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a b s t r a c t

In this paper, we propose a parametric system identification approach for a class of continuous-time
Lur’e-type systems. Using the Mixed-Time-Frequency (MTF) algorithm, we show that the steady-
state model response and the gradient of the model response with respect to its parameters can
be computed in a numerically fast and efficient way, allowing efficient use of global and local
optimization methods to solve the identification problem. Furthermore, by enforcing the identified
model to be inside the set of convergent models, we certify a stability property of the identified
model, which allows for reliable generalized usage of the model also for other excitation signals
than those used to identify the model. The effectiveness and benefits of the proposed approach
are demonstrated in a simulation case study. Furthermore, we have experimentally shown that the
proposed approach provides fast identification of both medical equipment and patient parameters in
mechanical ventilation and, thereby, enables improved patient treatment.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Accurate dynamical models of complex systems are required
or model-based controller design, analysis of the dynamic be-
avior of the system under study and improved system design.
ystem identification deals with the construction of such dynamic
odels from observed input and output data. For the class of lin-
ar systems, many identification techniques exist (Ljung, 1987),
ogether with user-friendly software, see, e.g., Ljung (1995). How-
ver, many physical systems are essentially nonlinear and, de-
ending on the application, one can choose to model it in a linear
ramework by neglecting (non-significant) nonlinear phenomena,
r can choose to also model the nonlinearities and, therewith,
ncrease the model accuracy at the cost of model complexity.

A major challenge in system identification is to enforce a form
f stability on the identified model (Ljung, 2010; Schoukens &

✩ The material in this paper was partially presented at the 11th IFAC
Symposium on Nonlinear Control Systems (NOLCOS), September 4–6, 2019,
Vienna, Austria. This paper was recommended for publication in revised form by
Associate Editor Yanlong Zhao under the direction of Editor Torsten Söderström.
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Ljung, 2019; Tobenkin, Manchester, & Megretski, 2017). Even if it
is known that the true system under study enjoys some stability
property, it is not guaranteed that the identified model preserves
this stability property due to the finite length of the data set,
noisy data sets or the presence of unmodeled dynamics. Several
methods that enforce exponential stability are proposed in the
literature for the identification of linear time-invariant (LTI) mod-
els (Hakvoort & Hof, 1994; Lacy & Bernstein, 2003; Tobenkin et al.,
2017; Umenberger & Manchester, 2018; Van Gestel, Suykens,
Van Dooren, & De Moor, 2001). For nonlinear systems, however,
the literature on identification of nonlinear models with some
guaranteed form of stability is scarce and the consequences of
not enforcing stability are more pronounced and more complex
in the nonlinear context (Decuyper, De Troyer, Runacres, Tiels, &
Schoukens, 2018; Decuyper, Runacres, Schoukens, & Tiels, 2020;
Schoukens & Ljung, 2019). Firstly, it is well-known that nonlinear
models can exhibit multiple stable solutions being attractive for
different sets of initial conditions (Khalil, 1996). Consequently,
the response of the identified model might be close to the mea-
sured system response, but might as well be far off or even
become unbounded, depending on the initial condition. Secondly,
nonlinear models can have a large sensitivity to the excitation
signal, and, therefore, their response can be significantly differ-

ent, or even become unbounded, even for the slightest change

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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n the excitation signal (Khalil, 1996). Such models have poor
eneralization capabilities to other excitation signals than the
nes used during identification. With the instability issue of the
dentified model in mind, Tobenkin et al. (2017) and Umen-
erger and Manchester (2018) developed a method that imposes
lobal incremental stability for a class of identified black-box
onlinear state–space models, where the incremental stability
roperty avoids the above problems of high sensitivity to input
hanges and initial conditions. In that approach, the data set
ncludes the state sequence of the underlying nonlinear system,
hich is non-trivial and rather case specific to obtain in practice.
ther types of stability properties, e.g., asymptotic stability of the
rigin for zero inputs and input-to-state stability, are enforced
n Doyle, Pearson, and Ogunnaike (2002), Milanese and Novara
2005), Suykens, de Moor, and Vandewalle (2000), Suykens, Van-
ewalle, and De Moor (1997) and Umlauft, Lederer, and Hirche
2017), mostly for autonomous black-box nonlinear models. Note,
owever, that models that enjoy these other types of stability
roperties can still exhibit a large sensitivity to input changes and
nitial conditions.

To address the challenge of identifying nonlinear models with
form of incremental stability, we focus on a practically relevant
lass of nonlinear systems, namely Lur’e-type systems (Khalil,
996). These systems are block structured in the sense that all
he LTI dynamics are captured in an LTI block and separated from
he nonlinearities that are captured in a static nonlinear block
n the feedback loop. The class of Lur’e-type systems encom-
asses so-called Wiener, Hammerstein and nonlinear feedback
ystems and, therefore, captures a large class of nonlinear sys-
ems. In the system identification literature, Lur’e-type systems
re also referred to as nonlinear feedback systems (Giri & Bai,
010), and NonLinear Linear Fractional Representation (NL-LFR)
ystems (Schoukens & Tóth, 2020; Vanbeylen, 2013).
Different approaches for the identification of Lur’e-type sys-

ems have been proposed in literature (Hu & Ding,
013; Mulders, Vanbeylen, & Usevich, 2014; Paduart, Horvath, &
choukens, 2004; Schoukens, Nemeth, Crama, Rolain, & Pintelon,
003; Schoukens & Tiels, 2017; Schoukens & Tóth, 2020; Van Mul-
ers, Schoukens, & Vanbeylen, 2013; Van Pelt & Bernstein, 2001;
anbeylen, 2013; Wang, Shen, Wu, & Ji, 2016). What most of
hese approaches have in common is that, as a final step in
he identification procedure, a non-convex cost function has to
e minimized using gradient-based optimization routines. Fur-
hermore, all these approaches are formulated in a discrete-time
etting. Although continuous-time counterparts of most of these
ethods can be formulated readily, it is an open problem how to
erform the gradient-based minimization of the cost function in
he continuous-time setting in a numerically efficient way. More
pecifically, any gradient-based optimization routine requires the
omputation of model responses to evaluate the cost function
nd requires the computation of the gradient of the cost function
ith respect to the model parameters. While model simulation
f discrete-time nonlinear models boils down to a series of com-
utationally cheap algebraic operations, the standard means of
odel simulation for continuous-time nonlinear models is nu-
erical forward integration, which is computationally extremely
xpensive.
In this paper, we present a parametric identification approach

or a class of continuous-time single-input single-output (SISO)
ur’e-type systems that: (i) guarantees the identified model to be
xponentially convergent and, (ii) uses numerically efficient tools
o compute model responses and gradient information to be used
or gradient-based optimization. Point (i) guarantees that the
dentified model is globally exponentially convergent, which is a
roperty of (non)linear models that guarantees the uniqueness,

oundedness and global exponential stability of the steady-state i

2

solution (Pavlov, van de Wouw, & Nijmeijer, 2006). As a conse-
quence, for any bounded excitation, the identified model ‘forgets’
its initial condition and, therefore, exhibits a uniquely defined,
bounded steady-state solution, which is globally exponentially
stable and depends solely on the applied excitation. Furthermore,
the identified model enjoys the property that a small variation of
the excitation signal results in a small variation of the steady-
state output, which adds to the robustness of the identification
result. Point (ii) enables system identification of continuous-time
nonlinear models in a computationally efficient way. Hereto, the
so-called mixed-time-frequency (MTF) algorithm is employed to
enable fast computation of steady-state model responses un-
der periodic excitations (Pavlov, Hunnekens, Wouw, & Nijmeijer,
2013). The MTF algorithm facilitates usage of global optimization
techniques (Locatelli & Schoen, 2013) and also enables efficient
computation of the gradient of the underlying cost function with
respect to the model parameters, which can be effectively used
in any gradient-based optimization routine.

