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Proportional–Integral–Derivative-Based Learning
Control for High-Accuracy Repetitive Positioning

of Frictional Motion Systems
Leroy Hazeleger , Member, IEEE, Ruud Beerens , and Nathan van de Wouw , Senior Member, IEEE

Abstract— Classical proportional–integral–derivative (PID)
control is exploited widely in industrial motion systems with dry
friction motivated by the intuitive and easy-to-use design and
tuning tools available. However, classical PID control suffers from
severe performance limitations. In particular, friction-induced
limit cycling (i.e., hunting) is observed when integral control is
employed on frictional systems that suffer from the Stribeck
effect, thereby compromising setpoint stability. In addition,
the resulting time-domain behavior, such as rise time, overshoot,
settling time, and positioning accuracy, highly depends on the
particular frictional characteristic, which is typically unknown
or uncertain. On the other hand, omitting integral control can
lead to constant nonzero setpoint errors (i.e., stick). To achieve
superior setpoint performance for frictional motion systems in
a repetitive motion setting, we propose a PID-based feedback
controller with a time-varying integrator gain design. To ensure
optimal setpoint positioning accuracy, a data-based sampled-data
extremum-seeking architecture is employed to obtain the optimal
time-varying integrator gain design. The proposed approach does
not rely on knowledge on the friction characteristic. Finally,
the effectiveness of the proposed approach is evidenced experi-
mentally by application to an industrial nanopositioning motion
stage setup of a high-end electron microscope.

Index Terms— Frictional motion systems, iterative learning
control (ILC), repetitive motion, sampled-data extremum seeking,
Stribeck friction.

I. INTRODUCTION

MANY industrial motion systems perform repetitive
tasks, e.g., repetitive motion profiles in pick-and-place

machines [1, Sec. 5], large-scale transferring of circuit topol-
ogy to silicon wafers in lithography systems [2], and auto-
mated scanning procedures in electron microscopes. Due to
demands on hardware cost reduction in the design phase or
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wear in the operational phase, friction is commonly present in
such high-precision positioning systems, thereby limiting the
achievable positioning accuracy.

Various control solutions have been presented throughout
the literature to cope with frictional effects in motion systems.
Model-based compensation techniques (see [3], [4]) exploit
parametric models in the control loop to compensate for
friction. However, as friction characteristics are commonly
unknown, uncertain, and (slowly) time-varying, model-based
methods are prone to modeling errors, ultimately compro-
mising positioning performance. Nonmodel-based methods,
e.g., impulsive control (see [5]), dithering-based techniques
(see [6]), and sliding-mode control (see [7]), may result in
stability of the setpoint. In general, these nonmodel-based
control techniques have a common disadvantage. Namely,
the persistent injection of high-frequency control signals may
excite unmodeled high-frequency system dynamics, which is
highly undesirable in motion systems, and therefore, these
techniques are not appealing for industrial applications.

Despite the existence of the abovementioned control tech-
niques, the vast majority of the high-precision industry still
employs classical proportional–integral–derivative (PID) con-
trol since control practitioners are often well-trained in linear
control design (loop shaping). Moreover, it is well known
that the integral action in PID control is capable of com-
pensating for unknown static friction in motion systems (see
[8]–[10]). However, PID control is prone to performance
limitations as well. For example, solutions settle on a per-
sistent oscillation around the setpoint when the integral con-
trol is employed on systems where the friction characteristic
includes the velocity-weakening (Stribeck) effect so that sta-
bility of the setpoint is not achieved (this phenomenon is also
called friction-induced limit cycling or hunting (see [11] and
Section II-A). Even if stability can be warranted, rise time,
overshoot, settling time (see [9]), and positioning accuracy
depend on the particular friction characteristic, which is highly
uncertain in practice. Hence, despite the popularity of the
PID controller in industry, friction is a performance- and
reliability-limiting factor in PID-controlled motion systems.
This motivates the development of a more advanced control
strategy while preserving the benefits and intuition of classical
PID feedback control design.

In this article, we propose a PID-based learning controller
in order to achieve a high setpoint accuracy for repetitive

1063-6536 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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tasks in motion systems subject to unknown static and
velocity-dependent friction, including the Stribeck effect. The
PID-based learning controller consists of two elements. First,
a PID control architecture with a time-varying integrator
gain design is proposed, facilitating a tailored design for the
repetitive motion and friction characteristic at hand. In this
manner, friction-induced limit cycles can be avoided, and
high accuracy repetitive setpoint positioning and improved
transient behavior can be achieved instead. In addition, similar
robustness properties as classical PD control at the desired
setpoint can be achieved. Second, we propose a data-driven,
model-free optimization strategy, in order to iteratively find
the optimal time-varying integrator gain, in the presence of
unknown friction. Such a data-driven tuning procedure yields
optimal setpoint accuracy and improved transient behavior.

In this work, the finite-horizon optimization problem of
finding the optimal time-varying integrator gain for repet-
itive motion tasks is formulated in terms of a model-free
sampled-data extremum-seeking control (ESC) problem (see
[12]–[14]). This is achieved by exploiting a linear spline
basis function parameterization of the time-varying integrator
gain. The extremum-seeking mechanism is then designed to
iteratively improve system performance by adaptive tuning of
the parameters of this basis function parameterization. This
learning mechanism has resemblance with iterative feedback
tuning (see [15]–[17]) and iterative learning control (ILC ([18],
[19]). In a linear motion control setting, these methods have
proven merit. However, for our nonlinear setting, employing
an extremum-seeking approach instead is beneficial. Namely,
ESC is able to deal with unknown, uncertain, time-varying,
and general nonlinear systems and is therefore suitable to be
used in the presence of unknown nonlinear frictional effects.
Moreover, the potential of ESC in the context of ILC and opti-
mizing transient behavior has been shown in, e.g., [20]–[23].
However, it must be noted that the extremum-seeking strategy
to iteratively improve the system’s transient behavior proposed
in this work is different. Namely, we iteratively learn time-
varying feedback controller gains using ESC, where, e.g.,
in [22] and [21], ESC is used for iterative tuning of PID
controllers having constant gains, and in, e.g., in [20] and [23],
(sampled-data) ESC is employed to iteratively tune a system
input signal.

