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Frequency Synchronization of a High-Order
Multiconverter System

Taouba Jouini , Member, IEEE, and Zhiyong Sun , Member, IEEE

Abstract—We investigate the frequency stability of a
high-order multi-converter system. For this, we identify
its symmetry (i.e., rotational invariance) generated by a
static angle shift and rotation of ac signals. We character-
ize the synchronous steady-state set, primarily determined
by the steady-state angles, and dc power input. Based
on eigenvalue conditions of its Jacobian matrix, we show
asymptotic stability of the multi-converter system in a
neighborhood of the frequency synchronous steady-state
set by applying the center manifold theory. We guaran-
tee the Jacobian’s eigenvalue condition via an explicit ap-
proach that requires sufficient damping on the dc and ac
side. Finally, we demonstrate our results based on a nu-
merical example involving a network of dc/ac converters.

Index Terms—Dc/ac converters, Lyapunov methods, non-
linear network analysis, power system stability.

I. INTRODUCTION

E LECTRICITY production is one of the largest sources
of greenhouse gas emissions in the world. Carbon-free

electricity will be critical for keeping the average global temper-
ature within the United Nation’s target and avoiding the worst
effects of climate change [1]. Prompted by these environmental
concerns, the electrical grid has witnessed a major shift in
power generation from conventional (coal, oil) into renewable
(wind, solar) resources. The massive deployment of distributed,
renewable generation had an elementary effect on its operation
via power electronics converters interfacing the grid, deemed as
game changers of the conventional analysis methods of power
system stability and control.

Literature Review: Modeling and stability analysis in power
system networks is conducted as a matter of perspective from
two different angles. First, network perspective suggests an up to
bottom approach, where dc/ac converter dynamics are regarded
as controllable voltage sources and voltage control is directly
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accessible. The most prominent example is droop control that
leads to the study of second-order pendulum dynamics, emu-
lating the swing equation of synchronous machines [2], which
resembles the celebrated Kuramoto-oscillator [3]. The analogy
drawn between the two models has motivated a vast body of
literature that harnesses the results available for synchroniza-
tion via Kuramoto oscillators to analyze frequency stability
in power systems. Second, a bottom to up approach derives
dc/ac converter models from first-order principles, where their
governing dynamics are inferred from the circuitry of the dc
and ac side and the intermediate switching block, which can
structurally match that of synchronous machines. Recently, the
matching control has been proposed in [4] as a promising control
strategy, which achieves a structural equivalence of the two
models and endows the closed-loop system with advantageous
features (droop properties, power sharing, etc.). By augmenting
the system dynamics with a virtual angle, the frequency is set to
be proportional to dc capacitor voltage deviations, constituting
a measure of power imbalance in the grid. This leads to the
derivation of higher order models that describe a network of
coupled dc/ac converters on high-order nonlinear manifolds.

Similar to the physical world, where the laws governing
interactions in a set of particles are invariant with respect to static
translations and rotations of the whole rigid body [5], power sys-
tem trajectories are invariant under a static shift in their angles,
or said to possess a rotational invariance. The symmetry of the
vector field describing the power system dynamics indicates the
existence of a continuum of steady states for the multi-converter
(with suitable control that induces/preserves angle symmetry) or
multi-machine dynamics. In particular, the rotational invariance
is the topological consequence of the absence of a reference
frame or absolute angle in power systems and regarded thus far
as a fundamental obstacle for defining suitable error coordinates
for the stability analysis. To alleviate this, a common approach is
to perform transformations either resulting from projecting into
the orthogonal complement, if the steady-state set is a linear
subspace [6], or grounding a node [7], where classical stability
tools, such as the Lyapunov direct method, can be deployed.

To analyze power system stability, different conditions have
been proposed. In [4] and [8], sufficient stability conditions are
obtained for a single-machine/converter connected to a load.
In [3], a sufficient algebraic stability condition connects the
synchronization of power systems with network connectivity
and power system parameters. Although these conditions give
qualitative insights into the sensitivities influencing stability,
they usually require strong and often unrealistic assumptions.

2325-5870 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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For example, the underlying models are of reduced order (mostly
first or second order) [3], [9]. Reduced-order systems, where
one infers stability of the whole system from looking at only
a subset of variables, are not a truthful representation of the
full-order dynamics if important assumptions are not met [10].
Some stability conditions are valid only in radial networks [6].
Moreover, implicit conditions, e.g., based on semi-definite pro-
gramming are not very insightful [11].

Contributions: In this work, we ask in essence two fundamen-
tal questions: 1) Under mild assumptions on input feasibility,
how can we describe the behavior of the steady-state trajectories
of the nonlinear power system in closed-loop with a suitable
control that induces/preserves the symmetry, e.g., the matching
control [4], [12]? 2) Based on the properties of the steady-state
manifold, can we ensure local stability, i.e., local frequency
synchronization?

To answer the first question, we study the behavior of the
steady-state set. For this, we derive a steady-state map, which
embeds known steady-state angles into the dc power inputs to the
converters as a function of the network topology and converter
parameters. We show that the steady-state angles fully describe
the steady-state behavior and determine all other states. The
steady-state map depends on network topology, which is known
to play a crucial role in the synchronization of power systems [5],
[6]. Since the vector field exhibits symmetry with respect to
translation and rotation actions, i.e., under a shift in all angles
and a rotation in all ac signals, the steady-state manifold inherits
the same property and every steady-state trajectory is invariant
under the same actions. This allows us to define a frequency
synchronous steady-state set generated under these actions.

We address the second question by showing asymptotic sta-
bility of the nonlinear trajectories confined to a neighborhood of
the frequency synchronous steady-state set. For this, we study
the stability of the nonlinear dynamics as a direct application of
the center manifold theory to the multi-converter power system.
We assume that the eigenvalues of the Jacobian evaluated at a
frequency synchronous steady state can be split into one mode at
zero and the rest in the open-left half-plane. Then, we can decom-
pose the nonlinear system into two interconnected subsystems,
whose dynamics are dictated by zero and Hurwitz matrices,
respectively. This allows to define a center manifold upon modal
transformation, where we use the reduction principle [13, p.195]
to deduce the stability of the trajectories of the multi-converter
system from the dynamics evolving on the center manifold. The
point-wise application of the center manifold theory allows to
construct a neighborhood of the frequency synchronous steady-
state set and thereby shows its local asymptotic stability.

To satisfy the Jacobian eigenvalue condition in an explicit
way, we study the linearized system trajectories and pursue a
parametric linear stability analysis approach at a frequency syn-
chronous steady state. Toward this, we develop a novel stability
analysis for a class of partitioned linear systems characterized
by a stable subsystem and 1-D invariant subspace. We propose
a new class of Lyapunov functions characterized by an oblique
projection onto the complement of the Jacobian zero eigenspace,
where the inner product is taken with respect to a matrix to be
chosen as the solution to Lyapunov and H∞−algebraic Riccati
equations (ARE). For the multi-source power system model, we

arrive at explicit stability conditions that depend only on the
converter’s parameters and steady-state values. In accordance
with other works, our conditions require sufficient dc and ac
side damping.

