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Abstract: Nonlinear systems are appearing in all engineering applications. Deriving models
for these systems is important for instance for prediction and control. The goal of this paper is
to estimate models of a class of nonlinear systems, from experimental data. When considering
slowly varying setpoints, nonlinear systems can be approximated by linear time-varying models.
That is, the nonlinear system is linearised around a trajectory of setpoints. The approach
followed in this paper formulates the identification problem of a nonlinear system as an
exploration through the relevant range of setpoints, which are identifiable by using tools for
linear time-varying systems. This approach is demonstrated on an idealised simulation example,
and on a real-life robotic application.
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1. INTRODUCTION

Developing a general framework to tackle the identification
of nonlinear systems is extremely challenging. This is at-
tested by the many references, each of which investigating
a different model class or structure. Examples include
NARMAX models (Billings, 2013), block-oriented models
(Giri and Bai, 2010; Schoukens et al., 2015), nonlinear
state-space models (Paduart et al., 2010; Schön et al.,
2011) and artificial neural networks (Suykens et al., 1996).
From an identification perspective, the difficulty of non-
linear systems is that, either, strong prior knowledge is
required on the model structure, or the parameter space
can be extremely large.

The challenge to use these nonlinear models to design
effective controllers is perhaps even higher. In fact, control
engineers very often fall back to control theory of linear
systems, presuming that an LTI approximation of the
system at hand is sufficient. An obvious drawback is that
this approximation will only be valid for small excursions
of the system’s states around a predefined setpoint.

An intermediate approach, as proposed for instance by
Casavola et al. (2003); Hanema et al. (2017) and Chapter 7
in Tóth (2010), is to linearise the system around a variable
setpoint, which is assumed to be explicitly dependent on
a measurable scheduling variable. That is, the nonlinear
system is embedded into a Linear Parameter Varying
(LPV) framework. A serious advantage over a full blown

1 This research was funded by the Research Foundation Flanders
(FWO-Vlaanderen) and the Flemish Government (Methusalem Fund
METH1). This work is part of the research programme VIDI with
project number 15698, which is (partly) financed by the Netherlands
Organisation for Scientific Research (NWO).

nonlinear identification approach is that widely applicable
control paradigms exist for LPV systems (Packard, 1994;
Apkarian et al., 1995; Rugh and Shamma, 2000; Leith
and Leithead, 2000; De Caigny et al., 2012; Hoffmann and
Werner, 2015; Abbas et al., 2018).

However, actual attempts to identify linearised models
with a variable setpoint from real-life data on nonlinear
systems are scarce, and very often limited to interpolations
of LTI models (De Caigny et al., 2014). The latter is
known as the ‘local LPV modelling approach’, and has the
drawbacks that i) it can result in significant interpolation
errors between setpoints, and that ii) it does not allow to
detect the possible dynamic dependence of the model on
the scheduling variable.

The current paper proposes a framework to describe non-
linear systems, subject to slow setpoint changes, as lin-
ear time-varying (LTV) systems. As opposed to an LPV
framework, the dependence of the setpoint on a measur-
able scheduling variable is not imposed a priori. This low-
ers the required prior knowledge on the model structure,
but also limits the applicability of the identified model to
the same setpoint trajectories as in the identification data
set. Nevertheless, the proposed approach can be seen as an
intermediate step towards an LPV model, the extension to
which is foreseen in future work.

The contribution of this paper is a proof-of-concept of an
identification framework for nonlinear systems embedded
in an LTV structure. It is applied to a simple simulation
example and to measured data from an RRR-robot.
The proposed approach assumes that the system’s input
and its response are the sum of a large-but-slow con-
tribution, defining the varying setpoint, and a fast-but-
small contribution, which will allow the estimation of the
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in Tóth (2010), is to linearise the system around a variable
setpoint, which is assumed to be explicitly dependent on
a measurable scheduling variable. That is, the nonlinear
system is embedded into a Linear Parameter Varying
(LPV) framework. A serious advantage over a full blown

1 This research was funded by the Research Foundation Flanders
(FWO-Vlaanderen) and the Flemish Government (Methusalem Fund
METH1). This work is part of the research programme VIDI with
project number 15698, which is (partly) financed by the Netherlands
Organisation for Scientific Research (NWO).

nonlinear identification approach is that widely applicable
control paradigms exist for LPV systems (Packard, 1994;
Apkarian et al., 1995; Rugh and Shamma, 2000; Leith
and Leithead, 2000; De Caigny et al., 2012; Hoffmann and
Werner, 2015; Abbas et al., 2018).

