
 

Improving Clustering-Based Forecasting of Aggregated
Distribution Transformer Loadings With Gradient Boosting and
Feature Selection
Citation for published version (APA):
Rouwhorst, G., Salazar, M., Nguyen, P. H., & Slootweg, J. G. (2022). Improving Clustering-Based Forecasting of
Aggregated Distribution Transformer Loadings With Gradient Boosting and Feature Selection. IEEE Access, 10,
443-455. https://doi.org/10.1109/ACCESS.2021.3137870

DOI:
10.1109/ACCESS.2021.3137870

Document status and date:
Published: 01/01/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/ACCESS.2021.3137870
https://doi.org/10.1109/ACCESS.2021.3137870
https://research.tue.nl/en/publications/a70102e5-80fb-400a-97cb-a75bc93befac


Received December 8, 2021, accepted December 16, 2021, date of publication December 23, 2021,
date of current version January 4, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3137870

Improving Clustering-Based Forecasting of
Aggregated Distribution Transformer Loadings
With Gradient Boosting and Feature Selection
GEORGE ROUWHORST 1, (Member, IEEE),
EDGAR MAURICIO SALAZAR DUQUE 1, (Member, IEEE),
PHUONG H. NGUYEN 1, (Member, IEEE), AND HAN SLOOTWEG 1,2, (Senior Member, IEEE)
1Department of Electrical Engineering, Eindhoven University of Technology, 5612AP Eindhoven, The Netherlands
2Asset Management, Enexis Netbeheer B.V., 5223MB ’s-Hertogenbosch, The Netherlands

Corresponding author: George Rouwhorst (g.d.g.rouwhorst@tue.nl)

This work was supported in part by the project ’Using small data and big data: Neighborhood Energy and Data Management Integration
System’ (S&B NEDMIS) from ’de Nederlandse Organisatie voor Wetenschappelijk Onderzoek’ (NWO).

ABSTRACT Load forecasting is more important than ever to enable new monitor and control function-
alities of distribution networks aiming to mitigate the impact of the energy transition. Load forecasting
at medium voltage (MV) level is becoming more challenging, because these load profiles become more
stochastic due to the increasing penetration of photovoltaic (PV) generation in distribution networks. This
work combines medium to low voltage (MV/LV) transformer loadings measured with advanced metering
infrastructure (AMI) and machine learning (ML) algorithms to propose a new clustering based day-ahead
aggregated load forecasting approach. This four-step approach improves the day-ahead load forecast of a
city. First, MV/LV transformer loadings are clustered based on the shape of their load pattern. Second,
a gradient boosting algorithm is used to forecast the load of each cluster and calculate the related feature
importance. Third, feature selection is applied to improve the forecast accuracy of each cluster. Finally, the
day-ahead load forecast of all clusters are aggregated. The case study presented uses 519 measured MV/LV
transformer loadings in a city to perform 30 day-ahead load forecasts. Compared against the day-ahead
aggregated load forecast without clustering, the average normalized root mean squared error (NRMSE)
reduced 12.7 %, the average mean absolute percentage error (MAPE) reduced 18.2 % and the average
Pearson Correlation Coefficient (PCC) increased 0.37 %. The 95 % confidence interval of the difference
between the average NRMSE, MAPE and PCC without clustering and with the proposed method indicates
a statistically significant improvement in accuracy.

INDEX TERMS Aggregated load forecast, clustering, day-ahead, distribution network, feature selection,
gradient boosting.

I. INTRODUCTION
Due to the ongoing energy transition an increasing num-
ber of Renewable Energy Sources (RES), especially Photo-
voltaic (PV) generation is connected to distribution networks.
At the same time, electricity demand is increasing due to the
adoption of Electric Vehicles (EV) and Heat Pumps (HP).
As a consequence, traditional unidirectional power flows in
distribution networks become bidirectional, electricity gen-
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eration becomes harder to control and the peak demand
increases rapidly [1].

To cope with these issues, Distribution System Opera-
tors (DSO) are installing equipment to measure loads in
distribution networks at medium to low voltage transformers
(MV/LV transformers) and LV feeders. In addition, DSOs are
also installing smart meters at the end-customer level. The
adoption of this Advanced Metering Infrastructure (AMI)
improves monitor and control functionalities of distribution
networks by DSOs aiming to mitigate the impact of the
energy transition [2], [3]. Enriching data collected from
AMI has driven the development of Machine Learning (ML)
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algorithms for load forecasting, which is widely studied in
literature recently. Load forecasts have been applied for many
applications depending on the studied time horizon and time
resolution, such as day-ahead scheduling, network reinforce-
ment decisions and integration of flexibility services [4].
Short-term Load Forecasting (STLF) aims to forecast load
profiles to study network operation applications with a typical
time horizon up to a week-ahead. The related time resolu-
tion varies up to an hour. On the contrary, Long-term Load
Forecasting (LTLF) aims to forecast peak loads during a
predefined interval to study network planning applications.
The typical time horizon varies up to multiple years [5].
Medium-term Load Forecasting (MTLF) aims to forecast
load profiles to study applications, which are used to optimize
the utilization of the current network capacity. On the one
hand, the typical time horizon of MTLF is exceeding STLF,
varying from aweek up to a year ahead with usually an hourly
time resolution [6]. On the other hand, MTLF is not only
forecasting peak loads as in the case of LTLF [7].

