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Abstract 

If only experimental measurements are available, direct data-driven control design becomes an ap- 
pealing approach, as control performance is directly optimized based on the collected samples. The 
direct synthesis of a feedback controller from input-output data typically requires the blind choice of a 
reference model, that dictates the desired closed-loop behavior. In this paper, we propose a data-driven 
design scheme for linear parameter-varying (LPV) systems to account for soft performance specifica- 
tions. Within this framework, the reference model is treated as an additional hyper-parameter to be 
learned from data, while the user is asked to provide only indicative performance constraints. The ef- 
fectiveness of the proposed approach is demonstrated on a benchmark simulation case study, showing 
the improvement achieved by allowing for a flexible reference model. 
© 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Due to the increasing complexity of modern systems and devices and the availability
f ever-increasing datasets and computational power, control design techniques relying on
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ata have a large potential. By drifting away from more conventional two-stage strategies,
onsisting of a preliminary identification phase and a subsequent model-based control design
ask, in the last decades several techniques have been proposed for direct data-driven control
esign, ranging from well-established approaches, e.g., Virtual Reference Tuning (VRFT) [1] ,
terative Feedback Tuning (IFT) [2,3] and Correlation-based Tuning (CbT) [4,5] , to the recent
dvances in data-driven model predictive control [6,7] . 

At early stages, data-driven techniques focused on the control of linear time invariant (LTI)
lants, but recent advances in nonlinear model learning led to their extensions to more complex
lasses of systems, such as linear parameter varying (LPV) [8,9] , hybrid [10] and nonlinear
11] plants. These approaches require the selection of a reference model embedding the desired
losed-loop features before-hand , which is rather challenging especially for complex systems,
f no prior knowledge is available. Indeed, the selection of simple LTI references might impose
xcessively demanding requirements on the actual closed-loop, which cannot be achieved
n practice. At the same time, more complex reference models typically require accurate
nowledge of the plant to control, which is usually not the case when direct data-driven
pproaches are employed. 

Instead of looking at the reference model as an input to be fixed a-priori, which is rarely
he case in practice, techniques have been introduced to conceive the latter as an additional
egree of freedom of the design method. These approaches, see e.g., [12–16] , require one to
olely select the structure of the reference model a-priori, by allowing for the calibration of its
arameters within the design phase. Among these methods, the ones presented in [13,15] are
pecifically designed to handle non-minimum phase plants, while the approach proposed in
16] has proven to be effective even in a nonlinear scenario. As shown in [12] , user-defined
 typically “soft” - requirements (e.g., minimum acceptable bandwidth, maximum overshoot
f the step response, etc.) can be embedded as suitable constraints on the reference model
arameters. Due to this fundamental change in perspective, instead of directing the control
esign towards a fixed reference model, the latter can be shaped so as to achieve the best
ontroller within its class that satisfies the user-defined criteria. 

The goal of this work is to propose an approach based on Bayesian Optimization (BO)
or the design of LPV controllers for minimum-phase LPV systems. The approach relies on
he minimization of a cost accounting for both the performance of the controller and that of
he “flexible” reference model similar to the one exploited in [16] . Nonetheless, differently
rom [16] the objective function does not require the user to prefix the reference signal to be
racked, but it relies on the introduction of a fictitious reference signal. By focusing on LTI
eference models only, we can incorporate constraints on their parameters that can easily be
elated to the features of admissible closed-loop responses via standard system theory. 

The design of the controller is carried out through the approaches proposed in [8] , which
andle single-input single-output (SISO) systems only, but they allow one to tackle the
ases in which the controller structure is selected before-hand or inferred from the available
ata. 

By applying the developed technique to two benchmark problems in a simulation environ-
ent, we further assess the performance of the proposed strategy and the effect of different

hoices for the tunable parameters on the attained closed-loop performance. This last analysis
rovides the user with additional practical hints on the sensitivity of the approach to such
hoices, which might be useful when considering a different case study. 

The paper is organized as follows. The addressed direct data-driven control problem is
ntroduced in Section 2 , while the design strategy based on soft specifications and flexible
817 
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eference models is described in Section 3 . In Section 4 the results obtained by employing the
roposed design technique on two benchmark simulation examples are reported and throughly
ommented. Conclusions and directions for future work are finally discussed in Section 5 . 

. Setting and goal 

Let G p be a single-input single-output (SISO) minimum-phase LPV system, whose evolu-
ion is described by the difference equation 

 p : y o (t ) = 

n a ∑ 

i=1 

a i (p, t ) y o (t −i) + 

n b ∑ 

j=0 

b j (p, t ) u(t − j) , (1a)

here u(t ) ∈ R and y o (t ) ∈ R denote the input fed to the system and its noiseless output at
ime t ∈ N , respectively. Due to its LPV nature, the behavior of G p described in (1a) depends
n the measurable signals p(t ) ∈ P ⊆ R 

n p (the so-called scheduling variables ). In particular,
he unknown coefficients { a i (p, t ) } n a i=1 and { b j (p, t ) } n b j=0 are assumed to be possibly nonlinear
ynamic maps of a finite scheduling sequence, which might include the current and past
alues of the scheduling variables. All signals are assumed to be equal to zero for t < 0. 

