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Incorporating Prior Knowledge in Local Parametric
Modeling for Frequency Response Measurements:

Applied to Thermal/Mechanical Systems
Enzo Evers , Bram de Jager , and Tom Oomen , Senior Member, IEEE

Abstract— Frequency response function (FRF) identification
is a key step in experimental modeling of many applications,
including mechatronic systems. Applying these techniques to
systems where measurement time is limited leads to a situation
where the accuracy of the identified model is deteriorated by
transient dynamics. This article aims to develop an identifi-
cation procedure that mitigates these transient dynamics by
employing local parametric modeling techniques. To improve
the modeling accuracy, prior knowledge is suitably incorporated
in the procedure while at the same time allowing for rational
parameterizations that maintain a closed-form solution. The
prior knowledge is exploited in a relevant local frequency range
using a specific Möbius transformation. Preexisting methods,
including the commonly used local polynomial method, are
recovered as a special case. The presented framework leads to
accurate identification results in a simulation study as well as on
experimental measurement data.

Index Terms— Frequency response function (FRF), precision
mechatronics, system identification, thermomechanical.

I. INTRODUCTION

FREQUENCY response function (FRF) identification is a
key step in identification and control. Acquiring FRFs

is often fast, inexpensive, and accurate and requires very
limited user intervention. The obtained FRFs are used for
many purposes, ranging from controller design by manual tun-
ing [1], optimal synthesis [2], stability analysis, and interaction
analysis [3] to parametric identification [4]. Also, these FRFs
are used in many application domains, e.g., in mechanical
systems with flexible dynamics [5], [6], thermal systems [7],
electrical systems [8], and combustion systems [9].

Identification of FRFs has recently been substantially
advanced by explicitly mitigating transient errors. Indeed,
one of the tacit assumptions is that the system under test
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is in steady state, which is often not valid for experi-
mental systems. Moreover, due to the slow dynamics in
certain applications, e.g., thermal–mechanical systems, tran-
sients are increasingly relevant. In the local polynomial
method (LPM) [10], the smoothness, in the frequency domain,
of the transient response is exploited by locally approximating
the transfer function by a polynomial function to estimate and
remove the transient component. In [11], this is generalized
toward the local rational method (LRM), which uses a rational
function in the local approximation.

Although the general parameterization used in the LRM
enables improved identification results, the LRM involves an
optimization problem that introduces additional challenges.
As a key advantage, the LRM is a more general parame-
terization, directly recovering the LPM as a special case,
and the additional freedom in the parameterization allows to
capture dynamics, especially lightly damped, more accurately
(see [12] for a theoretical analysis of the local approxima-
tion error and [5] for experimental evidence). On the other
hand, the rational parameterization leads to a nonconvex
optimization problem, which is approximated in typical LRM
approaches as in [13]. Further improvements to employ an iter-
ative algorithm have mixed outcomes (see [5]). Furthermore,
as a direct consequence, the variance results, which are valid
for LPM, are only accurate for the LRM for sufficiently high
signal-to-noise ratio (SNR) due to a bias effect.

This article aims to present a unified framework for FRF
identification that employs a rational local parameterization,
in conjunction with a closed-form optimizer to yield reliable
variance expressions and improved estimation accuracy. This
is achieved by exploiting prior knowledge on the system,
characterized by pole locations in the complex plane, e.g.,
resonance frequency region in mechanical systems [5], or pole
locations on the real axis [14], [15] for thermal systems.

In [16], VF is used to provide the local rational parame-
terization with estimated pole locations. The VF algorithm is
adapted to work on transient input–output data and employs
an iterative process to estimate the pole locations. In [17],
a bootstrapped total least squares (LS) estimator is employed
to obtain unbiased estimates for a local rational model.

The approach in this article exploits the freedom of selecting
those poles at a prescribed location. The presented approach
is linear in the parameters, similar to the LPM, and therefore
maintains the associated benefits, e.g., an analytical solution
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Fig. 1. Discrete-time LTI system in an open-loop setting with input u(n),
measurement noise v(n), and output y(n).

and bias and variance expression. The approach utilizes ortho-
normal rational basis functions (OBFs), which are well studied
[18]–[20] to form the basis for the local regression problem.
Moreover, it is shown that it requires the development of OBFs
with complex coefficients over the real line, which is in sharp
contrast to the typical use of OBFs in system identification,
where the support is typically over the imaginary axis or the
unit disk. Indeed, local parametric methods (LPM/LRM) often
tacitly represent FRFs of systems by complex-valued transfer
functions that are evaluated over the real axis.

The main contributions of this article are given in the
following.

C1: A local parametric method is developed that uses a
linearly parameterized basis, leading to an efficient
optimization and closed-form solution, providing an
accurate variance analysis yielding a reliable quality
metric and exploiting prior knowledge.

C2: Development of the necessary theory of OBFs using
single complex pole parameterizations over the real line
and transformation of prior knowledge to this domain.

C3: Validation of the method by application on relevant
systems, e.g., on resonant dynamics in a simulation
study of a mechanical system and first-order dynamics in
an experimental study on a high-tech industrial thermal
setup.

