

A Turing kernelization dichotomy for structural
parameterizations of F-Minor-Free Deletion
Citation for published version (APA):
Donkers, H., & Jansen, B. M. P. (2021). A Turing kernelization dichotomy for structural parameterizations of F-
Minor-Free Deletion. Journal of Computer and System Sciences, 119, 164-182.
https://doi.org/10.1016/j.jcss.2021.02.005

DOI:
10.1016/j.jcss.2021.02.005

Document status and date:
Published: 01/08/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1016/j.jcss.2021.02.005
https://doi.org/10.1016/j.jcss.2021.02.005
https://research.tue.nl/en/publications/d449b5ab-4d10-401e-a6c5-b5a2193ec155

Journal of Computer and System Sciences 119 (2021) 164–182
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

A Turing kernelization dichotomy for structural
parameterizations of F-Minor-Free Deletion

Huib Donkers ∗, Bart M.P. Jansen 1

Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 October 2019
Received in revised form 8 January 2021
Accepted 17 February 2021
Available online 3 March 2021

Keywords:
Kernelization
Turing kernelization
Minor-free deletion
Subgraph-free deletion
Structural parameterization

For a fixed finite family of graphs F , the F-Minor-Free Deletion problem takes as input
a graph G and integer � and asks whether a size-� vertex set X exists such that G − X
is F-minor-free. {K2}-Minor-Free Deletion and {K3}-Minor-Free Deletion encode Vertex
Cover and Feedback Vertex Set respectively. When parameterized by the feedback vertex
number of G these two problems are known to admit a polynomial kernelization. We
show {P3}-Minor-Free Deletion parameterized by the feedback vertex number is MK[2]-
hard. This rules out the existence of a polynomial kernel assuming NP � coNP/poly. Our
hardness result generalizes to any F containing only graphs with a connected component
of at least 3 vertices, using as parameter the vertex-deletion distance to treewidth
min tw(F), where min tw(F) denotes the minimum treewidth of the graphs in F . For
all other families F we present a polynomial Turing kernelization. Our results extend to
F-Subgraph-Free Deletion.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Background and motivation. Kernelization is a framework for the scientific investigation of provably effective preprocessing
procedures for NP-hard problems. It uses the notion of a parameterized (decision) problem to capture meaningful perfor-
mance guarantees for preprocessing. In a parameterized problem, every problem input x has an associated integer k called
the parameter, which captures the difficulty of the input in some way. A kernelization for a parameterized problem is a
polynomial-time algorithm that transforms any parameterized instance (x, k) into an instance (x′, k′) with the same answer,
such that |x′| and k′ are both bounded by f (k) for some computable function f . The function f is the size of the kernel. Of
particular interest are kernels of polynomial size. Determining which parameterized problems admit kernels of polynomial
size has become a rich area of algorithmic research [1–3].

A common approach in kernelization [4–7] is to take the solution size as the parameter k, with the aim of showing
that large inputs that ask for a small solution can be efficiently reduced in size. However, this method does not give any
nontrivial guarantees when the solution size is known to be proportional to the total size of the input. For that reason,
there is an alternative line of research [8–15] that focuses on parameterizations based on a measure of nontriviality of the
instance (cf. [16]). One formal way to capture nontriviality of a graph problem is to measure how many vertex-deletions are
needed to reduce the input graph to a graph class in which the problem can be solved in polynomial time. Since many graph

* Corresponding author.
E-mail addresses: h.t.donkers@tue.nl (H. Donkers), b.m.p.jansen@tue.nl (B.M.P. Jansen).

1 Supported by NWO Gravitation grant 024.002.003 “Networks”.
https://doi.org/10.1016/j.jcss.2021.02.005
0022-0000/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcss.2021.02.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2021.02.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:h.t.donkers@tue.nl
mailto:b.m.p.jansen@tue.nl
https://doi.org/10.1016/j.jcss.2021.02.005
http://creativecommons.org/licenses/by/4.0/

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
problems can be solved in polynomial time on trees and forests, the structural graph parameter feedback vertex number (the
minimum number of vertex deletions needed to make the graph acyclic, i.e., a forest) is a relevant measure of the distance
of the input to a trivially solvable one.

Previous research has shown that for the Vertex Cover problem, there is a polynomial kernel parameterized by the
feedback vertex number [12]. This preprocessing algorithm guarantees that inputs which are large with respect to their
feedback vertex number can be efficiently reduced. The Vertex Cover problem is the simplest in a family of so-called
minor-free deletion problems. For a fixed finite family of graphs F , an input to F -Minor-Free Deletion consists of a
graph G and an integer �. The question is whether there is a set S of at most � vertices in G , such that the graph G − S
obtained by removing these vertices does not contain any graph from F as a minor. Various classic graph optimization
problems such as Vertex Cover, Feedback Vertex Set, and Vertex Planarization fit this framework by a suitable choice
of F . The investigation of minor-free deletion problems has led to numerous advances in the study of kernelization and
parameterized algorithmics [17,18,5,19]. Motivated by the fact that Vertex Cover and Feedback Vertex Set, arguably the
simplest F -Minor-Free Deletion problems, admit polynomial kernels when parameterized by the feedback vertex number,
we set out to resolve the following question: Do all F -Minor-Free Deletion problems admit a polynomial kernel when
parameterized by the feedback vertex number?

Results. To our initial surprise, we prove that the answer to this question is no. While the parameterization by feedback
vertex number admits polynomial kernels for F = {K2} [12], for F = {K3} [20,21,7], and for any set F containing a planar
graph2 but no forests [5], there are also cases that do not admit polynomial kernels (under the assumption that NP �
coNP/poly, which we tacitly assume throughout the informal discussion in this introduction). For example, the case of F
consisting of a single graph P3 that forms a path on three vertices does not admit a polynomial kernel. This lower bound
for F = {P3} follows from a more general theorem that we state below.

Recall that a graph is a forest if and only if its treewidth is one [22]. Hence the feedback vertex number is exactly
the minimum number of vertex deletions needed to obtain a graph of treewidth one. Let tw(G) denote the treewidth of
graph G , and define min tw(F) := minH∈F tw(H). Our lower bound also holds for F -Subgraph-Free Deletion, which is the
related problem that asks whether there is a vertex set S of size at most k such that G − S contains no graph H ∈ F as a
subgraph. We prove the following.

Theorem 1. Let F be a finite set of graphs, such that each graph in F has a connected component on at least three vertices. Then F -

Minor-Free Deletion and F -Subgraph-Free Deletion do not admit polynomial kernels when parameterized by the vertex-deletion
distance to a graph of treewidth min tw(F), unless NP ⊆ coNP/poly.

To see that Theorem 1 implies the claimed lower bound for F = {P3}, observe that whenever F contains an acyclic
graph with at least one edge we have min tw(F) = 1 and therefore the vertex-deletion distance to treewidth min tw(F)

equals the feedback vertex number. The theorem also generalizes earlier results of Cygan et al. [9, Theorem 13], who
investigated the problem of losing treewidth. They proved that for each fixed 1 ≤ η < ρ , the η-Transversal problem (delete
at most � vertices to get a graph of treewidth at most η) does not have a polynomial kernel when parameterized by the
vertex-deletion distance to treewidth ρ . Since the treewidth of a graph does not increase when taking minors, there is a
finite set Fη of forbidden minors (cf. [23]) that characterize the graphs of treewidth at most η. As the members of the
obstruction set for η ≥ 1 are easily seen to be connected, have treewidth η + 1, and at least three vertices, the lower bound
of Theorem 1 encompasses the theorem of Cygan et al. and generalizes it to arbitrary F -Minor-Free Deletion problems.

Theorem 1 is obtained through a polynomial-parameter transformation from the cnf-sat problem parameterized by
the number of variables, for which a superpolynomial kernelization lower bound is known [24,25]. The main technical
contribution in the hardness proof consists of the design of a gadget that acts as a clause checker. A certain budget of
vertex deletions is available to break all F -minors present in the gadget, and this is possible if and only if one of the
neighboring vertices in a variable gadget is removed by the solution. This removal encodes that the variable is set in a way
that satisfies the clause. The intricate part of the construction is to design the gadget knowing only that F has a graph
with a connected component of at least three vertices. Here we extensively rely on the fact that minimal minor models of
biconnected graphs live in biconnected subgraphs, together with the fact that the treewidth of a graph does not increase
when attaching structures along cut vertices in a tree-like manner.

Using the framework of Hermelin et al. [26], our polynomial-parameter transformation from cnf-sat parameterized
by the number of variables to the structural parameterization of F -Minor-Free Deletion, also rules out the existence of
polynomial-size Turing kernelizations under a certain hardness assumption. Turing kernelization [27] is a relaxation of the
traditional form of kernelization. Intuitively, it investigates whether inputs (x, k) can be solved efficiently using the answers
to subproblems of size f (k) which are provided by an oracle, which models an external computation cluster. Note that a
parameterized problem that has a kernel of size O(kc) can be solved by a polynomial-time algorithm that first spends poly-
nomial time to prepare a query of size O(kc), and then queries an oracle for its answer. Turing kernelization investigates

2 If F contains no forests, then any acyclic graph is F -minor free, implying the size of an optimal solution is at most the size of a feedback vertex set.
Hence the kernelization for the solution-size parameterization yields a kernel of size bounded polynomially in the feedback vertex number.
165

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
if and how polynomial-time algorithms can solve NP-hard parameterized problems by querying an oracle for the answers
to instances of size kO(1) , potentially multiple times. Some problems that do not admit polynomial kernelizations, do admit
polynomial-size Turing kernelizations [28–32].

Formally, a Turing kernelization of size f for a parameterized problem Q is an algorithm that can query an oracle
to obtain the answer to any instance of problem Q of size and parameter bounded by f (k) in a single step, and using
this power solves any instance (x, k) in time polynomial in |x| + k. The reduction proving Theorem 1 also proves the
non-existence of polynomial-size Turing kernelizations, unless all parameterized problems in the complexity class MK[2]
defined by Hermelin et al. [26] have polynomial Turing kernels. (The cnf-sat problem with clauses of unbounded length,
parameterized by the number of variables, is MK[2]-complete [26, Thm. 1, cf. Thm. 10] and widely believed not to admit
polynomial-size Turing kernels.)

Motivated by the general form of the lower bound statement in Theorem 1, we also investigate upper bounds and derive
a complexity dichotomy. For any F that does not meet the criterion of Theorem 1, we obtain a polynomial Turing kernel.

Theorem 2. Let F be a finite set of graphs, such that some H ∈ F has no connected component of three or more vertices. Then F -

Minor-Free Deletion and F -Subgraph-Free Deletion admit polynomial Turing kernels when parameterized by the vertex-deletion
distance to a graph of treewidth min tw(F).