The main contributions of this article can be summarized as
follows. The first contribution is a parameterized time-varying
integrator gain design for frictional motion systems. The sec-
ond contribution is an automatic controller tuning procedure
based on a sampled-data extremum-seeking framework. The
third contribution is an experimental case study on an indus-
trial high-precision motion stage of an electron microscope.
This article builds upon preliminary results presented in [24],
which contains a particular discontinuous integrator gain
design and merely simulation examples. In addition to [24],
this article contains a more generic controller structure, a novel
parameterization of the integrator gain that leads to a con-
tinuous control signal (which is highly desirable in practice),
a formal analysis of the existence of a static input–output map
of the closed-loop system (allowing for the use of ESC), and
an extensive experimental case study.

Fig. 1. Schematic of the motion system subject to a friction force F f .

The remainder of this article is organized as follows.
We formalize the control problem in Section II, and we present
the PID-based controller with time-varying integrator gain in
Section III. In Section IV, we present the extremum-seeking-
based iterative learning mechanism. Section V provides an
implementation summary. In Section VI, we experimentally
show the working principles of the proposed PID-based learn-
ing controller, applied to an industrial nanopositioning motion
stage. Conclusions are presented in Section VII.

Notation: Sign(·) (with an upper case S) denotes the set-
valued sign function, i.e., Sign(y) := 1 for y > 0, Sign(y) :=
−1 for y < 0, and Sign(y) := [−1, 1] for y = 0. B denotes the
closed unit ball of appropriate dimensions, in the Euclidean
norm.

II. CONTROL PROBLEM FORMULATION FOR

FRICTIONAL MOTION SYSTEMS

In this section, we first present a PID-controlled motion sys-
tem with (Stribeck) friction, to illustrate the shortcomings of
P(I)D control for frictional motion systems. Second, we state
the control problem formulation for repetitive positioning of
frictional motion systems.

A. PID-Controlled Single Mass System With Stribeck Friction

Consider a single-degree-of-freedom motion system, con-
sisting of a mass m [kg] sliding on a horizontal plane,
with measurable position x1 [m], velocity x2 [m/s], and
control input uc [N] (i.e., the actuation force as deter-
mined by a motion control algorithm). The mass is subject
to a friction force Ff (as schematically shown in Fig. 1)
belonging to a friction set �(x2) for a velocity x2, where
x2 ⇒ �(x2) is a set-valued mapping. The set-valued friction
characteristic � consists of a Coulomb friction component
with (unknown) static friction Fs , a viscous contribution γ x2

(where γ ≥ 0 is the viscous friction coefficient), and a non-
linear velocity-dependent friction component f , encompassing
the Stribeck effect, i.e.,

Ff ∈ �(x2) := −FsSign(x2) − γ x2 + f (x2). (1)

We pose the following assumption on the velocity-dependent
friction component f .

Assumption 1: The function f : R → R is continuously
differentiable and satisfies the following.

1) | f (v)| ≤ Fs for all v.
2) v f (v) ≥ 0 for all v.
3) f is globally Lipschitz with Lipschitz constant L > 0.
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The dynamics are governed by the following differential
inclusion:

ẋ1 = x2

mẋ2 ∈ �(x2) + uc. (2)

Let us consider a classical PID controller for input uc in (2),
i.e.,

uc = k pe + kd ė + ki x3

ẋ3 = e (3)

where e := r − x1 denotes the setpoint error with r the
reference signal, x3 the integrator state, and k p, kd , and
ki the proportional, derivative, and integral controller gains,
respectively. For frictional motion systems, the presence of
an integrator action in (3) is motivated by the fact that
it is able to compensate for unknown static friction, due
to the buildup of control force by integrating the position
error. In general motion control systems, integrator action is
widely used to improve low-frequency disturbance rejection
properties and shorten rise times, the latter being beneficial
for machine throughput. As an illustration, consider a constant
reference r , i.e., a point-to-point motion so that the resulting
set of equilibria of closed-loop system (1)–(3) is given by

Epid = {(e, ė, x3) ∈ R
3 | e = 0, ė = 0, |x3| ≤ Fs/ki} (4)

which is globally asymptotically stable for closed-loop system
dynamics (1)–(3) only when f (·) = 0, i.e., in the absence
of the velocity-weakening (Stribeck) effect (see [8]). In the
presence of the Stribeck effect, however, Epid is not stable
and limit cycling (hunting) occurs. Although static friction
is eventually compensated by the integrator action, friction
is overcompensated in the slip phase that follows due to
the velocity-weakening effect, resulting in overshoot of the
setpoint. This process repeats and results in stick-slip limit
cycling, compromising setpoint stability. This phenomenon
is illustrated experimentally in the third subplot in Fig. 2.
In particular, Fig. 2 shows the reference trajectory employed
(subplot 1), the measured error response when using solely
PD control (subplot 2), two measured error responses using
PID control (subplot 3), and the corresponding control forces
generated by the PD and PID controllers (subplot 4) of an
industrial nanopositioning motion stage setup (the motion
stage setup will be discussed in more detail in Section VI).
A relatively large positioning error of about 200 nm is obtained
when using PID control. Omission of the integrator action [i.e.,
PD control for input uc in (2)] results in the set of equilibria
for (1)–(3) given by

Epd = {(e, ė) ∈ R
2 | |e| ≤ Fs/k p, ė = 0} (5)

which is stable (see [10]), but does not guarantee zero
steady-state error, as shown in subplot 2 of Fig. 2. In particular,
the size of the achievable steady-state error depends inversely
on the proportional gain k p, which cannot be chosen arbitrarily
large for stability purposes. The drawbacks of P(I)D control
for frictional motion systems motivate the design of a more
suitable control architecture. Respecting the popularity of PID
control in industry, we propose a time-varying PID-based

Fig. 2. Measured error responses of an industrial nanopositioning motion
stage setup subject to a third-order reference trajectory ( ), for details
about the set-up, see Section VI, and the corresponding control forces of
a PD controller ( ), and a PID controller with fixed integrator gain
ki = 1 × 108 ( ) and ( ). The PD controller yields a nonzero steady-
state positioning error, and the PID controller induces hunting.

controller in Section III after formalizing the control problem
in Section II-B.

B. Control Problem Formulation

In this article, we focus on achieving high-accuracy
positioning for frictional motion systems that perform a
T - repetitive motion. We consider, for the position x1, a desired
repetitive reference r , defined on the time interval [0, T ],
where the system starts and ends at rest. Specifically, we sep-
arate the time interval [0, T ] into two particular parts, which
are specified as follows.

