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Abstract—To facilitate dynamic vehicle scheduling for battery
electric city buses, a real-time on-line energy consumption pre-
diction model is proposed. The model utilizes the current vehicle
velocity and position, combined with knowledge of the remaining
route, to predict the total trip energy. The model consists of a
remaining velocity profile predictor and a longitudinal dynamics
model. The algorithm is demonstrated in a Hardware-in-the-Loop
experiment with a battery electric bus. The model has an average
error of 3.1% with respect to the total trip energy and adapts
in real-time to unexpected acceleration and deceleration events.

Index Terms—Electric Vehicle, Battery Electric Bus, Energy
Consumption, Prediction, Hardware-in-the-Loop (HiL)

I. INTRODUCTION

Battery Electric Buses (BEBs) are increasingly used for
inner-city public transport. The vehicles emit no local pol-
lutants and potentially offer a lower total cost of ownership
(TCO) because of relatively low running expenses. However,
adaptation is still relatively low, partially because compared
to conventional diesel vehicles BEBs have a smaller driving
range due to the limited energy density of their batteries [1].
Additionally, the driving range is uncertain, because it can vary
as function of road, weather and vehicle conditions and the
performed drivecycle [2]. This results in BEB schedules being
conservative, sometimes even including redundant vehicles.

Dynamic vehicle scheduling offers a possible solution by
no longer fixing time tables in advance, but rather making
them flexible based on traffic conditions [3], electricity pricing
[4] or battery degradation [5]. In the dynamic version of this
vehicle scheduling problem, the schedule is based on both
current information as well as predictions regarding the future
[3]. In order to make optimal dynamic schedules for BEBs,
it is beneficial to have up-to-date and accurate predictions
regarding the energy that will be consumed for a trip and the
remaining driving range.

Previous research indicates that using route information can
be useful to predict the future energy consumption of an elec-
tric vehicle [6]. The same study also indicates that it is ben-
eficial to include up-to-date estimations of rolling resistance
and mass during driving to give a more accurate prediction
during the trip. The same is suggested by [7]. However, most
of this research focuses on predicting certain parameters of
the vehicle model, based on the observed difference between
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measured and modeled energy consumption, while omitting
the effect of the current vehicle velocity has on the prediction.
While other studies do focus on online prediction of the future
velocity [8], [9], many of these methods are data-driven and
cover a limited horizon.

This paper presents an on-line method to predict the future
vehicle velocity, based on the current vehicle velocity and
route data, and uses this information for the energy consump-
tion prediction (ECP) on a BEB. The method is tested by
implementing a MATLAB Simulink model in Vector CANoe
and performing real-time Hardware-in-the-Loop (HiL) tests.

This paper is organized as follows. In Section II the method
applied to predict the future velocity and energy consumption
are explained. In Section III the experimental setup of the HiL
test is explained, including route details and vehicle specifi-
cations. The results of this test are presented and discussed in
Section IV. Conclusions are given in Section V.

II. FUTURE ENERGY CONSUMPTION PREDICTION

To predict the future energy consumption using a physics-
based approach, the model works in two steps. Firstly, the
velocity that will be driven along the remaining part of the
route is predicted. Secondly, a physics-based energy consump-
tion model calculates the energy that is required to drive this
velocity profile.

A. Future Velocity Profile Prediction

The future velocity profile prediction is based on route
information and the current position and velocity of the
vehicle. The entire route is discretized, consisting of N points.
For each of these points i = 1, ..., N along the route, the
following information is assumed to be known:

• GPS coordinates pi ∈ R2 [deg.]
• Cumulative distance from start di [m]
• Legislated maximum velocity vleg,i [m/s]
• Local road curvature ci [1/m]
• Boolean indicating (bus)stops bi [-]

During operation, a vehicle will start at the beginning of the
route, near p1, and will subsequently pass all the points along
the route, until arriving at the end of the route pN . To make
a prediction regarding the remaining part of the route, it is
imperative to know the current position of the vehicle with
respect to the route. To this end, a map matching algorithm is
applied.
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Fig. 1. Map matching: Schematic view of the shortest Euclidian distances
(li) between the vehicle position and several route segments (si).

