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Partial-Order Reduction for Supervisory
Controller Synthesis

Bram van der Sanden , Marc Geilen , Member, IEEE, Michel Reniers , Senior Member, IEEE,
and Twan Basten , Senior Member, IEEE

Abstract—A key challenge in the synthesis and sub-
sequent analysis of supervisory controllers is the im-
pact of state-space explosion caused by concurrency. The
main bottleneck is often the memory needed to store the
composition of plant and requirement automata and the
resulting supervisor. Partial-order reduction (POR) is a
well-established technique that alleviates this issue in the
field of model checking. It does so by exploiting redun-
dancy in the model with respect to the properties of in-
terest. For controller synthesis, the functional properties
of interest are nonblockingness, controllability, and least-
restrictiveness, but also performance properties, such as
throughput and latency are of interest. We propose an
on-the-fly POR on the input model that preserves both
functional and performance properties in the synthesized
supervisory controller. This improves the scalability of
the synthesis (and any subsequent performance analysis).
Synthesis experiments show the effectiveness of the POR
on a set of realistic manufacturing system models.

Index Terms—Control system analysis, control systems,
system analysis and design, systems engineering and the-
ory, supervisory control, system performance.

I. INTRODUCTION

SUPERVISORY controller synthesis [1] is a method to auto-
matically synthesize a supervisor that restricts the behavior

of a system, described by a plant, to a given requirement that
describes the allowed behaviors of the plant. Standard synthesis
first computes the composition of all plant and requirement
automata, and subsequently prunes the state space to ensure
properties like controllability and nonblockingness (explained
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below) of the resulting supervisor [1], [2]. A disadvantage of
this synthesis is its limited scalability, caused by the memory
complexity of O(|QP |2 · |Σ|) [1], [3], where QP is the set
of specification states of the combined plant and requirement
automata, and Σ is the set of events. The memory needed
to store the full state space often becomes a bottleneck [4].
The size of the supervisor also directly impacts the efficiency
of performance analysis, performed on the state space of the
supervisor augmented with timing information.

An approach to improve the scalability of the synthesis
and subsequent performance analysis is partial-order reduction
(POR) [5], [6]. The idea of POR is to exploit redundancy
in the network of automata to obtain a reduced composition,
while preserving the properties of interest. In each state of the
composite automaton, a subset of redundant-enabled transitions
is removed, in turn, reducing the number of reachable states.
Synthesis can then be performed on this smaller automaton
leading to a smaller supervisor, and a smaller state space for
performance analysis.

Our POR aims to preserve functional and performance as-
pects. As functional properties, we consider controllability, non-
blockingness, and least-restrictiveness. The supervisor needs to
be controllable with respect to the plant, meaning that it should
not disable uncontrollable events. Further, the composition of
the supervisor with the plant, the controlled system, should be
nonblocking, meaning that from every reachable state in the
controlled system, a marked state can be reached. This typically
indicates the completion of an operation. The supervisor is
(non)blocking if the controlled system is (non)blocking [3].
Finally, the supervisor should be least-restrictive, meaning that
it restricts the system as little as possible while still being
controllable and nonblocking. As performance aspects, we con-
sider throughput and latency. Throughput describes the system
production rate, for example the number of products produced
by the system per hour. Latency describes the temporal distance
between certain events, for example the time between the start
and end of processing a product.

Fig. 1 shows the proposed POR approach. The system be-
havior is modeled by plant P , which is a composition of
automata1P 1 ‖ · · · ‖ P k. Synthesis can be applied onP directly
to obtain a supervisorAsup (an automaton). Alternatively, using

1For the purpose of supervisory controller synthesis, we assume that all re-
quirements are translated into plant automata using a plantify transformation [7],
such that we can treat all automata similarly.
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Fig. 1. POR approach.

POR, reduced plant P′ is computed on which synthesis can be
applied to obtain a reduced supervisor A′sup. The conditions
on the reduction to P′ guarantee that the functional and per-
formance properties of Asup are preserved in A′sup, denoted
A′sup �f,p Asup (defined precisely in Definition 25). This re-
lation ensures that A′sup is nonblocking if Asup is nonblocking,
A′sup is controllable with respect to P if Asup is controllable
with respect to P , and A′sup is least-restrictive to P under
an adapted notion of least-restrictiveness (see Definition 10)
that considers redundancy. The relation also guarantees that the
performance aspects are preserved in the corresponding timed
state spaces Ssup and S′sup, denoted Ssup ≈p S′sup. We, moreover,
provide a concrete POR algorithm (Algorithm 1) that gives a
valid on-the-fly reduction to compute reduced plant P′ during
composition.

The proposed POR extends the POR introduced in [8] for the
performance analysis of timed systems. We consider controller
synthesis and the preservation of both functional and perfor-
mance properties during synthesis. An integrated overview of
both approaches can be found in [9].

We follow [10] by taking system activities as the events in
our models. An activity captures a functionally deterministic
part of the system behavior, consisting of low-level actions
operating on system resources and (acyclic) precedences be-
tween those actions. An activity may, for example, correspond
to moving a robot arm from one specified position to another
position, consisting of several actions on one or more motor
resources in a specific order. Actions of different activities may
not interfere with each other except through resource claims
and releases. During the execution of an activity, the relevant
resources are claimed and no interference on these resources
is possible. Resources are assigned to activities in the order in
which activities are executed. Activities that use different sets
of resources may execute concurrently. Activities can then be
treated as atomic events, abstracting from the execution orders
of activity-internal concurrent actions. As shown in [10], this
improves the scalability of controller synthesis.

Various well-known ways to capture the timing behavior of
supervisory controllers are real-valued clocks as used in timed
automata [11], discrete-valued clocks as used in tick-based
models [12], and (max,+) algebra [13]–[15]. We use (max,+)
algebra (see for instance [16]), which fits naturally with the
notion of activities. A (max,+) timing matrix expresses the
relation between the availability times of the system resources
and the release times of the resources after executing an activity.
Such a (max,+) timing model enables efficient performance
analysis [15]. Supervisor synthesis on (max,+) automata with
activities can be done without considering their timing because

activities can be treated as atomic events. Given the supervisor
and the timing matrices of the activities, a timed (max,+)
state space can be computed that provides the necessary timing
information to evaluate system throughput and latency. Our POR
technique improves the scalability of the supervisor synthesis.
It preserves both functional and performance properties, which
in turn improves scalability of any subsequent performance
analysis. Our POR technique can also be used on conventional
finite-state automata with events, by assuming activities do not
claim or release resources and are assigned the empty 0× 0
(max,+) timing matrix (implying that they are timeless).

The rest of this article is organized as follows. Section II
introduces the modeling framework. Section III defines the
functional and performance aspects considered in the POR.
Section IV introduces performance equivalence of timed state
spaces. Section V defines the POR conditions and shows that
these conditions preserve the desired aspects. Section VI in-
troduces an on-the-fly reduction that uses local conditions to
compute a reduced automaton directly from a composition of
automata. The experimental evaluation in Section VII shows the
effectiveness of our POR technique. Related work is described
in Section VIII. Finally, Section IX concludes this article.

II. MODELING

Consider a running example with activities A, B, C, D,
E, and U . To capture all possible activity orderings in the
system, we use (max,+) automata. A (max,+) automaton is a
conventional finite-state automaton, where the timing semantics
of each activity is described by a (max,+) matrix, as explained in
the following. The (max,+) automata of the running example are
shown in Fig. 2. We use a representation of (max,+) automata
that extends the definition of [15] with rewards, and we restrict
ourselves to a setting with deterministic (max,+) automata. This
corresponds to the construction discussed in Section VI in [15],
in which a regular language constraining the possible sequences
of events is combined with a (max,+) automaton defining the
timing constraints of the events using the Hadamard product. In
our representation, the automata encode the possible sequences
of activities (the regular language of events), and the timing
constraints are encoded using the classical matrix representation
of (max,+) automata.

Definition 1 ((Max,+) Automaton (Adapted from [15])): A
(max,+) automaton A is a tuple 〈S, ŝ, Sm,Act, reward,M, T 〉,
where S is a finite set of states, ŝ ∈ S is the initial state, Sm ⊆ S
is the set of marked states, Act is a nonempty set of activi-
ties, reward : Act→ R≥0 quantifies the progress per activity,
M maps each activity to its associated (max,+) matrix, and
T ⊆ S ×Act× S is the transition relation. We assume thatA is
deterministic; for any s, s,′ s′′ ∈ S and A ∈ Act, 〈s,A, s′〉 ∈ T
and 〈s,A, s′′〉 ∈ T imply s′ = s′′.

Both plants and supervisors are described as (max,+) au-
tomata. Marked states define a notion of completion of the plant
for supervisor synthesis, as illustrated in the following.

Let set Act∗ contain all finite strings over Act, including
the empty string ε. We write s1→A s2 if 〈s1, A, s2〉 ∈ T . The
transition relation is extended to Act∗ in the relation →∗ by
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Fig. 2. Running example: plants P 1, P 2, P 3, and P 4, and the composition P. Transitions of uncontrollable activities are denoted with dashed
arrows. Marked states are indicated in gray.

letting s→ε ∗s for all s ∈ S, and for all α ∈ Act∗, A ∈ Act,
s, s′ ∈ S, and s→αA ∗s′ if s→αA ∗s′′ and s′′ →A s′ for some
s′′ ∈ S. We write s→∗s′ if s→α ∗s′ for some α ∈ Act∗. Set
enabled(s) = {A ∈ Act | ∃s′ : s A→ s′} contains all activities
enabled in s. State s is a deadlock state if enabled(s) = ∅. Since
A is deterministic, for any activity A ∈ enabled(s), there is a
unique A-successor of s, denoted A(s). For activity sequence
A1 . . . An, the resulting state is defined inductively as ε(s) = s
and (A1 . . . AnAn+1)(s) = An+1((A1 . . . An)(s)) for n ≥ 0
if An+1 ∈ enabled((A1 . . . An)(s)) and (A1 . . . An)(s) is de-
fined. A possible behavior of an automaton is described in a
path. A(n) (in)finite path p of A is a(n) (in)finite, alternating
sequence of states and activities: p = s0A1s1A2s2A3 . . . such
that s0 = ŝ and si+1 = Ai+1(si) for all i ≥ 0. A finite path
always ends in a state. Given path p and i ≥ 0, p[. . . i] denotes
prefix s0A1 . . . si, and p[i, j] = siAi+1 . . . sj with 0 ≤ i ≤ j is
the path fragment from state si up to sj . Further, p[i] denotes
state si in p.