1) t ∈ [0, TB); the so-called transient time window, during
which the system is allowed to move from 0 to r .

2) t ∈ [TB, T ]; the so-called standstill time window, during
which standstill at r is required. The time interval
[TB, T ] is typically used by the industrial machine,
of which the motion system is part, to perform a certain
machining operation, for which accurate positioning is
required.

Respecting the popularity of PID control in industry, and
considering the advantages of classical P(I)D control, in this
article, we address the following setpoint control problem.

Problem 1: Design a PID-based control strategy for motion
systems of the form (1) and (2) that perform a repeti-
tive motion profile and are subject to unknown static and
velocity-dependent friction such that high-accuracy setpoint
positioning during the standstill time window is achieved and

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on December 22,2021 at 07:04:38 UTC from IEEE Xplore.  Restrictions apply. 
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optimal transient behavior during the transient time window
is achieved.
The desired performance, i.e., an optimal transient response
on [0, TB) and optimal setpoint accuracy on [TB, T ], can be
captured by the following cost function J to be minimized:

J (e) :=
∫ T

0
|w(t)e(t)|2dt (6)

where we have introduced a weighting function w(t) that is
defined as follows:

w(t) :=
{

w1 if t ∈ [0, TB)

w2 if t ∈ [TB, T ] (7)

with w1, w2 ∈ R suitable weighting factors, trading off the
emphasis on transient performance versus setpoint accuracy.
Other (transient) performance relevant variables, such as the
control effort uc, or the velocity x2 of the mass can be
considered in (6) as well, if accurate velocity measurements
are available.

III. TIME-VARYING INTEGRATOR GAIN DESIGN FOR

PID-BASED CONTROL OF FRICTIONAL MOTION SYSTEMS

In this section, first, the time-varying integrator design
is presented, and subsequently, the achievable performance
benefits are shown in a numerical example.

A. Time-Varying Integrator Gain Design

The limit cycle present in the case of PID control with
constant integrator gain (see Fig 2) is caused by the buildup
of integrator action (during transients and the stick phase)
in interplay with the friction characteristic. This observation
motivates the design of a novel time-varying integrator gain
ki(t) for point-to-point motion for the following reasons.

1) The presence of integrator action still allows the system
to escape undesired stick phases.

2) Overcompensation of friction due to, e.g., a severe
Stribeck effect, can be avoided, by altering ki(t) during
the slip phase.

3) Zero integral action can be enforced at the setpoint when
standstill of the system is required such that robustness
against other force disturbances is provided by the static
friction.

The resulting controller is then given by

uc = k pe + kd ė + ki(t)x3 (8a)

ẋ3 = ς(t)e (8b)

with ς(t) ∈ {0, 1} a to-be-designed switching function that
prevents uncontrolled growth of x3. Furthermore, the to-be-
designed time-varying integral gain ki(t) should be bounded,
i.e., |ki(t)| < +∞ for all t ∈ [0, T ]. Here, we opt to
employ a time-varying integrator gain, instead of an appropri-
ate feedforward control signal in combination with a constant
integrator gain as commonly done in ILC to, e.g., counteract
recurring disturbances [18], [19]. This choice is motivated by
the fact that with the proposed controller, we are able to escape
undesired stick phases by enabling ki �= 0 during the transient

time window and create robustness to other force disturbances
close to the setpoint, by enforcing ki = 0 during the standstill
time window. Integrator action is then disabled so that the
system remains in standstill since buildup of control force is
prevented.

Remark 1: Note that the presented engineering intuition
here only applies when the integrator gain ki is placed at the
right-hand side in (8a), instead of at the right-hand side in (8b).
Indeed, in the latter case, ki = 0 would still yield a constant
integral control force in uc.
We now propose a parametric design for ki(t), parameterized
by a finite set of basis functions ϕ( j), j ∈ {1, 2, . . . , b},
as follows:

ki(t) :=
b∑

j=1

ϕ( j)(v, t) (9)

where b denotes the number of basis functions and v ∈ R
nv is a

to-be-designed parameter vector. Next, we give two examples
of basis function parameterizations that can be employed to
facilitate solving problem 1.

Example 1 [24]: Steplike basis functions,
i.e., ϕ( j)(v, t) := v( j)�( j)(t) with �( j)(t) defined as
follows:

�( j)(t) :=
{

1, t ∈ [( j − 1)ts, j ts)

0, t /∈ [( j − 1)ts, j ts)
for j = 1, . . . , b (10)

where ts satisfies T = bts , and the to-be-designed parameter
vector v ∈ R

nv , with nv = b.
Example 2: Linear spline basis functions, i.e., ϕ( j)(v, t) :=

[v( j) v( j+1)]�( j)(t) with �( j)(t) defined as follows:

�( j)(t) :=

⎧⎪⎪⎨
⎪⎪⎩

[
1 − t−( j−1)ts

ts
t−( j−1)ts

ts

]
, t ∈ [( j − 1)ts, j ts)[

0 0
]�

, t /∈ [( j − 1)ts, j ts)

for j = 1, . . . , b (11)

where ts satisfies T = bts , and the parameter vector v ∈ R
nv ,

with nv = b + 1.
Remark 2: Other types of basis function designs can be

adopted from the ILC literature. For example, polynomial
bases (see [25], [26]) and rational bases (see [27]) can simi-
larly be exploited.
In the remainder of this article, we opt for a linear spline basis
function parameterization of ki(t), as illustrated in Example 2,
as it yields a continuous control signal. In contrast, the steplike
basis function parameterization, as illustrated in Example 1
and used in [24], results in discontinuities in the control signal,
risking excitation of high-frequency system dynamics, which
is also a well-known problem in reset control and impulsive
control strategies developed for the control of frictional sys-
tems.

The switching function ς(t) in (8) is analogously designed
as

ς(t) :=
{

1, t ∈ [0, TB)

0, t ∈ [TB, T ] (12)
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so that the evolution of the integrator state is disabled on the
interval [TB, T ]. Summarizing, the resulting closed-loop sys-
tem with the proposed design for the time-varying integrator
gain is given by (1), (2), (8), (9), (11), and (12).

Let us now present some properties of the resulting
closed-loop system, which will be instrumental in the
data-based sampled-data extremum-seeking architecture pre-
sented in Section IV. In particular, the following proposition
asserts that each bounded realization of ki(t) results in a
unique solution x = (x1, x2, x3)

� of the closed-loop system,
which is bounded on the interval [0, T ].