The goal is to design a controller for the plant G p so as to achieve some desired closed-
oop performance, e.g., to satisfy given requirements on the step response. To this end, we
ssume that open-loop experiments can be performed by supplying the system with persis-
ently exciting inputs U T = { u(t ) } T t=1 and scheduling sequence P T = { p(t ) } T t=1 , and that the
orresponding measured outputs Y T = { y(t ) } T t=1 are corrupted by an additive, zero-mean, sta-
ionary colored noise sequence { v(t ) } T t=1 , namely 

(t ) = y o (t ) + v(t ) , t = 1 , . . . , T . (1b)

The resulting dataset D T = {U T , P T , Y T } is exploited to directly design a controller for
 p , without identifying a model for the plant first. Because of the LPV dynamics of G p , we

ocus on the design of LPV controllers, parameterized as 

 p (θ ) : u(t ) = 

n a k ∑ 

i=1 

a 

k 
i (p, t , θ ) u(t −i)+ 

n b k ∑ 

j=0 

b 

k 
j (p, t, θ ) e (t − j) , (2)

here n a k , n b k are fixed a-priori and e (t ) = r(t ) − y(t ) ∈ R denotes the tracking error attained
t time t with respect to a certain reference r(t ) ∈ R . For the controller to be as versatile
s possible, the coefficients { a 

k 
i (p, t, θ ) } n a k i=1 and { b 

k 
j (p, t, θ ) } n b k j=0 are assumed to be nonlinear

ynamic functions of the unknown parameter vector θ and the scheduling sequence { p(t −
) } m 

h=0 , with m ∈ N fixed a priori. 
According to this choice, the control design problem thus involves learning (i) the param-

ters θ and (i i ) the structure of the controller coefficients, if this is not given. Both these
asks can be handled using the data-driven design methods proposed in [8] . However, these
pproaches require the user to blindly select a reference model that characterizes the desired
losed-loop behavior before-hand . This choice is of crucial importance to shape the closed-
oop response of the system and, at the same time, it is usually challenging, since it is made
ith little to no knowledge about the actual plant. 
To overcome this limitation, in this paper we propose a change of perspective and treat

he reference model as an hyper-parameter to be tuned from data. The user is then (more
ealistically) asked to fix the structure of the reference model and then to provide only “soft ”
818 
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Fig. 1. Acceptable closed-loop ranges provided by the user (green area) against two admissible random reference 
models (black and blue dashed lines). Examples of soft specifications on (a) the step and (a) the frequency responses. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 
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pecifications, like bandwidth intervals or disturbance rejection levels. The control design
rocedure then picks up the best admissible closed-loop behavior to find an achievable, yet
erforming, controller within these bounds (see Fig. 1 for a pictorial view of possible examples
ssociated to the above conception of the reference model). 

Even though the approaches presented in [8] allow one to handle both LTI and LPV
eference models, in this work we focus on the set of stable LTI reference models 

 (ϕ) : y d (t ) = M(ϕ, q) r(t ) , (3)

here y d (t ) ∈ R is the desired output, q is the shift operator (namely q 

i u(t ) = u(t + i) , i ∈ Z )
nd ϕ ∈ R 

n ϕ is the vector of the reference model parameters. T he use of LTI reference models
llows the user to exploit relationships from standard system theory to relate the reference
odel parameters and the desired closed-loop specifications, thus making it user-friendly.
ince G p is LPV, we stress that the choice of a suitable LTI reference model is far from

rivial, since one might end up requiring excessively demanding inputs and dependences on
he scheduling parameter, that are unachievable in practice [8] . 

Inspired by the strategy proposed in [12] , we present a design procedure for LPV controllers
ith flexible reference models of customizable complexity, which involves the optimization of

n a-priori selected performance-oriented objective J : R 

n θ × R 

n ϕ → R on both the reference
odel and the controller parameters. In particular, the strategy relies on the solution of the

ptimization problem 

(ϕ 

� , θ� ) = arg min ϕ,θ J (ϕ, θ ) , 

s.t. ϕ ∈ [ ϕ , ϕ ] , 
(4)

here ϕ , ϕ ∈ R 

n ϕ are bounds on the reference model dictated by the user, according to the
iven closed-loop specifications. We stress that, by properly selecting the cost in (4) , the
esign strategy does not involve any closed-loop experiment. Moreover, since we rely on a
odel-reference design technique, the parameters θ of the controller depend on the ones of

he flexible reference model, namely θ = θ (ϕ) . 
819 
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. Joint data-driven design of LPV controllers and reference models 

In order to learn a LPV controller when the reference model is not fixed but can vary within
 certain domain, we embed the approach proposed in [8] within a Bayesian optimization (BO)
ased routine inspired to the one in [12] for LTI systems. We stress that this choice allows
s to avoid naive grid searches over the space of feasible reference models, with this space
ere explored according to the given performance-oriented cost J (ϕ, θ ) . 

Consider the fictitious reference signal 

 v (ϕ, t ) = M(ϕ, q) −1 y(t ) , (5)

amely the set point that would have generated the measured outputs Y T when supplied
o M(ϕ, q) , with M(ϕ, q) −1 denoting the inverse reference model. Moreover, let u c (θ (ϕ) , t )
ndicate the input generated by the controller with structure K p (θ ) in (2) associated to the
eference model M(ϕ, q) , i.e., 

 c (θ (ϕ) , t ) = 

n a k ∑ 

i=1 

a 

k 
i (p, t, θ (ϕ)) u c (θ (ϕ) , t −1) + 

n b k ∑ 

j=0 

b 

k 
j (p, t, θ (ϕ )) e v (ϕ , t − j) , (6)

here e v (ϕ, t ) = r v (ϕ, t ) − y(t ) is the fictitious tracking error, computed by comparing the
ctitious reference defined in (5) and the outputs available in the design phase. 