The main insight in the Turing kernelization is the following. If H ∈ F has no connected component of three or more
vertices, then H consists of disjoint edges and isolated vertices. If H only has isolated vertices, then F -Minor-Free Deletion

is polynomial-time solvable because the leftover graph has less than |V (H)| ∈ O(1) vertices, for which we can search by
brute force. Otherwise, H is a matching of size t ≥ 1 plus potentially some isolated vertices. The isolated vertices turn out
only to make a difference if the solution F -free graph has constant size. In the interesting case, we can focus on H ∈ F
being a matching of size t . Then a graph that is F -minor-free does not admit a matching of size t , and therefore has a
vertex cover of size at most t . Hence a solution to F -Minor-Free Deletion can be extended to a vertex cover by includ-
ing O(1) additional vertices. Using the Tutte-Berge formula, we can make the relation between F -Minor-Free Deletion and
the vertex cover precise, and use it to reduce an instance of F -Minor-Free Deletion parameterized by deletion distance
to min tw(F), to the logical OR of a polynomial number of instances of Vertex Cover parameterized by deletion distance
to min tw(F). If F has a graph with no component of size at least three, then min tw(F) = 1, implying that the parameter
is the feedback vertex set size. This allows us to use the polynomial kernel for Vertex Cover parameterized by feedback
vertex set on each generated instance. We query the resulting instances of size kO(1) to the oracle to find the answer.

Organization. We present preliminaries on graphs and kernelization in Section 2. Section 3 develops the lower bounds on
(Turing) kernelization when all graphs in F have a connected component with at least three vertices. In Section 4 we show
that in all other cases, a polynomial Turing kernelization exists.

2. Preliminaries

All graphs we consider in this paper are simple, finite and undirected. We denote the vertex set and edge set of a
graph G by V (G) and E(G) respectively. We call the graph on the empty vertex set the null graph. For a vertex set S ⊆ V (G)

let G[S] be the subgraph of G induced by S , and let G − S denote the subgraph of G induced by V (G) \ S . For a vertex v
we use G − v as shorthand for G − {v}. For a non-negative integer n we use n · G to denote the graph consisting of n
disjoint copies of G . Let NG(S) and NG(v) denote the open neighborhood in G of a vertex set S and a vertex v respectively.
Let degG(v) denote the degree of v in G . The subscript may be omitted when G is clear from the context. We use fvs(G)

to denote the feedback vertex number of G .
A graph H is a minor of graph G , denoted by H � G , if H can be obtained from G by a series of edge contractions, edge

deletions, and vertex deletions. An H-model in G is a function ϕ : V (H) → 2V (G) such that (i) for every vertex v ∈ V (H),
the graph G[ϕ(v)] is connected, (ii) for every edge {u, v} ∈ E(H) there exists an edge {u′, v ′} ∈ E(G) with u′ ∈ ϕ(u) and v ′ ∈
ϕ(v), and (iii) for distinct u, v ∈ V (H) we have ϕ(v) ∩ ϕ(u) = ∅. The sets ϕ(v) are called branch sets. Clearly, H � G if and
only if there is an H-model in G . For any function f : A → B and set A′ ⊆ A we use f (A′) as a shorthand for

⋃
a∈A′ f (a).

Specifically in the case of an H-model ϕ in a graph G , we use ϕ(H) to denote
⋃

v∈V (H) ϕ(v). An H-model ϕ is called
minimal if there does not exist an H-model ϕ′ with ϕ′(H) � ϕ(H). We say a graph H is a component-wise minor of a
graph G , denoted as H � G , when every connected component of H is a minor of G .

Observation 3. For graphs H and G, if H � G and G � H then H and G are isomorphic.

Observation 4. For graphs H and G, if H � G then tw(H) ≤ tw(G). (The treewidth of H is the maximum treewidth of its connected
components and each connected component H ′ of H is a minor of G, hence tw(H ′) ≤ tw(G).)

Definition 1. Let F be a family of graphs and let G ∈ F . For every relation � ∈ {�, �} we define minimal and maximal
elements as follows:
166

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
• G is said to be �-minimal in F when for all graphs H ∈F we have H � G ⇒ G � H .
• G is said to be �-maximal in F when for all graphs H ∈F we have G � H ⇒ H � G .

Definition 2. We call a connected component C of a graph G a �-maximal component of G when C is �-maximal in the set
of graphs that form the connected components of G .

For type ∈ {minor, subgraph} and a finite family of graphs F , we define:

F -type-Free Deletion

Input: A graph G and an integer �.
Parameter: vertex-deletion distance of G to a graph of treewidth min tw(F).
Question: Is there a set X ⊆ V (G) of at most � vertices such that G − X does not contain any H ∈F as a type?

A vertex v ∈ V (G) is a cut vertex when its removal from G increases the number of connected components. A graph is
called biconnected when it is connected and contains no cut vertex. A biconnected component of a graph G is a maximal
biconnected subgraph of G . For any integer α, a graph G is called α-robust when |V (G)| ≥ α and no vertex v ∈ V (G) exists
such that G − v contains a connected component with strictly less than α − 1 vertices.

Proposition 5. Any graph G has a unique maximal α-robust subgraph. Any α-robust subgraph of G is a subgraph of the maximal α-
robust subgraph of G.

Proof. The proposition follows straightforwardly from the fact that if G[A] and G[B] are α-robust, then so is G[A ∪ B]. We
now prove this fact.

Consider two vertex sets A, B ⊆ V (G), such that G[A] and G[B] are α-robust. We show that G[A ∪ B] is α-robust.
Since G[A] is α-robust we have |A| ≥ α so then |A ∪ B| ≥ α. Suppose for contradiction that there exists a vertex v ∈
A ∪ B such that G[A ∪ B] − v contains a connected component of size smaller than α − 1. Let C be the vertices of this
connected component. We know C contains vertices of at least one of A and B . Assume, without loss of generality, A ∩C �= ∅.
Then G[A ∩ C] is a connected component of size less than α − 1 in G[A] − v . If v ∈ A this directly contradicts α-robustness
of G[A], so assume v /∈ A. Now G[A] contains a connected component with less than α − 1 vertices. Since |C | < α ≤ |A|
there exists a vertex u ∈ A \ C , so then G[A] − u contains a connected component with less than α − 1 vertices, which
contradicts α-robustness of G[A]. �

We define a leaf-block of a graph G as a biconnected component of G that contains at most one vertex v that is a cut
vertex in G . The size of a leaf-block H is |V (H)|. The size of a smallest leaf-block of a graph G is denoted as λ(G). Observe
that G is α-robust if and only if λ(G) ≥ α. For any graph G and integer α, let α -prune(G) denote the unique maximal α-
robust subgraph of G , which may be empty. Note that α -prune(G) can be obtained from G by repeatedly removing interior
vertices of leaf blocks of size less than α.

A polynomial-parameter transformation from parameterized problem P to parameterized problem Q is a polynomial-time
algorithm that, given an instance (x, k) of P , outputs an instance (x′, k′) of Q such that all of the following are true:

1. (x, k) ∈P ⇔ (x′, k′) ∈Q,
2. k′ is upper-bounded by a polynomial in k.

3. Lower bound

In this section we consider the case where all graphs in F contain a connected component of at least three vertices and
give a polynomial-parameter transformation from cnf-sat parameterized by the number of variables. In order to construct
a clause gadget G for a clauses with more than two literals, our construction relies on the presence of a connected com-
ponent H↑ with at least three vertices in a �-minimal graph in F . Such a graph only exists when all graphs in F have a
connected component on at least 3 vertices. Intuitively, the reason we need at least three vertices is as follows. The gadget
for a clause Ci is constructed based on the sequence of its literals �1, . . . , �|Ci | . For each literal �i , there is a correspond-
ing part of the gadget which checks three things: whether a literal before �i is satisfied, whether �i itself is satisfied, and
whether a literal after �i is satisfied. To implement this check, we need that H has at least three vertices.

3.1. Properties of biconnected and robust subgraphs

Our construction exploits the way in which biconnected components of H and the clause gadget G restrict the options
for an H-model to exist in G . We therefore first derive some relevant properties.

Proposition 6. If H is an α-robust graph and ϕ is a minimal H-model in a graph G, then G[ϕ(H)] is α-robust.
167

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
Proof. Since H is α-robust we have |V (H)| ≥ α. So |ϕ(H)| ≥ |V (H)| ≥ α and it remains to verify that G[ϕ(H)] − v does
not have any connected components smaller than α − 1 for any v . Take an arbitrary vertex v ∈ ϕ(H) and let u ∈ V (H)

be such that v ∈ ϕ(u). Since H − u does not have connected components smaller than α − 1, the graph G[ϕ(H)] − ϕ(u)

cannot have connected components smaller than α − 1. Consider a spanning tree of G[ϕ(u)]. Each leaf of this spanning tree
must be connected to a vertex in a different branch set, otherwise ϕ is not minimal. We know every connected component
in G[ϕ(u)] − v contains at least one leaf of this spanning tree, hence every connected component of G[ϕ(u)] − v is connected
to G[ϕ(H)] − ϕ(u). So G[ϕ(H)] − v does not contain a connected component smaller than α − 1. Since v was arbitrary, the
graph G[ϕ(H)] is α-robust. �
Proposition 7. If ϕ is an H-model in G and B is a biconnected component of H, then G[ϕ(B)] contains a biconnected subgraph on at
least |B| vertices.

Proof. Since G[ϕ(B)] clearly contains B as a minor, there is a minimal B-model ϕ′ in G with ϕ′(B) ⊆ ϕ(B), so that G[ϕ′(B)]
is a subgraph of G[ϕ(B)]. It suffices to show that G[ϕ′(B)] contains a biconnected component on at least |V (B)| vertices.
Since B is biconnected, it is |V (B)|-robust so by Proposition 6 we know G[ϕ′(B)] is |V (B)|-robust. Hence G[ϕ′(B)] contains
a biconnected component on at least |V (B)| vertices. �
Observation 8. For any graph H, which may be the null graph, and integers α ≥ β we have α -prune(β -prune(H)) = α -prune(H).

Proposition 9. For graphs H and G we have H � G ⇒ α -prune(H) � α -prune(G) for any integer α.

Proof. Clearly α -prune(H) � H so since H � G we have α -prune(H) � G . For simplicity let H ′ := α -prune(H). Let ϕ be a
minimal H ′-model in G and observe H ′ � G[ϕ(H ′)]. From Proposition 6 we know G[ϕ(H ′)] is α-robust. Since G[ϕ(H ′)] is an
α-robust subgraph of G it is also a subgraph of α -prune(G) by Proposition 5. Hence α -prune(H) � G[ϕ(H ′)] � α -prune(G). �
Proposition 10. For any � ∈ {�, �}, two integers α ≥ β , and graphs H and G we have that H � G ⇒ α -prune(H) � β -prune(G).

Proof. Suppose H � G , then

α -prune(H) � α -prune(G) by Proposition 9

= α -prune(β -prune(G)) by Observation 8

� β -prune(G).

Alternatively, suppose H � G . Let H ′ be a connected component of α -prune(H), then there exists a connected
component H ′′ of H such that H ′ � H ′′ . Since H � G we have H ′′ � G so then H ′ � G . As shown above, this im-
plies α -prune(H ′) � β -prune(G). Note that α -prune(H ′) = H ′ since H ′ is a connected component of α -prune(H). It follows
that α -prune(H) � β -prune(G). �
3.2. Clause gadget construction

We proceed to construct a clause gadget to be used in the polynomial-parameter transformation from cnf-sat.