However, actual attempts to identify linearised models
with a variable setpoint from real-life data on nonlinear
systems are scarce, and very often limited to interpolations
of LTI models (De Caigny et al., 2014). The latter is
known as the ‘local LPV modelling approach’, and has the
drawbacks that i) it can result in significant interpolation
errors between setpoints, and that ii) it does not allow to
detect the possible dynamic dependence of the model on
the scheduling variable.

The current paper proposes a framework to describe non-
linear systems, subject to slow setpoint changes, as lin-
ear time-varying (LTV) systems. As opposed to an LPV
framework, the dependence of the setpoint on a measur-
able scheduling variable is not imposed a priori. This low-
ers the required prior knowledge on the model structure,
but also limits the applicability of the identified model to
the same setpoint trajectories as in the identification data
set. Nevertheless, the proposed approach can be seen as an
intermediate step towards an LPV model, the extension to
which is foreseen in future work.

The contribution of this paper is a proof-of-concept of an
identification framework for nonlinear systems embedded
in an LTV structure. It is applied to a simple simulation
example and to measured data from an RRR-robot.
The proposed approach assumes that the system’s input
and its response are the sum of a large-but-slow con-
tribution, defining the varying setpoint, and a fast-but-
small contribution, which will allow the estimation of the

An LTV Approach to Identifying
Nonlinear Systems - with Application

to an RRR-Robot 1

John Lataire ∗ Rik Pintelon ∗ Tom Oomen ∗∗

∗ Dept. ELEC, Faculty of Engineering, Vrije Universiteit Brussel
(e-mail: jlataire@vub.ac.be)

∗∗ Department of Mechanical Engineering, Eindhoven University of
Technology, Eindhoven, The Netherlands.

Abstract: Nonlinear systems are appearing in all engineering applications. Deriving models
for these systems is important for instance for prediction and control. The goal of this paper is
to estimate models of a class of nonlinear systems, from experimental data. When considering
slowly varying setpoints, nonlinear systems can be approximated by linear time-varying models.
That is, the nonlinear system is linearised around a trajectory of setpoints. The approach
followed in this paper formulates the identification problem of a nonlinear system as an
exploration through the relevant range of setpoints, which are identifiable by using tools for
linear time-varying systems. This approach is demonstrated on an idealised simulation example,
and on a real-life robotic application.

Keywords: Nonlinear systems, Frequency domain, Linear Time-Varying Systems, Mechatronics

1. INTRODUCTION

Developing a general framework to tackle the identification
of nonlinear systems is extremely challenging. This is at-
tested by the many references, each of which investigating
a different model class or structure. Examples include
NARMAX models (Billings, 2013), block-oriented models
(Giri and Bai, 2010; Schoukens et al., 2015), nonlinear
state-space models (Paduart et al., 2010; Schön et al.,
2011) and artificial neural networks (Suykens et al., 1996).
From an identification perspective, the difficulty of non-
linear systems is that, either, strong prior knowledge is
required on the model structure, or the parameter space
can be extremely large.

The challenge to use these nonlinear models to design
effective controllers is perhaps even higher. In fact, control
engineers very often fall back to control theory of linear
systems, presuming that an LTI approximation of the
system at hand is sufficient. An obvious drawback is that
this approximation will only be valid for small excursions
of the system’s states around a predefined setpoint.

An intermediate approach, as proposed for instance by
Casavola et al. (2003); Hanema et al. (2017) and Chapter 7
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required on the model structure, or the parameter space
can be extremely large.

The challenge to use these nonlinear models to design
effective controllers is perhaps even higher. In fact, control
engineers very often fall back to control theory of linear
systems, presuming that an LTI approximation of the
system at hand is sufficient. An obvious drawback is that
this approximation will only be valid for small excursions
of the system’s states around a predefined setpoint.

An intermediate approach, as proposed for instance by
Casavola et al. (2003); Hanema et al. (2017) and Chapter 7
in Tóth (2010), is to linearise the system around a variable
setpoint, which is assumed to be explicitly dependent on
a measurable scheduling variable. That is, the nonlinear
system is embedded into a Linear Parameter Varying
(LPV) framework. A serious advantage over a full blown
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nonlinear identification approach is that widely applicable
control paradigms exist for LPV systems (Packard, 1994;
Apkarian et al., 1995; Rugh and Shamma, 2000; Leith
and Leithead, 2000; De Caigny et al., 2012; Hoffmann and
Werner, 2015; Abbas et al., 2018).