This article is organized as follows. In Section II, FRF identifi-
cation under transient conditions is investigated. In Section III,
the local parametric method using the general parameterization
considered is presented. In Section IV, a design for the local
approximation basis is introduced together with a framework
for orthonormal rational functions on the real line. A Möbius
transformation is used to connect different components of
the framework to appropriate prior knowledge and previous
results. In Section V, the method is applied in a case study on
relevant industrial applications, involving a simulation study
involving lightly damped resonant dynamics and experiments
on a high-tech industrial thermal setup. In Section VII, con-
clusions are presented.

II. PROBLEM FORMULATION

A. Transients in FRF Identification

In this section, the role of transients in FRF identification
is investigated.

Consider a discrete-time linear time-invariant (LTI) single-
input–single-output (SISO) system G in an open-loop setting,
as shown in Fig. 1, and an excitation input u(n). Then,
the output y(n), for an infinite time interval n ∈ (−∞,∞),

is given by

y(n) =
∞∑

k=−∞
u(k)g(n − k)+ v(n) (1)

where g(n) is the impulse response of G and v(n) is the noise
contribution on the output. By applying the discrete Fourier
transform (DFT)

X (k) = 1√
N

N−1∑
n=0

x(n)e
−i2πkn

N (2)

on a finite interval, i.e., n ∈ {0, 1, . . . , N − 1} of (1), it yields

Y (k) = G(�k)U(k)+ T (�k)+ V (k) (3)

in the frequency domain, where G(�k) is the FRF of the
dynamic system. Also, Y (k), U(k), and V (k) are the DFT
of y(n), u(n), and v(n), respectively. Here, �k denotes a
generalized frequency unit, e.g., in continuous time �k = jω
and in discrete time �k = e jωk Ts , where Ts is the sample time
and k denotes the kth frequency bin, and the latter is used
throughout.

In (3), T (�k) accounts for the transients for both the system
response TG(�k) and the noise TV (�k). The transient terms are
directly related to the initial and final conditions of the system,
i.e., the transition of an infinite to a finite interval such that
the relation (3) is an exact representation. Also, the estimation
error by neglecting the term T (�k) is often referred to as
leakage error [4]. An insightful interpretation (see also [11])
of T (�k) can be made by using a state-space realization of
the system G in Fig. 1, e.g.,

x(n + 1) = Ax(n)+ Bu(n)

y(n) = Cx(n)+ Du(n)+ v(n) (4)

where x(n) ∈ Rnx is the state vector with nx the number of
states. By then applying the DFT to (4), this directly connects
to (3) through

G(�k) = C(e jωk I − A)−1 B + D (5)

T (�k) = C(e jωk I − A)−1(x(0)− x(N))e jωk (6)

where G(�k) is the FRF of the LTI system and T (�k) is the
transient contribution in the frequency domain. This shows that
T (�k) and G(�k) exhibit similar but not identical dynamics
since they share the same poles and it is assumed that no
pole/zero cancellations are present. However, the zeros of their
transfer functions can be different.

B. Classical Approach

The finite-time response in (3) contains the additional terms
T (�k) and V (k). A classical approach to identify the system
G(�k) is to use the empirical transfer function estimate
(ETFE), i.e.,

Ĝ(k) = Y (k)U−1(k). (7)

Analysis reveals that

G(�k)− Ĝ(k) = T (�k)(k)U−1(k)+ V (k)U−1(k)︸ ︷︷ ︸
estimation error

. (8)

Hence, the transients, in addition to the noise contribution
V (k), lead to an estimation error.
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Fig. 2. Examples of prior knowledge in different domains and applications.
(a) Prior in discrete time, where �k = e jωk ( ), mechanical applications,
where a frequency region or damping coefficient ( ) of the resonance mode
is approximately known. (b) Prior in continuous time, where �k = jωk( ),
thermal applications, where the poles lie on the real axis ( ).

C. Transients in Different Applications

The result (8) reveals that transients lead to estimation
errors of the true system G(�k). From (5) and (6), the system
dynamics, i.e., pole locations, largely determine the transient
contribution.

The central idea in this article is that the application domain
provides clear prior knowledge on the locations of these poles.
In Fig. 2, pole locations are shown for a mechanical system,
in Fig. 2(a), and a thermal system, in Fig. 2(b). An ad hoc
solution that is often employed to cope with transient data is
to remove the initial transient response from the identifica-
tion data. Electromechanical systems, e.g., servo-positioning
systems, often have lightly damped dynamics and small time
constants. For these systems, the transient contribution in
(3) can sometimes be substantial due to low damping. For
other systems, e.g., thermomechanical systems [21], the time
constants are significantly larger and the transient contributions
constitute a dominant part of the output response. Waiting for
the initial transient to settle requires an unacceptable increase
in experiment time. FRF identification for a more general class
of systems, e.g., including thermomechanical systems, requires
a method capable of coping with data obtained under transient
conditions.

In this article, an approach that explicitly considers the
transient term T (�k) to obtain an unbiased estimate of G(�k)
is presented. This eliminates the need to discard the initial tran-
sient data, thus achieving significant savings in the necessary
experiment time to accurately identify the system.

