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a b s t r a c t

The performance of algorithms in system identification and control, depends on their implementation
in finite-precision arithmetic. The aim of this paper is to develop a unified approach for numerically
reliable system identification that combines the numerical advantages of data-dependent orthogonal
polynomials and the discrete-time δ-domain parametrization. In this paper, earlier results for discrete
orthogonal polynomials on the real-line and the unit-circle are generalized to obtain an approach for
the construction of orthogonal polynomials on generalized circles in the complex plane. This enables
the formulation of a unified framework for the numerically reliable identification of systems expressed
in the δ-domain, as well as in the traditional Laplace and Z-domains. An example is presented
which shows the significant numerical advantages of the δ-domain approach for the identification
of fast-sampled systems.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Numerically robust and accurate implementation of algorithms
sed in system identification and control is essential for their
uccessful application (Datta, 2004; Varga, 2004). This numerical
spect becomes more relevant and challenging as the system
omplexity increases (Benner, 2004; Oomen et al., 2014). Sev-
ral approaches that address the encountered numerical issues
ave been proposed. In particular, the use of the discrete δ-
omain as opposed to the classical Z-domain addresses several
umerical issues in digital control implementations with fast
ampling (Goodwin, Middleton, & Poor, 1992). In the present
aper, numerically reliable identification is investigated and a
nified framework is presented that, as a special case, enables the
umerically reliable identification of system models expressed in
he discrete δ-domain.

In parametric system identification, the central computational
tep typically involves solving a linear least squares problem,
hich often is severely ill-conditioned (Levy, 1959; Ninness &

✩ This research is supported by the TU/e impulse program in collaboration
with ASML Research and is part of the research programme VIDI with project
number 15698, financed by the Netherlands Organization for Scientific Research
(NWO). The material in this paper was partially presented at the 57th IEEE
Conference on Decision and Control, December 17–19, 2018, Miami Beach,
Florida, USA. This paper was recommended for publication in revised form by
Associate Editor Juan C Aguero under the direction of Editor Torsten Söderström.
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Hjalmarsson, 2001; Sanathanan & Koerner, 1963; Voorhoeve, van
Rietschoten, Geerardyn, & Oomen, 2015). Several partial solutions
to this conditioning problem have been proposed, including the
use of frequency scaling (Pintelon & Kollár, 2005), the use of
orthonormal bases such as Chebyshev polynomials, or Laguerre or
Kautz filters (Ninness & Hjalmarsson, 2001; Wahlberg & Mäkilä,
1996), and the use of certain rational basis functions (Gilson,
Welsh, & Garnier, 2018; Gustavsen & Semlyen, 1999; Welsh
& Goodwin, 2003). Another recent development is the use of
polynomial basis functions, which are orthogonal with respect
to a discrete data-dependent inner product (Bultheel, Barel, Ro-
lain, & Pintelon, 2005; van Herpen, Oomen, & Steinbuch, 2014;
Rolain, Pintelon, Xu, & Vold, 1995). Using these data-dependent
orthonormal polynomials optimal numerical conditioning, i.e., a
condition number κ = 1, can be achieved (Bultheel et al., 2005;
van Herpen et al., 2014). Thereby essentially solving the main
numerical bottlenecks and enabling the identification of highly
complex systems (Pintelon, Rolain, Bultheel, & Barel, 2004;
Voorhoeve, de Rozario, & Oomen, 2016). Efficient algorithms,
which are linear in the data and the polynomial degree, i.e.,
O(mn), exist for the construction of these data-dependent orthog-
onal polynomials for continuous time systems, i.e., for s = jω,
ith nodes on the imaginary axis (Gragg & Harrod, 1984); and

or discrete time systems, i.e., for z = ejωTs , with nodes on the
nit circle (Ammar, Gragg, & Reichel, 1991).
Another improvement of numerical aspect for algorithms in

ystem identification and control can be achieved by replacing the
raditional forward-shift operator, q, with the forward-difference

perator, δ (Goodwin, Leal, Mayne, & Middleton, 1986; Middleton

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Goodwin, 1986). The δ-operator transparently connects models
n the discrete time domain and the continuous time domain, as
he continuous time model parameters are recovered in the limit
ase for the sample time tending to zero (Goodwin et al., 1986).
urthermore, using the δ-operator instead of the shift operator of-
en leads to improved numerical performance when considering
inite-word-length effects (Middleton & Goodwin, 1986). These
dvantages have been shown to be especially relevant for systems
ith fast sampling (Goodwin et al., 1992; Li & Gevers, 1993),

.e., where the sampling frequency is significantly higher than the
ominant system dynamics, which is often the case in identi-
ication for control (Gevers & Li, 1993). In controller synthesis,
δ-domain parametrization has also shown to yield substantial
umerical advantages (Collins & Song, 1999; Goodwin, Graebe, &
algado, 2000; Suchomski, 2001; Yang, Xia, Shi, & Zhao, 2012).
Although data-dependent orthonormal polynomials have been

hown to provide significant numerical advantages in system
dentification, at present their advantages are limited due to a
umerical loss of accuracy in other essential computation steps.
he aim of this paper is to develop a unified approach for numer-
cally reliable system identification that combines the numerical
dvantages of data-dependent orthogonal polynomials and the
iscrete-time δ-domain parametrization. The main contributions
f this paper are the following.

(1) A theoretical framework and efficient construction algorithm
for polynomials that are orthogonal with respect to discrete
measures supported on generalized circles in the complex
plane, expanding on earlier results for measures supported
on the real-line, and the unit circle.

(2) A unified framework for numerically reliable system identi-
fication, including identification in the δ-domain, Z-domain,
and Laplace domain.

(3) An example revealing the superior numerical performance of
the δ-domain approach over the Z-domain approaches for
fast-sampled systems.

n earlier approaches, e.g., Bultheel and Barel (1995) and Bultheel
t al. (2005), efficient construction of data-dependent orthogonal
olynomials is limited either to the case of measures supported
n the real or imaginary line (Gragg & Harrod, 1984) or on the
nit circle (Ammar et al., 1991). In contrast, for the relevant case
f the δ operator, the nodes lie on a circle in the complex plane for
hich the existing efficient solutions do not apply. The specific
-domain case is considered in Voorhoeve and Oomen (2018).
n the present paper, the preliminary results in Voorhoeve and
omen (2018) are extended by considering the construction of
rthogonal polynomials from spectral data on generalized circles
n the complex plane. This leads to a unified framework where
dentification in Laplace domain, Z-domain, and δ-domain can
e considered as special cases and can be solved with a single
lgorithm.
The outline of this paper is as follows. In Section 2, the prob-

em of numerically reliable identification of fast sampled systems
s formulated. Section 3 provides a concise overview of the the-
ry of data-dependent orthogonal polynomials. In Section 4, the
heory and construction algorithm for data-dependent orthogonal
olynomials on generalized circles in the complex plane are con-
idered, constituting contribution 1 of this paper. In Section 5, this
lgorithm is used to obtain a unified framework for numerically
eliable system identification, constituting contribution 2 of this
aper. In Section 6, the results for a simulation example are
resented, showing the superior performance of the δ-domain
pproach compared to the Z-domain approaches for fast-sampled
ystems, constituting contribution 3 of this paper. In Section 7,
onclusions and an outlook on ongoing work are given.
2

. Problem formulation

The problem considered in this paper is that of numerically
eliable frequency-domain identification of linear systems with
ast sampling. First, the problem of frequency domain system
dentification is defined. Second, numerically reliable identifica-
ion is considered. Last, the numerical challenges for fast-sampled
ystems are highlighted and the advantages of the proposed δ-
domain approach are illustrated, leading to the formulation of the
considered problem of numerically reliable identification in the
δ-domain.

2.1. Frequency domain system identification

In system identification, a physical process is considered
which is observed using a digital measurement environment. The
goal in system identification is to estimate an appropriate system
model, Ĝ(ξ ), describing the relevant behavior of this physical
process. In frequency domain identification this is done using
frequency domain input–output data of the system. To facili-
tate the presentation, identification of single-input single-output
(SISO) systems is considered, the extension to multiple-input
multiple-output (MIMO) systems follows along similar lines as
in, e.g., Pintelon et al. (2004) and Voorhoeve et al. (2016).

In this paper, linear time invariant (LTI) systems are consid-
ered, represented by real-rational transfer functions, Ĝ(ξ ) ∈ R.
Here, ξ , is an indeterminate frequency variable which depends
on the identification domain. For continuous-time modeling the
Laplace domain, where ξ = s = jω, is traditionally used, while
iscrete-time modeling is generally performed in the Z-domain,
ith ξ = z = ejωTs . Here ω is the frequency variable and Ts is
he sampling time of the digital measurement environment. The
odel Ĝ(ξ ) is parametrized as

ˆ (ξ, θ ) =
n̂(ξ, θ )

d̂(ξ, θ )
, (1)

where n̂(ξ, θ ), d̂(ξ, θ ) ∈ R[ξ ], which are linearly parametrized
ith respect to a set of polynomial basis functions {φj(ξ )}nj=0, i.e.,

d̂(ξ, θ )
n̂(ξ, θ )

]
=

[
φ0(ξ ) φ1(ξ ) · · · φn(ξ )

]
θ , (2)

ith θ ∈ Rnθ×1 and φj(ξ ) ∈ R2×1
[ξ ].