However, actual attempts to identify linearised models
with a variable setpoint from real-life data on nonlinear
systems are scarce, and very often limited to interpolations
of LTI models (De Caigny et al., 2014). The latter is
known as the ‘local LPV modelling approach’, and has the
drawbacks that i) it can result in significant interpolation
errors between setpoints, and that ii) it does not allow to
detect the possible dynamic dependence of the model on
the scheduling variable.

The current paper proposes a framework to describe non-
linear systems, subject to slow setpoint changes, as lin-
ear time-varying (LTV) systems. As opposed to an LPV
framework, the dependence of the setpoint on a measur-
able scheduling variable is not imposed a priori. This low-
ers the required prior knowledge on the model structure,
but also limits the applicability of the identified model to
the same setpoint trajectories as in the identification data
set. Nevertheless, the proposed approach can be seen as an
intermediate step towards an LPV model, the extension to
which is foreseen in future work.

The contribution of this paper is a proof-of-concept of an
identification framework for nonlinear systems embedded
in an LTV structure. It is applied to a simple simulation
example and to measured data from an RRR-robot.
The proposed approach assumes that the system’s input
and its response are the sum of a large-but-slow con-
tribution, defining the varying setpoint, and a fast-but-
small contribution, which will allow the estimation of the
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set. Nevertheless, the proposed approach can be seen as an
intermediate step towards an LPV model, the extension to
which is foreseen in future work.

The contribution of this paper is a proof-of-concept of an
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in an LTV structure. It is applied to a simple simulation
example and to measured data from an RRR-robot.
The proposed approach assumes that the system’s input
and its response are the sum of a large-but-slow con-
tribution, defining the varying setpoint, and a fast-but-
small contribution, which will allow the estimation of the
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dynamics of the system. Based on this assumption, the
system model can be written as a linear ordinary differen-
tial equation with time-varying coefficients, then identified
by the estimator proposed in Lataire et al. (2017). An
advantage of the approach is that it is formulated in such
a way that a single experiment is sufficient to extract the
LTV model. Also, little constraints are imposed on the tra-
jectory of the setpoint variation (e.g. it is not necessarily
periodic).
The price to pay to work in a linear framework is that
the experimental conditions must allow for the separation
of the input and output signals into large-but-slow and
fast-but-small contributions.

In the remainder, Section 2 formalises the assumptions on
the system and on the experimental conditions. Section 3
outlines the identification approach, which is then applied
to a simulation example in Section 4 and to a real-life
robotic application in Section 5. Conclusions are formu-
lated in Section 6.

2. SYSTEM ASSUMPTION

The considered system is SISO (Single-Input Single-
Output), described by a nonlinear differential equation:

f
(
y(t), . . . , y(na)(t), u(t), . . . , u(nb)(t)

)
= 0 (1)

where u(t) and y(t) are considered to be the input and
output signals of the system, f(•) is a nonlinear (static)
function, and •(n) denotes the nth derivative operator
w.r.t. t.

Assumption 1. (Local linearisation). The nonlinear func-
tion f and the experimental conditions are such that the
input and output signals can be decomposed into

u(t) = uL(t) + ũ(t) (2)

y(t) = yL(t) + ỹ(t) (3)

such that

f
(
y(t), . . . , u(nb)(t)

)

≈
na∑
n=0

an(t)ỹ
(n)(t)−

nb∑
n=0

bn(t)ũ
(n)(t)− f̃(t) (4)

with

−f̃(t) = f (yL(t), uL(t)) (5)

an(t) =
∂f

∂y(n)

∣∣∣∣
yL(t),uL(t)

(6)

−bn(t) =
∂f

∂u(n)

∣∣∣∣
yL(t),uL(t)

(7)

and f̃(t), an(t) and bn(t) are smooth and slow functions
of time.

Assumption 1 is interpreted as a linearisation of the
nonlinear function f around a smoothly varying setpoint
given by uL(t) and yL(t). This imposes constraints on the
experimental conditions and on the nonlinear function f :
the excitation should consist of a slow component (possibly
with large amplitude) uL(t), and fast but small component
ũ(t), and f should be smooth in its arguments. This results
in a slow and smooth response yL(t), added to a fast

response ỹ(t) of small amplitude. Note that f̃(t) is prone
to be small. In fact, if the large signals (yL(t), uL(t)) satisfy

the system equation (1), then f̃(t) = 0.