D. Problem Formulation

The problem considered in this article is as follows. Given
an input–output sequence, u and y where y contains a transient
response, provide an accurate nonparametric FRF estimate
Ĝ(ω) of the true system G0(ω) accompanied with a reliable
variance estimation Ĉv (ω).

To address this, a new parameterization is employed,
which allows for the estimation of transient responses by
solving an optimization problem that has a closed-form
solution, thereby providing an accurate estimate and accompa-
nying variance expressions. Moreover, this method facilitates
the incorporation of appropriate prior knowledge, enabling
increased estimation accuracy.

III. LOCAL PARAMETRIC MODELING

In this section, a local parametric approach is presented with
a rational parameterization that allows convex optimization,
in particular a closed-form solution, leading to contribution
C1. The outline of the section is as follows. First, the concept
of local parametric modeling is presented. Second, the lin-
ear parameterization used in this article is presented. Third,
the presented approach is connected to previous results on
local parametric modeling, including the LPM [4] and the
LRM [11]. In fact, these results are recovered as special cases.

A. Local Modeling

Local parametric methods construct approximations of
G(eiωk ) and T (eiωk ) in (3) on a subset of points

λ = {k − l, . . . , k + l} ⊂ N (9)

i.e., a local window of width 2l+1 with l ∈ N, in the complex
plane. This is shown in Fig. 3 where the first- and second-order
local approximations are shown.

Remark 1: Throughout this article, the notation {k −
l, . . . , k+ l} is dropped, and k indicates a single DFT-bin and
λ indicates the local window, i.e., λ = {k− l, . . . , k + l} ⊂ R.

The key mechanism underlying local parametric methods is
the smoothness of both G(�k) and T (�k) in (3).

In particular, the input U(k) is selected such that it is
sufficiently exciting and “wild,” i.e., having a nonsparse and
nonsmooth frequency spectrum in magnitude and/or phase.
Signals that are particularly suited are (filtered) white noise
or random-phase multisines. This ensures that G(�k) can be
distinguished from T (�k) since the latter is not affected by
the system input U(k). For each frequency point k, a local
parametric approximation is constructed over neighboring
points λ, e.g., by polynomial functions in the LPM and
rational functions in the LRM. Then, an estimate for the
transient component at T (�k) is constructed using this local
approximation such that it can subsequently be removed from
G(�k). This is shown in Fig. 3 for G(k). The result for the
transient T (k) follows along conceptually similar lines (for
more details on the local parametric method in general, see
[21], [22]). In the remainder of this article, the emphasis lies
on constructing a suitable local parametric approximation basis
for the functions G(�k) and T (�k).

Remark 2: The local modeling approach presented in this
article is still classified as a nonparametric identification
approach. The local parametric models are solely used as an
intermediate step to obtain the FRM at a single frequency point
k, after which they are discarded.

B. Linearly Parameterized Rational Parameterization

Consider again (3) and let

G(�λ) =
Nb∑

b=0

θ k
G(b)�(b, λ) (10)

T (�λ) =
Nb∑

b=0

θ k
T (b)�(b, λ) (11)
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Fig. 3. Resulting local approximation of G(�k) in local parametric
modeling in the complex plane. Here, a first-order ( ) and second-order
( ) approximation of the true plant ( ) is constructed using the measured
data ( ) in the local window λ yielding an estimate for G(�k) at k ( ). The
local approximation for T (�k) follows along conceptually similar lines.

such that locally the terms in (3) are approximated in a window
λ by an expansion of degree Nb using general basis functions
�(b, λ) ∈ C, where θ k

G(b) ∈ C and θ k
T (b) ∈ C are the local

coefficients for G(�λ) and T (�λ), respectively. Note that � =
λb in (10) for the well-known LPM. For each point k, this local
approximation yields

Ŷ (λ) = [
θG(k) θT (k)

]︸ ︷︷ ︸
�(k)

[
�(λ)⊗U(λ)

�(λ)

]
︸ ︷︷ ︸

K (U(λ),�(λ))

(12)

where �(k) contains the local approximation coefficients
for the basis functions contained in the regression matrix
K (λ) = K (U(λ),�(λ)). From this local approximation, only
the center value, i.e., G(�k) is used, as shown in Fig. 3. This
local approximation is repeated to obtain an estimate of G(�k)
and T (�k) for each frequency bin k.

Remark 3: The input U(λ) is assumed to vary sufficiently
over the full input spectrum such that G(�λ)U(λ) can be
distinguished from T (�λ) so K (λ) does not lose rank, i.e., the
input is sufficiently “wild.” This can be achieved by, e.g.,
broadband noise excitation or random-phase multisines [4].
The coefficients �(k) are found by solving the LS problem

�̂(k) := arg min
�

k+l∑
p=k−l

|Y (p)−�(k)K (p)|2 (13)

which should be overdetermined. Then, �̂ is given by

�̂(k) = Y (λ)K (λ)H (K (λ)K (λ)H )−1 (14)

where K (λ)H is the Hermitian transpose of the regression
matrix K (λ) in (12). Due to the closed-form solution, which
resembles the LPM [4, Sec. 7.2.2], an estimate for the noise
covariance matrix is given by

Ĉv (k) = 1

q
(Y (λ)− Ŷ (λ))(Y (λ)− Ŷ (λ))H (15)

where q is the degree of freedom of the residual Y (λ)− Ŷ (λ),
i.e., q = 2l + 1 − 2(Nb + 1). The final covariance on the
estimated FRF Cov(vec(Ĝ(k))) is then determined by an
appropriate transformation, e.g., [4, Ch. 7].

