +

Q12)R−
[
X>− U>−

]
x = 0, which implies that x ∈ ker ΛX12.

Since x ∈ ker ΛX22 was chosen arbitrary, this shows that
ker ΛX22 ⊆ ΛX12. By ker ΛX22 ⊆ ΛX12 and (18), there exist α ≥ 0
and β > 0 so that, by [4, Theorem 13]:

Π− αΛX �
[
βI 0
0 0

]
,

which is equivalent to (19) for L := KP by the Schur
complement. This completes the proof.

IV. INCLUDING PERFORMANCE SPECIFICATIONS

We will now consider the problem of finding a con-
troller (10) for which the closed-loop system achieves an
H∞ or H2 performance bound from the input-output data
(U, Y ). Consider the performance output z, given by z(t) =
Czζ(t) + Dzu(t). For any pair (Az, Bz), the controller (10)
yields the closed loop system

ζ(t+ 1) = (Az +BzK)ζ(t) +Hze(t),

z(t) = (C +DK)ζ(t).

Hence, the transfer matrix from e to z is given by

T (z) := (Cz +DzK)(zI −Az −BzK)−1Hz,

for which the H∞ and H2 norm are denoted ‖T‖H∞ and
‖T‖H2 , respectively.

For given K, theH∞ norm of T is less than γ, ‖T‖H∞ < γ,
if and only if there exists X � 0 such that [13, p. 125]

X 0 A>KX C>K
0 γI H>z X 0

XAK XHz X 0
CK 0 0 γI

 � 0, (20)

where AK := Az +BzK and CK := Cz +DzK.

Definition 3 The data (U, Y ) are said to be informative for
common H∞ control by output-feedback controller (10) with
performance γ if there exist a K and X � 0 so that

Σ̄RQ(U,Y ) ⊆ {(Az, Bz) | (20) holds true}.

Theorem 2 The data (U, Y ) are informative for common H∞
control with performance γ if there exist L ∈ Rm×n, P � 0,
α ≥ 0 and β > 0 so that (21) holds true.

Proof: By a congruence transformation of (20) with
diag(P, I, P, I) with P := X−1 and the application of the
Schur complement (twice), the existence of K and X � 0 so
that (20) holds, is equivalent to the existence of P and L so
that P � 0 and

P − Vz (P − γ−1F>F )−1︸ ︷︷ ︸
=:S

V >z − γ−1HzH
>
z � 0 (22)

and P − γ−1F>F � 0, where Vz := AzP + BzL and F :=
CzP +DzL. We can now rewrite (22) as I

A>z
B>z

> P − γ−1HzH
>
z 0

0 −
[
P
L

]
S

[
P
L

]> I
A>z
B>z

 � 0,

which is equivalent to I
Λ>e
B>e

>ΠH∞
 I

Λ>e
B>e

 :=

 I
Λ>e
B>e

>[P − γ−1HzH
>
z 0

0 0

] I
Λ>e
B>e


−

 I
Λ>e
B>e

>J1P + J2L
P
L

S (?)>

 I
Λ>e
B>e

�0. (23)

Hence, the data (U, Y ) are informative for common H∞
control with performance γ if and only if there exist P � 0
and L such that P − γ−1F>F � 0 and (23) holds for all
(Λe, Be) ∈ ΣRQ(U,Y ). By assumption, there exist P � 0, L,
α ≥ 0 and β > 0 such that (21) holds true. By the Schur
complement, (21) is equivalent to ΠH∞−αΛ �

[
βI 0
0 0

]
, which

implies that (23) holds for all (Λe, Be) ∈ ΣRQ(U,Y ).
The conditions (21) are linear with respect to P , L, α and

β. By a straightforward additional application of the Schur
complement, (21) can also be made linear with respect to γ.


P − βI −J1P − J2L 0 J1P + J2L

−PJ>1 − L>J>2 −P −L> 0
0 −L 0 L

PJ>1 + L>J>2 0 L> P

− α

I HzY−R

>
−

0 −Z−R>−
0 −U−R>−
0 0

Qe

I HzY−R

>
−

0 −Z−R>−
0 −U−R>−
0 0


>

� 0 (14)



For a given controller parameter matrix K, the H2 norm
of T is less than γ, ‖T‖H2 < γ, if and only if there exists
X � 0 such that [14, Proposition II.1], cf. [4]

traceH>z XHz < γ2 and X�A>KXAK + C>KCK . (24)

Definition 4 The data (U, Y ) are said to be informative for
common H2 control by output-feedback controller (10) with
performance γ if there exist a K and X � 0 so that Σ̄RQ(U,Y ) ⊆
{(Az, Bz) | (24) holds true}.