A variety of ML algorithms have been deployed exten-
sively for load forecasting so far and many reviews have been
written about these studies as well. Reference [8] provides
an overview of publications focusing on electricity prediction
using ML algorithms between 2005-2015. The use of Neural
Networks (NN) is one of the most widely studied methods
for load forecasting, including variations, such as Artificial
Neural Networks (ANN), Recurrent Neural Networks (RNN)
and Deep Belief Networks (DBN). Other frequently encoun-
tered algorithms in literature are based on Support Vector
Machines (SVM) and Decision Trees (DT). Driven by the
increasing computational power and available data, more
advancedML algorithms, such as Deep Learning (DL), Rein-
forcement Learning (RL) and Transfer Learning (TL) are
introduced to the field of load forecasting more recently to
further improve the accuracy [2], [9]–[11]. The aim of a ML
algorithm is to find the optimal correlation between a mea-
sured load and a set of input parameters, so called features,
during the training process. AllML algorithms share the same
fundamental assumption that the load to be forecasted has a
similar correlation with the set of features as the measured
load used for the training process. Subsequently, theML algo-
rithm is applied to forecast the load based on a set of given
features. Traditional regression techniques require stationary
properties of the time-series to be forecasted. However, the
advantage of ML algorithms over traditional regression tech-
niques is to also find correlations between features and non-
stationary time-series, such as load profiles. On the contrary,
the pitfall of (advanced) ML algorithms is the increasing
complexity of models depending on many parameters and the
loss of interpretability of many ML algorithms [10], [12].

So far, literature focuses mainly on load forecasting at the
high voltage level of electricity networks. However, one of
the main challenges from load profiles measured at lower
voltage levels in distribution networks, is that they are more
stochastic. In general, the stochasticity of a load profile
increases if the voltage level at which the load profile is mea-

sured decreases. As a consequence, load profiles measured
in distribution networks are harder to forecast. In addition,
penetration of solar PV into distribution networks is making
forecasting of load profiles in the distribution network even
more challenging due to its intermittent properties [11].

To deal with large amounts of stochastic load profiles in an
efficient and reliable way, recent studies propose to start with
a clustering algorithm to identify load profiles with similar
patterns. The aim of clustering algorithms is to minimize the
difference between patterns of load profiles within in each
cluster, while maximizing the difference between patterns of
load profiles with other clusters. Load profile clustering has
also been researched extensively for customer characteriza-
tion and design tariff structures [13]–[18]. Reference [19]
summarizes the most important clustering methods applied
to smart meter data. Subsequently, the typical load profile
of each identified cluster is used for forecasting and a large
number of load profiles can be analyzed, without training and
forecasting every load profile individually. Furthermore, clus-
tering of load profiles improves the accuracy of the forecast,
because the stochastic properties of load profiles are reduced
which enables the forecasting algorithm to be trained with
higher correlated data [3], [20]–[24].

Recent studies proposed newmethods to improve the accu-
racy of described clustering based forecasting approaches.
Reference [25] described limitations of studies so far due to
the independent optimization of clustering and forecasting.
Therefore, this study proposes to reduce the forecast error
by integrating both optimizations in a closed-loop clustering
algorithm. The study described in [26] is based on a novel
ensemble forecasting method. Frequently, ensemble forecast-
ing improves the forecast of a load profile by combining
multiple forecasts of the same profile with different methods.
A weight is assigned to the forecast of each method to reduce
the forecast error [10]. However, the study proposed in [26]
assigns a weight to the forecast of each cluster to reduce the
error of the aggregated load. Reference [27] proposed another
ensemble forecasting method to forecast the aggregated load
of all clusters. Two forecasting models are applied sequen-
tially and the error of the first model is used by the second
model to reduce the error of the forecast.

Until now, many clustering based forecasting approaches
proposed in literature focus on clustering of measured smart
meters to improve the forecast accuracy of many end-
customers. However, this proposed clustering based fore-
casting approach is focused on clustering measured MV/LV
transformer loadings to improve the accuracy of their related
aggregated load forecast of the medium voltage (MV) net-
work. To support distribution network planning and operation
of cities and neighborhoods and mitigate the impact of the
energy transition on distribution networks, focus on MV/LV
transformer loadings and their related aggregated loading
in MV networks is necessary. On the one hand, forecast-
ing individual MV/LV transformer loadings is hard due to
stochastic properties leading to an increasing accumulation
error when forecasts of MV/LV transformer loadings are
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aggregated [11], [28]. On the other hand, a single model
to forecast the aggregated MV/LV transformer loadings at
once is troublesome due to the difference in patterns between
MV/LV transformers loadings caused by varying behaviours
and properties of connected end-customers [3], [24].

Therefore, the proposed model in this paper aims to
improve the accuracy of the day-ahead aggregated MV/LV
transformer loadings forecast using a four-step approach.
First, MV/LV transformer loadings are clustered based on
the shape of their load pattern. Second, each cluster is fore-
casted using a gradient boosting algorithm. Third, the forecast
accuracy of each cluster is improved using a feature selection
process. Finally, the day-ahead load forecast of all clusters are
aggregated to forecast the load profile of the related MV net-
work. Due to the feature selection process for each individual
cluster, the accumulation error to forecast the aggregated load
is also reduced. The contributions of this paper are
• a novel clustering based day-ahead forecasting approach
to identify typical patterns of MV/LV transformers load-
ings in a city or neighborhood to forecast the specific
load profile of each cluster. This information is miss-
ing if all MV/LV transformers are aggregated directly
without clustering. At the same time, a cumbersome
approach of forecasting each individual MV/LV trans-
former loading is avoided.

• a feature selection process based on calculated specific
feature importances related to each cluster of MV/LV
transformers to further improve the accuracy of the
day-ahead load forecast of each cluster.