Indeed, the covariance of the estimated FRF is given by

cov(vec(Ĝ(k))) = SH S ⊗ Ĉv (k) (16)

where

S = K (λ)H (K (λ)K (λ)H )−1

[
Inu

0

]
�(k) (17)

and vec() denotes a stacking of the columns of the matrix and
nu is the number of inputs of the estimated system.

Remark 4: The key point is that (15) holds for a linearly
parameterized model (10), which is in sharp contrast to the
LRM (see Section III-C), in which case variance estimations
are typically biased. This is caused by the Levy approximation
that introduced measurement data in the regressor matrix. The
result (15) and (16) holds for any linearly parameterized basis,
and the results in [4] are recovered as a special case.
The basis � is general and allows for user-chosen para-
meterizations. For instance, the basis � can be chosen to
be a polynomial, rational, or fractional function of the win-
dow parameter λ. In Section II-C, it is shown how earlier
approaches fit in the framework. Then, a new approach is
presented, which enables the incorporation of prior knowledge.

C. Connection to LRM

A particular choice regarding the parameterization in (10) is
to select rational polynomials for � , which directly connects
to previously used rational functions in the LRM [11]. To
introduce the LRM, consider the optimization problem

�̂LRM := arg min
�LRM

k+n∑
p=k−n

∣∣∣∣Y (p)− Nλ

Dλ
U(p)− Mλ

Dλ

∣∣∣∣2

(18)

where

Nλ =
Nn∑

s=0

ns(k)λs (19)

Mλ =
Nm∑
s=0

ms(k)λs (20)

Dλ = 1+
Nd∑

s=1

ds(k)λs . (21)

In case of the typical LRM parameterization, the free para-
meters are �LRM = [n0, . . . , nNm , m0, . . . , m Nm , d1, . . . , dNd ]
∈ CNn+Nm+Nd , where Nn, Nm , and Nd denote the order of
the plant and transient numerator and common denominator,
respectively. From (18), the LPM is directly recovered by
setting [dNd · · · d1] = 0. For general Dw , (18) is nonlinear
in the parameters, and generally, no closed-form solution
similar to (14) exists. At least two approaches [11], [12], [23],
[24] have been pursued to determine (18) and find �LRM:
1) iteratively solving the LS problem, which has been applied
in [23] with mixed results or 2) multiplying the criterion with
Dw as in the classical approach in [13], which introduces an
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a priori unknown weighting function in (18). On top of these
aspects, both approaches lead to a situation where K contains
measurement data that are corrupted with noise, potentially
introducing errors in the variance estimate (15) and (16) (see
also Remark 4). The form in (12) combines a general rational
basis with the benefits associated with a linear parametrization
where the regression matrix is noise-free.

In this article, an approach is presented based on orthogonal
basis functions that enable the incorporation of prior knowl-
edge. Orthogonality enables a systematic way to build the
basis in a numerically reliable way. By using an appropriate
Möbius transformation, both the basis can be transformed from
different circles or lines in the complex plane, as well as the
prior knowledge. Specific choices of the prior knowledge lead
to the LPM, which is a clear result. The LRM essentially
relates directly to specific choices of poles, while in many
cases, it is found by solving a related identification problem
by writing it as an equation error problem.

IV. LRMP

The local parametric approach in Section III yields
improved FRF estimation by explicitly taking transient contri-
butions into account. For this, a local parametric parameteri-
zation is used to approximate T (�k) as a linear combination
of basis functions � . In this section, an approach facilitating
the construction of a suitable basis � is presented, henceforth
referred to as the LRM with prescribed poles (LRMP).

A. Approximation Basis

In this section, the parameterization (10) is considered
where the key idea is to select a basis � such that the
closed-form expression to (13) is retained. Consider a basis
� composed of rational functions with single complex poles,
i.e.,

�(ω) =
Nb∑

b=0

1

ω + βb
(22)

where βb ∈ C, b ∈ 1, . . . , nb are the prescribed poles of the
rational functions and ω ∈ R is the (local) frequency parameter
on the real line. In Section V, it is illustrated how this parame-
ter βk can be connected to discrete- or continuous-time system
poles. This basis facilitates the modeling of resonant behavior
and offers a general parameterization, while (10) remains
linear in the parameters. For the local approximation (10),
the basis functions coefficients may be complex; indeed, such
model structures with complex parameters are standard in the
local methods. In previous methods, e.g., in the LPM, the poles
of the basis functions are all placed at ∞. In this article,
the freedom in the location of the prescribed poles in (22)
is exploited to obtain a higher approximation accuracy by
including prior knowledge. In Section V-A, the transformation,
to the ω ∈ R domain, of this prior knowledge is investigated
further using an appropriate Möbius transformation.