Paper Organization This article unfurls as follows: Section II
presents the model setup based on a high-order power system
model. Section III characterizes the frequency synchronous
steady-state set and feasible inputs. Section IV studies local
asymptotic stability of the nonlinear power system using center
manifold theory. Section V proposes one approach to satisfy
the Jacobian’s eigenvalue condition. Section VI exemplifies our
theory via simulations in two test cases. Finally, Section VII
concludes this article.

Notation: Define an undirected graph G = (V, E), where
V is the set of nodes with |V| = n and E ⊆ V × V is the
set of interconnected edges with |E| = m. We assume that
the topology specified by E is arbitrary and define the map
E → V , which associates each oriented edge eij = (i, j) ∈ E
to an element from the subset I = {−1, 0, 1}|V|, resulting in the
incidence matrix B ∈ Rn×m. We denote the identity matrix by

I =

[
1 0
0 1

]
, and I the identity matrix of suitable dimension p ∈

N and J = I⊗ J2 with J2 =

[
0 −1
1 0

]
. We define the rotation

matrix R(γ) =

[
cos(γ) − sin(γ)
sin(γ) cos(γ)

]
and R(γ) = I⊗R(γ). Let

diag(v) denote a diagonal matrix, whose diagonals are elements
of the vector v and Rot(γ) = diag(r(γk)), k = 1 . . . n, with
r(γk) = [− sin(γk) cos(γk) ]

�. Let 1n be the n−dimensional
vector with all entries being one and Tn = S1 × · · · × S1 is the
n−dimensional torus. We denote by d(·, ·) a distance metric.
Given a set A ⊆ Rn, then d(z,A) = infx∈A d(z, x) and Tz A is
the tangent space of A at z. Given a vector v ∈ Rn, we denote
by v⊥ its orthogonal complement, vk its k-th entry. For a matrix
A, let ‖A‖2 = σ(A) denote its induced two-norm and σ(A)
denote its maximum singular value. Given dynamical system
ẋ = f(x), x(0) = x0, let Jf (x∗) = ∂f(x)

∂x

∣∣
x=x∗ be the system

Jacobian evaluated at some point x = x∗.

II. MODELING AND SETUP

A. Multisource Power System Dynamics

We start from the following high-order model describing
the evolution of the dynamics of n−identical three-phase bal-
anced and averaged dc/ac converters interconnected through
m−identical resistive and inductive lines. An example of the
converter circuit diagram is depicted in Fig. 1. Each converter
is assumed to be in closed-loop with the matching control, a
control strategy that renders its dynamics structurally equivalent
to a synchronous machine [4]. At the kth converter input uk,
we assign a sinusoid with constant magnitude μ ∈]0, 1[ and
frequency γ̇k ∈ R given by

γ̇k = η(vdc,k − v∗dc) (1a)

uk = μ

[− sin(γk)
cos(γk)

]
, k = 1, . . . , n . (1b)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 06,2022 at 12:47:49 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. Circuit diagram of a balanced and averaged three-phase
dc/ac converter with ix,k = µ

2 r
�(γk) ik and vx,k = µ

2 r(γk) vdc,k, see,
e.g., [14]. Note that dc conductance is not represented in this diagram.

Here, γk ∈ S1 is the virtual converter angle in the dq−frame,
after Park transformation, see, e.g., [2], whose angle θdq(t) =∫ t
0 ω∗ dτ is chosen to rotate at the nominal steady-state frequency
ω∗ > 0. Moreover, η > 0 is a control gain defining the slope
of the linear map from dc voltage deviation to the oscillator
frequency.

The closed-loop converter dynamics are given by the follow-
ing set of first-order differential equations in the dq−frame. For
simplicity of notation, we will drop the subscript dq−from all
ac signals⎡⎢⎢⎣

γ̇k
Cdcv̇dc,k

Li̇k
Cv̇k

⎤⎥⎥⎦ =

⎡⎢⎢⎣
η(vdc,k − v∗dc)

−Kp(vdc,k − v∗dc)− μ
2 r(γk)

�ik
−(RI + Lω∗ J) ik + μ

2 r(γk)vdc,k − vk
−(GI + C ω∗ J) vk + ik − inet,k

⎤⎥⎥⎦

+

⎡⎢⎢⎣
0

i∗dc,k
0
0

⎤⎥⎥⎦ . (2)

Let vdc,k ∈ R denote the voltage across the dc capacitorCdc >
0 with nominal value v∗dc. The conductance Gdc > 0, together
with the proportional control gain K̂p > 0, are described by
Kp = Gdc + K̂p > 0. This results from designing the control-
lable current source idc,k = −K̂p(vdc,k − v∗dc) + i∗dc,k, where we
denote by i∗dc,k ∈ R a constant representing dc side input to
the converter. The modulation amplitude μ, feedforward current
i∗dc,k and the control gain K̂p are regarded as constants usually
determined offline or in outer control loops. See [4] for more
details. On the ac side, let ik ∈ R2 be the inductance current
and vk ∈ R2 as the output voltage. The filter resistance and
inductance are specified by R > 0 and L > 0, respectively. The
capacitor C > 0 is set in parallel with the load conductance
G > 0 to ground and connected to the network via the output
current inet,k ∈ R2.

Observe that the closed-loop dc/ac converter dynamics (2)
match one-to-one those of a synchronous machine with single-
pole pair, non-salient rotor under constant excitation [4]. Thus,
all the results derived ahead can conceptually also be applied to
synchronous machines.

By lumping the states of n−converters and m−transmission
lines and defining the shunt impedance matrices ZR =
R I+ Lω∗ J, Z� = R� I+ L�ω

∗ J and shunt admittance ma-
trix YC = G I+ C ω∗ J, we obtain the following power system
model:⎡⎢⎢⎢⎢⎣

γ̇
v̇dc

i̇
v̇

i̇�

⎤⎥⎥⎥⎥⎦ = K−1

⎡⎢⎢⎢⎢⎣
η(vdc − v∗dc1n)

−Kp(vdc − v∗dc1n)− 1
2μRot(γ)

� i
−ZR i + 1

2μRot(γ) vdc − v
−YC v + i−B i�
−Z� i� +B� v

⎤⎥⎥⎥⎥⎦

+K−1

⎡⎢⎢⎢⎢⎣
0
u
0
0
0

⎤⎥⎥⎥⎥⎦ (3)

where we define the angle vector γ = [γ1, . . . , γn]
� ∈ Tn,

with dc voltage vector vdc = [vdc,1, . . . , vdc,n]
� ∈ Rn, the induc-

tance current i = [i�1 , . . . , i
�
n ]

� ∈ R2n and ac capacitor voltage
v = [v�1 , . . . , v

�
n ]

� ∈ R2n. The last equation in (3) describes
the line dynamics and in particular, the evolution of the line
current i� := [i��1 , . . . , i

�
�m

]� ∈ R2m, where R� > 0 is the line
resistance, L� > 0 is the line inductance and inet = B i�. Here,
B = B ⊗ I denotes the extended incidence matrix and K =
diag(I, Cdc I, L I, C I, L� I). The multiconverter inputs are col-
lected in u = [i∗dc,1, . . . , i

∗
dc,n]

� ∈ Rn.
LetN be the dimension of the state vector z = [γ� ṽ�dc x

�
ac ]

�,
whereby we define the vectors of relative dc voltage ṽdc =
vdc − v∗dc1n, ac quantities xac = [ i� v� i�� ]� and the input
u = [0�,u�, . . . , 0�]�. By putting it all together, we arrive at
the nonlinear power system dynamics compactly described by

ż = f(z, u) , z(0) = z0 . (4)

Here, z, z0 ∈ RN , and f(z, u) denote the vector field given
by (3).