The optimal model within this parametrization is then se-
ected by minimizing a suitable error criterion, e.g., Ĝopt(ξ ) =
ˆ (ξ, θopt), where

opt = argmin
θ

m∑
i=1

⏐⏐⏐w̃i

(
G̃(ξi)− Ĝ(ξi, θ )

)⏐⏐⏐2 , (3)

nd where G̃(ξi) is the identified FRF of the system. This weighted
east squares criterion encompasses many relevant criteria in
dentification, including sample maximum likelihood identifica-
ion (Pintelon & Schoukens, 2012, Section 12.3) and control-
elevant identification (Oomen et al., 2014). Solving (3) generally
nvolves solving a nonlinear optimization problem due to the
ational parametrization of Ĝ(ξ ). Indeed, rewriting (3) yields

opt = argmin
θ

m∑
i=1

⏐⏐⏐⏐ w̃i

d̂(ξi, θ )

[
G̃(ξi) −1

][d̂(ξi, θ )
n̂(ξi, θ )

]⏐⏐⏐⏐2 . (4)

The form (4) facilitates the derivation of several common solution
algorithms.

First, the solution to (4) can be approximated by solving the
following linear least squares problem.
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lgorithm 1 (Linear Least Squares, Levy, 1959; Pintelon & Schoukens,
2012, Section 9.8.2). Given w̃i,lin, compute

θlin = argmin
θ

m∑
i=1

⏐⏐⏐⏐w̃i,lin
[
G̃(ξi) −1

][d̂(ξi, θ )
n̂(ξi, θ )

]⏐⏐⏐⏐2 . (5)

In (5), w̃i,lin replaces the nonlinear term w̃i
d̂(ξi,θ )

, which is present
in the original problem (4), rendering (5) linear in the parameters
θ . If w̃i,lin = w̃i, the standard linear least squares solution of Levy
(1959) is obtained. If an appropriate estimate for the denominator
polynomial d̂(ξi) is available, its inverse can be used to weight the
linearized problem, aiming to address the original problem, (4).
Such an estimate for the denominator can be obtained by iter-
atively solving a sequence of linear least squares problems. This
approach is known as the Sanathanan–Koerner (SK) algorithm.

Algorithm 2 (Sanathanan–Koerner, Sanathanan & Koerner, 1963;
van Herpen et al., 2014, Algorithm I; Pintelon & Schoukens, 2012,
Section 9.8.3). Given θ ⟨0⟩, compute for l = 1, 2, . . .

θ
⟨l⟩
SK = argmin

θ

m∑
i=1

⏐⏐⏐⏐ w̃i

d̂(ξi, θ ⟨l−1⟩)

[
G̃(ξi) −1

][d̂(ξi, θ )
n̂(ξi, θ )

]⏐⏐⏐⏐2. (6)

Alternatively, gradient-based optimization methods can be used
such as the Gauss–Newton algorithm or the closely related
Levenberg–Marquardt algorithm. These gradient-based
algorithms enable monotonic convergence to a local minimum
of the non-linear cost function, yielding favorable results when
an initial estimate of sufficient quality is available. Using a sim-
ilar notation as in (6), the Gauss–Newton algorithm for the
optimization of (3) is as follows.

Algorithm 3 (Gauss–Newton, Bayard, 1994). Given θ ⟨0⟩, compute
for l = 1, 2, . . .

θ
⟨l⟩
GN = θ ⟨l−1⟩ + argmin

∆θ

m∑
i=1

⏐⏐J(ξi, θ ⟨l−1⟩)∆θ+ ε(ξi, θ ⟨l−1⟩)
⏐⏐2, (7)

with

J(ξi, θ ⟨l⟩)∆θ =
w̃i

d̂(ξi, θ ⟨l⟩)

[
Ĝ(ξi, θ ⟨l⟩) −1

][d̂(ξi, ∆θ )
n̂(ξi, ∆θ )

]
, (8)

ε(ξi, θ ⟨l⟩) = w̃i

(
G̃(ξi)− Ĝ(ξi, θ ⟨l⟩)

)
. (9)

In these solution algorithms, i.e., in (5), (6), (7), but also in many
other identification algorithms, such as the Least-Squares Com-
plex Frequency-domain estimator (Van der Auweraer, Guillaume,
Verboven, & Vanlanduit, 2001) or Iterative Quadratic Maximum
Likelihood (Pintelon & Schoukens, 2012, Section 9.12), the essen-
tial problem being solved is a weighted polynomial least squares
problem. This problem can be expressed in the general form,

min
θ
∥w f (ξ, θ )∥22 , (10)

with

w = [wT
1 , wT

2 , . . . , wT
m]

T (11)

ξ = [ξ1, ξ2, . . . , ξm]
T , (12)

and where

∥w f (ξ, θ )∥22 :=
m∑
i=1

f (ξi, θ )HwH
i wif (ξi, θ ) , (13)

with

f (ξi, θ ) = p(ξi, θ )− yi , (14)

where yi is determined by the problem data and the parameter
constraints. Therefore, the problem that is considered in this
3

paper is of this form, where for clarity only the scalar polynomial
case is considered, i.e., p(ξ, θ ) ∈ R[ξ ]. Extensions to the vector
polynomial case, i.e., p(ξ, θ ) ∈ Rn

[ξ ] are discussed in Section 7.

2.2. Numerically reliable identification

Solving the polynomial least-squares problem, (10), is equiva-
lent to determining the least-squares solution to

WΦnθ = Wy , (15)

with

W = diag(w1, w2, . . . , wm) , (16)

y = [y1, y2, . . . , ym]T , (17)

Φn =

⎡⎢⎢⎣
φ0(ξ1) φ1(ξ1) · · · φn(ξ1)
φ0(ξ2) φ1(ξ2) · · · φn(ξ2)

...
...

...

φ0(ξm) φ1(ξm) · · · φn(ξm)

⎤⎥⎥⎦ , (18)

hich depends on the weights in W and the basis functions in
n. The key observation is that the matrix WΦn in (15) can be
everely ill-conditioned depending on the choice of basis func-
ions. Indeed, it is well-known that if a monomial basis, φj(ξ ) =
j, is used, then Φn is a Vandermonde matrix, i.e.,

mon
n =

⎡⎢⎢⎢⎣
1 ξ1 ξ 2

1 · · · ξ n
1

1 ξ2 ξ 2
2 · · · ξ n

2
...

...
...

...

1 ξm ξ 2
m · · · ξ n

m

⎤⎥⎥⎥⎦ , (19)

hich is often ill-conditioned, deteriorating the performance of
he identification algorithms (van Herpen et al., 2014).

Several approaches have been proposed in literature to mit-
gate this conditioning problem (Gilson et al., 2018; Gustavsen
Semlyen, 1999; Ninness & Hjalmarsson, 2001; Pintelon & Kol-

ár, 2005; Wahlberg & Mäkilä, 1996; Welsh & Goodwin, 2003),
onfirming that this is an important aspect in frequency domain
ystem identification. The approaches in Gilson et al. (2018),
ustavsen and Semlyen (1999), Ninness and Hjalmarsson (2001),
ahlberg and Mäkilä (1996) and Welsh and Goodwin (2003)

ocus on a change of basis functions to obtain a Φ-matrix which
as better numerical properties than the Vandermonde matrix
n (19). However, this does not guarantee an improvement in
he conditioning of WΦ , which is the relevant problem matrix
or solving (15). To guarantee that WΦ is well-conditioned, the
roblem data, as contained in W , needs to be taken into account
n the choice of basis functions, i.e., the basis functions should be
ata-dependent. A key result in, e.g., Bultheel and Barel (1995)
nd Bultheel et al. (2005), shows that optimal conditioning of
Φ can indeed be achieved using a set of polynomials which

re orthonormal with respect to a judiciously chosen data-based
nner product.

Being able to achieve optimal conditioning of the problem
atrix WΦ is an important step towards obtaining a numerically

eliable identification approach. However, other computational
teps involved in the identification algorithm should also be
erformed numerically accurate. For systems with fast sampling
nherent numerical challenges exist which need to be addressed.

.3. Numerical challenges for fast-sampled systems: motivation for
δ-domain formulation

In the identification problem as stated in Section 2.1, ξ in (1)
till remains to be specified. Typically, the Laplace domain, ξ = s,
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Fig. 1. Streamlines for the vector field dz/dfs ∝ −z ln(z) showing the attraction
f point z = 1 as the sampling frequency increases.

s used when the system is in continuous time, whereas the Z-
omain, ξ = z, is used when the system is in discrete time. For
oth these cases, efficient algorithms exist to construct the data-
ependent orthogonal polynomials used in numerically reliable
dentification, as described in Section 2.2. However, when the
ampling frequency of the digital measurement environment is
ast relative to the dominant dynamics of the underlying physical
rocess, the discrete Z-domain description is known to suffer
rom numerical issues.

To analyze the numerical issues that arise for fast-sampled
ystems in the Z-domain, the derivative of the complex variable
= e s/fs with respect to the sampling frequency fs = 1/Ts is

considered,

dz
dfs
=

de s/fs

dfs
= −

e s/fs s
f 2s
= −

z ln(z)
fs
∝ −z ln(z) , (20)

here s = fs ln(z) is used in the third step and where ∝ de-
otes proportionality. Streamlines for the vector field −z ln(z)

are plotted in the complex plane in Fig. 1. This figure clearly
shows that all streamlines converge to the point z = 1. For fast-
sampled systems this essentially means that the poles describing
the system dynamics will become concentrated near the point
z = 1.

