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A B S T R A C T

Transport of scalar quantities such as e.g. heat or chemical species in laminar flows is key to many industrial
activities and stirring of the fluid by flow reorientation is a common way to enhance this process. However,
‘‘How best to stir?’’ remains a major challenge. The present study aims to contribute to existing solutions
by the development of a dedicated flow-control strategy for the fast heating of a cold fluid via a hot
boundary in a representative case study. In-depth analysis of the dynamics of heating in fluid flows serves
as foundation for the control strategy and exposes fluid deformation as the ‘‘thermal actuator’’ via which the
flow affects the heat transfer. This link is non-trivial, though, in that fluid deformation may both enhance
and diminish local heat exchange between fluid parcels and a fundamental ‘‘conflict’’ between local heat
transfer and thermal homogenisation tends to restrict the beneficial impact of flow to short-lived episodes.
Moreover, the impact of fluid deformation on the global fluid heating is primarily confined to the direct
proximity of the moving boundary that drives the flow. These insights imply that incorporation of the
thermal behaviour is essential for effective flow-based enhancement strategies and efficient fluid mixing,
the conventional approach adopted in industry for this purpose, is potentially sub-optimal. The notion that
global heating encompasses two concurrent processes, i.e. increasing energy content (‘‘energising’’) and thermal
homogenisation, yields the relevant metrics for the global dynamics and thus enables formulation of the control
problem as the minimisation of a dedicated cost function. This facilitates step-wise determination of the ‘‘best’’
flow reorientation from predicted future evolutions of actual intermediate states and thereby paves the way to
(real-time) regulation of scalar transport by flow control in practical applications. Performance analyses reveal
that this ‘‘adaptive flow reorientation’’ significantly accelerates the fluid heating throughout the considered
parameter space and thus is superior over conventional periodic schemes (designed for efficient fluid mixing)
both in terms of consistency and effectiveness. The controller in fact breaks with conventions by, first, never
selecting these periodic schemes and, second, achieving the same superior performance for all flow conditions
irrespective of whether said mixing occurs. The controller typically achieves this superiority by thermal plumes
that extend from the hot wall into the cold(er) interior and are driven by two alternating and counter-rotating
circulations.
1. Introduction

Transport of scalar quantities such as e.g. heat or chemical species in
laminar flows is key to many industrial activities ranging from viscous
mixing of polymers and foodstuffs [1,2] via process intensification
and micro-fluidic devices [3–5] to subsurface resource recovery [6–
8] and groundwater remediation [9,10]. Such systems often employ
reorientations of a laminar base flow via the flow forcing (e.g. moving
impellers or alternating pumps) to enhance scalar transport and thus
lean on the intuitive notion that stirring of a fluid benefits this trans-
port. However, design and engineering of such reoriented flows faces a
major challenge, namely ‘‘How best to stir?’’ and, intimately related to
this, ‘‘What defines efficient transport?’’ in a given system.
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E-mail addresses: r.lensvelt@tue.nl (R. Lensvelt), m.f.m.speetjens@tue.nl (M.F.M. Speetjens), h.nijmeijer@tue.nl (H. Nijmeijer).

The conventional approach towards tackling this challenge consists
of assuming that enhanced scalar transport, regardless of the nature
of the problem, is automatic with efficient fluid mixing and utilising
periodic flow reorientations either in space or time to accomplish such
mixing in laminar flows via so-called ‘‘chaotic advection’’ [11–13]. Nu-
merous studies adopt this approach for a variety of configurations and
design strategies ranging from parametric optimisation of activation
times to maximising entropy [4,14–17]. However, a reoriented flow so
designed, even if effectively accomplishing chaotic advection, has im-
portant limitations for enhancing scalar transport. First, it substantially
restricts permissible flow reorientations and thus potentially excludes
more optimal scenarios. Second, it is non-dedicated by discounting the
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actual scalar transport relevant to the system. Third, it lacks robustness
to unforeseen disturbances and changing process conditions. Fourth,
it omits diffusive transport both internally and across non-adiabatic
boundaries.

The above limitations motivated a host of efforts to design and
create flows for enhancing scalar transport by way of optimal con-
trol [18–28]. This overwhelmingly concerns scalar homogenisation in
adiabatic systems and the control strategy essentially consists of a
priori determining the flow (forcing) that maximally accelerates said
homogenisation in terms of an optimality criterion. To this end various
measures for scalar transport have successfully been employed, primar-
ily the mix-norm [17,20,22,24,26,27,29] yet also e.g. stretching rates of
fluid interfaces [18] or the intensity of segregation [28]. Ref. [19] thus
designed a control law for a four-point vortex flow that maximises the
scalar flux across certain fluid interfaces via low-frequency modulation
of the vortex motion. Ref. [29] thus determined the motion of stirrers to
accomplish maximum scalar homogenisation inside a circular domain
using the mix-norm by [30].

However, these control strategies generally concern scalar transport
only by (chaotic) advection and are often restricted to highly-idealised
configurations and/or forcing mechanisms with limited practical rel-
evance. Several studies address the effect of diffusion (characterised
by the well-known Péclet number 𝑃𝑒) by demonstrating that con-
rol laws and measures designed for advective transport (i.e. limit
𝑒 → ∞) may remain effective for finite 𝑃𝑒. Flow forcing optimised

or advective transport in Ref. [22] e.g. proved effective for 𝑃𝑒 ≳
(104) and Ref. [26] e.g. successfully applied the mix-norm down

o 𝑃𝑒 ∼ (103). Furthermore, Ref. [22] introduces some degree of
obustness by performing step-wise optimal control using the inter-
ediate state. However, existing studies nonetheless primarily address

he first and second limitations mentioned above; limited robustness
nd omission of diffusion remain two important shortcomings in most
ptimal-control approaches. Moreover, goals other than homogenisa-
ion such as e.g. enhanced scalar flux across non-adiabatic boundaries
eceive scant attention to date.

The above findings motivate the present study, which aims at
ontributing to the development of dedicated flow-control strategies
or enhancement of advective–diffusive scalar transport in realistic
low systems with non-adiabatic boundaries. To this end the present
tudy adopts heating of an initially cold fluid via an isothermal hot
oundary in the 2D unsteady Rotated Arc Mixer (RAM) according
o [31] as representative case study. Control target is accomplishing
‘fast’’ fluid heating in a robust manner by a control strategy that
tep-wise determines the most effective reorientation of the RAM base
low from predicted future evolutions of the actual intermediate state.
his expands the exploratory study in [32] by, first, foundation of the
ontrol strategy on insights into the dynamics of heating in fluid flows
nd, second, an extensive performance analysis.

The study contributes to existing work in literature in several ways.
irst, it involves advective–diffusive scalar transport including flux
cross a non-adiabatic boundary in a realistic configuration. The RAM
amely is experimentally realisable and admits laboratory studies both
n (chaotic) advection and thermal transport [31,33]. Second, the
ontrol problem is of great (practical) relevance yet, contrary to scalar
omogenisation in adiabatic systems, scarcely investigated. Third, the
ontrol strategy paves the way to (real-time) regulation of scalar trans-
ort in practical applications. This sets the present study apart from
elated studies on realistic boundary-driven flows in [18,28,29]. The
atter namely concern enhancement of scalar homogenisation. More-
ver, Refs. [18,29] again employ optimal control for this purpose;
nly Ref. [28] (to the best of our knowledge) adopts prediction-based
tate-feedback control akin to the present study.

The study is organised as follows. Section 2 introduces the problem
f interest and the general control strategy including the (to this end
elevant) structure of the temperature field in reoriented flows. The
2

ynamics of heating in fluid flows are investigated in Section 3 and
insights thus gained are employed to develop the control strategy in
Section 4. The performance of adaptive flow reorientation is examined
in Section 5 by a computational analysis and reconciled with flow and
thermal physics. Conclusions and recommendations for future work are
presented in Section 6.

2. Scalar transport in reoriented flows

2.1. Flow configuration

The flow configuration of the 2𝐷 unsteady RAM is given in Fig. 1(a)
and consists of a circular container  =

{

(𝑟, 𝜃) ∈ R2|
|

|

𝑟 ≤ 𝑅,−𝜋 ≤ 𝜃 ≤ 𝜋
}

nclosed by a circular boundary 𝛤 = 𝜕 of unit radius 𝑅 (red circle).
he circumference of the RAM contains 𝑁 apertures (black arcs in
ig. 1(a)) with arc length 𝛥 and angular offset 𝛩 = 2𝜋∕𝑁 (i.e. the
enterline of arc 1 ≤ 𝑘 ≤ 𝑁 is located at angle 𝜃𝑘 = (𝑘 − 1)𝛩).
liding wall segments along these apertures (practically realisable by
elts [31]) via viscous drag drive the flow inside the RAM. Activation
f the first arc (i.e. centred on the 𝑥-axis) in clockwise direction at an
ngular velocity 𝛺 thus sets up a steady flow 𝐮1 with streamline pattern
ollowing Fig. 1(b) (left). This constitutes the base flow of the RAM.
he corresponding velocity magnitude |𝐮1| in Fig. 1(b) (right) reveals
hat significant fluid motion is restricted to the direct proximity of the
oving arc (heavy grey segment); the fluid velocity declines rapidly

utside this region. Assumed are an instantaneous fluid response and
egligible inertia, implying that the base flow is a steady Stokes flow
ymmetric about the 𝑥-axis and admitting an analytical solution follow-
ng [34]. These properties have the important consequence that other
ctivations of the arcs result in flows that are direct transformations
f base flow 𝐮1. Reversal of the motion of the first arc simply reverses
he base flow, yielding a flow 𝐮(𝑟, 𝜃) = −𝐮1(𝑟, 𝜃), while maintaining the
treamline portrait following Fig. 1(c). Activation of arc 𝑘 > 1 rotates
he base flow and yields a flow following 𝐮 (𝑟, 𝜃) = 𝐮1 (𝑟, 𝜃 + (𝑘 − 1)𝛩),
esulting in reoriented flows as shown in Fig. 1(d) for 𝑘 = 2 (left) and
= 3 (right) for reorientation angle 𝛩 = 2𝜋∕3.

Systematic reorientation of a base flow by the flow forcing as exem-
lified in Fig. 1 for the RAM can be accomplished in many industrial
pplications by similar wall activations yet also via mechanic stirrers,
lectro-magnetic stirring and an array of (micro-fluidic) body forcings
uch as e.g. electro-osmosis, acoustic streaming or electro-wetting [13].
uch applications belong to the class of ‘‘active mixers’’ – or, more
enerally, active processing devices – that accomplish the reorientation
y active intervention into the system (as opposed to ‘‘passive mixers’’
hat reorient the flow in a passive sense by the internal geometry of the
ystem) [5]. This active nature enables the type of flow control consid-
red in the present study. Moreover, recent studies demonstrated that
ubsurface flows in e.g. enhanced geothermal systems, in situ mining or
roundwater remediation admit similar flow reorientation via unsteady
umping schemes for injection and production wells [8,35]. Thus the
AM indeed captures the essence of a wide range of systems.

.2. Thermal problem and general control strategy

Scalar transport in the RAM is investigated in terms of the heat-
ng of an initially cold fluid at uniform temperature 𝑇0 inside  via
he hot boundary 𝛤 with constant temperature 𝑇∞ > 𝑇0 (red circle
n Fig. 1(a)). The evolution of the corresponding temperature field
(𝐱, 𝑡) is described by the advection–diffusion equation (ADE), which

n non-dimensional form is given by
𝜕𝑇
𝜕𝑡

= −𝐮 ⋅∇∇∇𝑇 −∇∇∇ ⋅ 𝐪 = −𝐮 ⋅∇∇∇𝑇 + 1
𝑃𝑒

∇∇∇2𝑇 , 𝐪 = − 1
𝑃𝑒

∇∇∇𝑇 , (1)

with 𝐮 (𝐱, 𝑡) the unsteady flow, 𝑃𝑒 = 𝑈𝑅∕𝜈 the well-known Pèclet
number (determined by characteristic length and velocity scales 𝑅 and
𝑈 = 𝛺𝑅, respectively, and thermal diffusion 𝜈) and 𝐪 the diffusive heat
flux according to Fourier’s law [31,32]. (Geometry and flow forcing
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Fig. 1. Flow configuration of 2D unsteady RAM: (a) geometry bounded by circular wall of radius 𝑅 containing apertures of arc length 𝛥 = 𝜋∕4 and offset by angle 𝛩; (b) streamline
pattern (left) and magnitude (right) of base flow driven by arc at −𝛥∕2 ≤ 𝜃 ≤ 𝛥∕2; (c) reversed base flow; (d) reorientations of the base flow.
rescale to unit radius 𝑅 = 1 and unit angular velocity 𝛺 = 1,
respectively). The initial and boundary conditions corresponding with
the above heating problem are 𝑇 (𝐱, 0) = 𝑇0 and 𝑇 (𝐱, 𝑡)|𝛤 = 𝑇∞ for
all 𝐱 ∈  and 𝑡 ≥ 0. Thermal problems within the scope of our
study typically have 𝑃𝑒 ∼ (102 − 104), implying advection-dominated
heat transfer yet with significant diffusion. Presence of diffusion has
the important consequence that, regardless of the flow 𝐮, any initial
temperature field 𝑇 (𝐱, 0) always evolves towards the uniform final
state lim𝑡→∞ 𝑇 (𝐱, 𝑡) = 𝑇∞ (Section 3.4). Thus the dynamic behaviour
induced by a particular flow 𝐮 is entirely incorporated in the transient
temperature

𝑇 (𝐱, 𝑡) ≡ 𝑇 (𝐱, 𝑡) − 𝑇∞ (2)

which is governed by the ADE

𝜕𝑇
𝜕𝑡

= −𝐮 ⋅∇∇∇𝑇 + 1
𝑃𝑒

∇∇∇2𝑇 , 𝑇 (𝐱, 0) = 𝑇0 − 𝑇∞, 𝑇 (𝐱, 𝑡)||
|𝛤

= 0. (3)

as readily follows from substitution of (2) into (1). Heating of the fluid
then becomes equivalent to progression of the transient temperature
towards the final state 𝑇∞ = lim𝑡→∞ 𝑇 = 0. Initial and boundary
conditions can be set to 𝑇0 = 0 and 𝑇∞ = 1 hereafter without loss of
generality and thus give 𝑇 (𝐱, 0) = −1 for the initial condition in (3).

The flow 𝐮(𝐱, 𝑡) in (3) plays a crucial role in the evolution of
𝑇 towards 𝑇∞. It is namely well-known that stirring of a fluid has
a major impact on its heating and thereby on the duration of the
transient. However, the central question is: ‘‘How best to stir to obtain
the fastest fluid heating?’’ The RAM (and reoriented flows in general)
aims at achieving optimal stirring in this sense via an unsteady flow 𝐮
generated by switching between steady flows 𝐮𝑢 following

𝐮 (𝐱, 𝑡) = 𝐮𝑢𝑛 (𝐱) (4)

with  = {𝑢0, 𝑢1,… 𝑢𝑛,…} the ‘‘reorientation scheme’’ that activates a
selected flow 𝐮 with reorientation 𝑢 at time step 𝑡 = 𝑛𝜏 (𝑛 ∈ {0, 1,…})
3

𝑢 𝑛
for a time interval 𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛 + 𝜏 of duration 𝜏. The activated flow 𝐮𝑢
can for a RAM with 𝑁 arcs at each 𝑡𝑛 be selected from the set of 2𝑁 +1
flows 𝐮𝑘 defined by transformations of the base flow 𝐮1 according to

𝐮𝑢 (𝐱) =
{

𝑠𝑖𝑔𝑛(𝑢)𝐮1
(

𝑢 (𝐱)
)

𝑢 ≠ 0
𝟎 𝑢 = 0,

(5)

with 𝑢 ∈ {−𝑁,… , 𝑁}. Here operators 𝑢 ∶ (𝑟, 𝜃) → (𝑟, 𝜃 − (|𝑢| − 1)𝛩)
and 𝑠𝑖𝑔𝑛(𝑢) determine rotation and flow direction, respectively, for a
given 𝑢 ≠ 0. For example: 𝑢 = 3 rotates the base flow by angle 2𝛩 by
activation of aperture 𝑢 = 3 in clockwise direction; 𝑢 = −3 in addition
reverses aperture motion and flow; 𝑢 = 0 deactivates the flow and heat
is transferred by diffusion only. Reorientation scheme  = {1,−3, 2}
e.g. subsequently activates apertures (1, 3, 2), each for a duration 𝜏 and
with clockwise (1, 2) and counter-clockwise (3) motion.