We demonstrate the performance and the computational ben-
efits of the proposed identification approach in two case studies.
The first case study is a simulation example, where we identify a
black-box nonlinear model. We show that the proposed identifi-
cation strategy is significantly faster than conventional methods
as the computation time is reduced from hours to only minutes.
he second case study is an experimental study on mechanical
entilation, which is used to regulate the breathing of patients in
espiratory distress during nursery of intensive-care and acutely
ll surgical patients. Particularly, during the COVID-19 crisis, me-
hanical ventilation is extensively used to support breathing of
ospitalized patients with severe lung damage. In our longstand-
ng relation with Demcon Macawi Respiratory Systems, Best,
he Netherlands, we mainly focused on the pressure control
spect (Hunnekens, Kamps, & van de Wouw, 2018; Reinders,
unnekens, Heck, Oomen, & van de Wouw, 2020). In this paper,
e address the identification of the parameters of a first-principle
odel. The model includes the patient’s lung parameters, which

eveal important patient health information that is used in the
edical decision-making process (Amato et al., 2015; Lachmann,
992) and for pressure control purposes (Hunnekens et al., 2018;
ehrani, Rogers, Lo, Malinowski, Afuwape, Lum, Grundl, & Terry,
004). We show that our identification method significantly re-
uces the computation time, which is crucial as it enables faster
atient treatment with the aim to avoid negative consequences
or the patient’s lungs (Gajic, Dara, Mendez, Adesanya, Festic,
aples, et al., 2004; Slutsky & Ranieri, 2013) and, saves valuable
ime of the medical practitioner.

In summary, the main contribution of this paper is a compu-
ationally efficient approach to the identification of continuous-
ime convergent Lur’e-type systems that guarantees that the
dentified model is also globally exponentially convergent. We
ave demonstrated theoretically that this approach is statistically
onsistent and we have demonstrated numerically that this ap-
roach is effective and computationally efficient. Furthermore,
e have shown that the developed approach is an enabler for

nnovation in mechanical ventilation as it allows to identify
hysical parameters in a fast way, which can subsequently be
sed for improved patient treatment.
A preliminary part of this work is presented in

hakib, Pogromsky, Pavlov, and van de Wouw (2019). Compared
o Shakib et al. (2019), the current paper considers an extended
odel class and a more generic model parametrization. Fur-

hermore, this paper includes a statistical consistency analysis
f the estimator, a detailed overview of methods to obtain an
nitial convergent model, a novel simulation case study and an
xperimental validation of the proposed identification approach.
The remainder of this paper is structured as follows. Section 2
ntroduces the considered class of Lur’e-type systems and recalls
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ufficient conditions for convergence. Section 3 formally poses
he identification problem as a constrained optimization prob-
em and also shows the statistical consistency of the estimator.
ection 4 provides an overview of methods to minimize the cost
unction, constrained to the set of convergent models. Section 5
ntroduces the MTF algorithm and also shows how the gradient of
he cost function is computed accurately and efficiently. Section 6
resents the performance of the identification approach in a
imulation study. Section 7 describes the mechanical ventilation
ase study. Section 8 closes with concluding remarks.

. Convergent Lur’e-type systems

We consider SISO Lur’e-type systems described by

ẋ(t) = Ax(t) + Bu(t) + Lw(t),
y(t) = Cx(t) + Dw(t),
z0(t) = Fx(t) + Gu(t) + Hw(t),
u(t) = −φ(y(t), w(t)),

(1)

where x(t) ∈ Rn is the state vector, y(t) ∈ R is the un-
measured feedback signal, z0(t) ∈ R is the output, w(t) ∈ R
is the user-defined external input, φ(y(t), w(t)) : R × R →

R is a static nonlinear function. We assume that φ(0, w) =

0∀w ∈ R. Fig. 1 depicts the considered Lur’e-type system
schematically. Although checking stability of forced LTI systems
is well-understood, checking stability of (forced) solutions of
nonlinear systems is non-trivial. Consequently, enforcing stability
on the identified nonlinear model becomes challenging (Ljung,
2010). To address this challenge, we use the notion of convergent
dynamics defined as follows.

Definition 1 (Pavlov et al., 2006). System (1) with input w(t)
that is defined and bounded on t ∈ R, is said to be globally
exponentially convergent if there exists a solution x̄(t) satisfying
the following conditions:

• x̄(t) is defined and bounded on t ∈ R,
• x̄(t) is globally exponentially stable.

The solution x̄(t) is called the steady-state solution and de-
ends on the applied excitation signal w(t). For the considered

system (1), the following theorem provides sufficient conditions
for global exponential convergence. Here, vertical bars are used
to denote the Euclidean norm.

Theorem 1 (Pavlov et al., 2013). Consider system (1) and suppose
that

C1 The matrix A is Hurwitz;
C2 There exists a K > 0 such that the nonlinearity φ(y, w)

satisfies
⏐⏐⏐ φ(y2,w)−φ(y1,w)

y2−y1

⏐⏐⏐ ≤ K for all y1, y2, w ∈ R;

C3 supω∈R |C(jωI − A)−1B| < 1
K .

hen, for any input w(t) that is defined and bounded on t ∈ R,
system (1) is globally exponentially convergent according to Defi-
nition 1. Moreover, any other solution x(t) of system (1) subject to
the same input w(t) satisfies

|x(t) − x̄(t)| ≤ α|x(t0) − x̄(t0)|e−β(t−t0), ∀t ≥ t0.

Constants α > 0 and β > 0 are independent of the input w(t).

For notational convenience, we write exponentially conver-
gent instead of exponentially convergent for any bounded in-
put w(t) from here on. The conditions of Theorem 1 are used
in Section 3 to enforce the identified Lur’e-type model to be
 L

3

Fig. 1. Schematic representation of Lur’e-type system (1).

globally exponentially convergent according to Definition 1. Glob-
ally exponentially convergent systems ‘forget’ their initial con-
dition since, independent of the initial condition, all solutions
x(t) converge exponentially to the steady-state solution x̄(t). The
conditions of Theorem 1 give the even stronger property of input-
to-state convergence, which implies that small variations (in the
infinity norm) of the input signal w(t) lead to small variations
(in the infinity norm) of the steady-state solution x̄(t), see Def-
inition 3 in (Pavlov et al., 2006). Convergent systems also have
the property that when excited by a periodic excitation signal
w(t) with period-time T , the steady-state solution x̄(t) is also
periodic with the same period-time T (Pavlov et al., 2006). In
he literature, often the PISPO (Periodic Input, the same Pe-
iod Output) system class is considered, which also possesses
his property (Schoukens, Pintelon, Dobrowiecki, & Rolain, 2005;
choukens & Tiels, 2017). This latter property facilitates the use
f only steady-state data for identification, which is common
ractice in nonlinear system identification (Schoukens & Ljung,
019).

. Identification setting

This section formally introduces the identification problem.
ereto, we first introduce the considered model class. After that,
e introduce the cost function central in the identification prob-

em and show that the proposed estimator is statistically consis-
ent.

.1. Model parametrization

The considered model class is a copy of (1):

ẋ(t, θ ) = A(θ )x(t, θ ) + B(θ )u(t, θ ) + L(θ )w(t),
y(t, θ ) = C(θ )x(t, θ ) + D(θ )w(t),
z(t, θ ) = F (θ )x(t, θ ) + G(θ )u(t, θ ) + H(θ )w(t),
(t, θ ) = −ϕ(y(t, θ ), w(t), θ ),

(2)

arametrized by the vector θ ∈ Rnθ . The state dimension n of the
rue system (1) is considered known.

We distinguish between two parametrization approaches,
amely (i) the model parametrization following from first-
rinciple modeling; and (ii) a black-box model parametrization.
n approach (i), the model parameters of both the linear and non-
inear parts have a physical meaning. Such model parametrization
s used in the experimental case study in Section 7. In approach
ii), the parameters do not have a physical meaning. Then, for the
tate–space matrices, a canonical form or a full parametrization
an be taken, in which each element of the state–space matrices
s one model parameter. In a black-box approach, the nonlinearity
is typically parametrized by a set of basis function as follows:

(y(t, θ ), w(t), θ ) =

nθ∑
k=1+nLTI

θkfk(y(t, θ ), w(t)), (3)

here nLTI is the number of parameters used to parametrize the

TI block. The user-defined basis functions fk(y(t, θ ), w(t)) have
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ssociated parameters θk. A black-box model parametrization is
used in the simulation case study presented in Section 6.