The cost J (ϕ, θ ) in (4) is chosen as 

 (ϕ, θ ) = 

1 

T 

T ∑ 

t=1 

[
e v (ϕ, t ) 2 +W �u �u c (θ (ϕ) , t ) 2 +W u (u(t ) −u c (θ (ϕ) , t )) 2 

]
, (7a)

ith e v (ϕ, t ) being the fictitious tracking error, u c (θ (ϕ) , t ) defined as in (6) , and 

u c (θ (ϕ) , t ) = u c (θ (ϕ) , t ) −u c (θ (ϕ) , t −1) , t = 1 , . . . , T , (7b)

here u c (θ (ϕ) , 0) is set to zero. Since e v (ϕ, t ) = (M(ϕ, q) −1 − 1) y(t ) , the first term in the
ost (7) penalizes the weighted difference between the reference model and an ideal unitary
ain. Differently from [16] , this allows us to account for the tracking performance of M(ϕ, q) ,
ithout requiring the user to fix the set-point to be tracked before-hand. Clearly, since the
ser selects both the structure of the reference model and the soft specifications on its pa-
ameters, the problem will then be solved by implicitly focusing on the performance for the
et points of interest for the user. Instead, the second term in (7) penalizes large fluctuations
n the reconstructed input sequence { u c (θ (ϕ) , t ) } T t=1 and the third one relates to how well
he controller is capable of reconstructing the real input u. Indeed, the higher W �u is with
espect to W u , the more the control input is forced to be smooth, at the price of a possible
eterioration of the controller performance. Instead, the higher W u is, the more aggressive the
esigned controller will be, compatibly with the available data and the fixed controller class
 p (θ (ϕ)) . We stress that the last two terms in J (ϕ, θ ) further allow us to account for the

ttainability of the reference model M(ϕ, q) , balancing out the effect of the first term in the
ost. It is worth highlighting that, since the cost depends on the fictitious tracking error only,
he proposed approach does not require one to close the loop during the training phase. 

As previously underlined, the controller parameters θ are functions of the selected reference
odel. Due to this nested dependence on the parameters of the controller and the reference
odel, the minimization problem in (4) cannot be generally solved in closed form. Instead,
e use Bayesian optimization (BO) [17] to explore the set of feasible reference models
820 
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Fig. 2. Ideal matching scheme for direct LPV controller design, introduced in [8] . 

M  

i  

a  

a  

w  

d  

s
 

I  

e  

c  

t  

c

B  

T  

k  

T  

i  

L  

a  

r
 

s  

i  

o

 

 

 

w  

c  

t  

a  

s  

p

(ϕ, q) , ultimately selecting the one leading to the best performance according to the cost
n (7) . This optimization procedure relies on the assumption that J (ϕ, θ (ϕ)) can be modeled
s a Gaussian process (GP), i.e., any finite set of observed values of J (ϕ, θ (ϕ)) is seen as
 joint Gaussian distribution with mean μ(ϕ) and covariances cov (J (ϕ) , J (ϕ 

′ )) = k(ϕ , ϕ 

′ ) ,
here k ∈ R is a covariance function. The Bayesian Optimization scheme exploits this joint
istribution to make predictions on J (ϕ) for some unobserved ϕ and find a minimum of the
elected objective. 

The overall procedure consists of the following steps (see also the flowchart in Fig. 3 ).
nitially, N randomly chosen candidate reference models { M(ϕ 

(i) , q) } N i=1 are introduced. For
ach tested reference model, an LPV controller in the class K p (θ (ϕ)) indicated in (2) is
onstructed with the available dataset D T . With this controller, the cost (7) is computed and
he set B ϕ is constructed, which comprises the tested reference models and the corresponding
osts, i.e., 

 ϕ = 

{
ϕ 

(i) , J (ϕ 

(i) , θ (ϕ 

(i) )) 
}
. (8)

he set B ϕ is then used to compute preliminary values of the mean m(ϕ) and variances
 i j (ϕ i , ϕ j ) , i, j ∈ [1 , · · · , N ] of the joint distribution characterizing the GP of J (ϕ, θ (ϕ)) .
his updated model is then exploited to select the next reference model to be tried out, which

s chosen by maximizing a user-defined acquisition function α(ϕ|B ϕ ) . Accordingly, a new
PV controller is designed, the associated cost is evaluated, B ϕ in (8) is augmented and μ(ϕ)

nd cov (J (ϕ) , J (ϕ 

′ )) characterizing the model of J (ϕ, θ (ϕ)) are updated. This process is
epeated until termination. 

A key ingredient of the proposed flexible design strategy is the approach employed at each
tep to learn a new LPV controller. As already introduced, we rely on the method proposed
n [8] , due to its adaptability to different design scenarios. The exploited technique is based
n the formulation of the following constrained optimization problem: 

min 

θ,ε 
‖ ε‖ 2 � 2 (9a)

s.t. ε(t ) = M(ϕ, q) r(t ) − y o (t ) , (9b)

eq. (1 a) and eq. (2) hold , ∀ t = { 1 , . . . , T } , (9c)

here ‖ ε‖ 2 � 2 denotes the � 2 -norm of ε, T is the length of the available dataset D T and the
onstraints in (9c) are introduced to enforce the controller to belong to K p (θ ) in (2) and
o account for the dynamics of G p . The variable ε to be minimized is defined as in (9b) ,
ccording to the matching scheme shown in Fig. 2 . Note that, based on the BO scheme
ummarized in Fig. 3 , this problem is solved whenever the reference model (and thus the
arameter vector ϕ) is fixed. 
821 
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Fig. 3. Flowchart summarizing the main steps of the proposed design strategy. 
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Fig. 4. Fictitious closed-loop scheme, exploited within all the phases of the proposed design procedure. 
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As it is, the problem in (9) cannot be solved since it requires the knowledge of plant
ynamics. Furthermore, it imposes the user to fix the reference to be tracked, thus limiting
he effectiveness of the resulting controller to unseen set points. These issues are overcome
y (i) introducing a fictitious reference ˜ r v (ϕ, ε, t ) , that is defined via the constraint (9b) ;

(i i ) replacing y o (t ) with the measured output, so that the fictitious closed-loop scheme used
or training is the one reported in Fig. 4 and the constraint on the plant dynamics can be
eglected. 