Definition 2 (Synchronous Composition of (Max,+)
Automata): Given automata A1 = 〈S1, ŝ1, S

m
1 ,Act1, reward1,

M1, T1〉 and A2 = 〈S2, ŝ2, S
m
2 ,Act2, reward2,M2, T2〉,

with for each activity A ∈ Act1 ∩Act2, reward1(A) =
reward2(A) and M1(A) = M2(A), the synchronous
composition A1 ‖ A2 = 〈S1 × S2, 〈ŝ1, ŝ2〉, Sm

1 × Sm
2 ,

Act1 ∪Act2, reward1 ∪ reward2,M1 ∪M2, T12〉, with

〈s1, s2〉 A→12 〈s1,′ s′2〉 if A∈Act1∩Act2, s1
A→1 s1,

′ s2
A→2 s′2

〈s1, s2〉 A→12 〈s1,′ s2〉 if A ∈ Act1 \Act2, s1
A→1 s′1

〈s1, s2〉 A→12 〈s1, s′2〉 if A ∈ Act2 \Act1, s2
A→2 s′2.

Fig. 2(e) shows the synchronous composition of P 1 ‖ P 2 ‖
P 3 ‖ P 4 (composition is associative). An activity is disabled
in a state, if it is disabled in the current state of one of
the automata that has the activity in its alphabet. For exam-
ple, D is initially disabled because plant P 3 initially disables
activity D. The synchronous composition of deterministic au-
tomata is again deterministic.

Fig. 3. (max,+) matrices of activities A,B,C,D,E, and U .

Activities abstract from low-level activity-internal action exe-
cutions. For our intended supervisor synthesis and performance
analysis, we only need the timing of the claims and releases of re-
sources. So we abstract from the low-level actions. The (max,+)
matrices of the activities of the running example are shown in
Fig. 3. Each matrix row represents the release time of a resource
in terms of all the availability times of resources. To illustrate,
consider matrix MA of activity A. The first row describes the
release time of resource r1 in terms of when resources r1, r2,
and r3 are available at the start of executing A. The execution of
A implies a time delay of 4 time units between the claiming of r1
and its subsequent release. Similarly, a delay of 5 occurs between
the claiming of r2 and the release of r1. There is no dependency
on the availability of r3, indicated by−∞. We define a (global)
resource set Res = {ri | 1 ≤ i ≤ s}, where s is the size of the
matrices. In our running example, we have Res = {r1, r2, r3}.
Function R maps each activity to the set of resources used. For
activityAwith (max,+) matrixMA, r /∈ R(A) iff [MA]r,r = 0,
[MA]i�=r,r = −∞, and [MA]r,j �=r = −∞. For example, given
MB in Fig. 3, R(B) = {r1, r2}. As r3 �∈ R(B), r3 does not
influence the result of multiplying a vector with MB .

The two essential characteristics in an activity execution are
synchronization; for example, when an action needs to wait
until resources are available, and delay, to model the execution
time of actions on resources. These characteristics correspond
to the (max,+) operators maximum (max) and addition (+),
defined over the set R−∞ = R ∪ {−∞}. These operators are
defined as usual, with the additional convention that −∞ is
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Fig. 4. Gantt chart of activity sequence ABC when all resources are
initially available (left) and when resource r2 is available after 1 time unit
(right).

the unit element of max: max(−∞, x) = max(x,−∞) = x,
and the zero-element of +:−∞+ x = x+−∞ = −∞. Since
(max,+) algebra is a linear algebra, it can be extended to ma-
trices and vectors in the usual way. Given m× p matrix A and
p× n matrix B, A⊗B denotes (max,+) matrix multiplica-
tion, resulting in matrix A⊗B with elements [A⊗B]ij =
maxpk=1([A]ik + [B]kj). Adding a constant c to matrixA yields
a new matrix A+ c with [A+ c]ij = [A]ij + c. For any vector
x of size n, ‖x‖ = maxni=1[x]i denotes the vector norm of x.
For vector x, with ‖x‖ > −∞, norm(x) denotes x− ‖x‖, the
normalized vector, with ‖norm(x)‖ = 0. 0 denotes a vector
with only zero entries.

Resource availability times are captured in a (max,+) vector,
typically denoted γ. Given such a resource availability vector,
we obtain the new resource availability vector after executing
an activity by multiplying it with the corresponding (max,+)
matrix. Timing evolution is, therefore, expressed using (max,+)
vector-matrix multiplication. When all resources are initially
available at time 0, captured in vector 0, the new availability
times of the resources after executingA are computed as follows:

MA ⊗ 0 =

⎡
⎢⎣ max(4 + 0, 5 + 0,−∞+ 0)

max(−∞+ 0, 3 + 0,−∞+ 0)

max(−∞+ 0,−∞+ 0, 0 + 0)

⎤
⎥⎦ =

⎡
⎢⎣53
0

⎤
⎥⎦ .

Resources r1 and r2 are available again after 5 and 3 time
units, respectively. Resource r3 is not present in R(A), but a
row is present for r3 to carry over its time stamp. Its availability
time stays 0, since it is not used by A. The timing semantics
of an activity sequence is defined in terms of repeated matrix
multiplication. For example, the resource availability after ex-
ecuting activity sequence ABC given vector 0 (see Fig. 4) is
computed as MC ⊗MB ⊗MA ⊗ 0 = [6, 6, 4]ᵀ. This repre-
sentation of activity timing generalizes the well-known heaps-
of-pieces model [17], [18], where pieces have a rigid structure
(i.e., have a fixed shape). In our approach, however, the (max,+)
matrices encode flexible pieces, as illustrated in Fig. 4 for A.

We define the input model for our POR as a composition
of (max,+) automata. The composition of all the individual
automata is again an automaton. We assume that the matrices
of the constituent automata all have the same size to ensure that
they can be multiplied. Additional resources can be added to a
matrix by adding a new row and column for the resource and
having −∞ in all the new positions, except on the diagonal
where the value is 0.

Definition 3 ((Max,+) Timed System): A (max,+) timed sys-
temM is described byM = A1 ‖ · · · ‖ An with (max,+) au-
tomataAi = 〈Si, ŝi, S

m
i ,Acti, rewardi,Mi, Ti〉 with 1 ≤ i ≤

n. We assume that all matrices have size |Res| × |Res| and

Fig. 5. Running example with (max,+) automata P̄ 1, P̄ 2, and P̄ 3, and
composition P̄ (a) P̄ 1, P̄ 2, P̄ 3. (b) P̄ 1 ‖ P̄ 2 ‖ P̄ 3.

that for all 1 ≤ i, j ≤ n and each activity A ∈ Acti ∩Actj ,
rewardi(A) = rewardj(A), and Mi(A) = Mj(A).

A (max,+) automaton can be interpreted as a normalized
(max,+) state space that captures each path of the automaton as
a run, and contains all the necessary information for evaluation
of performance properties. The state space records normalized
resource availability vectors, with transitions between them.
Each configuration c = 〈s,γ〉 in the state space consists of a
state s of the (max,+) automaton and a normalized resource
availability vector γ. Fig. 6 shows the normalized (max,+) state
spaced of a simplified running example, discussed in more detail
in the following.

Definition 4 (Normalized (Max,+) State Space (Adapted
from [19])): Given (max,+) automaton A = 〈S, ŝ, Sm,
Act, reward, M , T 〉 with matrices of size |Res| × |Res|,
we define the normalized (max,+) state space S =
〈C, ĉ,Act,Δ,M,w1, w2〉 as follows:

1) set C = S ×R−∞
|Res|

of configurations;
2) initial configuration ĉ = 〈ŝ,0〉;
3) labeled transition relation Δ ⊆ C ×Act× C that con-

sists of the transitions in the set
{〈〈s,γ〉, A, 〈s,′ norm(γ ′)〉〉 | s A−→ s′ ∧ γ ′ = M(A)⊗
γ};

4) function w1 that assigns a weight w1(c, A, c′) =
reward(A) to each transition 〈c, A, c′〉 ∈ Δ; and

5) function w2 that assigns a weight w2(c, A, c′) =
‖M(A)⊗ γ‖ to each transition 〈c, A, c′〉 ∈ Δ with c =
〈s,γ〉 indicating the time passed during execution.

The set of enabled activities and runs in a normalized (max,+)
state spaceS = 〈C, ĉ,Act,Δ,M,w1, w2〉 is defined in a similar
way as in a (max,+) automaton for paths. A(n) (in)finite run ρ
of S is a(n) (in)finite, alternating sequence of configurations
and activities: ρ = c0A1c1A2c2A3 . . . such that c0 = ĉ and
ci+1 = Ai+1(ci) for all i ≥ 0. We define run prefix ρ[. . . i] =
c0A1 . . . ci, run fragmentρ[i, j] = ciAi+1 . . . cj from configura-
tion ci up to cj , andρ[i] = ci. Vector γ̄n = (

⊗n
k=1 M(Ak))⊗ 0

gives the resulting resource availability vector after executing
activities A1 · · ·An (without normalization). It can be derived
from the normalized (max,+) state space through summation of
encountered w2 values and the final normalized vector.

Proposition 5: Let S be a normalized (max,+) state space
with run ρ such that ci = 〈si,γi〉 for each i. Then, for all n ≥ 0,
γ̄n =

∑n−1
k=0 w2(ck, Ak+1, ck+1) + γn.