Remark 1: Without loss of generality, we assume that all dc/ac
converters are identical and connected via identical RL lines,
that is a common assumption in the analysis of power system
stability, see, e.g., [9], [15]. Nonetheless, our analysis carries
over to more general heterogeneous settings, where converters
and lines differ in their parameter values.

III. CHARACTERIZATION OF THE STEADY-STATE SET

In this section, we characterize the steady-state set resulting
from the rotational invariance of the vector field (4) and feasible
dc inputs to the converters as a mapping from known steady state
angles.

A. Steady-State Set

Let M ⊂ RN be a nonempty steady-state manifold resulting
from setting (4) to zero and given by

M = {z∗ ∈ RN | f(z∗, u) = 0}. (5)

We are particularly interested in a synchronous steady state in
rotating dq−frame with the following properties:

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 06,2022 at 12:47:49 UTC from IEEE Xplore.  Restrictions apply. 
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1) The converters’ frequencies are synchronized at the nom-
inal value ω∗ mapped into a nominal dc voltage v∗dc ≥ 1

[ω] = {ω ∈ Rn
≥0|ω = ω∗1n}

[vdc] = {vdc ∈ Rn
≥0| vdc = v∗dc1n} .

2) The converters’ angles are stationary

[γ] = {γ ∈ Tn| γ̇∗ = 0} .
3) The ac quantities, namely the inductor currents, capacitor

voltages, and line currents are constant at steady state

[xac] =
{
xac ∈ R4n+2m| ẋ∗

ac = 0
}
.

B. Symmetry of the Vector Field

Consider the nonlinear power system model (4). For all θ ∈
S1, it holds that

f(θ s0 + S(θ) z, u) = S(θ) f(z, u) (6)

where we define the translation vector s0 =
[
1�
n 0� 0�

]�
, the

matrix S(θ) =

⎡⎣ I 0 0
0 I 0
0 0 R(θ)

⎤⎦ , and the set

S(z) =
{[

(γ + θ1n)
� ṽ�dc (R(θ)x)�

]�
, θ ∈ S1

}
. (7)

The symmetry (6) follows from observing that the rotation
matrix R(θ) commutes with the impedance and admittance
matrices ZR, Z�, YC , the skew-symmetric matrix J and the
incidence matrix B. The symmetry (6) arises from knowing that
the nonlinear power system model (4) has no absolute angle. In
fact, the vector field remains invariant with respect to a shift in
all angles γ ∈ Tn, corresponding to a translation by s0 and a
rotation in the angles of ac signals by R(θ) (up to redefining the
dq−transformation angle to θ′dq(t) = θdq(t) + θ). Notice that
for θ = 0, we deduce that S(z) = {z} and hence z ∈ S(z).

Consider the steady-state manifold M described by (5). Ob-
serve that z∗ ∈ M pertains to a continuum of steady states,
as a consequence of the rotational symmetry (6). Thus, the
steady-state set is given by

S(z∗) =
{[

(γ∗ + θ1n)
� 0� (R(θ)x∗

ac)
� ]� , θ ∈ S1

}
(8)

that is for all z∗ ∈ M, it holds that S(z∗) ⊂ M.

C. Steady-State Map

Lemma III.1 (Steady-State Map): Consider the nonlinear
power system model (4). Given the steady-state angle vector
γ∗ satisfying γ̇∗ = 0. Then, a feasible input u is given by

u = ν Rot(γ∗)�Y Rot(γ∗) 1n (9)

where ν= 1
4μ

2v∗dc>0 and Y=(ZR+(YC+B Z−1
� B�)−1)−1

∈ R2n×2n.
Proof: We solve for the frequency synchronous steady state

z∗ by setting (4) to zero. Note that YC +BZ−1
� B� and ZR +

(YC +BZ−1
� B�)−1 are nonsingular matrices due to the pres-

ence of the load conductance G > 0 and the resistance R > 0,

whereBZ−1
� B� is a weighted Laplacian matrix. The lines’ cur-

rent vector is described by i∗� = Z−1
� B�v∗, from which follows

that v∗ = (YC +BZ−1
� B�)−1i∗ for the ac capacitor voltage.

The inductance current reads as i∗ = 1
2v

∗
dc μY Rot(γ∗)1n. Fi-

nally, from 1
2μRot�(γ∗)i∗ = u, we deduce (9). �

Notice that the matrix Y in (9) has an admittance-like struc-
ture, which is customary in the analysis of power system models
and encodes in particular the parameters of the transmission
lines and the network topology given by the weighted Laplacian
B Z−1

� B�, as well as the converters’ parameters (their ac filters,
namely given by the impedance and admittance matricesZR and
YC). Once γ∗ ∈ Tn is given, we recover the full vector z∗ ∈ M
associated with a frequency synchronous steady-state set S(z∗)
as described in (8).

Equation (9) can be comprehended as a map (in the sense
of [16])

P : Tn → Rn, γ∗ �→ ν Rot(γ∗)�Y Rot(γ∗)1n

that takes as argument γ∗ and returns a feasible input u. The
anglesγ∗ can be obtained, e.g., from solving an ac optimal power
flow problem. Equation (9) indicates a power balance between
the electrical power P ∗

e = ν v∗dc Rot�(γ∗) i∗ and the dc power
given by P ∗

dc = v∗dcu at steady state.

IV. LOCAL SYNCHRONIZATION OF MULTICONVERTER POWER

SYSTEM

In this section, we study local asymptotic stability of the
steady-state setS(z∗) in (8), as an application of center manifold
theory [13], [17, p. 195].