• a novel clustering based day-ahead forecasting approach
to significantly improve the accuracy of the day-ahead
aggregated load forecast representing the MV network
related to the studied MV/LV transformers.

The remainder of the paper is organized as follows.
Section II formulates the mathematical problem formulation,
section III describes the proposed methodology of the model
and section IV presents the results and discussion. Finally,
in section V the main conclusions of the paper are drawn.

II. PROBLEM FORMULATION
For an area with NMV/LV transformers, the aggregated load
profile of all N MV/LV transformers loadings is calculated
according to:

A(t) =
N∑
i=1

Ti(t), (1)

where A(t) is the aggregated load profile of N MV/LV trans-
formers [kW ] and Ti(t) the load profile of transformer i [kW ]
at timestep t.

Reference [29] proofs that the forecast accuracy of the
aggregated load profile A(t)’ is higher if N MV/LV trans-
formers are first optimally clustered (K>1) and the forecasts
of all clusters are subsequently aggregated than in the case
when all N MV/LV transformers are directly aggregated
and forecasted (K = 1). Therefore, this paper evaluates

the accuracy of the day-ahead aggregated load forecast of
N MV/LV transformers using a gradient boosting algorithm.
All N MV/LV transformers are first clustered in a range from
K = 1, . . . ,Kmax to explore for which number of clusters K
the N MV/LV transformers are optimally separated.
When NMV/LV transformers are clustered into K clusters,

the aggregated load forecast A(t)’ is calculated by the summa-
tion of the day-ahead load forecast of each cluster k according
to:

A(t)′ = (
N1∑
i=1

Ti,1(t))′ + (
N2∑
i=1

Ti,2(t))′ + · · · + (
NK∑
i=1

Ti,K (t))′

(2)

with N1 up to NK representing the number of MV/LV trans-
formers assigned to each cluster k according to:

N = N1 + N2 + · · · + NK , (3)

Ti,k (t) is the load of MV/LV transformer i in cluster k [kW ]
and A(t)’ is the day-ahead aggregated load forecast of all
K clusters [kW ] and thereby of all NMV/LV transformers.
The main goal of the forecasting algorithm is to minimise

the difference between the measured aggregated load A(t) and
the day-ahead aggregated load forecast A(t)’. Three metrics
are used to evaluate the accuracy of the day-ahead aggregated
load forecast, which are the mean absolute percentage error
(MAPE), the normalized root mean squared error (NRMSE)
and the Pearson Correlation Coefficient (PCC). A lower
value of the NRMSE and MAPE indicate a lower error of
the aggregated load forecast A(t)’. These two metrics are
calculated according to:

NRMSE[%] =

√
1
P

∑P
i=1(A(t)

′
− A(t))2

Amax − Amin
· 100, (4)

MAPE[%] =
1
P

P∑
i=1

∣∣∣∣A(t)′ − A(t)A(t)

∣∣∣∣ · 100, (5)

where P is the sum of the number of timestamps during the
period of the forecast and Amax and Amin are the maximum
and minimum value of the aggregated load [kW ] [3], [23].

The PCC is used to quantify the degree of linear depen-
dence between the measured aggregated load A(t) and the
day-ahead aggregated load forecast A(t)’. The PCC may take
any value from [-1,1], where zero indicates not any correla-
tion, while minus one and one indicate a completely negative
and positive correlation respectively. Therefore, a PCC value
closer to one indicates a more accurate day-ahead aggregated
load forecast A(t)’ [8]. The PCC is calculated according to:

PCC =
cov(A(t)′,A(t))
σA(t)′ · σA(t)

, (6)

where the covariance between the measured aggregated load
and the aggregated load forecast is calculated according to:

cov(A(t)′,A(t)) =
P∑
i=1

(A(t)′ − Aavg(t)′)(A(t)− Aavg(t)) (7)
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and the standard deviation σA(t) is calculated according to:

σA(t) =

√√√√ P∑
i=1

(A(t)− Aavg(t))2. (8)

The standard deviation related to σA(t)′ is calculated accord-
ingly [8].

Thereafter, it is analyzed if all metrics related to the
day-ahead aggregated load forecast have improved statisti-
cally significant for the optimal number of clusters K when
compared with the day-ahead aggregated load forecast with-
out clustering formulated as:

NRMSEK=1 > NRMSEKopt , (9)

MAPEK=1 > MAPEKopt , (10)

PCCKopt > PCCKK=1 . (11)

III. METHODOLOGY
A schematic overview of the proposed clustering based
day-ahead aggregated load forecasting approach is shown in
Fig. 1. First of all, an algorithm clusters N MV/LV trans-
formers within an area in a range from K = 1, . . . ,Kmax
clusters. Next, the MV/LV transformers loadings assigned
to each cluster k are summed and a day-ahead forecast is
performed using a gradient boosting algorithm. Finally, the
day-ahead forecast of the aggregated load of all N MV/LV
transformer loadings is the sum of the day-ahead forecast of
all clusters.

A. CLUSTERING
The electricity consumption of a city is equal to the aggre-
gation of all N MV/LV transformer loadings. The objective
is to identify clusters over these MV/LV transformers load-
ings, which have a similar pattern. The similarity in pattern
of MV/LV transformers loadings within the same cluster
improves the load forecast of each cluster. One approach to
cluster load profiles is to first create one representative load
profile (RLP) for each MV/LV transformer as an input for
the clustering algorithms. Then, find the optimal number of
clusters.

The applied clustering algorithms originate from different
paradigms such as spectral-based, hierarchical, density-based
and representative-based clustering. Specifically, sixmethods
are used for this study, which are Spectral clustering [30],
BIRCH [31], hierarchical Ward [32], Gaussian mixture mod-
els [33], k-means and k-medoids [34].