One of the goals of this work is to guarantee that the iden-
tified model is globally exponentially convergent according to
Definition 1. To this extent, we define the set Θ ⊂ Rnθ with a
onempty interior as the set of parameter vectors θ for which
odel (2) satisfies conditions C1–C3 in Theorem 1 (with A,B, C,

φ(y, w) replaced by A(θ ), B(θ ), C(θ ), ϕ(y, w, θ ), respectively). The
set Θ serves as a constraint on the parameter vector θ to be
respected in the identification process. We close this section
by assuming that the to-be-identified true system (1) is also
globally exponentially convergent, which is a stability property
that the developed identification method aims to preserve for the
identified model.

Assumption 1. The true system (1) is in the model class pro-
posed in (2) with parameter vector θ0 ∈ intΘ , and satisfies
conditions C1–C3 of Theorem 1. Therefore, the true system (1)
is globally exponentially convergent according to Definition 1.

Remark 2. The nonlinearity ϕ of model (2) should be
parametrized carefully in a black-box parametrization approach.
In particular, the incremental sector bound imposed by condition
C2 in Theorem 1 should be satisfied globally, i.e., for all y1, y2, w ∈

R. Inappropriate choices for the basis functions fk in (3) can
lead to unstable models and to models that exhibit multiple
co-existing (stable) steady-state solutions. This is encountered
in, e.g., polynomial basis functions (Decuyper et al., 2018). Suit-
able nonlinearities are, e.g., piecewise linear maps, sigmoids, the
arctangent function and the hyperbolic tangent function.

3.2. Cost function & consistency

Assumption 1 guarantees that the true system is globally
exponentially convergent. Therefore, when excited by a periodic
input w(t) with period-time T , the periodic steady-state output
z̄0(t) of system (1) has the same period-time T . In practice, only
a discrete version of the measured steady-state output z̄0(t) is
available at sampling instants tk := t0 + kts with k = 1, . . . ,N ,
where ts is the sampling interval and N = PT/ts is the total
number of samples in P steady-state periods. We assume the
following noise scenario.

Assumption 2. The measured output is z̄(tk) = z̄0(tk) + e(tk).
The discrete-time noise source e(tk) is zero-mean Gaussian white
noise with finite variance σ 2

e and independent of the applied
input signal w(tk).

By guaranteeing that θ ∈ Θ , i.e., the candidate model is also
globally exponentially convergent, model (2) subject to the same
periodic input w(t) results in the periodic steady-state output
z̄(t, θ ) with the same period-time T . This leads to the definition
of the steady-state error over P periods:

ϵ̄(tk, θ ) := z̄(tk, θ ) − z̄(tk), k = 1, . . . ,N. (4)

The squared simulation error is then taken as cost function, which
is defined as follows:

JN (θ ) :=
1
N

N∑
k=1

ϵ̄(tk, θ )2. (5)

iven the data set {w(tk), z̄(tk)}Nk=1, the identification objective
s to find the parameter vector θ̂N that globally minimizes JN (θ )
onstrained to the set of convergent models characterized by the
arameter set Θ:

ˆN = argmin JN (θ ). (6)

θ∈Θ

t

4

The following persistency of excitation assumption is required
to study consistency of the estimator (6).

Assumption 3. The unique global minimum of VN (θ ) :=
1
N∑N

k=1 (z̄(tk, θ ) − z̄0(tk))2 is θ0.

The function VN (θ ) can be interpreted as the steady-state
mismatch between the model response z̄(tk, θ ) and the noiseless
system response z̄0(tk). Assumptions 1–3 allow us to formulate
the following consistency result.

Theorem 2. Under Assumptions 1–3, the estimate θ̂N in (6)
converges in probability to θ0, i.e.,

lim
N→∞

E
[
θ̂N − θ0

]
= 0.

Proof. The proof can be found in Appendix A. ■

Remark 3. The model parametrization is non-unique
(Schoukens, Gommé, Van Moer, & Rolain, 2008; Schoukens &
Tiels, 2017) as a model subject to a similarity transformation of
the LTI block, a gain exchange between the LTI block and the static
nonlinear block or a loop-transformation (Khalil, 1996) produces
the same steady-state output. Therefore, the true parameter vec-
tor θ0 is a set and the consistency claim of Theorem 2 should be
nderstood in the sense that θ̂N converges in probability to the
et θ0 as N → ∞.

. Cost function minimization strategy

The identification problem defined in (6) is a constrained opti-
ization problem with the cost function in (5). As this cost func-

ion is generally non-convex, we propose a two-step optimization
pproach to solve (6): (i) initialization and (ii) gradient-based
ptimization. The result of step (i) should be a set of initial model
arameters θinit in the vicinity of θ0, which globally minimizes
N (θ ). For applicability of the numerically efficient tools that we
resent in Section 5, the initial model with parameters θinit should
atisfy the conditions of Theorem 1 and, therefore, be globally
xponentially convergent. The gradient-based search of step (ii)
s started from the set of initial parameters θinit and results in
he parameter set θ̂N that corresponds to nearest minimum of
he cost function JN (θ ). Again, for applicability of the numerically
fficient tools that we present in Section 5, in all optimiza-
ion iterations of the gradient-based search, the conditions of
heorem 1 should be satisfied.

.1. Initialization

Let us discuss three approaches for the initialization step that
ield a set of initial model parameters θinit . Again, we want to
tress that the model with parameters θinit should satisfy the
onditions of Theorem 1.

hysical insight This method is only applicable for models that
re derived by first-principle modeling, implying that the pa-
ameters of these models represent physical quantities. The user
ppropriately chooses the initial parameters θinit based on its
hysical insights. However, it should be kept in mind that the
odel with parameters θinit should satisfy the conditions of The-
rem 1, which can make the initial guess challenging, especially
or models with a large number of parameters.

est Linear Approximation This method relies on estimating
he so-called Best Linear Approximation (BLA) of the nonlinear
ystem (Schoukens et al., 2005). Hereto, the MATLAB implemen-
ations N4SID or TFEST, can be used, which can also enforce the
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(θ )-matrix of the identified model to be Hurwitz. In addition, by
mposing no feedback, i.e., choosing C(θ ) and D(θ ) both 0, B(θ ) =

or ϕ(y, w, θ ) = 0, the initial model satisfies the conditions
of Theorem 1. The BLA framework has the advantages that it
allows for fast estimation of initial model parameters, it provides
a nonlinear distortion analysis, and it gives a rough estimate for
the state dimension.

Global optimization This method employs global optimization
routines such as genetic-type, swarm intelligent or Monte-Carlo
routines (Locatelli & Schoen, 2013). Although global optimization
is typically computationally expensive, we can achieve fast op-
eration using the efficient numerical tools that we introduce in
Section 5. Global optimization routines typically cluster around
the global minimum and provide, therefore, an accurate set of
initial model parameters θinit that correspond to a full nonlinear
odel rather than a linear model as in the BLA framework. To

imit the search space, (rough) bounds on the parameters values
hould be known a priori.
Depending on the application at hand, either one of the three

ethods detailed above can be used to find a set of initial model
arameters θinit . In the simulation case study in Section 6, we
emonstrate the effectiveness of a global optimization routine.
n the experimental case study in Section 7, we use available
nowledge on the physical parameters for initialization. Numer-
us identification results with the BLA method are presented in
he literature, see Schoukens and Tiels (2017) for an overview.

emark 4. Global optimization can also be viewed as a stand-
lone identification procedure without a local gradient-based
earch as a second step. To view it as a two-step approach,
onsider step one as a less accurate but global search and step
wo as a local refinement.

.2. Gradient-based optimization

After an initial parameter vector θinit in the initialization step is
btained, a gradient-based search can be performed. Hereto, the
radient of the cost function in (5) with respect to the parameter
ector θ is required:

∂ J(θ )
∂θ

=
2
N

N∑
k=1

ϵ̄(tk, θ )
∂ϵ̄(tk, θ )
∂θ

. (7)

In (7), the steady-state error ϵ̄(tk, θ ) defined in (4), as well as the
gradient of this steady-state error ∂ϵ̄(tk, θ )/∂θ = ∂̄ z̄(tk, θ )/∂θ ,
are required. We show in the next section that we can compute
both ϵ̄(tk, θ ) and ∂ϵ̄(tk, θ )/∂θ in a computationally efficient and
accurate way using the MTF algorithm.