Let ˜ r v (ϕ, ε, t ) = r v (ϕ, t ) + M(ϕ , q) −1 ε(t ) , with r v (ϕ , t ) defined as in (5) . By exploiting
his fictitious reference and rearranging the terms of (2) , the optimization problem in (9) can
e recast as: 

min 

θ,ε 
‖ ε‖ 2 � 2 (10a)

s.t. B K (p, t, θ, q) M(ϕ, q) −1 ε(t ) = A K (p, t, θ, q) u(t ) −B K (p, t, θ, q) e v (ϕ, t ) , (10b)

here e v (ϕ, t ) = r v (ϕ, t ) − y(t ) is the fictitious tracking error, the constraint in (10b) has to
old for all t ∈ { 1 , . . . , T } and K p (θ ) be parametrized by 

 K (p, t, θ, q) = 1 + 

n a k ∑ 

i=1 

a 

k 
i (p, t, θ ) q 

−i , (11a)

 K (p, t, θ, q) = 

n b k ∑ 

j=0 

b 

k 
j (p, t, θ ) q 

− j . (11b)

The reader is referred to [8] for further details on this derivation. 
Note that the constraint in (10b) is bi-convex, due to the product between the polynomial

 K (p, t, θ, q) linearly depending on θ , and the optimization variable ε. As shown in [8] , the
orm of this constraint is shaped by the availability of prior insights on a suitable controller
lass K p (θ ) for G p , allowing us to design either parametric or non-parametric controllers, as
ummarized next. 

.1. Direct design of parametric LPV controllers 

A rough information on the system might be sufficient to preselect the structure of the
olynomials in (11) , so that satisfactory performance is attained for reference models belong-
ng to M (ϕ) in (3) . In this scenario, the coefficients in (11) are defined as 

 

k 
i (p, t, θ ) = 

m i ∑ 

l=1 

αi,l f i,l (p, t ) , i = 1 , . . . , n a k (12a)
823 



M. van Meer, V. Breschi, T. Oomen et al. Journal of the Franklin Institute 359 (2022) 816–836 

b  

w  

t

θ  

c  

b

B  

w
 

a
 

r  

m  

w  

i  

o
 

g

θ  

3

 

a  

a

a  

w  

a  

s  

b

x  

o

 

k 
j (p, t, θ ) = 

m j ∑ 

h=0 

β j,h g j,h (p, t ) , j = 0, . . . , n b k , (12b)

ith { f i,l (·) } m i 
l=1 and { g j,h (·) } m j 

h=0 being nonlinear and (possibly) dynamic prefixed basis func-
ions of the scheduling variable p, and where 

= 

[ 
α1 , 1 · · · αn a k ,m n a k 

β0, 0 β0, 1 · · · βn b k ,m n b k 

] ′ 
(13)

ollects all the unknown coefficients in (12) . Since the basis functions are known, they can
e precomputed with P T , leading to the following reformulation of the constraint in (10b) : 

 K (p, t, θ, q) M(ϕ, q) −1 ε(t ) = u(t ) − φ′ (ϕ, t ) θ, (14)

ith φ(ϕ , t ) stacking { u(t − i) f i,l (p, t ) } m n a k 
l=1 and { e v (ϕ, t − j) g j,h (p, t ) } m j 

h=0 , for i = 1 , . . . , n a k
nd j = 1 , . . . , n b k . 

To deal with measurement noise and remove the bi-convex constraint in (14) , we rely on a
egularized instrumental variable (IV) scheme. The design problem to be solved thus becomes

in 

θ

∥∥∥∥∥
T ∑ 

t=1 

ζ (t ) 
(
φ′ (ϕ, t ) θ − u(t ) 

)∥∥∥∥∥
2 

2 

+ λ‖ θ‖ 2 , (15)

here λ > 0 is a regularization parameter introduced to better condition the problem. The
nstrument ζ (t ) is a vector with the same dimension of φ(ϕ , t ) but uncorrelated with the
utput noise 1 

Let Z T (ϕ) = 

∑ T 
t=1 ζ (t ) φ(ϕ , t ) ′ . Accordingly, the closed-form solution for problem (15) is

iven by 

� (ϕ)= 

(
Z 

′ 
T (ϕ) Z T (ϕ) + λI 

)−1 

[ 

Z 

′ 
T ( ϕ) 

T ∑ 

t=1 

ζ ( t ) u( t ) 

] 

. (16)

.2. Direct design of non-parametric LPV controllers 

Since the reference model is flexible and considering that prior knowledge on G p may not
vailable, it is quite likely that the structure of a suitable controller cannot be easily selected
 priori. 

In this scenario, the coefficients in (11) can be defined as [8] : 

 

k 
i (p, t, θ ) = θ ′ 

i ψ i (p, t ) , b 

k 
j (p, t, θ ) = θ ′ 

d j ψ d j (p, t ) , (17)

ith d j = n a k + 1 + j, θi ∈ R 

n H . The functions ψ i : P → R 

n H , for i = 1 , . . . , n a k + n b k + 1 ,
re now unknown nonlinear maps that relate the scheduling parameter space to the feature
pace R 

n H , whose dimension n H 

is also supposed to be unknown. Let the regressor x v (ϕ, t )
e defined as 

 v (ϕ, t ) = 

[−u(t − 1) . . . −u(t − n a k ) e v (ϕ, t ) . . . e v (ϕ, t − n b k ) 
]′ 
. (18)
1 A possible approach to construct ζ (t ) is to build a new version of φ(ϕ , t ) , based on data collected over a second 
pen-loop experiment carried out with the same input sequence U T . In this case the instrument is a function of ϕ. 
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ccordingly, the constraint in (10b) becomes 

(t ) = 

n f ∑ 

i=1 

θ ′ 
i ψ i (p, t ) x v,i (ϕ, t ) + ε u (t ) , (19)

here x v,i (ϕ, t ) denotes the i-th component of x v (ϕ, t ) , n f = n a k + n b k + 1 , and ε u (t ) is a new
ariable to be optimized, that replaces the bi-convex term B k (p, t, θ, q) M 

−1 (ϕ, q) ε(t ) . 
By exploiting the LS-SVM framework [18] , problem (10) can then be cast as 

in 

θi ,ε u 

1 

2 

n f ∑ 

i=1 

⎡ 

⎣ θ ′ 
i θi + 

γ

T 2 

∥∥∥∥∥
T ∑ 

t=1 

ζi (t ) ε u (t ) 

∥∥∥∥∥
2 

2 

⎤ 

⎦ 

.t. ε u (t ) = u(t )−
n f ∑ 

i=1 

θ ′ 
i ψ i (p, t ) x v,i (ϕ, t ) , t = 1 , . . . , T . (20)

ote that the problem to be solved is regularized to prevent over-fitting, and the regu-
arization strength controlled by the tunable parameter γ > 0. This formulation also ex-
loits an instrumental variable scheme, with instruments z i (t ) . Each instrument is chosen
s z i (t ) = ψ(p, t ) ̃  x i (ϕ, t ) , where ˜ x i (ϕ, t ) is a new realization of the regressor defined in (18) .
or additional details, the reader is referred to [8] . 