Proof: Proved with induction over n using Definition 4 and
the property that c+M ⊗ γ = M ⊗ (γ + c) given a constant
c, matrix M , and vector γ.
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Fig. 6. Normalized (max,+) state space of P̄ [Fig. 5(b)]. Transitions are annotated with the activity and w2 value.

In the remainder, we restrict ourselves to the reachable part of
the normalized (max,+) state space, and we assume that this is fi-
nite. The reachable part might be infinite [19]. It is guaranteed to
be finite, however, if for each simple cycle (no repetition of tran-
sitions is allowed) in the (max,+) automaton with corresponding
activity sequence A1 . . . Ak, the matrix MAk

⊗ . . .⊗MA1

is irreducible. This can be practically verified in polynomial
time by finding the simple cycles [20] and checking that the
corresponding matrices have no entries −∞. Practically, this
means that the claim of each resource is linked to the claim
of each other resource via the resource dependencies over each
cycle in the automaton. In practical systems, resources typically
do not operate fully independently.

III. PROPERTIES TO BE PRESERVED

In this section, we introduce the properties that we want to pre-
serve: controllability, nonblockingness, and least-restrictiveness
as functional properties, and latency and throughput as perfor-
mance properties.

A. Controllability, Nonblockingness, and
Least-Restrictiveness

In supervisory control, the activity alphabetAct is partitioned
into set Actc of controllable activities and set Actu of uncon-
trollable activities. In the running example, A,B,C,D, and E
are controllable and U is uncontrollable.

To define least-restrictiveness, we need the notions of subau-
tomata and union of automata. A subautomaton is obtained as a
reduction of a given (max,+) automaton, where a subset of the
states and transitions is preserved.

Definition 6 (Subautomaton): Let Ai = 〈Si, ŝ, S
m
i ,Act,

reward,M, Ti〉 for i ∈ {1, 2} be two (max,+) automata with
the same alphabet Act (and derived reward function and timing
matrices) and initial state ŝ. Automaton A1 is a subautomaton
of A2, denoted A1 � A2, iff S1 ⊆ S2, T1 ⊆ T2, and Sm

1 =
S1 ∩ Sm

2 . The latter ensures that marking in A1 is consistent
with marking in A2.

Definition 7 (Union of (Max,+) Automata): Let Ai =
〈Si, ŝ, S

m
i ,Act, reward,M, Ti〉, i ∈ I , be a set of au-

tomata all having the same activity alphabet, reward
function, timing matrices, and initial state. The union
of these (max,+) automata is defined as

⋃
i∈I Ai =〈⋃

i∈I Si, ŝ,
⋃

i∈I S
m
i ,Act, reward,M,

⋃
i∈I Ti

〉
.

The behavior of an uncontrolled system is represented by a
plantP . A supervisorAsup is added to ensure that the controlled
system, formed by P ‖ Asup, is nonblocking [1].

Definition 8 (Nonblockingness): A (max,+) automaton A =
〈S, ŝ, Sm,Act, reward,M, T 〉 is nonblocking iff, for every state
s ∈ S such that ŝ→∗ s, s is a nonblocking state. A state s ∈ S
is a nonblocking state iff s→∗ sm for some marked state sm ∈
Sm; otherwise, it is a blocking state.

Plant P in Fig. 2(e) is blocking, since states s10, s11, s12, and
s13 are blocking.Asup in Fig. 2(f) is nonblocking, as it is always
possible to return to s8. This shows how marked states can be
used to ensure a notion of completion.

We assume that Asup � P , since the computed supervisor is
often a restriction of the plant by disabling transitions that lead
to undesired behavior, violating the nonblocking requirement
or the controllability requirement, defined in the following.
Since Asup � P , P ‖ Asup = Asup, which means that P ‖ Asup

is nonblocking iff Asup is nonblocking.
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A supervisor is required to be controllable with respect to
the plant it needs to control, such that it does not disable
any uncontrollable activity that the plant defines in any state
reachable in the controlled system.

Definition 9 (Controllability): Let P = 〈SP , ŝP , Sm
P ,

ActP , rewardP ,MP , TP〉 and A = 〈SA, ŝA, Sm
A ,ActA,

rewardA,MA, TA〉 be (max,+) automata, with Actu ⊆
ActP ∪ActA the set of uncontrollable activities. A
is controllable with respect to P iff, for every string
α ∈ (ActP ∪ActA)∗, every state s ∈ SA, and every U ∈ Actu
such that ŝA→α ∗

As and ŝP →αU ∗
Ps
′ for some s′ ∈ SP , it holds

that s→U As′′ for some s′′ ∈ SA. Any state s ofA that satisfies
this property is called a controllable state; otherwise, it is
uncontrollable.

As an example, consider string CABE and path
s1−→CABE ∗

A′sup
s9 in supervisor A′sup shown in Fig. 2(f). In

plantP , the execution of string CABE leads to state s9. In state
s9 in P , uncontrollable activity U is enabled. In A′sup, activity
U is also present in state s9 inA′sup. Since this also holds for the
other strings and uncontrollable activities, A′sup is controllable
with respect to P .

The union of controllable and nonblocking subautomata of
a given automaton is again controllable and nonblocking [7].
A subautomaton is least-restrictive iff it is the union of all the
subautomata of P that satisfy both properties.

Definition 10 (Least-restrictiveness): Let A,A′ be (max,+)
automata. Define predicate CN(A,′ A) to be true iff A′ � A
and A′ is nonblocking and controllable with respect to A. The
supremal controllable and nonblocking subautomaton of A is
supCN (A) = ⋃

A,′s.t. CN(A,′A)A′. A′ is least restrictive with
respect to A iff A′ = supCN (A).

Both Asup and A′sup in Fig. 2(f) are nonblocking and control-
lable with respect toP . GivenP , calculatingAsup = supCN (P)
is called synthesis. Synthesis algorithms implement fixed-point
computations [1], [2], where in each iteration bad states are
removed. Bad states are those states that are blocking or that
lead to a blocking state through uncontrollable activities. These
bad states are identified and removed iteratively, until no more
such states remain in the resulting supervisor.

B. Throughput and Latency

The performance of a supervisor is quantified using through-
put and latency metrics, defined on the corresponding normal-
ized (max,+) state space. Throughput is defined as the ratio
between the cumulative reward and the cumulative execution
time of a run. For throughput analysis, we only consider infinite
runs. Latency is the temporal distance that separates the resource
availability times of a resource at the start of two activity in-
stances in a run. Latency analysis can be performed on both finite
and infinite runs. For readability, we assume for performance
analysis that a supervisor is total, meaning that each reachable
state has at least one outgoing transition. A nontotal supervisor
has a throughput lower bound of zero. The presented latency
analysis applies to nontotal supervisors as well. As supervisor
synthesis guarantees that from each state a marked state is
reachable, the supervisor is total if each marked state has at
least one outgoing transition. A total supervisor can be seen as an

ω-automaton [21] accepting infinite words over Act. There are
no specific acceptance conditions, so any infinite word starting
in the initial state is accepted. Marked states are not used to
define acceptance conditions. For the performance analysis of
a supervisor, all infinite runs in the timed states space S are
considered, contained in setR(S).

We define throughput of a run as the ratio between the cumu-
lative reward (sum of w1 weights) and the cumulative execution
time (sum of w2 weights).

Definition 11 (Throughput): The ratio of a run (fragment)
ρ = c0A1c1A2c2A3 . . . is the ratio of the sums of weights w1

and w2, defined as follows:

Ratio(ρ) = lim supl→∞

∑l
i=0 w1(ci, Ai+1, ci+1)∑l
i=0 w2(ci, Ai+1, ci+1)

.

The throughput guarantee corresponds to the minimum ratio
value achieved by any of those runs:

τmin(S) = inf
ρ∈R(S)

Ratio(ρ).

Since the reachable part of S is finite, infinite runs pass
recurrent configurations infinitely often. Thus, infinite runs are
composed of simple cycles of the state space. The minimum
ratio value of the state space is, hence, determined by the simple
cycle with the lowest ratio value, since this behavior can be
continuously repeated in a run. This cycle, thus, provides a lower
bound on the throughput (hence, a throughput guarantee). Since
S has a finite number of simple cycles, we can determine the
minimum ratio value of the graph from a minimum cycle ratio
(MCR) analysis [22].

Proposition 12 (Adapted from Proposition 1 in [15]):
τmin(S) = infcycle∈cycles(S) Ratio(cycle) = MCR(S), where
cycles(S) denotes all cycles in S and MCR(S) is the MCR
of S .

To illustrate the MCR, consider the normalized (max,+) state
space shown in Fig. 6, obtained from the composition of plants
P̄ 1, P̄ 2, and P̄ 3 shown in Fig. 5. We use this small model such
that we can show the full (max,+) state space. In this state space,
activities A,B, and D have reward 0 (weight w1), and activity
C has reward 1. Then, the MCR is 1/8, with a total reward
of 1 and a total execution time of 8, which can for instance be
found in the cycle corresponding to the execution of (CBAD)ω:

In this cycle, the first transition represents the execution of
C on resource r3, computed through matrix multiplication with
MC ; it adds 4 time units to the total execution time (weightw2),
and results in vector [0,−4, 4]ᵀ. Since the vector is normalized,
4 time units are deducted from each value. The other transitions
can be computed similarly. Other periodic executions where B
precedes A, i.e., (BACD)ω and (BCAD)ω , have the same
MCR value.

Latency is the time delay between a stimulus and its ef-
fect. A well-known related notion in the field of production
systems is makespan, where the stimulus is the start of the
schedule and the effect is the completion of the product. In
the context of (max,+) timed systems, we define latency in
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terms of the temporal distance that separates the resource
availability times of a resource at a designated source activity
Asrc and sink activity Asnk. In the state space, consider some
run ρ = c0A1c1A2 . . . with ci = 〈si,γi〉 containing run frag-
ment ρ[i, j + 1] = ciAi+1 . . . cjAj+1cj+1, with Ai+1 = Asrc

and Aj+1 = Asnk. We define the start-to-start latency λ between
the resource availability times of resource r in γi and γj as
λ(ρ, i, j, r) = (γ̄j)r − (γ̄i)r.