Proposition 1. (LTV model small signal). Under Assump-
tion 1, the nonlinear system model (1) can be rewritten as
a linear time-varying (LTV) system model

na∑
n=0

an(t)ỹ
(n)(t) ≈

nb∑
n=0

bn(t)ũ
(n)(t) + f̃(t) (8)

This system model is a linear ordinary differential equation
with smoothly time-varying coefficients, and an additional
smooth term f̃(t).

Proof. This follows immediately from (1) and (4). �

The approximation errors in (4) and (8) are proportional
to the second derivatives of f , multiplied by the small
signals:

O

{
∂2f

∂y(n)∂y(m)

∣∣∣∣
yL(t),uL(t)

(
ỹ(n)ỹ(m)

)}
, (9)

O

{
∂2f

∂u(n)∂u(m)

∣∣∣∣
yL(t),uL(t)

(
ũ(n)ũ(m)

)}
, (10)

O

{
∂2f

∂y(n)∂u(m)

∣∣∣∣
yL(t),uL(t)

(
ỹ(n)ũ(m)

)}
, (11)

and, thus, decrease for smaller ũ, ỹ and smoother f . For
this setting (Assumption 1), the higher order terms are
assumed to be negligible.

Note that the decompositions of the signals in (2) and (3)
into a slow-large and a small-fast component requires a
preprocessing step, involving a detrending procedure. As
an alternative, the full signals can be used in the following
proposition.

Proposition 2. (LTV model large signal). Under Assump-
tion 1, the nonlinear system model (1) can be rewritten as
a linear time-varying (LTV) system model

na∑
n=0

an(t)y
(n)(t) ≈

nb∑
n=0

bn(t)u
(n)(t) + fL(t). (12)

This system model is also a linear ordinary differential
equation with smoothly time-varying coefficients. The
additional term fL(t) is given by

fL(t) = f̃(t) +

na∑
n=0

an(t)y
(n)
L (t)−

nb∑
n=0

bn(t)u
(n)
L (t), (13)

which is smooth but not necessarily small.

Proof. By substituting (2) and (3) into (12), we obtain
equation (8). �

An extension of Propositions 1 and 2 to MIMO (Multiple-
Input Multiple-Output) systems (nu inputs, ny outputs)
could be conceived, considering a set of ny nonlinear
differential equations, such as (1). This lies beyond the
scope of this paper.

3. IDENTIFICATION APPROACH

The main contribution of this article is the proposed
identification procedure, as follows.
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An extension of Propositions 1 and 2 to MIMO (Multiple-
Input Multiple-Output) systems (nu inputs, ny outputs)
could be conceived, considering a set of ny nonlinear
differential equations, such as (1). This lies beyond the
scope of this paper.

3. IDENTIFICATION APPROACH

The main contribution of this article is the proposed
identification procedure, as follows.

Fig. 1. Simulated pendulum, with massless stiff rod to the
extremity of which a mass m is fixed, instantaneous
angle θ, and Fg the component of the gravitational
force mg which is perpendicular to the rod.

(1) Perform an experiment where the input signal con-
sists of a small broad band component, with a slowly
varying average, such that Assumption 1 is satisfied.
This might involve a stabilising control loop if the
system can be locally unstable.

(2) If Proposition 1 is used, determine ũ(t) and ỹ(t)
by detrending the signals. This will be done in the
example sections by fitting smooth basis functions to
the measured signals. The specific choice of the basis
functions is subject to a model structure selection
criterion, which can typically use prior knowledge on
the applied setpoint variation.

(3) Estimate an(t) and bn(t) by considering (8) or (12)
as an LTV system. The estimator proposed in Lataire
et al. (2017) will be used in Sections 4 and 5. It
estimates an(t) and bn(t) as the minimisers of a
weighted least squares cost function formulated in the
frequency domain, where the smoothness is imposed
by including a quadratic kernel based regularisation
term.
The term f̃(t) (Proposition 1) or fL(t) (Propo-

sition 2) is dealt with by including in the model
equation an additional smooth term to be estimated.
Note that, the distinct terms in fL(t), as defined in
(13), will not be further distinguishable.

(4) As a first step towards an LPV model identification,
the dependence of the time-varying coefficients ân(t)

and b̂n(t) on the setpoint variations can be visualised
via scatter plots. A more formal LPV identification is
foreseen for future work.