Proposition 1: Under Assumption 1, for any constant r ,
each bounded realization of ki(t) in (8) satisfying ki(t) = 0
for t ∈ [TB, T ], each initial condition satisfying x(0) ∈ K1B

with K1 ≥ 0, and ς(t) as in (12), solutions x(t) to closed-loop
system (1), (2), (8), (9), (11), and (12) are unique and satisfy
x(t) ∈ K2B for some bounded K2 > 0, for all t ∈ [0, T ].

Proof 1: See the Appendix.

B. Illustrative Example

We illustrate the potential of the proposed time-varying
integrator gain by means of a numerical example. Consider
closed-loop system (1), (2), (8), (9), (11), and (12), where we
adopt the following numerical values: m = 1, k p = 18 N/m,
kd = 2 Ns/m, Fs = 0.981 N, and γ = 0.5. The Stribeck
contribution of the friction f is given by

f (x2) = ((Fs − Fc)ηx2)(1 + η|x2|)−1 (13)

where Fc is the Coulomb friction force and η is the Stribeck
shape parameter. The motion profile interval is characterized
by T = 1.5 s and TB = 0.75 s. For the time-varying integrator
gain design, we take b = 6, and the parameter vector v is given
by v = [v(1) v(2) v(3) 0 0 0 0]�. Moreover, v(1) is kept fixed
to v(1) = 25 N/(ms), which enables integral action at least
for t ∈ [0, ts) to escape from a potential initial stick phase.
The parameters v(2) and v(3) are tunable and affect the error
response of the closed-loop system, as illustrated next.

We illustrate the potential performance benefits of the
controller by considering two cases with different friction
characteristics: 1) Fc = Fs/2, η = 20, and γ = 0 and 2)
Fc = Fs/3, η = 60, and γ = 1. Consider Fig. 3, where, for
each column, the top subplot depicts the friction characteristic,
the middle subplot depicts four different position error evolu-
tions, and the bottom subplot depicts the four corresponding
designs for the time-varying integrator gain ki(t). For both
friction cases, the error response with a classical PID controller
(i.e., with a fixed integrator gain ki = 25 N/(ms) and depicted
by ( )) leads to significant overshoot and eventually limit
cycling (the latter explicitly visible for case 2, see also Fig. 2
for such limit-cycling effect). We now perform three different
simulations for both cases by selecting different pairs of values
for the parameters v(2) and v(3), which yield different error
responses. The first simulation in friction case 1 ( ) results
in significant overshoot, and the second simulation in friction
case 1 ( ) results in significant undershoot. The optimal
choice for v(2) and v(3) instead results in zero error in friction
case 1, see the third simulation ( ). Note that the friction

Fig. 3. Simulation results, where each column presents from top to bottom
the friction characteristic, error response, and time-varying integrator gain for
cases 1 and 2, respectively. The different error responses in the middle subplots
correspond to simulations with different realizations of the time-varying
integrator gain as in the lower subplots, indicated by corresponding colors
and line styles. In addition, the classical PID responses with constant ki are
indicated by ( ).

characteristic in case 2 has a more severe Stribeck effect com-
pared with the characteristic in case 1 (see the top subplot),
whereby the optimal settings for v(2) and v(3) become negative,
but zero steady-state error is still achieved, see ( ) in
the second and lower subplots. The proposed time-varying PID
controller is hence capable of achieving optimal positioning
performance, despite the presence of friction, by proper tuning
of the parameters in v.

Since the friction characteristic � in (2) is generally
unknown and uncertain and can change (slowly) in time,
the optimal design for the tunable parameters in v is challeng-
ing or even impossible using a model-based approach only.
Therefore, we propose a data-based extremum-seeking-based
(learning) algorithm in Section IV, to learn the optimal ki(t)
by adaptive tuning of the parameter vector v, on the basis of
measured error responses.

IV. SAMPLED-DATA EXTREMUM SEEKING FOR ITERATIVE

LEARNING IN REPETITIVE SETPOINT POSITIONING

A. Sampled-Data Extremum-Seeking Framework

In this section, we propose a sampled-data extremum-
seeking strategy, akin to ILC, to optimize the time-varying
integrator gain design presented in Section III to achieve
high-accuracy setpoint positioning. Specifically, given the cost
function in (6) and (linear spline) basis function parameteriza-
tion of the time-varying integrator gain in (9), we can formu-
late the finite-horizon optimization problem as a model-free
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Fig. 4. Sampled-data extremum-seeking framework based on sampled-data
control law with periodic sampling time T , and sampler and zero-order hold
elements.

sampled-data extremum-seeking problem (see [14], [20]).
Namely, consider the cascade connection of the PID-controlled
motion system given by (1), (2), (8), (9), (11), and (12) and
the cost function J in (6). In addition, we consider the to-
be-designed parameter vector to be decomposed as follows:
v = v0 + Cu, where v0 ∈ R

nv is a user-defined parameter
vector, C ∈ R

nv×p is a user-defined selection matrix, and
u ∈ R

p is the vector of to-be-optimized parameters by the
extremum-seeking algorithm. This cascade connection yields
the following unknown static input–output map Q : R

p → R

for the cascaded system (1), (2), (6), (8), (9), (11), and (12):

Q(u) :=
∫ T

0
|w(t)e(t)|2dt (14)

where the weighting function w(t) is defined in (7). It must be
noted that periodic reinitialization of the states to fixed values,
in combination with Proposition 1, is needed for ESC to be
applicable in an iterative learning context, i.e., x(kT ) = x0 for
all k = 1, 2, . . . Only under these conditions (reinitialization
and uniqueness provided by Proposition 1), Q in (14) is
uniquely defined (see also Remark 4). In addition, the fact
that solutions to the closed-loop system remain bounded by
Proposition 1 guarantees that Q(u) is bounded.

