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ABSTRACT The superior accuracy and appealing universality of convolutional neural networks (CNNs) as
a generic algorithm for many classification tasks have made the design of energy efficient CNN accelerators
an important topic in both academia and industry. Of particular interest in the design and use of CNN
accelerators is the scheduling of the computational workload, which can have a major impact on the quality
of the final design. The many inherently independent operations in CNNs result in a vast scheduling space
however, rendering the selection of the optimal schedule(s) non-trivial. To aid in this complex task, this
work introduces a generic mathematical cost model of the external memory accesses, internal memory
footprint, and compute load for CNN execution schedules. The model enables fast exploration of the
scheduling space, including loop tiling, loop reordering, explicit data transfer scheduling, recomputation,
and, crucially, layer fusion, which recently has attracted interest as a method to reduce external memory
accesses. An accompanying open source tool is released to perform schedule space exploration for CNNs
using the introduced cost model. Leveraging the code generation capabilities of this tool the proposed model
is validated on six real world networks, demonstrating that layer fusion can reduce the external memory
accesses by more than two orders of magnitude compared to the best non-fused schedules. Confusing at
first glance however, a high-level energy analysis shows that the practical benefits of layer fusion may be
overestimated if other parts of the system are not tuned accordingly.

INDEX TERMS Energy efficiency, modeling, neural networks, scheduling.

I. INTRODUCTION
There is no longer any debate regarding the advantages of
the class of convolutional neural network (CNN) algorithms.
Many important problems, previously deemed difficult if not
impossible to compute, are now being solved by CNNs. The
plethora of application domains includes: control systems,
pattern recognition, power systems, robotics, forecasting,
manufacturing, art, and medical diagnosis [1].

Despite their successful application tomany computational
problems over the last decade, CNNs also have several major
drawbacks. In particular, they are both compute and memory
intensive algorithms. In the early years this kept the execution
of CNNs confined to data centres, as evaluation on available
general purpose, embedded processors required too much
energy to be practical in mobile, energy constrained devices.

The associate editor coordinating the review of this manuscript and

approving it for publication was Felix Albu .

To overcome this, many dedicated CNN accelerators have
been proposed since to bring CNNs to the edge, and in general
reduce CNN energy consumption [2]. In modern technology
nodes the main challenge in achieving a high energy effi-
ciency for such accelerators is not so much the compute com-
plexity, but rather the required memory accesses. Compared
to an ALU operation, accessing an SRAM requires about 5×
the energy, and going to external DRAMabout 200× [3]. This
phenomenon, commonly referred to as the memory wall [4],
will only aggravate with further technology scaling. To attain
high energy efficiency it is therefore imperative that compute
devices use their memory systems optimally.

Apart from techniques at the algorithmic level to reduce the
total required memory accesses, minimizing the energy spent
on the memory system constitutes of maximizing data reuse
captured in small local memories. In essence this reduces the
problem to finding a beneficial execution schedule for a given
CNN. Due to the massive amount of independent operations
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in CNNs many valid schedules exist however, and finding the
optimal schedule(s) for a given network and compute plat-
form is exceedingly complex. In particular, the combination
and parametrisation of scheduling techniques such as loop
tiling [5], loop reordering [6], and more recently loop/layer
fusion [7]–[10], results in a vast scheduling space. To deal
with this vast space existing research typically restricts itself
to a subset of the complete space. This leads to the selection
of potentially suboptimal schedules, and prohibits the generic
application of the obtained results across different compute
platforms.

This work introduces a generic cost model which can
efficiently compute the cost of a CNN schedule in terms of
external memory accesses, required internal buffer space, and
total multiply accumulates. The model is platform agnostic,
and capable of handling CNN schedules that can be cre-
ated using loop tiling, loop reordering, explicit scheduling
of memory transfers, and layer fusion. This enables a fast
search through possible schedules for CNNs without the need
to perform profiling runs to obtain the cost of a particular
schedule. The model is generic, and as such can be integrated
in auto-schedulers for various accelerators and architectures
by adequately bounding the schedule space based on specific
architectural properties. A proof of concept, open source tool
is developed building upon Keras/TensorFlow [11] as a front-
end, and Halide [3] as a back-end. This tool is capable of
performing exhaustive design space exploration for selected
CNNs using the proposed model. Furthermore the Halide
back-end generates code for each schedule, and instruments
that code such that the modelled costs can be verified.

Various related works have demonstrated the potential of
schedules that employ layer fusion to reduce externalmemory
accesses [7]–[10]. However, the effect of these reductions
on the net energy efficiency is typically overlooked. This
work includes a high-level energy analysis based on the
introduced schedule cost model, which results in some poten-
tially surprising conclusions regarding the benefits of layer
fusion.

The main contributions of this work are:
• Introduction of a platform agnostic, mathematical model
of the cost of a CNN schedule in terms of memory
accesses, memory footprint, and compute load, consid-
ering the vast scheduling space defined by loop inter-
change, loop tiling, loop fusion, recomputation, and
explicit data transfer scheduling (Sections III & IV).

• An open source tool that implements the introduced
model, enabling exhaustive design space exploration for
CNNs [12] (Section V).

• Validation of the proposed models accompanied with
detailed analysis of the effects of various scheduling
techniques on six real-world networks (Section VI).

• Generic energy evaluation using the modelled schedule
costs, which shows that the reduction in external mem-
ory accesses achieved by layer fusion does not auto-
matically translate to significant net energy reduction
(Section VII).

The remainder of this paper is organised as follows.
First, the related work on CNN scheduling is discussed in
Section II. Next, the scheduling space is formally defined in
Section III. The costmodel defined on this space is introduced
in Section IV. Section V details the open source tool and
experimental setup. Results on model validation and design
space exploration are provided and analysed in Section VI.
Section VII contains an energy evaluation of the discovered
schedules for a platformwith amulti-level memory hierarchy.
Finally, Section VIII discusses current limitations and future
work, and Section IX concludes this work.

II. RELATED WORK
Deep neural networks are both compute and memory inten-
sive algorithms, and only have become viable methods by the
merit of increased compute capacity about a decade ago. The
recent renewed interest in deep neural networks was initiated
by the successes in image classification of general purpose
computing on graphical processing unit (GP-GPU) based
implementations of CNNs [13], [14] circa 2011-2012. Since
then tremendous effort has been made to enable the efficient
execution of deep neural networks on energy-constrained
(embedded) devices. Because the basic algorithm does not
change much over different applications, CNNs in essence
provide a universal solution to many compute tasks. This
makes them a highly eligible target for dedicated hardware
solutions, and as such has inspired the design of many CNN
hardware accelerators [2].

Because CNNs have a large memory footprint, these accel-
erators typically require a form of external memory to store
the network parameters and intermediate results. One of the
first published accelerator designs to recognize the impor-
tance of minimizing accesses to this external memory was
the Eyeriss by Chen et al. [5]. Based on manual analysis an
execution schedule of CNNs is proposed for Eyeriss, which
exploits spatial features of the architecture, and leverages
strip-mining (a subset of tiling) to handle networks that do
not match naturally with the dimensioning of the compute
elements inside the accelerator. The iteration order over the
CNN operations is fixed however, and tailored towards the
architecture.

Rather than fixing the iteration order, SmartShuttle [6]
takes more of the scheduling space into account by defining
three iteration strategies, each targeting capturing reuse of
different data. In particular, there are schedules that primarily
optimise capturing parameter/weight reuse, input feature map
data reuse, or output feature map reuse. Selecting between
these schedules depends on the dimensions of the network
layers. This choice already starts to outline the trilemma of
selecting of which data elements to capture the reuse in local
buffers, and the difficulty of finding the schedule that min-
imises the overall external memory accesses, as optimising
for one subset of the data typically hurts the captured reuse
of other parts.

To address the selection of a schedule based on tiling
Peemen et al. [15] introduce generic formulas to enable fast
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schedule space exploration. The proposed formulas require
manual tuning for different loop orders however, which is
addressed by the model proposed by Waeijen et al. [16].
This model can generically compute the cost of sched-
ules that include loop reordering, loop tiling, and explicit
scheduling of data transfers. A very extensive framework that
combines the same scheduling techniques with multi-level
memory mapping is ZigZig [17]. Missing in these mod-
els and framework, however, is the capability to han-
dle loop fusion, or layer fusion as first introduced by
Alwani et al. [7].

Alwani et al. [7] introduce the concept of fusing the com-
putation of two consecutive layers in order to avoid the trans-
fer of intermediate results to external memory. In essence
this is an on-demand computation of the intermediate results,
which are immediately consumed by the next layer. Because
of overlap in tiles, as the authors note, there is the option
to recompute intermediate results of which not all uses
fall within a single tile, or to store this subset of inter-
mediate results. Eventually only schedules without recom-
pute are considered however. The layer fusion proposed
by Alwani et al. [7] suffers from another shortcoming, aptly
dubbed the computation pyramid by the authors. This term
refers to the phenomenon that whenmore layers are fused, the
number of points a tile in the output layer depends on expands
rapidly, creating a pyramid of dependencies towards the input
of the network. The AivoTTA accelerator [18] exhibits this
very same imperfection.

This particular issue is addressed by Li et al. [8] by mod-
ifying the CNN algorithm and removing several dependen-
cies between layers, while maintaining acceptable accuracy.
An arguably preferable solution which does not require
changes to the CNN algorithm is proposed by Goetschalckx
and Verhelst [10], who employ line buffers to fuse layers,
or execute depth-first in their terminology. This solution is
more attractive as the functionality of the network remains
unchanged, while large gains can be achieved in particular
for networks with large layer dimensions. However, the pro-
posed approach prohibits tiling in the channel dimension, and
requires to always store the entire weight set on-chip, which
may be highly suboptimal for networks with relatively small
layer dimensions, i.e., layers of which thememory footprint is
not dominated by data, but by weights. Despite these short-
comings, the depth-first methodology of Goetschalckx and
Verhelst [10] sets the standard for schedules with layer fusion,
and will be used as an important benchmark throughout this
work.