Note that Step 1 relies on the design of an informative
experiment on the system. This includes the selection of
the power spectrum of the small input signal ũ to excite the
dynamics of the system, and the range of the large input
signal uL to cover the domain of interest of the operating
points of the system.

Also note that, in Step 3, alternative identification tech-
niques are also useable, e.g. via a time-domain identi-
fication approach (Laurain et al., 2011) or via the use
of the modulating function method (Preisig and Rippin,
1993). The method in Lataire et al. (2017) is used for its
convenience of selecting the frequency band of interest and
its applicability to continuous-time system.

Fig. 2. Stabilising feedback configuration for the simula-
tion example. G is the pendulum in (14), C is a PID
controller, r̃(t) is a small amplitude multisine signal,
and rL(t) is a slowly varying angular setpoint change
(ramp).

4. SIMULATION EXAMPLE

4.1 Locally linearised model

Consider the pendulum shown in Figure 1, described by
the nonlinear differential equation

mlθ(2)(t) + ξlθ(1)(t) +mg sin θ(t)︸ ︷︷ ︸
�Fg(θ(t))

= u(t) (14)

with m the mass, l the length of the rod, ξ a friction
coefficient, g the gravity (model parameter values in Ta-
ble 1), and u an externally applied force (not shown in the
figure). The force u and the angle θ are considered to be the
input and the output respectively of the system. We define
θ = 0 as the pendulum pointing straight downwards. The
component of the gravitational force perpendicular to the
rod, Fg, appears as a nonlinear contribution in θ. From a
first order Taylor polynomial approximation of Fg around
an arbitrary θL:

Fg(θL + θ̃) ≈ mg sin θL + θ̃ mg cos θL︸ ︷︷ ︸
�k(θL)

, (15)

the pendulum equation (14) is approximated as

mlθ(2) + ξlθ(1) + k(θL)θ̃ ≈ ũ+ f̃(uL, θL) (16)

with f̃(uL, θL) = uL −mg sin θL. (17)

In this expression, f̃(uL, θL) can be interpreted as cap-
turing the setpoint variation of the force, while k(θL)
results in a restoring force with varying proportionality.
Note that k(θL) becomes negative for θL ∈ ]π/2, 3π/2[
(corresponding to the upper half of the circle), possibly
resulting in an unstable locally linearised system.

The paradigm in Proposition 1 assumes that θ = θL + θ̃
where θL is a slow function of time and θ̃ is small in
amplitude such that Assumption 1 holds, resulting in the
Linear Time-Varying (LTV) model in the form of (8):

a2θ̃
(2)(t) + a1θ̃

(1)(t) + a0(t)θ̃(t) = ũ(t) + f̃(t) (18)

For this specific case, only a0(t) is time-varying.

4.2 Simulation setup

The simulation is performed in Simulink, on the setup
given in Figure 2. A feedback configuration (with C a
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Fig. 3. Identification results on a simulation example. Left:
Evolution of frozen poles (top: real part, bottom:
imaginary part) (blue: estimated; red: true, locally lin-
earised around θ(t)). Top right: Simulated θ(t) (black)
and trend θL(t). Bottom right: blue: (â0(t), θ(t)), red:
mg cos(θ). The black circles indicate corresponding
points of interest in the four plots.

continuous time PID controller, see Table 1) is used, which
ensures that the local closed loop system Gr→θ is stable
for all θL.

The angular reference signal is r(t) = rL(t) + r̃(t), with

• r̃(t): a zero-mean broadband (multisine) signal of
small amplitude, aimed at exciting the dynam-
ics of the system. This signal is periodic (period
Tms = 100 s), excites 150 components in the band
[0.01, 4]Hz, and has an RMS (Root-Mean-Square)
value of π

50 rad.

• rL(t) = ( 2πT t − 3π
4 ) rad: a slowly linearly increasing

function (with T = 4Tms = 400 s the measurement
time), which establishes a scan of the range of interest
of the angle.

4.3 Identification

The identification results are analysed below, on the basis
of the plots in Figure 3.

• The simulated input and output are detrended:
uL(t) and θL(t) are fitted as linear combinations of
a linear function and 4 (co)sine functions to u(t) and
θ(t). In the top-right plot, θ(t) (black full line) and
θL(t) (white line) are shown. A linearly increasing
trend is clearly discerned, covering the span of interest
of the pendulum’s angle.