Provided that the poles βb have been selected (see also
Section V), the basis can be systematically constructed using
orthogonal rational functions on the real line. These rational

functions are a result of Gram–Schmidt orthogonalization of
the basis in (22).

Theorem 1: Given βb ∈ C where b ∈ [0, Nb], i.e., the poles
in (22). Let �(ω) be parameterized as

�b(ω) =
⎧⎨
⎩
√−2Im(β0)

− j
ω+β0

b =0

√−2Im(βb)
− j

ω+βb

∏b−1
l=0

ω+β̄l

ω+βl
b �= 0

(23)

and then

1

2π

∫ +∞
−∞

�n(ω)�m(ω)dω =
{

1, n = m

0, n �= m
(24)

where ω ∈ R, i.e., the basis � is orthonormal on the real line.
A proof of Theorem 1 is provided in the Appendix. The basis
in Theorem 1 is novel since the orthonormal basis functions
are considered on the real line, opposed to on the imaginary
line.

The orthogonality of the functions � facilitates the repeti-
tion of poles to expand the basis, improving the approximation
of the true FRF [25]. In fact, for a function f (ω) in the
Hardy space H2 for arbitrary ε > 0 and for sufficiently
large m, an element g(ω) ∈ {�b(ω)}mk=1 can be found such
that || f − g||2 ≤ ε, i.e., the basis �(ω) is complete in H2.
The basis � is complete if the following theorem holds.

Theorem 2: The model set spanned by the basis functions
{�b(ω)}n≥0 is complete in all of the spaces Hp, 1 < p < ∞
if and only if

∞∑
k=1

−Im{βb}
1+ |βb|2 =∞. (25)

A proof for this is presented in the Appendix.
The condition (25) in Theorem 2 is mild and fulfilled by (23) if
the poles βb are not on the real line. Finally, the orthogonality
of the basis potentially yields improved numerical conditioning
for the approximation problem [26].

Remark 5: The basis in Theorem 1 is orthogonal when
evaluated over the real line as in (24). In the local window λ,
this orthogonality can be lost since a discrete set of points
is considered that no longer spans the complete real line.
A solution for this could be found in line with [27] that con-
siders a discrete data-dependent basis to improve conditioning.
The conditioning [28] of (23) improves with the window size
for limλ→N , where N is the total amount of samples in a
measurement.

V. EMPLOYING PRIOR KNOWLEDGE:
MÖBIUS TRANSFORMATION

In this section, it is shown how to incorporate prior
knowledge from different domains using a specific Möbius
transformation, constituting contribution C2. Moreover, this
transformation is used to connect the presented framework to
previous results from the literature.

A Möbius transformation is a conformal mapping defined
on the extended complex plane C∞ = C ∪ {∞} of the form

f (z) = az + b

cz + d
(26)
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Fig. 4. Complex plane, with a pole location β as a function of � = ω, a pole location α as a function of � = jω, or a pole location γ as a function of
� = e jω . By applying the required Möbius transformations, pole locations in different domains can be incorporated in the proposed parameterization.

where z ∈ C∞ and a, b, c, d ∈ C satisfy ad−bc �= 0.
A well-known special case of this transformation is the bilinear
transform, i.e., Tustin’s method [29].

Remark 6: In previous local parametric modeling methods,
discrete-time frequency-domain data, i.e., an FRF evaluated on
points on the unit disk e jω, is approximated by local models
that are a function of k ∈ N on the real line, i.e., the DFT
bins, as shown in Fig. 3. The transformation from s = jω or
z = e jω to the ω domain is often implicit, but it is essential
when including prior system knowledge, as is done in this
article.

A. Prior Knowledge

In Section IV, a suitable basis � for the local approximation
(10) is presented, i.e., (23), where βi is selected a priori.
However, prior knowledge, e.g., system poles, is often defined
in terms of the Laplace variable s or the Z transform variable
z, where the frequency response is obtained by substituting
s = jω and z = e jω, respectively. In contrast, the functions
(22) for which the poles are defined as β are evaluated on the
real line w. Consequently, prior knowledge regarding the poles
of the physical system G(�k) cannot directly be incorporated
in the local function (22). The appropriate prescribed poles
β for (23) are transformed using the forthcoming results
from prior knowledge in the continuous domain α or discrete
domain γ , by employing the Möbius transformations shown
in Fig. 4.

a) Continuous Time α: Given some knowledge on the
system poles in continuous time domain, i.e., �k = s,
an equivalent prior is obtained for the ω domain by using β =
− jα such that their FRF is equal, e.g., �(β)|ω ≡ G(α)| jω.

b) Discrete Time γ : In the discrete-time domain �k = z,
a similar approach is applied by mapping the pole locations
using a bilinear transformation β = − j (2/Ts)(z − 1/z + 1)γ
that is known as a Cayley transformation. However, care has to
be taken since, for �(β)|ω ≡ G(γ )|e j ω̄T , it holds that ω �= ω̄,
i.e., the frequency ω̄ is distorted with respect to the original
frequency ω. If aliasing is particularly relevant, a future

extension may be to use the impulse invariant transformation
in favor of the bilinear transform.