To facilitate application of the MTF algorithm during a
gradient-based search, the candidate model should be convergent
in all iterations, i.e., θ ∈ Θ . In literature, there are many
gradient-based methods1 that deal with constrained optimization
problems (Papalambros & Wilde, 2000). Alternatively, one can
introduce an exterior penalty function ψ(θ ), which turns the
constrained optimization problem into an unconstrained one,
where

ψ(θ ) =

{
0 if θ ∈ Θ,

∞ if θ ̸∈ Θ.

The modified cost function then reads as follows:

Jmod(θ ) = J(θ ) + ψ(θ ) (8)

1 MATLAB provides built-in solvers such as fmincon that can handle
onstrained optimization problems.
5

with J(θ ) defined in (5). It can be minimized by any gradient-
based optimization algorithm (such as the Levenberg–Marquardt
algorithm) to yield

θ̂N,mod = argmin
θ

Jmod(θ ). (9)

The modified cost function Jmod(θ ) is unbounded for models not
nside the set of the convergent models, but leaves the cost
unction J(θ ) unaffected for models inside the set of convergent
odels. Consequently, as long as the set of convergent models

s respected, the gradient of the cost function with respect to
he model parameters remains unaffected. In contrast to interior
enalty functions (also known as barrier functions), the exterior

penalty function does not result in a bias in the parameters, i.e., θ̂N
in (6) equals θ̂N,mod in (9).

5. Computation of steady-state responses & gradient informa-
tion

As shown in the previous section, the steady-state output
z̄(t, θ ) of model (2) is required at sampling instances tk in the
evaluation of the cost function (5) and the computation of its
gradient (7). First, we introduce the MTF algorithm, which en-
ables fast computation of the steady-state response of convergent
Lur’e-type models. After that, we present a method to compute
the gradient ∂ϵ̄(t, θ )/∂θ , required in (7), again, in a computation-
ally efficient manner using the MTF algorithm.

5.1. Mixed-time-frequency algorithm

To overcome the time-consuming drawbacks of computing
model responses using numerical forward integration, Pavlov
et al. (2013) developed the so-called MTF algorithm. If the un-
derlying Lur’e-type model satisfies the conditions stated in The-
orem 1, then this algorithm computes the steady-state model
response z̄(t, θ ) efficiently under a periodic excitation w(t). For
notational convenience, the dependency on θ is dropped in this
section.

The MTF algorithm is an iterative algorithm. In each iteration
i, two mappings are involved:

ui+1 = Fuy ◦ yi, (10a)

yi+1 = Fyu ◦ ui+1 + Fyw ◦ w, (10b)

where the nonlinear steady-state operator Fuy ◦ yi := −ϕ(yi, w),
and the linear steady-state operators Fyu,Fyw map periodic sig-
nals ui+1 and w to the periodic steady-state output yi+1. The MTF
algorithm relies on the fact that the composed operator Fuy◦Fyu is
a contraction operator acting from the space2 L2(T ) to L2(T ), if the
model satisfies the conditions of Theorem 1. For computational
efficiency, the nonlinear mapping Fuy ◦ yi is evaluated in time
domain, while the linear mappings Fyu and Fyw are evaluated in
frequency domain according to the frequency response functions
(FRFs):

Gyu(jω) = C(jωI − A)−1B,

Gyw(jω) = C(jωI − A)−1L + D.

The MTF algorithm iteratively evaluates the mappings (10b),
(10a), while transforming the intermediate signals between the
time- and frequency-domain using the (Inverse) Fast Fourier
Transform ((I)FFT), truncated to only M frequency contributions.
Hereto, denote by Ȳ [m] the sequence of Fourier coefficients of

2 The space L2(T ) denotes the space of piecewise-continuous real-valued
-periodic scalar functions y(t) satisfying ∥y∥L2 < ∞, where ∥y∥2

L2
:=

1 ∫ T
|y(t)|2dt .
T 0
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¯(t). Then, the truncated version of Ȳ [m], denoted by ȲM
[m] is

efined as follows:

¯M
[m] =:

{
Ȳ [m] for |m| ≤ M,
0 for |m| > M,

nd its time-domain representation is denoted by ȳM (t).
Having the steady-state ȳ(t), one can trivially compute ū(t) in

he time domain using Fuy and the output z̄(t) in the frequency
omain using the following FRFs:

Gzu(jω) = F (jωI − A)−1B + G,

zw(jω) = F (jωI − A)−1L + H.

he following theorem shows that the MTF algorithm converges
o the unique ‘true’ steady-state model response and gives an
ccuracy bound for the obtained steady-state solution.

heorem 5 (Pavlov et al., 2013). Under the conditions of Theorem 1,
or any M > 0, there is a unique limit ȳM to the sequence yi, i =

, 2, . . ., resulting from the iterative process with truncation (10a),
10b). Moreover,

ȳ − ȳM∥L2 ≤
1

1 − γyuK

(
γM
yuγywK

1 − γyuK
∥w∥L2

+ γyw∥w − wM
∥L2

)
with

γyu := sup
m∈Z

|Gyu(jmω)|, γM
yu := sup

m>|M|

|Gyu(jmω)|,

yw := sup
m∈Z

|Gyw(jmω)|.

Theorem 5 shows that
ȳ − ȳM


L2

can be made arbitrar-
ily small. Hereto, observe that, for large M , γM

yu drops to zero
thanks to the transfer from u to y being strictly proper) and
hat

w − wM

L2

drops to zero by the Riesz–Fischer theorem,
see, e.g., Beals (2004). From here, also

z̄ − z̄M

L2

can be made
arbitrarily small. Consider

z̄ − z̄M = Fzu ◦ (ū − ūM ) + Fzw ◦ (w − wM ) (11)

with Fzu and Fzw being linear steady-state operators that map
the inputs u and w to the steady-state output z. By the Riesz–
Fischer theorem, it is clear that both

ū − ūM

L2

and
w − wM


L2

converge to zero for large M , which guarantees that
z̄ − z̄M


L2

also converges to zero for large M .
The MTF algorithm is presented in Algorithm 1. In lines 1 to 4,

the contribution of the excitation signal w(t) in the steady-state
output ȳ(t) is computed in the frequency domain and trans-
formed to the time domain. After that, inside the while loop, first
the nonlinearity is evaluated in the time domain in line 6 and its
output is transformed to the frequency domain in line 7. Next,
in lines 8 and 9, the LTI dynamics are evaluated in the frequency
domain and the output y(t) is transformed to the time domain.
After convergence of the signal y(t), the model output z̄(t) is
computed in the frequency domain in line 12 and transformed to
the time domain in line 13. The termination criterion is the nor-
malized mismatch between the Fourier coefficient Yi and those
of the previous iteration Yi−1, measured in the ℓ2 signal norm,
which is defined as ∥Z∥

2
ℓ2

:=
∑

∞

m=−∞
|Z[m]|

2. The MTF algorithm
with truncation can be considered as a multiharmonic variant of
the describing function method, see Mees (1972) for a discussion
for the autonomous case. The computed steady-state response
z̄(t, θ ) can be used together with the measured response z̄(t) to

compute the output error (4), which can be subsequently used

6

in (5) and (7) in an optimization routine to solve the underlying
identification problem.