1) Map Matching: The route is represented by N − 1 seg-
ments, indicated by si in Fig. 1. Each segment si is defined by
its vertices pi and pi+1. A straight-forward, computationally
efficient map-matching algorithm is applied, which identifies
the segment the vehicle is currently traversing by calculating
the shortest Euclidian distance li between the most current
GPS measurement pv and each of the segments si, as shown
in Fig. 1. The segment for which this distance li is shortest, is
assumed to be the one where the vehicle is currently driving.
This index, specifying the current location of the vehicle, is
expressed as I;

I = argmin
i

li . (1)

2) Velocity Prediction Algorithm: Given the vehicle is
currently at position pI , the challenge is to predict the velocity
vi for all remaining route points i = I, ..., N . As first step, the
velocity limitations due to corners are included by considering
a maximum lateral acceleration ay,max. This corner-limited
velocity is determined as

vcurv,i =

√
ay,max

|ci|
∀ i = I, ..., N . (2)

Secondly, the vehicle is assumed to make a full stop at every
bus stop. Therefore, the stop-limited velocity is described as

vstop,i =

{
0 bi = 1

∞ bi = 0
∀ i = I, ..., N , (3)

where no velocity limitations (vstop,i = ∞) are imposed on
the points that are not stops.

Lastly, the vehicle is assumed to adhere to the legislated
maximum velocity vleg,i. Therefore, together with (2) and (3),
a maximum velocity envelope vmax can be described;

vmax,i = min( vleg,i, vcurv,i, vstop,i ) ∀ i = I, ..., N ,
(4)

which the vehicle is assumed to never exceed.
This maximum velocity envelope is discontinuous, which is

unrealistic, because the longitudinal vehicle acceleration and
deceleration are finite. Therefore the velocity profile has to be
adapted to include the finite acceleration. This is realized by
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Fig. 2. Predicted future velocity at the route points defined both as function
of distance and remaining time.

step-wise forward time-integration of the profile with a limited
longitudinal acceleration ax,acc;

vacci+1= min

{∫ ti+1

ti

ax,accdt+ vacci ,vmax,i+1

}
∀ i = I, ..., N−1 .

(5)
Important here is that the currently measured velocity vv is
used as starting point for this procedure, i.e.

vaccI = vv , (6)

thereby including the current vehicle velocity in the prediction.
Similarly, backwards time-integration is performed, starting at
vN = 0, to ensure that the decelerations do not exceed a
maximum value ax,dec;

vi−1 = min

{∫ ti−1

ti

ax,decdt+ vi, v
acc
i−1

}
∀ i = N, ..., I + 1 .

(7)
After applying (5) and (7) to v∗i described by (4), vi represents
a future velocity profile defined at each of the route points
v(pi), and thus also as function of distance v(di).

3) Distance-Time Conversion: For each of the future route
points i = I, ..., N , the expected arrival time t̃ with respect to
the current time tI is calculated:

t̃i =

i−1∑
k=I

2 (dk+1 − dk)

vk + vk+1
, ∀ i = I + 1, ..., N (8)

which is based on the assumption that the acceleration is
constant between two route-points, as seen in Fig. 2. Note
that, because pI signifies the current position of the vehicle,
t̃I = 0. Now, the velocity profile for all the future route points
is defined as function of the remaining time: v(t̃i).

B. Remaining Energy Consumption Prediction
A physics-based model is applied to predict the energy

required to drive the future velocity profile v(t̃i). Because
the model relies on knowledge regarding the acceleration, the
calculations are performed per route-segment si. Therefore,
velocity vs,i and acceleration as,i are calculated for every route
segment i = I, ..., N − 1:

vs,i = 0.5 (vi + vi+1) [m/s] (9)

as,i =
(−vi + vi+1)(
−t̃i + t̃i+1

) [m/s2] . (10)



By modelling the longitudinal dynamics of the vehicle, the
average driving force at the wheels can be determined as

Fwheel,i = meffas,i + cr mg + cav
2
s,i , (11)

where meff , m, cr, and ca are vehicle parameters described
in Table I. Note that, due tot the characteristics of the route
described in Section III-B, no road slope component is con-
sidered. From Fwheel,i, the electric power delivered by the
traction inverter is determined as

Pinv,i = Fwheel,ivs,i + Ploss (vs,i, Fwheel,i) , (12)

where Ploss represents a previously measured powertrain
losses map [10]. By summing the inverter power over the
remaining route, the remaining energy consumption is deter-
mined to be

Eremaining =

N−1∑
i=I

Pinv,i ·
(
t̃i+1 − t̃i

)
. (13)

1) Trip Energy Consumption Prediction: Simultaneously,
the consumed powertrain energy

Econsumed =

∫ tI

t0

UHV,measured IHV,measured dt . (14)

is recorded by the model based on the measured traction
inverter Direct-Current (DC) voltage UHV,measured and cur-
rent IHV,measured. The total trip energy is determined by
combining this measured energy with the predicted remaining
energy:

Etrip = Econsumed + Eremaining . (15)

III. CASE STUDY: BUS TRIP

The on-line ECP algorithm, as described in Section II, is
implemented in MATLAB Simulink, and interfaced via Vector
CANoe to the CAN-bus of a battery electric city bus, as seen
in Fig. 3. This HiL setup allows for real-time reading and
processing of several sensor signals including:

• GPS position pv ∈ R2 [deg.]
• Vehicle velocity vv [m/s]
• Estimated vehicle weight mECAS [kg]
• Traction inverter voltage UHV,measured [V]
• Traction inverter current IHV,measured [A].