Lemma 11. For any connected graph H with at least three vertices there exists a polynomial-time algorithm that, given an integer n ≥
1, outputs a graph G and a vertex set S ⊆ V (G) of size n such that all of the following are true:

1. tw(G) ≤ tw(H),
2. G contains a packing of 3n − 1 vertex-disjoint H-subgraphs,
3. G − S contains a packing of 3n − 2 vertex-disjoint H-subgraphs, and
4. ∀v ∈ S there exists X ⊆ V (G) of size 3n − 1 s.t. all of the following are true:

(a) v ∈ X,
(b) G − X is H-minor-free,
(c) λ(H) -prune(G − X) � H, and
(d) for all connected components Gc of G − X that contain a vertex of S we have |V (Gc)| < λ(H) and Gc contains exactly one

vertex of S.

Proof. Before describing the construction of G and S , we define a few subgraphs and vertices. Let L be a smallest leaf-block
of H . Let R be the graph obtained from H by removing all vertices of L that are not cut vertices in H . Note that when H
is biconnected, L = H and R is the null graph. We distinguish three distinct vertices a, b, c in H . Vertices c and b are both
168

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
Fig. 1. We show the situation where a is contained in R . Note that a can always be chosen such that it is contained in R when H is not biconnected. Note
that the graphs in Fig. 1b and 1c are isomorphic but drawn differently.

part of L, where c is the cut vertex (if there is one) and b is any other vertex in L. Finally vertex a is any vertex in H that
is not c or b. See Fig. 1a. In the construction of G we will combine copies of H such that a, b, and c form cut vertices
in G and are part of two different H-subgraphs. Intuitively this choice of b and c ensures that removing either one from a
copy of H in G means no vertex from the L-subgraph of this copy of H can be used in a minimal H-model in G . In the
remainder of this proof we use f K→K ′ : V (K) → V (K ′) for isomorphic graphs K and K ′ to denote a fixed isomorphism.

Construction. Take two copies of H , call them H1 and H2. Let R1 and L1 denote the subgraphs of H1 related to R
and L, respectively, by the isomorphism between H and H1. Similarly let R2 and L2 denote the subgraphs of H2. Take
a copy of L which we call L3. Let M be the graph obtained from the disjoint union of H1, H2, and L3 by identifying the
pair f H→H1 (c) and f H→H2(b) into a single vertex s, and identifying the pair f H→H2(c) and f L→L3(c) into a single vertex t .
We label f H→H1 (a), f H→H1(b), and f L→L3(b) as u, w , and v respectively.

This construction is motivated by the fact that the graphs M − {v, s}, M − {u, t}, and M − {w, t} are all H-minor-free,
which we will exploit in the formal correctness argument later. We will connect copies of M to each other via the vertices u,
v , and w such that, although two vertices need to be removed in every copy of M , one such vertex can always be in two
copies of M at the same time.

Now take 2n − 1 copies of M , call them M1, . . . , M2n−1. For readability we denote f M→Mi as f i for all 1 ≤ i ≤ 2n − 1. For
all 1 ≤ i < n we identify f i(w) and fn+i(v), and we identify fn+i(w) and f i+1(u). Let this graph be G , and let S be the set
of vertices f i(v) for all 1 ≤ i ≤ n. Let H1,i , H2,i , R1,i , R2,i , L1,i , L2,i , and L3,i denote the subgraphs in Mi that correspond to
the subgraphs H1, H2, R1, R2, L1, L2, and L3 in M . See Fig. 1b and 1c.

This concludes the description of graph G and set S , see Fig. 2 for an illustration. In Fig. 5 the subgraphs W1, W2,
and W3 form a concrete example of G with the choice H = P3 and n = 4, n = 3, and n = 3 respectively. It is easily seen
that G and S can be constructed in polynomial time.

Correctness. It remains to verify that all conditions of the lemma statement are met.
1. Since we connected copies of L and R in a treelike fashion along cut vertices, we did not introduce any new bicon-

nected components. The treewidth of a graph is equal to the maximum treewidth over all its biconnected components so
we know that tw(G) ≤ max{tw(R), tw(L)} = tw(H).

2. For each 1 ≤ i ≤ n we can distinguish two H-subgraphs in Mi , namely H1,i and L3,i ∪ R2,i . This gives us 2n H-subgraphs
in G . Note that since all M1, . . . , Mn are vertex-disjoint, these 2n H-subgraphs are also vertex-disjoint in G . For each n <
i ≤ 2n − 1 we distinguish one H-subgraph, namely H2,i . Note that since H2,i is vertex-disjoint from all M1, . . . , Mi−1,
Mi+1, . . . , M2n−1 we have a total of 2n + n − 1 = 3n − 1 vertex-disjoint H-subgraphs in G . This packing is shown in Fig. 2a.

3. Alternatively, for each 1 ≤ i ≤ n we can distinguish one H-subgraph in Mi , namely H2,i . For each n < i ≤ 2n − 1 we
distinguish two H-subgraphs in Mi , namely H1,i and L3,i ∪ R2,i . Again these H-subgraphs are vertex-disjoint, and since they
also do not contain any vertices of S , they form a packing of n + 2(n − 1) = 3n − 2 vertex-disjoint H-subgraphs in G − S .
See Fig. 2b.

4. Finally we prove that for all v ∈ S there exists a set X ⊆ V (G) of size 3n − 1 such that the four parts listed in
condition 4. are true. For this purpose we first identify a family Q of vertex sets such that any H-model in G spans at least
one vertex set in Q. Let Q be defined as follows: (see Fig. 3)

Q = {{ f i(v), f i(t)} | 1 ≤ i ≤ 2n − 1} ∪ {{ f i(t), f i(s)} | 1 ≤ i ≤ 2n − 1}
∪ {{ f i(s), f i(w)} | n + 1 ≤ i ≤ 2n − 1} ∪ {{ f i(u), f i(s), f i(w)} | 1 ≤ i ≤ n}.
169

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
Fig. 2. Two packings of vertex-disjoint H-subgraphs in G and G − S . Vertices in S are marked black.

Fig. 3. Vertex sets in Q are encircled.

Claim 12. If ϕ is an H-model in G, then ϕ(H) ⊇ Q for some Q ∈Q.

Proof. Let ϕ be an arbitrary H-model in G . We know from Proposition 7 that G[ϕ(L)] contains a biconnected subgraph
on at least |L| vertices. Let B be such a biconnected subgraph in G . Subgraph B must be fully contained in a biconnected
component of G . Such a biconnected component must contain at least |B| ≥ |L| vertices. We make a case distinction over
all biconnected components in G with size at least |L|, and prove that if B is contained in them, then ϕ(H) ⊇ Q for
some Q ∈Q.

• L2,i for any 1 ≤ i ≤ 2n − 1: We know |L2,i| = |L| so B = L, hence f i(t), f i(s) ∈ ϕ(L).
• L3,i for any 1 ≤ i ≤ 2n − 1: We know |L3,i| = |L| so B = L, hence f i(v), f i(t) ∈ ϕ(L).
• L1,i for any n + 1 ≤ i ≤ 2n − 1: We know |L1,i| = |L| so B = L, hence f i(s), f i(w) ∈ ϕ(L).
• L1,i for any 1 ≤ i ≤ n: We know |L1,i| = |L| so B = L, hence f i(s), f i(w) ∈ ϕ(L). If f i(t) ∈ ϕ(H) or f i(u) ∈ ϕ(H) then

clearly Q � { f i(t), f i(s)} ⊆ ϕ(H) or Q � { f i(u), f i(s), f i(w)} ⊆ ϕ(H). If fn+i(t) ∈ ϕ(H) then Q � { fn+i(v), fn+i(t)} ⊆
ϕ(H), since f i(w) = fn+i(v). Suppose ϕ(H) does not contain f i(t), f i(u), or fn+i(t), then ϕ must be an H-model in the
graph G ′ := (H1,i − f i(u)) ∪ (L2,i − f i(t)) ∪ (L3,n+i − f i(t)), so H � G ′ . By Proposition 9 we know that |L| -prune(H) �
|L| -prune(G ′). Clearly |L| -prune(H) = H . The graph G ′ contains at least two leaf blocks that are smaller than |L|,
namely L2,i − f i(t) and L3,n+i − f i(t), so |L| -prune(G ′) is a subgraph of H1,i − f i(u). But then |V (|L| -prune(G ′))| <
|V (H)| so |L| -prune(G ′) cannot contain an H-model. Contradiction.

• There can be biconnected components of size at least |L| in R2,i for any 1 ≤ i ≤ 2n − 1. Suppose f i(t) /∈ ϕ(H), then ϕ
must be an H-model in the graph R2,i − f i(t). Clearly this is not possible since |V (R2,i − f i(t))| < |V (H)|, so f i(t) ∈ ϕ(H).
If f i(v) ∈ ϕ(H) or f i(s) ∈ ϕ(H) then Q � { f i(v), f i(t)} ⊆ ϕ(H) or Q � { f i(t), f i(s)} ⊆ ϕ(H). Suppose ϕ(H) does not
contain f i(v) or f i(s), then ϕ must be an H-model in the graph G ′ := R2,i ∪ (L3,i − f i(v)) ∪ (L2,i − f i(s)), so H � G ′ . By
Proposition 9 we know that |L| -prune(H) � |L| -prune(G ′), so H � |L| -prune(G ′) = R2,i . This is a contradiction since R2,i
cannot contain H as a minor.

• There can be biconnected components of size at least |L| in R1,i for any n +1 ≤ i ≤ 2n −1. Suppose f i(s) /∈ ϕ(H), then ϕ
must be an H-model in the graph R1,i − f i(s). As before this is not possible since |V (R1,i − f i(s))| < |V (H)|, so f i(s) ∈
ϕ(H). If f i(t) ∈ ϕ(H) or f i(w) ∈ ϕ(H) then Q � { f i(t), f i(s)} ⊆ ϕ(H) or Q � { f i(s), f i(w)} ⊆ ϕ(H). Suppose ϕ(H) does
not contain f i(t) or f i(w), then ϕ must be an H-model in the graph G ′ := R1,i ∪ (L2,i − f i(t)) ∪ (L1,i − f i(w)), so H � G ′ .
As before, by Proposition 9 it follows that H � R1,i which is a contradiction.