Remark 7: To compensate for the frequency distortion
when including discrete-time domain prior knowledge, several
approaches can be used. First, the warping can be ignored as is
commonly done in LPM techniques for discrete-time systems.
This could be used if the prior knowledge is mainly located
at lower frequencies, where ω ≈ ω̄. Second, prewarping in
the bilinear transformation can be employed for each local
frequency window w such that locally the reconstruction is
exact. Third, the frequency axis can be adjusted by using
ω = (2/T ) tan(ω̄(T/2)) such that the reconstruction is exact
over the full frequency range. Note that this results in non-
equidistant frequency points in the ω domain [29].

Summarizing, by applying a suitable Möbius transforma-
tion, any available prior knowledge can directly be incorpo-
rated into the basis � in the ω domain.

B. Connection to Existing Results

In this section, the presented framework is connected to
previous parameterizations in the literature. Applying the
Möbius transform − j to the LRMP in (23) results in the
well-known continuous-time Takenaka–Malmquist [26] basis.
Moreover, if the Möbius transform − j is combined with a
bilinear transform, e.g., the Tustin approximation, the discrete-
time Takenaka–Malmquist [30] functions are obtained. The
generalization in (23) simplifies to the well-known Laguerre
functions by taking all βb ∈ C, Re(β) = 0 such that the
rational functions model a system containing first-order real-
valued poles. Selecting βk+1 = −β̄k ∈ C such that all complex
poles appear in real positive/negative pairs results in the Kautz
basis functions. In Fig. 5, the Möbius transformation is used
to connect the presented basis to existing results found in the
literature [19], [26], [30].

VI. CASE STUDY

In this section, the theory from Section IV with the design
guidelines from Section V is applied in a case study: both in a
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Fig. 5. Diagram indicating the Möbius mapping to connect orthonormal
functions in different domains.

simulation study of a mechanical system and an experimental
study of a thermal system.

Remark 8: Throughout this section, it is assumed that accu-
rate prior knowledge is available, e.g., through finite-element
model (FEM) or initial experiments. In the case of uncertainty
in the prior knowledge, mechanisms, such as pole repetition or
iterative pole placement, can aid in improving the estimation
accuracy. A comprehensive sensitivity analysis toward uncer-
tainty in the prescribed pole locations would provide additional
value to the presented method. This sensitivity analysis is
outside the scope of the current research.

A. Procedure

In the case study, the following procedure is employed to
construct the FRF Ĝ and variance estimate Ĉv .

Procedure 1 (FRF Identification): Require: Appropriate
excitation signal, e.g., white noise or random-phase
multisine.

1: Perform simulation/experiment
2: if Prior knowledge then β ← according to Fig. 4
3: else β = 0
4: end if
5: procedure LRMP(U(k), Y (k), β)
6: for k ∈ [0, . . . , N] do
7: Construct (13) to obtain �̂(k)
8: Calculate Ĝ(k) and/or T̂ (k).
9: Calculate the variance estimate Ĉv

10: end for
11: end procedure
In this context, an appropriate excitation signal is system
dependent, e.g., for a thermal system, an offset to the input
is often required since a negative heat flux input is infeasible
using conventional actuators.

B. Simulation Study: Mechanical System

In this section, the method presented in Section IV is applied
to a mechanical system with resonant behavior in a simulation
study. The true system is given by

G0(s) = Ω2
1

s2 + 2ζΩ1 +Ω2
1

+ Ω2
2

s2 + 2ζΩ2 +Ω2
2

(27)

Fig. 6. Reducing the estimation error by incorporating prior knowledge.
True plant G0(ω) ( ) and estimation error |G0(ω)− Ĝ(ω)| using classical
approach ( ), LPM ( ) and LRMP ( ). Here, the LPM is recovered as a
special case of the LRMP by selecting β = [0, 0, 0], as shown in Fig. 6(a).
By incorporating additional prior knowledge, i.e., using the transformations in
Fig. 4 to incorporate the system poles γ as pre-scribed poles β, the estimation
error is significantly reduced, as shown in Fig. 6(b) and Fig. 6(c). (a) Selecting
β = [0, 0, 0] recovers the LPM as a special case of the proposed approach.
(b) Including prior knowledge on the first resonance peak location by using
β = [0.76+0.6i, 0, 0]. (c) Including both resonance peaks as prior knowledge
by including two single complex poles at β = [0.76 + 0.6i, 0.98 + 0.16i, 0].

characterized by the natural frequencies Ω1 = 5 [rad/s] and
Ω2 = 4Ω1 and damping coefficient ζ = 0.05. The system
G0(s) is then discretized using zero-order hold with a sample
time Ts = 1/20 [s] to obtain G0(z). The dynamics of the
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Fig. 7. Maximum relative estimation error for varying magnitudes of complex perturbations in the prior knowledge for systems with different damping
coefficients ζ . The results are the median of 100 simulations for each perturbation, comparing the proposed method ( ) to the LPM ( ). The size of the
allowable perturbation is correlated with the amount of damping in the system. The results are normalized with respect to the results obtained with the LPM.

true system is characterized by the system poles that are γ =
[0.76± 0.6i, 0.98± 0.16i ] in discrete time.