A. Test vehicle

The vehicle used for this test is a series-production 12 m
battery electric city bus equipped with a 170 kW central motor
and a 288 kWh battery pack. The vehicle is fitted with the
factory-default set of sensors, and an additional GPS-sensor.

The vehicle features an Electronically Controlled Air Sus-
pension (ECAS) that uses pressure measurements in the air-
bellows to estimate the current weight of the vehicle. This
estimate mECAS is used as indicated in Table I. The estimated
weight provided by the ECAS can vary incorrectly due to vehi-
cle acceleration or suspension kneeling. Therefore a processed
signal m̃ECAS is created that only registers the ECAS vehicle
weight if the vehicle is 1) standing still, 2) not kneeled, and
3) the accelerator pedal is not pressed. The effective mass of

Fig. 3. Photo of the HiL-setup in the vehicle.

TABLE I
PARAMETERS USED IN THE ON-LINE ECP MODEL.

Parameter Symbol Value unit

Vehicle weight m m̃ECAS kg
Effective vehicle mass meff 1.02m kg

Aerodynamic coefficient ca 3.36 kg/m
Rolling resistance coefficient cr 0.007 -

Acceleration limit in prediction ax,acc 0.9 m/s2

Deceleration limit in prediction ax,dec -0.8 m/s2

Lateral acceleration in prediction ay,max 1.5 m/s2

the vehicle is defined as 102% of the vehicle weight. During
the measurements, the vehicle is loaded with sand bags to half
of its maximum capacity to simulate passenger load.

Except the mass, all further vehicle parameters are assumed
constant, as listed in Table I. The rolling resistance coefficient
cr and aerodynamic coefficient ca originate from coast-down
tests performed with a similar vehicle [10]. The table also
shows the assumed acceleration limits ax,acc, ax,dec, and
ay,max used in the prediction of the remaining velocity profile.
These are based on previously measured velocity profiles of
the same vehicle.

B. Route Information

For the HiL test, a route is defined to represent a typical
city bus trip. The route is shown in Fig. 4 and features
several legislated maximum velocities ranging from 30 km/h to
60 km/h. Apart from the start/stop point, there are two further
bus stops. At each of these stops, the driver is instructed to
make a full stop, open the doors of the vehicle, and wait
for 7 seconds before resuming the trip. In the on-line ECP
algorithm, the 8.725 km route is discretized into N = 1285
points, resulting in an average segment length ||si|| of 6.8 m.
The route is nearly flat, therefore no road slope component is
included in (11).

The route is located in a rural area, to minimize the effect
of traffic. Nevertheless, some disturbances due to oncoming
vehicles or cyclists are observed. The driver is instructed to
drive the route as he would normally assuming passengers



Fig. 4. The used test route, driven clockwise, with bus stops indicated as
black dots and the legislated maximum velocity indicated by color.
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Fig. 5. Vehicle weight according to the ECAS system for trip #4.

are onboard, while adhering to the specified maximum veloc-
ities and stopping at the abovementioned bus stops. Before
the start of the series of tests, the vehicle is driven for at
least 20 minutes to achieve steady-state temperatures in the
powertrain and tires.

IV. RESULTS AND DISCUSSION

The route specified in Section III-B is driven six consecutive
times, where the on-line ECP algorithm is restarted at the
beginning of every route. This section discusses the detailed
results of trip #4.

A. Vehicle Weight Estimation

Fig. 5 shows the estimated value indicated by the ECAS sys-
tem together with m̃ECAS as described in Section III-A. Also
indicated is the actual weight of the vehicle, as determined
prior to the test by placing the vehicle on scales. The results
show that the ECAS weight estimate varies during the trip and
slightly over-estimates the actual weight by 1.9%. The pro-
cessed ECAS weight m̃ECAS remains constant during driving,
with an average error of 2.9%, and only varies during a stop,
around t = 220 s and t = 480 s. The fact that m̃ECAS provides
an over-estimate will results in more conservative energy
predictions. Nevertheless, the processed signal is considered
useful, because it greatly reduces unwanted fluctuations in the
predicted trip energy.

B. Velocity Profile Prediction

During the experiment, the on-line model is repeatedly
predicting the remaining velocity profile v(di) as described
in Section II-A. All these calculations are happening on-line
on a computer onboard the vehicle.