Algorithm 1 Mixed-Time-Frequency Algorithm
1: Calculate W [m] of w(t) for |m| ≤ M using FFT.
2: Evaluate LTI dynamics in frequency domain

Y0[m] = Gyw(jmω)W [m] for |m| ≤ M .
3: Compute y0(t) of Y0[m] using IFFT.
4: Set iteration counter i = 0.
5: while ||Yi − Yi−1||ℓ2/||Yi−1||ℓ2 > Y ⋆ do
6: Evaluate nonlinearity in time domain

ui+1(t) = −ϕ(yi(t), w(t)).
7: Compute Ui+1[m] of ui+1(t) using FFT.
8: Evaluate LTI dynamics in frequency domain

Yi+1[m] = Gyu(jmω)Ui+1[m] + Y0[m] for |m| ≤ M .
9: Compute yi+1(t) of Yi+1[m] using IFFT.
0: Set i = i + 1.
1: end
2: Evaluate LTI dynamics in frequency domain

Z[m] = Gzw(jmω)W [m] + Gzu(jmω)Ui[m] for |m| ≤ M .
13: Compute z(t) of Z[m] using IFFT.

5.2. Gradient computation

Any gradient-based optimization routine requires the gradient
of the cost function with respect to the model parameters as
in (7). It is well known that this gradient can be computed by
simulation of a parameter sensitivity model (Keesman, 2011;
Suykens, Demoor, & Vandewalle, 1995).

The sensitivity model is a continuous-time model with a simi-
lar structure as the proposed model structure. Therefore, in other
works, its response is computed in the same way as the model
response is computed, which is typically done by numerical for-
ward integration. We show that the sensitivity model in our
identification problem is again a convergent Lur’e-type model
satisfying the conditions of Theorem 1, which facilitates the use of
the efficient MTF algorithm to compute its steady-state response,
i.e., the gradient information of the steady-state model response
with respect to the parameters. The methodology extends that
in Pavlov et al. (2013), where the to-be-optimized parameters
only appeared in the static nonlinear block, whereas in the more
generic case in (2), the parameters appear in both the LTI and
nonlinear blocks. The theorem below presents the parameter
sensitivity model, where x̄(t, θ ), ū(t, θ ) and ȳ(t, θ ) of (2) enter
s inputs. Partial derivatives with respect to θ are denoted by
ubscript θ , e.g., xθ := ∂x/∂θ .

heorem 6. Consider model (2). Under the conditions of Theorem 1,
f the partial derivative ∂ϕ(y, w, θ )/∂y exists and is continuous for
∈ R, θ ∈ Θ , and if the partial derivatives ϕθ (y, w, θ ), Aθ (θ ), Bθ (θ ),
θ (θ ), Dθ (θ ), Fθ (θ ), Gθ (θ ), Hθ (θ ), Lθ (θ ) exist and are continuous for
∈ R, θ ∈ Θ , then the partial derivative ∂ϵ̄(t, θ )/∂θi is the unique
-periodic steady-state output z̄θi (t, θ ) of the following model:

ẋθi (t, θ ) = A(θ )xθi (t, θ ) + B(θ )Ũ(t, θ ) + W (t, θ ),
yθi (t, θ ) = C(θ )xθi (t, θ ) + Y (t, θ ),

zθi (t, θ ) = F (θ )xθi (t, θ ) + G(θ )Ũ(t, θ ) + Z(t, θ ),

Ũ(t, θ ) = −ϕy (ȳ(t, θ ), w(t), θ) yθi (t, θ ),

(12)

here

(t, θ ) =Aθi (θ )x̄(t, θ ) + Bθi (θ )ū(t, θ )
+ Lθi (θ )w(t) − B(θ )ϕθi (ȳ(t, θ ), w(t), θ ),

Y (t, θ ) =C (θ )x̄(t, θ ) + D (θ )w(t), (13)
θi θi
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Fig. 2. Schematic view of mass–spring–damper system.

Z(t, θ ) =Fθi (θ )x̄(t, θ ) + Gθi (θ )ū(t, θ )
+ Hθi (θ )w(t) − G(θ )ϕθi (ȳ(t, θ ), w(t), θ ).

Furthermore, model (12) satisfies the conditions of Theorem 1 with
A,B, C, φ(y, w) replaced respectively by A(θ ), B(θ ), C(θ ),
y (ȳ(t, θ ), w(t), θ) yθi (t, θ ) and model (12) is convergent according
o Definition 1.

roof. The proof can be found in Appendix B. ■

The above theorem shows that the gradient ∂ϵ̄(t, θ )/∂θi, for
= 1, . . . , nθ , is the steady-state response of a convergent Lur’e-
ype model satisfying the conditions of Theorem 1. Hence, its
teady-state response can be computed using the MTF algorithm
or every parameter θi in θ individually. We emphasize that the
radient information can be computed with arbitrary accuracy
sing the MTF algorithm, which can positively affect the con-
ergence speed of the gradient-based search used to solve the
dentification problem in (6).

emark 7. Once the steady-state output z̄(t, θ ) of (2) is com-
puted by the MTF algorithm, the steady-state state x̄(t, θ ), re-
uired in (13), is computed in the frequency-domain from the
inear part of (2).

. Simulation case study: Double mass–spring–damper system

.1. True system & model class

To illustrate the effectiveness of the identification approach,
e consider a simulation example on the double mass–spring–
amper system depicted schematically in Fig. 2. The dynamics
re described by the Lur’e-type system in (1) with the matrices
efined in (15) and the following nonlinearity:

(y, w) =

3∑
i=1

αi tanh(βiy + γi) − αi tanh(γi). (14)

The static nonlinearity has the physical interpretation of a nonlin-
ear spring between the fixed earth and the first cart. The system
is characterized by masses m1 = 0.15 kg, m2 = 0.45 kg, linear
damping constants d1 = d2 = 0.4 Nm/s, linear spring constants
1 = 1000 N/m, k2 = 2200 N/m, and parameters defining the

nonlinear spring φ(y, w) in (14): α1 = 1, α2 = 0.5, α3 = 1, β1 =

0, β2 = 20, β3 = 20, γ1 = 3, γ2 = −3, γ3 = 0. The excitation
is the force exerted on the second cart and the output z is the

osition of the second cart. The Bode magnitude diagram of the
ransfer functions of the LTI part of the true system and the graph
f the nonlinearity are included in Fig. 3.
The goal is to identify a black-box Lur’e-type model for this

ystem. Hereto, consider the model class in (2) with state dimen-
ion n = 4 and consider a full parametrization for the LTI part,
7

Table 1
Identification results for different SNRs.

SNR [dB] σ 2
e J(θinit ) J(θ̂N )

20 1.55 × 10−3 2.75 × 10−2 1.62 × 10−3

40 1.74 × 10−5 1.45 × 10−2 1.76 × 10−5

60 1.57 × 10−7 3.08 × 10−1 1.61 × 10−7

∞ 0 2.16 × 10−2 1.67 × 10−17

i.e., each element of each model matrix is a model parameter. The
nonlinearity is characterized as follows:

ϕ(y, w, θ ) = W (θ )[2]
⊤

tanh
(
W (θ )[1]y + b(θ )

)
(16)

− W (θ )[2]
⊤

(
tanh(b(θ )) +

1
2
W (θ )[1]

)
,

where each element of the vectors W [1](θ ),W [2](θ ), b(θ ) ∈ R3

is a model parameter. This nonlinear function represents a spe-
cific type of a single hidden-layer feedforward neural network
with hyperbolic tangent activation functions and a linear output
layer (Suykens et al., 1995). This model is characterized by nθ =

44 parameters, which we collect in the vector θ ∈ Rnθ . It can
be shown that the conditions of Theorem 1 are satisfied for any
θ ∈ Θ with

Θ :=

{
θ ∈ Rnθ |λ (A(θ )) ∈ C<0,W [1](θ ),W [2](θ ) ∈ R3

≥0,

sup
ω∈R

⏐⏐C(θ )(jωI − A(θ ))−1B(θ )
⏐⏐ < 1

K (θ )

}
,

where λ(A(θ )) denotes the eigenvalues of the matrix A(θ ), C<0
enotes the set of complex numbers with negative real part,
≥0 denotes the set of nonnegative real numbers and K (θ ) :=

1
2W (θ )[2]

⊤

W (θ )[1]. For any θ ∈ Θ , the proposed model is globally
xponentially convergent according to Definition 1. The true sys-
em parametrized by θ0 is in the model class, i.e., θ0
∈ Θ .