1) REPRESENTATIVE LOAD PROFILES
Let the matrix L = [l1, . . . , lN ] ∈ RP×N be the
MV/LV transformer loadings, where P is the total number
of data points recorded during a determined period of time,
and N the number of MV/LV transformers. Each vector
ln = [ln,1, . . . , ln,P]ᵀ ∈ RP is the data of the nth MV/LV
transformer for n = 1, . . . ,N . The daily MV/LV transformer
loading is characterized by averaging every m data points of
ln. It is represented as l̄n = [l̄n,1, . . . , l̄n,m] ∈ Rm.

The matrix of N representative MV/LV transformer load-
ings is represented by X = [x1, . . . , xN ]ᵀ ∈ RN×m. The vec-
tor xn is the RLP of a MV/LV transformer, which is the stan-
dardized daily load pattern calculated as xn = (l̄n − µl̄n )/σln ,
where µl̄n and σln are the mean and standard deviation of the
data points which constitutes the vector l̄n.
After processing the dataset into the matrix X , the cluster-

ing algorithms are applied in the next step to determine the
optimal number of clusters. The objective of any clustering
algorithm is to find the optimal clustering based on similar-
ities between the patterns of all load profiles. The clustering
algorithm assigns each load profile of the dataset to an unique
cluster. For load profiles, similar characteristics means load
profile patterns during the day.
The set of all N MV/LV transformers, which we define

as X = {x1, . . . , xN }, is clustered in K disjoint clusters �k
for k = 1, . . . ,K , such that X =

⋃K
k=1�k . Each cluster

�k is constituted by a set of RLPs labeled by the cluster-
ing algorithm. Each transformer group has a centroid C =
{c1, . . . , cK } which is computed averaging all the RLPs in
the same group, i.e., ck = |�k |

−1∑
x∈�k x for k = 1, . . . ,K ,

and |�k | is the number of MV/LV transformers in cluster k .
The RLPs clustering is an unsupervised learning problem

without a ground truth. There is no previous labeling available
to define a correct clustering, nor best number of clusters K
beforehand. Therefore, the output of the clustering algorithms
for a predefined range of cluster numbers should be evaluated
using internal indices [35]. The validation indices quantifies
for each of the clustering algorithm how well the clusters
separate the different RLPs (separation), and how similar are
the RLPs within the same (compactness).

2) CLUSTERING QUALITY EVALUATION METRICS
Multiple indices for clustering evaluation have been proposed
in the past for load profiling [16], [17], [36]. Four indices
have been selected to test the performance of the clustering
algorithms, and to aid the selection of the best number of
clusters K . All these indices are measured in euclidean dis-
tance. There are two primary distances definitions on which
the evaluation metrics are built. The vector-to-set distance,
which measures how distant the vector (RLP) is from the
cluster, is expressed as:

d(x, �) =

√√√√ 1
M

∑
y∈�

‖x− y‖2, (12)

which ‖·‖ denotes the euclidean distance andM is the cardi-
nality of the set �. i.e, the number of MV/LV transformers
in the set M = |�|. The intra-set distance, computed by the
vector-to-set distance for all members of the set�, is defined
as:

d̂(�) =

√
1
2M

∑
x∈�

d2(x, �). (13)

The four indicators evaluated over the clustering algorithm
results are:
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FIGURE 1. Proposed methodology of the clustering based day-ahead forecasting approach of N MV/LV transformer loadings.

1) The clustering dispersion indicator (CDI) [16] defined
as the ratio between the intraset distance of the RLPs
in the same cluster k , and the distance between the K
clusters represented by the centroid set C :

CDI =
1

d̂(C)

√√√√ 1
K

K∑
k=1

d̂2(�k ). (14)

2) The modified Dunn index (MDI) [37] computes the
distance ratio between the clusters with maximum dis-
persion, and the closest centroids of the K clusters:

MDI = max
1≤k≤K

{d̂(�k )}/min
i6=j
{‖ci, cj‖}. (15)

3) The Davies-Bouldin index (DBI) [38] quantifies the
maximum similarity between the K clusters divided by
the separation of the sets:

DBI =
1
K

K∑
k=1

max
k 6=i

{
d̂(ck , �k )+ d̂(ci, �i)

‖ck − ci‖

}
, (16)

for i = 1, . . . ,K . This index can be used to set the
‘‘best’’ choice of clusters, assuming that the clusters are
convex. The optimal K minimizes the average similar-
ity between the K clusters (DBI index).

4) The Caliński-Habarasz index (CHI) [39] computes a
ratio that compares the dispersion within a cluster k ,
and the dispersion of the centroids that represent each
of the clusters:

CHI =
Tr(SB)
Tr(SW )

·
N − k
k − 1

, (17)

where SW is the intra-set scatter matrix and SB is the
inter-set scatter matrix, defined as:

SB =
K∑
k=1

|�k |(ck − X̄)(ck − X̄)ᵀ,

SW =
K∑
k=1

∑
x∈�k

(x− ck )(x− ck )ᵀ.

The variable X̄ is the average of all RLPs in the set X ,
and Tr(·) is the trace operator. This index penalizes the
use of a large number of clusters K , using the second
term of (17).

For the DBI, CDI and MDI evaluation indices, lower val-
ues indicate a better clustering result; for CHI the opposite
applies. To determine the best algorithm and number of
clusters for the dataset, an holistic assessment of indexes is
performed in the studied case.