Determining the ‘‘best’’ reorientation scheme  to achieve the
control target, i.e. accomplishing the ‘‘fastest’’ fluid heating, is a major
challenge. Existing approaches employ reorientation schemes consist-
ing of ad infinitum periodic repetitions of a fixed sequence such as
e.g.  = {1, 2,… , 𝑁} or sequences determined a priori via optimal
control. However, both approaches have important conceptual short-
comings and current optimal-control schemes are in general dedicated
to homogenisation (Section 1). This limits the suitability of these
approaches for the present control problem. Section 4 resolves this by
a dedicated control strategy that identifies the ‘‘best’’  specifically for
fast fluid heating by step-wise determining the most effective flow re-
orientation from predicted future evolutions of the actual intermediate
state (denoted ‘‘adaptive flow reorientation’’ hereafter). Crucial to this
end is an adequate definition and quantification of what constitutes
‘‘best’’ and ‘‘fastest’’ in the present context. This is to be specified in
Section 4.1.
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2.3. Reorientation of the temperature field

Key for realising a control strategy for advective–diffusive transport
using reorientations of a base flow for actuation is the property that
flow reorientations (4) and (5) carry over to the temperature field. This
hinges on the spectral decomposition of the Perron–Frobenius evolution
operator 𝑡 governing the temperature evolution for the base flow 𝐮1,
given by

𝑇 (𝐱, 𝑡) = 𝑡𝑇 (𝐱, 0) =
∞
∑

𝑚=0
𝛼𝑚𝜙(𝐱)𝑒𝜆𝑚𝑡, 𝑇 (𝐱, 0) =

∞
∑

𝑚=0
𝛼𝑚𝜙(𝐱), (6)

with {𝜙𝑚, 𝜆𝑚} the eigenfunction–eigenvalue pairs defined by the eigen-
value problem

𝑃𝑒−1∇∇∇2𝜙𝑚 − 𝐮1 ⋅∇∇∇𝜙𝑚 = 𝜆𝑚𝜙𝑚, 𝜙𝑚 (𝐱)|𝛤 = 0, (7)

corresponding with the advection–diffusion operator in (1) and 𝛼𝑚 the
expansion coefficients determined by the initial condition [15,31]. The
terms in (6) constitute fundamental dynamic states (commonly denoted
‘‘eigenmodes’’) and are ordered by increasing decay rate according to
⋯ < 𝑅𝑒(𝜆1) < 𝑅𝑒(𝜆0) < 0, where 𝑚 = 0 is the slowest-decaying (or
‘‘dominant’’) mode with characteristic decay time 𝜏0 = −1∕𝑅𝑒(𝜆0).

The spectral decomposition of reoriented flows is governed by
eigenvalue problem (7) upon substitution of 𝐮1 by 𝐮𝑢 following (5) and
directly relates to the base-flow decomposition (6) via

𝑇 (𝐱, 𝑡) =  (𝑢)
𝑡 𝑇 (𝐱, 0) =

∞
∑

𝑚=0
𝛼(𝑢)𝑚 𝜓 (𝑢)

𝑚 (𝐱)𝑒𝜆𝑚𝑡, 𝑇 (𝐱, 0) =
∞
∑

𝑚=0
𝛼(𝑢)𝑚 𝜓 (𝑢)

𝑚 (𝐱), (8)

with  (𝑢)
𝑡 the corresponding Perron–Frobenius operator and

𝜇𝑚 =
{

𝜆𝑚 𝑢 ≠ 0
𝜆0𝑚 𝑢 = 0

, 𝜓 (𝑢)
𝑚 (𝐱) =

{

𝜙𝑚
(

𝑢 (𝐱)
)

𝑢 ≠ 0
𝜙0
𝑚(𝐱) 𝑢 = 0

, (9)

where {𝜙0
𝑚, 𝜆

0
𝑚} are the eigenfunction–eigenvalue pairs for the diffusion-

only case 𝑢 = 0 governed by (7) for deactivated base flow 𝐮1 = 𝟎, and

𝑢 ∶ (𝑟, 𝜃) →
{

𝑢(𝑟, 𝜃) 𝑢 > 0

(

𝑢(𝑟, 𝜃)
)

𝑢 < 0
, (10)

the transformation operator for the eigenfunctions and  ∶ (𝑟, 𝜃) →
(𝑟,−𝜃) a reflection about the symmetry axis 𝜃 = 0 of the base flow.
Thus flow reorientation (and reversal) results in the same reorientation
(and reflection) of the eigenfunction basis 𝜙𝑚 of the base flow while
maintaining the eigenvalue spectrum 𝜆𝑚 and, inherently, the decay
rates. Flow deactivation results in a projection onto to the eigenfunction
basis 𝜙0

𝑚 and corresponding eigenvalues 𝜆0𝑚 of the diffusion-only case.
Spectral decomposition (8) admits direct expression of the evolution

of the transient temperature 𝑇 for any flow reorientation (including
deactivation) in terms of the base-flow decomposition (6) and its
diffusion-only counterpart for 𝐮1 = 𝟎. This facilitates efficient predic-
tion of 𝑇 for arbitrary flow reorientations and is an essential element
for the control strategy proposed in Section 4.

3. Dynamics of heating in fluid flows

A further essential element for the control strategy, besides the re-
orientation property of Section 2.3, is adequately capturing the system
dynamics and in particular the impact of the (base) flow on the heating
process. To this end the dynamics of this process are investigated below.

3.1. Fluid deformation as ‘‘thermal actuator’’

The main reasoning behind the belief that fluid mixing and chaotic
advection automatically enhance heat transfer is that this tends to
expand fluid interfaces and increase scalar gradients via exponential
stretching of fluid parcels and thereby yields faster scalar exchange over
larger areas [13]. Fluid deformation may thus indeed act as a ‘‘thermal
4

actuator’’ yet the underlying mechanisms and resulting behaviour are (
rather delicate and, contrary to said belief, not necessarily conducive
to efficient heat transfer. This is investigated below and leans on the
so-called ‘‘Lagrangian representation’’ of fluid flow and heat transfer
(i.e. relative to the fluid parcels).

3.1.1. Lagrangian dynamics of fluid motion
The Lagrangian representation of fluid motion expresses the Eule-

rian flow field 𝐮 in (1) in terms of the evolution of the current positions
𝐱(𝑡) of fluid parcels released at initial position 𝐱(0) = 𝐱0. This Lagrangian
motion is governed by the kinematic equation
𝑑𝐱(𝑡)
𝑑𝑡

= 𝐮 (𝐱(𝑡), 𝑡) , 𝐱(0) = 𝐱0 ⇒ 𝐱(𝑡) = 𝛷𝛷𝛷𝑡(𝐱0), (11)

ith flow 𝛷𝛷𝛷𝑡 as its formal solution [11]. Relevant in the present
ontext of heat transfer is, besides the displacement of fluid parcels,
n particular also their deformation due to viscous stresses. Classical
ontinuum mechanics describes this deformation in terms of the so-
alled ‘‘Lagrangian coordinates’’, which are defined by the initial parcel
ositions 𝐱0 and via inversion of (11), i.e.

0 = 𝛷𝛷𝛷−1
𝑡 (𝐱). (12)

elate to the Eulerian coordinates 𝐱 [36]. The Eulerian representation
hows the momentary situation at time 𝑡 in fixed positions 𝐱 in physical
pace as actually seen by an observer; the Lagrangian representation
ives this situation relative to the moving fluid parcels (labelled by
nitial positions 𝐱0) and thus enables description of the corresponding
aterial behaviour. Key to this are the deformation gradient tensor and

ight Cauchy–Green deformation tensor, given by

0 = 𝜕𝐱∕𝜕𝐱0 = (∇∇∇0𝐱)†, 𝐶0 = 𝐹 †
0 𝐹0 = 𝜆1𝐯01𝐯

0
1+𝜆2𝐯

0
2𝐯

0
2 = 𝛬−1𝐯01𝐯

0
1+𝛬𝐯

0
2𝐯

0
2,

(13)

espectively, where 𝐹0 describes the motion of initial material line
egments 𝑑𝐱0 in the reference frame co-moving with a parcel released
t 𝐱0 via 𝑑𝐱 = 𝐹0𝑑𝐱0 and 𝐶0 describes its corresponding material
eformation via |𝑑𝐱|2 = 𝑑𝐱† ⋅ 𝑑𝐱 = 𝑑𝐱†0 ⋅𝐶0 ⋅ 𝑑𝐱0 († indicates transpose).
elation (13) gives 𝐶0 in terms of its eigenvalue–eigenvector pairs
𝜆𝑖, 𝐯0𝑖 ) and thus exposes the principal compression axis 𝐯01 (factor 𝜆1 =
−1 < 1) and principal stretching axis 𝐯02 ⟂ 𝐯01 (factor 𝜆2 = 𝛬 > 1)
f the deforming fluid parcel in question. (|𝐶0| = 𝜆1𝜆2 = 1 for the
D flow of an incompressible fluid.) The associated left Cauchy–Green
eformation tensor

0 = 𝐹0𝐹
†
0 = 𝑅0𝐶0𝑅

†
0 = 𝛬−1𝐯1𝐯1 + 𝛬𝐯2𝐯2, 𝐯𝑖 = 𝑅0𝐯0𝑖 , (14)

escribes the material deformation in terms of the principal deforma-
ion axes 𝐯1,2 in current position 𝐱 in the Eulerian frame. These axes are
imply rotations of their companions 𝐯01,2 in the Lagrangian frame by
0 from the well-known polar decomposition 𝐹0 = 𝑅0𝑈0 [36]. Further

elevant tensors are the counterparts of (13) and (14) in the reversed
low 𝐱0 = 𝛷𝛷𝛷−1

𝑡 (𝐱), i.e.

𝐹 = (∇∇∇𝐱0)† = 𝐹−1
0 , 𝐶 = 𝐵−1

0 = 𝛬𝐯1𝐯1 + 𝛬−1𝐯2𝐯2,

𝐵 = 𝐶−1
0 = 𝛬𝐯01𝐯

0
1 + 𝛬

−1𝐯02𝐯
0
2,

(15)

onstituting inverses of the tensors of the forward flow following
11) and revealing that the principal contraction and stretching axes
nterchange. The stretching rate 𝛬 introduced above admits alternative
xpression as the so-called ‘‘Finite-time Lyapunov exponent’’ (FTLE),
.e.

(𝐱0, 𝑡) ≡
log𝛬(𝐱0, 𝑡)

2𝑡
, (16)

hich sets the upper bound for the material stretching rate of parcel
0 in the finite time span up to 𝑡: |𝐱(𝑡)|∕|𝐱0| ≤ exp(𝜎𝑡). Positive FTLEs
i.e. 𝜎 > 0) signify exponential stretching and, if persistent for all 𝑡, are
egarded as ‘‘fingerprints’’ of chaotic advection [11].

Fig. 2(a) illustrates typical Lagrangian dynamics in the base flow 𝐮1

Fig. 1(b)) by the evolution of a fluid element (blue) of initially circular
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Fig. 2. Lagrangian dynamics in base flow: (a) deformation of fluid element (blue) along streamlines (black) versus principal stretching (red) and compression (grey) axes; (b)
quantitative deformation in terms of FTLE following (16); (c) orientation of principal stretching axis relative to streamlines. Left and right dashed lines in time evolutions indicate
entry and exit of arc region, respectively.
shape released at 𝐱0 (cyan dot). This reveals a gradual deformation
into an elliptical shape during its excursion from 𝐱0 to current position
𝐱 (cyan star) via the Lagrangian path (cyan) along the streamlines
(black concentric curves). This deformation ensues from the shear flow
between the streamlines and is dictated by the principal contraction
(𝐯1; grey bar) and stretching (𝐯2; red bar) axes of 𝐵0. Fig. 2(b) gives
the corresponding FTLE (16) and reveals an increase to a maximum
about halfway the high-shear region near the moving arc (entry and
exit demarcated by the dashed lines) that is followed by a sharp decline
upon transiting into the domain interior towards a minimum at around
𝑡 ≈ 3 and a subsequent increase to a moderate level. (Shown time
interval 0 ≤ 𝑡 ≤ 8 corresponds with the travel time of the fluid element
from initial to final position in Fig. 2(a).) FTLE 𝜎 > 0 everywhere
implies an overall net stretching yet with a partial reversal of earlier
deformation in the interval between local maximum and minimum due
to strong and ‘‘unfavourable’’ velocity gradients near the exit of the arc
region (bottom/right dashed line).

The orientation angle 𝜌 of the principal stretching axis 𝐯2 relative
to the streamlines, defined as cos 𝜌 = 𝐯†2𝐮∕|𝐯2||𝐮|, is shown in Fig. 2(c)
and exhibits non-monotonic behaviour consistent with the FTLE: rapid
alignment of 𝐯2 with streamlines (i.e. diminishing 𝜌) within the high-
shear region, followed by rapid misalignment upon exiting this region
and renewed alignment while further migrating into the domain in-
terior. Fluid elements released at other locations exhibit essentially
the same behaviour upon passing through the arc region. Multiple
passages of this region while circulating along closed streamlines results
in progressively weaker fluctuations and eventually causes convergence
on the asymptotic limit lim𝑡→ 𝜌 = 0. This exposes the stream lines as
‘‘attractors’’ for the fluid deformation in the sense that fluid parcels ul-
timately align with these entities. Compare this with unstable manifolds
of hyperbolic points in chaotic flows and their finite-time counterparts
in generic aperiodic flows, viz. attracting LCSs [13].

3.1.2. Lagrangian dynamics of heat transfer
Transformation of the energy balance (3) from Eulerian (𝐱) to La-

grangian (𝐱 ) coordinates via (12) yields the Lagrangian representation
5

0

of heat transfer

𝜕𝑇
𝜕𝑡

= −∇∇∇0 ⋅𝐪0, 𝐪0 = 𝐹𝐪 = −𝐹 1
𝑃𝑒

∇∇∇𝑇 = −𝐹 1
𝑃𝑒

𝐹 †∇∇∇0𝑇 = −𝐵 1
𝑃𝑒

∇∇∇0𝑇 ,

(17)

with 𝐪0 the Lagrangian representation of the diffusive heat flux 𝐪 =
−𝑃𝑒−1∇∇∇𝑇 according to (1) and 𝐵 the left Cauchy–Green tensor of the
reversed flow following (15) [37]. Energy balance (17) describes the
actual heat transfer between a moving fluid parcel at current position
𝐱 = 𝛷𝛷𝛷𝑡(𝐱0) with its neighbouring parcels. This occurs solely via diffusive
flux 𝐪0; the advective term 𝐯 ⋅ ∇∇∇𝑇 in the Eulerian form has vanished
from (17) due to vanishing velocity in the (co-moving) Lagrangian
frame. Relation (17) reveals that the momentary isotropic diffusive flux
𝐪 = −𝑃𝑒−1∇∇∇𝑇 in a fixed position 𝐱 in Eulerian space translates into
a momentary anisotropic diffusive flux 𝐪0, with 𝐵 the corresponding
diffusion tensor, at the fluid parcel passing through 𝐱 and originating
from 𝐱0 = 𝛷𝛷𝛷−1

𝑡 (𝐱). This anisotropy is a direct consequence of fluid
deformation; 𝐵 = 𝐼 for a non-deforming fluid and yields 𝐪0 = 𝐪.