Based solely on output measurements, which we use to
compute Q in (14), ESC is exploited to adaptively find
parameters u that minimize Q. Fig. 4 schematically shows the
sampled-data extremum-seeking framework, i.e., the intercon-
nection of the PID-based controlled frictional motion system
with a basis function parametrization (1), (2), (8), (9), (11),
and (12) and the cost function J in (6) implemented as follows:

y(t) := J (e(t)) =
∫ t

t−T
|w(s)e(s)|2ds (15)

where e(s) = 0 for s ∈ [−T, 0) and with the weighting
function implemented as follows:

w(t) :=
{

w1 if mod(t, T ) ∈ [0, TB)

w2 if mod(t, T ) ∈ [TB, T ] (16)

with a T -periodic sampler, a discrete-time extremum-seeking
algorithm �, and a zero-order hold (ZOH) element.
Let {uk}∞k=0 be a sequence of vectors generated by the

extremum-seeking algorithm � based on collected measure-
ments, and define the ZOH operation as follows:

u(t) := uk ∀t ∈ [kT, (k + 1)T ) (17)

with k = 0, 1, 2, . . . , and sampling period T > 0 with
uk ∈ R

p, for all k. Let us define the ideal periodic sampling
operation

yk := y(kT ), k = 1, 2, . . . (18)

where yk = Q(uk−1) are the collected measurements as used
by the extremum-seeking algorithm � (see Fig. 4). We care to
stress that T is the sampling period of the extremum-seeking
controller, which conforms to the period time of the motion
profile, and T is not the sampling period of the underlying
motion system, which is typically much smaller.

Remark 3: In most (sampled-data) extremum-seeking liter-
ature, Q reflects the steady-state behavior of the dynamical
system. In those cases, the sampling period T , or so-called
waiting time T [12]–[14], needs to be chosen sufficiently
large by the user such that the closed-loop extremum-seeking
scheme is robust against inexact measurements of the cost
Q due to the transient behavior of the system. Here, Q
in (14) actually incorporates the transient behavior of the
system, which ultimately determines positioning accuracy.
As such, the role of the waiting time T is different here
and is conveniently chosen equal to the period time T of the
repetitive motion profile.

Remark 4: A common requirement in the
extremum-seeking literature is that the input–output mapping
Q is independent of initial conditions. Here, the transient
behavior is partly determined by the initial conditions, and
reinitialization after each setpoint operation is theoretically
required for an input–output mapping Q as in (14) to be
uniquely defined. Reinitialization for transient performance
optimization is also a well-known and commonly accepted
requirement in the ILC literature [18], [28].

B. Extremum-Seeking Algorithms

Let the extremum-seeking algorithm � be any algorithm
that solves the optimization problem of finding the minimum
y∗ of Q(u)

y∗ := min
u

Q(u). (19)

Within the periodic sampled-data extremum-seeking frame-
work, and depending on the nature of the input–output map-
ping Q, many algorithms from the optimization literature can
be employed to solve (19). For example, in [14], the so-called
DIRECT and Shubert algorithms (see [29], [30], respectively)
are employed to find the global extremum of Q. If finding a
local minimum suffices or if Q possesses only a single (global)
extremum, the classical gradient descent or Newton method
can be used (see [31]).

Without loss of generality, we employ here the following
gradient descent algorithm to optimize the vector u:

uk = uk−1 − λ∇Q(uk−1) (20)
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with λ the optimizer gain. Since Q is unknown, its gradient
∇Q is unknown. As such, the gradient of Q will be estimated
based on finite differences as follows:

∇Q(u) ≈ 1

τ

⎡
⎢⎣

Q(u + τd1) − Q(u)
...

Q(u + τdp) − Q(u)

⎤
⎥⎦ (21)

where τ is the step size of the gradient estimator and d j

with j = 1, . . . , p are dither signals, i.e., vectors where the
j th element is equal to one, and all other elements are zero.
Moreover, d0 denotes a zero vector. Dithering needs to be done
in a sequential manner to acquire the elements in (21).

In order to improve the accuracy of the gradient estimation
in the presence of, e.g., measurement noise, we include the
possibility to repeat each iteration q times and average the
measured costs over the q repetitions. As such, the gradient
descent algorithm in (20) and the sequence of dithers to obtain
the approximate gradient in (21) can be implemented through
the following extremum-seeking algorithm:

uk =
{

uk−n + τd n−m
q

if n �= 0

uk−q(p+1) − λ∇Q(uk−q(p+1)) if n = 0
(22)

for all k = 1, 2, . . ., with n = mod(k, q(p + 1)) ∈ N and m =
mod(k, q) ∈ N, initial input u0, p to-be-optimized parameters,
q repeated iterations, and

∇Q(uk−q(p+1))

= 1

qτ

⎡
⎢⎣

∑q−1
j=0

(
Q(uk−qp+ j) − Q(uk−q(p+1)+ j )

)
...∑q−1

j=0

(
Q(uk−q+ j ) − Q(uk−q(p+1)+ j )

)
⎤
⎥⎦. (23)

Note that the case n = 0 in (22) implements an update of the
control signal u.

We emphasize that the input–output map Q is generally
unknown, which is exactly the main motivation to adopt a
data-based performance optimization approach such as ESC.
Under the assumption that Q is (locally) convex and the
fact that solutions are bounded on the considered finite-time
interval by Proposition 1, employing the abovementioned
gradient descent method results in a decrease of the (bounded)
cost between iterations. By design of Q in (14), a decrease
of the position error between trials is then realized, which,
in turn, implies convergence of the position response to (a
small neighborhood of) the setpoint. In addition, the proposed
design of ki(t) warrants stability since the system reduces to
a PD-controlled mass with friction on [TB, T ], for which the
origin is known to be Lyapunov stable (see [10, Sec. 3]).

V. IMPLEMENTATION SUMMARY

In this section, a brief summary of the design procedure for
achieving high-accuracy repetitive setpoint positioning of fric-
tional motion systems is provided. We would like to emphasize
that in this work, we have mainly focused on frictional motion
systems, stabilized by a linear PID feedback controller, that
suffer from the Stribeck effect. However, the following design
procedure can also prove useful to improve transient behavior
of motion control systems performing repetitive positioning

tasks in the absence of (severe) frictional effects and by
iteratively adapting (other) performance relevant tunable para-
meters.

A priori, we assume that a (stabilizing) linear PID controller
has been designed for the (unknown) frictional motion system
at hand is and its settings are assumed to be known. Typically,
such a linear PID controller has been designed based on mea-
sured frequency response functions, which neglect frictional
effects such as the Stribeck effect. The (Stribeck) friction
characteristic at hand is considered to be unknown. The system
is required to perform a known T -repetitive motion with a
desired (step) reference from the initial position 0 to position
r . Moreover, the standstill time instance TB and the period time
T are provided, which define the transient time window [0, TB)
during which the system is allowed to move from 0 to r , and
the standstill time window [TB, T ], during which standstill at
r is required. To achieve high-accuracy setpoint positioning
in this motion setting, the following design procedure can be
employed.