B. FORECASTING
Fig. 2 provides an overview of the forecasting model applied
to the aggregated load of each cluster, which is described in
detail in [7]. However, instead of the described month-ahead
forecasting (MTLF) approach, this study involves a day-
ahead forecasting (STLF) approach. Therefore, the time inter-
val of the measured load is 15 minutes instead of 60 minutes
and the minimum ratio between the training set and forecast
is not smaller as described in [7]. The applied features include
the same PV-related features, weather-related features and
time-related features as described in [7].

The model first decomposes the load profile to be fore-
casted in stationary profiles and a residual profile, which
improves the forecasting accuracy as described in [40]. These
stationary profiles are forecasted using an autoregression
algorithm.

The applied supervised learning model to forecast the
residual profile is a gradient boosting algorithm using DT
as the base learner. DT have the advantage of interpreting
the learned correlation between the features and forecast.
The features are chosen as split points in a DT aiming to
minimize the forecast error. Therefore, analyzing the split
of features on the reduction of the forecast error indicates
the relative importance of features [41]. However, individual
DT are usually weak learners leading to inaccurate forecasts.
Ensemble learning combines the forecast of many individual
weak learners, such as DT, as its base learner to improve
the forecast accuracy based on the concept that it is easier to
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FIGURE 2. Proposed algorithm to forecast the day-ahead aggregated load of cluster K with a schematic overview of the applied time series cross
validation.

improve the accuracy using the average forecast of many base
learners than to find one highly accurate algorithm. Ensemble
learning can be performed by parallel (bagging, stacking) -or
sequential (boosting) ensembling [42], [43]. The difference is
the order of ensembling the forecasts of individual base learn-
ers. Parallel ensemble learning methods combine the forecast
of all individual base learners to improve the forecast accu-
racy by assigning weights to the forecast of each base learner.
However, sequential ensembling methods, such as (gradient)
boosting add a next base learner sequentially. The forecast
of the previous base learner is used as input to reduce the
forecast error, by assigning different weights based on the
accuracy of the forecast of the previous base learner. Unlike
regular boosting algorithms, a gradient boosting algorithm is
using a gradient descent algorithm to improve the forecast of
the previous base learner [43], [44].

To improve the accuracy of the residual forecast, the
hyperparameters of the gradient boosting algorithm are first
optimized using a Bayesian optimization search as shown in
Fig. 2 (1). Secondly, a feature selection process using calcu-
lated feature importances is applied to improve the accuracy
of the residual forecast further as described in section III-C
(2). Finally, the residual forecast and the stationary profiles
are summed to forecast the load profile of each cluster (3).

Fig. 2 also shows an example of the applied time series
cross validation to every cluster for one week indicating the
training set (yellow), the feature selection set (green) and
the residual day-ahead load forecasts (blue). As shown, the
first two day-ahead load forecasts of every week are used
to calculate the average feature importances of these two
days. Subsequently, the feature selection process is carried as
described in section III-C. Based on the determined feature
selection set, the day-ahead load profiles of the next five
consecutive days in the week are forecasted.

C. FEATURE SELECTION
As explained, (gradient) boosting algorithms based on DT
have the advantage over other ML algorithms to interpret the
correlation between the applied features and forecasted load
based on the calculated relative importance of the features.

Reference [41] explains that the relative importance I of
feature j from a DT T is generally calculated according to:

I2j (T ) =
J−1∑
t=1

i2t 1(vt = j), (18)

where t are the non-terminal nodes related to terminal node
J, vt is the splitting variable associated with feature j and i2t
is the squared improvement of the DT due to the split with
feature J.

The importance of feature j of all M DT used for the
gradient boosting algorithm is calculated according to:

Ij2 =
1
M

M∑
m=1

I2j (Tm), (19)

which equals to the average importance of the calculated
importance for each DT.

The initially applied features for each cluster are the same
time-, weather- and PV-related features. However, the gra-
dient boosting algorithm is trained and optimized separately
for each cluster. As a consequence, the gradient boosting
algorithm enables to identify relative (un)important features
for each cluster depending on typical behaviours and load
properties of customers connected to MV/LV transformers.
Identifying features with a low importance can be used to
further improve the forecast accuracy of each cluster, because
including features with a low importance could lead to over-
fitting. Therefore, a feature selection process is applied for
each cluster to improve the forecast of each cluster and
thereby the forecast of the aggregated load.

The feature selection process starts by calculating the fea-
ture importances for each cluster. Subsequently, the algorithm
forecasts the two days from the feature selection set after
dropping the feature with the lowest calculated importance
until the lowest forecast error is calculated and the optimal
set of features for each cluster is determined. This optimal
set of features is used to forecast the consecutive five days of
the week. The feature selection process is repeated weekly to
account for changing correlations between features and load
over a longer period of time due to external factors such as
changing weather conditions.
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D. ERROR EVALUATION
The day-ahead forecast error of each cluster in the range from
k = 1, . . . ,K clusters and the related aggregated load are
calculated according to (4) and (5) with K = 1, . . . ,Kmax .
To analyze if the results confirm that the stated inequalities
of (9) and (10) are significant, the day-ahead load forecast
is carried out during six consecutive weeks according to the
time series cross validation shown in Fig. 2. The first two days
of each week (the feature selection set) are not considered
in this error evaluation of the day-ahead forecast accuracy.
Thus, in total the day-ahead forecast accuracy of 30 days
is analyzed. Subsequently, the day-ahead forecast accuracy
without feature selection is compared with day-ahead fore-
cast accuracy with feature selection. Finally, it is calculated
if the average day-ahead forecast error of the aggregated load
for NRMSEK=1 and MAPEK=1 is outside of the 95 % con-
fidence interval of the calculated average day-ahead forecast
error of the aggregated load for NRMSEKopt andMAPEKopt .