The Lagrangian heat flux 𝐪0 in (17) constitutes the fundamental link
between heat transfer and fluid motion and enables further investiga-
tion of the impact of the latter on the former. Expression in terms of
the principal deformation axes 𝐯1,2 of tensor 𝐵 following (15) yields

𝐪0 = −𝐵 1
𝑃𝑒

∇∇∇0𝑇 = −
[ 𝛬
𝑃𝑒

(𝐯01 ⋅∇∇∇0𝑇 )𝐯01 +
1

𝛬𝑃𝑒
(𝐯02 ⋅∇∇∇0𝑇 )𝐯02

]

, (18)

and reveals that enhancement (by factor 𝛬) and diminution (by factor
𝛬−1) of heat transfer occurs in the principal contraction (𝐯01) and
stretching (𝐯02) directions, respectively, compared to isotropic heat dif-
fusion 𝐪iso0 = −𝑃𝑒−1∇∇∇0𝑇 between non-deforming fluid parcels subject
to the same flow and temperature field [37]. (Symbol † is for brevity
omitted for inner products as in (18).) However, the net effect of
fluid deformation depends on the orientation of the principal axes 𝐯01,2
relative to the temperature gradient ∇∇∇0𝑇 and this may enhance yet also
diminish heat transfer between fluid parcels. This highly non-trivial
process is investigated further in Section 3.2.
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Lagrangian energy balance (17) admits a formal solution according
to

𝑇𝐷(𝐱0, 𝑡) = 𝑇 (𝐱0, 0)+
1
𝑃𝑒 ∫

𝑡

0
∇∇∇0 ⋅

(

𝐵|𝛷𝛷𝛷𝜉 (𝐱0)∇∇∇0𝑇 (𝐱0, 𝜉)
)

𝑑𝜉 ≡ 𝑡[𝐱0]𝑇 (𝐱0, 0),

(19)

with diffusion operator 𝑡 as Lagrangian counterpart to the Perron–
Frobenius operator 𝑡 in (6). This enables representation of simultane-
ous advective–diffusive heat transfer governed by (3) as a composition
of two successive operations: (i) anisotropic diffusion between fluid
parcels at fixed positions 𝐱0 via (19) and (ii) passive redistribution of
fluid parcels to positions 𝐱 = 𝛷𝛷𝛷𝑡(𝐱0), i.e.

𝑇 (𝐱, 𝑡) = 𝑇
(

𝛷𝛷𝛷𝑡(𝐱0), 𝑡
)

= 𝑇𝐷(𝐱0, 𝑡). (20)

which, upon defining an advection operator 𝑇 (𝐱, 𝑡) = 𝑇
(

𝛷𝛷𝛷−1
𝑡 (𝐱), 0

)

≡
𝑡𝑇 (𝐱, 0), translates into

𝑇 (𝐱, 𝑡) = 𝑡𝑡[𝐱]𝑇 (𝐱, 0) = 𝑡
[

𝛷𝛷𝛷−1
𝑡 (𝐱)

]

𝑡𝑇 (𝐱, 0), (21)

as two equivalent formulations in terms of Eulerian evolution operators.
Thus the Perron–Frobenius operator 𝑡 following (6) decomposes into
an advective (𝑡) and diffusive (𝑡) factor following

𝑡 = 𝑡𝑡[𝐱] = 𝑡
[

𝛷𝛷𝛷−1
𝑡 (𝐱)

]

𝑡, (22)

providing a link between the Eulerian and Lagrangian representations
of heat transfer.

Fig. 3 shows the temperature evolution 𝑇 (𝐱, 𝑡) for initial condition
𝑇 (𝐱, 0) = −1 in the Eulerian frame 𝐱 subject to the base flow 𝐮1, with
blue and red indicating min(𝑇 ) = −1 and max(𝑇 ) = 0, respectively.
(This colour coding is used throughout the remainder of this study
unless noted otherwise.) Shown evolution reveals a thermal plume
emanating from the bottom edge of the moving arc and propagating
along the streamlines (bright closed curves) into the domain interior.
The plume thus ‘‘wraps’’ itself around the center of circulation and
creates a hot annular region encircling a cold ‘‘core’’. This behaviour is
a direct consequence of the fluid motion: the material stretching along
streamlines demonstrated in Fig. 2 promotes steepening and flattening
of the temperature gradient transverse and parallel to the streamlines,
respectively. (Recall for reference of the typical fluid displacement
associated with the plume formation that the evolution of the fluid
element in Fig. 2(a) occurs during time interval 0 ≤ 𝑡 ≤ 8, i.e. about
midway between the temperature fields at 𝑡 = 5 and 𝑡 = 10 in Fig. 3.)
Said gradient steepening enhances transverse heat flux in the fluid
heated during passage along the arc and thereby promotes its transverse
thermal homogenisation while propagating and shearing along the
streamlines and thus creates a thermal front (i.e. said plume). The
underlying local mechanisms and corresponding impact on the global
heating dynamics are investigated in Sections 3.2–3.3 and Section 3.5,
respectively.

3.2. Local impact of fluid deformation

Relations (17) and (18) reveal that fluid deformation has a twofold
impact on heat transfer 𝐪0 between fluid parcels:

1. Change in flux density. Consider the heat flux 𝐪0 = 𝑞01𝐯
0
1 + 𝑞

0
2𝐯

0
2

at an undeformed rectangular 𝑑𝑥01 × 𝑑𝑥
0
2 fluid parcel in the Lagrangian

frame and the corresponding heat flux 𝐪 = 𝑞1𝐯1 + 𝑞2𝐯2 at the deformed
rectangular 𝑑𝑥1 × 𝑑𝑥2 fluid parcel in the Eulerian frame. (The normals
of interfaces 𝑑𝑥01,2 coincide with 𝐯02,1 and likewise for 𝑑𝑥1,2 versus 𝐯2,1.)
The net heat exchange across the entire interface is conserved due to
|𝐹0| = |𝐶0| = 1, i.e. 𝑑𝑄 = 𝑑𝑥01𝑞

0
2+𝑑𝑥

0
2𝑞

1
2 = 𝑑𝑥1𝑞2+𝑑𝑥2𝑞2, yet the heat-flux

density at the individual interfaces changes as

𝑞01 =
𝑑𝑥2

0
=
√

𝛬 > 1,
𝑞02 =

𝑑𝑥1
0
= 1

√
< 1, (23)
6

𝑞1 𝑑𝑥2 𝑞2 𝑑𝑥1 𝛬
due to deformation 𝐪 = 𝐹0𝐪0 and 𝑑𝐱 = 𝐹0𝑑𝐱0. Deformation thus
ugments (reduces) the spatial contact area 𝑑𝑥2 (𝑑𝑥1) between fluid
arcels for heat exchange in 𝐯1 (𝐯2) direction, in Eulerian space; for
iven Eulerian heat-flux density 𝐪 this increases (decreases) the heat-
lux density 𝐪0 at fluid interface 𝑑𝑥02 (𝑑𝑥01) in 𝐯01 (𝐯02) direction. The
et effect on the heat exchange between fluid parcels depends on
he relative orientation between heat flux and principal deformation
xes. The extremal cases 𝐪0 = 𝑞1𝐯01 and 𝐪0 = 𝑞2𝐯02 give maximum
ugmentation (|𝐪0|∕|𝐪| =

√

𝛬 > 1) and reduction (|𝐪0|∕|𝐪| = 1∕
√

𝛬 <
1), respectively; generic cases give 1∕

√

𝛬 ≤ |𝐪0|∕|𝐪| ≤
√

𝛬.
2. Change in temperature gradient. A similar analysis for the

temperature gradients ∇∇∇0𝑇 = (𝜕𝑇 ∕𝜕𝑥01)𝐯
0
1 + (𝜕𝑇 ∕𝜕𝑥02)𝐯

0
2 and ∇∇∇𝑇 =

𝜕𝑇 ∕𝜕𝑥1)𝐯1+(𝜕𝑇 ∕𝜕𝑥2)𝐯2 across the rectangular fluid parcels introduced
bove yields

𝜕𝑇
𝜕𝑥1

=
𝑑𝑥01
𝑑𝑥𝑖

𝜕𝑇
𝜕𝑥01

=
√

𝛬 𝜕𝑇
𝜕𝑥01

, 𝜕𝑇
𝜕𝑥2

=
𝑑𝑥02
𝑑𝑥𝑖

𝜕𝑇
𝜕𝑥02

= 1
√

𝛬

𝜕𝑇
𝜕𝑥02

, (24)

due to deformation ∇∇∇𝑇 = 𝐹 †∇∇∇0𝑇 and 𝑑𝐱 = 𝐹0𝑑𝐱0. Deformation in 𝐯1
and 𝐯2 directions thus steepens (i.e. (𝜕𝑇 ∕𝜕𝑥1)∕(𝜕𝑇 ∕𝜕𝑥01) =

√

𝛬 > 1) and
lattens (i.e. (𝜕𝑇 ∕𝜕𝑥2)∕(𝜕𝑇 ∕𝜕𝑥02) = 1∕

√

𝛬 < 1) the temperature gradient,
espectively, in Eulerian space; for given temperature difference 𝑑𝑇
etween fluid parcels this increases (decreases) the gradient-driven
eat-flux density 𝐪 = −𝑃𝑒−1∇∇∇𝑇 in Eulerian space in 𝐯1 (𝐯2) direction.
he net effect depends on the relative orientation between temper-
ture gradient and principal deformation axes. The extremal cases
0𝑇 = (𝜕𝑇 ∕𝜕𝑥01)𝐯

0
1 and ∇∇∇0𝑇 = (𝜕𝑇 ∕𝜕𝑥02)𝐯

0
2 give maximum augmentation

|∇∇∇𝑇 |∕|∇∇∇0𝑇 | =
√

𝛬 > 1) and reduction (|∇∇∇𝑇 |∕|∇∇∇0𝑇 | = 1∕
√

𝛬 < 1),
respectively; generic cases give 1∕

√

𝛬 ≤ |∇∇∇𝑇 |∕|∇∇∇0𝑇 | ≤
√

𝛬.
The anisotropic heat flux 𝐪0 between fluid parcels according to

(17) results from the combined effect of (23) and (24). This yields a
momentary net change in heat-flux density by a factor

𝛽(𝐱0) ≡
|𝐪0|
|𝐪iso0 |

=

√

√

√

√

(∇∇∇0𝑇 )† ⋅ 𝐵2 ⋅ (∇∇∇0𝑇 )

(∇∇∇0𝑇 )† ⋅ (∇∇∇0𝑇 )
, 𝛬(𝐱0)−1 ≤ 𝛽(𝐱0) ≤ 𝛬(𝐱0),

(25)

ompared to isotropic heat transfer 𝐪iso0 = −𝑃𝑒−1∇∇∇0𝑇 between non-
eforming fluid parcels (i.e. 𝐵 = 𝐼) for a given flow and temperature
ield. Relative heat-flux densities 𝛽 > 1 and 𝛽 < 1 signify relative
nhancement and diminution, respectively, of momentary heat transfer
etween neighbouring fluid parcels at position 𝐱0 and time 𝑡. The actual
, similar as before, depends essentially on the relative orientation
etween temperature gradient and principal deformation axes and is
ounded by 𝛽 = 𝛬 > 1 for ∇∇∇0𝑇 = (𝜕𝑇 ∕𝜕𝑥01)𝐯

0
1 and 𝛽 = 1∕𝛬 < 1 for

0𝑇 = (𝜕𝑇 ∕𝜕𝑥02)𝐯
0
2.

Fluid deformation, besides the heat-flux density following (25), also
mpacts the heat-flux direction: 𝛬 > 1 namely increases and decreases
he leading and trailing terms in (18), respectively, and thus pro-
otes alignment of 𝐪0 with the principal contraction axis 𝐯01. This,

n turn, promotes thermal homogenisation in 𝐯01-direction and, inher-
ntly, alignment of the temperature gradient ∇∇∇0𝑇 with the principal
tretching axis 𝐯02. The net result is the emergence of a thermal front
ropagating in 𝐯02-direction as e.g. the thermal plume in Fig. 3. These
ounter-acting mechanisms, viz. enhancement of the 𝐯01-component of
0𝑇 in 𝐪0 versus diminution of this same component by said thermal
omogenisation, suggest a fundamental ‘‘conflict’’ between heat trans-
er and homogenisation in that the latter opposes the former. Angles 𝜚𝑞
nd 𝜚𝑇 defined as

an 𝜚𝑞(𝐱0) ≡
|𝐯02 ⋅ 𝐪0|

|𝐯01 ⋅ 𝐪0|
=

|𝐯02 ⋅∇∇∇0𝑇 |

𝛬2(𝐱0)|𝐯01 ⋅∇∇∇0𝑇 |
, tan 𝜚𝑇 (𝐱0) ≡

|𝐯01 ⋅∇∇∇0𝑇 |

|𝐯02 ⋅∇∇∇0𝑇 |
,

(26)
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Fig. 3. Evolution of transient temperature 𝑇 (𝐱, 𝑡) in Eulerian frame 𝐱 subject to base flow (blue: min(𝑇 ) = −1; red: max(𝑇 ) = 0; closed curves: streamlines).
express the orientation of heat flux and temperature gradient relative
to principal axes 𝐯01 and 𝐯02, respectively, and enable examination of this
process (𝜚𝑞,𝑇 = 0 means coincidence with axes 𝐯01,2).

The analysis below investigates the interplay between fluid defor-
mation and thermal phenomena for three fluid parcels with initial
conditions 𝐱0 (coloured stars) and corresponding trajectories (coloured
curves) shown in Fig. 4(a) relative to the streamline pattern (black
curves) and central stagnation point (black star). Coloured triangles
indicate the final positions at 𝑡 = 10. The red and blue parcels undergo
a single passage of the arc region (defined according to Fig. 2) around
𝑡 ≈ 1 and 𝑡 ≈ 5, respectively; the cyan parcel starts halfway the arc
region and undergoes a second (full) passage around 𝑡 ≈ 7. These
passages are in the time evolutions in Fig. 4(b)–Fig. 4(h) indicated by
colour-coded bars on the time axes. Note that the first (partial) passage
of the cyan parcel and the passage of the red parcel do not overlap.

The FTLEs in Fig. 4(b) reveal a fluid deformation that is qualitatively
similar to Fig. 2(a): peaking of the FTLE upon passage through the
high-shear arc region and a subsequent decline upon entering the
domain interior via the sharply deflecting streamlines at the lower
arc edge. However, intensities and variations depend strongly on the
initial positions. Moreover, peaks progressively weaken with multiple
passages through the arc region, as demonstrated by the only minor
second peak of the cyan parcel around 𝑡 ≈ 7.

The evolution of the temperature 𝑇 (𝐱0, 𝑡) and corresponding gradi-
ent ∇∇∇0𝑇 along the trajectories using the temperature field at 𝑡 = 20
in Fig. 3 as initial condition are shown in Fig. 4(c) and Fig. 4(d),
respectively, and reveal a significant thermal heterogeneity. The impact
of the fluid deformation on heat transfer is shown in Fig. 4(e) in
terms of the momentary change in heat-flux density 𝛽 following (25)
(expressed as ln 𝛽 for greater legibility). This exposes peaks 𝛽 > 1
(ln 𝛽 > 0) that coincide with the FTLE-peaks in Fig. 4(b) and thus
signify momentary heat-transfer enhancement due to passage through
the arc region. (The 𝛽-peak for the cyan parcel corresponds with
the beforementioned second passage of the arc region around 𝑡 ≈
7.) However, the quantitative correlations are non-trivial in that the
weak FTLE-peaks of the blue/cyan parcels yield pronounced 𝛽-peaks
of comparable magnitude while the high FTLE-peak of the red parcel
yields a substantially smaller 𝛽-peak. Moreover, both cyan and red
parcels exhibit significant heat-transfer diminution (𝛽 < 1 or ln 𝛽 <
7

0) during the transition from arc region to flow interior, signifying
an unfavourable orientation of fluid deformation versus temperature
gradient ∇∇∇0𝑇 .

Normalised heat-flux density 𝛽𝛬 ≡ 𝛽∕𝛬 quantifies to what extent
heat-transfer enhancement reaches its (theoretical) ceiling max 𝛽 = 𝛬
following (25) and the corresponding evolutions of this measure are
shown in Fig. 4(f). This reveals short episodes of 𝛽𝛬 close to unity
– signifying maximum beneficial impact of fluid deformation – that
closely correlate with the (first) FTLE-peaks in Fig. 4(b) followed by a
dramatic breakdown. The breakdown in 𝛽𝛬 reflects a sudden reduction
of the impact of fluid deformation on heat transfer and ensues from
the diminution of heat flux 𝐪0 by thermal homogenisation due to the
abovementioned conflict between heat transfer and homogenisation.
Such local thermal homogenisation, once reached, strongly diminishes
the impact of future fluid deformation and thus explains why the
second FTLE peak of the cyan parcel around 𝑡 ≈ 7, in contrast with
the pronounced 𝛽-peak in Fig. 4(e), induces an only weak second peak
in 𝛽𝛬. This has the fundamental implication that significant impact of
fluid deformation on heat transfer and thermal homogenisation is for
a given fluid parcel primarily restricted to the first passage of the arc
region. These phenomena are further examined in Section 3.3.