A. Preliminaries

We provide some background and review key concepts from
center manifold theory [17] that serve as our main tool for
proving local asymptotic stability. For this, consider a dynamical
system given in normal form

ẏ = Ayy + f1(y, ρ) (10a)

ρ̇ = Bρρ+ f2(y, ρ) (10b)

where Ay ∈ Rc×c has eigenvalues with zero real part and Bρ ∈
R(n−c)×(n−c) has eigenvalues with negative real part (or Hur-
witz), and f1 and f2 are nonlinear functions with the following
properties:

f1(0, 0) = 0, Jf1(0, 0) = 0 (11)

f2(0, 0) = 0, Jf2(0, 0) = 0. (12)

An invariant manifold Wc is a center manifold of (10), if it can
be locally expressed as

Wc = {(y, ρ) ∈ W0| ρ = h(y)} (13)

where W0 is a sufficiently small neighborhood of the origin,
h(0) = 0 and

Jh(0) =
dh

dy

∣∣∣∣
y=0

= 0 .
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It has been shown in [10, Th. 8.1] that a center manifold always
exists and the dynamics of (10) restricted to the center manifold
are described by

ξ̇ = Ay ξ + f1(ξ, h(ξ)) (14)

for a sufficiently small ξ ∈ Rc. Note that ξ is a parametric rep-
resentation of the dynamics along points on the center manifold
Wc in (13).

The stability of the system dynamics (10) is analyzed from
the dynamics on the center manifold (13) using the reduction
principle described in the following theorem.

Theorem IV.1 (see [13], p.195): If the origin is stable un-
der (14), then the origin of (10) is also stable. Moreover there
exists a neighborhood W0 of the origin, such that for every
(y(0), ρ(0)) ∈ W0, there exists a solution ξ(t) of (14) and
constants c1, c2 > 0 and γ1, γ2 > 0 such that

y(t) = ξ(t) + r1(t)

ρ(t) = h(ξ(t)) + r2(t)

where ‖ri(t)‖ < ci e
−γi t, i = 1, 2.

Next, we provide background on set stability in the following
definition.

Definition IV.2 (Set Stability [18]): A set K is called stable
with respect to the dynamical system (4), if for all ε > 0, there
exists δ > 0, so that

d(z0,K) ≤ δ ⇒ d(z(t, z0),K) < ε, ∀t ≥ 0. (15)

A set K is called asymptotically stable with respect to a
dynamical system (4), if (15) holds and

lim
t→∞ d(z(t, z0),K) = 0.

B. Local Asymptotic Stability

Next, we present our main result concerning local asymptotic
stability of the set S(z∗) with respect to the power system
dynamics (4). The following assumption on the eigenvalues of
the Jacobian of (4) is crucial for our result.

Assumption 1: Consider the multi-converter system (4) lin-
earized at z∗ ∈ M and given by

δż = Jf (z
∗) δz (16)

with δz = z − z∗ ∈ Tz∗M,Jf (z∗) = df
dz | z=z∗ its Jacobian ma-

trix. Assume that Jf (z∗) has only one eigenvalue at zero and all
other eigenvalues are in the open-left half-plane.

Remark 2: In Section V, we suggest one possible approach
to satisfy the Jacobian eigenvalues’ condition in Assumption 1
that leads to sufficient and explicit stability conditions.

We now present our main result in the following theorem.
Theorem IV.3 (Local Asymptotic Stability): Consider the

power system dynamics in (4) under Assumption 1 with a
feasible input u as in (9). Then, S(z∗) is locally asymptotically
stable. Moreover, there exists a neighborhood N of S(z∗) such
that for every z(0) ∈ N , there exists a point s ∈ S(z∗), where

lim
t→∞ z(t, z0) = s.

Proof: To prove that S(z∗) is stable, we consider the system
dynamics (4) under Assumption 1. Without loss of generality,
assume z∗ = 0. From Assumption 1, we know there exists
a transformation T ∈ RN×N , such that T Jf (0)T

−1 is block
diagonal, where Jf (0) is given in (16), with zero for the first
vector component and a block diagonal matrixB that is Hurwitz.
We rewrite the dynamics of (4) as

ż = Jf (0) z + (f(z, u)− Jf (0) z)

where z is near the origin. Next, by defining (y, ρ) = T z, we
arrive at the following system dynamics in normal form:

ẏ = f1(y, ρ) (17a)

ρ̇ = B ρ+ f2(y, ρ) (17b)

where f1(0, 0) = 0, f2(0, 0) = 0, and Jf1(0, 0) = Jf2(0, 0) =
0. Now, we show that

Wc := {(y, ρ)|(∃ z ∈ S(0))× ((y, ρ) = T z)}
is a center manifold for the system dynamics (17). First, Wc is
invariant because it consists of steady states of (17). Second,Wc

is tangent to the y−axis at y = 0. To see this, define

f̃(y, ρ) := f

(
T−1

[
y
ρ

])
= f(z).

Then, Wc = {(y, ρ)|f̃(y, ρ) = 0}. The row vectors of the Jaco-
bian given by

Jf̃ (0, 0)=

⎡⎢⎢⎣
∂f̃1(0,0)

∂y
∂f̃1(0,0)

∂ρ
...

...
∂f̃N (0,0)

∂y
∂f̃N (0,0)

∂ρ

⎤⎥⎥⎦ =
df

dz

∣∣∣∣
z=0

T−1 = Jf (0)T
−1

span the normal space of Wc at 0. Since the columns of
T−1 = (v(0), . . . ) consist of the right eigenvectors of Jf (0),
by means of Jf (0) v(0) = 0, Jf (0)T−1 has a zero first col-
umn. This shows that Jf̃ (0, 0) has its first entry (correspond-
ing to y−component) equal to zero. As a consequence, there
exists a function h(y) such that h(0) = 0 and dh

dy |y=0 = 0 in a
neighborhood W0 of 0, where Wc ∩W0 = {(y, ρ)| ρ = h(y)}.
It follows that the dynamics restricted to W0 are given by
ξ̇ = 0 because Wc is a steady-state manifold to (17) and thus
f1(ξ, h(ξ)) = 0. This shows that ξ(t) = ξ(0). By applying The-
orem IV.1, the solutions for (y, ρ) starting in W0 are described
by

y(t) = ξ(t) + r1(t)

ρ(t) = h(ξ(t)) + r2(t)

where ‖ri(t)‖ < cie
−γit, i = 1, 2, for some constants ci, γi >

0. This implies that

lim
t→∞ (y(t), ρ(t)) = (ξ(0), h(ξ(0)))

and thus

lim
t→∞ z(t) = T−1 (ξ(0), h(ξ(0))) ∈ S(0).

This argument can be repeated for each point onS(0) to obtain
a cover {Wk} of S(0). Since S(0) is compact, we can construct

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 06,2022 at 12:47:49 UTC from IEEE Xplore.  Restrictions apply. 



JOUINI AND SUN: FREQUENCY SYNCHRONIZATION OF A HIGH-ORDER SYSTEM 1011

a finite subcover to form a neighborhood N =
⋃

k Wk of S(0).
Local asymptotic stability of S(0) follows directly. �

Note that our results conceptually apply to prove local asymp-
totic stability of a synchronous steady-state set with respect to
trajectories of high-order dynamics of synchronous machines
and find an estimate of their region of attraction. Even though
our analysis dwells upon a local statement, it can pave the way
for a global analysis of the stability of high-order multi-machine
or multi-converter system connected through nontrivial lines’
conductance, which has been an open problem within the power
system community for a long time [19], [20].