Due to the convexity of the cost and the nature of the constraints, the global optimum for
he problem in (20) can be found by imposing the Karush-Kuhn-Tucker (KKT) conditions.
his requires the introduction of an additional set of variables to be retrieved, namely the
agrange multipliers { δ(t ) } T t=1 associated with the constraints, that are needed to find the
ptimal LPV controller. As detailed in [8] , the Lagrange multipliers can be computed by
xploiting the so-called kernel trick [19] , where the products of the unknown functions ψ i

re replaced by some known kernel functions { κi (p, t, τ ) } n f i=1 , that embed the structure of the
ontroller class K p (θ ) . 

Let δ ∈ R 

T be the vector stacking all the Lagrange multipliers and let [�i ] t,τ = κi (p, t, τ ) ,
t can be proven (see [8] ) that the following holds: 

= R D 

(�i ) 
−1 1 

T 2 

n f ∑ 

i=1 

˜ X i �i ˜ X i U , (21a)

here U ∈ R 

T is the vector stacking the collected inputs, R D 

(�i ) is given by 

 D 

(�i ) = γ −1 I + 

1 

T 2 

n f ∑ 

i=1 

˜ X i �i ˜ X i 

n f ∑ 

j=1 

X j �i X j , (21b)

nd X i and 

˜ X i are diagonal matrices, such that it holds that [ X i ] ττ = x i (ϕ, τ ) and [ ̃  X i ] ττ =
˜  i (ϕ, τ ) , for τ = 1 , . . . , T . 

Once the Lagrange multipliers are retrieved, the coefficients in (11) can finally be computed
s 

 

k 
i (p, t, θ ) = 

T ∑ 

τ=1 

κi (p, τ, t ) x i (ϕ, τ ) δ(τ ) , (22a)

 

k 
j (p, t, θ ) = 

T ∑ 

τ=1 

κd j (p, τ, t ) x d j (ϕ, τ ) δ(τ ) , (22b)
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ith d j = n a k + 1 + j, which concludes the controller design phase. 

emark 1 (On the choice of kernels) . The kernel functions to be selected are known to shape
he performance of the resulting LPV controller. A proper choice of the kernels is thus crucial
o attain good closed-loop performance. Although this choice heavily depends on the problem
t hand, Radial Basis Function (RBF) kernels can be used, with 

i (p, τ, t ) = exp 

(
−‖ p(τ ) − p(t ) ‖ 2 2 

σ 2 
i 

)
, (23)

ince they effectively represent a wide range of smooth functions. Here, σi is an hyper-
arameter to be tuned, that characterizes the width of the RBF. 

emark 2. As we exploit the strategy proposed in [8] to directly design the LPV controller
rom data, the user has to tune the regularization parameter λ in (16) or γ in (20) and the
ernel widths { σi } n f i=1 in (23) , depending on the chosen design framework. Within our setting,
hese design hyper-parameters can be selected by adding an additional optimization layer
ithin the proposed Bayesian Optimization framework, thus reducing the burden on the user

ide at the price of a longer design procedure. 

. Examples 

To assess the benefits of the proposed design strategy, we address the same problems
lready considered in [8] . In the first example, we design an LPV controller by relying on a
exible second-order reference model, which is selected according to constraints imposed on

he acceptable settling time and overshoot to step-like references. Then, we consider a rather
ealistic case study, designing an LPV controller for a voltage-controlled DC motor. In this
ast example we perform a detailed sensitivity analysis to the design parameter, that might be
seful as a tuning guideline even for different applications. 

.1. Performance assessment 

In both examples to quantitatively assess the attained closed-loop performance, we intro-
uce the following indicators: 

MSE M 

(θ, ϕ) = 

√ √ √ √ 

1 

T 

T ∑ 

t=1 

( y(θ (ϕ) , t ) − y d (ϕ, t ) ) 2 , 

MSE y 

(θ, ϕ) = 

√ √ √ √ 

1 

T 

T ∑ 

t=1 

(y(θ (ϕ) , t ) − r(t )) 2 . (24)

he first index, namely RMSE M 

(θ, ϕ) , relates to how well the closed-loop response
atches the desired behavior, thus measuring the adherence to design constraints. Instead,
MSE y 

(θ, ϕ) quantifies the ability of the closed-loop system to track a user-defined refer-
nce r(t ) . We stress that these quality indexes can be easily computed since we work within a
imulation environment, which allows us to run closed-loop experiments without threatening
he safety of the actual process. 
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Fig. 5. The reference r(t ) to be tracked is displayed in (a), while (b) shows the imposed to scheduling sequence 
p(t ) . These signals correspond to the ones considered in [8] . 
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.2. Numerical example 

Consider the following SISO LPV plant 

x G 

(t + 1) = p(t ) x G 

(t ) + u(t ) 
y(t ) = x G 

(t ) + w(t ) , 
(25)

ith −0. 2 ≤ p(t ) ≤ 0. 2. Assume that we aim at attaining a desired closed-loop behavior
escribed through the following second-order LTI reference model 