Finally, several recent works have included layer fusion in
GPU code generation [19], [20]. These works clearly show
the potential gains of layer fusion, although both rely on
heuristics to find good schedules, and require profiling runs
on the target hardware. The models proposed in this work
can be adapted towards SIMD and GPU execution as is
further discussed in Section VIII, and can give insight into
the performance of a schedule without execution on a target
machine. Consequently they may be used to speed-up and

FIGURE 1. Single convolutional layer with input array X of and output
array Y. Dimensional notation shown here is used throughout this work,
where Dn and Dm denote the kernel height and width, Di and Dz the
number of feature maps in the input and output array, and finally Dx and
Dy the width and height of the output array, respectively. Furthermore, Ti,
Tz, Ty and Tx denote a tile size in the input feature maps, output feature
maps, and output array height and width, respectively.

TABLE 1. Set of structural parameters of a convolution layer.

expand the design space searches of such heuristic (GPU)
auto-schedulers.

III. SCHEDULING SPACE
To facilitate the definition of the cost models later in
Section IV, first the covered scheduling space is formally
defined in this section. This definition starts with a high-level
description of CNNs, followed by detailed descriptions of the
considered scheduling techniques.

In a nutshell, a convolutional neural network functionally
consists of a series of parallel, convolutional filters, or layers,
connected by non-linear activation functions. The weights of
these filters are determined during a learning phase in such a
way that the network can perform its intended classification
task. Once a suitable set of weights has been established,
it remains static throughout the classification, or inference,
phase, which is the focus of this work. Readers left desiring
a more detailed description can find an excellent in-depth
introduction to convolutional neural networks in the ‘Deep
Learning’ book by Goodfellow et al. [21].
A single convolution layer consists of a set of convolution

filters which are to be applied to a set of input surfaces to
produce a set of output surfaces. These surfaces are referred
to as feature maps. In the general case, a filter is applied for
each pair of input and output feature maps, which is also
the type of convolutional layer considered in the remainder
of this work. More advanced layer types, such as depthwise
convolution, are not directly considered, although possible
model extensions are discussed in Section VIII-C.
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Structurally a standard convolution layer is completely
defined by the set of parameters listed in Table 1. Figure 1
is a visual representation of such a layer, and its various
dimensions. Convolutions are applied to the source feature
maps on the left (X), and their results, after application of
a non-linear transformation, are aggregated in the feature
maps on the right (Y). From an implementation viewpoint,
a convolutional layer is a deep loop nest. The pseudocode of
a single layer is shown in Code 1. Here variables Sx and Sy
represent the stride of the filter on the input, which typically
is one. A complete neural network consists of several of these
layers connected through their featuremaps. As such, a neural
network can represented as a directional graph G(V ,E) with
the network layers V as nodes, and directional edges E to
indicate their producer — consumer relationships.

Code 1. Loopnest for a single convolution layer.

From Code 1 it can be seen that the multiply-accumulate
operations (lines 8− 10) within a layer are completely inde-
pendent. As such they may be executed in any order, yield-
ing

(
Dz × Di × Dy × Dx × Dm × Dn

)
! scheduling options,

ignoring the bias initialisation and the application of the acti-
vation function which even further increase the scheduling
space. Reordering these operations will result in different
reuse-distance distributions for the input data elementsX, out-
put data elements Y, and weights W. A smart reordering will
capture more data-reuse in an internal buffer of given size,
and as such minimize the accesses to an external memory.
However, many of these schedules are highly irregular, and
impossible to capture within reasonable code size. There-
fore, this work only considers those schedules that can be
generated using loop reordering and loop tiling at the layer
level, as will be further discussed in Sections III-A, and III-B
respectively.

Apart from scheduling the compute operations, the data
transfers betweenmemory levels can also be explicitly sched-
uled. For accelerators that typically use scratchpad memory
such scheduling is imperative, but machines using caches can
also benefit from grouping data transfers. Explicitly schedul-
ing these transfers consists of specifying what data will be
stored and reused, andwhen this data is loaded from the exter-
nal memory. To specify this, the store level and compute level
concepts of the Halide language [3] are used, andmade part of
the considered scheduling space as described in Section III-C.

Apart from scheduling the data transfers these concepts also
allow for a precise expression of recomputation of intermedi-
ate results; a scheduling technique which provides a trade-off
between (external) memory accesses and compute workload,
as described in Section III-E.

Finally the scheduling space is expanded beyond schedul-
ing individual layers by allowing layer fusion. Assume two
convolutional layers A and B, which are connected in a net-
work in such a way that B consumes the output of A. Follow-
ing the dependencies, it is clear that some operations in B can
already be executed, even if not all operations that belong to
A are completed. Therefore it is possible to move (part of) the
production of layer A into the loop nest of layer B using loop
fusion. In this manner the results of layer A can potentially be
consumed and discarded by B shortly after their production,
effectively reducing their lifetime. Compared to an approach
without layer fusion this has the potential to significantly
reduce the accesses to a large external memory. The technique
can furthermore be applied recursively, allowing any number
of consecutive convolutional layers to be fused. Details on
how this affects the overall scheduling space are provided in
Section III-D.

A. LOOP REORDERING
To formally define the loop order of a schedule, let L denote
the set of all loop variables in a convolutional layer. In accor-
dance to Code 1, L = {z,y,x,i,m,n}. The loop order
O ⊆ L × L defines a set of binary relations over L, where,
with l,l’ ∈ L, l ≺ l’ yields true iff l is inner to l’ in
the loop nest, resulting in a total ordering of L. In Code 1, the
following expression holds: m ≺ n ≺ i ≺ x ≺ y ≺ z.
With this definition of loop order in place, consider the

reuse distance of data elements in the X and Y arrays. Note
that the accesses to array Y are independent of loop variable i
(Line 8 in Code 1), while those to array X (Line 9 in Code 1)
are dependant on i. Henceforth, because i ≺ z in Code 1,
the accumulations to a single z-coordinate in the Y array
on line 8 are relatively close in time. However, for each
of these accumulations an element from a unique i index
has to be loaded from the X array on line 9. Therefore the
reuse distances on array X are relatively long, while those
on array Y are relatively short. Yet, when loops i and z are
interchanged, i.e., z ≺ i, the reverse holds. Which of these
orders is favourable depends, amongst other factors, on the
particular dimensioning of the layer. To complicate matters
further, the other loops can also be reordered, and the data
reuse of array W is also significant, rendering a complex trade-
off. Nonetheless, it can be stated that moving kernel loops m
and n will likely not be beneficial, as typically Dm and Dn are
very small (common values encountered in practice include
one, three, and five). As such, loop reordering in this work is
restricted to the remaining loop levels.

B. LOOP TILING
Tiling is a classic scheduling technique to alter the exe-
cution order of operations. As discussed in the previous
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section, a particular loop order may decrease the reuse on
one data array, but increase it in another one. A different loop
order may achieve the reverse. Loop tiling enables a hybrid
approach, allowing a balanced average reuse distance for all
data accesses. By splitting a loop l ∈ L that iterates over a
complete dimensions into an inner part li, and outer part lo,
it is possible to only compute part of a dimension inner to the
iteration over another dimension.

For CNN layers in particular, each loop in Code 1 can be
split. Again, because the kernel dimension Dm and Dn are
typically very small, tiling loops m and n are not considered.
However, the remaining loops, i.e., {i,x,y,z}, can all be
tiled into parts of size Tl, where l ∈ {i,x,y,z}. Since Tl
can be set to one, it is possible to rewrite Code 1 into Code 2
without loss of generality.

Code 2. Tiled loopnest for a single convolution layer.

For the remainder of this work, Code 2 will be used to
define schedules of a single layer. As such, a tiled schedule
formally consists of an ordering O on the set of tiled loop
levels TL = {zo,yo,xo,io,zi,yi,xi,ii,n,m}, and a
set of tile sizes T = {Tz,Ty,Tx,Ti}.

C. STORE & COMPUTE LEVELS
Besides the computations, transfers between external mem-
ory and local buffers can be scheduled explicitly as well.
To capture these memory operations the store and compute
level concepts from the Halide language [3] are employed.
These levels are defined for each arrayX,Y, andW, and dictate
respectively what data volume is transferred when.

Let ARR = {X,Y,W} denote the set of all data arrays in a
layer. The store level is then defined as follows:

The store level SLarr ∈ TL for array arr ∈ ARR
determines that at all data accesses to elements in

FIGURE 2. Overlap of (Ti × Dn ×
(
Dm − 1

)
) elements in the input data X

between iterations ‘n’ and ‘n+1’ of loop xi in Code 2 N. B. The volume
required for SLX = yi is

(
Ti × Dn × (Tx + Dm − 1)

)
, yet a rotating buffer of

size (Ti × Dn × Dm) is sufficient.

X inside a single iteration of loop SLarr have to be
served from local memory after an initial load.