0 1 2 dI 3 4 5 6 7 8

Travelled distance [km]

0

20

40

60

Ve
hi

cle
 s

pe
ed

 [k
m

/h
]

dI 30

10

20

30

40

50

60

Measured
Predicted
Initially Predicted

Ve
hi

cle
 s

pe
ed

 [k
m

/h
]

0 1 2

Fig. 6. Measured and predicted velocity profile when the vehicle is at a
travelled distance of dI = 2.5 km along the route for trip #4.
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Fig. 6 shows the results of this prediction at a point in time
where the vehicle is 2.5 km along the route. In this situation,
the velocity profile of the past 2.5 km is known, as indicated
by the black line. For the remaining 6.2 km the velocity is
predicted, based on the available route information and current
vehicle velocity.

The results in Fig. 6 indicate that the predicted veloc-
ity generally matches the measured velocity along the trip.
Nevertheless, deviations due to unmodelled effects, such as
traffic, can occur. In this case, the on-line ECP model predicts
that the vehicle will accelerate before resuming the originally
predicted profile, as demonstrated at di=[2.5, 2.6] km by the
steeply increasing blue line. Note that prediction here does not
include any future influence of traffic, and will always assume
unobstructed driving from t̃I =0 onwards.

C. Energy Consumption Prediction

The predicted remaining energy, as described in Sec-
tion II-B, is visualised for this same trip #4 in Fig. 7. This fig-
ure shows that dips in Econsumed, due to deceleration events,
are largely compensated by peaks in Eremaining, ultimately
resulting in a smooth estimate Etrip that generally stays within
the 5% of the actually consumed energy. When the trip is



TABLE II
WEIGHTED AVERAGE PREDICTION ERROR (WAPE) FOR SIX TRIPS.

Trip # 1 2 3 4 5 6 Average

PE(d1) [%] 2.0 6.2 1.1 0.4 9.0 7.8 4.4
WAPE [%] 1.6 3.4 2.4 1.2 5.1 4.7 3.1

finished, the predicted and measured energy consumption are
per definition equal.

In case of an unexpected deceleration event, for instance at
dI =2.5 km, Etrip increases to compensate for the acceleration
expected after the deceleration. Likewise, in the last 0.6 km of
the trip in Fig. 7, Etrip remains lower than Econsumed, because
the prediction already accounts for the energy regenerated
during the final braking action of the route. This illustrates
the predictive capabilities of the on-line ECP model.

D. Weighted Average Prediction Error

In order to quantify the observed difference, the Prediction
Error (PE) is introduced for a route point i, according to

PE(di) =
|Etrip (di)− Econsumed(tend)|

Econsumed(tend)
(16)

The trip energy becomes easier to predict as the vehicle pro-
gresses along the route, because the prediction only concerns
the remaining part of the trip. Therefore the error is weighted
by remaining distance, resulting in the Weighted Average PE;

WAPE =

∑n
i=1 wi PE(di)∑N

i=1 wi

, where wi = 1− di
dN

(17)

are the weight factors that decrease linearly as function of
travelled distance di. This way, the prediction error at the start
of the trip is weighted more than the predictions near the end of
the trip. Calculating this value reveals that the WAPE is 1.2%
for the measurement presented in Fig. 7. This is partially the
results of the fact that the model parameters Table I seem to
match particularly well for this trip.

The WAPEs for further trips are indicated in Table II and
range between 1.2% and 5.1% among the various trips. This
variation could be caused by influences that are not considered
in the current algorithm, variation in the occurance of traffic
between the individual trips or unmodelled dynamics in the
longitudinal vehicle model. Also the variability introduced by
the ECAS weight estimator is expected to have an influence on
the end results. Nevertheless, on average the WAPE is 3.1%,
and is shown to be generally lower than the offline prediction
error that is made at the beginning of the trip PE(d1).

V. CONCLUSIONS

This paper presents an on-line energy consumption predic-
tion model that in real-time predicts the remaining energy
required to complete a trip. The results show that by using the
current position and velocity of the vehicle, a future velocity
profile can be determined that accounts for future acceler-
ation and deceleration events in the route. The remaining
energy consumption predicted basted on this velocity profile

complements the consumed energy to arrive at a predicted
total trip energy that is close to the consumed energy. The
results of a Hardware-in-the-Loop test show that the weighted
average prediction error is 3.1% over six observed trips.
This indicates that the proposed methodology could provide
a reliable, real-time energy consumption prediction for future
dynamic planning algorithms.

Future work includes further testing of the on-line model
with more vehicle loading conditions, different drivers, varying
weather conditions, and a route that includes road slope. In
a realistic scenario, where passenger occupancy can change
at each bus stop, an improved method for weight estimation,
that could even predict vehicle weight changes at future stops,
would be beneficial. Moreover, possibilities exist to make the
algorithm adaptive by including online driver characterization
via nonconstant acceleration limits ax,acc and ax,dec and an
adaptive longitudinal dynamics model that iteratively estimates
the rolling resistance coefficient cr as function of distance.
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