6.2. Identification results

The excitation signal w is a random-phase multisine that ex-
ites frequencies between 0.5 Hz and 200 Hz with 0.5 Hz spacing
nd is sampled at 500 Hz, implying a period time of T = 2 s.
ollowing Assumption 2, discrete-time white noise is added to
he steady-state output z̄0, where the variance σ 2

e is selected such
hat a signal-to-noise (SNR) of 20, 40, 60 and ∞ dB is realized.
he SNR of ∞ corresponds to a deterministic setting. To find
n initial parameter set θinit , we employ the so-called controlled

random search (CRS) (Hendrix, Ortigosa, & García, 2001), which is
a global, non-gradient-based optimization routine. In accordance
to Remark 4, we terminate the CRS prematurely. In the second
identification step, we perform a gradient-based search using
Matlab’s fmincon implementation of (Byrd, Gilbert, & Nocedal,
2000) to solve the constrained optimization problem (6).

The results are included in Table 1. Here, it can be seen that
the cost function is successfully minimized to J(θ̂N ) ≈ σ 2

e . For the
specific case of a SNR of 60 dB, Fig. 3 presents the Bode magni-
tude diagram of the LTI part and the graph of the nonlinearity
of the true system (θ0), initial model (θinit ), and the identified
model (θ̂N ). This figure evidences an accurate match between
the identified model and the true system. For the 20 dB SNR
case, the time-domain response is depicted in Fig. 4. In the top
plot, it can be observed that the steady-state error ϵ̄(t, θ̂N ) is
significantly smaller than ϵ̄(t, θinit ). The bottom plot displays a

validation test, where a new realization of the excitation signal
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0 1 0 0

−(k1+k2)
m1

−(d1+d2)
m1

k2
m1

d2
m1

0 0 0 1
k2
m2

d2
m2

−k2
m2

−d2
m2

⎤⎥⎥⎥⎥⎦ ,B =

⎡⎢⎣0
1
0
0

⎤⎥⎦ ,L =

⎡⎢⎣0
0
0
1

⎤⎥⎦ , C =

⎡⎢⎣1
0
0
0

⎤⎥⎦
⊤

,F =

⎡⎢⎣0
0
1
0

⎤⎥⎦
⊤

,D = G = H = 0. (15)
Fig. 3. Bode magnitude diagrams of the involved transfer functions and the graph of the nonlinearity of the true system (θ0), initial model (θinit ) and identified model
θ̂N ). For visualization, the gain exchange between the LTI block and nonlinearity is fixed by normalization of W [1],W [2] and a loop transformation is performed (Khalil,
996).
is used that is 10 times larger in amplitude than the w that is
sed in identification. This validation test shows that the model
ccurately describes the steady-state response of the true system.
e would like to note that all identified models are guaranteed

lobally exponentially converging and, therefore, these identified
odels can safely be used for other excitation signals than the
ne used in identification, without showing instability issues.

.3. Numerical efficiency

To illustrate the numerical efficiency3 of our method, we
onsider the deterministic scenario with an SNR of ∞, i.e., σ 2

e = 0
n Assumption 2 The identification strategy turns out to yield
n ‘almost’ perfect model for the true system evidenced by the
ost J(θ̂N ) being minimized up to Matlab’s numerical 16-digit
recision. In both identification steps, we compute the steady-
tate model responses z̄ and the gradient z̄θ by two methods,
amely by the MTF algorithm presented in Section 5.1 and by
umerical forward integration (NFI). To guarantee a similar level
f accuracy as in MTF, we simulate NFI for 20 periods and take
he last period as steady-state. The result is presented in Ta-
le 2. It can be observed that in the first identification step,
here no gradient information is required, the MTF algorithm
educes the computation time from over 1 and a half hour to
2 s. In the second identification step, where also gradients have
o be computed, the MTF algorithm reduces the computation
ime from over 9 and an half hours to only 3 min and 16 s. In

3 The computations of the examples in Sections 6 and 7 are carried out on
n Intel Core i7-7700HQ, 2.8 GHz processor.
8

Fig. 4. Measured z̄ and the errors ϵ̄ as defined in (4). Top: results for the
identification excitation signal. Bottom: results for the validation excitation
signal.

total, the computation time is reduced with an factor of approx-
imately 150. Such small computation time enables application of
global optimization routines for initialization and also enables an
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able 2
omparison of computation time between MTF and NFI for both identification
teps. The number of computed steady-state model responses is included in the
econd column.
Step Model response MTF [s] NFI [s]

1: CRS 935 32 5927
2: GBS 8450 196 28878
Total 9385 228 34805

Fig. 5. Experimental mechanical ventilation setup.

Fig. 6. Overview of the mechanical ventilation setup.

fficient and effective gradient-based search. Besides highlight-
ng the numerical benefits of our approach, this example also
llustrates one of reasons that literature around identification of
onlinear models is mainly focused on the discrete-time setting;
amely, computing steady-state model responses and gradient
nformation is computationally prohibitively expensive in the
ontinuous-time case using NFI.

. Experimental case study: Mechanical ventilation

The identification strategy developed in this paper is applied
n a mechanical ventilation setup as depicted in Fig. 5. Mechani-
al ventilation is used in intensive-care units to assist or stimulate
espiration of patients who are unable to breathe on their own.
he treatment quality of mechanical ventilation depends on two
spects. The first aspect is the design of the breathing pressure
rofile that is fed to the patient (Amato et al., 2015; Lachmann,
992). The second aspect is the ability to track the designed
reathing pressure profile. Hereto, in the literature, pressure con-
rol strategies are proposed to ensure comfortable and stable
ir flow (Borrello, 2005; Hunnekens et al., 2018; Reinders et al.,
020; Tehrani et al., 2004). In both these aspects, knowledge on
he health condition of the patient’s lungs is crucial as incorrect
reatment can lead to lung damage and, eventually, to patient
ortality (Gajic et al., 2004; Slutsky & Ranieri, 2013). Therefore,
y identification of a first-principle model, we aim to provide
he patient’s health information reflected by the patient’s lung
arameters in a fast way.
9

7.1. First-principle modeling & convergent dynamics

Fig. 6 gives a schematic view of the setup. Using conservation
of flow and taking into account a (signed) quadratic hose resis-
tance, the patient-hose dynamics can be written as follows (Heck,
2018; van de Kamp, 2019):

ẋ = −
1

θ2 (θ1 + θ5)
x − 2

θ5

θ2 (θ1 + θ5)
u,

y = −
θ5

θ1 + θ5
x + w,

z =
θ5

θ1 + θ5
x − 2

θ1θ5

θ1 + θ5
u,

= −ϕ(y, θ ),

(17)

here the scalar nonlinearity is given by

(y, θ ) =
y

θ3 +
θ1θ5
θ1+θ5

+

√(
θ3 +

θ1θ5
θ1+θ5

)2
+ 4θ4|y|

.

The excitation signal w is the pressure pblower generated by the
blower, the output z is the airway pressure pairway, the state x
represents the lung pressure plung , the output of the nonlinearity
u is a scaled flow Qhose through the hose, and, finally, the input
y of the nonlinearity is a scaled pressure drop over the hose
pairway−pblower . The intended leakage flow Qleak flushes the system
from CO2-rich exhaled air. The model is parametrized by the lung
resistance θ1 in mbar sec/ml, lung compliance θ2 in ml/mbar,
the linear hose resistance θ3 in mbar sec/ml, the quadratic hose
resistance θ4 in mbar sec2/ml2 and the linear leakage resistance
θ5 in mbar sec/ml.

For any α > 0, the following nonlinear scaling of the parame-
ters leaves the steady-state response z̄ of model (17) unchanged
for any bounded excitation w (van de Kamp, 2019):

θscaled =
[
αθ1 θ2/α αθ3 α2θ4 αθ5

]⊤
.