In Code 2, for example, if SLX is set to loop level xi on line 9,
the data required for the (Ti × Dn × Dm) operations inside
one iteration ofxi need to be served from localmemory. Note
that there is also data reuse of elements in X between two iter-
ations of loopxi, as illustrated in Figure 2. In particular, there
is an overlap of (Ti × Dn × (Dm − 1)) elements between two
consecutive iterations.1 The store level does not specify to
capture this reuse in a local memory. To capture this reuse, the
store level has to bemoved one loop level up, toyi. Since one
iteration of loop yi encapsulates Tx iterations of loop xi, the
reuse between these iterations must now be captured by the
internal buffer as well. As a consequence the volume of data
that needs to be captured increases from (Ti × Dm × Dn) to
(Ti × Dn × (Tx + Dm − 1)), as visualised in Figure 2. Note
that Tx is defined on the output layer, and because of the
kernel size Dm a tile of size (Tx + Dm − 1) is thus required
of the input layer. This demonstrates the trade-off between
required on-chip buffer size and number of external memory
accesses that can be explored using the store level.

Apart from the store level SLarr ∈ TL, also a compute
level is defined.

The compute level CLarr ∈ TL determines at
what loop iteration new data is produced/loaded for
each array arr ∈ ARR.

This additional directive enables an optimization known
as buffer folding. For SLX = yi the data volume
that has to be delivered by on-chip memory is equal to
(Ti × Dn × (Tx + Dm − 1)) elements1, but that does not
require that this data is all live at the same time. In fact,
as the (Ti × Dm × Dn) kernel moves from left to right as
the xi loop proceeds, old data to the left will no longer be
reused within the current iteration of loop yi. By selecting
xi as the compute level of array X, i.e., CLX = xi, new
data is only produced, i.e., fetched from external memory,
at each iteration of xi. Since there are (Ti × Dn × (Dm − 1))
elements overlap between each iteration, as discussed before,
for each iteration only Ti × Dn new elements are required.

1Assuming stride Sx = 1 for simplicity.
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These can be kept in a rotating buffer of only (Ti×Dm×Dn)
elements. Note that the reuse captured by the internal buffer is
unchanged, and dictated only by the store level. The addition
of the compute level enables folding of buffers, such that the
same reuse can be captured with less buffer space. Combined,
the store and compute levels respectively dictate what data is
transferred when.

Unlike loop ordering and tiling, the store and compute
levels can not be chosen freely. In particular, data depen-
dencies dictate that the production of the weights and input
must be scheduled before, or in parallel with, the production
of the feature maps, i.e., SLY � SLW and SLY � SLX.
Furthermore, the store level is always to be selected from
one of the inner loops, or one level higher, i.e., any loop in
Code 2 between lines 5–12. Setting the store level any higher
would encompass at least one outer and inner loop of the same
dimension, cancelling the effect of tiling. The same can be
achieved by equating the tile size to the dimension, and as
such these schedules are covered without the need to consider
the remaining outer loop levels.

Finally the compute level of a data array should always
be equal to, or lower than the store level of that array, i.e.,
CLarr � SLarr. This requirement originates from the trivial
dependency between the production of an element and the
allocation of its storage. If no storage is allocated, the element
can not be produced.

D. LAYER FUSION
Apart from reordering computations within a layer, as per-
formed by loop reordering and tiling, there is also the pos-
sibility to reorder operations between layers. In particular,
if one layer is computed partially, some of the computations
of the succeeding layer may already have all their input
operands ready, enabling their execution. This concept is
best described in terms of producers and consumers, where
a first layer produces data which is consumed by a sec-
ond layer. Rather than computing the producer completely
before starting the computation of the consumer, the com-
putation of the producer can be inlined to the computation
of the consumer. Again, these transformations alter reuse
distances and lifetimes of the various data arrays. Criti-
cally, the results from the producer can be consumed much
earlier. Unless there is already sufficient on-chip memory
to buffer an entire layer, loop fusion can be used to con-
sume the results of intermediate layers, rather then sending
them out to external memory only to be retrieved again
later.

The data dependencies between two convolutional layers
are illustrated in Figure 3. Note that for a layer v fused into a
layer u, the output array Y of layer v is the same as the input
array X of u. Generically, Yk = Xk+1 Therefore, in Figure 3,
the Y arrays have been named by their X array equivalent.
In this figure a tile of size Tz × Tx × Ty is to be produced
in array X2. Assume X1 is not yet computed. When the
production of Tz × Tx × Ty is about to start, first a tile in
X1 of size Ti× (Tx+Dm1−1)× (Ty+Dn1−1) is produced.

Code 3. Code for 2 fused layers as illustrated in Figure 3.

Once this tile is ready, the computation of Tz × Tx × Ty in
X1 commences.

The basic code of two fused layers is given in Code 3.
As can be seen, the production of a Ti × (Tx + Dm1 − 1) ×
(Ty+Dn1− 1) sized tile X1 is inlined in the loop nest of X2.
This technique is generically known as loop fusion. Since in
this particular context it is applied to loop nests of CNN layers
the term layer fusion is used.

Although not shown for simplicity in Code 3, it is
entirely possible to also tile and reorder the production
of the inlined producer. From this perspective, tiling and
reordering are orthogonal concepts to layer fusion. Fur-
thermore, layer fusion can be applied recursively, fus-
ing an unlimited number of consecutive layers. This
increases the scheduling space tremendously, complicat-
ing the task of finding an optimal schedule for a given
network.
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FIGURE 3. Three state arrays X of two consecutive convolutional layers.
To produce tile Tz × Tx × Ty on X2, a tile of
Ti × (Tx + Dm − 1)× (Ty + Dn − 1) is required from array X1. In a fused
schedule, this tile of X1 is produced in-line to the production of the tile in
X2, rather than first computing X1 completely.

The connections between layers in a neural network can
generically be captured in a directed graph G(V ,E) where
V represents the set of individual layers and their associated
structural parameters as listed in table 1, and E is a set of
tuples (src, dst) with src, dst ∈ V that define a directional
relation from src to dst . The production of a layer may be
fused into one of its direct successors in this network graph
G or it may not be fused at all. To denote this, each layer
v ∈ V is assigned a fuse target Fuse(v) ∈ successors(v)∪{v},
where successors(v) = {v′ | (v, v′) ∈ E} is the set of all direct
successors of layer v in G(V ,E). The production of layer v is
then scheduled inline into the production of Fuse(v). When
the fuse target is set to layer v itself, the layer is consequently
not fused.

E. RECOMPUTATION
Apart from shortened data lifetimes, layer fusion also intro-
duces another interesting trade-off. As discussed, depending
on tiling and store levels not all data reuse may be captured
from a local buffer. The same naturally holds for the data
of an intermediate, fused layer. In Figure 3 the data of X1
has multiple uses in the production of X2. If not all uses
of an element are captured, there is the option to store the
intermediate value of X1 in external memory and reload it for
future uses. Alternatively it can be discarded, and recomputed
from X0 when it is needed again. In this way a trade-off can
be made between compute load and external memory traffic.
This is particularly interesting for modern and future tech-
nology nodes, where (re)compute typically can be orders of
magnitude cheaper in both time and energy than re-accessing
external memory [3].

F. FORMAL SCHEDULE
As stated, a convolutional layer is structurally defined by the
set of parameters listed in table 1. For each layer v ∈ V ,
where V represents the complete set of layers that make up a
particular CNN, a layer schedule s can be defined according
to the various scheduling options discussed in this section.
Such a scheduled layer s consists of the parameters listed
in Table 2. A network schedule S = {(v, s) | v ∈ V }
is consequently defined as the set of tuples of layers and
accompanying layer schedules for each layer in the network.

TABLE 2. Layer schedule s of a convolution layer v ∈ V .

TABLE 3. Model summary.

IV. COST MODELS
For real-world neural networks, merely iterating through the
entire scheduling space as described in Section III already
presents a significant task. Benchmarking each of these
schedules on a target machine to find the best match is
simply intractable. This section describes a set of mathemat-
ical expressions which, given a network schedule, accurately
model the required number of external memory accesses, the
required internal buffer space, and the number of computa-
tions measured in multiply-accumulates, as summarized in
Table 3. These expressions only require a handful of compu-
tations compared to benchmarking a network schedule on a
target machine, and as such enable fast design space explo-
ration. The remainder of this section defines these expres-
sions precisely. Readers primarily interested in applying these
models may skip ahead to Section V which introduces the
open source implementation of these equations in the form of
theConvFuser tool [12]. Also the final results in SectionVI
can be interpreted without in-depth understanding of the
detailed model presented in this section.

A. PREREQUISITES
To aid the formulation of these models, a number of nota-
tional shorthands and auxiliary functions are defined first.
In general, the multiplication of each element in an arbitrary
set S will be abbreviated to

∏
S, i.e.,∏

S =
∏
s∈S

s.

Note that in accordance with the common definition of the
product operator, the product of the empty set ∅ is defined as
one.

Given a layer and an associated schedule (v, s) ∈ S, the
(sub)set of structural dimensions of layer v ∈ V as defined
in table 1, and the (sub)set of tile sizes in schedule s as
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defined in table 2, that belong to a given (sub)set of loop levels
L’ ⊆ L, is defined by the following two auxiliary functions
respectively:

D (v,L’) = {Dl | l ∈ L’ ∧ Dl ∈ v} ,

T (s,L’) = {Tl | l ∈ L’ ∧ Tl ∈ s} .

Furthermore a translation function κ (v,l) is defined, with
layer v ∈ V and loop level l ∈ {x,y}. This function converts
loop levelsx andy to their spatially related kernel dimensions
Dm and Dn respectively:

κ (v,l) =

{
Dm ∈ v, l = x

Dn ∈ v, l = y.

The corresponding set operator K , which translates all loop
levels in a set L’ ⊆ L, is defined as:

K (v,L’) = {κ (v,l) | l ∈ L’} .