The dynamics of angles 𝜚𝑞 and 𝜚𝑇 of the heat flux 𝐪0 and tempera-
ture gradient ∇∇∇0𝑇 , respectively, with the principal axes 𝐯01,2 following
(26) substantiate the above findings. Fig. 4(g) gives 𝜚𝑇 and exposes
highly dynamic and non-monotonic behaviour during episodes/peaks
of 𝛽𝛬 close to unity followed by a rapid decline – signifying progressive
alignment of ∇∇∇0𝑇 with principal stretching axis 𝐯02 and, inherently,
thermal homogenisation in 𝐯1-direction – during the breakdown of 𝛽𝛬.
The relative orientation angle 𝜚𝑞 of heat flux 𝐪0 in Fig. 4(h) overall
correlates with 𝛽𝛬 as well in that also here eventually alignment of
this flux with the 𝐯1-direction sets in upon breakdown of 𝛽𝛬. However,
this link is substantially weaker than for 𝜚𝑇 and the strong correlation
between Fig. 4(f) and Fig. 4(g) in fact suggests that said thermal
homogenisation is the prevailing factor in the breakdown of 𝛽𝛬. This
is elaborated in Section 3.3.

A further manifestation of the relatively weaker link of 𝜚𝑞 with 𝛽𝛬
is the emergence of peaks for the red and cyan fluid parcels in Fig. 4(h)
around 𝑡 ≈ 2 that have no immediate counterpart in the evolutions of
𝛽 and 𝜚 in Fig. 4(f) and Fig. 4(g), respectively. These peaks imply
𝛬 𝑇
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Fig. 4. Local heating dynamics due to interplay between fluid deformation and temperature field in base flow: (a) representative fluid trajectories distinguished by red/blue/cyan
(stars indicate initial positions 𝐱0; dots indicate positions 𝐱(𝑡) at time levels 𝑡 = 𝑘𝛥𝑡 for 𝛥𝑡 = 0.1; triangles indicate final positions at 𝑡 = 10) versus streamlines (black); (b-d) FTLE
following (16) and temperature (gradient) of fluid parcels; (e) relative heat-flux density 𝛽 following (25); (f) normalised heat-flux density 𝛽𝛬 = 𝛽∕𝛬; (g) orientation of temperature
gradient with principal stretching axis 𝜚𝑇 following (26); (h) orientation of heat flux with principal compression axis 𝜚𝑞 following (26). Colour-coded bars on time axes indicate
passage of arc region.
(momentary) angles close to the upper bound max(𝜚𝑞) = 𝜋∕2 and
can be attributed to the deformation characteristics upon exiting the
arc region. (The red and cyan fluid parcels leave this region nearly
simultaneously; hence the coinciding peaks.) Fig. 4(b) reveals that
said exit, consistent with Fig. 2(b), results in a substantial decline of
FTLE 𝜎 and, intrinsically, stretching rate 𝛬. This signifies a partial
reversal of earlier deformation accumulated during passage of the arc
region and thus, by virtue of factor 𝛬2 in the expression for 𝜚𝑞 in
(26), a significant reduction in 𝐯1-wise heat-flux amplification and thus
effectively a (short-lived) realignment of the flux with the 𝐯2-direction.
The dramatic drop in 𝜎 for the red fluid parcel at 𝑡 ≈ 2 thus causes the
equally dramatic jump from lower bound min(𝜚𝑞) = 0 to upper bound
max(𝜚𝑞) = 𝜋∕2. The cyan parcel exhibits the same behaviour yet less
pronounced in that the more moderate drop in 𝜎 yields a comparably
modest realignment from 𝜚𝑞 ≈ 𝜋∕4 to 𝜚𝑞 ≈ 𝜋∕2. The evolution of 𝜚𝑞
also for the blue parcel develops a peak beyond the passage of the arc
8

region around 𝑡 ≈ 5 by said mechanism yet this is an only minor effect
due to the far more gradual decline of the FTLE in Fig. 4(b).

3.3. Local breakdown of heat-transfer enhancement

The breakdown of maximum heat-transfer enhancement after the
first FTLE peak demonstrated with the normalised heat-flux density
𝛽𝛬 in Fig. 4(f) ensues from the beforementioned conflict between heat
transfer and homogenisation and signifies a highly non-trivial role
of fluid deformation in the thermal transport. Consider for a generic
analysis the simplified case of a constant FTLE 𝜎 in (16), resulting
in 𝛬(𝑡) = exp(2𝜎𝑡), and temperature gradient ∇∇∇0𝑇 = 𝑐1 exp(−𝜎𝑇 𝑡)𝐯01 +
𝑐2𝐯02, with (𝑐1, 𝑐2) the initial temperature gradient and 𝜎𝑇 > 0 the
thermal-homogenisation rate. Substitution in (18) gives

𝐪 (𝐱 , 𝑡) = − 1 𝑒(2𝜎−𝜎𝑇 )𝑡
[

𝑐 𝐯0 + 𝑐 𝑒(𝜎𝑇 −4𝜎)𝑡𝐯0
]

, (27)
0 0 𝑃𝑒 1 1 2 2
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Fig. 5. Local breakdown of heat-transfer enhancement during transition from 𝛽𝛬 ∼ (1) to 𝛽𝛬 ≪ 1 of normalised heat-flux density 𝛽𝛬 = 𝛽∕𝛬 (solid) versus intermediate state 𝛽∗𝛬
(dashed) for fluid trajectories in Fig. 4(a).
and restricts the thermal-homogenisation rate to 2𝜎 < 𝜎𝑇 < 4𝜎 to
maintain bounded 𝐪0. Through

tan 𝜚𝑞 =
𝑐2
𝑐1
𝑒(𝜎𝑇 −4𝜎)𝑡, tan 𝜚𝑇 =

𝑐1
𝑐2
𝑒−𝜎𝑇 𝑡,

𝛽𝛬 ≡ 𝛽
𝛬

=

√

√

√

√

𝑐21 exp(−2𝜎𝑇 𝑡) + 𝑐
2
2 exp(−8𝜎𝑡)

𝑐21 exp(−2𝜎𝑇 𝑡) + 𝑐
2
2

,
(28)

this indeed yields the conjectured alignment of heat flux and temper-
ature gradient with principal contraction (𝐯01) and stretching (𝐯02) axes,
respectively, i.e. lim𝑡→∞ 𝜚𝑞,𝑇 = 0 and, in consequence,

lim
𝑡→∞

𝐪0(𝐱0, 𝑡) = − 𝛬
𝑃𝑒

(𝐯01 ⋅∇∇∇0𝑇 )𝐯01, lim
𝑡→∞

∇∇∇0𝑇 = (𝐯02 ⋅∇∇∇0𝑇 )𝐯02, (29)

thus demonstrating the generic mechanisms behind said conflict. Rela-
tions ∇∇∇𝑇 = 𝐹∇∇∇0𝑇 = exp(−𝜎𝑡)

[

𝑐1 exp((2𝜎 − 𝜎𝑇 )𝑡)𝐯1 + 𝑐2𝐯2
]

and 2𝜎 − 𝜎𝑇 <
0 imply that the 𝐯01-wise thermal homogenisation in the Lagrangian
frame causes corresponding 𝐯1-wise thermal homogenisation in the
Eulerian frame and, despite the non-zero limit (29) for ∇∇∇0𝑇 , subsequent
full thermal homogenisation lim𝑡→∞∇∇∇𝑇 = 𝟎. This results in rapid
convergence of 𝛽𝛬 on the intermediate state

𝛽𝛬 ≈ 𝛽∗𝛬 ≡

√

√

√

√

𝑐21 exp(−2𝜎𝑇 𝑡)

𝑐21 exp(−2𝜎𝑇 𝑡) + 𝑐
2
2

=
|𝐯01 ⋅∇∇∇0𝑇 |

|∇∇∇0𝑇 |
, (30)

for 𝑡 ≳ (𝜏𝛽 ) and subsequent progression to limit lim𝑡→∞ 𝛽𝛬 = 0. Here

𝜏𝛽 = 1∕2(4𝜎 − 𝜎𝑇 ), (31)

is the characteristic decay time of ratio exp(−𝑡∕𝜏𝛽 ) = exp(−8𝜎𝑡)∕
exp(−2𝜎𝑇 𝑡) between the ‘‘fast’’ and ‘‘slow’’ unsteady terms in 𝛽𝛬. Decay
rate 𝑑𝛽∗𝛬∕𝑑𝑡 = 𝜎𝑇 𝛽∗𝛬(𝛽

∗
𝛬
2 − 1) ≪ 0 due to 𝜎𝑇 ≫ 1 around the first FTLE

peaks and 𝛽∗𝛬 < 1 causes a rapid diminution of 𝛽∗𝛬 and thus explains
the dramatic breakdown from 𝛽𝛬 ∼ (1) to 𝛽𝛬 ≪ 1 in Fig. 4(f) upon
reaching the intermediate state 𝛽∗𝛬 at 𝑡 ∼ (𝜏𝛽 ). Moreover, the similarity
between the generic form of 𝛽∗𝛬 following (30) and angle 𝜚𝑇 following
(26) explains the strong correlation between Fig. 4(f) and Fig. 4(g).
Fig. 5 overlays shown 𝛽𝛬 with the generic form of 𝛽∗𝛬 following (30)
(dashed black curve) and the close agreement beyond the first FTLE
peaks – as well as during the build-up towards these peaks for the red
and blue parcels – indeed substantiates these findings.

The above exposes the local breakdown of heat-transfer enhance-
ment observed in Section 3.2 as generic (and consistent with the
‘‘diffusive relaxation’’ during chaotic advection observed in [37]). This
renders the common belief of efficient heat transfer being automatic
with fluid mixing and chaotic advection fallacious. Fluid deformation
namely plays a dual role by, on the one hand, enhancing heat trans-
fer and thermal homogenisation between/of fluid parcels (provided
favourable orientations with the temperature gradient) yet, on the other
hand, restricting its beneficial impact to short-lived episodes in the
transient. Their specific occurrence, duration and intensity for a given
fluid parcel may vary greatly, though (Fig. 5). However, the local
thermal equilibration of fluid parcels progressively lagging behind with
9

faster fluid deformation strongly suggests that 𝜎𝑇 and, consequently,
𝜏𝛽 tend towards their lower bounds min 𝜎𝑇 = 2𝜎 and min 𝜏𝛽 = 1∕4𝜎,
respectively, with increasing 𝜎. This advances 𝜏𝛽 ≃ (0.3 − 3) as
estimated duration of said episodes for fluid parcels passing through
the high-shear arc region using 𝜎 ≃ (0.1 − 1) from Fig. 2(b). The arc
region is to emerge as dominant for the global behaviour in Section 3.5.

3.4. Global metrics for heating and their general dynamics

Essential for effective control is an adequate description of the
global dynamics associated with the above local behaviour. Key to this
is that the control target, viz. fast heating of the cold fluid towards
the hot equilibrium 𝑇∞ = 0, entails concurrent accomplishment of two
goals: (i) fast increase of the total energy content (denoted ‘‘energising’’
hereafter) and (ii) fast homogenisation of the internal temperature
distribution. Decomposition of the transient temperature as

𝑇 (𝐱, 𝑡) = 𝑇̄ (𝑡) + 𝑇 ′(𝐱, 𝑡), 𝑇̄ (𝑡) = 1
𝐴 ∫

𝑇 (𝐱, 𝑡)𝑑2𝐱,

𝑇 ′(𝐱, 𝑡) ≡ 𝑇 (𝐱, 𝑡) − 𝑇̄ (𝑡),
(32)

with here 𝐴 = 𝜋, isolates the temperature contributions corresponding
with these goals. Average temperature 𝑇̄ (𝑡) = 𝐸(𝑡)∕𝜋 represents the
total energy content 𝐸 of field 𝑇 (here 𝐸 ≤ 0); ‘‘heterogeneity’’ 𝑇 ′(𝐱, 𝑡)
represents the departure of 𝑇 from the momentary homogeneous state
𝑇̄ .

Decomposition (32) exposes the far greater dynamic complexity of
the current heating problem compared to homogenisation problems
commonly considered in literature (Section 1). The latter generically
concern adiabatic domains, implying 𝑇̄ (𝑡) = 0, and thus depend solely
on the single field 𝑇 = 𝑇 ′. Fluid heating, on the other hand, encom-
passes two processes, viz. energising and homogenisation, and relevant
to its dynamics are therefore the total transient field 𝑇 as well as its
individual components 𝑇̄ (𝑡) and 𝑇 ′ according to (32).

The above advances 3 measures for the global dynamic behaviour
of the heating process, viz.

𝐽1(𝑡) ≡
1
𝜋 ∫

𝑇 (𝐱, 𝑡)𝑑2𝐱, 𝐽2(𝑡) ≡
1
𝜋 ∫

𝑇 2(𝐱, 𝑡)𝑑2𝐱,

𝐽3(𝑡) ≡
1
𝜋 ∫

𝑇 ′2(𝐱, 𝑡)𝑑2𝐱,
(33)

with 𝐽1 = 𝑇̄ the normalised energy content of the transient state, 𝐽2
the global departure from equilibrium and 𝐽3 the global heterogeneity.
These measures via (32) and ∫ 𝑇

′(𝐱, 𝑡)𝑑2𝐱 = 0 relate as

𝐽2(𝑡) = 𝐽1
2(𝑡) + 𝐽3(𝑡), (34)

and thus effectively constitute two independent degrees of freedom.
The evolution of 𝐽1 is governed by the integral energy balance

corresponding with (3). Property 𝐮 ⋅∇∇∇𝑇 = ∇∇∇ ⋅ (𝐮𝑇 ) for ∇∇∇ ⋅ 𝐮 = 0 upon
elimination of time derivative 𝜕𝑇 ∕𝜕𝑡 with (3) and application of Gauss’
divergence theorem [38] yields
𝑑𝐽1 = 1 𝜕𝑇 𝑑2𝐱 = − 1 ∇∇∇⋅(𝐮𝑇 +𝐪)𝑑2𝐱 = − 1 (𝐮𝑇 +𝐪)⋅𝐧𝑑𝑠, (35)

𝑑𝑡 𝜋 ∫ 𝜕𝑡 𝜋 ∫ 𝜋 ∫𝛤
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with 𝐪 = −𝑃𝑒−1∇∇∇𝑇 . Here the convective flux 𝐮 ⋅ 𝐧 𝑇 vanishes by virtue
f both the impenetrable boundary (𝐮 ⋅ 𝐧 = 0) and the homogeneous

Dirichlet condition 𝑇 |𝛤 = 0. This reveals that energising effectively
occurs only by the diffusive flux 𝐪 normal to the boundary, i.e.
𝑑𝐽1
𝑑𝑡

= − 1
𝜋 ∫𝛤

𝐪 ⋅ 𝐧𝑑𝑠 = 1
𝜋𝑃𝑒 ∫𝛤

𝐧 ⋅∇∇∇𝑇𝑑𝑠, (36)

nd flow 𝐮 only indirectly affects the heat-flux density and temper-
ture gradient via motion and deformation of fluid parcels by the
echanisms from Section 3.2. The evolution of 𝐽2 is governed by

𝑑𝐽2
𝑑𝑡

= 2
𝜋 ∫

𝐪 ⋅∇∇∇𝑇𝑑2𝐱 = − 2
𝜋𝑃𝑒 ∫

|∇∇∇𝑇 |
2
𝑑2𝐱, (37)

hich follows in a similar way as (36) from the energy Eq. ( Ap-
endix). The evolution of 𝐽3 via relation (34) depends on (36) and (37)
ccording to 𝑑𝐽3∕𝑑𝑡 = 𝑑𝐽2∕𝑑𝑡 − 2𝐽1(𝑑𝐽1∕𝑑𝑡).