(ϕ, q ) = 

q 

−2 
(
1 − e ( ϕ 1 + jϕ 2 ) 

)(
1 − e ( ϕ 1 − jϕ 2 ) 

)(
1 − q 

−1 e ( ϕ 1 + jϕ 2 ) 
)(

1 − q 

−1 e ( ϕ 1 − jϕ 2 ) 
) . (26)

s in [12] , let us specify the range of feasible models by imposing bounds on the maximum
vershoot s max and the settling time T a to step-like references, with s max ∈ [10 

−6 , 1] and
 a ∈ [2, 10] s. To simultaneously obtain an optimal second-order reference model M(ϕ 

� , q)

nd LPV controller, without specifying the structure of its parameters, we apply the design
rocedure described in Section 3.2 . To this end, a set D T of open-loop measurements of
ength T = 1000 is collected using zero-mean input u(t ) with a uniform distribution. The
cheduling signal during these experiments is selected as p(t ) = 0. 4 sin ( 2π · 0. 03 t ) , while
he output measurements are subject to measurement noise w(t ) ∼ N (0, 0. 2 

2 ) , resulting in
 Signal-to-Noise Ratio (SNR) of 9.8 dB. In this test, the regularization parameter is fixed
t γ = 77844 and the hyper-parameter of the kernel is chosen as σ = 2. 9 . The Bayesian
ptimization procedure described in Section 3 is run for 30 times, with W �u = 0. 02, W u = 10.
The performance attained with the designed controller is assessed with respect to the same

eference and scheduling sequence considered in [8] , that are both depicted in Fig. 5 . 
As shown in Fig. 6 , the considered step-like set point is tracked. This indicates that the ref-

rence model automatically chosen by the proposed BO-based approach leads to an achievable
losed-loop behavior, as proven by the value of RMSE M 

reported in Table 1 . Note that the
ptimal settling time and overshoot shown in the Table 1 lie within the imposed constraints.

We further compare the results achieved with the optimized reference model with the
nes attained with a second-order M( ̃  ϕ , q) , with ˜ ϕ fixed before-hand. In selecting the latter
827 
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Fig. 6. Attained set-point tracking performance in closed-loop. 

Table 1 
Numerical example: fixed vs flexible reference model. 

M( ̃  ϕ , q) M(ϕ � , q) 

T a [s] 10.00 2.03 
s max 0.100 0.58 

RMSE M 

0.19 0.22 
RMSE y 0.92 0.78 

r  

r  

o  

t  

fl  

a

4

 

g  

F

x  

T

x  

w  

I  

a  
eference model, conservative desired performance have been considered, so as to represent a
ealistic situation in which the user has no information on the plant to be controlled and, thus,
n achievable closed-loop performance. The quantitative indexes defined in (24) attained with
he fixed and flexible reference model are shown in Table 1 , highlighting that the proposed
exible design method is effective at trading-off between set point tracking performance and
chievability of the desired closed-loop behavior. 

.3. A simulation case study: The DC motor 

Consider now the voltage-controlled DC motor considered in [8] , that features an inhomo-
eneous mass distribution caused by a mass placed on the disc connected to the rotor (see
ig. 7 ). This servo-positioning system is described by the continuous-time dynamics: 

˙  (t ) = 

⎛ 

⎝ 

⎡ 

⎣ 

0 1 0 

0 − b 
J 

K 
J 

0 −K 
L −R 

L 

⎤ 

⎦ + 

⎡ 

⎣ 

0 1 0 

Mgl 
J 0 0 

0 0 0 

⎤ 

⎦ 

sin (θ (τ )) 

θ (τ ) 

⎞ 

⎠ x(t )+ 

⎡ 

⎣ 

0 

0 

1 
L 

⎤ 

⎦ V (t ) . (27a)

he state and the output of the system are respectively given by 

(t ) = 

[
θ (t ) , ω(t ) , I (t ) 

]T 
, y(t ) = θ (t ) , (27b)

here θ (t ) [rad] is the motor angular position, ω(t ) [rad/s] is its angular velocity and
 (t ) [mA] denotes its current. The controlled input to the system is the voltage V (t ) [V]
nd the remaining constants characterizing the DC motor are shown in Table 2 . It is worth
828 
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Fig. 7. Schematic representation of the unbalanced disk in the example problem. 

Fig. 8. Bode plots of the servo system for some fixed values of θ . 

Table 2 
Parameters of the DC motor- [20] . 

Symbol Description Value 

R Motor resistance 9.5 [ �] 
L Motor inductance 0.84 ·10 −3 [H] 
K Motor torque constant 53.6 ·10 −3 [N m/A] 
J Complete disk inertia 2.2 ·10 −4 [N m 

2 ] 
b Friction coefficient 6.6 ·10 −5 [N m s/rad] 
M Extra mass 0.07 [kg] 
l Mass distance from the center 0.042 [m] 

s  

n  

i  

s

4
 

c  
tressing that the considered system is quasi-LPV with p(t ) = θ (t ) . Note that, the plant dy-
amics in (27a) fits the definition of G p provided in (1a) once converted in discrete-time and
n input/output form. For some fixed values of θ , the frequency response of the dynamics is
hown in Fig. 8 . 

.3.1. Setup and goal 
Our objective is to achieve an LTI behavior in closed-loop for the DC motor. For ease of

omparison with the results obtained in [8] , we focus on first order LTI flexible reference
829 
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odels: 

 (ϕ) : y d (ϕ, t ) = 

q 

−1 (1 − e ϕ ) 

1 − q 

−1 e ϕ ︸ ︷︷ ︸ 
M(ϕ,q) 

r( t ) , (28)

nd we impose bounds on the desired settling time for step-like responses. Specifically, we
onstrain the parameter ϕ within the following set 

 ∈ [ −0. 5 , −0. 005 ] , (29)

o as to enforce the settling time of the closed-loop step response to be comprised within
0.1,10] s. Note that, we exactly retrieve the reference model considered in [8] by imposing
 = log (0. 99) ≈ −0. 01 . 