Another helper function translates a loop level l ∈ L into the
corresponding inner tiled loop level li ∈ TL:

inner (l) = li.

Since for many models it matters whether or not the inner
loop of a particular loop level l ∈ L is preceded by the store
level in a given layer schedule s, the set of all loop levels in set
L’ ⊆ L which are preceded by the store level SLarr of array
arr ∈ ARR, i.e., the collection of loop levels below/inner to
the store level for array arr, is defined as:

LTarr (s,L’) = {l | l ∈ L’ ∧ inner (l) ≺ SLarr},

where SLarr ∈ TL ∈ s, ≺∈ O, and O ∈ s.
The complement of this set, i.e., the set of loop levels which

are equal to or above/outer to the store level, is defined as:

GEarr (s,L’) = L’− LTarr (s,L’) .

Furthermore the set of folded loop levels F , i.e., the levels
between the store and compute level is defined as:

Farr (s,L’) = {l | l ∈ L’ ∧ CLarr � inner(l) ≺ SLarr},

where SLarr,CLarr ∈ TL ∈ s, ≺∈ O, O ∈ s, and
the operator (l � l’) = (l ≺ l’ ∨ l = l’). Finally a set
selection function is defined, which selects set A if the layer
is fused, or set B otherwise.

FuseSel(v, s,A,B) =

{
A, fuse 6= v
B, o.w.,

with fuse target fuse ∈ s.
For all these helper functions, when it is clear only a single

layer v or schedule s is described, the v and s arguments
are omitted for further brevity. An overview of these helper
functions is provided in Table 4.

TABLE 4. Helper functions summary.

B. INTERNAL MEMORY FOOTPRINT
With this notation in place, the required internal buffer size
of a single scheduled layer (v, s) ∈ S can be concisely and
accurately modelled. This buffer size is comprised of three
parts, the sum of the memory footprints of the X, Y, and W
arrays respectively. All these footprints can be obtained by
computing the volume of data below the respective store level
SLarr, since this is the volume that will be loaded by the
scheduled external memory access.

In general, for each loop level l ∈ {x,y,z,i,m,n} a
selection has to be made between two options for each data
array arr ∈ {X,Y,W}, one contribution to the data volume if
said dimension is below SLarr, and one when it is equal or
above. The product of these contributions yields the complete
data volume.

1) WEIGHT ARRAY
For weight array W these options for the dimensions are
explicitly listed in Table 5. Since the accesses to W are inde-
pendent of loop levels x and y, as can be seen in line 10 of
Code 1, these loop levels do not contribute to the memory
footprint of W (set to 1 for unit operation in the final product).
For loop levels m and n the full dimension Dm and Dn has to
be counted respectively, since these loops are excluded from
tiling in the defined schedule space, and they are also always
below the store level. More interesting are loop levels z and
i, which require a full tile Tz or Ti to be counted when they
are below the store level, or only a single slice if they are
not. The product of all correct contributions in Table 5 yields
the initial memory footprint of the W array. However, care has
to be taken when the compute level CLW is below the store
level, and buffer folding is applied. In the case that z and/or
i are folded (below the store level, but above or equal to the
compute level), they only contribute as if they were above the
store level.
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TABLE 5. Memory footprint contributions of W for all loop levels.

Using the introduced notation, the memory footprint of the
weight array W of a single convolution layer can be expressed
as follows:

BufW =
∏

T (LTW(3)− FW(3))

×

∏
D({m,n})× FuseSel(Di, 1),

where 3 = FuseSel({z}, {z,i}). I.e., for the kernel loops
m and n the full dimensions Dm and Dn are counted. For the
non-fused case as described in Table 5, the tile sizes of loop
dimensions z and i are taken into account, provided they are
below the store level and not folded. When the layer is fused
into a successor however, the computation changes slightly
because dimension i can no longer be tiled. Considering
the nonlinear activation function on line 11 of Code 1, all
contributions in the i dimension have to be reduced before
this activation can be applied, and the next layer can start
its dependent computations. This can be more clearly seen
in Code 3, where, due to the activation function on line 18,
the complete (untiled) i loop on line 12 has to be computed
before the next layer can start production on line 22. Thus, i
can not be tiled and instead the full Di dimension is required,
as is covered by the FuseSel selection function.

2) INPUT ARRAY
For input array X a similar equation can be derived. The
notable differences are that X is independent of loop level
z, and that at loop levels x and y at least Dm and Dn input
elements are required. When a tile is required in these dimen-
sions, i.e. x ≺ SLX or y ≺ SLX, the kernel size also comes
into play and, as illustrated in Figure 2, a contribution of
Tx+Dm− 1 or Ty+Dn− 1 is required respectively. Another
complicating factor is formed by the strides in the x and y
dimensions, which change these terms to (Tx− 1)×Sx+Dm
and (Ty − 1) × Sy + Dn respectively. The resulting mem-
ory footprint of a single layer is captured by the following
expression:

BufX = FuseSel
(
Di,

∏
T (LTX ({i})− FX ({i}))

)
×

∏
K (GEX ({x,y}) ∪ FX ({x,y}))

×

∏
{(Td − 1)× Sd + κ(d) |

d ∈ LTX ({x,y})− FX ({x,y})}.

Again, FuseSel is used to account for the full dimension in i
when the layer is fused, for the same reason as in BufW, i.e.,
due to the nonlinear activation function on line 11 in Code 1.

3) OUTPUT ARRAY
Finally, the memory footprint of the output array Y is rela-
tively straightforward, and depends on x, y, and z. For each
of these dimensions the contribution is equal to the tile size,
unless the dimension is above the store level or folded. That
is, unless the current layer will be fused into the next layer,
in which case the output arrayY is effectively replaced by data
array X of the next layer, yielding no memory contribution
for Y. Furthermore it is important to note that once an output
is complete, i.e., all Di contributions of the preceding layer
have been processed and the activation function is applied,
there is no need to keep the completed output on-chip. From
a memory viewpoint this resembles buffer folding, which is
also how this optimization is taken into account in the final
equation. The footprint contributions of those loop levels in
{x,y,z} which are above i fold to one, resulting in:

BufY = FuseSel(0,
∏

T (LTY({x,y,z})− FY({x,y,z}))).

C. EXTERNAL MEMORY ACCESSES
The number of required external memory accesses can be
derived in a similar manner as the internal memory footprint.
The crucial difference is to not only account for the data
volume transferred, but also how many times such a transfer
takes place. These two terms can be considered separately,
such that for data array arr ∈ ARR, the external mem-
ory accesses Accarr are expressed as the volume of a data
transfer Volarr, multiplied by the number of those transfers
Transarr:

Accarr = Volarr × Transarr.

1) WEIGHT ARRAY
For weight array W, the volume of a transfer VolW is nearly
identical to its internal memory footprint BufW, with the
notable exception that for the transfer volume buffer folding
has no effect. The fact that the buffer is smaller due to liveness
of the variables does not invalidate the requirement to transfer
the complete volume eventually. The transfer volume of array
W can therefore be expressed as:

VolW =
∏

T (LTW (3))×
∏

D ({m,n})× FuseSel(Di, 1),

where 3 = FuseSel({z}, {z,i}). Note that when the current
layer is fused into the next, all inputs Di need to be handled
before the results can be passed to the next layer. Again, the
nonlinear activation function on line 11 of Code 1 prevents
partial updates of only Ti inputs to be consumed.
Next the number of transfers is to be determined. In gen-

eral, if a loop level l is above or equal to the store level,
the associated volume needs to be transferred for every Dl
iterations. When l is beneath the store level however, that
volume will have to be transferred only

⌈
Dl
Tl

⌉
times. The

ceiling operator is used here to arrive at a conservative bound,
which accounts for a full tile transfer in case tile size Tl is
not an exact multiple of Dl. For weight array W the number
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of transfers is given by:

TransW =
∏

D (GEW (3))×
∏{⌈

Dd
Td

⌉ ∣∣∣∣ d ∈ LTW (3)} ,
where 3 = FuseSel({x,y,z}, {x,y,z,i}) is used to com-
pensate when due to fusion the entire volume is transferred.

2) INPUT ARRAY
For data array X the transfer volume resembles the internal
buffer size of arrayX, BufX, again ignoring any buffer folding:

VolX = FuseSel
(
Di,

∏
T (LTX ({i}))

)
×

∏
K (GEX ({x,y}))

×

∏
{(Td − 1)× Sd + κ(d) | d ∈ LTX ({x,y})} .

The number of transfers for X is in fact equal to those of
W (TransW), apart from checking against the store level of X
instead of W, i.e.,

TransX =
∏

D(GTX(3))×
∏{⌈

Dd
Td

⌉ ∣∣∣∣ d ∈ LTX(3)} ,
where 3 = FuseSel({x,y,z}, {x,y,z,i}).

3) OUTPUT ARRAY
Finally, for the number of external memory accesses for
array Y, it is easier to deviate from the volume/transfer
approach used above.When a layer is fused, the output simply
does not contribute to the external transfers, as the outputs
are stored directly in the X array of the layer that is being
fused into. When a layer is not fused, eventually the complete
output, i.e. DxDyDz elements, have to be transferred at least
once to the external memory. More than one transfer per
output element may be required if partial results are stored in
(and later loaded from) external memory. Here, a partial result
is a partial sum in array Y which is not yet ready to be passed
to the nonlinear activation function. For internal buffer space
it could be interesting to evict some of these partial results
from the local buffer, and load them back later. This happens
only if tiling is applied to the i loop. In that particular case
the partial output elements have to be transferred twice for
each tile in i, once for storing the partial results externally,
and once for loading them back (excluding the first update
of Y). Combined this yields the following expression for the
number of elements transferred for output array Y:

AccY = DxDyDz ×

(⌈
Di
Ti

⌉
× 2− 1

)
.