• The (time-varying) parameters of the model
structure (18) are estimated by providing the

Table 1. Model and control parameters,
simulation

G

m 10 kg
ξ 1Ns/m
l 1m
g 9.81m/s2

C

P 300N/rad
I 20N/(s.rad)
D 10Ns/rad

small signals ũ(t) = u(t)− uL(t) and θ̃ = θ(t)− θL(t)
to the KBR (Kernel Based Regression) estimator for
LTV systems proposed in Lataire et al. (2017). With
this estimator, the smoothness of the estimated time-
varying parameters is imposed via a kernel based
quadratic regularisation term, involving the Gaussian
radial basis function kernel (with a length scale of
80 s), see Schölkopf and Smola (2002). Both a0 and
a1 were allowed to be varying. Since the signals were
assumed to be noiseless, the terms in the associated
cost function are uniformly weighted.

• Given the estimated parameters, the frozen transfer
function is computed as

Ĝf(s, t) =
1

â2s2 + â1(t)s+ â0(t)
. (19)

This frozen transfer function can be understood as
the locally linearised model around the setpoint at
time instant t. Note that, although the frozen transfer
function (and the frozen poles and zeroes) cannot be
immediately associated with any statements on the
stability of the system, they do have a one-to-one
link with the time-varying differential equation such
that they describe unambiguously the input-output
behaviour of the system.

• In the left plots (top: real part, bottom: imaginary
part), the evolution of the frozen poles (i.e. the
poles of the frozen transfer function) are given by the
blue full line. These are in good agreement with the
theoretical poles (in red), obtained as the roots (in s)
of the denominator of the linearised system

mls2 + ξls+mg cos θ(t). (20)

Note that the linearised poles are computed for the
raw output signal θ(t), to not be influenced by the de-
trending approach. This results in small excursions of
the theoretical poles around the smoothed estimated
poles.

• The bottom-right is a scatter plot of (â0(t), θ(t))
(blue line), which gives a good impression of the
dependence of the restoring force on the angle.
It is in good agreement with its theoretical value
mg cos θ (red line), from (15).

• The black circles in the four plots indicate values at
particular angular locations, θ ∈ {0, π,±π/2}, cor-
responding to the pendulum i) pointing downwards,
ii) pointing upwards, and iii) with horizontal rod.
As expected, the pendulum behaves as a resonating
system when pointing downwards (it has a pair of
complex conjugate poles close to the imaginary axis),
and has an unstable real pole when pointing upwards,
i.e. for θ ∈ [π/2, 3π/2] in the upper half of the circle.

• The other estimated coefficients are â2 = 9.9993 and
â1 = 1.0009. Their theoretical values are, respectively,
ml = 10 kg.m and ξl = 1Ns. Thus, a good agreement
is obtained.

It is clear that, for this simulation example, the LTV
approach is able to extract the expected linearised model
around the slowly varying setpoint. Of course, the current
setting is close to ideal: the signals are noiseless and the
model structure is known. The only errors are due to the
local linearisation of the nonlinear function.
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Fig. 3. Identification results on a simulation example. Left:
Evolution of frozen poles (top: real part, bottom:
imaginary part) (blue: estimated; red: true, locally lin-
earised around θ(t)). Top right: Simulated θ(t) (black)
and trend θL(t). Bottom right: blue: (â0(t), θ(t)), red:
mg cos(θ). The black circles indicate corresponding
points of interest in the four plots.

continuous time PID controller, see Table 1) is used, which
ensures that the local closed loop system Gr→θ is stable
for all θL.

The angular reference signal is r(t) = rL(t) + r̃(t), with

• r̃(t): a zero-mean broadband (multisine) signal of
small amplitude, aimed at exciting the dynam-
ics of the system. This signal is periodic (period
Tms = 100 s), excites 150 components in the band
[0.01, 4]Hz, and has an RMS (Root-Mean-Square)
value of π

50 rad.

• rL(t) = ( 2πT t − 3π
4 ) rad: a slowly linearly increasing

function (with T = 4Tms = 400 s the measurement
time), which establishes a scan of the range of interest
of the angle.

4.3 Identification

The identification results are analysed below, on the basis
of the plots in Figure 3.

• The simulated input and output are detrended:
uL(t) and θL(t) are fitted as linear combinations of
a linear function and 4 (co)sine functions to u(t) and
θ(t). In the top-right plot, θ(t) (black full line) and
θL(t) (white line) are shown. A linearly increasing
trend is clearly discerned, covering the span of interest
of the pendulum’s angle.