As an example, consider the execution of activity sequence
ACB starting from the initial configuration in the normalized
(max,+) state space shown in Fig. 6. This corresponds to run
fragment ρ =〈
s1,

⎡
⎣ 0
0
0

⎤
⎦
〉

A,5−−→
〈
s2,

⎡
⎣ 0
−2
−5

⎤
⎦
〉

C,0−−→
〈
s5,

⎡
⎣ 0
−2
−1

⎤
⎦
〉

B,1−−→
〈
s4,

⎡
⎣ 0

0
−2

⎤
⎦〉 .

Say that we want to compute the start-to-start latency between
the resource availability times of r2 in γ̄0 (start of activityA) and
in γ̄2 (start of activity B). First, we compute the vectors without
normalization from the state space using Proposition 5 to find
γ̄0 = γ0 and γ̄2 = [5, 3, 4]ᵀ. Then, we compute the latency

λ(ρ, 0, 2, r2) = (γ̄2)r2 − (γ̄0)r2 =

⎡
⎣ 5
3
4

⎤
⎦
r2

−
⎡
⎣ 0
0
0

⎤
⎦
r2

= 3.

We assume that the occurrences of Asrc and Asnk activities
are related. In any run, for any k ≥ 1, the kth occurrence
of Asrc is paired with the kth occurrence of Asnk. We refer
to such a pair of related activities as a source-sink pair. Let
getOccurrence(ρ,A, k) denote the index of the kth oc-
currence of activity A in run ρ. The start-to-start latency for
resource r in ρ with source-sink pair Ai+1 = Asrc and Aj+1 =
Asnk in run fragment ρ[i, j + 1] is equal to λ(ρ, i, j, r). The
maximum start-to-start latency in a run is obtained by looking
at all source-sink pairs

λmax(ρ,Asrc, Asnk, r) = sup
k≥1

λk(ρ)

where λk(ρ) = λ(ρ, i, j, r),i = getOccurence(ρ,Asrc, k), and
j = getOccurence(ρ,Asnk, k).

Definition 13 (Latency): Given normalized (max,+) state
space S , the maximum start-to-start latency of S with resource r
and source-sink pair Asrc, Asnk is found by taking the maximum
latency over all runs in the state space

λmax(S) = sup
ρ∈R(S)

λmax(ρ,Asrc, Asnk, r).

IV. STATE-SPACE PERFORMANCE EQUIVALENCE

The performance of the supervisory controller is analyzed
on the corresponding normalized (max,+) state space. In our
POR, we ensure that performance properties are preserved in
the normalized (max,+) state space of the reduced supervisor.
We capture this preservation in the notion of state-space perfor-
mance equivalence. Throughput and latency are both expressed

in terms of runs in the state space. We introduce the notion of
equivalent runs that have the same ratio value (Definition 11).
We show that equivalent runs have the same throughput and
latency values. In Section V, we show that our POR preserves
equivalent runs in the corresponding normalized (max,+) state
spaces, thereby preserving performance properties.

Definition 14 (State-Space Performance Equivalence): Nor-
malized (max,+) state spaces S and S′ are performance-
equivalent, denoted S ≈p S′ iff τmin(S) = τmin(S′) and
λmax(S) = λmax(S′).

A state space may have multiple equivalent runs with the
same ratio value caused by the interleaving of ratio-independent
activities that have no mutual influence. Such runs have the
same throughput and latency values, as shown in the following.
The first property of ratio-independent activities, say A and B,
is the classical notion of independence: in every configuration
where A and B are both enabled, the execution of one activity
cannot disable the other activity, and the resulting configuration
after executing both activities in any order is the same. The
second property requires that the summed weights w1 and w2

of the corresponding transitions of A and B are the same. The
third property requires that A and B do not share resources. As
an example, consider the initial configuration in Fig. 6, where
activities A and C are ratio-independent.

Definition 15 (Ratio-Independent): Let S = 〈C, ĉ,Act,
Δ,M,w1, w2〉 be a normalized (max,+) state space, c ∈ C a
configuration, and A,B ∈ enabled(c) activities enabled in c.
Activities A and B are ratio-independent in c iff they satisfy
the following conditions2:

1) B ∈ enabled(A(c)), A ∈ enabled(B(c)), and AB(c) =
BA(c);

2) wi(c, A,A(c)) + wi(A(c), B,AB(c)) =
wi(c,B,B(c)) + wi(B(c), A,BA(c)) for i ∈ {1, 2};
and

3) R(A) ∩R(B) = ∅.
Two activities are ratio-dependent in configuration c iff they

are not ratio-independent in c.
To illustrate, consider configuration c0 = 〈s1,0〉 in the state

space shown in Fig. 6. Activities A and B are ratio-dependent
in c0 (they do not satisfy condition 1 in Definition 15) and ratio-
independent with activity C.

To formalize the equivalence on runs, we first define the
equivalence of run prefixes. Two run prefixes are equivalent
iff their corresponding activity sequences can be obtained from
each other by repeatedly commuting adjacent ratio-independent
activities. Given prefix ρ[. . .m] = c0A1 . . . Amcm of some run
ρ, let Act(ρ[. . .m]) denote the activity sequence A1 . . . Am.

Definition 16 (String Equivalence): Let S = 〈C, ĉ,Act,Δ,
M,w1, w2〉 be a normalized (max,+) state space. Strings α, β ∈
Act∗ are equivalent [24] in a configuration c, denotedα ≡c β, iff
there exists a list of strings υ0, υ1, . . . , υn, where υ0 = α, υn =
β, and for each 0 ≤ i < n, υi = ῡABυ̂ and υi+1 = ῡBAυ̂ for
some ῡ, υ̂ ∈ Act∗ and A,B ∈ Act such that A and B are ratio-
independent in ῡ(c).

2For state spaces generated from (max,+) automata, as in this article, condition
2 follows from 1 and 3.
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Fig. 7. Illustration of Definition 18. (a) Example ρ �1
2 σ. (b) Illustration

of ρ �d
n σ

Definition 17 (Prefix Equivalence): Prefixes ρ[. . .m] and
σ[. . .m] of runs ρ and σ starting in configuration c are
equivalent in configuration c, denoted ρ[. . .m] ≡c σ[. . .m], iff
Act(ρ[. . .m]) ≡c Act(σ[. . .m]).

Throughput is defined as a limit on prefix ratios of infinite
runs. To define equivalence of runs in terms of throughput, we
need to consider equivalent run prefixes (in the sense of Defini-
tion 17) with a bounded difference in the number of activities
following those prefixes. This bounded difference ensures that
the resulting weight difference can be ignored in the limit.

Definition 18 (Run Equivalence): Let ρ and σ be two runs
in S = 〈C, ĉ,Act,Δ,M,w1, w2〉. We define ρ � σ iff there
exists a d ∈ N such that for all n ≥ 0 it holds that ρ �d

n σ. We
define ρ �d

n σ iff there exists some k ≥ n, a run ρ̂ ∈ R(S) with
run prefix ρ̂[. . . k] withAct(ρ̂[. . . k]) ≡ĉ Act(ρ[. . . k]) such that
Act(ρ̂[. . . k]) = Act(σ[. . . n]) · α for some activity sequence α,
and k − n ≤ d. Runs ρ and σ are equivalent, denoted ρ ≡ σ, iff
ρ � σ and σ � ρ.

Two finite runs ρ and σ are equivalent if ρ �d
n σ for 0 ≤ n ≤

|ρ| and σ �d
n ρ for 0 ≤ n ≤ |σ|, where d = max(|σ|, |ρ|). As

an example, consider run ρ with activity sequence (ABCD)ω

in the state space in Fig. 6. In this state space, we can also find
run σ = (CABD)ω , which is equivalent because C is ratio-
independent of A and B. The run should satisfy ρ �d

n σ for
some d ∈ N and for all n ≥ 0. Consider the case for n = 2,
shown in Fig. 7(a). Then, we need to match two (n) activities of
ρ to the first two activities of σ. The prefix consisting of the first
two activities of ρ, AB, is not a prefix of σ. In σ, independent
activity C is performed first. Run ρ̂, equivalent (in the sense of
Definition 17) to ρ and identical to σ for n = 2 activities and
d = 1, which can be constructed by movingC to the front. ρ and
σ must be such that this can be done for any n ≥ 0. The general
case is shown in Fig. 7(b). It is crucial for the preservation of
throughput that the length k that one needs to consider in ρ to
find the first n activities of σ exceeds n by maximally a finite
amount d, independent of n.

The property that equivalent runs have the same throughput
and latency values was stated in [8] without proof. It is included
here with proof for completeness purposes.

Proposition 19 (Equivalent Runs Have The Same Through-
put And Latency Values): Let ρ, σ ∈ R(S), be runs in S . Let
Asrc and Asnk be any source–sink pair, and let r ∈ Res. If
ρ ≡ σ, then Ratio(ρ) = Ratio(σ) and λmax(ρ,Asrc, Asnk, r) =
λmax(σ,Asrc, Asnk, r).

Proof: By Definition 18, for each prefix in one run we can
match a (possibly) shorter prefix in the other run. The difference
between the prefixes is a suffix α bounded in length by d.

For throughput preservation, observe that the maximum
weight difference between the prefixes for both weights w1 and
w2 is bounded by the maximum cumulative sum of the weights
w1 and w2 of α. By Proposition 12, it suffices to consider the
maximum cumulative weights w1 and w2 over all simple cycles
in the state space to determine the maximum cumulative sum
for α for both weights. In the limit, a bounded weight difference
can be ignored. Therefore, ρ and σ have the same ratio value,
and consequently also the same throughput value.