D. COMPUTE
The final part of the model represents the number of multiply-
accumulate operations (MACs) required to complete a sched-
ule. Without recompute, this number is trivial to obtain by
multiplying all dimensions of a layer Dx × Dy × Dz × Dc ×
Dn×Dm. However, to account for recompute due to overlap of
input tiles detailed later in Section IV-E, this formula is split
into three terms: the number of MACs to produce a single

output pixel PMACs, the volume of a produced output tile
OVol, and the number of such output volumes in a layer.

The number of MACS for a single output pixel is fairly
straightforward, and is determined by the number of input
feature maps multiplied by the kernel size:

PMACs =
∏

K ({x,y})× Di.

The produced volume in number of features for every
transfer is also straightforward, and amounts to those tiles
which are below the store level of array X:

OVol =
∏

T (GEX({x,y,z})).

Note that the store level of array X is used, since the input vol-
ume determines the produced output volume. Consequently,
the number of such volumes is simply equal to the number of
transfers of array X, TransX.

The total number of MACS is thus given by:

MACS = PMACS× OVol× TransX.

E. LAYER FUSION
Now that models have been established for the mem-
ory footprint, external memory accesses, and number of
multiply-accumulate operations per layer for each of the W,
X, and Y arrays in the preceding sections, these models can
be combined to provide the same properties for complete sets
of fused layers. This is achieved by ‘chaining’ the provided
layer models in a recursive fashion. This is best understood
by observing the consumption of X0 in Figure 3 used to
produce X1. Instead of producing complete array X1, i.e.,
Dx1×Dy1×Di1 as the output size of X0, in a fused schedule
only a single tile (Tx + Dk1 − 1) × (Ty + Dl1 − 1) × Di1
needs to be produced at a time. Substituting Dx,Dy,Dz with
(Tx + Dk1 − 1)× (Ty + Dl1 − 1)× Di1 respectively in the
models provides the costs of this intermediate tile:
• Multiply accumulates: The number of multiply accu-
mulates required to produce the tile from x0 to X1 are
simply given by PMACs(L01), where L01 represents the
layer that consumes X0 and produces X1.

• Memory footprint: The local memory footprint of the
tile in X0 is given by BufX(L01), the required footprint
of the tile in X1 is given by BufX(L12). The footprints
of the weights can used without any substitution.

• Accesses: The intermediate tile in X0 of course does not
require any external data accesses, as it is produced and
consumed in a fused fashion. However, the number of
transfers TransX(L12) specify how many times the tile
needs to be produced in the case of recomputation, and
tile overlap in general. For the overall cost of the fused
set of layers, the multiply accumulates for the tile are
to be multiplied with the number of productions. Same
holds for the loads of the weights required to produce
the tile, unless they are completely stored in the local
buffer. Also, this number of required productions moves
further up the set of fused layers, as consequently any
producers of this tile may in turn need to be produced
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multiple times if they are not stored for the complete
lifetime of the network depending on their store level
and tile sizes. Only the first layer of a set of fused layers,
has external memory accesses. If this first layer needs
multiple transfers of its own, i.e., not all uses of the
data elements are captured on first load, the number
of additional accesses can grow quite quickly due to
the recomputation effect. The more profitable schedules
therefore typically ensure the input is loaded only once,
such that the cost of recomputation indeed only affects
the compute cost, and does not increase the number of
external accesses.

Hence, using substitution of tile dimensions for the output
dimensions, and propagation of the number of productions
required for each tile, the total cost of a fused segment can
be derived from the individual cost models presented in the
previous sections.

F. COMPLETE NETWORK MODEL
The total costs of a complete network are now trivial. The
network schedule effectively partitions the layers into groups
of fused layers. These groups contain one or multiple layers,
for which the costs can be derived using the fusion approach
described in the previous section. The total number of mul-
tiple accumulates required by a network schedule is simply
obtained by adding the multiply accumulates of all groups.
Same holds for the number of external accesses, the sum
of the accesses of each group forms the cost for the entire
network. The memory however only requires the maximum
buffer size over all groups, since only a single group is active
at any given time during network evaluation assuming no
pipelining of the execution. Using these simple rules, the
costs of an entire network can be computed.

V. AUTOMATED DESIGN SPACE EXPLORATION
The formal model introduced in Section IV enable auto-
mated exploration of the vast scheduling space described in
Section III. To achieve complete automation Section V-A
describes a strategy to efficiently traverse the entire schedul-
ing space. Section V-B introduces ConvFuser [12], an open
source tool which implements the presented traversal strategy
and cost models, enabling automated design space explo-
ration and verification of any neural network described in the
popular Keras framework [11].

A. SPACE TRAVERSAL
To effectively explore the scheduling space as described in
Section IV four steps are required:

1) IDENTIFICATION OF SEQUENCES
Since the proposed models do not include provisioning to
handle residual/skip connections, only consecutive layers
without forks or joins are considered for fusion. The first step
of a design space exploration (DSE) is therefore to select sets
of layers that may be fused. Such a set of eligible layers is

FIGURE 4. Example layer graph with sequence [B, C, D, E], and a
residual connection between A and F.

referred to as a sequence, an example of which is shown in
Figure 4.

2) SEGMENTATION
Within each sequence it needs to be decided which layers to
fuse (if any) to obtain the Pareto optimal schedules of the
network. A set of fused layers within a sequence is referred
to as a segment. The sequence [B,C,D,E] of Figure 4 con-
tains the following valid segments: B, C, D, E, BC,
CD, DE, BCD, CDE, BCDE. Each of these segments is
evaluated individually, yielding a vector of schedules ES per
segment.

3) PARTITIONING
Once all possible segments have been identified and their
costs have been evaluated, those segments that cover the
entire sequence need to be combined. For example segments
BC and DE cover sequence [B,C,D,E], but also segments
B, C, and DE, as well as many more. Combining the sched-
ule vectors ES of each segment into an overall schedule vector
ESS for the sequence is done by taking their product, and using
the rules outlined in Section IV-F. Note that this procedure
can be significantly accelerated by first Pareto-filtering the
segment schedule vectors ES. It can be trivially proven that
considering only the Pareto points of each segment is suf-
ficient to yield all the Pareto points of the entire partition,
since the combining (reduction) functions of Section IV-F,
i.e., summation and maximum selection, are monotonically
increasing.

4) NETWORK SCHEDULE COST COMPUTATION
Finally the costs of all valid partitions are combined using
the same rules of Section IV-F to obtain the cost of the
entire network. Similarly to the partition cost computation,
segment schedule vectors ESS can be Pareto-filtered before
combination with other partitions to yield a Pareto optimal
scheduling of the entire network.

B. CONVFUSER
An embodiment of the automated design space exploration
described in this work is provided in the form of an open
source tool: ConvFuser [12]. Apart from automated DSE,
ConvFuser also features code generation for any selected
schedule, enabling reliable validation of the models.
ConvFuser builds upon the popular Keras/TensorFlow

framework [11] to read standard HDF5 graph models (See
Figure 5). After loading a network using Keras/TensorFlow,
a graph is constructed from the network layers, and a custom
canonicalisation pass is employed to normalize the network
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FIGURE 5. Schematic overview of the ConvFuser tool. Green boxes are
developed for this work.

description. An important part of this canonicalisation is
performing trivial layer merges, including but not limited to:
• merging of batch normalization layers into convolu-
tional layers, which can be achieved by modification of
the weights of the target convolutional layer.

• merging of activation layers into convolutional layers.
Note that some literature refers to these trivial layer merges
as layer fusion. This term is apt in the case of merging acti-
vation layers, which also involves loop fusion, but it should
not be confused with the much more complicated fusing of
consecutive convolutional layers as described in this work.

After canonicalisation, design space exploration can be
performed. Many smart search strategies could be employed
here, but by virtue of the mathematical models and their
fast evaluation, straightforward exhaustive search is feasible
for smaller networks. Additionally the tool provides several
options to restrict the design space, such as limiting the num-
ber of layers considered for fusion, selection of tile sizes such
as only exact multiples of their respective dimension, or only
powers of two, and whether to consider recomputation.

Finally, to enable validation of the found schedules,
a hybrid back end based on the Halide language [3] and
Keras/TensorFlow [11] is provided. Any non-convolutional
layers are evaluated directly by Keras/TensorFlow. The
scheduled convolutional layers however are implemented
using a modified version of Halide. In particular this mod-
ification consists of additional python bindings to be able
to insert instrumentation code. This code utilizes Halide’s
internal tracing mechanism to keep track of accesses to
buffers, and sizes of allocated buffers. To emulate an external
memory and internal buffers, a construct similar to Halide’s
recently added in operator is used. This construct adds an
extra layer of buffering, where one large buffer essentially
mimics external memory, and working data is loaded into a
smaller, internal buffer. By keeping track of the accesses to
these two levels of buffering, the required external accesses

can be exactly monitored. An optional validation step can be
used to check the external accesses, internal buffer size, and
multiply-accumulates measured from Halide execution with
the values predicted by the models.

VI. MODEL VALIDATION & EVALUATION
The validity of the models introduced in Section IV is con-
firmed experimentally using the ConvFuser tool intro-
duced in SectionV. The experiments consist of a design space
exploration for several synthetic and real-world networks,
followed by code generation for each of the Pareto optimal
schedules. This code is automatically instrumented by the
ConvFuser tool to measure the number of multiply accu-
mulates, internal memory size, and external accesses, which
are then compared against the modelled values.