Relation (37) via inequality |∇∇∇𝑇 | > 0 in at least one non-zero subset
∈  for any non-uniform 𝑇 implies 𝑑𝐽2∕𝑑𝑡 < 0 and thus a monotonic

decay of measure 𝐽2 from 𝐽2(0) > 0 to lim𝑡→∞ 𝐽2(𝑡) = 0. This is a
consequence of the Second Law of Thermodynamics, which dictates
that diffusive heat flux always acts against the temperature gradient,
i.e. 𝐪 = −𝑃𝑒−1∇∇∇𝑇 , and thereby yields the particular RHS of (37). This
implies that any non-zero transient temperature 𝑇 (𝐱, 𝑡), irrespective of
the flow, always evolves towards the final equilibrium 𝑇∞ = 0 and the
system is intrinsically stable. The decay rate of 𝐽2 depends essentially
on the flow, however. The principal goal of the control strategy in
Section 4 is finding the fastest route towards this equilibrium.

Measure 𝐽3, on the other hand, is inherently non-monotonic due to
identical initial and asymptotic conditions 𝐽3(0) = lim𝑡→∞ 𝐽3(𝑡) = 0
and this constitutes a further essential departure from the beforemen-
tioned homogenisation problems (where 𝐽3 = 𝐽2 implies monotonic
behaviour). Said conditions namely dictate an initial growth of het-
erogeneity (𝑑𝐽3∕𝑑𝑡|𝑡=0 > 0) that through an inevitable 𝐽3(𝑡) > 0 at
intermediate times 𝑡 settles on an eventual decline (𝑑𝐽3∕𝑑𝑡 < 0) towards
the final state. Through relation (34) this in principle admits non-
monotonic evolutions from 𝐽1(0) < 0 to lim𝑡→∞ 𝐽1(𝑡) = 0 for measure
𝐽1 as well. However, here the uniform boundary condition 𝑇 |𝛤 = 0
together with the uniform initial condition 𝑇 (𝐱, 0) = −1 implies 𝑇 (𝐱, 𝑡) ≤
0 for all 𝐱 and 𝑡 and thus 𝜕𝑇 ∕𝜕𝑟|𝛤 > 0 and, in consequence, monotonic
𝑑𝐽1∕𝑑𝑡 > 0.

3.5. Global impact of fluid deformation

The evolution of metrics 𝐽1 and 𝐽2 – and, via relation (34), indirectly
also of 𝐽3 – is determined by (36) and (37), respectively. Lagrangian
coordinates admit, similar as in Section 3.2, investigation of the impact
of fluid flow on these evolutions. Consider to this end said metrics for
a material region with current Eulerian position (𝑡) and its boundary
𝛤 (𝑡), i.e.

𝐽 0
1 (𝑡) =

1
𝜋 ∫0

𝑇 (𝐱0, 𝑡)𝑑2𝐱0, 𝐽 0
2 (𝑡) =

1
𝜋 ∫0

𝑇 2(𝐱0, 𝑡)𝑑2𝐱0, (38)

with 0 and 𝛤0 the corresponding initial (fixed) position in the Eu-
lerian (Lagrangian) frame. The evolutions of (38) are in Lagrangian
coordinates described by

𝑑𝐽 0
1

𝑑𝑡
= − 1

𝜋 ∫𝛤0
𝐪0 ⋅ 𝐧0𝑑𝑠0,

𝑑𝐽 0
2

𝑑𝑡
= 2
𝜋 ∫0

𝐪0 ⋅∇∇∇0𝑇𝑑
2𝐱0 −

2
𝜋 ∫𝛤0

𝑇𝐪0 ⋅ 𝐧0𝑑𝑠0,

(39)

where the boundary integral in 𝑑𝐽 0
2 ∕𝑑𝑡 emerges for generic material

interfaces 𝛤 (𝑡) evolving with the flow. This integral can be omitted in
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the present analysis for reasons explained below.
The impact of the flow on the global dynamics is investigated via
the rates-of-change of the metric evolutions (39), which, upon omitting
said boundary integral, are governed by

𝑑2𝐽 0
1

𝑑𝑡2
= 1
𝜋𝑃𝑒 ∫𝛤0

( 𝜕𝐵
𝜕𝑡

∇∇∇0𝑇
)

⋅ 𝐧0𝑑𝑠0 +
1
𝜋𝑃𝑒 ∫𝛤0

(

𝐵∇∇∇0

(

𝜕𝑇
𝜕𝑡

))

⋅ 𝐧0𝑑𝑠0

𝑑2𝐽 0
2

𝑑𝑡2
= − 2

𝜋𝑃𝑒 ∫0

( 𝜕𝐵
𝜕𝑡

∇∇∇0𝑇
)

⋅∇∇∇0𝑇𝑑
2𝐱0

− 4
𝜋𝑃𝑒 ∫0

(𝐵∇∇∇0𝑇 ) ⋅∇∇∇0

(

𝜕𝑇
𝜕𝑡

)

𝑑2𝐱0, (40)

sing 𝐪0 = −𝑃𝑒−1𝐵∇∇∇0𝑇 . The link with the corresponding behaviours of
lobal metrics 𝐽1 and 𝐽2 in (33) in the Eulerian frame is established via
eading-order approximations of (40). This embarks on considering (i)
n initial material boundary 𝛤0 of circular shape with radius 𝑟0 = 1− 𝜖𝑟
ery close to the circular boundary 𝛤 of radius 𝑟 = 1 (i.e. 𝜖𝑟 ≪ 1) and

(ii) incremental Lagrangian motion from 𝐱(𝑡) to 𝐱(𝑡 + 𝑑𝑡) = 𝐱(𝑡) + 𝑑𝐱 =
𝐱(𝑡) + 𝐮𝑑𝑡. Thus (𝑡) ≈ 0 ≈  and 𝛤 (𝑡) ≈ 𝛤0 ≈ 𝛤 , which via
𝑇 |𝛤 (𝑡) ≈ 𝑇 |𝛤 = 0 indeed to good approximation implies vanishing of
the boundary integral in the evolution of 𝐽 0

2 in (39). The leading-order
approximations of the relevant quantities and variables, i.e. 𝐽 0

1 = 𝐽1 and
𝐽 0
2 = 𝐽2, 𝐹 = 𝐹0 = 𝐼 , 𝐵 = 𝐼 , 𝑑𝐱 = 𝑑𝐱0, 𝐧 = 𝐧0 and 𝑑𝑠 = 𝑑𝑠0, combined

with the rate-of-change 𝜕𝐵∕𝜕𝑡 ≡ 𝐵̇ = −2𝐷 of the left Cauchy–Green
tensor as per [36] subsequently yield
𝑑2𝐽1
𝑑𝑡2

= 1
𝜋𝑃𝑒 ∫𝛤

(𝐵̇∇∇∇𝑇 ) ⋅ 𝐧𝑑𝑠 + 1
𝜋 ∫𝛤

𝐧 ⋅∇∇∇
(

𝜕𝑇
𝜕𝑡

)

𝑑𝑠

𝑑2𝐽2
𝑑𝑡2

= − 2
𝜋𝑃𝑒 ∫

(𝐵̇∇∇∇𝑇 ) ⋅∇∇∇𝑇𝑑2𝐱 − 4
𝜋𝑃𝑒 ∫

∇∇∇𝑇 ⋅∇∇∇
(

𝜕𝑇
𝜕𝑡

)

𝑑2𝐱, (41)

with 𝐷 = 1∕2[∇∇∇𝐮 + (∇∇∇𝐮)†] the strain-rate tensor.
Relations (41) describe the rates-of-change of the metric evolutions

(36) and (37) and via the leading integrals incorporate the momentary
impact of fluid deformation on the heating dynamics for given temper-
ature 𝑇 (𝐱, 𝑡). The corresponding integrands describe the rate-of-change
of integrands 𝑓 ≡ 𝐧 ⋅∇∇∇𝑇 |𝛤 = 𝜕𝑇 ∕𝜕𝑟|𝛤 and 𝑓 ≡ |∇∇∇𝑇 |

2 in (36) and (37),
respectively, via

𝑔̄(𝐱, 𝑡) ≡ 𝑑𝑓
𝑑𝑡

|

|

|

|

|𝑇
= (𝐵̇∇∇∇𝑇 ) ⋅ 𝐧 = 2𝜇

[

(𝐰1 ⋅∇∇∇𝑇 )𝐰1 ⋅ 𝐧 − (𝐰2 ⋅∇∇∇𝑇 )𝐰2 ⋅ 𝐧
]

𝑔(𝐱, 𝑡) ≡ 𝑑𝑓
𝑑𝑡

|

|

|

|

|𝑇
= (𝐵̇∇∇∇𝑇 ) ⋅∇∇∇𝑇 = 2𝜇

[

(𝐰1 ⋅∇∇∇𝑇 )2 − (𝐰2 ⋅∇∇∇𝑇 )2
]

, (42)

with 𝜇 > 0 (−𝜇 < 0) the stretching (contraction) rate along principal
xis 𝐰2 (𝐰1) of tensor 𝐷 = 𝜇𝐰2𝐰2 − 𝜇𝐰1𝐰1. Here the impact of
luid deformation on heat transfer, analogous to (18), again depends
n the relative orientation between principal deformation axes and
emperature gradient. The qualitative global impact is determined by
he sign of the leading integrals in (41):

• 𝑮̄(𝑡) ≡ ∫𝜞 𝒈̄(𝒙, 𝒕)𝒅𝒔 > 𝟎 momentarily accelerates the growth from
𝐽1 < 0 to lim𝑡→∞ 𝐽1(𝑡) = 0 compared to a non-deforming fluid
(i.e. 𝑑2𝐽1∕𝑑𝑡2|𝜇>0 > 𝑑2𝐽1∕𝑑𝑡2|𝜇=0) and thus accomplishes faster
energising. Conversely, 𝐺̄(𝑡) < 0 delays global energising.

• 𝑮̃(𝒕) ≡ ∫ 𝒈̃(𝒙, 𝒕)𝒅2𝒙 > 𝟎 momentarily accelerates the decay from
𝐽2 > 0 to lim𝑡→∞ 𝐽2(𝑡) = 0 compared to a non-deforming fluid
(i.e. 𝑑2𝐽2∕𝑑𝑡2|𝜇>0 < 𝑑2𝐽2∕𝑑𝑡2|𝜇=0) and thus accomplishes faster
equilibration. Conversely, 𝐺(𝑡) < 0 delays global equilibration.

ntegrals 𝐺̄(𝑡) and 𝐺(𝑡) incorporate the net impact on global energising
nd equilibration, respectively, by local enhancement (i.e. 𝑔̄(𝐱, 𝑡) > 0
nd 𝑔(𝐱, 𝑡) > 0) or diminution (i.e. 𝑔̄(𝐱, 𝑡) < 0 and 𝑔(𝐱, 𝑡) < 0).
owever, the local contributions to the global behaviour may, consis-

ent with Fig. 4, vary significantly. This admits investigation via the
orresponding relative change rates

𝛽 ≡ 𝑔̄
𝑓

= 𝐞†𝑟 ⋅ 𝐵̇ ⋅ 𝐞𝑟 = −2𝐞†𝑟 ⋅𝐷 ⋅ 𝐞𝑟 = −2
𝜕𝑢𝑟
𝜕𝑟
,

𝛽 ≡ 𝑔
= 𝐞†𝑇 ⋅ 𝐵̇ ⋅ 𝐞𝑇 = −2𝐞†𝑇 ⋅𝐷 ⋅ 𝐞𝑇 ,

(43)
𝑓
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Fig. 6. Impact of fluid deformation on energising for temperature at 𝑡 = 20 in Fig. 3: (a) relative change rate 𝛽 = 𝑔̄∕𝑓 on circle 𝑟0 = 0.99 (blue) including limit on 𝑟 = 1 (red) and
bounds (cyan); (b) wall temperature gradient 𝑓 = 𝜕𝑇 ∕𝜕𝑟|𝛤 (blue) including average (blue dashed) and diffusive limit (red dashed); (c) change rate 𝑔̄ at 𝑟0 = 0.99 (blue). Vertical
dashed lines indicate leading (𝜃 = 𝛥∕2) and trailing (𝜃 = −𝛥∕2) arc edges.
with 𝐞𝑇 = ∇∇∇𝑇 ∕|∇∇∇𝑇 |, and constitute Eulerian counterparts to 𝛽 following
(25). Here 𝛽 follows from uniformity of the wall temperature, which
implies ∇𝑇∇𝑇∇𝑇 = (𝜕𝑇 ∕𝜕𝑟)𝐞𝑟 at boundary 𝛤 and to leading-order approx-
imation on the beforementioned circles 𝛤0. This furthermore implies
𝐞𝑇 = 𝐞𝑟 and thus 𝛽 = 𝛽 at 𝛤 . Moreover, both measures are bounded as
−2𝜇 ≤ 𝛽 ≤ 2𝜇 and −2𝜇 ≤ 𝛽 ≤ 2𝜇.

Incompressibility ∇∇∇ ⋅ 𝐮 = 0 yields 𝜕𝑢𝑟∕𝜕𝑟 = −𝑟−1𝜕𝑢𝜃∕𝜕𝜃 and via (43)
links the energising dynamics to the boundary velocity 𝐮1|𝛤 = 𝑢𝜃𝐞𝜃 .
Through 𝑢𝜃 = 𝐻(𝜃 − 𝛥∕2) − 𝐻(𝜃 + 𝛥∕2) this gives 𝛽 = 2𝛿(𝜃 − 𝛥∕2) −
2𝛿(𝜃 + 𝛥∕2) as singular limit for 𝛽 on 𝛤 , with 𝐻 and 𝛿 the well-known
Heaviside and Dirac functions, respectively. This, in turn, yields

𝐺̄(𝑡) = 𝑟0 ∫

2𝜋

0
𝛽(𝜃; 𝑟0)

𝜕𝑇
𝜕𝑟
𝑑𝜃

𝑟0=1= 2

{

𝜕𝑇
𝜕𝑟

|

|

|

|

|𝜃=𝛥∕2
− 𝜕𝑇

𝜕𝑟

|

|

|

|

|𝜃=−𝛥∕2

}

, (44)

as leading-order approximation for integral 𝐺̄ on said 𝛤0 and its corre-
sponding limit on 𝛤 . Fig. 6(a) shows 𝛽 for 𝑟0 = 0.99 (blue) including its
limit (red) and bounds (cyan) and reveals that significant contributions
to 𝐺̄ are indeed restricted to the direct proximity of the arc edges 𝜃 =
±𝛥∕2 (dashed lines). The rapid material stretching along streamlines
and subsequent relaxation near arc edges 𝜃 = 𝛥∕2 and 𝜃 = −𝛥∕2, respec-
tively, demonstrated in Fig. 2 causes a relative steepening (flattening)
of wall temperature gradient 𝑓 = 𝜕𝑇 ∕𝜕𝑟|𝛤 – or equivalently, a local
rate of change 𝛽 > 0 (𝛽 < 0) – near former (latter) arc edge by the
mechanism according to Section 3.2. This implies

0 < 𝜕𝑇
𝜕𝑟

|

|

|

|

|𝜃=−𝛥∕2,𝑡>0
< 𝜕𝑇

𝜕𝑟

|

|

|

|

|𝛤 ,𝑡=0
< 𝜕𝑇

𝜕𝑟

|

|

|

|

|𝜃=𝛥∕2,𝑡>0
, (45)

due to the uniform initial gradient 𝜕𝑇 ∕𝜕𝑟|𝛤 ,𝑡=0 > 0 for the initial/
boundary conditions in (3) and via (44) thus always accelerates en-
ergising (𝐺̄ > 0). This behaviour is demonstrated in Fig. 6(b) by
𝜕𝑇 ∕𝜕𝑟|𝛤 (blue curve) and corresponding integrand 𝑔̄ in Fig. 6(c) for
the temperature field at 𝑡 = 20 in Fig. 3 and, in accordance with 𝐺̄ > 0,
yields an average temperature gradient (blue dashed line in Fig. 6(b))
and associated boundary heat flux that is significantly larger than the
diffusive limit (red dashed line). However, consistent with the local
behaviour exposed in Section 3.2, unfavourable orientations of fluid
deformation versus temperature gradient may via (44) also cause 𝐺̄ < 0
and thus (temporary) diminution of global energising.