• There can be biconnected components of size at least |L| in R1,i for any 1 < i < n. Suppose fn+i−1(s) ∈ ϕ(H)

then f i(u) = fn+i−1(w) ∈ ϕ(H) since any path in G connecting fn+i−1(s) to any vertex in R1,i includes f i(u).
So Q � { fn+i−1(s), fn+i−1(w)} ⊆ ϕ(H). Similarly if f i(t) ∈ ϕ(H) then Q � { f i(t), f i(s)} ⊆ ϕ(H) and if fn+i(t) ∈ ϕ(G)

then Q � { fn+i(v), fn+i(t)} ⊆ ϕ(H). Suppose ϕ(H) does not contain fn+i−1(s), f i(t), or fn+i(t), then ϕ must be an H-
170

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
Fig. 4. The graph G − X . Vertices in X that are removed from the graph are marked by a cross. Vertices in S are marked black. A supergraph
of λ(H) -prune(G − X) is shown in gray. Note that when |V (R)| = |V (L)|, not all subgraphs and vertices marked gray are necessarily part of λ(H) -prune(G −
X). Note that the subgraphs W1, W2, and W3 (shaded in gray) include some vertices from G var .

model in the graph G ′ := H1,i ∪ (L1,n+i−1 − fn+i−1(s)) ∪ (L2,i − f i(t)) ∪ (L3,n+i − fn+i(t)). If Q � { f i(u), f i(s), f i(w)} ⊆
ϕ(H), then the claim holds, so suppose { f i(u), f i(s), f i(w)} � ϕ(H), then for some p ∈ { f i(u), f i(s), f i(w)} we have
that ϕ is an H-model in G ′ − p. Therefore H � G ′ − p and by Proposition 9 we know |L| -prune(H) � |L| -prune(G ′ − p),
so H � |L| -prune(G ′ − p) = |L| -prune(H1,i − p). However |L| -prune(H1,i − p) has at most |V (H1,i − p)| = |V (H)| − 1
vertices, so it cannot contain an H-model. Contradiction.

• There can be biconnected components of size at least |L| in R1,1. As in the previous case we can assume that ϕ(H)

does not contain f1(t) or fn+1(t), so then ϕ must be an H-model in G ′ := H1,1 ∪ (L2,1 − f i(t)) ∪ (L3,n+1 − fn+1(t)). Like
in the previous case, by Proposition 9 this results in a contradiction.

• There can be biconnected components of size at least |L| in R1,n . As above we can assume that ϕ(H) does not con-
tain f2n−1(s) or f1(t), so then ϕ must be an H-model in G ′ := H1,1 ∪ (L1,2n−1 − f2n−1(s)) ∪ (L2,1 − f i(t)). Again, by
Proposition 9 this results in a contradiction.

This concludes the proof of Claim 12. �

We now proceed to prove condition 4. of the lemma statement. Let f j(v) ∈ S be an arbitrary vertex in S , implying 1 ≤
j ≤ n, and let X be defined as:(⋃

1≤i< j

{ f i(t), f i(w), f i+n(s)}
)

∪ { f j(v), f j(s)} ∪
(⋃

j<i≤n

{ f i(t), f i(u), f i+n−1(t)}
)

.

In Fig. 4 the vertices in X are shown in graph G as a cross. Observe that |X | = 3n −1 and f j(v) ∈ X . Furthermore X contains
at least one element from each set in Q, hence G − X is H-minor-free by Claim 12. This shows parts 4.(a) and 4.(b) of the
lemma statement hold. We proceed to show parts 4.(c) and 4.(d).

4.(c) Consider the graph G ′ := λ(H) -prune(G − X). Fig. 4 shows a supergraph of G ′ in gray for the case that a ∈ V (R).
Every connected component in G ′ must contain a biconnected component with at least λ(H) = |L| vertices. Consider all
biconnected components in G − X containing at least |L| vertices. These can only be contained in the following subgraphs
of G: R2,i for any 1 ≤ i ≤ 2n − 1, H1,i for any 1 ≤ i ≤ n, and R1,i for any n + 1 ≤ i ≤ 2n − 1. Note that any path from a
vertex of one of these subgraphs to a vertex of another contains at least one vertex in X , hence any connected component
in G ′ contains vertices of at most one of these subgraphs. Since all other biconnected components in G − X have size
less than |L| we know that each connected component in |L| -prune(G − X) is a subgraph of R1,i , R2,i or H1,i for some i,
hence |L| -prune(G − X) � H .

4.(d) Finally we show that all connected components in G − X that contain a vertex of S have size less than |L|. Since
we have f j(v) ∈ X , there is no connected component in G − X containing f j(v). For all i �= j we have f i(t) ∈ X so the
connected components in G − X containing a vertex from S are L3,i − f i(t) for all 1 ≤ i < j or j < i ≤ n. These all have
size |L| − 1 and contain exactly one vertex of S . �
3.3. Reduction for connected graphs H

Using the clause gadget described in Lemma 11 we give a polynomial-parameter transformation for the case where F
contains a single, connected graph H .

Lemma 13. For any connected graph H with at least three vertices there exists a polynomial-time algorithm that, given a CNF-
formula 	 with k variables, outputs a graph G and an integer � such that all of the following are true:

1. there is a set S ⊆ V (G) of at most 2k vertices such that tw(G − S) ≤ tw(H),
2. G contains � vertex-disjoint H-subgraphs,
3. if 	 is not satisfiable then there does not exist a set X ⊆ V (G) of size at most � such that G − X is H-subgraph-free,
4. if 	 is satisfiable then there exists a set X ⊆ V (G) of size at most � such that G − X is H-minor-free, λ(H) -prune(G − X) � H,

and tw(G − X) ≤ tw(H).
171

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
Fig. 5. The graph G as obtained with H = P3 and 	 = (¬x4 ∨ ¬x3 ∨ x2 ∨ ¬x1) ∧ (x4 ∨ ¬x3 ∨ x1) ∧ (x3 ∨ ¬x2 ∨ x1). Vertices in a solution corresponding to
the satisfying assignment x1 = True, x2 = True, x3 = False, x4 = True are marked with a cross.

Proof. Let x1, . . . , xk denote the variables of 	, let C1, . . . , Cm denote the sets of literals in each clause of 	, and let n
denote the total number of occurrences of literals in 	, i.e., n = ∑

1≤ j≤m |C j|.

Construction. Let H1, . . . , Hk be copies of H . In each copy Hi we arbitrarily label one vertex vxi and another v¬xi . Let G var

be the graph obtained from the disjoint union of H1, . . . , Hk . For each clause C j of 	 we create a graph called W j and vertex
set S j ⊆ V (W j) by invoking Lemma 11 with H and |C j |. Let G be the graph obtained from the disjoint union of W1, . . . , Wm

and G var where we identify the vertices in S j with the appropriate vxi or v¬xi as follows: For each clause C j let s1, . . . , s|C j |
be the vertices in S j in some arbitrary order, and let c1, . . . , c|C j | be the literals in C j , then we identify si and vci for
each 1 ≤ i ≤ |C j|. Finally let � = k + 3n − 2m and S = ⋃

1≤i≤k{vxi , v¬xi }. Note that S j ⊆ S for all 1 ≤ j ≤ m. This concludes
the description of G , �, and S . See Fig. 5 for an example.

Correctness. It is easy to see they can be constructed in polynomial time. We proceed to show that all conditions in the
lemma statement are met.

1. Clearly |S| = 2k and since every connected component in G − S is a subgraph of H1, . . . , Hk or W1, . . . , Wm , it follows
from Lemma 11(1) that tw(G − S) ≤ tw(H).

2. For all 1 ≤ j ≤ m we know from Lemma 11(3) that W j − S contains a packing of 3|C j | − 2 H-subgraphs. Since W j − S
and W i − S are vertex-disjoint for j �= i we can combine these packings to obtain a packing in G − S of

∑
1≤ j≤m(3|C j| −2) =

3n − 2m vertex-disjoint H-subgraphs. Note that this packing does not contain vertices from H1, . . . , Hk , so we can add these
to the packing and obtain a packing of k + 3n − 2m = � vertex disjoint H-subgraphs in G .

3. We now show that if 	 is not satisfiable, then there does not exist a set X ⊆ V (G) of size at most � such that G − X
is H-subgraph-free. Suppose there exists such a set X . Since there is a packing of � vertex-disjoint H-subgraphs in G , we
know that X contains exactly one vertex from each H-subgraph in the packing. Since vxi and v¬xi belong to the same
subgraph, they cannot both be contained in X . Consider the variable assignment where xi is assigned true if vxi ∈ X or false
otherwise. Since we assumed 	 is not satisfiable, there is at least one clause in 	 that evaluates to false with this variable
assignment. Let C j denote such a clause. Since C j evaluates to false, all of its literals must be false, so for all variables xi
that are not negated in C j we have xi = false and therefore vxi /∈ X . For all negated variables xi in C j we know xi = true
meaning vxi ∈ X , so v¬xi /∈ X . This means that ∅ = X ∩ S j = X ∩ V (W j) ∩ V (G var), but since G var contains k vertex-disjoint
H-subgraphs we have |X ∩ V (G var)| ≥ k, so then |X ∩ (V (G var) \ V (W j))| ≥ k. For all i there is a packing of 3|Ci | − 2
vertex-disjoint H-subgraphs in W i − S = W i − V (G var), so in the graph G − V (W j) there are k + ∑

i �= j(3|Ci | − 2) vertex-
disjoint H-subgraphs. This means that |X ∩ (V (G) \ V (W j))| ≥ k + ∑

i �= j(3|Ci | − 2), and since |X | = k + ∑
1≤i≤m(3|Ci | − 2)

we know that |X ∩ V (W j)| ≤ 3|C j | − 2. However W j contains 3|C j | − 1 vertex-disjoint H-subgraphs, so G − X cannot be
H-subgraph-free. Contradiction.

4. Finally we show that if 	 is satisfiable then there exists a set X ⊆ V (G) of size at most � such that G − X is H-minor-
free, λ(H) -prune(G − X) � H , and tw(G − X) ≤ tw(H). Since 	 is satisfiable there exists a variable assignment such that
each clause contains at least one literal that is true. Consider the set X ′ consisting of all vertices vxi when xi is true and v¬xi

when xi is false. Since every clause contains one literal that is true, we know for each 1 ≤ j ≤ m that W j contains at least
one vertex from X ′ . So for each 1 ≤ j ≤ m we have X ′ ∩ S j �= ∅. Take an arbitrary vertex v j ∈ X ′ ∩ S j and let X j ⊆ V (W j)

be the vertex set containing v j obtained from condition 4. of Lemma 11. Let X = X ′ ∪ ⋃
1≤ j≤m X j . For all 1 ≤ j ≤ m we

know |X ′ ∩ X j | ≥ 1 since v j ∈ X ′ ∩ X j . So |X | ≤ |X ′| + ∑
1≤ j≤m(3|C j | − 2) = k + 3n − 2m = �.
172

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
By Lemma 11(4(b)) we have that W j − X j is H-minor-free for all 1 ≤ j ≤ m, so clearly W j − X is also H-minor-free.
Consider an arbitrary connected component G ′ of G − X . If G ′ is also a connected component of W j − X for some 1 ≤ j ≤ m,
then we have that G ′ is H-minor-free, λ(H) -prune(G ′) � H (by Lemma 11(4(c)), and tw(G ′) ≤ tw(W j) ≤ tw(H). If G ′ is not
a connected component of W j − X for any 1 ≤ j ≤ m, then it contains a connected component of Hi − X as a subgraph,
for some 1 ≤ i ≤ k. When G ′ does not contain any vertices of S we know that G ′ must be a subgraph of Hi , so G ′ is
H-minor-free, λ(H) -prune(G ′) � G ′ � H , and tw(G ′) ≤ tw(Hi) = tw(H).