Theorem 3 The data (U, Y ) are informative for common H2

control with performance γ if there exist L ∈ Rm×n, symmet-
ric Z, P � 0, α ≥ 0 and β > 0 so that traceZ < γ2, (25)
holds true,[

P F>

F I

]
� 0 and

[
Z H>z
Hz P

]
� 0. (26)

Proof: By a congruence transformation of (24) with P :=
X−1 and the Schur complement (in both directions), it follows
that (24) is equivalent to P − F>F � 0,

P − Vz(P − F>F )−1V >z � 0 (27)

and traceH>z P
−1Hz < γ2. Now, we can rewrite (27) as I

A>z
B>z

> P 0

0 −
[
P
L

]
(P − F>F )−1

[
P
L

]> I
A>z
B>z

 � 0,

which, by (7)-(8), holds if and and only if I
Λ>e
B>e

>J1P + J2L
P
L

S(?)>

 I
Λ>e
B>e

≺
 I

Λ>e
B>e

>[P 0
0 0

] I
Λ>e
B>e

.
(28)

There exist P � 0, L so that (28), P − F>F � 0 and
traceH>z P

−1Hz < γ2 if and only if there exist P � 0,
L, Z so that (28), P − F>F � 0, Z − H>z P

−1Hz � 0
and traceZ < γ2. Indeed, for Z := H>z P

−1Hz we infer
traceZ < γ2. Sufficiency follows from H>z P

−1Hz � Z ⇒
traceH>z P

−1Hz ≤ traceZ. Hence, the data (U, Y ) are
informative for common H2 control with performance γ if
and only if there exist P � 0, L, Z so that Z−H>z P−1Hz �
0, traceZ < γ2, P − F>F � 0 and (28) hold for all
(Λe, Be) ∈ ΣRQ(U,Y ). By assumption, traceZ < γ2 is satisfied,
P −F>F � 0, Z−H>z P−1Hz � 0 follow by (26) and via an
analogue argument as in the proof of Theorem 2, (28) holds
for all (Λe, Be) ∈ ΣRQ(U,Y ) by (25).

Remark 2 The conditions in Theorem 2/3 are also necessary
for informativity of input-state data for H∞/H2 control, where
Hz = I , J1 = 0, J2 = 0 and Y− and Z− are replaced by X+

and X−, if (18) holds for some Z.

V. NUMERICAL EXAMPLE

Consider the system (15) with true system matrices

A0 =

−0.2414 −0.8649 0.6277
0.3192 −0.0301 1.0933
0.3129 −0.1649 1.1093

 , B0 =

1 0
0 2
1 1

 .
and consider a performance output z(t) = [0 0 1]x(t). The
objective is to determine if input state data collected from the
system are informative for common H2 control. We consider
a noise signal e(t) with a uniform distribution, taking values
from the closed ball {e ∈ R3 | ‖e‖22 ≤ 0.35}. First, we
consider this noise bound to be known, represented by the
noise model E− ∈ {E− |E−E>− � 0.35NI} as described
in [4, Section VI.A]. This can be represented by the noise
model (5) with R− = I , cf. [4, Equation (5)]. We consider the
informativity analysis for various data lengths N ranging from
N = 2 to N = 250. For each data length N , we generate 50
data sets. Given the bound on E−, we can verify informativity
for common H2 control via Theorem 17 in [4]. We find that
the generalized Slater condition [4, Equation (16)], holds true
for all data sets, thus the data are informative for common H2

control with performance γ if and only if the condition [4,
Equation (H2)] is feasible. The relative number of data sets
for which this necessary and sufficient condition is feasible for
some γ > 0 is visualized in Figure 1a for each data length N ,
in red. Naturally, if the condition is not feasible for any γ > 0,
the data are actually not informative for feedback stabilization,
although the true system is stable.