V. SUFFICIENT CONDITIONS FOR STABILITY OF THE

LINEARIZED SYSTEM

This section suggests one possible approach to satisfy the
eigenvalue condition imposed by Assumption 1 in a sufficient
and explicit way for a class of linear systems, that applies later
to the stability of the linearized multi-converter system.

A. Lyapunov Stability of Vector Fields With Symmetries

We develop a stability theory for a general class of linear
systems enjoying some of the structural properties featured
by the Jacobian matrix (16). For this, we consider a class of
partitioned linear systems of the form

ẋ =

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

A

x (18)

where x = [x�
1 x�

2 ]
� denotes the partitioned state vector and

the block matricesA11, A12, A21, A22 are of appropriate dimen-
sions.

In the following, we assume stability of the subsystem charac-
terized by A11 and the existence of a symmetry, i.e., an invariant
zero eigenspace of A.

Assumption 2: The block diagonal matrix A11 given in (18)
is Hurwitz.

Assumption 3: There exists a vector p = [p�1 p�2 ]
�, so that

A · span{p} = 0.

We are interested in asymptotic stability of the zero subspace
span{p}. This is equivalent to showing that, all eigenvalues of
A have their real part in the open-left half-plane except for only
one at zero, whose eigenspace is span{p}. In this manner, we
later satisfy Assumption 1. Recall that the standard stability
definitions and Lyapunov methods extend from stability of
the origin to stability of closed and invariant sets when using
the point-to-set-distance rather than merely the norm in the
comparison functions; see e.g., [21, Th. 2.8]. In our case, we
seek a quadratic Lyapunov function that vanishes on span{p},
is positive elsewhere and whose derivative is decreasing ev-
erywhere outside span{v}. We start by defining a Lyapunov
function candidate

V (x) = x�
(
P − Ppp�P

p�Pp

)
x (19)

where P is a positive definite matrix. The Lyapunov function
candidate constructed in (19) is based on two key observations:

1) First, the function V (x) is defined via an oblique pro-
jection of the vector x ∈ Rn parallel to span{p} onto
{x ∈ Rn| p�P x = 0}. If P = I, then V is the orthog-
onal projection onto span{p}⊥. Hence, V (x) vanishes
on span{p} and is strictly positive definite elsewhere.

2) Second, the positive definite matrix P is a degree of
freedom that can be specified later to provide sufficient
and explicit stability conditions.

In standard Lyapunov analysis, one seeks a pair of matrices
(P,Q) with suitable positive (semi-) definiteness properties
so that the Lyapunov equation P A+A�P = −Q is met. In
the following, we apply a helpful twist and parameterize the
Q matrix as a quadratic function Q(P ) of P , which renders
the Lyapunov equation, in part, an H∞−ARE. We choose the
following structure for the matrix Q(P )

Q(P ) =

[ Q1 H�(P )
H(P ) H(P )Q−1

1 H(P )� +Q2

]
(20)

where Q1 is a positive definite matrix, Q2 is a positive semidef-
inite matrix with respect to span{p2}, P is block-diagonal

P =

[
P1 0
0 P2

]
(21)

with P1 = P�
1 > 0 and P2 = P�

2 > 0, i.e., the Lyapunov func-
tion is separable, and finally H(P ) = A�

12 P1 + P2 A21 is a
shorthand.

We need to introduce a third and final assumption.
Assumption 4: Consider the matrix F = A22 +

A21Q−1
1 P1A12 and the transfer function

G = C (s I− F )−1 B

with B = A21Q−1/2
1 , C = (A�

12P1Q−1
1 P1A12 +Q2)

1/2. As-
sume that F is Hurwitz and ‖G‖∞ < 1.

Assumption 4 will guarantee suitable definiteness and decay
properties of the Lyapunov function (21) under sufficient and
explicit stability conditions discussed in Section V-C. Assump-
tions 2–4 recover our requirement for positive definiteness of the
matrix P in (21) and semidefinitness (with respect to span{p})
of Q(P ) in (20) as shown in the following.

Corollary V.1: Under Assumptions 2–4, the matrix P in (21)
exists, is unique and positive definite.

Proof.: By calculating P A+A�P = −Q(P ), where
A,Q(P ), and P are given, respectively, by (18), (20), and (21),
we obtain [

P1 A11 +A�
11P1 H(P )�

H(P ) P2 A22 +A�
22P2

]
= −
[ Q1 H(P )�

H(P ) H(P )Q−1
1 H(P )� +Q2

]
the block-diagonal terms of which are

1© P1 A11 +A�
11P1 = −Q1

2© P2 A22 +A�
22P2 = −H(P )Q−1

1 H(P )� − Q2

where H(P ) = A�
12 P1 + P2 A21. Since A11 is Hurwitz,

there is a unique and positive definite matrix P1 solving ©1 .
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Moreover, ©2 is equivalent to solving for P2 the following
H∞−ARE

P2A21Q−1
1 A�

21P2 + P2F+F�P2+A�
12P1Q−1

1 P1A12+Q2=0

where F = A22 +A21Q−1
1 P1A12. Under Assumption 4, the

pair (F,B) is stabilizable with B = A21Q−1/2
1 and for ‖G‖∞ <

1, [22, Th. 7.4] implies that no eigenvalues of the Hamil-

tonian matrix H =

[
F BB�

−C� C −F�

]
are on the imaginary

axis with C = (A�
12P1Q−1

1 P1A12 +Q2)
1/2. By [22, Th. 7.2],

there exists a unique stabilizing solution P2 to ©2. Define
E = A�

12P1Q−1
1 P1A12 +Q2 + P2 A21Q−1

1 A�
21P2 ≥ 0. From

Ap = 0, follows that A12p2 = −A11p1 �= 0 (by Hurwitzness of
A11 under Assumption 2) and since Q2p2 = 0, this implies that
kerQ2 ∩ kerA12 = {0}. Therefore,E is a nonsingular and pos-
itive definite matrix. Since F is Hurwitz, by standard Lyapunov
theory [10], the Lyapunov equation P2 F + F�P2 + E = 0 ad-
mits a positive definite solution P2. �

Corollary V.2: Under Assumptions 2–4, the matrix Q(P )
in (20) is positive semidefinite. Additionally, ker(A) =
ker(Q(P )) = span{p}.

Proof.: First, note that by Proposition V.1, the matrix
P = P� > 0 and observe that the matrix Q(P ) in (20)
is symmetric and the upper left block Q1 > 0 is posi-
tive definite. By using the Schur complement and pos-
itive semidefiniteness of Q2, we obtain that Q(P ) is
positive semidefinite. Second, by virtue of p�Q(P )p =
p�(P A+A�P )p = 0 due to Assumption 3, it follows that
span{p}⊆ ker(Q(P )). Third, consider a general vector s =
[s�1 s�2 ]

�, so that Q(P )s = 0. Given H(P ) = A�
12 P1 +

P2 A21, we obtain the algebraic equations Q1s1 +H(P )�s2 =
0, H(P )s1 + (H(P )Q−1

1 H(P )� +Q2)s2 = 0. One deduces
that Q2s2 = 0 and thus s2 ∈ span{p2}. The latter implies s1 ∈
−Q−1

1 H(P )�span{p2} ∈ span{p1} because Q(P )span{p} =
0. Thus, it follows that s ∈ span{[s�1 s�2 ]

�} = span{p}
and we deduce that ker(Q(P )) = span{p}. Fourth and fi-
nally, for the sake of contradiction, take a vector ṽ /∈
span{p} , so that ṽ ∈ ker(A) ⇒ ṽ�(A�P + P A)ṽ = 0 ⇒
ṽ�Q(P )ṽ = 0 ⇒ ṽ ∈ ker(Q(P )). This is a contradiction to
ker(Q(P )) = span{p}. Hence, we conclude that ker(A) =
ker(Q(P )) = span{p}. �

The main result of this section is given by the following
lemma.