This scaling corresponds to a gain exchange between the LTI part
of the model and the nonlinearity ϕ, see Remark 3. Consequently,
parameters θ1, . . . , θ5 cannot be uniquely identified on the basis
of w and z̄ only. As a remedy, we consider the parameter θ5 to
be known a priori and positive in value, since it is only leakage
specific, i.e., independent of the patient and the hose, and it can
be found relatively easily through calibration. Given knowledge
on θ5, the to-be-identified parameters are θ1, . . . , θ4, which are
collected in θ . It is shown in van de Kamp (2019) that model (17)
satisfies all conditions of Theorem 1 for θi > 0, for i = 1, . . . , 4,
yielding the set

Θ := {θ ∈ R4
| θi > 0 for i = 1, . . . , 4}. (18)

Therefore, for any θ ∈ Θ , model (17) is globally exponentially
convergent according to Definition 1.

7.2. Identification experiment

Identification of continuous-time models from discrete data
points is a challenging task due to the unobserved intersample
behavior of the true system. Analysis tools for errors due to in-
tersample behavior and practical guidelines for the design of the
excitation signal are presented (Goodwin, Aguero, Cea Garridos,
Salgado, & Yuz, 2013; Rao & Unbehauen, 2006; Schoukens, Relan,
& Schoukens, 2017; Soderstrom, Fan, Carlsson, & Bigi, 1997). As
we are dealing with a medical application, there is no freedom
in the design of the excitation signal; it is the signal that is also
used during conventional operation. We can only set a standard
target pressure profile ptarget for the blower, which is tracked by
the blower (using an internal control loop) to realize the pressure



M.F. Shakib, A.Y. Pogromsky, A. Pavlov et al. Automatica 136 (2022) 110012

t
a
m

s
l
o
e

i
l
w
s
i
s
a
r
θ

r
t
a
t
T
i
i
T
c
b
t
o
T
r
e
a

7

a
t
T
s
i
a
t
i
t
r
a
h

Fig. 7. Realized (measured) and target breathing pressure.

Table 3
Considered experimental cases with uncertain parameters θ1 and θ2 .
Configuration θ1 · 103 θ2 θ3 · 103 θ4 · 106 θ5 · 102

1 4.5–5.5 19–21 2.6 1.23 2.8
2 4.5–5.5 28.5–31.5 2.6 1.23 2.8
3 4.5–5.5 19–21 2.6 1.23 2.1

pblower at the blower side of the hose, see Fig. 7. The shape of
he blower pressure represents a breathing cycle that starts with
n inhalation phase and follows by an exhalation phase. The
easured pressure pblower is used as the excitation signal w(t) for

identification, implying that the internal control loop generating
pblower from ptarget is not part of the to-be-identified dynamics. The
period time of ptarget is T = 4 s, with a minimum pressure of 5
mbar and a maximum pressure of 30 mbar. Rather than using
humans in these experiments, the ASL5000 breathing simulator
is utilized, which is specifically designed to emulate the lung
behavior of patients. Furthermore, we consider the case where
the patient is completely sedated, implying no breathing activity
from the patient’s side.

We apply 15 periods of the excitation signal depicted in Fig. 7
and sample the realized blower pressure pblower and the patient’s
airway pressure pairway uniformly at a sampling frequency of
500 Hz. The average of the last 12 periods of the measured pblower
is considered as the periodic input data w(t) and the average of
the last 12 periods of pairway is considered as the steady-state
output data z̄(t), both with a period time of T = 4 s. The total
experiment time is only 1 min for each experiment, which is of
crucial importance in practice as time is costly in this medical
application.

The three hose-patient configurations considered are listed in
Table 3, where the lung parameters θ1 and θ2 are set on the
ASL5000 unit with an accuracy4 of 10% and 5%, respectively. The
lung resistance θ1 remains unchanged over the experiments. To
cover a set of different configurations, both the lung compliance
θ2 and the leakage resistance θ5 are changed from experiment to
experiment. The same hose with parameters θ3 and θ4 is used
for all experiments. The considered configurations represent a
healthy patient for configuration 1 & 3, and a patient with less
stiff lungs for configuration 2.

7.3. Identification results

The identification problem in (6) is solved using the modified
cost function in (8) with the constraint θ ∈ Θ with Θ defined
in (18). The set of initial parameter reflects an ‘average’ config-
uration, see ISO Central Secretary (2020), van de Kamp (2019):

θinit =
[
2.75 · 10−2 26.50 2.55 · 10−3 2.40 · 10−6

]⊤
. (19)

4 https://www.ingmarmed.com/product/asl-5000-breathing-simulator/.
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This initialization method employs the prior knowledge that pa-
rameters are typically close to the ‘average’ values. The identified
parameters θ̂N obtained by solving the optimization problem in
(6) are presented in Table 4.

The measured response z̄(t) for configurations 1, 2 and 3 is
shown in Figs. 8(a)–8(c), respectively. These figures also depict
the steady-state output error ϵ̄(t, θinit ) and ϵ̄(t, θ̂N ), produced by
the initial and identified model, respectively, with ϵ̄ defined in
(4). For comparison, also an LTI transfer-function model is iden-
tified using the TFEST Matlab routine, initialized by the N4SID
routine. The parameters θLTI corresponding to the identified LTI
models have no physical meaning. The steady-state output error
ϵ̄(t, θLTI ) is also included in the respective figures.

From Figs. 8(a)–8(c), we draw the following two conclusions.
Firstly, the optimization problem (6) is successfully solved, as the
error ϵ̄(t, θ̂N ) of the identified nonlinear model is significantly
maller than the error ϵ̄(t, θinit ) of the initial model. Secondly, a
inear model is insufficient to describe the nonlinear dynamics
f this system, since the error ϵ̄(t, θ̂N ) of the identified nonlin-
ar model is significantly smaller than the error ϵ̄(t, θLTI ) of the

identified linear model. Both these conclusions are confirmed
by Table 4, which shows that the cost J(θ̂N ) of the identified
nonlinear model is significantly smaller than both the costs J(θinit )
and J(θLTI ).

The model (17) is a simplification of the system depicted
n Fig. 5. For example, calibration experiments suggest that the
eakage component exhibits a quadratic pressure-flow relation,
hereas this relation is linear in model (17). Furthermore, the
tatic hose model in model (17) does not account for hose dynam-
cs. Consequently, a part of the unmodeled dynamics is compen-
ated for by the identified model parameters, which is reflected
s follows. Firstly, although the same hose is used in all configu-
ations, the results in Table 4 show that its associated parameters
3 and θ4 are different with respect to each other and also with
espect to the ones in Table 3. However, the graph of the iden-
ified nonlinearities in each configuration in Fig. 9 shows that
ll identified models represent the same hose characteristics in
he domain of interest. Besides that, the values for θ3 and θ4 in
able 3 are obtained by a static calibration measurement, which
s not fully representative in case the hose is used in a dynamic
dentification experiment. Secondly, the identified parameters in
able 4 show that θ1 and θ2 are estimated slightly too large
ompared to the preset values as in Table 3. We are informed
y medical personnel that an accuracy of 15% is sufficient for
he lung parameters in the scope of the decision-making process
f patient treatment. If the mean of the uncertain θ1 and θ2 in
able 3 are the true values, then we slightly exceed this accuracy
equirement. We would like to note that a bias in model param-
ters is not a deficiency of the identification approach, but rather
matter of unmodeled dynamics.

.4. Numerical efficiency

To illustrate the computational advantages of the proposed
pproach, the total computation time required to solve the op-
imization problem (6) is included in Table 4 in the column MTF.
his table also includes the total computation time required to
olve the same optimization problem with numerical forward
ntegration (NFI). To guarantee a similar accuracy level for NFI
s for MTF, ten periods of the excitation signal w(t) are applied
o the model in the NFI simulations and the last period of z(t, θ )
s taken as the steady-state model output z̄(t, θ ). Table 4 shows
hat the total computation time when using the MTF algorithm is
educed from roughly 2 and a half minutes to only 14 s. The quick
vailability of the knowledge on the model parameters enables a
igh treatment quality that can start early.

https://www.ingmarmed.com/product/asl-5000-breathing-simulator/
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dentification results of the mechanical ventilation application. Column 1 represents the configuration number. Columns 2–5 contain the identified parameters θ̂N
fter solving the identification problem (6). Columns 6–8 contain the value of the cost function (5) for the identified black-box LTI model (θLTI ), initial model (θinit )
n (19) and identified model (θ̂N ). Columns 9–10 contain the elapsed computation time in seconds that took to solve the identification problem (6).