E. DATASET
For this study, the load profiles of 519 MV/LV transformers
from the city of Enschede are measured by the DSO every
15 minutes from the 17th of July until the 7th of November in
2020. First of all, these MV/LV transformers are clustered in
the range from K = 1, . . . ,Kmax . Subsequently, the applied
initial training set is from the 17th of July until the 26th of
September as shown in Fig. 2. To evaluate the day-ahead
forecast error as described in section III-D and following the
time series cross validation shown in Fig. 2, the period from
the 27th of September until the 7th of November is split into
six weeks [45], [46]. Fig. 2 indicates the data related to the
time window of the first week. The minimum ratio between
the training set and forecast is therefore 0.986/0.014.

The proposed clustering based day-ahead forecasting algo-
rithm makes use of centralized ML approaches. When facing
privacy issues regarding centralized storage and use of mea-
sured load profiles of MV/LV transformers, the clustering
based day-ahead forecasting algorithm can also be studied
with decentralized ML learning approaches. However, the
study of these decentralized ML techniques are not consid-
ered in the scope of this research.

IV. RESULTS
A. CLUSTERING
The data processing discussed in Section III-A1 is applied
to the dataset of the MV/LV transformers for the month of
August. The clustering algorithms are computed in the range
from K = 2, . . . ,Kmax clusters with Kmax = 10 and each
cluster k is named C1, . . . ,C10. The results of the validation
metrics for all clustering algorithms are shown in Fig. 3.
Overall, all algorithms show a consistent performance and
the algorithms have a continuous decrease for the CDI and
CHI indicating algorithm stability. However, from the infor-
mation gain point of view, the MDI and CHI indexes show a
decrease in performance for K > 4 clusters, indicating that

FIGURE 3. Calculated quality evaluation indices for six clustering
algorithms in the range from K = 2, . . . , 10 clusters. The minimum value
of DBI and the maximum of CHI indicate that the optimal number of
clusters is K = 3.

TABLE 1. Calculated clustering quality evaluation indices for
K = 3 clusters. The best two performing algorithms are highlighted in
bold. The best performing algorithm is underlined. The adjusted rand
scores evaluates the consensus between the results of each algorithm
referenced against the Spectral algorithm.

there is no natural clustering with more clusters. The MDI
and CHI are the most clear metrics to define the number of
clusters. The adequate balance between cluster compactness
and separation was found for K = 3 clusters.

The numerical values of the quality evaluation indices for
K = 3 clusters are shown in Table 1. The best performing
clustering algorithm is the spectral clustering and the second
best is BIRCH. Both algorithms grouped the set or RLP
similarly according to the adjusted rand score metric [47],
which is a consensus metric to assess how similar are the
clustering results between algorithms. The spectral clustering
results are used for the next steps of the framework shown in
Fig. 1.
The hierarchical visualization of the BIRCH results shows

identified load profile characteristics related to K =

1, . . . , 5 clusters, which is shown as dendogram in Fig. 4. The
mean and 95% confidence interval computed from the RLPs
are highlighted in black and red lines, respectively. Generally,
when the number of groups increases, the margins of the 95%
confidence interval shrinks, meaning a reduction in variance
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FIGURE 4. The hierarchical clustering results in the range from K = 1, . . . , 5 clusters including the solar irradiance and temperature
during 12 days of August.

within the clusters. A clear daily activity separation with
defined characteristics is seen forK = 3 clusters. The clusters
C1 and C2 for K = 3 clusters show residential load profiles.
The cluster C1 has a pronounced duck curve which implies
PV generation. Cluster C3 has a mixed activity behavior with
a mixture of commercial and residential consumption with
high activity at night, confirmed by the separation of this
cluster when K = 4 clusters. The differences between the
clusters start to be more evident for K > 5 clusters.

The lowest subplot in the upper left corner in Fig. 4 shows
the aggregated load profile for K = 3 clusters during 12 days
of August. The upper subplot shows the solar irradiance and
the temperature during the same days, which corresponds to a
heat wave period in the Netherlands. The subplots in the mid-
dle show the load profiles of the related clusters C1, C2 and
C3. Cluster C2 shows that the shape of the load profile in
day light hours is directly affected by the solar irradiance,
confirming that PV generation is the cause of the change
of the load profile. Additionally, the increase of temperature
caused an increase of load at night times of 20% for cluster
C1 and 11% for cluster C2, indicating that the temperature
changed the load profile of each cluster differently.

B. FORECASTING
Based on the clustering results, the average day-ahead fore-
cast accuracy of 30 days in the range fromK = 1, . . . , 6 clus-
ters is calculated using (4) and (5) for each cluster in the range
from k = 1, . . . ,K and the aggregated load. An overview of
the optimized hyperparameters using the Bayesian optimiza-
tion search are shown in Table 2 in case of K = 6 clusters.
The objective is reg : squarederror and the booster is gbtree
for all clusters using init_point = 25 and n_iter = 125.

TABLE 2. The optimized hyperparameters found with the Bayesian
optimization search, which are applied to the XGBoost algorithm to
forecast the day-ahead residual profiles in case of K = 6 clusters.

TABLE 3. The average calculation time in minutes per week of the
applied clustering algorithm, Bayesian optimization search, forecasting
algorithm and feature selection process.