Lemma V.3: Consider the linear system (18). Under Assump-
tions 2–4, span{p} is an asymptotically stable subspace of A.

Proof: Consider the function V (x) in (19). The matrix P
in (21) is positive definite by Proposition V.1. By taking y =
P 1/2x and w = P 1/2p, the function V (x) can be rewritten as

V (y) = y�(I− ww�

w�w
)y = y�Πwy.

The matrix

Πw = I− ww�

w�w
is a projection matrix onto the orthogonal complement of

span(w) and is hence positive semidefinite with 1-D nullspace

corresponding toP 1/2span{p}. It follows that the functionV (x)
is positive definite for all x ∈ span{p}⊥. By means of Ap =
Q(P )p = 0, it holds that p�P A = p�(Q(P )−A�P ) = 0 and
we obtain V̇ (x) = −x� Q(P )x. By Lemma V.2, V̇ (x) is nega-
tive definite for all x ∈ span{p}⊥. We apply Lyapunov’s method
and [21, Th. 2.8] to conclude that span{p} is asymptotically
stable. �

B. Stability of the Linearized Multi-DC/AC Converter

Our next analysis seeks to find sufficient and explicit condi-
tions, so that the Jacobian of the multi-converter system given
in (16) satisfies Assumption 1. For this, consider the linearized
system (16) given by the following equations:

δż = K−1

⎡⎢⎢⎢⎢⎣
0 ηI 0 0 0

−∇2U(γ∗) −KpI −Λ(γ∗)� 0 0
Ξ(γ∗) Λ(γ∗) −ZR −I 0
0 0 I −YC −B

0 0 0 B� −Z�

⎤⎥⎥⎥⎥⎦
δz =

[
A11 A12

A21 A22

]
δz. (22)

In (22), the system matrix is the Jacobian Jf (z
∗) = df

dz | z=z∗ ,
δz = [ δz�1 δz�2 ]� ∈ Tz∗M, corresponding to the partition
δz1 = [ δγ� δv�dc ]

� ∈ R2n, δz2 ∈ R6n. Moreover, the matrices
are given by

∇2U(γ∗) =
1

4
μ2v∗dcdiag(Rot�(γ∗) J�Y Rot(γ∗) 1n)

=
1

2
μdiag((JRot(γ∗))�i∗)

Ξ(γ∗) =
1

2
μJRot(γ∗)

Λ(γ∗) =
1

2
μv∗dc Rot(γ∗)

where we consider the smooth potential function

U : Tn → R, γ �→ −ξ 1�
n Rot�(γ)J�Y Rot(γ∗) 1n.

Note that the Jacobian Jf (z
∗) has 1-D zero eigenspace de-

noted by

span{v(z∗)} = span
{[

1n
� 0� (Jx∗)�

]�} ⊂ Tz∗M

with Jx∗ = [ (J i∗)� (Jv∗)� (J i∗�)
� ]�. In fact, we can estab-

lish a formal link between the linear subspace span{v(z∗)} and
the steady-state set S(z∗) in (8) as follows. For all θ ∈ S1

S(z∗) = z∗ +
∫ θ

0

v(z∗) ds = z∗ +

∫
θ

0

⎡⎣ 1n

0
JR(s)x∗

⎤⎦ ds .

In fact, v(z∗) is the tangent vector of S(z∗) in the θ−direction
and lies on the tangent space Tz∗M and S(z∗) is the angle
integral curve of span{v(z∗)}.

Remark 3: We can retrieve the relationship span{v(z∗)} ⊆
ker(Jf (z

∗)) from (6) as follows. We set z = z∗ ∈ M and ex-
pand the first-order Taylor polynomial around θ′ ∈ S1 of the
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left-hand side in (6). The right-hand side amounts to zero since
f(z∗, u) = 0 and we obtain

df

dz

∣∣∣∣
z=z∗

(
s0 +

dS(θ)

dθ

∣∣∣∣
θ=θ′

z∗
)

(θ − θ′) = 0

where df
dz |z=z∗ = Jf (z

∗), s0 + dS
dθ |θ=θ′ z∗ = v(z∗). Thus, we

recover

Jf (z
∗) v(z∗) = 0 .

Next, we consider the linearized model (22) and identify the
matrices

A11 =

[
0 ηI

−C−1
dc ∇2U(γ∗) −C−1

dc KpI

]
A12 =

[
0 0 0

−C−1
dc Λ(γ∗)� 0 0

]

A21 =

⎡⎣L−1Ξ(γ∗) L−1Λ(γ∗)
0 0
0 0

⎤⎦
A22 =

⎡⎣−L−1ZR −L−1I 0
C−1I −C−1ZV −C−1B
0 L−1

� B� −L−1
� Z�

⎤⎦ .
Define the Lyapunov functionV (z) as in (19) with v(z∗) := p

and v(z∗) = [v∗�1 , v∗�2 ]�. Hence, V (z) is positive semidefinite
with respect to span{v(z∗)}. Next, we select the matrix Q(P )
given by (20), set Q1 = I, Q2 = I− v∗2v

∗�
2 /v∗�2 v∗2 and search

for the positive definite matrix P so that

P Jf (z
∗) + Jf (z

∗)�P = −Q(P ).

Similar to (21), we choose the block diagonal matrix as

P =

⎡⎣P11 P12 0
P12 P22 0
0 0 P33

⎤⎦ =

[
P1 0
0 P2

]
. (23)

Here, P11, P12, and P22 are matrices of appropriate dimen-
sions. Notice that the chosen structure of P1 and the zeros in
the off-diagonals in P originate from the physical intuition of
the tight coupling between the angle of the converter and its
corresponding dc voltage (proportional to the ac frequency), as
enabled by the matching control (1). The same type of coupling
comes into play in synchronous machines between the rotor
angle and its frequency, due to the presence of the electrical
power in the swing equation [2]. The matrix P2 is dense with
off-diagonals coupling at each phase, the inductance current of
one converter with the others. In the sequel, we show that this
structure allows to derive sufficient and explicit conditions that
satisfy Assumption 1.