Suppose on the other hand G ′ does contain a vertex v ∈ S . No connected component of W j − X j contains more than one
vertex from S and each connected component of G var contains exactly two vertices of S , one of which is in X . So v is the
only vertex in G ′ that is contained in S . Moreover, since S is the only overlap between the graphs G var and W j for all 1 ≤
j ≤ m, we have that v is a cut vertex in G ′ , such that for some 1 ≤ i ≤ k, each biconnected component of G ′ is a subgraph
of Hi − X or W j − X for any 1 ≤ j ≤ m. So each of these biconnected components of G ′ has treewidth at most tw(H),
hence tw(G ′) ≤ tw(H). Also, each biconnected component in G ′ that is a subgraph of W j − X = W j − X j for some 1 ≤ j ≤ m
contains a vertex from S and therefore has size at most λ(H) − 1 by condition 4.(d) on the choice of X j . So we have that
λ(H) -prune(G ′) is a subgraph of Hi , hence λ(H) -prune(G ′) � G ′ � H . Additionally since Hi contains at least one vertex that
is not contained in G ′ we have H �� λ(H) -prune(G ′). Because H = λ(H) -prune(H) we can conclude by Proposition 10 that G ′
is H-minor-free. Since H is connected, and all connected components of G − X are H-minor-free, G − X must also be H-
minor-free. We also know for all connected components G ′ of G − X that λ(H) -prune(G ′) � H , so λ(H) -prune(G − X) � H .
Finally since tw(G ′) ≤ tw(H) for each connected component G ′ of G − X we have that tw(G − X) ≤ tw(H). �

The construction from Lemma 13 can directly be used to give a polynomial-parameter transformation from cnf-sat

parameterized by the number of variables. Observe that if G − X is F -minor-free, then G − X is also F -subgraph-free.
Similarly, if G − X contains an H-subgraph for all X ⊆ V (G) with |X | ≤ �, then G − X also contains an H-minor. Therefore,
for any type ∈ {minor, subgraph} and F consisting of one connected graph on at least three vertices, Lemma 13 gives
a polynomial-parameter transformation from cnf-sat parameterized by the number of variables to F -type-Free Deletion

parameterized by deletion distance to min tw(F).

3.4. Reduction for families of disconnected graphs

When F contains multiple graphs, each containing a connected component of at least three vertices, it is possible to
select a connected component H of one of the graphs in F such that the construction described in Lemma 13 forms
the main ingredient for a polynomial-parameter transformation. This will formally be argued in the next lemma. To aid
the intuition for this technical construction, we describe a simple special case. If F is a family of connected graphs, each
on at least three vertices, and we choose H ∈ F as a �-minimal graph in F with tw(H) = min tw(F), we may safely
apply the construction of Lemma 13, to reduce the satisfiability of a CNF-formula 	 to F -Minor-Free Deletion on a
graph G . For a deletion set X ⊆ V (G) corresponding to a satisfiable assignment, the graph G − X is guaranteed to be H-
minor-free by Lemma 13, and tw(G − X) ≤ tw(H). The latter implies that G − X also does not contain any graphs F ∈ F
with tw(F) > min tw(F) as a minor; and since H is connected and �-minimal among the treewidth-minimal graphs in F ,
the fact that G − X is H-minor-free implies that G − X does not contain any other treewidth-minimal graph in F as a
minor either. Hence our choice of H ensures that G − X is not only H-minor-free, but also F -minor-free. The next lemma
introduces a more sophisticated choice of H that also works when F contains disconnected graphs.

Lemma 14. For any fixed finite set of graphs F , all with a connected component of at least 3 vertices, there exists a polynomial time
algorithm that, given a CNF-formula 	 with k variables, outputs a graph G and integer � such that all of the following are true:

1. there exists a set S ⊆ V (G) of at most kO(1) vertices such that tw(G − S) ≤ min tw(F),
2. if 	 is not satisfiable then there does not exist a set X ⊆ V (G) of size at most � such that G − X is F -subgraph-free, and
3. if 	 is satisfiable then there exists a set X ⊆ V (G) of size at most � such that G − X is F -minor-free.

Proof. Before describing the construction of G and � we define some graphs and sets based on F .
Note that as a consequence of Observation 4, there is a graph F ∈ F that is �-minimal with tw(F) = min tw(F).

Let F↓ ⊆ F denote the set of all �-minimal graphs in F that have treewidth min tw(F). We select a �-maximal com-
ponent H↑ of a graph H ∈ F↓ such that λ(H↑) ≤ λ(H ′↑) for all �-maximal components H ′↑ of any H ′ ∈ F↓ . Note that H↑
contains at least 3 vertices since otherwise H↑ would be a minor of at least one connected component of H containing
at least 3 vertices, which contradicts H↑ being a �-maximal component of H . Let c ≥ 1 denote the number of connected
components in H isomorphic to H↑ and let Y denote the set of vertices contained in these connected components, i.e.,
H[Y] is isomorphic to c · H↑ . See Fig. 6 for an example of the choices of F↓ , H , H↑, and c for a concrete F .

Construction. We take the algorithm from Lemma 13 for the graph H↑ and apply it to 	 to construct a graph G ′ and
integer �′ . Let S ′ ⊆ V (G ′) be the vertex set obtained from Lemma 13(1). Let G1 := (2c − 1) · G ′ , and let the set S be the
union of all 2c − 1 corresponding copies of S ′ . Take � := (2c − 1) · �′ and let G2 := (� + 1) · (H − Y) and G := G2 ∪ G1. See
Fig. 7 for a concrete example of G .
173

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
Fig. 6. In F = {F1, F2, F3} there are two graphs (F1 and F2) that are �-minimal, in this case both with treewidth 2 = min tw(F), hence F↓ = {F1, F2}.
Together, the graphs in F↓ contain five �-maximal components. The leaf-blocks of these components are circled in gray. Observe that this leaves three
candidates for H↑ , namely those with a leaf-block of size 2. Suppose we select H↑ = P4, so H = F1, then c = 2 since H↑ occurs twice in H . Vertices in Y
are colored gray.

Fig. 7. Based on the choices of H , H↑ , c, and Y in Fig. 6 and the CNF-formula 	 as in Fig. 5 we obtain the graph G = G1 ∪ G2 depicted above.

Before proving the conditions of the lemma statement hold for G and � we prove some properties of G2.

Claim 15. G2 has the following properties: (1) G2 � H, (2) tw(G2) ≤ tw(H), (3) G2 is H-minor-free, and (4) G2 is F -minor-free.

Proof. Property (1) follows directly from the construction and Property (2) follows directly from Property (1). To show
Property (3), we show that G2 is H↑-minor-free. Suppose for contradiction that G2 contains H↑ as minor then, since H↑ is
connected, there is a connected component H ′ of G2 that contains H↑ as minor. H ′ is also a connected component of H .
Since H↑ is a �-maximal component of H and H↑ � H ′ we know H ′ � H↑ , and it follows from Observation 3 that H ′ is
isomorphic to H↑ . This is a contradiction since G2 contains only connected components of H that are not isomorphic to H↑ .

Having shown that G2 is H↑-minor-free, Property (4) is easily shown by contradiction. Suppose G2 is not F -minor-free,
then there exists a graph B ∈ F such that B � G2. It follows from G2 � H that B � H and since H is �-minimal in F we
have that H � B � G2, but then H↑ � G2. This is a contradiction since G2 is H↑-minor-free. �

Correctness. We show all conditions of the lemma statement hold for G and �.
1. Observe that |S| = (2c − 1) · 2k ∈ kO(1) . By Lemma 13(1) that tw(G1 − S) ≤ tw(H↑) ≤ tw(H) and since tw(G2) ≤ tw(H)

by Claim 15, we obtain tw(G − S) ≤ tw(H) = min tw(F).
2. Suppose 	 is not satisfiable, and take an arbitrary X ⊆ V (G) of size at most �. We prove G − X is not F -subgraph-free

by showing that G − X contains an H-subgraph. First note that G2 − X contains at least one copy of H − Y = H − c · H↑ , so
it remains to show that G1 − X contains c vertex-disjoint H↑-subgraphs. Recall that G1 is the disjoint union of 2c − 1 copies
of G ′ . Consider the subgraph Ĝ1 of G1 consisting of the G ′-subgraphs in G1 that contain at most �′ vertices of X . Since 	

is not satisfiable, G ′ leaves at least one H↑-subgraph when �′ or fewer vertices are removed, so each G ′-subgraph in Ĝ1

leaves at least one H↑-subgraph in G1 − X . When Ĝ1 contains at least c vertex-disjoint G ′-subgraphs, we know that there
are at least c vertex-disjoint H↑-subgraphs in G1 − X , concluding the proof. Suppose instead that Ĝ1 contains less than c
vertex-disjoint G ′-subgraphs. Let x be the number of G ′-subgraphs in G1 − V (Ĝ1). Since G1 contains 2c − 1 vertex-disjoint
G ′-subgraphs we have x ≥ c. Each of the G ′-subgraphs in G1 − V (Ĝ1) contains at least �′ + 1 vertices of X , so Ĝ1 contains at
most � − x(�′ +1) vertices of X . We also know Ĝ1 contains �′((2c −1) − x) vertex-disjoint H↑-subgraphs since G ′ contains �′
vertex-disjoint H↑-subgraphs (by Lemma 13(2)) and there are (2c − 1) − x vertex-disjoint G ′-subgraphs in Ĝ1. We conclude
that the number of vertex-disjoint H↑-subgraphs in Ĝ1 − X , and therefore also in G1 − X , is at least

�′((2c − 1) − x) − (� − x(�′ + 1)) = �′((2c − 1) − x) − (�′(2c − 1) − �′x − x)
174

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
= �′((2c − 1) − x) − �′((2c − 1) − x) + x

= x ≥ c.

This concludes the proof of condition 2.
3. When 	 is satisfiable we know that there exists a set X ′ ⊆ V (G ′) of size at most �′ such that G ′ − X ′ is H↑-minor-free

and λ(H↑) -prune(G ′ − X ′) � H↑ . So then there exists a set X ⊆ V (G1) of size at most (2c − 1) · �′ = � such that G1 − X is
H↑-minor-free and λ(H↑) -prune(G1 − X) � H↑ . Since G2 is also H↑-minor-free we know that G − X is H↑-minor-free and
therefore also H-minor-free. We now show that G − X is also F -minor-free.

First observe the following:

λ(H↑) -prune(G2 − X) � G2 − X � G2 � H , and (1)

λ(H↑) -prune(G1 − X) � H↑ � H . (2)

We now deduce

λ(H↑) -prune(G − X) = λ(H↑) -prune((G2 − X) ∪ (G1 − X))

= λ(H↑) -prune(G2 − X) ∪ λ(H↑) -prune(G1 − X))

� H (by Equation (1) and (2))

Suppose G − X is not F -minor-free, then for some H ′ ∈ F we have H ′ � G − X . There must exist a graph B ∈ F such
that B is �-minimal in F and B � G − X since if H ′ is �-minimal in F then H ′ forms such a graph B , and if on the
other hand H ′ is not �-minimal in F then there exists a graph H ′′ ∈ F such that H ′′ � H ′ and H ′′ is �-minimal in F ,
meaning H ′′ forms such a graph B .