The forecasting algorithm shown in Fig. 2 is calculated on a
Lenovo notebook with a Intel(R) Core (TM) i7-8750 CPU@
2.20GHz processor. The average calculation time in minutes
per week of the applied clustering algorithm, Bayesian opti-
mization search, forecasting algorithm and feature selection
process are shown in Table 3. The total calculation time of this
proposed clustering based day-ahead forecasting algorithm is
less than 24 hours and therefore applicable for online day-
ahead applications.
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TABLE 4. Calculated average NRMSE and MAPE for the day-ahead aggregated load forecast and each separate cluster in the range from
K = 1, . . . , 6 clusters of 30 days. The related average NRMSE and MAPE during the defined daily peak period between 07:00 and 22:00 are shown in italics.

Table 4 provides an overview of all average errors of the
day-ahead load forecasts expressed in NRMSE and MAPE.
Table 4 also indicates the average errors of the day-ahead
load forecast in italics during the period between 07:00 and
22:00 when the load is typically high. Table 4 indicates a
minimum average error of the day-ahead aggregated load
forecast for K = 3 clusters expressed in both calculated
error metrics. The average error of the day-ahead aggregated
load forecast increases when the number of clusters equals
K > 3. This observation is supported when the calculated
PCC is considered, which is shown in Table 5. The PCC is the
closest to 1 for K = 3 clusters, while the PCC is lower when
the number of clusters equals K > 3. All metrics therefore
indicate thatK = 3 clusters is the optimal number of clusters,
which coincides with the results discussed in section IV-A.

Table 4 also indicates extremely large forecast errors
expressed in MAPE for cluster C3 and C6. The load profiles
of these two clusters drop to values close to zero due to PV
generation during certain periods. As a consequence, (5) indi-
cates that the calculated MAPE value increases, because the
denominator is approaching to zero. Therefore, these MAPE
values do not reflect the forecast error accurately, but these
extremely large forecast errors are due to inherent properties
of MAPE. If the forecast error of these same clusters is
expressed in NRMSE, these extremely large forecast errors
are not observed in Table 4. However, these extremely large
forecast errors expressed in MAPE do confirm the discussion
related to Fig. 4, where the profiles indicated that clusters
C3 and C6 are clusters of households with a relative high
penetration of PV generation. Due to this PV generation, the
difference between PV generation and demand is small dur-
ing certain periods leading to a load close to zero. As a con-
sequence, a large forecast error is calculated when expressed
in MAPE.

Fig. 5 shows the calculated NRMSE,MAPE and PCC from
the day-ahead aggregated load forecast of the same 30 days
with the proposed model for K = 1 (red) and the optimal
number of K = 3 clusters (black). Fig. 5 also shows the

TABLE 5. Calculated average PCC related to the day-ahead aggregated
load forecast and each separate cluster in the range from
K = 1, . . . , 6 clusters of 30 days. The related average PCC during the
defined daily peak period between 07:00 and 22:00 is shown in italics.

day-ahead aggregated load forecast with an Autoregressive
Integrated Moving Average (ARIMA) model for comparison
(blue), which is a traditional and widely applied model for
time series forecasting [48], [49]. Fig. 5 indicates that the
NRMSE and MAPE from the day-ahead aggregated load
forecast is generally lower for the optimal number of K = 3
clusters than for K = 1. Correspondingly, the PCC is
generally closer to one for the optimal number of K = 3
clusters than for K = 1. All metrics indicate a more accurate
day-ahead aggregated load forecast for K = 3 clusters than
for K = 1. All three metrics in Fig. 5 also indicate the
improvement in accuracy of the day-ahead aggregated load
forecast with the proposed model for K = 1 and the optimal
number of K = 3 clusters compared with the day-ahead
aggregated load forecast with the ARIMA model. However,
Fig. 5 also indicates that the calculated values of all metrics
variate rather strongly between these days. On average, the
NRMSE and MAPE indicate a decreasing trend and the PCC
indicates an increasing trend over time due to the increasing
length of the training set for each consecutive day-ahead
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FIGURE 5. Calculated NRMSE, MAPE and PCC of the day-ahead
aggregated load forecast of 30 days with the proposed model with
K = 3 clusters, K = 1 (without clustering) and ARIMA model.

aggregated load forecast. Additionally, the NRMSE and
MAPE is generally larger and the PCC is generally lower
on weekend days than on working days, because only two
from the seven days are weekend days. Thus, the algorithm
has less days in the training set with a similar pattern to train
and forecast.

Fig. 6 shows seven consecutive day-ahead aggregated load
forecasts with the proposed model for K = 1 (red), for the
optimal number of clusters K = 3 (black) and with the
traditional ARIMA model (blue) compared with the actual
measured aggregated load profile (green). Both forecasts
with K = 1 and K = 3 clusters follow the pattern of
the measured aggregated load profile rather accurately, but
importantly the day-ahead aggregated load forecast during
the peak period is generally improved when the number of
clusters equals K = 3 which is supported by Table 4 and
Table 5. The forecast with the ARIMA model indicates that
the peak load around 18:00 of the day-ahead aggregated load
forecast is rather accurate on some days, but it has most
difficulty with forecasting an accurate pattern between 08:00
and 20:00 when the load is relatively high.

To analyze the impact of feature selection on the day-ahead
aggregated load forecast of the proposed model, Fig. 7 shows
the average NRMSE and MAPE reduction of the day-ahead
aggregated load forecast and the average PCC increase of the
day-ahead aggregated load forecast due to feature selection in
a range fromK = 1, . . . , 6 clusters. The impact of the feature
selection is the largest when the number of clusters equals
K = 1 followed by K = 3. On the one hand, Fig. 7 indicates
that the impact of the feature selection is correlated with the
performance of the clustering. On the other hand, Fig. 7 also
indicates that the impact of the feature selection is depending
on the initial forecast error without feature selection.