Global equilibration shows similar characteristics due to the fact
that significant fluid deformation within the interior also concentrates
primarily around the arc edges. Fig. 7(a) demonstrates this by the
stretching rate 𝜇 (shown as 𝜇log = log10(𝜇∕max𝜇) to enhance con-
trast) and reveals a rapid decay from its peaks near said edges by
several orders of magnitude within a confined boundary region. Typical
corresponding magnitudes of 𝛽 are shown in Fig. 7(b) for 𝑡 = 20
and 𝑡 = 50 and Fig. 7(c) distinguishes subregions of different impact
levels using 𝛽rel ≡ 𝛽∕max |𝛽| and thresholds (𝜖1, 𝜖2) = (5 × 10−3, 5 ×
10−2): strong enhancement (𝛽 ≥ 𝜖 ; red) versus strong diminution
11

rel 2
(𝛽rel ≤ −𝜖2; blue); moderate enhancement (𝜖1 ≤ 𝛽rel < 𝜖2; yellow)
versus moderate diminution (−𝜖2 < 𝛽rel ≤ −𝜖1; cyan); insignificant
(|𝛽rel| < 𝜖1; green). (Regions 𝛽 > 0 and 𝛽 < 0 correspond with
local enhancement and diminution, respectively, of equilibration due to
𝑓 > 0 and thus fully capture the equilibration dynamics.) This reveals
that the confinement of significant fluid deformation to the arc region
carries over to its impact on the equilibration dynamics. The red/blue
regions in Fig. 7(c) with the strongest enhancement/diminution of
equilibration remain largely stationary and closely correlate with 𝜇.
Significant temporal changes in 𝛽 occur mainly in the yellow/cyan
regions and for the present temperature field manifest themselves in
the diminishing banana-shaped region emerging from arc edge 𝜃 = 𝛥∕2.
However, their intensity is 1-2 orders of magnitude smaller compared
to the arc region and thus of secondary importance only.

The relative rate of change 𝛽 for a reorientation of the temperature
field at 𝑡 = 20 following Fig. 7(d) is shown in Fig. 7(e) and exposes
high-impact regions (red/blue) at the arc edges that are basically
reorientations of their base-flow counterparts in Fig. 7(b) – and thus
(nearly) independent of the momentary 𝑇 – coexisting with interior
regions (yellow/cyan) that depend significantly on 𝑇 yet have an only
moderate impact. This behaviour is typical of any reorientation and
diminishes the (potential) impact of internal fluid mixing and chaotic
advection, thereby further eroding the beforementioned common belief
of an invariably beneficial role of these conditions.

The rapid alignment of isothermals with streamlines in the arc
region (Fig. 3) suggests that 𝛽 here approximately behaves as 𝛽∗ =
−2𝐞†𝑢 ⋅ 𝐷 ⋅ 𝐞𝑢, with 𝐞𝑢 = (𝑢𝑦,−𝑢𝑥)∕|𝐮1| the normal to the streamlines.
(Property 𝐞𝑢|𝛤 = 𝐞𝑟|𝛤 ensures consistency with the previous relation
𝛽|𝛤 = 𝛽|𝛤 .) Fig. 7(f) gives the magnitude of 𝛽∗ (left) and corresponding
partition by impact levels (right). This indeed reveals a close agreement
of the approximated strong-impact regions (red/blue) with their actual
counterparts in Figs. 7(c) and 7(d); deviations are restricted to the
moderate-impact regions (yellow/cyan). Thus 𝐺 to good approximation
collapses on a form akin to (44), i.e.

𝐺(𝑡) ≈ ∫(𝑟,𝜃)∈+
𝛽∗(𝑟, 𝜃)

[

|∇∇∇𝑇 |
2
(𝑟,𝜃) − |∇∇∇𝑇 |

2
(𝑟,−𝜃)

]

𝑟𝑑𝑟𝑑𝜃 (46)

with + the strong-enhancement region (red) in Fig. 7(f) (right) and
using the anti-symmetry 𝛽∗(𝑟, 𝜃) = −𝛽∗(𝑟,−𝜃) about the centerline
𝜃 = 0 of the arc. Similar reasoning as that underlying (45) gives
0 < |∇∇∇𝑇 |

2
(𝑟,−𝜃),𝑡>0 < |∇∇∇𝑇 |

2
(𝑟,±𝜃),𝑡=0 < |∇∇∇𝑇 |

2
(𝑟,𝜃),𝑡>0 and in conjunction with

𝛽∗|+ > 0 implies 𝐺 > 0. So fluid deformation for (at least) base
flow 𝐮1 and given initial/boundary conditions in (3) always accelerates,
besides energising, also equilibration. However, unfavourable reorien-
tations may, as before, also cause (temporary) diminution of global
equilibration (𝐺 < 0).
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Fig. 7. Impact of fluid deformation on equilibration: (a) stretching rate 𝜇 of fluid parcels expressed as 𝜇log = log10(𝜇∕max𝜇); (b) relative change rate 𝛽 = 𝑔∕𝑓 expressed as
𝛽log = log10(|𝛽|∕max |𝛽|); (c) partition of 𝛽 via 𝛽rel ≡ 𝛽∕max |𝛽| into regions with strong enhancement (𝛽rel ≥ 𝜖2; red) versus strong diminution (𝛽rel ≤ −𝜖2; blue), moderate
enhancement (𝜖1 ≤ 𝛽rel < 𝜖2; yellow) versus moderate diminution (−𝜖2 < 𝛽rel ≤ −𝜖1; cyan) and insignificant impact (|𝛽rel| < 𝜖1; green) using thresholds (𝜖1 , 𝜖2) = (5 × 10−3 , 5 × 10−2);
(d) reoriented 𝑇 at 𝑡 = 20; (e) 𝛽log for reoriented 𝑇 ; (f) approximation 𝛽∗ expressed as 𝛽∗log = log10(|𝛽∗|∕max |𝛽∗|).
4. Adaptive flow reorientation

4.1. Control strategy revisited

Section 3 reveals that the impact of flow on thermal transport is
highly non-trivial and depends essentially on the interplay between
fluid deformation and temperature field. This may benefit as well
as deteriorate said transport and thus conclusively demonstrates that
efficient fluid mixing by chaotic advection does not imply enhanced
thermal performance. Decomposition (22) of the Perron–Frobenius op-
erator 𝑡 clearly illustrates this: the temperature evolution depends on
12

factors 𝑡 (advection) and 𝑡 (diffusion) yet mixing/advection-based
optimisation effectively omits 𝑡. Moreover, significant impact of fluid
deformation is restricted to the active arc region (Figs. 6 and 7) and
the underlying processes become exponentially complex and intractable
with consecutive flow reorientations. These issues render (i) optimisa-
tion of heat transfer based solely on mixing/advection characteristics
inefficient and potentially ineffective and (ii) control strategies based
directly on fundamental thermal mechanisms as exposed in Sections 3.1
and 3.2 impractical.

The global metrics for heating defined in Section 3.4 incorporate
the global impact of the flow (Section 3.5) and thus offer a workable
alternative to determine the ‘‘best’’ reorientation scheme  in the

general control strategy in Section 2.2. Such metrics namely admit its
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Fig. 8. Schematic of control loop for adaptive flow reorientation in the RAM.
formulation as the minimisation of a cost function 𝐽 (𝑡) from 𝐽 (0) > 0
to 𝐽 (𝑡𝜖) ≤ 𝜖 in the shortest possible time 𝑡𝜖 > 0, with 𝜖 > 0 a preset
tolerance. The control action consists of step-wise activating flow 𝐮𝑢𝑘
in (4) at 𝑡𝑛 that minimises 𝐽 for the finite horizon 𝑡𝑛+1 = 𝑡𝑛 + 𝜏, i.e.

argmin
𝑘
𝐽𝑘

(

𝑡𝑛+1
)

, 𝐽𝑘(𝑡) ≡ 𝐽
(

𝑇𝑘(𝐱, 𝑡)
)

,

𝑇𝑘(𝐱, 𝑡) ≡ 𝑇 (𝐱, 𝑡;𝐮𝑢𝑘 (𝐱), 𝑇 (𝐱, 𝑡𝑛)),
(47)

from predicted future states 𝑇𝑘(𝐱, 𝑡𝑛+1) of the momentary temperature
𝑇 (𝐱, 𝑡𝑛). The schematic in Fig. 8 shows this control loop, which, by rely-
ing on (real-time) feedback from the actual state at 𝑡𝑛 and its evolution,
enables control that is robustness to disturbances accumulated up to 𝑡𝑛.

Critical for an effective controller is an adequate cost function 𝐽
in (47). The dynamics of global metrics (33) (Section 3.4) advance
metric 𝐽2 as the most suitable candidate, i.e. 𝐽 ≡ 𝐽2, for the following
reasons. First, 𝐽2 incorporates both energising (represented by 𝐽1)
and homogenisation (represented by 𝐽3) by virtue of relation (34)
and thus accounts for the two fundamental processes in the heating
process. Second, the fundamental conflict between heat transfer and
homogenisation (Section 3.2) precludes an overall effective controller
based on either 𝐽1 (energising) or 𝐽3 (homogenisation). Third, the
invariably monotonic decay of 𝐽2 dictated by (37) ensures convergence
and regularity of the minimisation procedure (47). The inherently
(potentially) non-monotonic behaviour of 𝐽3 (𝐽1), on the other hand,
may compromise this procedure.

The above effectively yields the step-wise optimal control adopted
in [32] including metric 𝐽2 as cost function. However, the study in [32]
thus followed standard practice in control theory by using the well-
known L2-norm of state 𝑇 (identifying with 𝐽2) [39]. The present study
provides the hitherto missing scientific support for adopting 𝐽2 as cost
function in the current thermal context. The practical control action
involves repetition of the following steps at time levels 𝑡𝑛:

Step 1 Predict future temperature 𝑇𝑘(𝐱, 𝑡𝑛+1) from 𝑇
(

𝐱, 𝑡𝑛
)

for
each flow 𝐮𝑢𝑘 .
Step 2 Select flow 𝐮𝑢𝑘 (𝐱) that minimises cost function 𝐽 = 𝐽2
according to (47).
Step 3 Activate the selected aperture 𝑘 for time interval 𝑡𝑛 ≤ 𝑡 ≤
𝑡𝑛+1.

This procedure is terminated at time level 𝑡𝑛+1 for which 𝐽𝑛+1 =
𝐽 (𝑡𝑛+1) < 𝜖. The corresponding transient time 𝑡𝜖 , defined as 𝐽 (𝑡𝜖) = 𝜖,
is interpolated via 𝑡𝜖 = 𝑡𝑛 + 𝜏(𝐽𝑛 − 𝜖)∕(𝐽𝑛 − 𝐽𝑛+1). Prediction using the
actual intermediate state 𝑇

(

𝐱, 𝑡𝑛
)

provides robustness to disturbances
accumulated up to 𝑡𝑛 and this positions the control strategy within the
realm of Model Predictive Control (MPC) [40]. A difference compared
to common MPC is that here the prediction horizon coincides with the
duration of the control action (prediction horizons usually are far ahead
into the future). A strong point is that the current strategy involves
the full spatio-temporal state described by the conservation laws (MPC
of thermo-fluidic systems usually concerns global behaviour of bulk
quantities described by integral models [41]).
13
Moreover, cost functions 𝐽 in (47), instead of solely including
the state 𝑇 in the current 𝐽 = 𝐽2, generically also account for the
effort required to execute the control action [40,41]. In the RAM this
consists of the energy consumption 𝐸(𝑡) for driving the arcs. However,
given reorientation schemes U here always concern step-wise activation
of a single arc at constant speed, said energy consumption for any
 always increases linearly in time following 𝐸(𝑡) = 𝑊 𝑡, with 𝑊
the constant power consumption by the flow forcing. Hence 𝐸(𝑡) is
irrelevant for the minimisation procedure (47) and reaching the con-
trol target (i.e. the minimum transient time 𝑡𝜖) automatically yields
the minimum energy consumption in the present approach. Advanced
control strategies involving e.g. simultaneous activations of multiple
arcs at variable speeds, on the other hand, result in energy consumption
that depends explicitly on the activation scheme and must therefore
generically be taken into account through cost function 𝐽 for an overall
optimal performance.

4.2. Compact model for fast predictions

Essential for a useful controller is sufficiently fast prediction of the
2𝑁 + 1 future states 𝑇𝑘(𝐱, 𝑡𝑛+1) in (47) at each 𝑡𝑛 with an acceptable
computational effort. Backbone for this fast predictor is the property
that spectral decomposition (8) for the temperature evolution in the re-
oriented flow 𝐯𝑢 is a linear transformation from spectral decomposition
(6) of the base flow following (9). This enables a fact predictor via the
numerical approximation of Perron–Frobenius operator 𝑡 in (6) and
embarks on spatial discretisation of ADE (3) for 𝐯 = 𝐯1, i.e.

𝑑𝐓̃ (𝑡)
𝑑𝑡

= 𝐀𝐓̃ (𝑡) , (48)

with 𝐓̃ (𝑡) = [𝑇
(

𝐱0, 𝑡
)

,… , 𝑇
(

𝐱𝑀 , 𝑡
)

]† the temperatures in the nodes
of the computational grid 𝐗 = [𝐱0,… , 𝐱𝑀 ]† and system matrix 𝐀
the discrete approximation of the advection–diffusion operator. Steady
base flow 𝐮1 implies a constant 𝐀 and thus admits

𝐓̃ (𝑡) = 𝐏𝑡𝐓̃0 =
𝑀
∑

𝑚=0
𝛼𝑚𝜙𝜙𝜙𝑚𝑒

𝜆𝑚𝑡, 𝛼𝛼𝛼 = 𝐕−1𝐓̃0, 𝐏𝑡 = 𝐕𝑒𝛬𝛬𝛬1𝑡𝐕−1, (49)

as semi-analytical solution for (48) using the spectral decomposition
𝐀 = 𝐕𝛬𝛬𝛬𝐕−1, with 𝐕 = [𝜙𝜙𝜙0,… ,𝜙𝜙𝜙𝑀 ] and 𝛬𝛬𝛬 = diag(𝜆0,… , 𝜆𝑀 ) the
eigenvector and eigenvalue matrices, respectively.

Relation (49) constitutes the discrete approximation of spectral de-
composition (6) of the Perron–Frobenius operator 𝑡. The reorientation
property of the continuous system following Section 2.3 carries over to
its discrete approximation and yields

𝐓̃ (𝑡) = 𝐏(𝑢)
𝑡 𝐓̃0 =

𝑀
∑

𝑚=0
𝛼(𝑢)𝑚 𝜓𝜓𝜓

(𝑢)
𝑚 𝑒

𝜇𝑚𝑡, 𝛼𝛼𝛼(𝑢) = 𝐕−1
𝑢 𝐓̃0, 𝐏(𝑢)

𝑡 = 𝐕𝑢𝑒𝛺𝛺𝛺𝑢𝑡𝐕−1
𝑢 ,

(50)

as discrete approximation of (8). Eigenvalues𝛺𝛺𝛺𝑢 = diag(𝜇0,… , 𝜇𝑀 ) and
eigenvectors 𝐕 = [𝜓𝜓𝜓 (𝑢),… ,𝜓𝜓𝜓 (𝑢)] are following (9) given by (𝛺𝛺𝛺 ,𝐕 ) =
𝑢 0 𝑀 𝑢 𝑢
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Fig. 9. Performance of minimisation procedure and FVM-based predictor for RAM with three apertures (𝑁 = 3) at (𝑃𝑒, 𝜏) = (500, 5): (a) reference temperature 𝑇 (𝐱, 𝑡) simulated
by spectral method; (b) adaptive reorientation scheme  = {𝑢0 , 𝑢1 ,…} accomplishing switching between reorientations 𝑢𝑛 of the base flow following (4) at time levels 𝑡𝑛 = 𝑛𝜏 for
spectral versus FVM-based method; (c) cost function 𝐽 for spectral versus FVM-based method.
(𝛬𝛬𝛬,𝐆𝑢𝐕) and (𝛺𝛺𝛺𝑢,𝐕𝑢) = (𝛬𝛬𝛬0,𝐕0) for 𝑢 ≠ 0 and 𝑢 = 0, respectively.
The reorientation operator is following (10) composed of the discrete
rotation (𝐑𝑢) and reflection (𝐒) operators: 𝐆𝑢 = 𝐑𝑢 for 𝑢 > 0 and
𝐆𝑢 = 𝐒𝐑𝑢 for 𝑢 < 0.