Since B � G − X we know by Observation 4 that tw(B) ≤ tw(G − X). Recall that tw(G − X) ≤ min tw(F) so then B ∈F↓ .
Because of how we chose H↑ , we know for all �-maximal components B↑ of B that λ(B↑) ≥ λ(H↑). Therefore

B � λ(H↑) -prune(B) since B = λ(H↑) -prune(B)

� λ(H↑) -prune(G − X) by Proposition 10 since B � G − X

� H .

Since H is �-minimal in F , it follows that H � B . By definition of � we have H↑ � B � G − X . Since H↑ is connected
we conclude H↑ � G − X . This is a contradiction since G − X is H↑-minor-free. �

We conclude that a polynomial-parameter transformation exists for all type ∈ {minor, subgraph} and F containing only
graphs with a connected component on at least three vertices. Together with the fact that cnf-sat is MK[2]-hard and
does not admit a polynomial kernel unless NP ⊆ coNP/poly (cf. [26, Lemma 9]), this proves the following generalization of
Theorem 1.

Theorem 16. For type ∈ {minor, subgraph} and a set F of graphs, all with a connected component of at least three vertices, F -type-

Free Deletion parameterized by vertex-deletion distance to a graph of treewidth min tw(F) is MK[2]-hard and does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

4. A polynomial Turing kernelization

In this section we consider the case where F contains a graph with no connected component of more than two vertices;
or in short F contains a P3-subgraph-free graph. This graph consists of isolated vertices and disjoint edges. Let isol(G)

denote the set of isolated vertices in a graph G , i.e., isol(G) = {v ∈ V (G) | deg(v) = 0}. We first show that the removal of all
isolated vertices from all graphs in F only changes the answer to F -Minor-Free Deletion and F -Subgraph-Free Deletion

when the input is of constant size.

Lemma 17. For type ∈ {minor, subgraph} and any family of graphs F containing a P3-subgraph-free graph, let F ′ = {F − isol(F) |
F ∈F}. For any graph G, if G is F -type-free but not F ′-type-free, then |V (G)| < max

F∈F
(|V (F)| + 2|V (F)|3).

Proof. We first prove the lemma for type = subgraph. Suppose G is F -subgraph-free but not F ′-subgraph-free. Now G
contains an H ′-subgraph for some graph H ′ ∈ F ′ . This subgraph consists of |V (H ′)| vertices. Let H ∈ F be the graph for
which H ′ = H − isol(H). The graph G cannot contain | isol(H)| vertices in addition to the vertices in the H ′-subgraph because
otherwise G trivially contains an F -subgraph. Hence |V (G)| < |V (H ′)| + | isol(H)| = |V (H)| ≤ max |V (F)|.
F∈F

175

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
Next, we show the lemma holds for type = minor. If some graph G is F -minor-free but not F ′-minor-free then for some
graph H ∈ F we have H ′ � G but not H � G where H ′ = H − isol(H). Let ϕ be a minimal H ′-model in G . The graph G has
less than |V (isol(H))| vertices that are not in any branch set of ϕ , since otherwise an H-model could be constructed in G
by taking the branch sets of ϕ and adding |V (isol(H))| branch sets consisting of a single vertex.

The number of vertices in G that are contained in a branch set of ϕ can also be limited. For an arbitrary vertex v ∈ V (H ′)
consider a spanning tree T of G[ϕ(v)]. If ϕ(v) contains multiple vertices then for each leaf p of T , there must be a
vertex u ∈ NH ′(v) and q ∈ NG(p) ∩ ϕ(u), such that p is the only vertex from ϕ(v) that is adjacent to ϕ(u); otherwise,
removing leaf p from the branch set φ(v) would yield a smaller H ′-model in G . Hence there can only be max{1, degH ′(v)}
leaves in T .

To give a bound on the size of each branch set consider a smallest graph D ∈F ′ that is P3-subgraph-free. Take � = |V (D)|
and note that D � P� . Since we know that G is F ′-minor-free, G must also be P�-subgraph-free, therefore T is also P�-
subgraph-free. Consider an arbitrary vertex r in T . Since T is a tree, there is exactly one path from r to each leaf of T and
every vertex of T lies on at least one path from r to a leaf of T . Since there are no more than max{1, degH ′(v)} leaves in T
there are at most max{1, degH ′(v)} such paths, and all these paths contain less than � vertices since T is P�-subgraph-free,
hence in total T contains less than degH ′(v) · � vertices. We can now give a bound on the total number of vertices in G as
follows:

|V (G)| < | isol(H)| +
∑

v∈H−isol(H)

|ϕ(v)|

≤ | isol(H)| +
∑

v∈H−isol(H)

(degH ′(v) · �)

≤ | isol(H)| + 2 · |E(H)| · �
≤ |V (H)| + 2 · |V (H)|2 · |V (D)|
≤ max

F∈F (|V (F)| + 2|V (F)|3)
This concludes the proof. �
After the removal of isolated vertices in F to obtain F ′ , we know that F ′ contains a graph consisting entirely of disjoint

edges, i.e., this graph is isomorphic to c · P2 for some integer c ≥ 0. If c = 0 then F -type-free graphs have constant size
and the problem is polynomial-time solvable. We proceed assuming c ≥ 1. Let the matching number of a graph G , denoted
as ν(G), be the size of a maximum matching in G . We make the following observation.

Observation 18. For all c ≥ 1, a graph G is c · P2-subgraph-free if and only if ν(G) ≤ c − 1.

We give a characterization of graphs with bounded matching number, based on an adaptation of the Tutte-Berge for-
mula [33]. We use odd(G) to denote the number of connected components in G that consist of an odd number of vertices.

Lemma 19. For any graph G and integer m we have ν(G) ≤ m if and only if V (G) can be partitioned into three disjoint sets U , R, S
such that all of the following are true:

• all connected components in G[R] have an odd number of at least 3 vertices,
• G[S] is independent,
• NG(S) ⊆ U , and
• |U | + 1

2 (|R| − odd(G[R])) ≤ m.

Proof. Consider the Tutte-Berge formula [33] (cf. [34, Chapter 24]):

ν(G) = 1
2 min

U⊆V (G)
(|V (G)| − odd(G − U) + |U |).

Suppose ν(G) ≤ m. It follows from the Tutte-Berge formula that there exists a U1 ⊆ V (G) such that 1
2 (|V (G)| − odd(G −

U1) + |U1|) = ν(G) ≤ m. From each connected component H in G − U1 on an even number of vertices, select a vertex
that is not a cut vertex of H (any leaf of a spanning tree of H suffices) and add the selected vertices to a set U2. Now
take U = U1 ∪ U2. Note that G − U contains only connected components with an odd number of vertices and odd(G − U) =
odd(G − U1) + |U2|. Let S be the set of isolated vertices in G − U and let R = V (G) \ (U ∪ S). Observe that U , R , and S
satisfy the first three conditions in the lemma statement: G[R] contains only connected components with an odd number
of at least 3 vertices, G[S] is independent, and NG(S) ⊆ U . Note that this implies that odd(G[R]) + |S| = odd(G[R ∪ S]) =
odd(G − U). The last requirement follows from the Tutte-Berge formula as follows:
176

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
|U | + 1
2 (|R| − odd(G[R])) = 1

2 (2|U | + |S| − |S| + |R| − odd(G[R])
= 1

2 ((|U | + |S| + |R|) − (odd(G[R]) + |S|) + |U |)
= 1

2 (|V (G)| − odd(G − U) + |U |)
= 1

2 (|V (G)| − (odd(G − U1) + |U2|) + |U1| + |U2|)
= 1

2 (|V (G)| − odd(G − U1) + |U1|)
= ν(G) ≤ m

For the reverse direction of the proof, suppose V (G) can be partitioned into disjoint sets U , R, S as described in the
lemma statement. A maximum matching in G[R] has size at most 1

2 (|R| − odd(G[R]) since at least one vertex in each odd
component remains unmatched and every matching edge covers two vertices. Since NG(S) ⊆ U we know that S is isolated
in G − U , so ν(G − U) = ν(G[R]) ≤ 1

2 (|R| − odd(G[R]). Since a matching in G is at most |U | edges larger than a matching
in G − U we conclude ν(G) ≤ |U | + 1

2 (|R| − odd(G[R]) ≤ m. �
Let us showcase how Lemma 19 can be used to attack F -Minor-Free Deletion when F consists of a single graph c · P2,

so that the problem is to find a set X ⊆ V (G) of size at most � such that G − X has matching number less than c.

Theorem 20. For any constant c, the {c · P2}-Minor-Free Deletion problem parameterized by the size k of a feedback vertex set, can
be solved in polynomial time using an oracle that answers Vertex Cover instances with O(k3) vertices.

Proof. If an instance (G, �) admits a solution X , then Lemma 19 guarantees that V (G − X) can be partitioned into U , R, S
satisfying the four conditions for m = c − 1. We try all relevant options for the sets U and R in the partition, of which there
are only polynomially many since |U | + 1

3 |R| ≤ m ∈O(1).
For given sets U , R ⊆ V (G), we can decide whether there is a solution X of size at most � for which U , R , and S :=

V (G) \ (U ∪ R ∪ X) form the partition witnessing that G − X has matching number at most m, as follows. If some component
of G[R] has an even number of vertices or less than three vertices, we reject outright. Similarly, if |U | + 1

2 (|R| −odd(G[R])) >
m, we reject. Now, if U and R were guessed correctly, then Lemma 19 guarantees that the only neighbors of R in the
graph G − X belong to U . Hence we infer that all vertices of X ′ := NG(R) \ U must belong to the solution X . Note that
since S is an independent set in G − X , the solution X forms a vertex cover of G − (U ∪ R), so that X ′′ := X \ X ′ is a vertex
cover of G ′ := G − (U ∪ R ∪ X ′). On the other hand, for every vertex cover X ′′ of G ′ , the graph G − (X ′ ∪ X ′′) will have
matching number at most m, as witnessed by the partition. Hence the problem of finding a minimum solution X whose
corresponding graph G − X has U and R as two of the classes in its witness partition, reduces to finding a minimum vertex
cover of the graph G ′ . In terms of the decision problem, this means G has a solution of size at most � with U and R as
witness partite sets, if and only if G ′ has a vertex cover of size at most � − |X ′|. Since fvs(G ′) ≤ fvs(G), we can apply the
known [12] kernel for Vertex Cover parameterized by the feedback vertex number to reduce (G ′, � − |X ′|) to an equivalent
instance with O(fvs(G)3) vertices, which is queried to the oracle. If the oracle answers positively to any query, then (G, �)
has answer yes; otherwise the answer is no. �

We remark that by using the polynomial-time reduction guaranteed by NP-completeness, the queries to the oracle can
be posed as instances of the original F -Minor-Free Deletion problem, rather than Vertex Cover. The following lemma
formalizes this and will be used as a black box for our general Turing kernelization.