To assess the effectiveness of the proposed strategy within the two possible design scenarios
hat it handles, both a parametric LPV controller and a non-parametric one are synthesized
y using the angular position θ (t ) as scheduling variable and by exploiting an integrator, so
s to achieve zero steady-state error, as in [8] . Accordingly, the controller class is modified
s: 

 p (θ ) : u(t ) = 

n a k ∑ 

i=1 

a 

k 
i (p, t , θ ) u(t −i)+ 

n b k ∑ 

j=0 

b 

k 
j (p, t, θ ) e int (t − j) , (30a)

ith 

 int (t ) = e int (t − 1) + (r(t ) − y(t )) . (30b)

When designing the parametric LPV controller, we impose n a k = 4, n b k = 5 and select the
ollowing basis functions: 

f i,l (p, t ) = 

sin (p(t − l )) 

p(t − l ) 
, l = 1 , . . . , 4, ∀ i ∈ { 1 , . . . , n a k } , 

 j,h (p, t ) = 

sin (p(t − h)) 

p(t − h) 
, h = 1 , . . . , 4, ∀ j ∈ { 0, 1 , . . . , n b k } , 

y keeping a linear term on the integral of the tracking error, so that the dynamics of the
ontroller is given by 

(t ) = 

n a k ∑ 

i=1 

a 

k 
i (p, t, θ ) u(t − i)+ 

+ 

n b k ∑ 

j=0 

b 

k 
j (p, t, θ ) e int (t − j) + 

n b k ∑ 

j=0 

˜ b 

k 
j e int (t − j) . (31)

his structure is build upon our prior knowledge of the nonlinearity characterizing the dy-
amics in (27a) . Even though this prior allows us to select a suitable controller structure, its
hoice is still rather challenging and the chosen structure is yet not optimal. As such, we do
ot expect the parametric LPV controller to outperform the non-parametric one presented in
8] , despite the flexibility of the reference model. 

When we exploit the non-parametric approach, we consider the same structure exploited
n [8] , namely we set n a k = n b k = 4, and we impose 

 

k 
i (p, t ) = a 

k 
i (�(t )) , ∀ i = 1 , . . . , n a k , (32a)
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Table 3 
Flexible design: parametric vs non-parametric approach. 

Parametric K p (θ ) Non-parametric K p (θ ) 

W �u 0.06615 0.0215 
W u 1098.5 46416 

exp (ϕ � ) 0.9981 0.9768 
λ� 1.8417 ·10 −3 - 
γ � - 1.1150 ·10 6 

RMSE y 0.4014 0.2481 
RMSE M 

0.1486 0.0535 
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k 
j (p, t ) = b 

k 
j (�(t )) , ∀ j = 0, 1 , . . . , n b k , (32b)

ith 

(t ) = 

[
p(t − 1) p(t − 2) p(t − 3) p(t − 4) 

]′ 
. (32c)

We stress that the additional flexibility guaranteed by a non-parametric controller structure,
uxtaposed with the non-optimality of the parametric controller, is expected to lead to improved
erformance of the non-parametric controller with respect to its parametric counterpart. 

To design the controller, we always rely on an experimental configuration similar to the
ne used in [8] . A set of open-loop measurements is collected by feeding the DC motor with
 Gaussian distributed white noise sequence, with mean equal to 16 V. Prior to be supplied
o the system, this signal is filtered via a first-order low-pass filter, with cutoff frequency of
.6 Hz. The measured angular position is affected by zero-mean white noise with Gaussian
istribution, whose variance yields a Signal-to-Noise Ratio (SNR) equal to 43 dB, which is
ather realistic for the application at hand. All data are acquired using an ideal zero-order-hold
ZOH) scheme with sampling time 0.01 s, with an additional filter acting on the output to avoid
liasing. A set D T of open-loop measurements of length T = 3000 is used when designing
he parametric LPV controller, while it is reduced to T = 1500 in the non-parametric case,
ue to the increased computational complexity. The same input sequence U T is exploited to
arry out an additional experiment, to compute the instrument. 

The BO-based approach proposed in Section 3 is carried out for a maximum number of
terations i max equal to 50, by using the Expected Improvement (EI) acquisition function to
ick the next reference model to be tested and Matérn kernels to update the model of the cost
unction (7) , see [21,22] . The regularization parameters λ in (16) and γ in (20) are treated
s additional design variables and optimized through Bayesian optimization, along with the
arameters of the controller θ and the reference model. On the other hand, { σi } n f i=1 in (23) are
ll fixed to 2.4, so as to limit the computational burden. It is worth remarking that the kernel
idth can be incorporated as a design variable as well, if there are no strict limits on the

omputational power. 

.3.2. Results 
The weights exploited to train the parametric and non-parametric LPV controller are re-

orted in Table 3 , along with the resulting optimal reference model and regularization pa-
ameters. As indicated there, ϕ 

� obtained when training a non-parametric LPV controller
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Fig. 9. Closed-loop response using parametric and non-parametric controllers, obtained by for their corresponding 
optimal reference model M(ϕ � ) . 