1) Design a cost function [see (6) and implemented through
(15)] that captures the desired performance, and define
appropriate weights or penalties w1 and w2, associated
with the transient time window [0, TB), and the standstill
time window [TB, T ], respectively.

2) Replace the linear PID feedback controller in (3) by
the time-varying PID feedback controller in (8) with
switching function ς(t) in (12).

a) Use the same values for the parameters k p and kd .
b) Parameterize the time-varying integrator gain ki(t)

by a set of basis functions [see (9)] and choose the
type of basis functions (see Example 1 or 2).

c) Given the choice of basis functions, choose the
number of basis functions b. This determines the
size of the to-be-designed parameter vector v ∈
R

nv , with nv the number of elements. A large
amount of basis functions allows a more flexi-
ble design for ki(t); however, it requires more
parameters to be tuned later on. This may yield
a more complex objective function with many
local minima which is not desired when using
gradient-based optimization methods. Moreover,
visualization of the objective function becomes
increasingly difficult or impossible with p ≥ 3,
and more parameters to-be-designed typically lead
to slower convergence which can be undesired.

3) Decompose the to-be-designed parameter vector v as
v = v0 + Cu.

a) Design the initial parameter vector v0 ∈ R
nv ,

having nv components. A good choice for the first
element of v0 would be to use the value for ki used
in the linear case. A value of 0 for the elements
that correspond to the standstill time window is a
good choice as well.

b) Select the specific parameters to-be-optimized
through the user-defined selection matrix
C ∈ R

nv×p, with p the amount of parameters
to-be-optimized, and u the vector of
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to-be-optimized parameters by the
extremum-seeking algorithm.

4) Implement the extremum-seeking controller, i.e., a ZOH
element in (17), a periodic sampler in (18), and an
extremum-seeking algorithm to optimize the input vec-
tor u. The extremum-seeking algorithm can be of the
gradient-descent type, such as the one in (22) and (23).
Here, the step size τ ∈ R>0, the optimizer gain λ ∈ R>0,
and the number of repetitions of the same iteration
q ∈ N>0 must be defined by the user.

In Section VI, this design procedure has been employed to
demonstrate the working principle and the effectiveness of
the proposed PID-based learning controller on an industrial
nanopositioning stage.

VI. PID-BASED LEARNING CONTROL FOR AN

INDUSTRIAL NANOPOSITIONING MOTION STAGE

In this section, we demonstrate the working principle and
the effectiveness of the proposed PID-based learning con-
troller on an industrial nanopositioning stage. The considered
stage represents a sample manipulation stage of an electron
microscope [32], exhibiting significant and unknown frictional
effects.

A. System Description

The experimental setup is presented in Fig. 5. The setup
consists of a Maxon RE25 DC servo motor ➀ connected to
a spindle ➁ via a coupling ➂ that is stiff in the rotational
direction while being flexible in the translational direction.
The spindle drives a nut ➃, transforming the rotary motion of
the spindle to a translational motion of the attached carriage ➄,
with a ratio of 7.96×10−5 m/rad. A coiled spring ➇ connects
the carriage to the fixed world to eliminate any backlash
between the spindle and the nut. The position of the carriage
is measured by a linear Renishaw encoder ➅ with a resolution
of 1 nm (and a peak noise level of 4 nm).

For frequencies up to 200 Hz, the system dynamics can be
well described by the model in (2). The mass m = 172.6 kg
consists of the transformed (rotational) inertia of the motor
and the spindle (with an equivalent mass of 171 kg) and of
the mass of the carriage (1.6 kg).

The friction characteristic for � in (2) is dominated by
the bearings supporting the motor axis and the spindle (see
➆ in Fig. 5) and by the contact between the spindle and
the nut ➃. The latter contact is lubricated, which induces a
Stribeck effect. Since the system is rigid and behaves as a
single mass for frequencies up to 200 Hz, these friction forces
can be summed up to provide a single net friction characteristic
as � in (2).

Remark 1: The experimental setup is the same as the setup
in [9, Sec. 5], where dominantly Coulomb and viscous friction
was present. For the experimental study in this article, a dif-
ferent carriage position and spindle orientation, and different
lubrication conditions result in a significant Stribeck effect
instead, as shown in Fig. 2 and the experimental results.

According to the standard operation of the nanopositioning
stage in an electron microscope, we can only use a higher order

Fig. 5. Industrial nanopositioning motion stage setup. ➀: Maxon RE25 DC
servo motor. ➁: spindle. ➂: coupling. ➃: nut. ➄: carriage. ➅: linear Renishaw
encoder. ➆: bearings. ➇: coiled spring.

reference trajectory. Therefore, the step reference r = 1 mm is
mimicked by a fast third-order reference trajectory. We require
the carriage to be in standstill at r = 1 mm at TB = 1.5 s, and
the setpoint operation ends at T = 3 s. After each setpoint
operation, the system is reinitialized to its starting position
x1 = 0 mm using an internal homing procedure.

B. Controller Settings and ESC-Based Optimal Tuning

The design of the PID-based controller with time-varying
integrator gain used in the experiments is discussed in
Section III. First, the PID-controller gains are tuned using
linear loop-shaping techniques [33], resulting in k p = 107 N/m
and kd = 2 × 103 Ns/m. The time-varying integrator gain is
parameterized by (9) with b = 6 linear spline basis functions
as in Example 2, from which follows that ts = (T/b) = 0.5 s.
We select p = 2 parameter to-be-optimized. The parameter
vector v = v0 + Cu, with initial parameter vector v0 =
[1 · 108 0 0 0 0 0 0]�, and a selection matrix

C =
[

0 1 0 0 0 0 0
0 0 1 0 0 0 0

]�
.

The first element of vector v0 is equal to the constant inte-
grator gain of a classical PID controller, as obtained by the
loop-shaping procedure (Fig. 2 shows the measured responses
with these settings). The vector u ∈ R

2×1 will be determined
by the ESC algorithm discussed in Section IV-B, and the
performance of the control system in the sense of (14) depends
on the value of these parameters.