Lemma 21. Let F be a finite set of graphs such that each graph in F contains at least one edge, and let type ∈ {minor, subgraph}.
There is a polynomial-time algorithm that, given a graph G and integer �, decides whether G has a vertex cover of size at most �, using
an oracle that answers F -type-Free Deletion instances with fvs(G)O(1) vertices.

Proof. For a fixed F and type, the following procedure solves the Vertex Cover instance (G, �) in polynomial time using an
oracle for F -type-Free Deletion instances with fvs(G)O(1) vertices.

1. Compute a 2-approximate feedback vertex set S on G in polynomial time, for example using the algorithm by Bafna et
al. [35].

2. Apply the kernelization by Jansen and Bodlaender [12] for Vertex Cover parameterized by feedback vertex set to the in-
stance (G, �) and the approximate feedback vertex set S . This takes polynomial time, and results in an instance (G1, �1)

of Vertex Cover on O(|S|3) ≤O(fvs(G)3) vertices that is equivalent to (G, �).
3. Since every graph in F contains at least one edge, the F -type-Free Deletion problem is NP-complete [36]. The Vertex

Cover problem is also known to be NP-complete, hence there exists a polynomial-time algorithm that transforms the
Vertex Cover instance (G1, �1) into an equivalent F -type-Free Deletion instance (G2, �2). Since this algorithm runs in
polynomial time and the size of its input is fvs(G)O(1) , the number of vertices in G2 is upper-bounded by fvs(G)O(1) .
177

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182

�
4. Query the instance (G2, �2) of size fvs(G)O(1) to the F -type-Free Deletion oracle, and output the oracle’s answer as
the decision on the Vertex Cover instance (G, �).

We point out that in Lemma 21, the oracle that answers F -type-Free Deletion instances with fvs(G)O(1) vertices may be
replaced with an oracle that answers Vertex Cover instances on O(fvs(G)3) vertices, due to the application of the Vertex
Cover kernelization in Step 2. Hence when using an oracle for Vertex Cover, the query size can be bounded uniformly and
does not depend on F .

We now present our general (non-adaptive) Turing kernelization for the minor-free and subgraph-free deletion problems
for all families F containing a P3-subgraph-free graph, combining three ingredients. Lemma 17 allows us to focus on
families whose graphs have no isolated vertices. The guessing strategy of Theorem 20 is the second ingredient. The final
ingredient is required to deal with the fact that a solution subgraph G − X that is c · P2-minor-free for some c · P2 ∈ F ,
may still have one of the other graphs in F as a minor. To cope with this issue, we show in Lemma 23 that if G − X has
no matching of size c (i.e., G − X has a vertex cover of size at most 2c), but does contain a minor model of some graph
in F , then there is such a minor model of constant size. By employing a more expensive (but still polynomially bounded)
guessing step, this allows us to complete the Turing kernelization. In the following lemmas vc(G) will denote the vertex
cover number and �(G) will denote the maximum degree of G .

Proposition 22 ([10, Proposition 1]). If G contains H as a minor, then there is a subgraph G∗ of G containing an H-minor such
that �(G∗) ≤ �(H) and |V (G∗)| ≤ |V (H)| + vc(G∗) · (�(H) + 1).

Lemma 23. For any type ∈ {minor, subgraph}, let F be a family of graphs, let G be a graph with vertex cover C , and let S = V (G − C).
If G contains an F -type, then there exists S ′ ⊆ S such that G[C ∪ S ′] contains an F -type and |S ′| ≤ maxH∈F |V (H)| + |C | · (�(H) +
1).

Proof. Suppose type = minor, then by Proposition 22 we know that if G contains H ∈ F as a minor, then there is a
subgraph G∗ of G containing an H-minor such that |V (G∗)| ≤ |V (H)| + vc(G∗) · (�(H) + 1). Take S ′ = V (G∗) ∩ S , then G[C ∪
S ′] = G[C ∪ V (G∗)] contains an F -minor and

|S ′| ≤ |V (G∗)|
≤ |V (H)| + vc(G∗) · (�(H) + 1)

≤ |V (H)| + |C | · (�(H) + 1)

≤ max
H∈F |V (H)| + |C | · (�(H) + 1).

On the other hand, when type = subgraph then G contains an H-subgraph for some H ∈ F , and trivially there exists a
set X ⊆ V (G) of |V (H)| vertices such that G[X] contains an H-subgraph. Take S ′ = X − C and clearly G[C ∪ S ′] contains an
H-subgraph. �

Armed with Lemma 23 we now present the proof of the general Turing kernelization.

Theorem 2. Let F be a finite set of graphs, such that some H ∈ F has no connected component of three or more vertices. Then F -

Minor-Free Deletion and F -Subgraph-Free Deletion admit polynomial Turing kernels when parameterized by the vertex-deletion
distance to a graph of treewidth min tw(F).

Proof. Fix some type ∈ {minor, subgraph}. First, consider input instances (G, �) for which |V (G)| − � ≤ maxF∈F (|V (F)| +
2|V (F)|3). If |V (G)| −� < 0, there is a trivial solution. Otherwise, there exists a vertex set X of size at most � such that G − X
is F -type-free if and only if there exists a set X ′ of size exactly � such that G − X ′ is F -type-free, since F -type-free graphs
are hereditary and X ′ be obtained by adding sufficiently many vertices to X . Such a set X ′ exists if and only if there
exists a vertex set Y of size exactly |V (G)| − � ≤ maxF∈F (|V (F)| + 2|V (F)|3) such that G[Y] is F -type-free. Since there
are only polynomially many such vertex sets Y , and for each Y we can check in polynomial time whether G[Y] contains
an F -type [37], we can apply brute force to solve the instance in polynomial time.

So from now on we only consider instances (G, �) for which |V (G)| − � > maxF∈F (|V (F)| + 2|V (F)|3). This means
that for any vertex set X of size at most �, the graph G − X contains more than maxF∈F (|V (F)| + 2|V (F)|3) vertices.
Take F ′ = {F − isol(F) | F ∈ F} and we obtain from Lemma 17 that if G − X is F -type-free, it is also F ′-type-free, and
clearly if G − X contains an F -type it also contains an F ′-type. Hence the F -type-Free Deletion instance (G, �) is equivalent
to the F ′

-type-Free Deletion instance (G, �). Note that if F contains an edgeless graph then F ′ contains the null graph. In
this case the instance is trivially false since every graph contains the null graph as a subgraph. In the rest of the algorithm
we assume each graph in F ′ contains at least one edge.

Since every graph in F contains an edge and at least one graph in F has no component of three vertices or more, we
have min tw(F) = 1. Therefore the parameter, the deletion distance to treewidth min tw(F), is equal to fvs(G).
178

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
To complete the Turing kernelization for F -type-Free Deletion, it suffices to give a polynomial-time algorithm solv-
ing F ′

-type-Free Deletion using an oracle that can solve F -Minor-Free Deletion instances (G ′, �′) for which |V (G ′)| ≤
fvs(G)O(1) and fvs(G ′) ≤ fvs(G)O(1) . Note that the latter condition on (G ′, �′) is redundant since fvs(G ′) < |V (G ′)| for any
graph G ′ .

Our Turing kernelization will use the algorithm described in Lemma 21 to solve Vertex Cover instances (G ′′, �′′) for
induced subgraphs G ′′ of G . This algorithm requires an oracle for F -type-Free Deletion instances with fvs(G ′′)O(1) vertices.
Note that since G ′′ is an induced subgraph of G , we have fvs(G ′′) ≤ fvs(G), hence our F -type-Free Deletion oracle for
instances with fvs(G)O(1) suffices. We will refer to this algorithm as VCoracle.

Using this subroutine, the Turing kernelization algorithm is given in Algorithm 1. The high-level idea is as follows. Let M
be the smallest graph in F ′ that has no component of three or more vertices, or equivalently, which is P3-subgraph-free;
then M consists of isolated edges. The Turing kernelization first guesses the sets U and R as per Lemma 19 witnessing that
the graph G − X obtained after removing the unknown solution X does not have a matching of |E(M)| edges (i.e., that G − X
does not contain M ∈ F ′ as both a minor and a subgraph). Since Lemma 19 guarantees that in the graph G − X we
have NG−X (R) ⊆ U , it follows that NG(R) \ U must belong to the unknown solution X if this guess was correct. The
algorithm then considers the remaining vertices Q := V (G) \ (U ∪ R ∪ NG(R)) and classifies them into 2|U | types based
on their adjacency to U . An additional guessing step attempts to guess up to α (line 2) vertices of each type in G − X ,
which will be part of the set S in the partition of Lemma 19, by taking them into the range of the function f (line 9).
The algorithm tests whether the graph G[f (2U) ∪ U ∪ R] is F ′-type-free. If not, then the guess was incorrect. If so, then for
each type of which fewer than α vertices were guessed to remain behind in G − X , the algorithm collects the remaining
vertices of that type in a set Q ′ to be added to the solution X , and a Vertex Cover instance is formulated on the remaining
vertices of Q . For types of which α vertices remained behind, no vertices have to be added to Q ′ or the solution X in this
step, because using Lemma 23 it can be guaranteed that having more vertices of that type will not lead to an F ′-type. The
algorithm returns true if the formulated instance of Vertex Cover has a solution that yields a set of size at most � when
combined with the vertices of NG(R) \ U and Q ′ .

Algorithm 1: Solving F ′
-type-Free Deletion instances using VCoracle with F ′ containing a P3-subgraph-free

graph and no edgeless graphs.
input : A graph G and an integer �

output : true if there exists a set X of size at most � such that G − X is F ′-type-free, or false otherwise.
1 m := |E(M)| − 1 where M is a smallest P3-subgraph-free graph in F ′
2 α := maxH∈F ′ |V (H)| + 3m(�(H) + 1)

3 forall U ⊆ V (G) with |U | ≤ m do
4 forall R ⊆ V (G − U) such that
5 all connected components in G[R] have an odd number of at least 3 vertices

6 and |U | + 1
2 (|R| − odd(G[R])) ≤ m

7 do
8 Q := V (G) \ (U ∪ R ∪ NG (R))

9 forall functions f : 2U → 2Q such that
10 G[f (2U)] is independent and � Recall that f (2U) = ⋃

Y ⊆U f (Y)

11 G[f (2U) ∪ U ∪ R] is F ′-type-free and
12 ∀Y ⊆U | f (Y)| ≤ α and
13 ∀Y ⊆U ∀v∈ f (Y)NG (v) ∩ U = Y
14 do
15 Q ′ := {v ∈ Q \ f (2U) | | f (NG (v) ∩ U)| < α}
16 if VCoracle(G[Q] − Q ′ , � − |(NG (R) \ U) ∪ Q ′|) then
17 return true

18 return false

Soundness. When the algorithm returns true, then consider the values of U , R , Q , f , and Q ′ at the time that true is
returned. There exists a vertex cover X ′ of size at most � − |(NG(R) \ U) ∪ Q ′| in G[Q] − Q ′ . Let X = X ′ ∪ (NG(R) \ U) ∪ Q ′ ,
which has size at most �. The set X is a vertex cover in G − (U ∪ R), since G − (U ∪ R) − X = (G[Q] − Q ′) − X ′ . Hence S :=
V (G − (U ∪ R)) \ X is an independent set, even in G . The sets U , R, S, X form a partition of V (G). See Fig. 8a for a visual
representation of these sets. We will show that X is a solution to F ′

-type-Free Deletion on G .
Consider an arbitrary vertex v ∈ S . Note that since NG(R) ⊆ U ∪ X we have S = V (G) \ (U ∪ R ∪ X) ⊆ V (G) \ (U ∪ R ∪

NG(R)) = Q , so v ∈ Q . By definition of X we know Q ′ ⊆ X so v /∈ Q ′ . Then by definition of Q ′ on line 15 we observe the
following:

Observation 24. For all v ∈ S we have v ∈ f (2U) or | f (NG(v) ∩ U)| ≥ α.