The maximum latency in a run between Asrc and Asnk on
resource r is determined by some source–sink occurrence pair.
The prefixes of ρ and σ are matched by swapping the ratio-
independent activities. Given condition 3 of Definition 15, the
source and sink activity can only be part of swaps where the
resource availability time of r is not affected. These swaps thus
do not affect the latency value for the source–sink occurrence
pair, and hence, ρ and σ have the same maximum latency. �

V. (MAX,+) AUTOMATON REDUCTION

In the previous section, we defined when two state spaces
are performance-equivalent, preserving throughput and latency
aspects. We proceed to define POR conditions at the level
of a (max,+) automaton, which ensure that functional prop-
erties are preserved during synthesis and that the correspond-
ing state spaces of the supervisor and reduced supervisor are
performance-equivalent.

To reuse existing POR techniques, we want to remove the
need to identify the marked states with special set Sm. We add a
self-loop with a special controllable activity ω to marked states.
Nonblockingness of A can then be replaced by the notion of
ω-reachability of the resulting automaton Aω . The fact that A
is nonblocking iff Aω is ω-reachable follows directly from the
definitions.

Definition 20 (ω-Reachability): Let A = 〈S, ŝ, Sm,Act,
reward,M, T 〉 be a (max,+) automaton. The ω-extension ofA
is the automaton Aω = 〈Sω, ŝ, S

m,Actω, rewardω, Mω, Tω〉
with ω /∈ Act, Actω = Act ∪ {ω}, rewardω = reward ∪
{〈ω, 0〉}, Mω = M ∪ {〈ω, I(ω)〉}, where I(ω) is an identity
matrix of size |Res| × |Res| with for each 1 ≤ i, j ≤ |Res|,
[I(ω)]ij = −∞ if i �= j and [I(ω)]ij = 0 if i = j, and Tω =
T ∪ {sm→ω sm | sm ∈ Sm}.Aω is ω-reachable iff from each
reachable state s ∈ S (i.e., ŝ→∗ s) a state sω is reachable in
which ω is enabled.

We want to exploit redundancy in the plant to obtain a reduced
plant while preserving the properties of interest. Part of the
redundancy is caused by the interleaving of activities that have no
mutual influence on these properties. Such activities are referred
to as uncontrollable-independent. Two activities A and B are
uncontrollable-independent in state s if (i) they are independent
in the classical sense, no uncontrollable activities are enabled
in any of the states s,A(s), B(s), and AB(s), and they do not
share resources. Condition (ii) guarantees that uncontrollable
activities do not influence the execution of both activities. It
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Fig. 8. Example to show the need for condition 2 of Definition 21.

ensures that both the AB and BA paths are either preserved or
removed during synthesis. The need for this condition is illus-
trated with Fig. 8. In the example, we have paths s1−→BA ∗s4
and s1−→AB ∗s4 in the full automaton, and we may only have
path s1−→AB ∗s4 in the reduced automaton if the reduction
considers both paths equivalent based on the independence
of A and B. Synthesis on the reduced automaton yields an
empty supervisor because state s2 leads to blocking state s5
via uncontrollable activity U . Synthesis on the full automaton
yields a nonempty supervisor. Although in states s1, s2, s3,
and s4, the same uncontrollable activity U is enabled, only
in state s2 it takes the system to a blocking state. Therefore,
both paths cannot be considered equivalent and activities A and
B cannot be considered uncontrollable-independent. Condition
(iii) guarantees that the activities have no mutual influence on
their timing behavior.

Definition 21 (Uncontrollable-Independence): Given
(max,+) automaton A = 〈S, ŝ, Sm, Act, reward, M , T 〉 and
state s ∈ S, activities A,B ∈ enabled(s) are uncontrollable-
independent in s iff they satisfy the following conditions:

1) B ∈ enabled(A(s)), A ∈ enabled(B(s)), and AB(s) =
BA(s);

2) enabled(s) ∩Actu = enabled(A(s)) ∩Actu =
enabled(B(s)) ∩Actu = enabled(AB(s)) ∩Actu = ∅;
and

3) R(A) ∩R(B) = ∅.
Two activities are uncontrollable-dependent in s iff they are

not uncontrollable-independent in s.
As an example, consider state s1 in P shown in Fig. 2(e).

Here, activities A and B are uncontrollable-dependent since
they both use resources r1 and r2 (as shown in Fig. 3). They
are uncontrollable-independent with activity C, since they do
not share a resource, are independent, and do not enable an
uncontrollable activity.

Uncontrollable-independence lifts the notion of ratio-
independence to the level of a (max,+) automaton. If two ac-
tivities A and B are uncontrollable-independent in some state in
the (max,+) automaton, then they are also ratio-independent in
the corresponding configurations in the underlying state space.
As R(A) ∩R(B) = ∅, their corresponding (max,+) matrices
commute. As a result, the resulting normalized vector after
multiplication is the same, and the sum of the weights w1 and
w2 is the same, independent of the execution order.

Two paths in a (max,+) automaton are equivalent iff they can
be obtained from each other by repeatedly commuting adjacent
uncontrollable-independent activities.

Definition 22: Let A = 〈S, ŝ, Sm,Act, reward,M, T 〉 be a
(max,+) automaton. Stringsα, β ∈ Act∗ are equivalent in a state
s, denotedα ≡s,u β, iff there exists a list of stringsυ0, υ1, . . . υn,
where υ0 = α, υn = β and, for each 0 ≤ i < n, υi = ῡABυ̂

and υi+1 = ῡBAυ̂ for some ῡ, υ̂ ∈ Act∗ and activities
A,B ∈ Act such that A and B are uncontrollable-independent
in ῡ(s). Paths p = s→α s1 and p′ = s→β s2 are equivalent iff
α ≡s,u β.

A reduction of a (max,+) automaton is defined as follows.
Definition 23 ((Max,+)-Automaton Reduction Function): A

reduction function reduce for a (max,+) automaton A =
〈S, ŝ, Sm,Act, reward,M, T 〉 is a mapping from S to 2Act such
that reduce(s) ⊆ enabled(s) for each state s ∈ S. We define
the reduction of A induced by reduce as the smallest (max,+)
automaton A′ = 〈S,′ ŝ, Sm′ ,Act, reward,M, T ′〉 that satisfies
the following conditions:

1) S ′ ⊆ S, Sm′ = Sm ∩ S,′ T ′ ⊆ T ;
2) for every s ∈ S ′ and A ∈ reduce(s), 〈s,A,A(s)〉 ∈ T ′.

A reduction on plant P gives a reduced plant P′, as shown in
Fig. 2(e). The supervisorA′sup synthesized for P′ will typically
not be least-restrictive with respect toP . Therefore, we introduce
a new notion of reduced least-restrictiveness that defines that an
equivalent path inP′ is preserved for each path inP to a marked
state.

Definition 24 (Reduced Least-Restrictiveness): Let A1 =
〈S1, ŝ, Sm

1 , Act1, reward1, M1, T1〉 and A2 = 〈S2, ŝ,
Sm
2 , Act2, reward2, M2, T2〉 be two (max,+) automata such

that A1 � A2. A1 is reduced least-restrictive with respect
to A2 iff for every path ŝ→β ∗

A2
sm with sm ∈ Sm

2 , there
exists a path ŝ→β ∗

A1
sm in A1 with sm ∈ Sm

1 such that
α ≡ŝ,u β.

In our running example,A′sup is reduced least-restrictive with
respect to Asup, since it preserves a representative path to the
marked state s8 for all pruned paths.

We apply POR to obtain P′ from P . After synthesis we
have supervisors Asup = supCN (P) and A′sup = supCN (P′).
Reduced supervisor A′sup should preserve the functional as-
pects and performance aspects of supervisor Asup, defined by
A′sup �f,p Asup.

Definition 25: Let P be a plant and A′sup and Asup be su-
pervisors for P . Let S′ and S be the corresponding normalized
(max,+) state spaces of A′sup and Asup. We define A′sup �f,p

Asup iff
1) Asup is nonblocking, then A′sup is nonblocking,
2) Asup is controllable w.r.t. P , then A′sup is controllable

w.r.t. P ,
3) A′sup is reduced least-restrictive w.r.t. Asup, and
4) S′ ≈p S .

Conditions 1–3 guarantee preservation of functional aspects.
Condition 4 ensures the preservation of performance. Condi-
tion 3 does not automatically imply condition 4, as throughput is
defined over infinite runs (going through simple cycles), where
cycles in the state space may not have corresponding marked
states in the automaton. To preserve the properties of interest,
we impose the following ample conditions on a reduction of a
(max,+) automaton.

Definition 26 (Ample Conditions (Max,+) Automaton): A
reduction function ample is an ample reduction if it satisfies
all the following conditions in each state s.

(A1) Nonemptyness condition: if enabled(s) �= ∅, then
ample(s) �= ∅.
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Fig. 9. Necessity of conditions (A5.1) and (A5.2). a) Plant P1 with
reduced plant P′1 that satisfies all conditions except condition (A5.1).
(b) Plant P2 with reduced plant P′2 that satisfies all conditions except
condition (A5.2).

(A2) Dependency condition: For any path
s0A1s1A2 . . . Amsm with s = s0 and m ≥ 1
in A, if activity Am and some activity in
ample(s0) are uncontrollable-dependent in s0,
then there is an index i with 1 ≤ i ≤ m with
Ai ∈ ample(s0).

(A3) Controllability condition: ample(s) ⊇ enabled(s) ∩
Actu.

(A4) Nonblockingness condition: ample(s) ⊇
enabled(s) ∩ {ω}.

(A5.1) Synthesis condition 1: If A ∈ ample(s) and
enabled(A(s)) ∩Actu �= ∅, then ample(s) =
enabled(s).

(A5.2) Synthesis condition 2: For A,B ∈ enabled(s)
if enabled(AB(s)) ∩Actu �= ∅, then A ∈
ample(s)⇔ B ∈ ample(s).

We refer to set ample(s) for any state s as an ample set.
Condition (A1) ensures that deadlock-freedom is preserved.