For the current case study, we focus on setpoint accuracy
rather than transient performance. Therefore, we define the
system’s performance by the objective function Q in (14) and
implemented by (15), where we have taken w1 = 0 and w2 =
1 × 108 in (16). Moreover, we augment Q with a logarithmic
barrier function [34] in order to restrict the values of the
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Fig. 6. Contour plot of an experimentally obtained input–output mapping
Q̃(u), which shows two regions where Q̃(u) is small, indicating integrator
gain settings that yield accurate setpoint positioning.

parameter values found by the extremum-seeking controller
such that ki(t) remains bounded for all t ∈ [0, T ]. In particular,
ki(t) then satisfies ki ≤ ki(t) ≤ ki , with ki = −0.2 × 108, and
ki = 1.2×108. The augmented objective function is then given
by

Q̃(u) := Q(u) + μB(u) (24)

with Q(u) as in (14), μ = 1×10−4 the barrier parameter, and
the logarithmic barrier function B given by

B(u) := −
4∑

i=1

log(−Gi(u)) (25)

with G1(u) = u(1) − ki , G2(u) = ki − u(1), G3(u) = u(2) − ki ,
and G4(u) = ki − u(2).

To minimize Q̃, we employ the gradient descent algorithm
as discussed in Section IV-B, with q = 3, p = 2, step size
τ = 0.25×107, and gain λ = 2×1016, unless stated otherwise.
As such, for each controller update by the gradient descent
algorithm, q(p + 1) = 9 setpoint operations of T = 3 s are
required.

C. Experimental Results

1) Static Input–Output Mapping: The dependence of the
achievable setpoint accuracy, captured by the performance
metric Q̃ in (24) to be minimized, on the vector u is depicted
by means of an measured input–output mapping Q̃ in Fig. 6.
We use this mapping to verify the time-domain results pre-
sented later on. Two regions are observed where Q̃ is small,
indicating integrator gain settings that can lead to a high
setpoint accuracy. Such an input–output mapping, however,
is in general time-consuming to obtain and can vary (slowly)
over time and can vary from machine to machine. Hence, such
an offline, brute-force approach to performance optimization
is not feasible in practice. Therefore, the optimal parameter

Fig. 7. Experimental results of the PID-based learning controller applied to
the industrial nanopositioning motion stage, illustrating the minimization of
the augmented performance cost Q̃ (bottom) and the corresponding parameter
vector uk (top) (’×’ and ’◦’ denote the first and second parameters of the
vector uk , respectively), as a function of the controller updates. Fig. 8 shows
the setpoint error, and the corresponding time-varying integrator gain ki (t),
and control force uc, corresponding to the initial parameter setting u0 =
[0.85 0.175]� ( ), the second ( ), fourth ( ), and seventh ( )
extremum-seeking controller update.

settings are iteratively obtained by the online ESC algorithm
presented in Section IV-B, solely based on real-time output
measurements.

2) Time-Domain Results Obtained by Extremum Seeking:
Consider Fig. 7, which shows the measured augmented per-
formance cost Q̃(uk) as in (24) and the corresponding vector
of parameters uk as determined by the extremum-seeking
controller, as a function of the controller updates, starting
with initial parameter vector u0 = [0.85, 0.175]� ·108. More-
over, Fig. 8 shows the setpoint error e(t), the corresponding
time-varying integrator gain design ki(t), and the resulting
control force uc for four different controller updates (final and
three intermediate). It can be observed that limit cycling is
indeed prevented since ki(t) = 0 for all t ∈ [TB, T ], and
we only observe one interval of stick (during the standstill
time window, as desired). Moreover, the extremum-seeking
controller iteratively finds controller parameters uk that result
in a relatively small time-varying integrator gain design ki(t)
on t ∈ [0, 1.5), yielding a position error in the range of
4–6 nm, depicted by ( ). In contrast, the classical PID
controller for this particular measurement yields an absolute
error of about 100 nm on the same time interval (see Fig. 2)
and does not provide robustness during the standstill time
window. This clearly illustrates the performance benefits of
the proposed PID-based learning controller in terms of the
ability to cope with Stribeck friction and achieving superior
setpoint positioning accuracy. The parameter evolution of this
experiment is visualized by ( ) in the input–output mapping
in Fig. 9.

Another interesting optimization experiment and result-
ing time-domain response is the one shown in Fig. 10
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Fig. 8. Experimental results of the PID-based learning controller applied
to the industrial nanopositioning motion stage, illustrating the optimization
of the setpoint error (for t > 1.5) by adaptation of ki (t). The error and
corresponding ki (t) and uc are shown after the initial parameter setting
u0 = [0.85, 0.175]� · 108 ( ), the second ( ), fourth ( ), and
seventh ( ) extremum-seeking controller update. The shaded area denotes
the standstill time window. The achieved accuracy for t > 1.5 after the seventh
update is about 4–6 nm.

Fig. 9. Input–output mapping Q̃(u). The figure shows the convergence to
optimal integrator gain settings starting from two different initial conditions
u0, namely, u0 = [0.85 0.175]� · 108 ( ) and u0 = [0.9 0.4]� · 108 ( ).
The starting point of both trajectories is denoted by the solid dot.

by ( ), which shows the time-domain results after the
final extremum-seeking controller update, when using initial
parameter vector u0 = [0.9, 0.4]� · 108. Again, the para-
meter evolution of this experiment is visualized by ( ) in
the input–output mapping in Fig. 9. The parameters now
converge toward the local minimum in the top-right corner
of the input–output mapping in Fig. 9. The existence of this
particular (local) minimum can be explained by considering

Fig. 10. Experimental results of the PID-based learning controller applied to
the industrial nanopositioning motion stage. The figure illustrates the resulting
setpoint errors e(t) and the corresponding ki (t) and uc(t) after the final
extremum-seeking controller update, for two different experiments, depicted
by ( ) and ( ). The results using the linear PID control are depicted
by ( ) for comparison. The shaded area denotes the standstill time window.

the top two subplots of Fig. 10, depicting the position error
and time-varying integrator gain design ki(t), respectively. Due
to the relatively large time-varying integrator gain ki(t) for
t ∈ [0, 1.5) obtained by the extremum-seeking controller and
depicted by ( ), the associated integral action during the
transient results in a significant overshoot of the setpoint. The
significant overshoot can be attributed to the weight w1 = 0,
chosen during the transient time window, which implies that
large transients are not penalized. The system then arrives
in a stick phase, where the control force is built up by the
integrator action. Eventually, the system slips and, due to the
Stribeck effect in combination with the decreasing integrator
gain, the system arrives in a stick phase again close to the
setpoint. For comparison, Fig. 10 shows the experimental
results of the linear PID feedback controller, which shows a
significant setpoint error of 100 nm at t = 3 s.