The system G0(z) is excited using two periods of a
random-phase multisine of 60 [s] that is defined as

Definition 1:

u(n) =
N∑

k=1

Ak sin(2π fkn/N + φk) (28)

where n is a specific discrete sample, N is the total number
of samples, Ak is the amplitude of the sinusoidal signal at
frequency fk , φk is a uniformly distributed random phase on
[0, 2π) such that E{eiφk } = 0.

Then, an FRF estimate Ĝ0(ω) is obtained using the classical
ETFE approach, the traditional LPM, and the new LRMP
approach. The total number of basis functions in the proposed
method is Nb = 3. Initially, the prescribed poles β are set to
0, i.e., β = [0, 0, 0], by doing so the LPM is recovered as a
special case of the LRMP. This results in an estimation error,
as shown in Fig. 6(a). Here, the LPM and LRMP both obtain
a significantly better estimation of G0(z) when compared to
the ETFE. Moreover, it is observed that the LPM and LRMP
obtain similar results.

By then applying the LRMP with appropriate prior knowl-
edge, e.g., by employing the transformations in Fig. 4 on
the poles α, γ , an improved estimation error is obtained.
In Fig. 6(b), the prescribed poles include a single complex
pole γ (1) at the first resonance of G0(z). This results in an
improved estimation error at the first resonance frequency.
By expanding the basis � to include a single complex pole
at each resonance, the estimation error is decreased further,
as shown in Fig. 6(c).

C. Uncertainty in the Prior Knowledge

The approach presented in this article relies on accu-
rate prior knowledge to reduce the estimation error.
In Section VI-B, exact prior knowledge is available on the
pole locations. In most practical applications, accurate prior
knowledge is available through initial experiments or FEMs.
Results of a preliminary investigation into the effect of uncer-
tainty in the prior knowledge on the estimation accuracy of
the method proposed in this article are shown in Fig. 7.

The analysis is performed by repeating the procedure of
Section VI-B while perturbing the prior knowledge on the

first pole location by complex perturbations within a radius of
varying size. As a performance metric, the maximum value of
the relative estimation error is compared between the LPM and
the proposed method. The median result of 100 simulations
for varying perturbation sizes and three different systems
with varying damping ratios is shown in Fig. 7. It illustrates
that the method proposed in this article is insensitive to
large perturbations in the prior knowledge for systems with
a large damping ratio. It also shows that for lightly damped
systems, increasingly accurate prior knowledge is required
to improve the estimation accuracy. For application of the
proposed method to very lightly damped systems, a more
elaborate sensitivity analysis is recommended and outside the
scope of this article.

D. Experimental Study: Thermal System

In this section, an experimental case study on a preci-
sion motion system, considered in a thermal control context,
is presented.

1) Thermal System: The experimental setup used in this
article is shown in Fig. 8(a). A 2-D schematic overview of the
setup, including the relevant components and sensor location,
is shown in Fig. 8(b). In the original application, the system
under test is a high-precision linear motion stage moving in
the y-direction, used in optical inspection equipment. In this
article, thermal aspects of this setup are investigated. Transient
effects in these types of systems are often dominant, and
hence, the approach in Section III is expected to be highly
applicable.

To isolate the thermal aspects of the system, the linear motor
stator is removed, and its rotor, the coils, is maintained. The
linear motors are then used as a thermal excitation source by
passing a current through the coils, thereby heating them.

2) Transient Response: To facilitate the presentation, a sin-
gle temperature measurement is used as shown in Fig. 8(b),
yielding an SISO system. The system is excited using a
random-phase multisine limited to 0.1 Hz, with a peak of
5 W centered around an offset of 5 W, since only heating
is possible. Measurements are sampled at Fs = 1 [Hz] since
the dynamics are predominantly low-frequent. The periodic
excitation has a period length of L = 1 h, that is repeated P =
48 times, yielding a total data set of Fs L P = 172 800 samples.
The system response is presented in Fig. 9, and it shows the
temperature over a 48-h period.
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Fig. 8. Photograph and illustration of the experimental setup, including
the carrier frame and the base plate that is used as a metrology frame.
On the illustration, the carrier frame, metrology frame, linear motor coil,
and sensor locations are indicated. (a) Photograph of the experimental setup.
(b) Illustration of the experimental setup.

Fig. 9. Temperature response of the experimental setup over a 48-h period.
The identification procedure is performed on two separate subrecords, sets 1
and 2, each containing two full periods of the multisine. Set 1 contains the
initial response and a strong transient. Conversely, set 2 contains relatively
little transient response and is used as a validation data set.