Besides this model validation, the tool also enables the
evaluation of the impact of various scheduling techniques.
In essence, the scheduling space described in Section III can
be restricted to subsets by disallowing or limiting certain
scheduling techniques. For this evaluation four progressively
inclusive scheduling spaces are defined:

1) Baseline: The baseline scheduling space follows the
straightforward implementation in Code 1 for each
layer. It thus excludes loop reordering, tiling, and
fusion, but does allowing different store and compute
levels.

2) Tiling & Reorder: This space adds both loop tiling and
reordering to the allowed options to the baseline space.
Tiling is restricted to sizes that are integer factors of
the dimensions to keep the space to a size that can be
completely traversed in reasonable time. Other tiling
options are built into ConvFuser, but are not further
evaluated in this section.

3) Goetschalckx et al.: This space extends the tiling and
reorder options with layer fusion. The allowed fusion
however does not recompute any elements. Further-
more weights are not tiled, and are always stored
on-chip for a fused section. This space matches the
work of Goetschalckx et al. [10], enabling direct com-
parison. One notable exception for this space is that the
tiling factor is not limited as is the case in the work
of Goetschalckx et al., since for this particular design
space it is possible to use a fast branch and bound
algorithm on the tiling factor while still guaranteeing
an optimal result.

4) Fusion & Recomputation: This extends the Goetschal-
ckx et al. space with tiling of weights and recomputa-
tion. The addition of tiling the weight accesses however
disallows the previously mentioned branch and bound
technique on the tiling factor without losing optimality.
Therefore this space again is constrained to the same
tiling limitations as the Tiling & Reorder space, i.e.,
integer factors of the dimensions.

This partitioning of the scheduling space enables the inves-
tigation of the impact of tiling, loop reordering, fusion, and
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TABLE 6. Layer dimensions of L2Net and L3Net for 20× 20 and 4K inputs.

recomputation onMAC count, required on-chip memory, and
external accesses.

A. MICRO BENCHMARKS
In order to validate the models introduced in Section IV,
and obtain insight into the effect of different scheduling
techniques, first a number of micro benchmarks is performed.
To this end two synthetic networks, L2Net and L3Net, are
defined. These networks consists of respectively two or three
convolutional layers with a 3×3 kernel. This enables a study
into the effects on the resulting scheduling space when deep-
ening networks. The dimensions of these layers are shown in
Table 6 for both a 20 × 20 input and a 4K input, used to see
the effects of network input size on the resulting schedules.
Finally the number of feature maps of these two nets is
increased, yielding L2NetWide and L3NetWide in Table 6,
to examine the effect of this parameter on the effect of the
modelled scheduling techniques.

The results of the schedule space exploration for L2Net and
L3Net with 20×20 and 22×22 inputs respectively are shown
in Figures 6b and 6c. For all schedules of a network the num-
ber of multiply-accumulates is constant, with the exception of
those schedules that include recomputation. To indicate the
number of required multiply-accumulates, a colour coding
is added for the Fusion & Recomputation schedules. The
Pareto schedules for L2Net and L3Net with 4k inputs are
shown in Figures 6d and 6e respectively. Finally the Pareto
fronts for L2NetWide and L3NetWide are given in Figures 6f
and 6g. Note that the verification with instrumented halide
for the selected points in Figure 6 showed a one to one match
between the models and the measurements, apart from some
corner cases where Halide failed to apply complete buffer
folding. These results confirm the accuracy of the models
presented in section IV.
From these figures five key observations can be made:
1) The baseline schedules are consistently poor over

all networks, although they always include a point
that minimizes the external accesses when fusion and

recomputation are not considered. This naturally hap-
pens for the store-level that cover all data uses, but due
to the lack of tiling and smart loop reordering these
points typically require a huge amount of memory.

2) Adding tiling and loop reordering on top of the baseline
schedule results exclusively in schedules that require
less internal memory, and thus completely Pareto dom-
inate the baseline points.

3) Fusion without recomputation and weight tiling, i.e.,
the space defined by Goetschalckx and Verhelst [10]
does not add many interesting points for the small input
versions of L2Net and L3Net. The accesses saved by
omitting transfers on the small intermediate layers does
not add much for these small networks where the num-
ber of weights are relatively significant. When applied
to the 4k input networks however, some gains can be
observed as the weight transfers become insignificant
compared to the data transfers. However, the gains are
still rather modest since the remaining transfers on the
input layer have also scaled with the input resolution.
More interesting are the points for L2NetWide, where
fusion does yield larger gains as the number of feature
maps increases, and the intermediate transfers start
to dominate the remaining input transfers. However,
as the weights are again important in these networks,
the ideal combination for the Goetschalckx scheduling
space, i.e., large inputs and wide intermediate layers,
is not achieved in these synthetic benchmarks.

4) Enabling weight tiling and recomputation however
does yield some interesting points. In particular for the
wide networks with small input, i.e., those networks
where weights are significant, some schedules with
evenmodest recomputation are found to outperform the
Goetschalckx schedules by an order of magnitude in
required memory size, demonstrating the added value
of the more generic models presented in this work.

5) As the input size and number of layers increases,
recomputation becomes more and more relevant, but
only for very large memory sizes. Apart from these
extreme cases, the memory saved by heavy recom-
putation is rather marginal compared to neighbouring
schedules with minimal to no recomputation.

B. REAL-WORLD NETWORKS
Although above synthetic micro benchmarks provide insight
into general trends, it is important to also evaluate
the scheduling techniques in the context of real world
networks. To this end six widely used networks are
selected for experimentation: ResNet50, VGG16, Incep-
tionV3, MobileNetv2, and XCeption as implemented in
the Keras framework [11], and DMCNN-VD, the demo-
saicing as described by Syu et al. [22] and also evaluated
by Goetschalkx et al. allowing for direct comparison. The
scheduling Pareto fronts of these networks are given in
Figures 7b, 7c, 7d, 7e, and 7g respectively. Because the com-
plete design spaces of these networks are exceptionally large,
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FIGURE 6. Pareto schedules of the synthetic networks for the four defined scheduling spaces. The colour maps only apply to fusion & recomputation,
and represents the number of multiply-accumulate operations.
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FIGURE 7. Pareto schedules of six Real-World networks for the four defined scheduling spaces. The colour maps only apply to fusion &
recomputation, and represents the number of multiply-accumulate operations.
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an exhaustive traversal of the design space is infeasible even
with the presented fast models. Therefore the exploration of
the design space of these networks was limited to ten million
considered schedules per segment.2 This limitation particu-
larly impacts the Fusion & Recomputation space, since it is
the largest of the four spaces. As a result the Pareto fronts are
less smooth than those of the micro-benchmarks which are
exhaustively searched. Nonetheless, the general trends can be
easily observed, and plenty of schedules remain on the Pareto
fronts for practical purposes. From Figure 7 the following
three observations are made:

1) For typical real-world networks with 224 × 224 Ima-
geNet input resolutions, the gain of fusion and recom-
putation on top of tiling and reordering is rather limited.
This effect is expected based on the micro-benchmarks,
in particular keeping in mind that in real-world net-
works various layer types prohibit the application of
fusion with the presented models, limiting the benefits
of fusion even further. Only for very large memories do
the accesses decrease.

2) For networks with large input, and a straightforward
structure of sequential convolution layers such as
DMCNN-VD, the story is slightly different. Here extra
memory can effectively be used for fusion to reduce the
number of external accesses significantly.

3) The Fusion Pareto front of DMCNN-VD matches the
experiments of Goetschalckx and Verhelst [10], further
validating the more generic models presented in this
work. Moreover, more Pareto schedules are found as
the tiling factor was not limited in our experiments
by virtue of a branch and bound design space strategy
on the tiling factor which still guarantees optimality.
This enabled exploration of the complete scheduling
space of DMCNN-VD as defined by Goetschalckx and
Verhelst [10] in a matter of minutes.

In general it can be concluded that the presented models
are very accurate, and have added value over the state of the
art in particular for networks where the number of weights is
significant. Although for real-world networks the benefits of
fusion are somewhat limited due to complex connections and
various layer types, the external accesses can in most cases
be reduced compared to loop reordering and tiling only. The
best observed reduction in external accesses was as high as
99.75% for DMCNN-VD. On average the gain of fusion over
tiling and loop reordering was 28.89% for the six selected
networks.

VII. ENERGY CONSUMPTION
The scheduling results presented in the preceding section
expose the potential to reduce the external memory accesses
using advanced scheduling techniques. This section extends
these results with a short study into the effects of this reduc-
tion in accesses, since for most practical designs not the
raw accesses, but the energy consumption is of interest.

2See Section V-A2 for the precise definition of a segment.

Building upon the metrics produced by the models intro-
duced in this work, the remainder of this section intro-
duces progressively more realistic energy models starting
from a single level, single bank SRAM internal memory in
Section VII-A till a multi-level, multi-bank internal memory
model in Section VII-C

A. SINGLE-BANK SRAM
The energy required to evaluate a neural network according
to a specific schedule can be split into three distinct parts:

1) MULTIPLY-ACCUMULATE OPERATIONS
The first source of energy consumption is the execution of
multiply-accumulate operations. The energy required for a
single multiply-accumulate depends on the data type of the
operation, the arithmetic architecture, the operating speed,
and the technology node used for implementation. How these
parameters influence the energy consumption is complicated,
and instead of attempting to derive a generic model choices
are made for these parameters in this evaluation. In particular,
a 40 nm node is assumed for which energy numbers are
available in the Aladdin tables [23], which are also used by
the state-of-the-art Accelergy energy estimation tool from
MIT [24]. In alignment with the accelergy framework, the
cost of a multiplication and addition at 4 ns delay are summed
to conservatively approximate a multiply-accumulate unit.
Although the model metrics are agnostic to the width of
a neuron output or weight value, a choice has to be made
to be able to provide an energy estimate. Since the listed
numbers are for 32b operations, and the operations in neural
networks usually only require 16b, a scaling factor is applied.
Specifically, the energy of the addition is halved since adders
scale approximately linearly, and the multiplication energy
is divided by four because of quadratic scaling of multi-
pliers. Following this method, the energy cost of a single
multiply-accumulate operation is approximated at 10.2 pJ.