Condition V.4 (Parametric Synchronization Con-
ditions): Consider Px,k = 1

2v
∗
dcμr

�(γ∗
k)i

∗
k > 0, Qx,k =

1
2v

∗
dcμr

�(γ∗
k)J

�i∗k > 0 and the matrix F in Assumption 4.
Assume the following condition is satisfied:

cos(φk) <

√
1− α2

P 2
x,k + α2

, k = 1, . . . , n (24)

where cos(φk) =
Px,k√

Q2
x,k+P 2

x,k

∈ [0, 1[ is the power fac-

tor of k-th converter, α = max
{

μ2v∗2
dc

16R ,
μv∗2

dc

4
√
Y −2−1

}
, Y =

1
2μv

∗
dcL

−1 supζ ‖(jζI− F )−1‖2, where Y < 1. Additionally,
assume that

μ
2 (1 + η Cdcv

∗
dcQ

−1
x,k)√

4
v∗2

dc
(Y −2 − 1)− 1

4μ
2v∗2dc Q

−2
x,k

< Kp, k = 1, . . . , n. (25)

Next, we provide the main result of this section.
Lemma V.5: Consider the linearized closed-loop multi-

converter model (22). Under Condition V.4, the subspace
span{v(z∗)} is asymptotically stable.

Proof.: Since v(z∗) ∈ ker(Jf (z
∗)), Assumption 3 is satisfied.

If (24) is true, then r�(γ∗
k)J

�i∗k > 0, for all k = 1, . . . n, the
submatrix A11 is Hurwitz and hence Assumption 2 is also valid.

Next, we verify Assumption 4. First, the matrix P1 can be
identified from specification ©1 with Q1 = I by the following
expressions:

P11 =
1

η

[
1

2
Kp(∇2U(γ∗))−1 +

∇2U(γ∗)
2Kp

× (I+ ηCdc(∇2U(γ∗))−1 )
]

P12 = P�
12 =

1

2
(∇2U(γ∗))−1Cdc

P22 =
Cdc

2Kp

(
I+ ηCdc (∇2U(γ∗))−1

)
.

The feasibility of specification ©2 with the positive semidefi-

nite matrix Q2 = I− v∗
2v

∗�
2

v∗�
2 v∗

2
is given by

P2 A21A21
�P2 + P2F + F�P2 +NN� +Q2 = 0 (27)

whereF = A22 +A21P1A12 andN = A�
12P1. If Assumption 4

is satisfied, then there exists a positive definite matrix P2 that
satisfies H∞−ARE in (27).

Next, we find sufficient conditions, for which F satisfies the
Lyapunov equationPFF + F�PF = −QF . We choosePF and
QF to be block-diagonal matrices

PF =

⎡⎣L 0 0
0 C 0
0 0 L�

⎤⎦ , QF =

⎡⎣Γ 0 0
0 2G I 0
0 0 2R�I

⎤⎦
with

Γ = 2R I+ C−1
dc

(
Ξ(γ∗)P12Λ(γ

∗)� + Λ(γ∗)P12Ξ(γ
∗)�
)
+

2C−1
dc

(
Λ(γ∗)P22Λ(γ

∗)�
)

being itself block-diagonal. Aside from Γ, all diagonal blocks of
PF andQF are positive definite. We evaluate the block-diagonal
matrix Γ for positive definiteness by exploring its two-by-two
block diagonals, where trace and determinant of each block are
positive under

Q∗
x,k =

1

2
v∗dcμ(r(γ

∗
k))

�J�i∗k >
μ2v∗2dc

16R
.
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Furthermore, we impose ‖G‖∞ < 1, by equivalently setting
supζ∈R ‖C (jζI− F )−1B‖2 < 1, where

C =

(
A�

12P
�
1 P1A12 + I− (Jx∗)(Jx∗)�

(Jx∗)�(Jx∗)

)1/2

, B = A21.

It is sufficient to consider ‖C‖22 < (supζ∈R ‖(jζI−
F )−1‖2‖B‖2)−2. Using the triangle inequality for the induced
two-norm, we arrive at ‖C‖22 ≤ ‖A�

12P
�
1 P1A12‖2 + ‖Q2‖2.

Since ‖Q2‖2 = 1, we consider instead

‖A�
12P

�
1 P1A12‖2 ≤ (sup

ζ
‖(jζI − F )−1‖2‖B‖2)−2 − 1.

Additionally, it holds that

‖B‖22 = ‖A21‖22 = L−2‖
[
Ξ�Ξ Ξ�Λ
Λ�Ξ Λ�Λ

]
‖2 =

L−2‖
[
Ξ�Ξ 0
0 Λ�Λ

]
‖2 =

(
1

2
μv∗dc

)2

L−2

where the last equality follows from v∗dc ≥ 1. Define Y =
1
2μv

∗
dc supζ ‖(j ζI− F )−1‖2 L−1. For Y < 1, straightforward

calculations show that

‖A�
12P

�
1 P1A12‖2 = σ(C−2

dc Λ(γ∗)(P 2
12 + P 2

22)Λ(γ
∗)�)

= max
k=1,...,n

dkσ(r(γ
∗
k)r

�(γ∗
k)))<

4

v∗2dc
(Y −2−1)

with

dk=(r�k (γ
∗
k)J

�i∗k)
−2+

1

4K2
p

(
1+ηCdc(

1

2
μr�(γ∗

k)J
�i∗k)

−1

)2

.

Under 4/v∗2dc (Y
−2 − 1)−maxk=1,...,n(r

�
k (γ

∗
k)J

�i∗k)
−2 >

0, we solve for the gain Kp with σ(r(γ∗
k)r

�(γ∗
k)) = 1, k =

1, . . . , n, to find,√√√√√ max
k=1,...,n

μ2

4 (1 + ηCdc(
1
2μ r�(γ∗

k) J
�i∗k)−1)2

4
v∗2

dc
(Y −2 − 1)− max

k=1,...,n
(r�(γ∗

k) J
�i∗k)−2

< Kp.

This can be simplified into (25). The condition

4/v∗2dc (Y
−2 − 1)− max

k=1,...,n
(r�k (γ

∗
k)J

�i∗k)
−2 > 0

can be written as Q2
x,k >

μ2v∗4
dc

16(Y −2−1) under the assumption that
Y < 1 and we deduce that

max

{
μ2v∗2dc

16R
,

μ v∗2dc

4
√
Y −2 − 1

}
< Qx,k.

From the definition of the power factor cos(φk) =
Px,k√

Q2
x,k+P 2

x,k

,

we arrive at (24). In summary, we arrive at (25) and (24).
By applying Theorem IV.3, we deduce that span{v(x∗)} is
asymptotically stable for the linearized system (22). �

C. Results Contextualization

Generally speaking, (24) and (25) can be regarded as a re-
quirements on the ac and dc side, respectively. Both of them are
explicit and sufficient for asymptotic stability.

Condition (24) connects the efficiency of the converter given
by the power factor that defines the amount of current producing

TABLE I
PARAMETER VALUES OF THE CONVERTERS AND THE RL LINES (IN S.I)

useful work to the lower bound α > 0. From (24), the power
factor approaches 1, as α → 0.