Remark 5: From the zoomed-in view in Fig. 10, it follows
that the system with time-varying integrator gains is not
completely at rest during the standstill time window t ∈
[1.5, 3], during which only PD control is active, while we
expect the system to be in stick. This can be attributed to
other microscopic frictional effects that play a role. However,
these are not treated here as they are beyond the scope of this
article.

The experimental results show that the proposed
time-varying PID controller results in superior positioning
accuracy (compared with classical PID control) and that the
extremum-seeking controller successfully finds the optimal
tuning of the time-varying integrator gain, regardless of the
initial values of u, for the unknown frictional situation at
hand.
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VII. CONCLUSION

We have presented a novel time-varying integrator gain
design for motion systems with unknown Coulomb and
velocity-dependent friction (including the Stribeck effect),
performing a repetitive motion profile. The proposed controller
is capable of achieving a high positioning accuracy, in contrast
to classical PID control, which often leads to limit cycling,
i.e., loss of setpoint stability. The time-varying integrator gain
is parameterized by linear basis functions, resulting in a con-
tinuous control signal. The specific tuning of the time-varying
integrator gain, which results in a high setpoint accuracy in
the presence of unknown friction, is iteratively obtained by
employing a sampled-data extremum-seeking framework. The
performance benefits of the proposed control architecture are
experimentally demonstrated on a nanopositioning stage in an
electron microscope, illustrating its superior performance over
classical PID control.

APPENDIX

PROOF OF PROPOSITION 1

Without loss of generality, consider r = 0 (which implies
e = −x1 in (8)), and we consider the intervals [0, TB) and
[TB, T ] separately.

By design, we have ς = 1 on the interval [0, TB). Then,
with state vector x := [x1, x2, x3]�, for all t ∈ [0, TB),
we rewrite the closed-loop system (1), (2), and (8) as

ẋ ∈ A(t)x − e2(FsSign(x2) − f (x2)) (26)

with

A(t) =
⎡
⎣ 0 1 0

−k p − kd − γ − ki(t)
1 0 0

⎤
⎦, e2 =

⎡
⎣0

1
0

⎤
⎦. (27)

Define fL (x2) := Lx2 − f (x2), which satisfies fL (x2,a) ≤
fL (x2,b) for each x2,a < x2,b and L > 0 by Assump-
tion 1(3), i.e., fL (x2) is nondecreasing. Next, define �L (x2) :=
FsSign(x2) + fL(x2), and rewrite (26) as

ẋ ∈
⎡
⎣ 0 1 0

−k p L − kd − γ ki(t)
−1 0 0

⎤
⎦x − e2�L(x2)

=: AL(t)x − e2�L(x2). (28)

Existence of solutions1 to (28) follows from [35, Sec. 7, Th. 1]
because the set-valued mapping in (28) is outer semicontin-
uous and locally bounded with nonempty compact convex
values. Consider then two solutions xa and xb to (28) with
xa(0) = xb(0), and define δ := xa − xb. For almost all
t ∈ [0, TB)

δ̇ ∈ AL(t)δ − e2(�L(x2,a) − �L(x2,b)).

Since ki(t) is bounded by design, there exists M1 > 0 such
that |A(t)| ≤ M1 for all t ∈ [0, TB), with |A(t)| the (induced)

1A solution to (28) is any locally absolutely continuous function x that
satisfies (26) for almost all t ∈ [0, TB).

2-norm of matrix A(t). Then, we have

1

2

d

dt
|δ|2 ∈ δ� AL(t)δ + δ�

2 (�L (x2,b) − �L(x2,a))

≤ M1|δ|2 + max
fb∈�L (x2,a(t)−δ2(t))

fa∈�L (x2,a (t))

δ2( fb − fa)

=: M1|δ|2 + N(t). (29)

Whether x2,a(t) and x2,a(t) − δ2(t) are positive, zero, or neg-
ative, inspection of all cases reveals that N(t) ≤ 0 for all
t ∈ [0, TB) because fL is nondecreasing, which implies that
�L is nondecreasing. As a result, (29) satisfies

1

2

d

dt
|δ|2 ≤ M1|δ(t)|2 (30)

for almost all t ∈ [0, TB). Then, δ(0) = 0 implies δ(t) = 0
for all t ∈ [0, TB) by standard comparison theorems (see [36,
Lemma 3.4]).

On [TB, T ], we have ẋ3 = ςx1 = 0 because, by design,
the switching function ς = 0 on the considered interval so
that x3(t) = x3(TB) for all t ∈ [TB, T ]. Moreover, ki(t) = 0
for t ∈ [TB, T ]. With

ẋ ∈
⎡
⎣ 0 1 0

−k p L − kd − γ 0
0 0 0

⎤
⎦x − e2�L(x2)

=: AL2(t)x − e2�L(x2). (31)

We obtain analogously to the previous case

1

2

d

dt
|δ|2 ≤ M2|δ(t)|2 (32)

for almost all t ∈ [TB, T ], with M2 := λ(AL2) the largest
singular value of AL2 . Using absolute continuity of solutions,
and the fact that δ(t) = 0 for all t ∈ [0, TB) (as established
above), we have that δ(TB) = 0, and (32) implies that δ(t) = 0
for all t ∈ [TB, T ]. Uniqueness of solutions on [0, T ] is then
proven.

We now turn to proving that solutions to the closed-loop
system remain bounded on [0, T ]. Let xa be a generic solution
to the closed-loop system, with xa(0) ∈ K1B and K1 ≥ 0, and
take xb(0) = (0, 0, 0) so that xb(t) = 0 for all t ∈ [0, T ], and
δ(0) ∈ K1B. The solutions xa and xb satisfy (30) and (32)
on [0, TB) and [TB , T ], respectively. In both inequalities,
the right-hand side is bounded for all t in its domain, which
excludes finite escape times for δ on [0, T ]. Hence, there exists
K2 > 0 such that δ(t) ∈ K2B for all t ∈ [0, T ]. Since
xb(t) = 0 for all t ∈ [0, T ], we have xa(t) ∈ K2B for all
t ∈ [0, T ], which completes the proof. �
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