The above discrete approximation translates the evolution and
reorientation into standard matrix–vector multiplications using pre-
constructed system matrices and thus tremendously reduces the com-
putational effort compared to a conventional time-marching scheme
for (48) and its counterpart for reoriented flows. Further substantial
reduction relies on the exponential decay with characteristic time scale
𝜏𝑚 = −1∕𝑅𝑒(𝜇𝑚) of the individual modes 𝑚 in (50). This renders
contributions by modes 𝑚 for which 𝜏𝑚∕𝜏 ≪ 1 insignificant and admits
close approximation of the temperature evolution by a truncation of
expansion (50) at 𝑄 ≪𝑀 , i.e.

𝐓̃(𝑡) ≈ 𝐓̂(𝑡) ≡ 𝐏̂(𝑢)
𝑡 𝐓̃0 =

𝑄
∑

𝑚=0
𝛼(𝑢)𝑚 𝜓𝜓𝜓

(𝑢)
𝑚 exp(𝜇𝑚𝑡), 𝛼𝛼𝛼(𝑢) = 𝐕̂∗

𝑢𝐓̃0,

𝐏̂(𝑢)
𝑡 = 𝐕̂𝑢𝑒𝛺̂𝛺𝛺𝑢𝑡𝐕̂∗

𝑢 ,

(51)

with 𝐕̂∗
𝑢 the Moore–Penrose inverse of the reduced eigenvector basis

𝐕̂𝑢 = [𝜓𝜓𝜓 (𝑢)
0 ,… ,𝜓𝜓𝜓 (𝑢)

𝑄 ].
The total reduction in computational effort afforded by compact

model (51) amounts to 3-4 orders of magnitude compared to conven-
tional time-marching of (48) [32]. Moreover, system matrix 𝐀 can be
constructed from any spatial discretisation method including e.g. FEM
and FVM (and even directly exported from some commercial CFD
packages) and decomposed by linear-algebra tools as e.g. MATLAB.
Thus the compact model enables the fast temperature predictions nec-
essary to make the control strategy in Section 4.1 viable for practical
applications.

5. Computational performance analysis

5.1. Performance of minimisation procedure and predictor

The general performance and robustness of the minimisation pro-
cedure (47) and the compact model (50) are investigated for a typical
RAM consisting of 𝑁 = 3 apertures at 𝑃𝑒 = 500 and 𝜏 = 5 and involves
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the following steps. First, simulation of both the actual temperature
evolution 𝑇 (𝐱, 𝑡) and the step-wise predictions 𝑇𝑘(𝐱, 𝑡) by full resolution
of ADE (3) using the dedicated spectral scheme for the RAM of [15].
This serves as reference for the performance analysis. Second, simula-
tion of 𝑇 (𝐱, 𝑡) by full resolution of ADE (3) using a conventional FVM
scheme [42] and predictions 𝑇𝑘(𝐱, 𝑡) via approximation (50) based on
truncation of the spectral decomposition of the FVM system matrix 𝐀
in (48). This emulates a predictor-based minimisation in a practical
implementation. The FVM grid consists of a cylindrical mesh with
equidistant inter-nodal spacings (𝛥𝑟, 𝛥𝜃) and here includes 𝑀 = 51,121
elements (convergence verified by mesh-refinement tests); truncation
is at 𝑄 = 500 according to typical reductions 𝑄∕𝑀 ∼ (10−1) and thus
accomplishes the total reduction in computational effort as estimated
in Section 4.2 [32].

The temperature evolution 𝑇 (𝐱, 𝑡) and adaptive reorientation scheme
 (here restricted to 𝑢 ≥ 0) determined via (3) by simulation with
the spectral method are shown in Fig. 9(a) and Fig. 9(b), respectively.
This results in sequential activation of the apertures reminiscent of
periodic reorientation, i.e.  = {1, 2, 3, 1, 2, 3,…}, yet with variable
duration, i.e. 𝑡active = 𝜏 or 𝑡active = 2𝜏, signifying an essentially
aperiodic reorientation scheme. The reorientation is clearly visible in
the temperature field via the emergence of multiple thermal plumes.
Fig. 9(c) gives the evolution of the cost function 𝐽 = 𝐽2 as log10 𝐽 and
reveals, consistent with (37), a monotonic and exponential decay that
reaches the termination criterion 𝐽 (𝑡𝜖) ≤ 𝜖 at transient time 𝑡𝜖 ≈ 140 for
𝜖 = 10−2. Simulations for different (𝑃𝑒, 𝜏) yield reorientation schemes
that comprise of switching between apertures akin to Fig. 9(b) and cost
functions that exponentially converge similar to Fig. 9(c) and terminate
the control action at comparable transient times 𝑡𝜖 . This demonstrates
an overall functioning control strategy that converges and identifies an
effective reorientation scheme.

The reorientation scheme  obtained with the FVM-based method
is included in Fig. 9(b) (red solid) and coincides with the reference
scheme (black dashed) found via the spectral method. The correspond-
ing evolution of the cost function in Fig. 9(c) (red circle) slightly
deviates from its reference (black cross), though, yet this must be
attributed to different characteristics of the numerical schemes. (FVMs
are e.g. known to suffer from numerical diffusion [42].) However,



International Journal of Thermal Sciences 180 (2022) 107720R. Lensvelt et al.
Fig. 10. Performance indicator 𝜒 versus (𝑃𝑒, 𝜏) for RAM with number of apertures 𝑁 as indicated.
attainment of identical  implies that the controller is insensitive to
(at least) disturbances of this magnitude, caused by numerical effects
or otherwise. Simulations for different cases consolidate these findings.
This demonstrates that the FVM-based predictor admits reliable and ro-
bust performance of minimisation (47) and the control strategy indeed
is viable for practical applications.

5.2. Performance of adaptive flow reorientation for process enhancement

The effectiveness of adaptive flow reorientation is determined by
comparing the transient time 𝑡𝜖 required to reach equilibrium 𝑇∞ with
that for conventional periodic reorientation consisting of repetition
of the sequence  = {1, 2,… , 𝑁} at given (𝑃𝑒, 𝜏). The performance
indicator

𝜒(𝑃𝑒, 𝜏) =
𝑡𝜀,𝑝(𝑃𝑒, 𝜏)
𝑡𝜀,𝑎(𝑃𝑒, 𝜏)

, (52)

where subscripts ‘‘p’’ and ‘‘a’’ denote periodic and adaptive schemes,
respectively, quantifies this effectiveness as follows: 𝜒 > 1 indicates
a shorter transient and, inherently, a faster equilibration rate – and
thus superior performance – of the adaptive scheme compared to the
periodic scheme; 𝜒 < 1 indicates a relatively inferior performance of
the adaptive scheme.

The performance analysis is carried out for aperture configurations
𝑁 = 2, 3, 4 and involves evaluation of 𝜒 in (𝑃𝑒, 𝜏)-space for 5 × 102 ≤
𝑃𝑒 ≤ 5 × 103 and 3 ≤ 𝜏 ≤ 30 using tolerance 𝜀 = 10−2 introduced
above. The range for 𝑃𝑒 encompasses the values 𝑃𝑒 ∼ (103) typical
of practical systems within the present scope (Section 1); the range
for 𝜏 captures the transition from regular towards chaotic advection
with conventional periodic reorientation schemes in the RAM for given
𝑁 [43]. Performance indicator 𝜒 is computed on an equidistant grid of
50 × 50 = 2500 points inside the considered parameter range using the
spectral method of Section 5.1.

Fig. 10 gives 𝜒 versus (𝑃𝑒, 𝜏) for 𝑁 = 2 (left), 𝑁 = 3 (center)
and 𝑁 = 4 (right) using a logarithmic scale for 𝜏 to enhance contrast.
This yields 𝜒 > 1 everywhere and thus exposes – at least in the
considered parameter range – the adaptive scheme as superior to the
conventional periodic scheme. The difference in performance exhibits
substantial variation, however. Peak performance is for cases 𝑁 = 2
and 𝑁 = 3 confined to relatively narrow bands near the lower bound
𝜏 = 3 (log10 𝜏 = 0.5) and within this regime reaches max𝜒 = 3.5 for
𝑁 = 2 and max𝜒 = 3.9 for 𝑁 = 3 at the upper bound 𝑃𝑒 = 5 × 103;
performance rapidly declines to 𝜒 ≃ (1) upon increasing 𝜏. Case 𝑁 = 4
is devoid of pronounced high-performance bands and exhibits more
erratic behaviour with a considerably lower max𝜒 = 1.5. Section 5.4
reconciles shown performance with the advection characteristics and
fluid deformation.

Important for practical purposes is that the adaptive scheme also
in regions 𝜒 ≃ (1) outside the high-performance bands significantly
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outperforms the conventional periodic scheme. Fig. 11 highlights this
by partition of parameter space into regions with a relative acceleration
of the fluid heating 𝜒rel = (𝜒 − 1) × 100% of 0 < 𝜒rel ≤ 15% (blue),
15% < 𝜒rel ≤ 20% (green), 20% < 𝜒rel ≤ 25% (yellow), 25% < 𝜒rel ≤
30% (orange) and 𝜒rel > 30% (red). This reveals accelerations by at
least 15% in nearly the entire parameter range (save some localised
regions for 𝑁 = 2 and 𝑁 = 4) and 25% or more in large areas. This
has the major (practical) implication that adaptive flow reorientation
enables the same process with the same device yet at considerably
lower effort compared to conventional operation (energy consumption
for flow forcing is proportional to 𝑡𝜖). Process enhancement of this
magnitude namely constitutes a dramatic reduction in energy and (po-
tentially also) resource consumption in industries as those highlighted
in Section 1.

5.3. Optimal reorientation schemes and heating dynamics

Control actions in the considered parameter range invariably in-
volve aperture activation and frequent switching (𝑢 ≠ 0); intermediate
diffusion-only steps (𝑢 = 0) are non-existent in the adaptive reorien-
tation schemes. This implies that flow reorientation, despite inevitable
local diminution (Section 3.2), on a global scale always enhances the
heating process. Striking, though, is that the controller never selects the
conventional periodic reorientation scheme introduced in Section 5.2
or, generically, repetitions of other systematic progressions along all
apertures such as e.g.  = {−1,−2,… ,−𝑁} or  = {𝑁,𝑁 − 1,… , 1}.
The sole exceptions are periodic repetitions of  = {1, 3, 2} for 𝑁 = 3
and  = {1, 4, 3, 2} for 𝑁 = 4 found in the localised parameter regimes
approximately bounded by the dashed black triangles in Fig. 11(b)
and Fig. 11(c), respectively. Fig. 9(b) demonstrates that the adaptive
scheme, even upon restriction to 𝑢 > 0, exhibits aperiodic deviation
from said conventional scheme. Adaptive reorientation schemes gener-
ically are essentially aperiodic and Fig. 12 shows typical cases for 𝑁 = 2
(red), 𝑁 = 3 (black) and 𝑁 = 4 (blue) yielding 𝜒 = 2.49, 𝜒 = 2.15
and 𝜒 = 1.25, respectively. However, adaptive reorientation schemes
in a significant portion of the parameter space encompass prolonged
periodic episodes (including some cases that are entirely periodic) as
illustrated in Fig. 12(b) for (𝑃𝑒, 𝜏) = (3275, 4.2). Here the reorientation
schemes settle on the periodic sequence
𝑁=2 = {1,−2, 1,−2,…}, 𝑁=3 = {1,−3, 1,−3,…},

𝑁=4 = {2,−3, 2,−3,…},
(53)

either directly from the start (𝑁 = 2) or after a short transient (𝑁 = 3, 4)
and for given (𝑃𝑒, 𝜏) yield 𝜒𝑁=2 = 2.81, 𝜒𝑁=3 = 2.15 and 𝜒𝑁=4 = 1.31.

Key difference between said periodic sequences and the conven-
tional periodic schemes is that the former always consist of switching
between two adjacent arcs that move in opposite directions. This sets
up two alternating and counter-rotating circulations and, depending on
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Fig. 11. Relative acceleration of fluid heating 𝜒rel = (𝜒 − 1) × 100% by adaptive flow reorientation for RAM with number of apertures 𝑁 as indicated: 0 < 𝜒rel ≤ 15% (blue),
15% < 𝜒rel ≤ 20% (green), 20% < 𝜒rel ≤ 25% (yellow), 25% < 𝜒rel ≤ 30% (orange), 𝜒rel > 30% (red). Dashed black triangles in panels (b) and (c) approximately outline regions with
adaptive schemes consisting of periodic repetitions of  = {1, 3, 2} and  = {1, 4, 3, 2}, respectively.
Fig. 12. Typical adaptive reorientation schemes  = {𝑢0 , 𝑢1 ,…} accomplishing switching between reorientations 𝑢𝑛 of the base flow following (4) at time levels 𝑡𝑛 = 𝑛𝜏: (a)
essentially aperiodic schemes for (𝑃𝑒, 𝜏)𝑁=2 = (2471, 4.4), (𝑃𝑒, 𝜏)𝑁=3 = (3125, 4.2) and (𝑃𝑒, 𝜏)𝑁=4 = (1012, 13.6); (b) schemes with prolonged periodic episodes for (𝑃𝑒, 𝜏) = (3275, 4.2)
and 𝑁 as indicated.
the relative arc movement, results in the following thermal behaviour.
Arcs moving towards each other create a single thermal plume between
the arcs that sways back and forth with the alternating circulations as
demonstrated by the temperature evolutions in Fig. 13(a) correspond-
ing with case 𝑁 = 2 (top) and 𝑁 = 3 (bottom) in (53). Arcs moving
away from each other create two thermal plumes, emanating from the
leading edges of the arcs, that are periodically reinvigorated by the
alternating circulations as demonstrated in Fig. 13(b) for case 𝑁 = 4 in
(53).

Aperiodic and (largely) periodic schemes as illustrated in Fig. 12
may emerge throughout parameter space yet the controller generally
tends towards aperiodic (periodic) schemes for ‘‘lower’’ (‘‘higher’’) 𝜏.
Such aperiodic schemes often exhibit intermittent behaviour by com-
prising of plume-forming periodic episodes interspersed with aperiodic
intervals; this e.g. occurs typically in the high-performance regions for
𝑁 = 2 and 𝑁 = 3 in Fig. 10. Moreover, persistent single plumes as
shown in Fig. 13(a) mainly emerge for 𝑁 = 2 and 𝑁 = 3; case 𝑁 = 4
overall tends more towards aperiodic behaviour. However, a direct link
between type of adaptive reorientation and parameter regimes appears
absent yet generic correlations with the advection characteristics exist
(Section 5.4).

The dependence of performance indicator 𝜒 on parameters (𝑃𝑒, 𝜏)
shown in Fig. 10 is inextricably linked to that of the transient times
for the adaptive (𝑡𝜀,𝑎) and conventional periodic (𝑡𝜀,𝑝) schemes. Fig. 14
gives 𝑡𝜀,𝑎 (dashed) and 𝑡𝜀,𝑝 (solid) for 𝑁 = 2 and 𝑁 = 3 at the indicated
𝑃𝑒 and reveals a significant decline of 𝑡 with increasing 𝜏 that grows
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𝜀,𝑝
more pronounced with larger 𝑃𝑒 versus a nearly uniform 𝑡𝜀,𝑎 in 𝜏-
direction that increases moderately with 𝑃𝑒. Case 𝑁 = 4 (not shown)
exhibits similar behaviour yet with a mildly-fluctuating (instead of
significantly declining) 𝑡𝜀,𝑝. These observations imply that variation of
𝜒 in Fig. 10 stems primarily from variable 𝑡𝜖,𝑝 and, inherently, variable
performance of the conventional periodic scheme.