Condition (A2) ensures that starting from some state s, any
activity in ample(s) remains enabled as long as no activity in
ample(s) has been executed. Condition (A3) ensures that all
uncontrollable activities in the enabled set remain in the ample
set to avoid that they become disabled by the reduction. Condi-
tion (A4) ensures that in the reduced automaton marked states
can still be identified. Note that ω acts like an uncontrollable
activity, since it must remain in the ample set. We have chosen
it to be controllable, however, as we do not want ω to have an
impact on conditions (A5.1) and (A5.2), and subsequently on
the reductions that can be achieved. Condition (A2) ensures that
an equivalent path for any path to a marked state, where ω is
enabled, is preserved in the reduced plant. Conditions (A5.1)
and (A5.2) ensure that if a path to a marked state is present
in the supervisor, then an equivalent path is also present in the
reduced supervisor.

To illustrate the need for conditions (A5.1) and (A5.2),
consider the plants shown in Fig. 9. Fig. 9(a) shows plant
P1, where the reduction satisfies conditions (A1) till (A4)
and (A5.2), but not (A5.1). Condition (A5.1) is not satis-
fied, since uncontrollable activity U is enabled after A, but
ample(s1) �= enabled(s1). Synthesis on P′1 yields an empty
supervisor, whereas synthesis on P1 yields a supervisor with

path s−→BA ∗s4 to marked state s4. If condition (A5.1) is
satisfied, both A and B are in the ample set of s1. This is needed
since state s2 becomes a bad state during synthesis, and the
alternative path to s4 is then preserved. To illustrate the need
for condition (A5.2) consider plantP2 shown in Fig. 9(b). Here,
the reduction yielding P′2 satisfies conditions (A1) till (A5.1),
but not condition (A5.2); activity U ∈ enabled(BC(s1)), but
only C is present in ample(s1), and not B. The result after
synthesis on P2 contains the paths s1→A s2→B s4→C s8 and
s1→B s3→A s4→C s8, whereas synthesis on the reduced plant
P′2 yields an empty supervisor since states s9 and s10 are not
marked.

We now prove the main result that synthesis after reduction
preserves both functional and performance aspects.

Theorem 27: Let P be a plant, and P′ the reduced plant
obtained from an ample reduction. Then, supCN (P′) �f,p

supCN (P).
Proof: Let A′sup = supCN (P′) and Asup = supCN (P). To

show thatA′sup �f,p Asup, we need to prove the four conditions
as stated in Definition 25.

1) Nonblockingness: Synthesis guarantees that supCN (P′)
is nonblocking, for any P ′.

2) Controllability: Condition (A3) guarantees that uncon-
trollable actions are preserved in an ample reduction.

3) Reduced least-restrictiveness: We need to show that
supCN (P′) � supCN (P) and that for each path p to a
marked state in supCN (P), supCN (P′) has a path p′ to
a marked state in supCN (P′) that is equivalent to p.
First, we show that supCN (P′) � supCN (P). By induc-
tion on the iterations of the synthesis algorithm given
in [2], we can show that states of P′ are bad in iteration
k of synthesis on P′ if and only if those states are bad
in iteration k of synthesis on P . Consequently, since
P′ � P , also supCN (P′) � supCN (P).
Second, we show that a path p′ exists in supCN (P′)
equivalent to p. As supCN (P) � P , by our assumption
below Definition 8, p is also a path in P . By structural
induction, we can find an equivalent path p′ inP′. In each
step, we reorder uncontrollable-independent activities in
p to extend the prefix of p′, in the end obtaining path p′.
To prove that p′ is also a path in supCN (P′), we assume
toward a contradiction that path p′ is not preserved in
supCN (P′). Assuming that p′ is not in supCN (P′), there
must be a state on p′ that turns bad during synthesis. Path
p′ is also a path in P , as P′ � P . The earlier observation
that states ofP′ are bad in iteration k of synthesis onP′ if
and only if those states are bad in iteration k of synthesis
on P implies that p′ is also not in supCN (P). Path p′ is
obtained from p by swapping uncontrollable-independent
activities. By induction on the number of swaps to obtain
a path from an equivalent one, it can be shown that
synthesis preserves equivalent paths. The key observation
is that a swap of two uncontrollable-independent activities
preserves bad states (via condition 2 of Definition 21).
Given that p′ is not in supCN (P), and p and p′ being
equivalent, this implies that also p is not in supCN (P),
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which contradicts our initial assumption. Therefore, p′

must be present in supCN (P′), showing reduced least-
restrictiveness of supCN (P′).

4) Performance: Let S and S′ be the state spaces
of supCN (P) and supCN (P′), respectively. We first
observe that any run of S′ is also a run of S . This follows
from the fact that supCN (P′) � supCN (P). Thus, S′
does not introduce any new ratio or latency values not
also present in S . Second, we show that there is a run
in S′ with the worst-case throughput (ratio value) of S′.
Finally, we show that for any run in S with maximum
latency, there is a run with the same latency value in S′.

A. Throughput

By Proposition 12, the worst-case throughput inS is exhibited
by a run ρ with Act(ρ) = α1 · (α2)

ω (for some α1, α2 ∈ Act∗)
such that α2 corresponds to a cycle in the state space, i.e.,
α1(ĉ) = α1 · α2(ĉ) with ĉ the initial configuration of S and S′.
This run corresponds to a path p in supCN (P) with Act(p) =
α1 · α2 · α3, where α2 corresponds to a cycle in supCN (P) and
where α3 represents a path from that cycle to a marked state.
We can extend this path to a path p̄ with Act(p̄) = α1 · αN

2 · α3

for arbitrary N > 0, where we traverse cycle α2 N times. By
reduced least-restrictiveness of supCN (P′), for each such path
there exists an equivalent path p̄′ in supCN (P′). If N ≥ |S′|,
p̄′ is such that there exist β1, β2, β3 with β1 · β2 · β3 ≡ŝ,u

α1 · αN
2 · α3, where ŝ is the initial state inP andP′, |β1| ≥ |α1|,

|β3| ≥ |α3|, |β2| = k · |α2| for some k > 0. Then, for all m >

0, α1 · αN+(m−1)·k
2 · α3 ≡ŝ,u β1 · βm

2 · β3. As uncontrollable-
independence in the automaton implies ratio-independence in
the state space, α1 · αN+(m−1)·k

2 · α3 ≡ĉ β1 · βm
2 · β3. It fol-

lows that S′ has a run ρ′ with Act(ρ′) = β1 · (β2)
ω that repeats

a cycle that is equivalent to α2 in run ρ. Hence, ρ and ρ′ have
the same ratio values, i.e., Ratio(ρ′) = Ratio(ρ).

B. Latency

The maximum latency between source activity Asrc and sink
activity Asnk for resource r is determined by some source–
sink occurrence pair in some run ρ in S . Let prefix ρ[. . .m],
for some m, with Act(ρ[. . .m]) = α1 ·Asrc · α2 ·Asnk con-
tain this occurrence pair. ρ[. . .m] corresponds to a path p in
supCN (P) with Act(p) = Act(ρ[. . .m]). We can extend p
to path p̄ with Act(p̄) = Act(p) · α3 such that p̄ leads to a
marked state. By reduced least-restrictiveness of supCN (P′),
for each such path, there exists an equivalent path p̄′ with
Act(p̄′) ≡ŝ,u Act(p̄), where ŝ is the initial state in P′ and P .
Path p̄′ can be obtained from p̄ by swapping uncontrollable-
independent activities such that Act(p̄′) = β1 ·Asrc · β2 ·Asnk ·
β3. As uncontrollable-independence in the automaton implies
ratio-independence in the state space, we obtain a run ρ′ in
S′ such that Act(ρ′[. . .m′]) = Act(p̄′) ≡ĉ Act(ρ[. . .m]) · α3.
Note that path p̄′ can always be extended to an infinite run,
because it ends in a marked state having anω-self loop. Activities
Asrc and Asnk can only be a part of a swap where the resource
availability time of r is not affected (as explained in the proof of
Proposition 19). Hence, the latency of this occurrence is identical

to the one in ρ. Given the assumption that the latency value of
the considered source–sink occurrence pair in ρ is the maximum
value in S and since S′ does not introduce new latency values,
the latency value of ρ′ must be the same worst-case value as the
latency value of ρ. �

VI. ON-THE-FLY REDUCTION

Section V gives sufficient conditions for a reduction func-
tion on a single (max,+) automaton to preserve functional and
performance properties. For an efficient reduction, we avoid
first computing the full composition of the (max,+) automata.
Rather, we use sufficient local conditions on the network of
(max,+) automata to compute a reduced composition on-the-fly.
Given (max,+) timed system M = A1 ‖ · · · ‖ An and A =
{Ai | 1 ≤ i ≤ n}, the ample function selects a set ample(s) in
each state s of the composition, such that conditions (A1) till
(A5) are met. The ample set is induced by a cluster C ⊆ A, and
computed as ample(s) = enabledC(s) = enabled(s) ∩Act(C),
whereAct(C) = ⋃

Ai∈C Acti andActi is the alphabet of (max,+)
automaton Ai. This cluster-inspired ample approach, based
on [23], is a generalization of the traditional on-the-fly method
of Peled [5] that selects the enabled activities enabledi(s) =
enabled(s) ∩Acti of one (max,+) automaton Ai as ample set,
if possible, while exploring a state s = 〈s1, s2, . . . , sn〉. If this
is not possible, all enabled activities in s are selected as ample
set.

A cluster that ensures that the ample conditions are met is
called a safe cluster. To consider the local state πC(s) in a cluster
C ⊆ A, we define a projection π

πAi
(s) = si

πC(s) = 〈πAc1
(s), . . . , πAck

(s)〉where C = {Ac1 , . . . ,

Ack} and cj < cj+1 for all 1 ≤ j < k.

Given local state πC(s), enabled(πC(s)) denotes the set of en-
abled activities in the composition of the (max,+) automata in C.
Note that enabledC(s) ⊆ enabled(πC(s)), since the latter might
contain activities that are enabled in the local state of the cluster-
composition Ac1 ‖ . . . ‖ Ack for cluster C = {Ac1 , . . . ,Ack},
but disabled in the global composition due to a (max,+) automa-
ton outside the cluster disabling the activity. We only consider
independence of activities across (max,+) automata, and not
within the same (max,+) automaton. The former can be checked
locally, whereas the latter requires an exploration on the internal
transition structure. We treat activities inside the same (max,+)
automaton as dependent.