This concentration around z = 1 leads to a numerical loss of
significance in finite precision arithmetic since a large part of the
available finite wordlength is used to store this ‘‘unity part’’ of
the relevant parameters, which does not contain any system in-
formation. Also, cancellation errors occur when parameters with
values that are only marginally different from 1 are subtracted
from one another.

As an alternative to the Z-domain description, the discrete-
time system can be represented in the δ-domain where the
δ-operator is used instead of the shift operator q, where

δ =
q− 1
Ts

, (21)

nd the corresponding transform variable,

δ =
z − 1
Ts

. (22)

he main numerical advantage of this δ-domain description is
hat it shifts the point z = 1 to the origin, solving the associated
oss of significance problems. Additionally, the δ operator intu-
tively connects the discrete and continuous time domains as for
differentiable function x(t)

lim δx(t) = lim
x(t + Ts)− x(t)

=
dx

, (23)

Ts→0 Ts→0 Ts dt m

4

meaning that as the sampling frequency increases the δ-domain
parameters converge to the continuous time parameters. This
provides insight and gives confidence that even for sampling time
approaching zero the discrete-time description in the δ-domain
remains well behaved.

The δ-domain representation often improves numerical as-
pects. However, fast construction of data-dependent orthonor-
mal polynomials as used in, e.g., Bultheel and Barel (1995) and
Bultheel et al. (2005), has not been investigated for δ-domain
identification. In this paper, the problem of efficient construc-
tion of data-dependent orthonormal polynomials for numerically
reliable δ-domain identification is considered.

3. Data-dependent orthonormal polynomials

In this section, orthogonal polynomials with respect to a data-
dependent discrete inner product are defined. The study of or-
thogonal polynomials is a well-developed and active field, see,
e.g., Gautschi (2004), Simon (2005) and Szegö (1939). In this
paper, the focus is on discrete inner products in contrast to
the commonly considered continuous inner products involving
integrals. In addition, an arbitrary weighting is used in the inner
product, see also Vandebril, Van Barel, and Mastronardi (2008a,
Chapter 12) for details on such forms, and van Herpen, Bosgra,
and Oomen (2016) for related indefinite and asymmetric forms.

In Section 3.1, discrete orthogonal polynomials are defined.
Next, a Hessenberg recurrence relation for this set of polynomials
is considered in Section 3.2, and the inverse eigenvalue problem
linking the Hessenberg-recurrence matrix to the problem data
is established in Section 3.3. Next, an algorithm for solving this
inverse eigenvalue problem is considered in Section 3.4, as well
as the special cases when all the nodes lie on the real-line, the
imaginary-axis or the unit circle in Section 3.5. In this section
and in Section 4, the general case of polynomials with complex
coefficients is considered. In Section 5, the real-polynomial case,
which is relevant for identification, is considered.

3.1. Discrete orthogonal polynomials

Consider the set of polynomials {φj(ξ )}kj=0 where φj(ξ ) ∈ C[ξ ],
nd degφj(ξ ) = j, which is orthogonal with respect to a discrete
nner-product defined by the nodes ξ1, ξ2, . . . , ξm ∈ C and
eights w1, w2, . . . , wm ∈ C, i.e.,⟨
φp, φq

⟩
=

m∑
i=1

(
wi φp(ξi)

)∗
wi φq(ξi) = cpδpq , (24)

ith cp ∈ R+, and where δpq is the Kronecker delta function,
nd x∗ denotes the complex conjugate of x. In matrix form (24)
s given by
H
k W

HWΦk = D, (25)

ith W as defined in (16), Φk as defined in (18) but with k
olumns instead of n, and where D = diag(c0, c1, . . . , ck). Fur-
hermore, the polynomials φj are normalized such that cj =
∀ cj ̸= 0, j = 0, . . . , k.
Without loss of generality, it is assumed that wi ̸= 0 ∀ i.

ndeed, if wi = 0, the corresponding node-weight pair can be
emoved from (24) without altering the inner product. Therefore,
ank(W ) = m and consequently rank(D) ≤ m, due to (25). This
eans there are at most m polynomials for which cj ̸= 0. In

act, under the assumption that there are no duplicate nodes, the
irst m polynomials are the ones for which cj ̸= 0. This follows
rom the fact that the square matrix Φm−1, containing these first
polynomials, is bijectively related to the square Vandermonde

atrix defined by the nodes ξi, which has a nonzero determinant
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s long as all the nodes are distinct (Gautschi, 1983). Therefore,
j = 1 for j = 0, . . . , m− 1, i.e.,
H
m−1W

HWΦm−1 = Im×m, (26)

eaning the matrix WΦm−1 is unitary, and thus κ(WΦm−1) = 1,
which is precisely the goal in numerically reliable identification
as is described in Section 2.2. Furthermore, it follows from (25)–
(26) that, for k > m−1, the last k− (m−1) columns of Φk are all
qual to zero, i.e., the polynomials φj(ξ ) for j > m− 1 have roots
hat coincide with all the nodes ξ1, ξ2, . . . , ξm. This property is
used in the following section to relate the set of polynomials to
an upper-Hessenberg matrix containing recurrence coefficients.

3.2. Hessenberg recurrence matrix

Due to the strict degree constraint degφj(ξ ) = j, the polyno-
mials {φj(ξ )}kj=0 are all linearly independent. As a consequence,
{φj(ξ )}kj=0 form a basis for the space of all polynomials of degree
less than or equal to k (Vandebril et al., 2008a, Chapter 12). In
turn, this implies that the polynomial ξφk−1(ξ ) can be written as
a linear combination of these polynomials, i.e.,

ξφk−1(ξ ) =
k∑

j=0

φj(ξ )hj,k−1 , k = 1, 2, 3, . . . (27)

where hk,k−1 ̸= 0 since ξφk−1(ξ ) is of strict degree k. Given the
recurrence coefficients, hj,k, and φ0, this relation can be used to
recursively compute the full set of polynomials by rearranging
(27) as

hk,k−1φk(ξ ) = ξφk−1(ξ )−
k−1∑
j=0

φj(ξ )hj,k−1 , (28)

hence (27) and (28) are recurrence relations. Eq. (27) can be
rewritten in matrix notation as

ξ
[
φ0(ξ ) · · · φk−1(ξ )

]
=

[
φ0(ξ ) · · · φk(ξ )

]
H(k+1)×k , (29)

which, when evaluated at the nodes ξ1, ξ2, . . . , ξm that define
the inner product (24), yields

XΦk−1 = ΦkH(k+1)×k, (30)

with X = diag(ξ1, ξ2, . . . , ξm). For k = m, the last column of Φm
is equal to zero, as shown in Section 3.1, meaning (30) can be
rewritten as,

XΦm−1 = Φm−1Hm×m . (31)

Here, Hm×m is an upper-Hessenberg matrix containing the recur-
rence coefficients which, in conjunction with φ0, can be used to
compute {φj(ξ )}m−1j=1 .

3.3. Inverse eigenvalue problem

To relate nodes and weights defining the inner product (24) to
the Hessenberg recurrence matrix, (31) is premultiplied by W ,

W (XΦ) = W (ΦH) , (32)

where Φ = Φm−1 and H = Hm×m are used to simplify notation.
Note that W and X commute due to their diagonal structure,
hence (32) equals

X(WΦ) = (WΦ)H . (33)

Since it follows from (26) that Q = WΦ is unitary, it follows from
(33) that

H
Q XQ = H , (34)

5

revealing that H is unitarily similar to X . Also, Q e1, the first
column of Q = WΦ is equal to

Q e1 = Wφ0 = α
w

∥w∥2
, (35)

with e1 = [1 0 · · · 0]T , |α| = 1, and, w as defined in (11).
The problem (34)–(35) is an inverse eigenvalue problem, where
the desired Hessenberg recurrence matrix H has the nodes ξi
as eigenvalues and the normalized weight vector w as the first
eigenvector.

The inverse eigenvalue problem as given by (34)–(35) is not
uniquely defined since each column of Q can be multiplied by a
complex number of magnitude one without violating orthonor-
mality. As an additional constraint, the sub-diagonal elements of
H , as well as α in (35), are constrained to be positive real, thereby
uniquely defining Q and H (Vandebril et al., 2008a, Chapter 12).
To summarize, the inverse eigenvalue problem considered here is
defined as follows.

Problem 1 (Inverse Eigenvalue Problem). Given the nodes ξi and
the weights wi, i = 1, 2, . . . , m, compute an upper Hessenberg
atrix H , with subdiagonal elements hk+1, k ∈ R>0, such that

• it is unitarily similar to the diagonal matrix X = diag(ξ1,
ξ2, . . . , ξm), i.e.,

Q HXQ = H,

• the first column of Q equals
w

∥w∥2
, with w as in (11).

When Problem 1 has been solved, the recurrence relation (28) can
subsequently be used to compute the orthonormal polynomial
basis {φj(ξ )}nj=0. The polynomial linear least-squares problem (10)
s then solved by

ˆ = Q HWy, (36)

ˆ(ξi, θ̂ ) = Φ θ̂ , (37)

ith Q = WΦ , and W , Φ , and y as given by (16)–(17).