• The (time-varying) parameters of the model
structure (18) are estimated by providing the

Table 1. Model and control parameters,
simulation

G

m 10 kg
ξ 1Ns/m
l 1m
g 9.81m/s2

C

P 300N/rad
I 20N/(s.rad)
D 10Ns/rad

small signals ũ(t) = u(t)− uL(t) and θ̃ = θ(t)− θL(t)
to the KBR (Kernel Based Regression) estimator for
LTV systems proposed in Lataire et al. (2017). With
this estimator, the smoothness of the estimated time-
varying parameters is imposed via a kernel based
quadratic regularisation term, involving the Gaussian
radial basis function kernel (with a length scale of
80 s), see Schölkopf and Smola (2002). Both a0 and
a1 were allowed to be varying. Since the signals were
assumed to be noiseless, the terms in the associated
cost function are uniformly weighted.

• Given the estimated parameters, the frozen transfer
function is computed as

Ĝf(s, t) =
1

â2s2 + â1(t)s+ â0(t)
. (19)

This frozen transfer function can be understood as
the locally linearised model around the setpoint at
time instant t. Note that, although the frozen transfer
function (and the frozen poles and zeroes) cannot be
immediately associated with any statements on the
stability of the system, they do have a one-to-one
link with the time-varying differential equation such
that they describe unambiguously the input-output
behaviour of the system.

• In the left plots (top: real part, bottom: imaginary
part), the evolution of the frozen poles (i.e. the
poles of the frozen transfer function) are given by the
blue full line. These are in good agreement with the
theoretical poles (in red), obtained as the roots (in s)
of the denominator of the linearised system

mls2 + ξls+mg cos θ(t). (20)

Note that the linearised poles are computed for the
raw output signal θ(t), to not be influenced by the de-
trending approach. This results in small excursions of
the theoretical poles around the smoothed estimated
poles.

• The bottom-right is a scatter plot of (â0(t), θ(t))
(blue line), which gives a good impression of the
dependence of the restoring force on the angle.
It is in good agreement with its theoretical value
mg cos θ (red line), from (15).

• The black circles in the four plots indicate values at
particular angular locations, θ ∈ {0, π,±π/2}, cor-
responding to the pendulum i) pointing downwards,
ii) pointing upwards, and iii) with horizontal rod.
As expected, the pendulum behaves as a resonating
system when pointing downwards (it has a pair of
complex conjugate poles close to the imaginary axis),
and has an unstable real pole when pointing upwards,
i.e. for θ ∈ [π/2, 3π/2] in the upper half of the circle.

• The other estimated coefficients are â2 = 9.9993 and
â1 = 1.0009. Their theoretical values are, respectively,
ml = 10 kg.m and ξl = 1Ns. Thus, a good agreement
is obtained.

It is clear that, for this simulation example, the LTV
approach is able to extract the expected linearised model
around the slowly varying setpoint. Of course, the current
setting is close to ideal: the signals are noiseless and the
model structure is known. The only errors are due to the
local linearisation of the nonlinear function.

Fig. 4. RRR Robot - 3 rotational DOF robot present at the
Department of Mechanical Engineering of the Tech-
nische Universiteit Eindhoven. Only the red rotational
DOF is considered in this work. Picture from Kostić
(2004).

5. APPLICATION TO AN RRR-ROBOT

5.1 Measurement setup

The identification approach proposed in Section 3 is ap-
plied to a 3 rotational degree-of-freedom robot (known as
an RRR-robot). A complete technical description of the
robot is available in van Beek (1998), and a picture is
given in Figure 4. For the current work, a single degree of
freedom is excited, indicated in red in the picture. This can
be modelled (approximately) as a pendulum. A closed loop
configuration is adopted (an unstable open loop behaviour
is expected when the robot arm points upwards), with a
stabilising PID controller. The voltage u(t) applied to the
motor and the angle θ(t) of the robot arm are considered
to be the input and output signals respectively.

5.2 Identification

The results will be discussed by following the same struc-
ture as Section 4.3. One should note that, at the time of
writing, the fit of the estimated model on the data

fit �

(
1− RMS(θ̃ − ˆ̃

θ)

RMS(θ̃)

)
(21)

is only about 50% on the estimation data set (where
ˆ̃
θ is

the estimated output obtained from a frequency domain
simulation, for the applied input). This is also observed in

the left plot of Figure 5, where θ̃(t),
ˆ̃
θ(t) and

(
θ̃(t)− ˆ̃

θ(t)
)

are shown: the difference (black) is half the size of the
measured signal. Therefore, the results are preliminary and
should be interpreted with some level of reservation. It
is expected that treating this system as a single degree-
of-freedom SISO system is too approximative. Extensions
will be further considered. Nevertheless, from a qualitative
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Fig. 5. Left: Measured (orange) and simulated (blue) de-
trended θ, and difference (black). Right: Estimated
a1(t) against the measured θ(t). This gives an im-
pression of the damping coefficient as a function of
the angle.

point of view, they follow our expectations and are, thus,
worthy to be discussed.