If max{μ2v∗2
dc

16R ,
μv∗2

dc

4
√
Y −2−1

} =
μ2v∗2

dc
16R , then (24) depends on the

converter’s resistance R, modulation amplitude μ, nominal dc
voltage v∗dc, and the steady-state current i∗. This is a known prac-
tical stability condition [23]. In fact from (24), sufficient resistive
damping is often enforced by virtual impedance control, which
makes α → 0.

If max{μ2v∗2
dc

16R ,
μv∗2

dc

4
√
Y −2−1

} =
μv∗2

dc

4
√
Y −2−1

, then we can again de-
ploy H∞ control to make ‖Gac‖∞ arbitrarily small and thus
α → 0. We note that the ac side feedback control is crucial to
achieve desired steady states for our power system model (4).
This can be implemented, e.g., via outer loops that take ac mea-
surements and use the classical vector control architecture for
the regulation of the inductance current and the output capacitor
voltage; see, e.g., [24].

That Y < 1 translates into the requirement

‖Gac‖∞ < β, β =
2L
μv∗dc

where Gac(jζ) = (jζI− F )−1 asks for L2 gain from the dis-
turbances on the ac side to ac signals to be less than β. This can
be achieved via H∞ control; see [25].

Condition (25) depends on the steady-state angles γ∗ and the
converter and network parameters and asks for damping as for
other stability conditions obtained in the literature on the study
of synchronous machines [3], [4]. Note that the smaller is the
synchronization gain η > 0, the larger is the operating range of
the dc damping gain K̂p.

For more general settings with heterogeneous converters and
transmission lines parameters, our stability analysis can be ap-
plied and analogous sufficient and explicit conditions to (24)
and (25) can be derived.

VI. SIMULATIONS

The goal of this section is to assess the asymptotic stability
of the trajectories of the nonlinear power system (4) in Theo-
rem IV.3 locally, i.e., by numerically finding an estimate of the
region of attraction N for a given z∗ = [γ∗�, 0�, v∗�c , i∗�� ]�. Let
us consider three identical dc/ac converters in closed-loop with
the matching control depicted in Fig. 2 and connected via three
identical resistive and inductive lines, as in (4) and connected to
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Fig. 2. Three-converter setup with dynamics described by (4), consist-
ing of identical three-phase converters C1, C2, and C3 in closed-loop
with the matching control and connected via identical RL lines. The
internal dynamics of each converter are modeled as in Fig. 1.

Fig. 3. Representation of the region of attraction N and the frequency
synchronous steady state set S(z∗) restricted to (γ1 − γ∗

1, γ2 − γ∗
2, γ3 −

γ∗
3)−space of the three dc/ac converter angles and convergence of

the sample angle trajectories of (4) to the subspace 13. The depicted
region is obtained from varying the initial angles, while keeping the
remaining initial states fixed. A sample of angles deviations initialized
within the green area and denoted by stars converge toward the stable
set, while some angle trajectories initialized outside the estimated re-
gion are divergent. The green area is defined by d(γ(0), span{13}) =
‖
(
I− 131

�
3

1�
3
13

)
γ(0)‖2 = 3.1 (in rad), where γ(0) is the angle vector ini-

tialized on the boundary of N . All the angles are represented in rad.

an inductive and resistive load to ground. Table I summaries the
converter parameters and their controls (in S.I.).

First, we start by verifying the parametric conditions
established in Condition V.4 via (24) and (25). We tune the
filter resistance R > 0 (e.g., using virtual impedance control)
and choose the dc side gain Kp > 0 so that (24) and (25) are
satisfied, respectively.

Second, we numerically estimate of the region of attraction
N in γ−space by initializing sample trajectories of the angles
depicted in Fig. 2 at various locations and illustrate the evolution
of the angle trajectories of (4) to estimate a projection of N into
the angle space. As predicted by Theorem IV.3, we observe that
the setS(z∗) restricted to the angles (relative to their steady state)

Fig. 4. Synchronization of dc capacitor voltages corresponds to fre-
quency synchronization at the desired value. Hereby, the angles are
initialized at (−6,−2,−13.15) (in rad) and belong to the region estimated
in Fig. 3. The ac capacitor voltage vc (resulting from transforming v into
abc−frame using inverse Park followed by inverse Clarke transforma-
tion) converges to a sinusoidal steady state v∗c.

Fig. 5. 3D−representation of the Lyapunov function V (x) in (19) for
two dc/ac converters in closed-loop with the matching control and con-
nected via an RL line in (3) after a projection into (γ1 − γ∗

1, γ2 − γ∗
2)

space for P > 0 as in (23) and the subspace spanning v(x∗). The
parameter values can be found in Table I.

space, and represented by span{13} is asymptotically stable for
the sampled angle trajectories of (4).

Fig. 3 depicts a projection onto (γ1, γ2, γ3)−space of the
estimate of N (in rad and relative to their respective steady-state
values). The convergence of angle trajectories to the subspace
13 is guaranteed for initial conditions at distance

d(γ(0), span{13}) = ‖
(
I− 131

�
3

1�
3 13

)
γ(0)‖2 = 3.1(in rad)

resulting from varying the initial angles γ(0), while keeping the
remaining initial states fixed. In particular, dc voltages and ac
currents are also initialized close to their steady-state values, as
shown in Fig. 4. Our simulations show that the dc capacitor
voltage vdc in Fig. 4 and the ac output capacitor voltage vc
in abc−frame (resulting from transforming v into abc−frame
using inverse Park transformation followed by inverse Clarke
transformation) converge to their respective steady-state values.
This validates our theoretical results from Section IV.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 06,2022 at 12:47:49 UTC from IEEE Xplore.  Restrictions apply. 



1016 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 9, NO. 2, JUNE 2022

For completeness, we also illustrate a projection of the level
sets of the Lyapunov function (19) of an example network
consisting of two dc/ac converters connected via one RL line
(for more details see [26]) with system dynamics (4) into
(γ1, γ2)−space (in rad and relative to their respective steady-
state values) in Fig. 5. The parameter values can be taken from
Table I. The vector v(z∗) = [ v�1 (z

∗) v�2 (z
∗) ]� ∈ ker(Jf (z

∗)),
is given by

v1(z
∗) =

[
0.043, 0.043, 0, 0

]�
and

v2(z
∗) = [−0.0033 −0.0023 −0.0033 −0.0023

−0.7034 −0.0108 −0.7034 −0.0108 0 0 ] .

For a positive definite matrixP given by (23), the function V (x)
takes positive values everywhere and is zero on the subspace
spanned by v(z∗) and given by Fig. 5.

VII. CONCLUSION

We investigated the characteristics of a high-order steady-
state manifold of a multi-converter power system by exploiting
the symmetry of the vector field. We studied local asymptotic
stability of the steady-state set as a direct application of the
center manifold theory and provided an operating range for
the control gains and converter parameters. Future directions
include finding better estimates of the region of attraction using
advanced numerical methods and large-scale simulations of the
power system dynamics.
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