3.4. Update algorithm: chasing down the diagonal

To solve the inverse eigenvalue problem of Problem 1, a uni-
tary matrix Q has to be determined such that

Q H [
w X

] [
1

Q

]
=

[
∥w∥2 e1 H

]
, (38)

with hk+1, k ∈ R>0.
An efficient method to solve this problem, as used in, e.g., Re-

ichel, Ammar, and Gragg (1991), is to consider the update step,
i.e., the problem of introducing a new node-weight pair to the
problem which has been solved for the previously introduced
node-weight pairs. This update step can be solved using Givens
rotations, which are defined here as

[c, s, r] = G(a, b) s.t.
[

c s
−s∗ c∗

][
a
b

]
=

[
r
0

]
, (39)

where |c|2+|s|2 = 1, a, b, c, s ∈ C and r ∈ R+ (Bindel, Demmel,
Kahan, & Marques, 2002). Here, the phase of r is constrained
such that it is positive real, whereas conventionally Givens ro-
tations are defined such that c ∈ R+. This choice reflects the
choice to constrain the sub-diagonal elements of the Hessenberg
recurrence matrix H to be positive real, as will be seen in the
remainder of this section. To simplify the notation in the remain-
der of this section, a Givens rotation applied to two rows and/or
columns is denoted as

↱↱
[

a
]
=

[
c s
∗ ∗

][
a

]
=

[
r

]
. (40)
b −s c b 0
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hen working with similarity transformations, as is the case
n this paper, these transformations are always applied to two
ides of the matrix. Here, the notation ↱↱ is used to denote the
olumns to which the Givens rotation is applied.
To perform the update step, a new node-weight pair (ξi, wi)

s first added to the top of the augmented matrix [ρi−1 e1 |Ho,i−1],
which has been brought to the desired form of (38) under unitary
similarity. Here ρi−1 = ∥wi−1∥2 where wi−1 is the vector contain-
ing weights w1, . . . , wi−1. The new matrix [wn,i | Hn,i] is given by

[wn,i | Hn,i] =

[
wi ξi

ρi−1 e1 Ho,i−1

]
, (41)

where

[wn,1 | Hn,1] = [w1 | ξ1] . (42)

The matrix (41) is transformed to the form of (38) under unitary
similarity, using Givens rotations. This is done by chasing the
bulge element, i.e., the non-zero element which violates the
desired matrix structure, down the diagonal using the following
algorithm.

Algorithm 4 (Chasing Down the Diagonal). A single update step
is performed by first adding a new node-weight pair to obtain
the augmented matrix as in (41). This matrix is then transformed
to the form [ρi e1 |Ho,i] under unitary similarity by the following
operations. First, the second element in the weight vector is
zeroed to transform it to the desired form of ρie1, i.e.,

↱↱

↱↱⎡⎢⎢⎢⎢⎣
wi ξ5

ρi−1 × × × · · ·

× × × · · ·

× ×
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎦ ⇒

⎡⎢⎢⎢⎢⎢⎣
ρi × × × × · · ·

0 × × × × · · ·

⋆ × × ×
. . .

× ×
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎦ . (43)

his induces a non-zero element, denoted by ⋆, as the (3, 1)
element of H̃i, violating the Hessenberg structure. This element
is subsequently zeroed by performing another Givens rotation

↱↱

↱↱⎡⎢⎢⎢⎢⎢⎣
ρi × × × × · · ·

× × × × · · ·

⋆ × × ×
. . .

× ×
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎦ ⇒

⎡⎢⎢⎢⎢⎢⎣
ρi × × × × · · ·

× × × × · · ·

0 × × × . . .

⋆ × ×
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎦ , (44)

hich effectively moves the bulge element one step down the
iagonal. This operation is repeated until the bulge element has
een chased all the way down the diagonal where a final zeroing
peration no longer introduces a new bulge element, i.e.,

↱↱

↱↱⎡⎢⎢⎢⎢⎣
ρie1

. . .
. . .

. . .
...

...

. . . × × × ×

× × × ×

× × ×

⋆ × ×

⎤⎥⎥⎥⎥⎦ ⇒

⎡⎢⎢⎢⎢⎣
ρie1

. . .
. . .

. . .
...

...

. . . × × × ×

× × × ×

× × ×

0 × ×

⎤⎥⎥⎥⎥⎦ ,

(45)

ielding the desired form [ρi e1 |Ho,i].

Note that this sequence of Givens rotations, with the Givens
otations defined as in (39) with r ∈ R+, directly leads to ρi ∈ R+
and hk+1, k ∈ R+. This update step needs to be performed for i =
, 2, . . . , m, to add each node-weight pair and, in each update

tep, i − 1 rotations are performed operating on both columns

6

and rows with at most i nonzero elements. This means the total
computational cost of solving the inverse eigenvalue problem is
O(m3). In the case of polynomial least-squares problems where
he orthonormal polynomial basis only needs to be built up to
limited polynomial degree n, the computational cost becomes
(mn2), since only the first n rows and columns of the Hessen-
erg recurrence matrix need to be computed (Vandebril et al.,
008a, Section 12.5).

.5. Special cases: matrix structure leading to an O(n) reduction in
omputational complexity

In the special case that all nodes ξi lie on the real line, the
maginary axis or the unit circle, the computational complexity of
he inverse eigenvalue problem, Problem 1, can be reduced such
hat an update can be computed in O(n) operations instead of
(n2). This is a result of additional structural properties of the
essenberg recurrence matrix H which enable the Givens chasing
perations described in Section 3.4 to be computed efficiently and
lso lead to a simplified recurrence relation (27).

.5.1. Nodes on the real-line and imaginary axis
For the classical situation where ξi ∈ R, the recurrence matrix
is Hermitian, since the diagonal node matrix satisfies XH

= X
nd therefore
H
= Q HXHQ = H . (46)

his Hermitian Hessenberg matrix is tridiagonal and can be fully
escribed using O(n) parameters, {ai}ni=0 and {bi}ni=1, as

R =

⎡⎢⎢⎢⎢⎣
a0 b∗1

b1 a1
. . .

. . .
. . . b∗n
bn an

⎤⎥⎥⎥⎥⎦ . (47)

urthermore, applying a Givens rotation to a tridiagonal matrix is
n operation with a computational complexity of O(1), where it
s O(n) for a full Hessenberg matrix, leading to the reduction of
he computational complexity of the update algorithm described
n Section 3.4 from O(n2) to O(n). Also, it is immediate from (47)
hat the n-term recurrence relation (27) reduces to a three term
ecurrence relation,

φk(ξ ) = bkφk−1(ξ )+ akφk(ξ )+ bk+1φk+1(ξ ) . (48)

or the case where all ξi lie on the imaginary axis a similar
ituation occurs where the Hessenberg matrix is skew-Hermitian
nstead of Hermitian.

.5.2. Nodes on the unit circle
In the case that all nodes ξi lie on the unit circle, the complex

onjugate of each node is equal to its inverse since ξ−1i =
ξ∗i
|ξi|

2 ,

and |ξi| = 1 for nodes on the unit circle. This means that for the
diagonal node matrix

XH
= X∗ = X−1 , (49)

which leads to

HH
= Q HXHQ = H−1 , (50)

meaning the Hessenberg recurrence matrix is unitary. This uni-
tary Hessenberg matrix can again be fully described using O(n)

n n
parameters, {γi}i=0 and {σi}i=1, however this description is not
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parse as in the tridiagonal case, here

HT =

⎡⎢⎢⎢⎢⎣
−γ ∗0 γ1 −γ ∗0 σ1γ2 −γ ∗0 σ1σ2γ3 · · · −γ ∗0 σ(1:n−1)γn

σ1 −γ ∗1 γ2 −γ ∗1 σ2γ3 · · · −γ ∗1 σ(2:n−1)γn
0 σ2 −γ ∗2 γ3 · · · −γ ∗2 σ(3:n−1)γn
...

. . .
. . .

. . .
...

0 · · · 0 σn−1 −γ ∗n−1γn

⎤⎥⎥⎥⎥⎦,

(51)

here σ(x:y) =
∏y

i=x σi.
The key property of unitary Hessenberg matrices that leads

o a reduction of the computational complexity is that unitary
essenberg matrices can be written as a product of elementary
nitary factors

T = G′0G1G2 . . .Gn−1G′n , (52)

ith
′

0 = γ ∗0 ⊕ In−1 , G′n = In−1 ⊕−γn , (53)

Gk = Ik−1 ⊕
[
−γk σk
σk γ ∗k

]
⊕ In−k−1 , (54)

here ⊕ denotes the direct sum, i.e.,

⊕ B =
[
A 0
0 B

]
. (55)

he representation (52) of unitary Hessenberg matrices is known
s the Schur parametrization. As a result of this parametrization,
he application of a single Givens rotation again has a com-
utational complexity of O(1), due to the fact that only fac-
ors Gk−1, Gk and Gk+1 are affected by an elementary similarity
transformation operating on rows/columns k and k+ 1.