Definition 28 (Cluster Safety): Let C ⊆ A be any cluster, and
s be a state in the composition of A. Cluster C is safe in s if the
following conditions are satisfied:

(C1) if enabled(s) �= ∅, then enabledC(s) �= ∅;
(C2.1) for any A ∈ enabledC(s) and B �∈ Act(C), A and B

are uncontrollable-independent;
(C2.2) for any A ∈ enabled(πC(s)) ∩Acti, Ai ∈ C;

(C3) enabledC(s) ⊇ enabled(s) ∩Actu;
(C4) enabledC(s) ⊇ enabled(s) ∩ {ω};
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(C5.1) if A ∈ enabledC(s) and enabled(A(s)) ∩Actu �= ∅,
then enabledC(s) = enabled(s);

(C5.2) forA,B ∈ enabled(s) if enabled(AB(s)) ∩Actu �=
∅, then A ∈ enabledC(s)⇔ B ∈ enabledC(s).

Condition (C2.2) requires that each activity in enabled(πC(s))
does not occur outside of the cluster. Together with (C2.1),
this ensures that no activity A /∈ enabledC(s), dependent on
some activity in enabledC(s), becomes enabled by executing
only activities outside the cluster. Condition (C3) ensures that
uncontrollable activities are always preserved. Condition (C4)
ensures that ω, if enabled, is preserved. Conditions (C5.1) and
(C5.2) ensure that if a path to a marked state remains after
synthesis on the full composition, then also an equivalent path
remains after synthesis on the reduced composition. Note that
C = A is a safe cluster in any state. We define a cluster-inspired
ample reduction based on cluster safety on a (max,+) timed
system.

Definition 29 (Cluster-Inspired Ample Reduction): A cluster-
inspired ample reduction ample for a (max,+) timed system
M = A1 ‖ · · · ‖ An is a mapping from S = S1 × . . .× Sn to
2Act such that ample(s) for all states s ∈ S satisfies the following
condition:

(M1) ample(s) = enabledC(s), where C ⊆ A is safe in s.
Theorem 30: Let P = A1 ‖ · · · ‖ An be a plant modeled

as (max,+) timed system, and P′ be the (max,+) automa-
ton obtained by a cluster-inspired ample reduction. Then,
supCN (P′) �f,p supCN (P).

Proof: Let ample be a cluster-inspired ample reduction. We
show that ample satisfies the conditions of Definition 26. The
result then immediately follows from Theorem 27.

Consider any state s in the composition of A1 ‖ · · · ‖ An.
Let ample(s) = enabledC(s), where C is any safe cluster in s,
satisfying condition (M1). Conditions (A1), (A3), (A4), (A5.1),
and (A5.2) follow directly from (C1), (C3), (C4), (C5.1), and
(C5.2). We prove (A2) by contraposition, for the case that
enabled(s) �= ∅. If enabled(s) = ∅, (A2) is trivially satisfied.
Assume that (A2) does not hold. This means that there exists

a finite path fragment p = s
A1→ s1

A2→ s2
A3→ . . . sn−1

An→, where
A1 . . . An−1 are uncontrollable-independent with ample(s) =
enabledC(s), and An is uncontrollable-dependent with some ac-
tivity in enabledC(s). SinceAn is uncontrollable-dependent with
some activity in enabledC(s), by (C2.1), An ∈ Act(C). More-
over, we have An /∈ enabledC(s). Since activities A1, . . . , An−1
are uncontrollable-independent with ample(s),A1, . . . , An−1 �∈
Act(C), they do not affect the state of C, and therefore, πC(s)
does not change in the firstn− 1 steps. AsAn ∈ enabled(sn−1),
An ∈ enabled(πC(s)). Since An /∈ enabledC(s), An becomes
enabled in πC(s) by executing one of the activities in set
A1, . . . , An−1. Since A1, . . . , An−1 are activities outside of C,
there must be some Ai with 1 ≤ i ≤ n− 1 that enabled An,
which can only happen if An occurs outside of cluster C by def-
inition of synchronous composition. This contradicts (C2.2). �

In each composition state s, we compute a safe cluster start-
ing from a candidate activity. To guarantee conditions (C5.1)
and (C5.2), we check whether an activity A might enable an
uncontrollable activity in enabled(A(s)) or enabled(AB(s))
for some uncontrollable-independent activity B. To avoid

Algorithm 1: Algorithm To Compute A Safe Cluster.
1: Proc ComputeClusters, candidate
2: A← candidate; C ← ∅; processed← ∅
3: if ω ∈ enabled(s) then
4: return A
5: for U ∈ enabled(s) ∩Actu do
6: C ← C ∪ {Ai | U ∈ Acti}
7: while A �= ⊥ do
8: processed← processed ∪ {A}
9: if A ∈ enabled(s) then

10: if A ∈ U then
11: return A
12: C ← C ∪ {Ai | A ∈ Acti}
13: for B ∈ {D ∈ Act | R(D) ∩R(A) �= ∅} do
14: if B /∈ Act(C) then
15: C ← C ∪ {[Ai | B ∈ Acti].first()}
16: if A /∈ enabled(s) ∧A ∈ enabled(πC(s)) then
17: for Ai ∈ A do
18: if A ∈ Acti ∧ Ai /∈ C ∧A /∈ enabled(si) then
19: C ← C ∪ {Ai}; break
20: if processed �= enabled(πC(s)) then
21: A← [enabled(πC(s)) \ processed].first()
22: else
23: A← ⊥
24: return C

computing these enabled sets during the on-the-fly reduction,
we introduce a new set U that can be generated a priori from
the network of (max,+) automata. U contains all activities that
enable (or do not disable) an uncontrollable activity in any of
the automata

U =
⋃
Ai∈A
{A ∈ Acti | enabled(A(s)) ∩Actu �= ∅, s ∈ Si}.

The reduction is most effective if this set U is small, and not
effective if it contains all activities. After executing some activity
A ∈ U , an uncontrollable activity U might still be disabled by
some other (max,+) automaton, even thoughA enables it locally,
so C is conservative.

A safe cluster in a state s can be computed with Algorithm 1. In
the algorithm, [Ai | B ∈ Acti] denotes a list comprehension that
creates a list of all elements Ai for which B ∈ Acti. Function
first() picks the first element. With A← ⊥, we denote that
no activity is assigned to A. The algorithm first ensures that
conditions (C3) and (C4) are met (lines 2-8). If enabled(s)
contains ω, then set A is returned, since all (max,+) automata
have ω in their alphabet and will be added to the cluster. If
not, then for each enabled uncontrollable activity, all (max,+)
automata having this activity in the alphabet are added to the
cluster (lines 6–8). The algorithm then checks for each activity
enabled in the current cluster C whether condition (C2.1) or
(C2.2) is violated, ensuring that also (C5.1) and (C5.2) are
satisfied. The algorithm starts with candidate activity A. If A
is enabled in the composition (line 11), we check if A ∈ U , as
A might then enable an uncontrollable activity and condition
(C5.1) or (C5.2) might get violated. When A ∈ U and A is
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Algorithm 2: Algorithm To Select A Candidate Activity.
1: Proc Select Candidates,A
2: if ω ∈ enabled(s) then
3: return ω
4: else if Actu ∩ enabled(s) �= ∅ then
5: return [Actu ∩ enabled(s)].first()
6: else
7: return arg minA∈enabled(s)GetWeightA, s,A
1: Proc GetWeight A, s,A
2: w ← 0
3: for Ai ∈ A do
4: if A ∈ Acti then
5: for B ∈ enabled(si) do
6: if B ∈ enabled(s) then
7: w ← w + |A| · |Act|
8: else
9: w ← w + 1
10: return w

enabled within the current cluster, the set of all automata is
returned (line 13); otherwise, we add all (max,+) automata
containing A (line 15) and add a (max,+) automaton for each
dependent activity outside the current cluster (lines 16–18). This
ensures that condition (C2.1) is satisfied for activity A and the
cluster obtained after executing lines 11–21. If A is enabled
in the composition of (max,+) automata in the cluster, but not
in the full composition, then we add a (max,+) automaton that
causes A to be disabled in the full composition. This ensures
that condition (C2.2) is satisfied for A for the cluster obtained
after executing lines 22–28. After handlingA, we check whether
there are other unprocessed activities that are locally enabled in
the new cluster (line 29–33). The algorithm continues until all
locally enabled activities are processed.

Theorem 31: Let s be a state in the compositionM = A1 ‖
· · · ‖ An and A ∈ enabled(s) be the candidate activity. Then,
COMPUTECLUSTER(s,A) returns a safe cluster in s.

Proof: From the previous reasoning, it follows that
COMPUTECLUSTER(s,A) returns a safe cluster C in s that satis-
fies conditions (C1) through (C5.2). �

In each composition state, there are typically multiple valid
safe clusters. Heuristics can be used to select a cluster that likely
yields a large reduction. One approach is to select a safe cluster
yielding the smallest ample set starting from each candidate ac-
tivity in the enabled set. This heuristic often performs well [25],
since it allows to prune most enabled transitions. A disadvantage
is that a safe cluster is constructed starting from each candidate.
For larger enabled sets, this leads to a significant overhead.

Algorithm 2 is an alternative heuristic that selects only one
candidate activity. First, it checks if enabled(s) contains ω or
an uncontrollable activity. As they will always be in the ample
set, they are a good candidate choice; otherwise, a weight
is computed for each candidate based on two aspects, and a
candidate with the minimum weight is selected. The first aspect
considers whether an activity is selected that does not occur in
(max,+) automata that have locally enabled activities that are

also in enabled(s), since this implies that the ample set will
increase. We add weight |A| · |Act| as this is the maximum total
sum of locally enabled activities. The second aspect considers
minimizing the number of other enabled activities within the
cluster, since possibly (max,+) automata need to be added where
these are not enabled. For each other locally enabled activity, we
increase the weight by one.