Uniform 𝑡𝜖,𝑎 dependent only on 𝑃𝑒 in Fig. 14, on the other hand,
signifies a consistent performance of the adaptive scheme that (save
the localised spike at the lower bound for 𝜏 at 𝑃𝑒 = 5000 in Fig. 14(a))
is virtually independent of both 𝜏 and 𝑁 . This implies that the con-
troller systematically identifies the (on average) optimal orientation
between deformation and temperature gradient at the fluid parcels and
heat transfer is limited primarily by the thermo-physical conditions at
the molecular level for given 𝑃𝑒. Heat transfer between fluid parcels
namely occurs at time scales proportional to the diffusive time scale
𝑡dif f = 𝑅2∕𝜈, which in the non-dimensional formulation of Section 2.2
(i.e. relative to the advective time scale 𝑡adv = 𝑅∕𝑈) depends linearly
on 𝑃𝑒 via 𝑡′dif f = 𝑡dif f∕𝑡adv = 𝑃𝑒. Linear correlation 𝑡𝜖,𝑎 ∝ 𝑃𝑒, for (at
least) 𝑁 = 2 and 𝑁 = 3 in Fig. 14 implies that the controller (within
the constraint of the step-wise optimisation of Section 4.1) consistently
identifies the ‘‘best’’ reorientation scheme for molecular transfer rates
at given 𝑃𝑒.

5.4. Role of fluid deformation and chaotic advection

Fluid deformation impacts the global heat transfer by changing the
rates of global energising (quantified by metric 𝐽 ) and equilibration
1
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Fig. 13. Formation of thermal plumes due to periodic (episodes of) reorientation schemes selected by adaptive flow reorientation demonstrated for case (𝑃𝑒, 𝜏) = (3275, 4.2) in
Fig. 12(b): (a) single thermal plume driven by two adjacent arcs alternately moving towards each other for 𝑁 = 2 (top) and 𝑁 = 3 (bottom); (b) pair of thermal plumes driven
by two adjacent arcs alternately moving away from each other for 𝑁 = 4.
Fig. 14. Transient time 𝑡𝜀,𝑎 (dashed) and 𝑡𝜀,𝑝 (solid) of adaptive and conventional periodic schemes, respectively, versus 𝜏 for selected 𝑃𝑒 and RAM with number of apertures 𝑁
as indicated.
(quantified by metric 𝐽2) via the leading integrals in (41) represented
by functions 𝐺̄ and 𝐺 according to (44) and (46), respectively. The
spatial distribution of the corresponding integrands 𝑔̄ (𝑔), shown in
Fig. 6 (Fig. 7) in terms of 𝛽 (𝛽) following (43), reveals that this impact is
primarily restricted to the direct vicinity of the arc edges and (at least)
for temperature evolutions in the base flow 𝐮1 from the uniform initial
condition 𝑇0 accelerates energising and equilibration. The generality of
this behaviour is investigated below.

Key to energising is the wall temperature gradient 𝑓 = 𝜕𝑇 ∕𝜕𝑟|𝛤 .
Fig. 15 shows 𝑓 for the adaptive (red) versus conventional periodic
(blue) scheme at time levels 𝑡𝑛+1 during an intermediate episode of the
transient for the typical case 𝑁 = 3 and 𝑃𝑒 = 1000 at given 𝜏. (The
adaptive scheme corresponds with  = {1,−3, 1,−3,…} following
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𝑁=3
(53).) Gradient 𝑓 significantly steepens at the active arc during step
𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+1, with corresponding leading (trailing) edges indicated
by dashed (solid) vertical lines, and peaks at the trailing edge. This
reveals that fluid deformation, despite considerable changes in initial
conditions at 𝑡𝑛, step-wise creates essentially the same situation as for
the base flow in Fig. 6(b) and – upon identifying 𝜃 = 𝛥∕2 (𝜃 = −𝛥∕2)
in (44) with the trailing (leading) edge of the active arc – implies
𝐺̄ > 0 and thus accelerated energising compared to a non-deforming
fluid. Both schemes accomplish this yet the consistently higher peaks
at the trailing edges for the adaptive scheme render this effect more
pronounced and thereby signify a systematically superior performance
over the conventional scheme.
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Fig. 15. Impact of fluid deformation on energising demonstrated by wall temperature gradient 𝑓 = 𝜕𝑇 ∕𝜕𝑟|𝛤 for adaptive (red) versus conventional periodic (blue) scheme at time
levels 𝑡𝑛+1 for 𝑁 = 3 and 𝑃𝑒 = 1000 at given 𝜏. Dashed (solid) vertical lines indicate leading (trailing) edges of active arc.
The step-wise impact of fluid deformation on equilibration for the
above case is shown in Fig. 16 in terms of 𝛽 and is also reminiscent of
that of the base flow in Fig. 7: emergence of localised high-impact re-
gions (red/blue) near the arc edges and larger moderate-impact regions
(yellow/cyan) in the interior. Moreover, these high-impact regions
again vary only marginally in time and with flow reorientation; sig-
nificant spatio-temporal variation occurs only in the moderate-impact
regions. Thus the simplified 𝐺 following (46) to good approximation
holds in general and in conjunction with the wall temperature gradients
in Fig. 15 implies 𝐺 > 0 and, inherently, acceleration of equilibration
by the same reasoning as for the base flow in Section 3.5.

The above behaviour is representative for the entire transient in
arbitrary cases and demonstrates that fluid deformation generically
indeed enhances energising and equilibration. However, as clearly
demonstrated in Fig. 16, this primarily relies on the high-shear regions
near the arc edges and their interaction with the temperature gradient;
fluid deformation in the flow interior only plays a secondary role in
this process due to its relative weakness compared to said regions. This
has the major implication that the adaptive scheme attains its superior
and consistent performance mainly from step-wise optimal orientation
between arc edges and wall temperature gradient. The adaptive scheme
thus creates peaks of comparable magnitude close to an upper limit
set by the beforementioned thermo-physical conditions for all 𝜏, as
e.g. demonstrated by the profiles at 𝑡𝑛+1 = 20 in Fig. 15, yielding
the nearly uniform 𝑡 in Fig. 14. The conventional scheme, on the
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𝜀,𝑎
other hand, sequentially creates peaks at the consecutive arcs that grow
with 𝜏 (again demonstrated by the profiles at 𝑡𝑛+1 = 20 in Fig. 15)
due to the increasing fluid deformation associated with longer arc
activation and approach said upper limit only for sufficiently large 𝜏.
Reaching this limit is intimately related to the local breakdown of heat-
transfer enhancement at 𝑡 ∼ (𝜏𝛽 ), with 𝜏𝛽 according to (31), where
𝜏𝛽 ≃ (0.3 − 3) for the degree of fluid deformation in the arc region
(Section 3.3). The significant decline and subsequent flattening of 𝑡𝜀,𝑝
exactly at step durations 𝜏 of this magnitude in Fig. 14 support this
scenario.

The relative weakness of fluid deformation in the domain interior
suggests that global advection mainly serves as mechanism for ex-
changing (to be) heated fluid parcels between the arc regions and said
interior and makes whether this fluid transport is chaotic or not of
secondary importance. The following considerations substantiate this
subordinate role of chaotic advection for the heating performance of the
RAM. Lagrangian transport within the flow interior associated with the
frequently-emerging periodic plume-forming schemes such as e.g. (53)
transits from regular to chaotic with increasing 𝜏, as demonstrated
in Fig. 17 by the stroboscopic map of 100 tracers released on the 𝑥-
axis. However, the corresponding transient time 𝑡𝜀,𝑎 in Fig. 14 remains
uniform, signifying a thermal performance of the adaptive scheme
that is consistent for all 𝜏 and, in consequence, independent of the
emergence of chaos.
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Fig. 16. Impact of fluid deformation on equilibration demonstrated by partition of relative change rate 𝛽 = 𝑔∕𝑓 via 𝛽rel ≡ 𝛽∕max |𝛽| into regions with strong enhancement (𝛽rel ≥ 𝜖2;
red) versus strong diminution (𝛽rel ≤ −𝜖2; blue), moderate enhancement (𝜖1 ≤ 𝛽rel < 𝜖2; yellow) versus moderate diminution (−𝜖2 < 𝛽rel ≤ −𝜖1; cyan) and insignificant impact
(|𝛽rel| < 𝜖1; green) using thresholds (𝜖1 , 𝜖2) = (5 × 10−3 , 5 × 10−2) for 𝑁 = 3 and 𝑃𝑒 = 1000 at given 𝜏. Heavy boundary segments indicate active arc during step [𝑡− 𝜏, 𝑡] prior to given
time level 𝑡.
The conventional scheme results in a similar transition from regular
to chaotic advection in the ranges 1 ≲ 𝜏 ≲ 6 (0 ≲ log10 𝜏 ≲ 0.8), 2 ≲ 𝜏 ≲ 5
(0.3 ≲ log10 𝜏 ≲ 0.7) and 2 ≲ 𝜏 ≲ 5 (0.3 ≲ log10 𝜏 ≲ 0.7) for 𝑁 = 2,
𝑁 = 3 and 𝑁 = 4, respectively, and yields stroboscopic maps as shown
in [43]. (Stroboscopic maps in [43] in fact concern companion schemes
for 𝛩′ = −𝛩 and 𝛺′) = −𝛺 and on grounds of symmetry are identical
to maps of the current schemes.) The transition and fully-chaotic zones
correlate with the regimes of declining and flat profiles of 𝑡𝜀,𝑝 in
Fig. 14, respectively, and this may thereby suggest a significant role of
the interior (chaotic) advection in the thermal performance. However,
increasing 𝜏 and 𝑁 simultaneously changes the conditions near the
active arc by two effects: (i) circulation of more fluid parcels through
the 𝑁 arc regions (thus promoting greater heat exchange between wall
and interior) and (ii) larger fluid deformation (thus promoting a steeper
wall temperature gradient at the arc). This, together with the flattening
of 𝑡𝜀,𝑝 at 𝜏 ∼ (𝜏𝛽 ) established above, advances the conditions at the
active arc that drives the interior (chaotic) advection – rather than the
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nature of this interior transport itself – as the primary cause for the
decline in 𝑡𝜀,𝑝 and corresponding enhancement in thermal performance.

6. Conclusions

The present study aims to contribute to existing solutions for en-
hancement of scalar transport in laminar flows through flow reori-
entation. To this end a dedicated flow-control strategy is developed
(i.e. ‘‘adaptive flow reorientation’’) that systematically determines the
‘‘best’’ flow reorientation for the fast heating of a cold fluid via a hot
boundary in a representative case study.

The control strategy is founded on an in-depth analysis of the
dynamics of heating in fluid flows. This exposes fluid deformation as
the ‘‘thermal actuator’’ via which the flow affects the heat transfer.
The link between former and latter is non-trivial, though. Fluid defor-
mation may, depending on its orientation relative to the temperature
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Fig. 17. Lagrangian transport associated with periodic plume-forming schemes (53) versus 𝜏 demonstrated by stroboscopic map of 100 tracers released on 𝑥-axis for RAM with
𝑁 = 2 (top) and 𝑁 = 3 (bottom) apertures.
gradient, both enhance and diminish local heat exchange between
fluid parcels. Moreover, enhanced heat transfer promotes local thermal
homogenisation and, by reducing temperature gradients, thus effec-
tively counteracts itself. This fundamental ‘‘conflict’’ between local heat
transfer and thermal homogenisation tends to restrict the beneficial
impact of flow to short-lived episodes. The impact of fluid deformation
on the global fluid heating is primarily confined to the direct proximity
of the moving boundary that drives the flow. Fluid deformation in
the flow interior only plays a secondary role in this process due to
its relative weakness compared to said regions. These insights imply
that incorporation of the thermal behaviour is essential for effective
flow-based enhancement strategies and efficient fluid mixing, the con-
ventional approach adopted in industry for this purpose, is potentially
sub-optimal.

Global heating encompasses two concurrent processes, i.e. increas-
ing energy content (‘‘energising’’) and thermal homogenisation, and
this fundamentally differentiates the current problem from the ther-
mal homogenisation in adiabatic systems usually considered in related
studies. Moreover, this notion yields the relevant metrics for the global
dynamics and thus enables formulation of the control problem as the
minimisation of a dedicated cost function that naturally emerges from
the dynamic analyses and adequately incorporates both processes. This
facilitates step-wise determination of the ‘‘best’’ flow reorientation from
predicted future evolutions of actual intermediate states and, in tandem
with an efficient predictor, paves the way to (real-time) regulation of
scalar transport by flow control in practical applications. Key enablers
for this predictor are (i) the property that flow reorientations carry over
to the temperature field (ii) a compact reduced-order model for the
Perron–Frobenius evolution operator that rapidly maps initial to final
temperature fields for each step duration and flow reorientation.

Performance analyses reveal that adaptive flow reorientation sig-
nificantly accelerates the fluid heating throughout the considered pa-
rameter space and thus is superior over conventional periodic schemes
(designed for efficient fluid mixing) both in terms of consistency and
effectiveness. Fluid heating is accelerated by at least 14% everywhere
and 24% or more in large areas and process enhancement of this
magnitude constitutes a dramatic reduction in energy and (potentially
also) resource consumption in industries motivating the present study.
The controller in fact breaks with conventions by, first, never selecting
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these periodic schemes and, second, achieving the same superior per-
formance for all flow conditions irrespective of whether said mixing
occurs. The controller typically achieves this superiority by creating
an essentially heterogeneous situation comprising of thermal plumes
that extend from the hot wall into the cold(er) interior and are driven
by two alternating and counter-rotating circulations. The performance
analyses furthermore substantiate the primary and secondary roles of
fluid deformation near the driving boundary segments and in the flow
interior, respectively, in the heating enhancement by the flow.

Ongoing efforts concern, first, more advanced and precise regulation
of the thermal process by continuous actuation of all moving boundary
segments and, second, experimental validation and testing of the con-
trol strategy. Future studies aim at further paving the way to practical
applications by development of observers for full state estimation from
discrete sensor data and data-based construction of compact models.

Future work furthermore aims at expansion of the proposed control
strategy to thermal boundary conditions and control targets other
than those considered in the present study and, intimately related to
this, further development of effective cost functions. The cost function
adopted here enables significant performance enhancement for the
particular control problem and thus serves its purpose well. However,
further performance enhancement may possibly result from advanced
versions of the cost function that e.g. employ spatial weighting of the
temperature field or weighted contributions by the cost functions for
energising and thermal homogenisation. Moreover, different thermal
boundary conditions (e.g. prescribed boundary flux instead of boundary
temperature) and/or control targets (e.g. thermal fronts or heteroge-
neous temperature fields for promotion of chemical reactions) may
require entirely new cost functions for a control strategy to be effective.
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Appendix. Evolution of metric 𝑱𝟐

The evolution of metric 𝐽2 according to (33) is governed by

𝑑𝐽2
𝑑𝑡

= ∫
𝜕𝑇 2

𝜕𝑡
𝑑2𝐱 = 2∫

𝑇 𝜕𝑇
𝜕𝑡
𝑑2𝐱

(3)
= −2∫

𝑇 𝐯⋅∇∇∇𝑇𝑑2𝐱−2∫
𝑇 ∇∇∇⋅𝐪𝑑2𝐱.

(A.1)

he leading term on the RHS of (A.1) admits reformulation as


𝐯 ⋅ (𝑇∇∇∇𝑇 )𝑑2𝐱 = ∫

𝐯 ⋅∇∇∇(𝑇 2∕2)𝑑2𝐱
∇∇∇⋅𝐯=0
= ∫

∇∇∇ ⋅
(

𝐯𝑇 2∕2
)

𝑑2𝐱

= ∫𝛤
𝐯 ⋅ 𝐧𝑇 2∕2𝑑𝑠 = 0, (A.2)

due to 𝐯 ⋅ 𝐧 = 0 and 𝑇 = 0 on 𝛤 . The trailing term on the RHS of (A.1)
dmits reformulation as


𝑇 ∇∇∇ ⋅ 𝐪𝑑2𝐱 = ∫

∇∇∇ ⋅ (𝑇𝐪)𝑑2𝐱 − ∫
𝐪 ⋅∇∇∇𝑇𝑑2𝐱

= ∫𝛤
𝐪 ⋅ 𝐧𝑇𝑑𝑠 − ∫

𝐪 ⋅∇∇∇𝑇𝑑2𝐱

= −∫
𝐪 ⋅∇∇∇𝑇𝑑2𝐱, (A.3)

due to 𝑇 = 0 on 𝛤 . Substitution of (A.2) and (A.3) into (A.1) yields
𝑑𝐽2
𝑑𝑡

= 2∫
𝐪 ⋅∇∇∇𝑇𝑑2𝐱. (A.4)

as simplified evolution equation for metric 𝐽2.
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