The unitary Hessenberg structure also leads to simplified re-
urrence relations. Indeed, these can be written as a two-term
ecurrence relation with a set of auxiliary polynomials {φ̃(ξ )},

φ̃0(ξ )
φ0(ξ )

]
=

1
σ0

[
−γ ∗0
1

]
, (56)[

φ̃k(ξ )
φk(ξ )

]
=

1
σk

[
1 −γ ∗k
−γk 1

][
φ̃k−1(x)
ξφk−1(x)

]
, (57)

which is known as the Szegö recurrence relation. When γk ̸=

∀ k, these relations can be rewritten as a three-term recurrence
relation

φ−1(ξ ) = 0 , φ0(ξ ) =
1
σ0

, (58)

k(ξ ) =
φk−1(ξ )

σk

(
ξ +

γk

γk−1

)
−

γk

γk−1

σk−1

σk
ξφk−2(ξ ) , (59)

further highlighting the similarity between the cases with nodes
on the unit circle and with nodes on the real-line or imaginary
axis as described in Section 3.5.1.

3.6. Towards a unified approach

In Sections 3.1–3.4, the theoretical framework of data-
dependent orthonormal polynomials is established. It is shown
that by solving an inverse eigenvalue problem, a Hessenberg
recurrence matrix is constructed which uniquely determines the
polynomial basis that is orthonormal with respect to the data-
dependent inner product.

In Section 3.5, it is shown that there are additional structural
properties for the Hessenberg recurrence matrix when the nodes
that define the data-dependent inner product all lie on either
the real-line, the imaginary axis or the unit circle. These struc-
tural properties lead to efficient construction algorithms for the
7

discrete orthogonal polynomials, enabling the formulation of ef-
ficient and numerically reliable system identification approaches
in both the continuous time Laplace domain, with nodes on the
imaginary axis, and the discrete time Z-domain, with nodes on
the unit circle.

From a system theoretical perspective, it indeed makes sense
that similar structural properties exists for the Hessenberg recur-
rence matrix both in problems expressed in the continuous time
Laplace domain and problems expressed in the discrete time Z-
domain, since these are closely related. Indeed, through the use of
invertible bilinear transformations several discrete time problems
can be tackled with tools from continuous time system theory
and vice versa, see, e.g., Iglesias and Glover (1991).

The general form of these bilinear transformations, known as
Möbius transformations, is given by

ξ̃ =
α ξ + β

µ ξ + η
, (60)

with α, β, µ, η ∈ C and αη − βµ ̸= 0. The full class of geome-
tries that is related to the real-line and unit circle through Möbius
transformations is the class of generalized circles, i.e., circles and
lines, in the complex plane.

In the following section, the Möbius transformation is ex-
ploited to generalize the structural properties of the Hessenberg
recurrence matrix that lead to a reduction in computational com-
plexity to the case where all nodes lie on a generalized circle in
the complex plane, including the real-line and unit-circle as spe-
cial cases. This enables the fast construction of data-dependent
orthonormal polynomials in the δ-domain without first trans-
forming the problem to an equivalent Z-domain or s-domain
formulation.

4. Orthogonal polynomials on generalized circles: a unified
framework

In this section, the theoretical framework and algorithm are
presented for the efficient construction of orthogonal polynomials
with nodes on generalized circles in the complex plane. To extend
the results of the real-line and unit circle cases, as described in
Section 3.5, to generalized circles, their geometrical properties
are investigated first in Section 4.1. Second, in Section 4.2 the
structural properties of the Hessenberg recurrence matrix are
investigated, resulting in a generalization of the structural prop-
erties as encountered in the real line and unit-circle cases for
the generalized circle case. Next, in Section 4.3 it is shown how
this generalized structure for the Hessenberg recurrence matrix
again leads to an O(n) reduction in computational complexity as
formulated in Theorem 14, this constitutes the first main result
of this paper. Lastly, in Section 4.4 the construction algorithm is
formulated in Algorithm 5, constituting the second main result of
this paper.

4.1. Geometrical properties of generalized circles

The geometric properties of generalized circles are first de-
fined and investigated, with a particular emphasis on their rela-
tion to the known real-line and unit circle cases. First, generalized
circles are defined.

Definition 2 (Generalized Circles). A generalized circle is a set of
points ξ in the complex plane that satisfies the following equation

a ξξ ∗ + b ξ + c ξ ∗ + d = 0 , (61)

for any a, d ∈ R and c, b ∈ C, such that c = b∗, and ad <

bc , Schwerdtfeger (1979, Section 1.1).



R. Voorhoeve and T. Oomen Automatica 131 (2021) 109709

T
c
t
t
b
M

L
u

ξ

w

P

W(

w
a
i

m
f

D
c
d

U

w
a

e
(
p
c
e
t

L

U

w
a

o
t
t
w
c
w
g
v
t
t
m
u
o
c
c

4

c
w
r
s
u
c
o
i
t
m
m
(

D
b

T
t
i

D
a
r

Generalized circles are circles and straight lines in the complex
plane and are therefore alternatively called clines or circlines. The
general relation between two generalized circles is the Möbius
transformation, (60), as defined in Section 3.6. In this section,
a simplified version of the Möbius transformation is considered
where no inversion is used, i.e., where µ = 0, and η = 1.
his simplified Möbius transformation can be considered as a
omposition of the following simple geometrical transformations:
ranslation, homothety, and rotation (Schwerdtfeger, 1979). In
he following lemma it is shown that all generalized circles can
e transformed to the real-line or unit circle using this simplified
öbius transformation.

emma 3. A set of nodes {ξ̃i}mi=1 lies on a generalized circle in the
nit plane if and only if ∃ c1 ∈ C \ {0}, and c2 ∈ C, such that,

˜i = c1ξi + c2, (62)

ith ξi ∈ R ∀ i, or |ξi| = 1 ∀ i.

roof. Applying transformation (62) to (61) yields,

a(c1ξ + c2)(c1ξ + c2)∗ + b(c1ξ + c2)+ c(c1ξ + c2)∗ + d = 0.
(63)

hen a ̸= 0, taking c2 = − b
a and c1 =

√
bc
a2
−

d
a yields

bc
a
− d

)
ξξ ∗ −

(
bc
a
− d

)
= 0 , (64)

which corresponds to ξξ ∗ = 1, i.e., the unit circle. When a = 0,
taking c2 = − d

2 and c1 = jc yields

jbc ξ − jbc ξ ∗ = 0 , (65)

hich corresponds to ξ = ξ ∗, i.e., the real-line. The converse
lso holds since the transformation ξ ↦→ ξ̃ defined by (62) is
nvertible. □

Next, matrices that are unitarily similar to a diagonal node-
atrix with nodes on a generalized circle are defined in the

ollowing as circline matrices.

efinition 4 (Circline Matrices). A matrix Ũ is referred to as a
ircline matrix if it is unitarily similar to a diagonal matrix X̃ =
iag(ξ̃1, ξ̃2, . . . , ξ̃m), i.e.,

˜ = Q H X̃Q , (66)

ith Q a unitary matrix, where the nodes {ξ̃i}mi=1 lie on a gener-
lized circle in the complex plane.

This class of matrices is important as it is the class of matrices
ncountered in the solution of the inverse eigenvalue problem
Problem 1) when the nodes lie on a generalized circle in the com-
lex plane. The following Lemma shows the relation between the
lass of circline matrices and the unitary or Hermitian matrices
ncountered in the solution of the inverse eigenvalue problem in
he unit circle and real line cases.

emma 5. Let Ũ ∈ Cp×p, be a circline matrix, then ∃ c1 ∈ C \ {0},
and c2 ∈ C, such that,

Ũ = c1U + c2I , (67)

where U = Q HXQ is a unitary or Hermitian matrix, with Q a unitary
matrix and X = diag(ξ1, ξ2, . . . , ξm) a diagonal node matrix with
ξi ∈ R ∀ i, or |ξi| = 1 ∀ i.
8

Proof. From Definition 4,

Ũ = Q H X̃Q , (68)

it follows from Lemma 3 that ∃ c1 ∈ C\{0}, and c2 ∈ C, such that,

X̃ = c1X + c2I, (69)

with X = diag(ξ1, ξ2, . . . , ξm) a diagonal node matrix with ξi ∈

R ∀ i, or |ξi| = 1 ∀ i. Substituting (69) into (68) yields

˜ = Q H (c1X + c2I)Q = c1U + c2I , (70)

ith U = Q HXQ , as scalar-matrix multiplication is commutative
nd Q H IQ = I . □

In Lemma 3 it is shown that a simple shifting and scaling
peration (62) can be used to transform any generalized circle
o either the real-line or the unit circle. Then, Lemma 5 essen-
ially shows that this shifting and scaling operation commutes
ith unitary similarity transformations. As a result of this any
ircline matrix, as defined in Definition 4 and as encountered
hile solving the inverse eigenvalue problem (Problem 1) in the
eneralized circle case, can be written as a shifted and scaled
ersion of a unitary or Hermitian matrix as are encountered in
he real-line or the unit circle cases. This relationship between
he matrices encountered in the generalized circle case and the
atrices encountered in the real-line and unit circle cases is
sed in the next section to show that the structural properties
f the Hessenberg recurrence matrix that lead to a reduction in
omputational complexity in the real-line and unit circle cases
an be extended to the generalized circle case.