Table 4 
Nonparametric controller: flexible vs fixed [8] reference model. 

flexible M (ϕ) Nominal M (ϕ) 

exp (ϕ � ) 0.9768 0.9900 
γ � 1.1150 ·10 6 64163 

RMSE y 0.2481 0.3533 
RMSE M 

0.0535 0.0493 

y  

r
 

r  

t  

i  

p  

m  

t  

t  

a  

t  

t  

c  

m  

J  

b  

t  

o  

R
c

ields a significantly more reactive closed-loop system than the one attained with a paramet-
ic controller, as confirmed by the results shown in Fig. 9 . These responses and the RMSE M
eported in Table 3 further indicate that the use of a non-parametric design strategy leads
o a closed-loop response that is more adherent to the desired one, even though the latter
s more demanding. At the same time, these results prove the sub-optimality of the chosen
arametric controller, whose structure indeed requires us to select a less performing reference
odel for its behavior to be matched in closed-loop. This highlights once more that struc-

ure selection might be a rather challenging task, despite the priors available on the plant
o be controlled. We stress that the improvement in the response is attained at the price of
n increased computational time required to learn the non-parametric controller. Specifically,
raining is 100 times faster in the parametric case, where i max iterations of Bayesian optimiza-
ion take around 1 minute 2 A comparison between the performance of the non-parametric LPV
ontroller obtained with our training procedure with the one attained by fixing the reference
odel according to [8] is then shown in Fig. 10 . It is clear that the optimization of the cost

 (θ, ϕ) in (7) leads to a reference model that is achievable, but yet characterized by a higher
andwidth than the one selected (more conservatively) a-priori. This is further indicated by
he results reported in Table 4 . It has to be pointed out that this result is also linked to the
ptimization of γ , which is now more than one order of magnitude higher than the one cho-
2 The parametric controller has been trained and tested on an i7 3.40-GHz Intel core processor with 16 GB of 
AM, while in the non-parametric case an i7 2.50-GHz Intel core processor with 8 GB of RAM is used. In both 
ases, the system runs MATLAB R2019b. 
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Fig. 10. Closed-loop response using non-parametric controllers. The result obtained from optimizing for the optimal 
reference model M(ϕ � ) is compared to the result obtained from using the nominal reference model from [8] . 

Fig. 11. Parametric controller performance vs W u : average RMSE y (left axis, solid line) and RMSE M 

(right axis, 
dashed line) computed over 40 different values of W �u ∈ [0. 01 , 1] at each tested value of W u . 
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en through cross-validation in [8] (see Table 4 ). By incorporating this parameter within our
esign variables, we account for the sensitivity of the closed-loop performance to the choice
f γ , which indeed plays an important role as shown in the following sensitivity analysis. 

.3.3. Sensitivity analysis 
Although the optimization of the cost (7) is performed with open-loop data only, one has no

uarantees that its minimizer leads to the optimal performance according to (24) . By focusing
ow on the parametric case only, we investigate how the choice of the weights W u and W �u

nfluences the final closed-loop behavior in terms of RMSE M 

(θ, ϕ) and RMSE y 

(θ, ϕ) . 
A comparison between these two quality indexes and the value of W u is reported in Fig. 11 .

ccordingly, the lower the value of this weight is, the better performance is attained in closed-
oop both in terms of set-point tracking and model reference mismatch. We stress that the
alues for W u considered in Fig. 11 are still (at least) two orders of magnitude higher than the
nitary weight attributed to the virtual tracking error, suggesting that the flexible reference
odel should be trained by looking mainly at input mismatches, at least in this case study.

nstead, by investigating the effect of different choices of W �u on the resulting closed-loop
erformance, no actual trend can be detected. This result can be related to the fact that W �u
833 
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Fig. 12. Parametric controller vs percentage of observed unstable closed-loop responses: average RMSE y (left axis, 
solid) and RMSE M 

(right axis, dashed). 

Fig. 13. Nonparametric controller: achievable closed-loop bandwidth (green area) as a function of the regularization 
parameter γ . (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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s not exploited to select the regularization parameter λ� , that is instead optimized along with
he other design parameters. This seems to suggest that, if this weight is not used to shape
he regularization strength, the related term might be left out of the cost without jeopardizing
he closed-loop performance. 

In the results reported in Fig. 11 , we have excluded a small number of outliers, that
epresent the cases where the obtained controller led to an unstable closed-loop response even
or a finite cost J (ϕ 

� , θ� ) . This unwanted behavior is mainly observed for smaller values of
 u , as can be deduced from the results reported in Fig. 12 , thus indicating that the closed-

oop system is prone to be unstable when W u is chosen so as to minimize the considered
erformance indexes (see their definition in (24) ). 

This suggests that it might be wiser to consider large values of W u at first and then proceed
y carefully lowering this weight to improve the closed-loop performance. 

Let us now consider the non-parametric case. Instead of focusing on the weights in the
ost (7) , here we study how different choices of γ might affect the resulting closed-loop
erformance. Indeed, it is well known that the value of γ influences the result of LS-SVM
18] . 
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To this end, the method proposed in Section 3 has been run by fixing different values for γ
efore-hand. The bandwidths of the corresponding optimized reference models are compared
n Fig. 13 , showing that the lower γ is, the more conservative the automatically chosen
eference model will be. This yields the conclusion that the lower bound on γ should be
ufficiently high if one seeks for an aggressive controller. At the same time, we have found
hat the closed-loop becomes unstable for values of γ higher than approximately 10 

7 , even
or finite values of J in (7) , which is likely to imply that the resulting reference model is too
emanding and thus not achievable. This implies that one cannot push γ to be excessively
igh, thus limiting the upper-bound that can be imposed when optimizing it. 

. Conclusions 

In this paper, an approach for direct design of LPV controllers with flexible reference
odels is presented. By treating the reference model as an hyper-parameter , the developed

pproach requires the user to define a range of admissible closed-loop responses, rather than
xing the desired closed-loop behavior before-hand. This leads to a more user-friendly design
trategy, that allows for the imposition of some specifications on the closed-loop response,
hile not excessively constraining the design before-hand. 
From a methodological perspective, future research will be devoted to the generalization of

he approach to non-minimum phase plants and to alternative classes of controllers. Moreover,
ome effort will be devoted towards the definition and the assessment of alternative objectives
o be optimized to concurrently select the flexible reference model and design a controller from
ata. This will allow us to look at alternative closed-loop features than tracking performance,
.g., robustness against mismatches, thus enabling us to provide useful practical guidelines
n the objective to be considered depending on the needs of the user. We also aim at testing
he approach on real-world case studies, for a more complete experimental assessment of its
ffectiveness. 
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