Fig. 8 shows the average relative NRMSE and MAPE
reduction and average relative PCC increase of the day-ahead
aggregated load forecast in a range from K = 1, . . . , 6 clus-
ters when compared with the average NRMSE, MAPE and

FIGURE 6. Day-ahead aggregated load forecasts from the 26th of October
until the 1st of November with the proposed model with K = 3 clusters,
K = 1 (without clustering) and ARIMA model.

FIGURE 7. Average NRMSE and MAPE reduction and average PCC increase
calculated from the average day-ahead aggregated load forecast due to
feature selection in the range from K = 1, . . . , 6 clusters over 30 days.

PCC of the day-ahead aggregated load forecast for K =
1 without feature selection. Based on the results of Table 4,
the largest average relative NRMSE and MAPE reduction is
expected for K = 3 clusters with feature selection, which
is also confirmed by Fig. 8. This average NRMSE reduction
is 12.7 % and this average MAPE reduction 18.2 %. Corre-
spondingly, the largest average relative PCC increase is also
expected for K = 3 clusters with feature selection based on
Table 5, which is confirmed by Fig. 8 as well. This average
PCC increase is 0.37 %.

Fig. 9 shows the average NRMSE, MAPE and PCC cal-
culated from the day-ahead aggregated load forecast over
the same 30 days in a range from K = 1, . . . , 6 clusters
including their 95 % confidence interval. On the one hand,
Fig. 9 indicates that the average MAPE calculated from the
day-ahead aggregated load forecast for K = 1 (5.08 %)
is just outside the 95 % confidence interval of Kopt =
3 clusters (4.32 % ± 0.58 %). On the other hand, Fig. 9
also indicates that the average NRMSE calculated from the
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FIGURE 8. Average relative NRMSE and MAPE reduction and average
relative PCC increase calculated from the day-ahead aggregated load
forecast in the range from K = 1, . . . , 6 clusters and the day-ahead
aggregated load forecast for K = 1 clusters without feature selection.

FIGURE 9. Average NRMSE, MAPE and PCC calculated from the day-ahead
aggregated load forecast in the range from K = 1, . . . , 6 clusters
including their 95 % confidence interval over 30 days.

day-ahead aggregated load forecast for K = 1 (7.67 %) is
just inside the 95 % confidence interval of Kopt = 3 clusters
(6.85 %± 1.07 %). Fig. 9 also indicates that the average PCC
calculated from the day-ahead aggregated load forecast for
K = 1 (0.979) is just inside the 95 % confidence intervals
of Kopt = 3 clusters as well (0.981 ± 0.006). Based on
this analysis, no statistically significant improvement can be
observed yet.

Therefore, further analysis considers the confidence inter-
val of the difference between the average NRMSE, MAPE
and PCC for K = 1 and Kopt = 3 clusters. The improve-
ment is statistically significant if zero is outside the 95 %
confidence interval of the difference between the two load
forecasts. The calculated confidence interval of the differ-
ence in NRMSE is -0.82 % ± 0.51 % and in MAPE is -
0.77 % ± 0.50 %. The calculated confidence interval of
the difference in PCC is 0.0027 ± 0.0018. Altogether, this
enables to conclude that the improvement of the day-ahead
aggregated load forecast expressed in (9), (10) and (11) are
all statistically significant.

V. CONCLUSION
This paper proposes a new four-step approach to significantly
improve clustering based day-ahead forecasting of aggre-
gated MV/LV transformer loadings using a gradient boosting
algorithm in combination with a feature selection process.
First, all MV/LV transformer loadings are clustered in a vari-
ety of numbers based on similarity in patterns. Second, a gra-
dient boosting algorithm is used to forecast the load profile
of each cluster. Third, a feature selection process is applied
to each separate cluster to improve the day-ahead forecast
accuracy of each cluster. Finally, the day-ahead aggregated
load forecast of all MV/LV transformers in the area, which
represents the related MV network loading, is calculated by
summation of all day-ahead forecasts of the clusters. The
accuracy of the day-ahead MV network loading forecast for
the optimal number of clusters is calculated to determine the
improvement of the day-ahead MV network loading forecast
compared without clustering.

First of all, the proposed model enables the DSO to effi-
ciently identify typical load profiles of many MV/LV trans-
former loadings for network planning in a neighborhood or
city. The clustered profiles can be applied to efficiently and
specifically estimate the different impact of increasing energy
demands and adoption of PV generation driven by the energy
transition on different types of MV/LV transformer loadings
in distribution networks. Secondly, the day-ahead forecast
of the proposed model also enables to be used for network
operation applications of MV networks, such as flexibility,
PV curtailment -and storage scheduling.

The paper studied the proposed methodology by clustering
load profiles from 519 MV/LV transformers in a range from
K = 1, . . . , 10 clusters using six different clustering algo-
rithms. The performance of the six algorithms was evaluated
with four indicators, which all indicated Kopt = 3 clusters.
The clusters in the range from K = 1, . . . , 6 were fore-
casted after the forecast of each cluster was optimized with
the described feature selection process. The accuracy of the
day-ahead aggregated load forecast was evaluated using the
NMRSE, MAPE and PCC. In accordance with the clustering
results, these forecasts indicated Kopt = 3 clusters as well.
Based on 30 day-ahead forecasts, the calculated average and
95 % confidence interval of the NRMSE, MAPE and PCC
indicated that the day-ahead aggregated load forecast for
Kopt = 3 clusters improved statistically significant compared
with the day-ahead aggregated load forecast for K = 1
(without clustering).
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