The experimental data as shown in Fig. 9 are separated into
two subrecords, i.e., sets 1 and 2. Set 1 contains the first two
periods, i.e., 2 h, of the response data that include the strong
transient behavior due to the offset in the excitation signal.
Set 2 contains the two periods as shown in the magnified plot
in Fig. 9, i.e., 2 h starting at hour 20, that contains a minimal
amount of transient response and can be used as a validation
data set. Furthermore, it is seen that the small and relatively
fast dynamic response is superimposed onto a much larger
and slower transient response caused by initial excitation and
the 24-h, e.g., day/night, cycle of the environment. The prior
knowledge that is used in the proposed method is a distribution

Fig. 10. Application of both the traditional approach, the ETFE, and the
presented approach, the LRMP, to both subrecords 1 and 2 in Fig. 9. Yielding
an FRF Ĝ , transfer function between heater input [W] and temperature output
[◦C], and corresponding variance Ĉv . (a) Application of the ETFE ( ) and
LRMP ( ) to subrecord 1. Interestingly, the ETFE is dominated by the
transient contribution. Indeed, the transient T ( ) obtained with the LRMP is
almost equal to the ETFE. Here, G0 ( ) is shown for validation. Moreover,
the variance Ĉv estimation of the ETFE appears to be biased by the transient.
(b) To verify the accuracy of the presented LRMP approach, also subrecord 2
is investigated, which is almost transient free. In this case, the LRMP ( ) and
ETFE ( ) obtain almost equal results and approach G0 ( ). The transient T
( ) indeed is significantly smaller than in subrecord 1 allowing both the ETFE
and LRMP to accurately estimate G0. However, the variance estimation of the
ETFE still appears to be influenced by the residual transient in the estimation,
while the LRMP is not.

of Nb = 3 poles at [10−4, 10−3, 10−2] Hz. To validate the
accuracy of the estimation, a validation FRF G0 is obtained
by averaging over 20 periods between hours 10 and 30. Since
the true system is unknown, this FRF G0 is taken as ground
truth where the other methods are compared to.

By applying the classical approach, the ETFE, and the
presented method, the LRMP, results shown in Fig. 10 are
obtained. The results show the estimated plant Ĝ(ω) for
both methods and the estimated transient component T̂ (ω).
Clearly, the first subrecord contains a strong transient response;
therefore, the ETFE yields a biased and poor estimate of G0.
Moreover, the covariance estimate cov(Ĝ) using the ETFE
appears to also be biased by the transient. The presented
approach is able to estimate the FRF more accurately since it is
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close to G0. The second subrecord contains significantly less
transient contribution, allowing the ETFE to also accurately
estimate the FRF. Although the variance cov(Ĝ) still appears
slightly biased since it still deviates from the results obtained
through the proposed method. Relying on the second subrecord
for FRF estimation requires a significant time investment since
an additional 20 h of experimental time is required to obtain
the results.

By applying the approach presented in this article, a sig-
nificant reduction in experimental time is achieved since the
FRF can be estimated by measuring 2 h, by using the first
subrecord, opposed to 22 h required for the classical approach.

VII. CONCLUSION

Incorporation of prior knowledge in conjunction with
explicit transient estimation leads to improved FRF estimation
for a large class of systems, including thermal and mechanical
systems. Indeed, the transient response often present in mea-
surements from these systems can cause a biased FRF estimate
when employing classical approaches. Recent advancements
in FRF identification employ local modeling techniques to
estimate and remove these transients from the response. The
framework presented in this article enables fast and accurate
FRF estimation of a wide class of systems with a reliable
quality metric, i.e., covariance expressions. This is achieved
by utilizing a unified approach to local parametric modeling.
It presents a local rational parameterization while maintaining
a closed-form solution by using prescribed poles.

Previous methods, e.g., the LPM, also assume a prior, albeit
implicit, by placing the poles at ∞. The method presented
in this article leverages the available freedom in the pole
locations to increase the estimation accuracy. An approach is
provided that leverages appropriate Möbius transformations to
incorporate prior knowledge from different domains and appli-
cations in the local parameterization. The presented approach
yields high-fidelity models that enable the application of
advanced design, analysis, and control procedures.

APPENDIX I
APPENDIX//PROOFS

A. Proof to Theorem 1

Proof: Given the results in [26], where it is shown that
the continuous-time Takanaka–Malmquist functions, e.g.,

Bn(s) =
√

2Re{αn}
s + αn

k−1∏
l=0

s − ᾱl

s + αl
(29)

are orthonormal with respect to

1

2π

∫ +∞
−∞

Bn( jω)Bm( jω)dω =
{

1, n = m

0, n �= m
(30)

and it suffices to show that �(β,ω) ≡ B(α, jω). Given α =
x + j y then β = − jα = y − j x , resulting in

�(β,w) = √2x
− j

ω + y − j x

∏ ω + y + j x

ω + y − j x
(31)

= √2x
1

jω + x + j y

∏ jω− x + j y

jω+ x + j y
(32)

= √
2Re{α} 1

s + α

∏ s − ᾱ

s + α
(33)

which concludes the proof. �

B. Proof to Theorem 2

Proof: Given the results in [26], where it is shown that
(29) is complete if and only if

∞∑
n=1

Re{αn}
1+ |αn|2 . (34)

It is shown that �(β,ω) ≡ B(α, jω). Therefore, it is sufficient
to show that (25) is equivalent to (34), where β = − jα. Since
|α| ≡ |β| and Re{α} = Re{ jβ} = −Im{β}, this equivalence is
straightforward, which concludes the proof. �
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