VII. EXPERIMENTAL EVALUATION

To test the effectiveness of the on-the-fly reduction, we use
a set of models without data variables available from Suprem-
ica [26], the ASML lithography scanner model described in [27],
and four variants of the Twilight system [27]. Twilight is an
imaginary manufacturing system with two processing stations
(conditioning, drilling) that processes balls according to a given
recipe. This system is a simplification of the ASML lithography
scanner using similar types of resources. The first variant (TW1)
is described in [10]. Here, the life cycle and location of each
product is explicitly modeled. In TW2, we remove these product-
location and life-cycle automata, and instead, use automata that
ensure that products are always moved forward in the production
process. TW3 extends TW2 with a polish station, where each
product undergoes a polish and drill step after the condition step
but in arbitrary order. To analyze the scalability of synthesis
with POR, we also used a variant of TW3 and TW3-10s, with
10 processing stations. In TW4, we fix the order so that a product
is always first conditioned, then drilled, and then polished.

We use two heuristics to compute ample sets; AllCandidates
(Algorithm 1) that tries all candidate activities to find the small-
est ample set, and SmartCandidate (Algorithm 2) that selects
one candidate activity. All experiments were performed with a
2.40 GHz Intel i5-6300 U CPU processor and with 4 GB Java
heap space to run the algorithms.

We evaluate the achievable reductions while preserving only
functional aspects, as well as preserving both functional and
performance aspects. As Supremica models do not describe the
resource usage, we assume that activities do not claim or release
resources and are assigned the 0× 0 (max,+) timing matrix. This
implies that they are timeless, and that we effectively preserve
only functional aspects. For the Twilight and ASML models, we
have the timing matrices and also consider performance aspects.

A. Reduction Preserving Only Functional Aspects

Before applying POR, we compute set U to check whether a
reduction is possible. For some models in our test set, U con-
tains all activities and no reductions are possible: DosingTank,
MachineBufferMachine, TankProcess, AutomaticCarParkGate,
TransferLine, and TransferLine3. For the Twilight models and
the ASML model, we disregard the performance aspects by
assigning the 0× 0 (max,+) timing matrix to activities. Ta-
ble I shows the POR results where reductions are possible.
The highest reductions are achieved in VolvoCell and Robo-
tAssemblyCell, where all activities are controllable and plants
describe local parts of the system. This leaves a lot of redundant
interleaving of activities that can be exploited to obtain a smaller
composition. A similar reasoning applies to TW2, TW3, and
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TABLE I
REDUCTIONS ACHIEVED PRESERVING FUNCTIONAL ASPECTS. |S| IS THE NUMBER OF STATES AND |T | IS THE NUMBER OF TRANSITIONS IN THE AUTOMATA
COMPOSITION (P IN FIG. 1). THE RUNNING TIMES TO COMPUTE THE COMPOSITION TP AND THE SUPERVISOR TS ARE IN MILLISECONDS. THE HIGHEST

REDUCTIONS ARE HIGHLIGHTED IN BOLD

TABLE II
REDUCTIONS ACHIEVED PRESERVING BOTH FUNCTIONAL AND PERFORMANCE ASPECTS. THE RUNNING TIMES TO COMPUTE THE COMPOSITION TP AND

THE SUPERVISOR TS ARE IN MILLISECONDS. THE HIGHEST REDUCTIONS ARE HIGHLIGHTED IN BOLD

TW4. The reduction for TW1 is very small, as there is a lot of
activity synchronization by the product-location and life-cycle
automata. Recall condition (C2.2), requiring that each enabled
activity in the local state of a safe cluster must be independent
with activities outside the cluster. During state-space exploration
of TW1, the algorithm often needs to add product-location or
life-cycle automata to the cluster to satisfy this condition (C2.2),
which limits reduction possibilities. The reductions for TW2,
TW3, and TW4 are much larger, since we do not explicitly model
the product-location and life-cycle automata. For TW3-10, we
had to compute the full state space on a server with much
more heap space. Therefore, we have no running times on the
same hardware, indicated by an X, and cannot compare the
running times. In the ASML model, a large reduction of 86.1%
is achieved, since all activities in this model are controllable and
requirements are local.

As expected, AllCandidates yields similar or better reductions
than SmartCandidate in terms of states and transitions remaining
in the composition by selecting the smallest safe cluster in
each state. However, there is a significant runtime overhead in
computing the reduced composition (TP ) with AllCandidates
due to the computations involved in Algorithm 1. This overhead
is much lower for SmartCandidate, where Algorithm 1 is run
only once in each state. The additional runtime induced by

the computations in SmartCandidate is in most cases a factor
of 2. We also considered the total time TS needed to apply
synthesis. For the heuristics, TS includes time TP that is needed
to compute the reduced composition. For AllCandidates, the
median additional synthesis runtime overhead is a factor of 3.3,
and for SmartCandidate, it is a factor 2.3. Again, in almost all
cases, the POR algorithm gives some runtime overhead. Note
that in practice, the bottleneck in synthesis is not the runtime,
but the memory required to store the composition. This means
that for scalability, the most important metrics are the reductions
that can be achieved in terms of the number of states and
transitions.

B. Reduction Preserving Both Functional and
Performance Aspects

Table II shows the results of the reduction that preserves both
functional and performance aspects. This reduction yields larger
compositions, thus achieving less reduction than the reduction
preserving only functional aspects. This is as expected, since
resource sharing between activities is also considered. The
normalized (max,+) state spaces of the full ASML and full
TW3-10 s models could not be computed due to insufficient
memory.
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VIII. RELATED WORK

The application of POR techniques in the domain of
supervisory control theory has been first investigated by
Hellgren et al. [28]. There, POR is used to reduce the state space
when checking deadlocks. A setting with only controllable ac-
tions is considered and the models adhere to a specific structure,
with resource booking/unbooking and acyclic product life cycles
where each resource can occur only once. Shaw [29] introduces
an on-the-fly model checking approach for both controllability
and nonblockingness. Because the aim is model checking rather
than synthesis, the required conditions are different from the
ones we use. For example, for checking controllability, a reduc-
tion might remove uncontrollable events from a plant model that
are independent with controllable events. This is not valid if one
wants to apply synthesis in a subsequent step.

There has been some initial work in applying POR techniques
to timed systems. Bengtsson et al. [30] apply POR on timed au-
tomata for reachability analysis. These automata execute asyn-
chronously, in their own local time scale, and synchronize their
time scales on communication transitions. Yoneda et al. [31] in-
vestigated POR for timed Petri nets, for the verification of similar
timing relations. Theelen et al. [32] applied ideas from POR
on scenario-aware data flow models, using an independence
relation among actions to resolve nondeterministic choices that
have no impact on the performance metrics.

Our POR technique can be used to obtain a smaller su-
pervisory controller for the given plant. There are also other
approaches to construct a reduced nonblocking supervisor.
Dietrich et al. [33] impose three sufficient conditions on a
restricted supervisor to preserve nonblockingness. Morgenstern
and Schneider [34] propose a stronger notion of nonblocking-
ness called forceable nonblockingness. Given a plant, a con-
troller is forceable nonblocking if every (in)finite run of the
controlled system visits a marked state. This means that a marked
state will be reached, no matter how the plant behaves, whereas
in the original setting, the plant only has the possibility to reach
a marked state. A synthesis algorithm is provided that computes
such a controller. Huang and Kumar [35] described an approach
to generate a reduced controller under the traditional notion of
nonblockingness. Another approach is to find a smaller equiva-
lent least-restrictive supervisor [36]. A supervisor typically has
information about the enabling and disabling of events, and
information to keep track of the plant evolution. The latter may
contain redundancy. The technique exploits this redundancy
to obtain a smaller supervisor. Compared to our approach, all
approaches except the last one do not ensure a property of
least-restrictiveness. Also, it is not straightforward to combine
these reduction techniques with preserving other aspects, such
as performance-related properties. Our POR achieves this by
adding sufficient conditions to the reduction function and adapt-
ing the notion of event-dependence used.

Su et al. [17] described a related approach to compute a max-
imally permissive supervisor that optimizes makespan. It does
not consider latency and throughput preservation. Parallelism
is encoded using a mutual exclusion function. In our approach,
we encode the specific resource usage, and thereby the mutual
exclusion on resources, in the activities. The evaluation in the

approach of [17] relies on the construction of a tree automaton,
which grows exponentially in size in the worst case. In our
(max,+) state space, redundancy in subsequences with the same
timing information is encoded more efficiently.

Supervisory control of (max,+) automata is also considered
in [13] and [14]. Here, the conventional (max,+) automaton defi-
nition is used, where the timing aspects are coupled to the system
states. As a result, synthesis is performed on a model including
timing information. In our approach, we abstract from the timing
information during synthesis, which benefits scalability of the
approach.

IX. CONCLUSION

We presented a POR technique for a network of (max,+)
automata specifying a plant and its requirements to obtain a
smaller supervisor while preserving controllability, nonblock-
ingness, reduced least-restrictiveness, throughput, and latency.
The reduction helps in synthesis and performance analysis of
supervisory controllers, as less memory is needed to perform
synthesis and to store the resulting reduced supervisor and
timed state space. The technique is inspired by an existing
cluster-based ample set reduction for nontimed systems. The
reduced supervisor is computed by exploiting the structure of
the automata and information about the (in)dependence among
activities. The experimental evaluation shows that our POR
technique is successful for models where a small set of states
has uncontrollable activities enabled, and where automata de-
scribe local parts of the system. We obtained reductions up
to 80.4% and 91.4% in the number of states and transitions.
The possible reductions are highly dependent on the amount of
synchronization on activities among automata and the extent to
which activities use the same resources. In our models, the POR
technique successfully exploits redundant interleaving related to
processing stations that can perform operations in parallel and
robot movements that can be executed simultaneously.
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