The results are discussed on the basis of the plots in
Figure 6.

• A target angle is applied, consisting of a ramp
which covers the range [0, 2π] in 200 s, and a multisine
with a period of 20 s, applied 10 times, and covering
the frequency band [0.05, 10]Hz.

• The measured input and output are detrended. The
trends are fitted as linear combinations of a linear
function and 6 (co)sine functions. The measured
output θ(t) (in black) and its trend θL(t) (in white)
are shown in the top-right plot.

• The time-varying parameters are estimated to
the model structure given in (8) (with na = 2 and

nb = 0), via the detrended signals ũ(t) and θ̃(t)
with the KBR estimator in Lataire et al. (2017). A
smoothness with a length scale of 44 s is imposed via a
kernel based quadratic regularisation with a squared
exponential kernel. Both a0 and a1 are allowed to be
time-varying. The noise power spectrum is estimated
by using the method in Lataire and Pintelon (2009),
and used to weigh the cost function, in the format
of an iterative weighted least squares, as proposed in
Section 6 of Lataire et al. (2017).

• The estimated â0(t) is plotted against the measured
angle θ(t), in the bottom-right plot, and the evolution
of the poles of the frozen transfer function is given in
the left two plots (top: real part, bottom: imaginary
part). As expected, the arm behaves like a resonator
when pointing downwards, and is unstable when
pointing upwards.

• The estimated coefficient â1(t) is also varying, as
observed in Figure 5, right. This indicates an angular
dependence of the friction. It is approximately peri-
odic on the angle.

6. CONCLUSION

A framework has been proposed which makes it possible
to identify a nonlinear system as a linear time-varying
(LTV) system, by locally linearising it around a slowly
evolving setpoint. This puts constraints on the experimen-
tal conditions, involving the decomposition of the signals
into i) large-and-slow, and ii) small-and-fast contributions.
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Fig. 6. Left: Time-varying pole-zero map, measurement
example. Top-Right: measured angle θ(t) (black), and
estimated trend θL(t). Bottom-right: visualisation of
the dependence of a0 on the angle θ. The black circles
on all the plots correspond to the angular positions
k π

2 , with k = 0, 1, . . . , 5.

However, it allows for an identification from a single ex-
perimental data set, with little prior knowledge required
on the structure of the nonlinear system. A state-of-the-art
identification routine for LTV systems has been used to es-
timate the model, with convincing results on a simulation
example and promising results on a real-life application.
An extension towards LPV system is foreseen for the near
future.
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Abbas, H.S., Hanema, J., Tóth, R., Mohammadpour, J.,
and Meskin, N. (2018). An improved robust model
predictive control for linear parameter-varying input-
output models. International Journal of Robust and
Nonlinear Control, 28(3), 859–880.

Apkarian, P., Gahinet, P., and Becker, G. (1995). Self-
scheduled H∞ control of linear parameter-varying sys-
tems: a design example. Automatica, 31(9), 1251 – 1261.

Billings, S.A. (2013). Nonlinear System Identification:
NARMAX Methods in the Time, Frequency, and Spatio-
Temporal Domains. John Wiley & Sons, West-Sussex
(UK).

Casavola, A., Famularo, D., and Franzè, G. (2003). Pre-
dictive control of constrained nonlinear systems via LPV
linear embeddings. International Journal of Robust and
Nonlinear Control, 13(3-4), 281–294.

De Caigny, J., Camino, J.F., Oliveira, R.C.L.F., Peres,
P.L.D., and Swevers, J. (2012). Gain-scheduled dynamic
output feedback control for discrete-time LPV systems.
International Journal of Robust and Nonlinear Control,
22(5), 535–558.

De Caigny, J., Pintelon, R., Camino, J..F., and Swevers,
J. (2014). Interpolated modeling of LPV systems. IEEE
Transactions on Control Systems Technology, 22(6),
2232–2246.

Giri, F. and Bai, E.W. (eds.) (2010). Block-oriented
Nonlinear System Identification. Springer-Verlag, Berlin
(Germany).
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