.2. Structural properties of the Hessenberg recurrence matrix

To generalize the structural properties of the Hessenberg re-
urrence matrix, a class of structured matrices is investigated
hich contains both the tridiagonal matrices encountered in the
eal-line and imaginary axis cases as well as the unitary Hes-
enberg matrices encountered in the case with nodes on the
nit circle. This class of matrices is called quasiseparable matri-
es (Bella, Eidelman, Gohberg, & Olshevsky, 2008), which is a type
f rank-structured matrix. More specifically, the class of matrices
nvestigated here is the class of Hessenberg-quasiseparable ma-
rices with a separability rank of one, i.e., (H, 1)-quasiseparable
atrices. Using the notation A(i1 : i2, j1 : j2) to denote the sub-
atrix of A containing rows i1 to i2 and columns j1 to j2, these

H, 1)-quasiseparable matrices are defined as follows.

efinition 6 ((H, 1)-quasiseparable Matrices). An upper Hessen-
erg matrix H is (H, 1)-quasiseparable if,

max
1 ≤ i ≤ n−1

rank (H(1 : i, i+ 1 : n) ) ≤ 1 . (71)

he value of the rank constraint in (71), for all the blocks above
he main diagonal, is known as the upper separability rank. This
s defined here along with the lower separability rank as follows.

efinition 7 (Separability Rank). Let A ∈ Cn×n, then A is quasisep-
rable with upper separability rank ku, and lower separability
ank kl if

max
1 ≤ i ≤ n−1

rank ( A(1 : i, i+ 1 : n) ) ≤ ku , (72)

max
1 ≤ i ≤ n−1

rank ( A(i+ 1 : n, 1 : i) ) ≤ kl . (73)
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he tridiagonal matrices encountered in the real-line case,
.e., (47), are indeed (H, 1)-quasiseparable as in this case the
pper diagonal blocks are given by,

R(1 : i, i+ 1 : n) =
[
0i−1×1 0i−1×n−i
b∗i 01×n−i

]
, (74)

hich has one nonzero element and consequently its maximal
ank is equal to one, as required in Definition 6. For the unitary
essenberg matrices encountered in the unit-circle case, i.e., (51),
he upper diagonal blocks are written as,

T (1 : i, i+ 1 : n) = −aTb , (75)

here,

=
[

γ ∗0 σ(1:i−1) γ ∗1 σ(2:i−1) · · · γ ∗i−2σi−1 γ ∗i−1
]

,

b =
[

σiγi+1 σiσi+1γi+2 · · · σ(i:n−1)γn
]
, (76)

ith σ(x:y) =
∏y

i=x σi. This shows that these upper diagonal
locks also have a maximal rank of one, showing that a unitary
essenberg matrix is (H, 1)-quasiseparable.
Another property that is shared by both the unitary matrices

ncountered in the unit circle case and the Hermitian matrices
ncountered in the real-line case is that they are rank symmetric,
s is shown in the following lemma.

emma 8 (Rank Symmetry). Let U be a unitary or Hermitian n× n
atrix. Then if U is lower quasiseparable with separability rank k it

s also upper quasiseparable with the same rank.

For a proof see Gemignani and Robol (2017, Theorem 5). In the
ollowing Theorem it is shown that this rank symmetry property
an be extended to all circline matrices.

heorem 9 (Circline Rank Symmetry). Let Ũ ∈ Cn×n be a circline
atrix. Then Ũ is rank symmetric, i.e., if Ũ is lower quasiseparable
ith separability rank k it is also upper quasiseparable with the same
ank.

roof. Lemma 5 shows that Ũ can be written as
˜ = c1U + c2I, (77)

here U = Q HXQ is a unitary or Hermitian matrix. As the
uasiseparable rank-structure excludes the main diagonal, both
he lower and the upper separability rank of Ũ is equal to that of
1U . Therefore, as U is rank symmetric as a result of Lemma 8, Ũ
is rank symmetric. □

Using this rank symmetry property, the following theorem
shows that the class of Hessenberg recurrence matrices involved
in the construction of a set of polynomials orthogonal with re-
spect to a discrete inner-product with support on a generalized
circle in the complex plane is indeed (H, 1)-quasiseparable.

Theorem 10. Let H̃ ∈ Cn×n be a Hessenberg matrix that is also a
circline matrix. Then H̃ is (H, 1)-quasiseparable.

Proof. As H̃ is a Hessenberg matrix, its lower separability rank
hl = 1, as all blocks from below the main diagonal contain at
most a single element. As H̃ is also a circline matrix, it is rank
symmetric as a result of Theorem 9, therefore its upper separa-
bility rank hu = hl = 1, meaning H̃ is a (H, 1)-quasiseparable
matrix. □

This key theoretical result shows that the Hessenberg recur-
rence matrices encountered in the generalized circle case indeed
have the (H, 1)-quasiseparable structure. In the following sec-
tion it is shown that this result, in conjunction with the rank
symmetry result of Theorem 9, enables the efficient construction
of orthogonal polynomials on generalized circles in the complex
plane.
 r

9

4.3. Efficient O(mn) construction of orthogonal polynomials on gen-
eralized circles

In the following section it is shown that the (H, 1)-
quasiseparable matrix structure leads to a O(n) simplification
f the construction algorithm for the orthonormal set of poly-
omials. For such an O(n) simplification to exist the following
equirements must be met.

R.1 The Hessenberg recurrence matrix H ∈ Cn×n can be
parametrized using O(n) parameters.

R.2 There exist simplified recurrence relations that enable the
computation of the orthonormal polynomial basis in O(mn)
operations.

R.3 The inverse eigenvalue problem as defined by Problem 1 can
be solved in O(mn) operations.

he following lemma shows that an (H, 1)-quasiseparable matrix
an be represented using O(n) generators.

emma 11 ((H, 1)-quasiseparable Generators). Let H ∈ Cn×n be a
H, 1)-quasiseparable matrix. Then H can be fully described with a
et of generators qi, di, gi, hi, bi, i = 1, . . . , n, as follows

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d1 g1h2 g1b2h3 · · · · · · g1b(2:n−1)hn
q1 d2 g2h3 · · · · · · g2b(3:n−1)hn
0 q2 d3 · · · · · · g3b(4:n−1)hn
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . qn−2 dn−1 gn−1hn

0 · · · · · · 0 qn−1 dn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (78)

here b(x:y) =
∏y

i=x bi.

See Eidelman and Gohberg (1999, Theorem 3.5) for a proof.
his description fulfills the first requirement R.1.
Furthermore, as shown in the following lemmas this generator

escription leads to the following simplified recurrence relations
or the related polynomial systems.

emma 12 ((H, 1)-quasiseparable 2-term r.r.). Let H ∈ Cn×n be
(H, 1)-quasiseparable matrix described by a set of generators

i, di, gi, hi, bi, i = 1, . . . , n as in (78). Then the set of polynomi-
ls {φk(ξ )}nk=0 related to H through the n-term recurrence relation
29) can be obtained by the following 2-term block recurrence
elation,[
F0(ξ )
φ0(ξ )

]
=

[
0
α0

]
, (79)[

Fk(ξ )
φk(ξ )

]
=

[
βk λk
δk αkξ + εk

][
Fk−1(ξ )
φk−1(ξ )

]
, (80)

here the conversion from the quasiseparable generators to the
ecurrence relation coefficients is given in Table 1.

emma 13 ((H, 1)-quasiseparable 3-term r.r.). Let H ∈ Cn×n be
(H, 1)-quasiseparable matrix described by a set of generators

i, di, gi, hi, bi, i = 1, . . . , n as in (78), with hi ̸= 0 ∀ i. Then
he set of polynomials {φk(ξ )}nk=0 related to H through the n-term
ecurrence relation (29) can be obtained by the following 3-term
ecurrence relation,

0(ξ ) = α0, φ1(ξ ) = (α1ξ + ζ1) · φ0(ξ ), (81)

φk(ξ ) = (αkξ + ζk) · φk−1(ξ )+ (ηkξ + θk) · φk−2(ξ ) , (82)

here the conversion from the quasiseparable generators to recur-

ence relation coefficients is given in Table 1.
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onversion formulas from quasiseparable generators to recurrence relation
oefficients.
Two-term block recurrence coefficients

αk βk λk δk εk

1
qk

bk −gk
hk
qk

−
dk
qk

Three-term recurrence coefficients

αk ζk ηk θk

1
qk

hkqk−1bk−1−dkhk−1
qkhk−1

−
hkbk−1
qkhk−1

hk(dk−1bk−1−hk−1gk−1)
qkhk−1

For proofs of Lemmas 12 and 13, and further details on these
ecurrence relations, see, e.g., Bella, Olshevsky, and Zhlobich
2011a, 2011b) and Eidelman, Gohberg, and Olshevsky (2005).
he recurrence relations (79)–(82) fulfill requirement R.2.
Finally, the following theorem shows that the inverse eigen-

alue problem can be solved with a reduced computational com-
lexity when all nodes lie on a generalized circle. This theorem is
he main result of this paper as it shows that the data-dependent
rthonormal polynomials can be efficiently constructed in the
eneralized circle case.

heorem 14. Let the nodes {ξ̃i}mi=1 all lie on a generalized circle
n the complex plane. Then the inverse eigenvalue problem as de-
ined by Problem 1 can be efficiently solved with a computational
omplexity of O(mn).

roof. All operations performed in Algorithm 4 are unitary sim-
larity transformations. Therefore in all steps of the algorithm
he matrix being operated on is a circline matrix as defined in
efinition 4, since

˜ ′ = Q H X̃Q , (83)

ith Q a unitary matrix and X̃ = diag(ξ̃i) where the nodes {ξ̃i}mi=1
ll lie on a generalized circle in the complex plane. As a result
f Theorem 9 the matrix H̃ ′ is rank symmetric. When performing

an update step, the problem matrix is Hessenberg apart from the
one bulge element on the second subdiagonal that is being chased
down. This bulge element does not increase the lower separability
rank of the matrix as any matrix taken from below the main
diagonal has either one of the following three structures

1 :
[
0 ×

0 0

]
, 2 :

[
⋆ ×

0 0

]
, 3 :

[
0 ×

0 ⋆

]
, (84)

hich are all rank 1. Therefore, as a result of rank symmetry, the
pper separability rank of H̃ ′ is also equal to one in all steps of
he chasing algorithm. Performing a single chasing operation on
he problem matrix thus means performing a Givens rotation on
matrix of the following structure,

H H̃ ′G =
↱↱

↱↱

. . .
. . .