Now, we consider the quadratic cross-covariance bound (5)
for the noise. We choose an instrumental variable that contains
lagged versions of the input:

r(t) := col(u(t), u(t− 1), u(t− 2), . . . , u(t− 8), u(t− 9)).

We assume prior knowledge in the sense that E− ∈ ERQ =
{E− |E−R>−R−E>− � NHu}, where Hu is taken as Hu = I ,
independent of N . The cross-covariance bounds hold true for
all generated data sets. We verify that there exists some Z so
that (18) holds true for all data sets. Hence, by Remark 2, the
data are informative for common H2 control with performance
γ if and only if the conditions in Theorem 3 are feasible.
The relative number of data sets for which this necessary and
sufficient condition is feasible for some γ > 0 is visualized in
Figure 1a for each data length N , in blue. For N ≥ 20, all data
sets are informative for common H2 control. For these data
sets, the smallest H2 norm upper bounds γ2 are visualized in
Figure 1b, where the median performance is indicated by a
solid line and the shaded area is bounded by the 25th and 75th

percentiles. In comparison, the H2 norm that can be achieved
by a state feedback controller with knowledge of (A0, B0) is


P − γ−1HzH

>
z − βI 0 0 J1P + J2L 0

0 0 0 P 0
0 0 0 L 0

P>J>1 + L>J>2 P L> P F>

0 0 0 F γI

− α

I HzP−R

>
−

0 −Z−R>−
0 −U−R>−
0 0
0 0

Qe

I HzP−R

>
−

0 −Z−R>−
0 −U−R>−
0 0
0 0


>

� 0,

[
P F>

F γI

]
� 0 (21)




P − βI 0 0 J1P + J2L 0

0 0 0 P 0
0 0 0 L 0

P>J>1 + L>J>2 P L> P F>

0 0 0 F I

− α

I HzP−R

>
−

0 −Z−R>−
0 −U−R>−
0 0
0 0

Qe

I HzP−R

>
−

0 −Z−R>−
0 −U−R>−
0 0
0 0


>

� 0 (25)

(a) Informativity for H2 control (b) H2 performance from data

Fig. 1: (a) Number of input-state data sets that are informative
for H2 control versus data length N for noise-norm bounds
(red) and quadratic cross-covariance bounds (blue) and (b)
feasible γ2 obtained versus data length N with quadratic cross-
covariance bounds.

equal to 1.000, which therefore is a benchmark that cannot be
outperformed by any data-based controller.

Now, consider that noisy output measurements are available
instead of state measurements. Consider system (1) with
A(q−1) and B(q−1) such that T0(q−1) = A−1(q−1)B(q−1)
with T0 := C0(qI−A0)−1B0, where C0 is the output matrix.
We consider three cases: C0 = [1 0 1], C0 = [0 1 0], and C0 =
[1 0 0]. The noise is uniformly drawn from [−0.35, 0.35].
For each choice of output, we generate 50 data sets for data
lengths ranging from N = 2 to N = 250. We choose an
instrumental signal containing lagged input signals as before,
which is therefore independent on the choice of output. The
upper-bound is chosen Hu = 0.3, which holds for all data sets.
By Theorem 3, feasibility of the conditions for informativity
for H2 control for some γ > 0 is verified for each data set.
The results are depicted in Figure 2. We observe that the data
sets are not informative for low data lengths, which can be
expected. For increasing data length, informativity becomes
dependent on the choice of output. For N = 30, for example,
90% of the data sets yielded feasible informativity conditions
for the choice of C0 = [1 0 0], compared to less than 50% of
the data sets for the other two choices for C0.

VI. CONCLUDING REMARKS

We have considered the problem of informativity of input-
output data for control, with prior knowledge of the noise
in the form of quadratic sample cross-covariance bounds.
Sufficient informativity conditions for stabilization, H∞ and
H2 control via dynamic output feedback were derived, which
are also necessary if the state is measured. We have pro-
vided a numerical case study where data-informativity can

Fig. 2: Effect of the choice of output on informativity of input-
output data for H2 control.

be concluded with cross-covariance bounds, while the data
are concluded to be non-informative with magnitude bounds.
Finally, we have illustrated how the choice of output affects
the informativity of input-output data via a numerical example.
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