2) ACCESSING EXTERNAL DRAM
The second factor influencing the energy consumption is
accessing external memory. DRAM is a typical choice for off-
chip memory, and is also assumed in this evaluation. Accord-
ing to the work of Malladi et al. [25] accessing a single bit
in DDR3 memory requires about 70 pJ. For simplicity it is
assumed that both the neuron outputs and weights are 16 bit
wide, yielding an energy cost of 1120 pJ per DDR3 DRAM
access. Note that this number is taken to be independent of
the DRAM size, since the energy is dominated by IO logic
rather than the size of the memory array.

3) ACCESSING INTERNAL SRAM
For internal memory SRAM is assumed. Estimating the
energy of an SRAM access is slightly more involved, since
the size of the memory array does matter significantly for
the access energy. To be able to provide accurate esti-
mates, a model is derived based on commercial-off-the-shelf
SRAMmodules on a 40 nm technology node. Figure 8 shows
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FIGURE 8. SRAM energy consumption based on commercial 40 nm SRAM
modules at the typical corner, 25 ◦C, 1.1 V.

available data points for these modules in terms of access
energy for 16b words based on the total module size in bits.
These numbers are based on the typical corner, 25 ◦C, 1.1V,
averaging a read and write access. A square root function is
fit through these points to enable extrapolation, yielding the
energy per access of an s-bit SRAM cell in pJ:

ESRAM(s) = 0.012 ·
√
s+ 4.61

A square root function is chosen as the energy cost of larger
banks mainly seems to scale with the circumference of the
array, and the additional sense amplifiers used to partition the
bank internally. This model is used to extrapolate the energy
cost of an SRAM bank in Figure 8. Note that the range of
the extrapolation is rather extreme to be able to support the
large memories required for some of the fusion schedules.
This already indicates a different approach to constructing
such large memories should be taken in practice, which will
be further elaborated in Section VII-B. Although the selected
square root function fits the relation quite well (see also
Figure 10 which clearer shows the fit through the available
data-points), this model can easily be exchanged for more
sophisticated and accurate models when available.

Adding these three factors, i.e., multiply-accurate energy,
DRAM energy, and SRAM energy, yields the total
energy estimated by this basic model. For the number of
multiply-accumulates the MAC numbers from the model can
be directly used, the accesses toDRAMare also directly given
by the various Acc terms, as is the size of the internal SRAM
by taking the maximum of the required Buf formulas over all
layers. This leaves the number of accesses to the SRAM how-
ever, which are given by the number of multiply-accumulates
times four, since each MAC operation requires three reads
and one write. Note that this basic model lacks a register file
or accumulation register, and hence all accesses go to the
internal SRAM. Finally each external read access will also
write to the internal SRAM, so these accesses are also added.

Applying this model to the scheduling front of the
L3NetWide and L3Net 4k networks presented in Section VI
yields Figure 9. Since the energy model is monotonically

increasing in all parameters, the Pareto schedules found
in Section VI are guaranteed to contain those schedules
that are also Pareto in terms of energy. The energy points
are not Pareto filtered in this case however to highlight
an important drawback of the used energy model. Using
the simplistic ESRAM(s) approximation, the internal SRAM
memory quickly becomes very expensive to access as its
size increases. In particular, past around 5× 103 features the
reduction in external DRAM accesses no longer outweighs
the increased cost of accessing the internal SRAM, and the
energy starts to increase again. The problem is that the access
energy of a single SRAM bank does not scale very well, and
for those schedules that require a large amount of internal
memory a more sophisticated memory model is required.

B. MULTI-BANK SRAM
The shortcoming of the basic energy model is the assump-
tion of a single SRAM bank also for large internal memo-
ries. In practice, however, such large memories will always
be constructed out of several smaller SRAM banks. Such
memories will incur an area penalty compared to the single
bank approach, but the access energy is lowered significantly.
In fact, the access energy is equal to the access energy of
a single small bank that makes up the larger memory, plus
some overhead for the bank selection logic. To correct for
this energy overhead a scaling function is fit based on the
work of Mai et al. [26]. To minimize the impact of the area
overhead, and provide a pessimistic estimate of what can be
achieved with a banked SRAMmemory, the largest available
SRAM block from the commercial 40 nm library is selected.
Combined with the energy overhead function this yields the
following model for the access energy of an s-bit multi-bank
SRAM memory:

EBankedSRAM(s) = ESRAM(min(s, 16× 104))

×

(
1+ 3.05× 10−3 × log

⌈
s

16× 104

⌉)
This relation is visualized in Figure 10, from which it is
clear that the overhead of the bank selection logic indeed
is relatively small. Plugging this multi-bank SRAM model
into the energy model described in Section VII-A, and again
applying it to the L3NetWide and L3Net 4k networks yields
Figure 11. It is immediately clear for this figure that the
multi-bank SRAM model largely solves the energy problem
for schedules that require large amounts of internal memory.
For L3NetWide the problem is gone entirely, while for L3Net
4k the optimummemory size still lies around 1× 103 entries.
In both cases it is clear however the network schedules with
larger internal memory requirements hardly benefit from
the reduction in external accesses, even while accessing the
DRAM is relatively expensive. Furthermore all schedules
with recomputation always increase the energy consumption.
Both these observations can be explained by the lack of a
register file or other small localized memory, and as such
each additional multiply-accumulate incurs four accesses to
the internal SRAM.
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FIGURE 9. Energy front of L3Net based models using the single bank SRAM model outlined in Section VII-A. The colour maps only apply to fusion &
recomputation, and represents the number of multiply-accumulate operations.

C. MULTI-LEVEL SRAM
To overcome the limitation of a single level internal
SRAM memory, this section expands the energy model with
multi-level internal memory. This does present a problem,
however, since the models presented in this work do not sup-
port multi-level memories in a precise manner. Section VIII
contains notes on how such support may be added as part of
future work, but for this evaluation an approximation is used
instead. In particular, when a memory level of size s is added,
the best schedule available for that size is used to model the
accesses to that level. Furthermore the ‘external accesses’
modelled for this schedule will now be added to the next level
of memory. This next level is determined by a sweep over
the remaining schedules, and using their internal memory
size for this level. Using this methodology a register file with
64× 16b entries is added to the energy model. For accessing
this register file an average accesses energy of 2.4 pJ is used
in accordance with the findings of Wu et al. [27].
The resulting energy fronts of the L3NetWide and L3Net

4K networks are given in Figure 12. It can be seen that
the addition of the register file ensures that the energy does
decrease when larger internal memory is used. Also in L3Net
4k some of the schedules with recomputation have become
beneficial, although the effect is rather marginal.

In the real-world networks evaluated in Section VI similar
trends can be observed. For brevity only the energy fronts of
VGG16 and DMCNN-VD are shown in Figure 13. Similarly
to L3NetWide and L3Net 4k, layer fusion does result in new
energy Pareto schedules, although the benefits are not as large
as the reduction in external memory accesses in Figure 7
imply. This is in particular clear for the DMCNN-VD net-
work, which has a significant reduction in DRAM accesses
using layer-fusion (Figure 7g), but fails to capitalize on this
in the energy front (Figure 13c). Furthermore, recomputation

FIGURE 10. SRAM energy consumption based on commercial 40 nm
SRAM modules at the typical corner, 25 ◦C, 1.1 V.

in the real-world networks does generally not result in a
reduction in energy, as can be seen for VGG16 in Figure 13b.

The limited gains of fusion may seem counter-intuitive
at first, in particular for the DMCNN-VD network which
shows significant reduction in external memory accesses in
Figure 7g. These reduced returns can easily be understood
when inspecting the detailed energy breakdown in Figure 14
however, which lists the energy spent on multiply accu-
mulates (Emac), the register file (Erf), the internal SRAM
(Esram), and the external DRAM (Edram), for each point in
the energy Pareto front. The reason the reduction in accesses
does not result in a significant drop in energy consumption
is effectively Amdahl’s law applied to energy saving; As the
scheduling techniques reduce the amount of accesses to the
DRAM, the other parts of the system start to dominate. For
the overall energy to improve even further, it makes most
sense to address the Emac and Erf components by for example
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FIGURE 11. Energy front of L3Net based models using the multi-bank SRAM model outlined in Section VII-B. The colour maps only apply to
Fusion & Recomputation, and represents the number of multiply-accumulate operations.

FIGURE 12. Energy front of L3Net based models using the multi-bank SRAM model outlined in Section VII-B and a 64× 16b register file. The colour
maps only apply to fusion & recomputation, and represents the number of multiply-accumulate operations.

chaining units to avoid intermediate accesses to the register
file, dedicated accumulation registers, and quantization of the
multiply-accumulate operands.

In conclusion the following statements can bemade regard-
ing the energy consumption of the explored schedules:

1) Compared to the baseline schedules, many schedules
that require less internal memory can be found which
drastically reduce the energy consumption.

2) Based on the energy evaluation a multi-banked and
multi-level memory approach is required to benefit
from the gains of fusion and recomputation, and even
then energy gains are not always guaranteed.