...
...

...
...

...
...

. . . × ⊠ ⊠ ⊠ ⊠ ⊠ · · ·

× × ⊠ ⊠ ⊠ ⊠ · · ·

× × ⊠ ⊠ ⊠ · · ·

⋆ × × ⊠ ⊠ · · ·

× × ⊠ · · ·

. . .
. . .

. . .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (85)

here ⊠ is used to denote the rank structured part of the matrix,
.e., any block out of this part of the matrix has a rank of one. Due
o this rank structure, Performing a Givens rotation on the right
× n part of the matrix, enclosed by the blue dash-dotted line,
10
and top n× 2 part, enclosed by the red dashed line, can be done
with a computational complexity of O(1) instead of the general
complexity O(n). As a result, Problem 1, can be solved with an
overall computational complexity of O(mn) instead of O(mn2) for
the case where all nodes lie on a generalized circle in the complex
plane. □

In the following section, the (H, 1)-quasiseparable matrix
structure is employed to devise an efficient algorithm for chasing
down the diagonal.

4.4. Update algorithm: chasing down the diagonal for (H, 1)-
quasiseparable matrices

For notational simplicity the so-called well-free case is con-
sidered here where hi ̸= 0 ∀ i, in which case it is possible to
take hi = 1 ∀ i without loss of generality, see, e.g., Bella et al.
(2011a). This property generally holds in the context of system
identification due to the stochastic nature of the identification
data. In the following algorithm it is detailed how a single chasing
operation of the chasing down the diagonal algorithm in Sec-
tion 3.4 is performed for a (H, 1)-quasiseparable matrix with a
computational complexity of O(1).

Algorithm 5 (Chasing for (H, 1)-quasiseparable). A single chasing
peration of the update algorithm of Section 3.4 is shown below
cting on a (H, 1)-quasiseparable matrix H̃ ′ using the generator
escription of Lemma 11,
GH
i H̃
′(i− 1 : i+ 5, i : i+ 4)Gi =

↱↱

↱ ↱

gi−1 gi−1bi gi−1b(i:i+1) gi−1b(i:i+2) gi−1b(i:i+3)
di gi gibi+1 gib(i+1:i+2) gib(i+1:i+3)
qi di+1 gi+1 gi+1bi+2 gi+1b(i+2:i+3)
⋆ qi+1 di+2 gi+2 gi+2bi+3
0 0 qi+2 di+3 gi+3
0 0 0 qi+3 di+4
0 0 0 0 qi+4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(86)

The chasing operation performed on the middle part of H̃ ′,
enclosed by the green dotted line in (86), leads to the following
new values of the generators, denoted by the subscript n,

[qi,n di+1,n gi+1,n
0 qi+1,n di+2,n
0 ⋆n qi+2,n

]
←

↱ ↱

↱↱
[qi di+1 gi+1

⋆ qi+1 di+2
0 0 qi+2

]
.

(87)

or the top part, enclosed by the red dashed line in (86), the
ollowing factorization can be made

↱ ↱⎡⎢⎣ ...
...

gi−1bi gi−1b(i:i+1)
gi gibi+1

⎤⎥⎦ =
⎡⎢⎣ ...

gi−1
bi
gi

1

⎤⎥⎦ ↱ ↱[
gi bi+1gi

]
,

(88)

leading to the following new values of the generators,

gi,n ←
[
1 0

] ↱ ↱[
gi bi+1gi

]
,

(89)

bi+1,n ←
[
0 1/gi,n

] ↱ ↱[
gi bi+1gi

]
,

(90)

bi,n ← gi,nbi/gi. (91)

Finally, for the right part, enclosed by the blue dash-dotted line
in (86), the following factorization can be made

↱↱

[
gi+1bi+2 gi+1b(i+2:i+3) . . .

gi+2 gi+2bi+3 . . .

]
= ↱↱

[
gi+1bi+2
gi+2

] [
1 bi+3 . . .

]
,

(92)
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eading to the following new values of the generators,

bi+2,n
gi+2,n

]
←

[
1/gi+1,n 0

0 1

]
↱↱

[
gi+1bi+2
gi+2

]
. (93)

After the replacements of the old generators with the new gen-
erators, i in (86) is increased by one and the same operation
is performed again to chase the bulge one more step down the
diagonal.

Here (91) is obtained from the fact that the factor bi/gi which
appears in the column vector of the factorization in (88) must
remain constant. Furthermore, the (2, 4)-element of the matrix
in (86), which is not operated on, should also remain constant.
This leads to the following additional condition that should be
checked for Algorithm 5,

gi,nb(i+1:i+2),n = gib(i+1:i+2). (94)

or the case of nodes on a generalized circle, this condition is
uaranteed to hold due to the rank symmetry of circline matrices.
In the following section, this algorithm is used to obtain a

nified framework for numerically reliable identification in the
aplace domain, the Z-domain and the δ-domain.

. Identification approach and implementation aspects

In this section the results from Section 4 are applied to obtain a
nified framework for numerically reliable system identification.

.1. Unified identification approach

The unified identification approach as proposed in this paper is
ummarized in Fig. 2. In particular, it is shown how, starting with
RF data of a given system, a system model is identified using
class of well-known identification algorithms in combination
ith numerically optimal polynomial basis functions expressed

n either the Laplace domain, the Z-domain or δ-domain.

emark 15. Determining the appropriate model order is a part
f the general identification problem. The proposed identification
pproach requires the user to select the maximum degree of the
pproximant in the polynomial least-squares problem. However,
s the data-dependent orthonormal polynomial approach recur-
ively builds up the orthonormal polynomial basis, it becomes
rivial to also obtain all the lower order approximations, see,
.g., Pintelon and Kollár (2005). This enables the subsequent
etermination of the appropriate model order by, e.g., applying a
tatistical information criterion or by plotting and analyzing the
tabilization diagram.

emark 16. When the computed matrix Q = WΦ is not suf-
iciently unitary, as determined by some user-defined metric,
.g., if κ(Q ) > 1+ εtol for some tolerance εtol, then an additional
e-orthogonalization step can be performed by explicitly solving
he over-determined system of Eqs. (15) using a standard solver,
.g., a QR-solver, instead of using (36)–(37).

A requirement for the implementation of the proposed ap-
roach for system identification, is that the obtained solution
olynomials are real-valued. How to make sure real-valued poly-
omials are obtained, is considered next.

.2. Real-valued polynomials

To make sure the obtained polynomials are real-valued, the
iscrete inner product needs to be defined such that all the
ode-weight pairs are added in conjunction with their complex
onjugates. To do this, the weight vector w and node matrix X are
 t

11
Fig. 2. Unified numerically reliable identification approach.

extended to include all the complex conjugate nodes and weights
as follows,

wc =
[
w1 w∗1 · · · wm w∗m

]T
, (95)

Xc = diag
([

ξ1 ξ ∗1 · · · ξm ξ ∗m
])

. (96)

When adding the node-weight pairs as in (95)–(96), then af-
ter every second update step of the algorithm in Section 4.4,
i.e., when a complex conjugate pair has been added, the (H, 1)-
quasiseparable generators are all real apart from possible numer-
ical errors. Therefore after every second update step all imaginary
parts of the generators can be set to zero. Even though this ap-
proach does not fully utilize the conjugate symmetry inherent in
the problem to maximally reduce the computational complexity,
it is sufficiently efficient and numerically reliable for the purposes
of this paper.

An effective approach to utilize the conjugate symmetry in-
herent in the problem is the chasing two-down the diagonal
approach, as described in, e.g, van Herpen et al. (2016). In this
approach, the node-weight pairs are again added as in (95)–(96)
and then the following transformation is performed

T0 =
1
√
2
Im ⊗

[
1 j
1 −j

]
, (97)

wr = TH
0 wc

=
√
2
[
Re(w1) Im(w1) · · · Re(wm) Im(wm)

]T
, (98)

Xr = TH
0 XcT0

=

[
Re(ξ1) −Im(ξ1)
Im(ξ1) Re(ξ1)

]
⊕ · · · ⊕

[
Re(ξm) −Im(ξm)
Im(ξm) Re(ξm)

]
. (99)

fter this transformation is performed all calculations can be
erformed on real coefficients, effectively leading to a factor two
eduction in computational complexity. However, in this chasing
wo-down approach, a block of two node-weight pairs, each
thers complex conjugates, has to be added and chased down
he diagonal in conjunction. This leads to a larger non-trivial
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Fig. 3. The AVIS setup and a schematic representation of one of the four isolator
modules.

block on which to perform the calculations since simultaneously
adding two bulge elements below the first sub-diagonal of the
Hessenberg matrix does increase the rank of the corresponding
lower diagonal blocks, which due to rank symmetry will also
cause the upper diagonal blocks to become rank 2. Therefore the
chasing two-down approach is not used in this paper and its
implementation for the quasiseparable Hessenberg matrix case is
considered as future work.