Configuration Identified parameters θ̂N Value of cost function Computation time

θ1 · 103 θ2 θ3 · 103 θ4 · 106 θ5 · 102 J(θLTI ) J(θinit ) J(θ̂N ) MTF [s] NFI [s]

1 5.48 23.6 1.05 1.51 2.8 1.377 1.661 0.167 13.3 166.1
2 5.78 34.6 0.65 1.85 2.8 2.396 2.549 0.173 11.7 149.4
3 5.43 22.0 1.69 1.32 2.1 1.323 2.177 0.275 12.1 158.2
Fig. 8. Measured z̄ and the errors ϵ̄ as defined in (4).
w
i
a

a

i
f

E

w

Fig. 9. Identified nonlinearity ϕ(y) for each configuration in Table 4 over the
domain of interest in y.

8. Conclusions

This paper presents an identification approach for convergent
continuous-time Lur’e-type systems. The benefits of the proposed
approach are that (i) it guarantees that the identified model
preserves the convergence property, (ii) it is computationally at-
tractive, and, (iii) it is applicable to a large class of block-oriented
feedback systems. In a simulation example, we demonstrated
the effectiveness and computational efficiency of our identifica-
tion approach. Furthermore, in an experimental study on me-
chanical ventilation in hospitals, the identification approach has
been shown to be effective to identify the parameters of a first-
principle model in a fast way, which enables improved patient
treatment.
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Appendix A. Proof of Theorem 2

The proof consists of three parts. In the first step, the expected
value of the cost function (5) with respect to the noise e is
analyzed. Under Assumption 2, it can be shown that

E [JN (θ )] = VN (θ ) + σ 2
e (A.1)

ith VN (θ ) defined in Assumption 3. Since the noise variance σ 2
e

s θ-independent, by Assumption 3 (persistency of excitation),
unique global minimum of E [JN (θ )] exists. By Assumption 1

(system in the model class), this unique global minimum is θ0,
s VN (θ0) = 0.
In the second step, uniform convergence of JN (θ ) to E [JN (θ )],

n the mean squared sense, is analyzed. Under Assumption 2, the
ollowing expression is derived:[
(JN (θ ) − E [JN (θ )])2

]
=

2
N
σ 4
e +

4
N
σ 2
e γ , (A.2)

here γ :=
ts
T

∑T/ts
k=1

{
(z̄0(tk) − z̄(tk, θ ))2

}
< ∞ is a bounded

constant representing the squared error between the bounded
measured steady-state response z̄(tk) and the bounded steady-
state model response z̄(tk, θ ) over one steady-state period. Since
σ 2
e , σ

4
e are finite by Assumption 2 and γ is finite for any θ ∈ Θ by

Assumption 1 (thus also in a neighborhood of θ0), the following
limit holds:

lim E
[
(JN (θ ) − E [JN (θ )])2

]
= 0. (A.3)
N→∞
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In the final step, having (A.1) and (A.3) at hand, along the
same lines as the proof of Theorem 2 in Söderström (1974), it is
concluded that the parameter vector θ̂N converges in probability
to θ0 as N → ∞, i.e.,

lim
N→∞

E
[
θ̂N − θ0

]
= 0.

This completes the proof.

Appendix B. Proof of Theorem 6

The proof is given for the scalar case of θ and can be repeated
analogously for each component of a vector-valued θ . First, con-
sider the following property of Lur’e-type models (2) satisfying
the conditions of Theorem 1.

Property 3 (Pavlov et al., 2013). Consider model (2). Under the
conditions of Theorem 1, if θ1(h) converges to θ2 as h → 0,
and T-periodic w1(t, h) converges to T-periodic w2(t) uniformly
in t ∈ [t0, t0 + T ), then the corresponding steady-state solution
x̄w1(t,h)(t, θ1(h)) converges to x̄w2(t)(t, θ2) uniformly in t ∈ [t0, t0+T )
as h → 0.

Let us show that for p(t, θ, h) :=
1
h (x̄(t, θ + h) − x̄(t, θ )) there

exists the limit xθ (t, θ ) := ∂x/∂θ (t, θ ) = limh→0 p(t, θ, h). For
otational convenience, we drop the argument t from here on

and we define θ+
:= θ + h.

As follows from the definition of the steady-state solution
x̄(θ ) of the model (2), for h ̸= 0, p(θ, h) is a T-periodic function
satisfying the dynamics
dp(θ, h)

dt
=

1
h

(
A(θ+)x̄(θ+) − A(θ )x̄(θ )

)
+

1
h

(
−B(θ+)ϕ(ȳ(θ+), w, θ+) + B(θ )ϕ(ȳ(θ ), w, θ )

)
+

1
h

(
L(θ+) − L(θ )

)
w,

hich can be written as
dp(θ, h)

dt
=

1
h

(
A(θ+)x̄(θ+) − A(θ )x̄(θ )

)
+

1
h

(
A(θ+)x̄(θ ) − A(θ+)x̄(θ )

)
+

1
h

(
−B(θ+)ϕ(ȳ(θ+), w, θ+) + B(θ )ϕ(ȳ(θ ), w, θ )

)
+

1
h

(
−B(θ+)ϕ(ȳ(θ ), w, θ ) + B(θ+)ϕ(ȳ(θ ), w, θ )

)
+

1
h

(
−B(θ+)ϕ(ȳ(θ+), w, θ ) + B(θ+)ϕ(ȳ(θ+), w, θ )

)
+

1
h

(
L(θ+) − L(θ )

)
w =

1
h

(
A(θ+)x̄(θ+) − A(θ+)x̄(θ )

)
+

1
h

(
A(θ+)x̄(θ ) − A(θ )x̄(θ )

)
+

1
h

(
−B(θ+)ϕ(ȳ(θ+), w, θ+) + B(θ+)ϕ(ȳ(θ+), w, θ )

)
+

1 (
−B(θ+)ϕ(ȳ(θ+), w, θ ) + B(θ+)ϕ(ȳ(θ ), w, θ )

)
+

h
12
1
h

(
−B(θ+)ϕ(ȳ(θ ), w, θ ) + B(θ )ϕ(ȳ(θ ), w, θ )

)
+

1
h

(
L(θ+) − L(θ )

)
w.

The existence of the partial derivatives with respect to θ and the
uniform convergence of p(θ, h) to xθ is proven in the same way
as in Pavlov et al. (2013) and is omitted in this paper due to
space considerations. Taking the limit limh→0 p(θ, h) and applying
Property 3, allows to write

ẋθ (θ ) =A(θ )xθ (θ ) + Aθ (θ )x̄(θ ) − Bθ (θ )ϕ(ȳ(θ ), w, θ )

− B(θ )
(
ϕθ (ȳ(θ ), w, θ ) + ϕy(ȳ(θ ), w, θ )yθ (θ )

)
+ Lθ (θ )w,

here w, x̄(θ ) and ȳ(θ ) are considered as inputs. From here, it is
traightforward to show

θ (θ ) =C(θ )xθ (θ ) + Cθ (θ )x̄(θ ) + Dθ (θ )w,

zθ (θ ) =F (θ )xθ (θ ) + Fθ (θ )x̄(θ ) − Gθ (θ )ϕ(ȳ(θ ), w, θ )

− G(θ )
(
ϕθ (ȳ(θ ), w, θ ) + ϕy(ȳ(θ ), w, θ )yθ (θ )

)
,

and present the sensitivity system as in (12).
Let us next prove that model (12) satisfies conditions C1–C3

of Theorem 1. Condition C1 is satisfied since the matrices A, B
and C of the LTI block of (12) are the same as those of model
(2). Condition C2 holds with the same K as for the model (2)
since |∂ϕ/∂y(ȳ(θ ), w, θ )| ≤ K for all ȳ(θ ) ∈ R, w ∈ R, and θ ∈

Θ . Condition C3 holds automatically since A, B, C , and K remain
unchanged. Application of Theorem 1 to model (12) concludes
that for the T -periodic input [x̄(θ ), w, ȳ(θ )], model (12) has a
unique T -periodic steady-state solution x̄θ (θ ).
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