3) The reduction in external accesses achieved by
advanced scheduling techniques such as recomputation

and fusion do not automatically translate in large
improvements in energy, as other parts of the system
become dominant in this region of the scheduling space
for the investigated neural networks.

VIII. DISCUSSION & FUTURE WORK
By validation with instrumented Halide code, the introduced
models are shown to be correct for the micro-benchmarks
when the layer dimensions are exact multiples of the selected
tile sizes. However, despite the low computational complexity
of the models, complete traversal of the scheduling space is
still infeasible for larger networks. This issue is discussed in
further detail in Section VIII-A.
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FIGURE 13. Energy fronts of VGG16 and DMCNN-VD. The colour maps only apply to fusion & recomputation, and represents the number of
multiply-accumulate operations.

FIGURE 14. Detailed energy breakdown of energy Pareto front.

The models presented in this work are to a high degree
hardware agnostic. A downside of this approach is that cer-
tain schedules that look beneficial using these models may
be a bad fit on a particular target machine. Section VIII-B
discusses approaches on how to adjust the design space to
match with real machines.

Finally Section VIII-C discusses several scheduling space
limitations of the current work, and possible ways to improve.

A. INTELLIGENT DESIGN SPACE EXPLORATION
For small networks the presented models are sufficiently fast
to enable an exhaustive schedule space exploration. However,
in particular for networks with larger eligible sequences,3 the
design space grows exponentially. This work does not provide

3See Section V-A1 for the precise definition of a sequence.

a ready solution to this problem, but some suggestions can be
made.

The presented models run in constant time per layer,
so there is not much to be gained by simplifying the models.
Multithreading could be added since the cost estimations
are largely independent, but this will only provide a linear
improvement against the exponential growth in workload.
The provided open source tool [12] supports limiting the
fusion depth, which can be used to mitigate the problem.
As mentioned in Section VI, the exploration of the real world
networks was limited to ten million schedules per segment.
Still the search completed within a maximum of two days
for the selected networks using a fairly unoptimized python
implementation of the models, running with only a single
thread. Since proper training of a neural network typically
takesmuch longer, and selecting the schedule only needs to be
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done once before deployment, this may an acceptable runtime
for many practical cases. Based on the found scheduling
spaces, it also seems unlikely a complete exploration would
yield significantly better schedules.

Nonetheless, for particularly large networks, or when
schedule quality is extremely important, this approach may
not be desired. For those cases two suggestions can be made:

1) BRANCH & BOUND
When an upper and or lower limit for the internalmemory size
is known, a ‘branch and bound’ search strategy can be used
to quickly eliminate large sections of the design space. For
example, if a schedule with a certain tile size does not fit the
available memory, the same schedule with a larger tile sizes
will by extension also not fit. Thus, by placing restrictions on
the memory size, it is possible to quickly eliminate large parts
of the design space.

2) HEURISTICS
If the search space can not be sufficiently limited, it is rec-
ommended to integrate the presented models into a heuris-
tic based search strategy. For example simulated annealing,
genetic algorithms, or a greedy approach with handcrafted
heuristics. Another interesting approach is to use an artifi-
cial intelligence driven search. Since the models are fast to
evaluate, a large training set can be made relatively quickly.

B. TARGETING REAL HARDWARE
The models presented in this work are almost completely
hardware agnostic, as the only assumption made is the pres-
ence of a two level memory hierarchy. Without further adap-
tation this may seem to adversely impact the applicability
of the models to real hardware that supports features such
as burst-transfers, and vectorisation. However, targeting such
hardware can be done easily by restricting the complete
scheduling space as described in Section III. The remainder
of this section discusses how to restrict the space with respect
to burst transfers, vectorisation, and how to extend the models
to multiple memory levels.

1) BURST TRANSFERS
Burst transfers can amortize the addressing and synchronisa-
tion overhead of memory accesses when the data is accessed
in larger consecutive blocks. Without adaptation the schedul-
ing space will include schedules that access only one memory
element per transfer, and accesses consecutive in time may
not at all be consecutive in memory. These schedules may
look promising based on number of transfers and required
memory size, but due to their inability to benefit from burst
transfers may in fact be worse than schedules that did not
seem beneficial. The straightforward method of dealing with
this is to exclude such non-beneficial schedules from the
scheduling space. For example, if data is stored x-major in
memory, then it makes sense to enforce loop xi of Code 2
to be inner to yi and ii. The compute level should then
also be kept above xi, to ensure a chunk with size Tx will

be scheduled for transfer. By limiting Tx to multiplies of the
burst size, it can be ensured that a block of continuous data is
accessed every time.

2) VECTORISATION
Targeting hardware with vectorisation capabilities is identical
to targeting burst transfers. By selecting a loop for vectori-
sation, and limiting the tile size to multiples of the vector
width, only beneficial schedules will be selected. Note that,
depending on the capabilities of the target hardware, vectori-
sation can be orthogonal to optimising for burst transfers. For
burst transfers the data layout in memory matters, while this
restriction may not matter for vectorisation, or a rearrange-
ment of data upon load may be cheap. As such Tx could for
example be limited to match with a memory block size, while
Ty is vectorised. This way multiple hardware features can
potentially be optimised orthogonally. Note that if this is not
possible, it does not mean both can not be addressed. Onmost
architectures one would expect that it is feasible to select a
Tx that matches both with the burst size and the vectorisation
support.

3) MULTI-LEVEL MEMORIES
As the energy evaluation in Section VII demonstrates, the
benefits of fusion are limited by the simple two-level mem-
ory hierarchy, i.e., one internal scratchpad and one external
main memory, captured in the models. In contrast to burst
transfers and vectorisation, handling multi-level memory is
not a matter of limiting the design space. However, it is pos-
sible to extend the models with multiple levels of tiling, and
multiple store/compute levels. If the target memory system is
hierarchical, i.e., each level progressively contains a subset
of the data, then the models can be updated to contain an
explicit copy action. Essentially each layer can be prefixed
with a number of ‘dummy’ layers, which represent the data
of a layer in each memory level. The production of such a
layer is simply defined as a copy from the previous layer.
In the memory hierarchy this copy represents a transfer,
as such these dummy layers will be referred to as transfer
layers. The models can use the available attributes for layer
fusion to fuse all transfer layers into the layer they belong
to. The production of these layers, which represents a data
transfer from one level to another one, can then be taken into
account in the model for different tile sizes. Of course it is
also possible to skip a transfer layer altogether when layer
fusion is used, such that intermediate data does not need to
go through the entire memory system.

C. SCHEDULE SPACE LIMITATIONS
Although the presented models cover a vast design space,
several limitations apply. In particular, only regular convo-
lutional layers with striding are considered since most layers
are of this type. However the models could be extended to
cover different convolutional layers types, such as dense and
depthwise convolution, and recurrent neural network layers.
Dense layers can be modelled as a layer where the kernel
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spans the entire input, i.e., Dm = Dx and Dn = Dy. For
such dense layers it could pay off to also consider tiling of
these kernels. Depthwise layers can be modelled by setting
the number of input and output feature maps to one, i.e.,
Di = Dz = 1, and multiplying the estimates by the number
of original feature maps to compensate. Recurrent layers
are slightly more complicated, since they use neuron states
computed in a previous evaluation. This state could either be
stored entirely in on-chip memory, or it could be transferred
back and forth to external memory. In the latter case, it is
probably possible to partly reuse the models for loading input
data at the first layer in a fused section, and add them to the
cost of an intermediate recurrent layer. The output state of
such a recurrent layer always has to be transferred out, which
potentially could be modelled by applying the output model
to an intermediate recurrent layer.

Furthermore, fusion over skip, or residual, connections
such as present in ResNet for example are not supported by
the developed open source tool. Support could be provided by
adding a binary choice to the network schedule per residual
connection whether it should be stored in external or internal
memory, analogous to the work by Goetschalckx and Ver-
helst [10].

Finally one optimisation not covered by the presented
models is the option to keep part of a layer in internal mem-
ory while transitioning from one fused segment to the next.
This technique is included in the work of Goetschalckx and
Verhelst [10] as part of an optimistic model for schedules
without fusion, but could be applied generically between
fused segments as well. However, the resulting control code
is likely quite complex, as the iteration order of consecutive
segments needs to be reversed between layer transitions. For
practical applications of this optimisation more research is
required.

IX. CONCLUSION
In this work a practical scheduling space of convolution layers
in CNNs has been outlined in Section III, including loop
reordering, tiling, recomputation, and fusion. Generic models
on this design space have been proposed in Section IV for
required external memory accesses, internal buffer space, and
multiply accumulates. An efficient schedule space traversal
method has been described in Section V, and an embodiment
of the proposed models and schedule space traversal method
has been described and published as open source tool [12].
Using this tool the accuracy of the proposed models has been
verified on synthetic networks using instrumented Halide
code [3]. The effects of various scheduling techniques, i.e.,
loop reordering and tiling, layer fusion, and recomputation,
have been evaluated on six real world neural networks in
Section VI. An evaluation of the impact on energy consump-
tion of these techniques has been provided in Section VII.
Results show that the proposed models are accurate, and by
covering both layer fusion and tiling of weights provide addi-
tional Pareto points compared the state of the art. This effect
is most notable in networks which are weight dominated.

To capitalize on the benefits of fused scheduling techniques
multi-level memory appears to be required. Section VIII
discusses how the presented models may be extended to
accurately model multi-level memory. The models presented
in this work are hardware agnostic, and suggestions have
been made in Section VIII on how to limit the scheduling
space to target real hardware that supports burst-accesses and
vectorisation, increasing the applicability of the presented
models.
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