6. Example

In this section the numerical advantages of the proposed ap-
roach are shown using a simulation example.

.1. System description

In this section an Active Vibration Isolation System (AVIS) is
onsidered as is shown in Fig. 3. The system is modeled as a rigid
solated payload connected to a rigid base frame with four isolator
odules as detailed in Beijen, Voorhoeve, Heertjes, and Oomen

2018). The example considered in this paper is based on the SISO
ransfer function between a moment Mx, applied to the payload
n the θx direction and the resulting rotation in the θy direction.
he Bode diagram of this transfer function is shown in Fig. 4. This
s a relevant case study in the context of the present paper, as the
ampling frequency used is often much higher than the dominant
ynamics for such a system.

.2. Methods

The true system G0(ξ ) is given by

G0(ξ ) =
n0(ξ )
d0(ξ )

. (100)

In this simulation example, the denominator polynomial d0(ξ ) is
estimated from simulated FRF data of the system, G̃(ξi), and it is
assumed that the true numerator polynomial n0(ξ ) is known. This
is done to reduce the identification problems problem to a scalar
polynomial least-squares problem as is considered in this paper.
The vector polynomial case that is encountered when jointly
estimating d0(ξ ) and n0(ξ ) with optimal numerical conditioning,
as in Bultheel et al. (2005), is not considered further here, but
follows along the same lines as is explained in Section 7.

The simulated FRF data G̃(ωi) is given as,

G̃(ωi) = G0(ξi)+ νi , (101)

where νi is randomly generated, circularly complex normally dis-
tributed noise with zero mean and a variance which is constant
for all i with a value of 0.1 times the median absolute value of
12
Fig. 4. Bode-diagram of the simulation model, based on a rigid-body AVIS model
from moment Mx to rotation θy .

G0(ξi). In this example 103 frequency points, ωi, are considered
which are logarithmically spaced between 0.5 and 10 Hz.

To identify the denominator polynomial from this data, ten it-
erations of the SK-algorithm, Algorithm 2, are used where n̂(ξi, θ )
is replaced with n0(ξi) and where d̂(ξi, θ ⟨0⟩) = 1. This identifi-
cation procedure is performed using three different approaches.
First, in the Z-domain using the Schur parametrization of Sec-
tion 3.5.2 to represent the Hessenberg recurrence matrix, im-
plemented as a rotation-chasing algorithm similar to Vandebril
(2011). Second, in the Z-domain using the presented approach
of Section 5 where the computations are performed on the qua-
siseparable generators that represent the Hessenberg recurrence
matrix. Third, in the δ-domain, also using the proposed approach
of Section 5.

These three identification approaches are all implemented and
performed for increasing sampling frequencies in single preci-
sion floating-point arithmetic. To compare the performance of
the approaches, two metrics are used, first is the conditioning
of the matrix Q = WΦ , which should be equal to 1 when
the orthogonalization procedure is successful. To quantify the
orthogonalization performance, the geometric mean of κ(Q ) − 1
over all iterations is considered, i.e.,

µg{κ(Q )− 1} =
10∏
l=1

(
κ(Q ⟨l⟩)− 1

)1/10
. (102)

As a second metric the converged cost function is considered
which is determined here as the arithmetic mean of cost function
values of the last three iterations, i.e.,

Vconv =
1
3

10∑
l=8

V ⟨l⟩ , (103)

where,

V ⟨l⟩ =
m∑
i=1

⏐⏐⏐⏐wi

(
G̃(ξi)−

n0(ξi)

d̂(ξi, θ ⟨l⟩)

)⏐⏐⏐⏐2 . (104)

Whenever an invalid number, i.e.,±∞ or NaN, is encountered it is
replaced by the maximum conditioning number for determining
µg{κ(Q )−1} and for determining Vconv the last three valid values
for V ⟨l⟩ are used.

6.3. Results

In this section, the results are presented for the AVIS exam-
ple. First, the results related to the conditioning of the matrix
Q = WΦ are presented. Next, the results for the converged cost
function values are presented.
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Fig. 5. Conditioning results µg {κ(Q ) − 1} for different sampling frequencies
ithout re-orthogonalization. Shows that the conditioning numbers for the
-domain approaches with the Schur parametrization (red dash-dotted) and
he quasiseparable parametrization (yellow dotted) increase with increasing
ampling frequency and are much higher than those for the δ-domain approach
roposed in this paper (blue solid) where the conditioning numbers remain close
o optimal κ = 1 for all sampling frequencies.

Fig. 6. Converged cost results for different sampling frequencies without re-
orthogonalization. Shows that for high sampling frequencies the Z-domain
approaches with the Schur parametrization (red dash-dotted) and the quasisep-
arable parametrization (yellow dotted) are no longer able to reach a low cost
function value while the δ-domain approach proposed in this paper (blue solid)
reaches the same low cost function value for all sampling frequencies.

6.3.1. Conditioning results
In Fig. 5, the conditioning results are shown for different

sampling frequencies. These results can be interpreted as a mea-
sure for the numerical loss of significance in the orthogonaliza-
tion procedure. From this figure it is clear that the numerical
performance of the δ-domain approach is superior to that of
both Z-domain approaches. For the δ-domain approach, the nu-
merical performance is independent of the sampling frequency
while for both Z-domain approaches the numerical performance
deteriorates with increasing sampling frequency.

Closer inspection reveals that for the Z-domain approach with
the Schur parametrization the numerical loss of significance ini-
tially scales quadratically with the sampling frequency while for
the Z-domain approach with the quasiseparable parametrization
this scaling is linear. After this initial scaling, a sharp increase in
the numerical loss of significance can be observed once κ(Q ) −
1 > 1, which can be viewed as a sort of threshold after which
orthogonality is lost. The observed difference in initial scaling for
the two Z-domain approaches can be explained from the fact
that in the quasiseparable parametrization the main diagonal is
linearly parametrized as di, while the main diagonal in the Schur
parametrization is parametrized quadratically as γ ∗ γ .
i−1 i

13
Fig. 7. Converged cost results for different sampling frequencies with re-
orthogonalization. Shows that re-orthogonalization can be used to extend the
range of sampling frequencies for which the Z-domain approaches with the
chur parametrization (red dash-dotted) and the quasiseparable parametrization
yellow dotted) are able to reach a low cost function value but that these
pproaches still break down for higher sampling frequencies while the δ-domain
pproach proposed in this paper (blue solid) reaches the same low cost function
alue for all sampling frequencies.

.3.2. Converged cost results
The converged cost function values are depicted in Figs. 6 and

, which respectively show the results using no
e-orthogonalization, as described in Remark 16, and the results
here re-orthogonalization is used. In these figures it can be
een that for the lowest sampling frequencies all the considered
pproaches in Z-domain and δ-domain lead to the same cost
unction values. This should be the case since, apart from the
umerical properties, the considered approaches are equivalent
nd should yield the same results. For the case without re-
rthogonalization, as depicted in Fig. 6, the cost function values
tart to diverge at relatively low values of the sampling frequency.
t is observed that the performance of the Z-domain approach
sing the Schur parametrization starts to deteriorate first around
sampling frequency of 300 Hz. The Z-domain approach us-

ng the quasiseparable parametrization starts to show perfor-
ance degradation from a sampling frequency of 1 kHz. The
-domain approach proposed in this paper shows no degradation
n performance as the sampling frequency increases.

From Fig. 7, it is observed that re-orthogonalization can help
o increase the range of sampling frequencies for which the
erformance of both Z-domain approaches does not deterio-
ate. However, this does not solve the underlying numerical
ssues, but merely mitigates their effects. For the purpose of
btaining a numerically reliable identification approach, this re-
rthogonalization step therefore does not add much. It is clear
rom these results that the proposed δ-domain approach does
olve the underlying numerical challenges that exists for the
dentification of fast sampled systems in discrete time.

. Conclusions and outlook

This paper has brought together the aspects of orthonormal
olynomials with respect to data-dependent inner products and
-domain formulations in systems and control, thereby providing
new unified view on the numerically reliable implementation
f algorithms in system identification and control. This is applied
o develop a unified approach for numerically reliable system
dentification where identification in Laplace domain, Z-domain
nd δ-domain are all incorporated as special cases. In Section 6,
n example based on a Active Vibration Isolation System is pre-
ented, the results of which show that the developed δ-domain
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pproach is numerically superior to the alternative Z-domain
pproaches.
It is considered ongoing research to extend the presented uni-

ied numerically reliable identification approach from the scalar
olynomial case to the vector polynomial case for the identifica-
ion of rational and MIMO system models. This will likely involve
xtending the scalar quasiseparable generator description to a
lock-generator description as in, e.g., Vandebril, Van Barel, and
astronardi (2008b, Chapter 12) and adjusting the chasing op-
rations accordingly to accommodate this block-quasiseparable
tructure.
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