Assume for a contradiction that G − X = G[U ∪ R ∪ S] contains an F ′-type. Since G[S] is independent, U ∪ R is a
vertex cover in G − X , and by Lemma 23 there exists a set S ′ ⊆ S with |S ′| ≤ max′ |V (H)| + |U ∪ R| · (�(H) + 1) such
H∈F

179

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
Fig. 8. We show two partitions of G . Fig. 8a shows a partition of G given that Algorithm 1 returns true, while Fig. 8b shows a partition of G given that G − X
is F -type-free. Note that in both cases there can be no edges between R and Q .

that G[U ∪ R ∪ S ′] contains an F ′-type. Note that |R| − 3 odd(G[R]) ≥ 0 since every connected component in G[R] contains
at least 3 vertices, so then

|S ′| ≤ max
H∈F ′ |V (H)| + |U ∪ R| · (�(H) + 1)

≤ max
H∈F ′ |V (H)| + (|U | + |R| + 1

2
(|R| − 3 odd(G[R]))) · (�(H) + 1)

≤ max
H∈F ′ |V (H)| + 3(|U | + 1

2
(|R| − odd(G[R]))) · (�(H) + 1)

≤ max
H∈F ′ |V (H)| + 3m(�(H) + 1)

= α.

Claim 25. The graph G[U ∪ R ∪ S ′] is isomorphic to a subgraph of G[U ∪ R ∪ f (2U)].

Proof. Observe that S contains no neighbors of R , and since G[S] is independent, we know for all v ∈ S that NG(v) ⊆ U ∪ X
and therefore NG−X (v) = NG(v) ∩ U . From Observation 24 it follows for all v ∈ S ′ that v ∈ f (2U) or | f (NG(v) ∩ U)| ≥ α. In
the latter case v is a false twin of any vertex u ∈ f (NG(v) ∩ U) in G − X since by definition of f we have NG(u) ∩ U =
NG(v) ∩ U for all vertices u ∈ f (NG(v) ∩ U). We have |S ′| ≤ | f (NG(v) ∩ U)| for all v ∈ S ′ , so there exists a bijection that
maps all vertices v ∈ S ′ to a vertex in u ∈ f (2U) that is a false twin of v in G − X . Any two false twins in G − X are
interchangeable in G − X , hence G[U ∪ R ∪ S ′] is isomorphic to a subgraph of G[U ∪ R ∪ f (2U)]. �

Since f is chosen such that G[U ∪ R ∪ f (2U)] is F ′-type-free on line 11, Claim 25 leads to a contradiction with the
fact that G[U ∪ R ∪ S ′] contains an F ′-type. We conclude that if the algorithm returns true a set X of size � exists such
that G − X is F ′-type-free.

Completeness. Next, we consider the reverse direction. We show that the algorithm returns true when there exists a set X
of size at most � such that G − X is F ′-type-free. Let m = |E(M)| −1 where M is the smallest P3-subgraph-free graph in F ′ ,
i.e., M is isomorphic to (m + 1) · P2 since no graph in F ′ contains isolated vertices. The graph G − X is F ′-type-free so it
is also (m + 1) · P2-subgraph-free, and by Observation 18 we know ν(G − X) ≤ m. Therefore by Lemma 19 there exists a
partition U ′, R ′, S of V (G − X) such that all of the following are true:

• all connected components in (G − X)[R ′] = G[R ′] have an odd number of at least 3 vertices,
• (G − X)[S] = G[S] is independent,
• NG−X (S) ⊆ U or equivalently NG(S) ⊆ U ∪ X , and
• |U ′| + 1

2 (|R ′| − odd(G[R ′])) ≤ m.

Clearly U ′ and R ′ are such that there is an iteration in the algorithm where U = U ′ and R = R ′ . Let Q be the set as defined
on line 8 in this iteration, see Fig. 8b. Let g : 2U → 2S be defined as g(Y) = {v ∈ S | Y = NG(v) ∩ U } for all Y ⊆ U . We define
a function f ′ : 2U → 2S that maps any Y ⊆ U to an arbitrary subset of g(Y) of size min{|g(Y)|, α}. We make the following
observations:

• Since NG(S) ⊆ U ∪ X we have NG(R) ∩ S = ∅ so S = S \NG(R) = V (G) \(U ∪ R ∪ X ∪NG (R)) ⊆ V (G) \(U ∪ R ∪NG (R)) = Q ,
so f ′ : 2U → 2Q .

• G[S] is independent, so G[f ′(2U)] is also independent because f ′(2U) ⊆ S .
180

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
• G[U ∪ R ∪ f ′(2U)] is a subgraph of G[U ∪ R ∪ S] = G − X , and since G − X is F ′-type-free, G[U ∪ R ∪ f ′(2U)] is also
F ′-type-free.

• Clearly ∀Y ⊆U | f ′(Y)| ≤ α, and
• ∀Y ⊆U ∀v∈ f ′(Y)NG(v) ∩ U = Y .

Hence f ′ satisfies all conditions stated in line 9 of the algorithm, so there is an iteration of the algorithm where f =
f ′ . Let Q ′ be the set as defined on line 15 in this iteration. We now show that there exists a vertex cover of size at
most � − |(NG(R) \ U) ∪ Q ′| in G[Q] − Q ′ .

Since G[S] is independent, X is a vertex cover in G[X ∪ S] = G − (U ∪ R). Then clearly X \ (NG(R) \ U) is a vertex cover
in G − (U ∪ R ∪ (NG(R) \ U)) and since NG(R) \ U ⊆ X we have |X \ (NG(R) \ U)| ≤ � − |NG(R) \ U |. Similarly consider
the set A = (NG(R) \ U) ∪ Q ′ . Clearly X \ A is a vertex cover in G − (U ∪ R ∪ A) and |X \ A| ≤ � − |A| if A ⊆ X . We will
show that A ⊆ X . We know NG(R) \ U ⊆ X so it remains to be shown that Q ′ ⊆ X . Consider an arbitrary v ∈ Q ′ and
suppose v /∈ X . Since Q ′ ⊆ Q we obtain from the definition of Q that v /∈ U and v /∈ R , so then v ∈ S . We also note
from the definition of Q ′ that | f (NG(v) ∩ U)| < α. Since f = f ′ we have | f ′(NG(v) ∩ U)| < α, and from the definition
of f ′ we know that if | f ′(Y)| < α for some Y ⊆ U , then f ′(Y) = g(Y). By definition of g we have v ∈ g(NG(v) ∩ U), so
then v ∈ f (NG (v) ∩ U) ⊆ f (2U). This is a contradiction since v /∈ f (2U) by definition of Q ′ .

Now we have shown that X \ A is a vertex cover of size at most � − |A| = � − |(NG(R) \ U) ∪ Q ′| in G − (U ∪ R ∪ A) =
G[Q] − Q ′ , hence the VCoracle should report that a vertex cover exists on line 8.

Running time and query size. The sets U and R have a maximum size of m and 2m respectively, so there are at
most

(|V (G)|
m

) ≤ |V (G)|m and
(|V (G)|

2m

) ≤ |V (G)|2m possibilities for U and R respectively. The function f maps all subsets
of U to subsets of Q with a maximum size of α, so there are at most 2|U | · (|Q |

α

) ≤ 22m · |V (G)|α possible functions f . From
the definition of m and α on lines 1 and 2 it can be determined that m ∈O(maxH∈F |V (H)|) and α ∈O(maxH∈F |V (H)|2).
It can now be seen that the total number of calls to VCoracle is at most |V (G)|O(maxH∈F |V (H)|2) . Since F is fixed and
VCoracle runs in polynomial time, this yields a polynomial bound on the running time of Algorithm 1.

The VCoracle subroutine (Lemma 21) is invoked on induced subgraphs G ′′ of G which therefore have a feedback vertex
number of at most fvs(G). Hence Lemma 21 only queries the oracle for instances with fvs(G ′′)O(1) ≤ fvs(G)O(1) vertices. �
5. Conclusion

Earlier work [20,7,12,21] has shown that several F -Minor-Free Deletion problems admit polynomial kernelizations
when parameterized by the feedback vertex number. In this paper we showed that when F contains a forest and each
graph in F has a connected component of at least three vertices, the F -Minor-Free Deletion and F -Subgraph-Free Dele-

tion problems do not admit such a polynomial kernel unless NP ⊆ coNP/poly. This lower bound generalizes to any F
where each graph has a connected component of at least three vertices, when we consider the vertex-deletion distance to
treewidth min tw(F) as parameter.

For all other choices of F we showed that a polynomial Turing kernelization exists for F -Minor-Free Deletion and
F -Subgraph-Free Deletion parameterized by the feedback vertex number. The size of the Vertex Cover queries generated
by the Turing kernelization does not depend on F : the Turing kernelization can be shown to be uniformly polynomial
(cf. [19]). However, it remains unknown whether the running time can be made uniformly polynomial, and whether the
Turing kernelization can be improved to a traditional kernelization. Due to the large degree of the polynomial running time,
the algorithm is mainly of theoretical interest.

In our paper we discussed F -Minor-Free Deletion and F -Subgraph-Free Deletion. We leave open the case of F -

Induced-Subgraph-Free Deletion where a vertex set S is a solution for a graph G if G − S does not contain any graph in F
as induced subgraph. Although a number of our lower bound results also apply to this problem, the Turing kernelization
we present cannot easily be generalized to F -Induced-Subgraph-Free Deletion. This is mainly because we make use of a
characterization of graphs that do not have a size-c matching. A similar characterization for graphs that do not have a size-c
induced matching is unlikely to exist since finding a maximum induced matching is NP-complete while finding a maximum
matching is not.

Our results leave open the possibility that all F -Minor-Free Deletion problems admit a polynomial kernel when pa-
rameterized by the vertex-deletion distance to a linear forest, i.e., a collection of paths. Resolving this question may be an
interesting direction for future work.

CRediT authorship contribution statement

Huib Donkers: Conceptualization, Formal analysis, Writing – original draft, Writing – review & editing. Bart M.P. Jansen:
Conceptualization, Formal analysis, Supervision, Writing – original draft, Writing – review & editing.
181

H. Donkers and B.M.P. Jansen Journal of Computer and System Sciences 119 (2021) 164–182
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] H.L. Bodlaender, Kernelization: new upper and lower bound techniques, in: Proc. 4th IWPEC, 2009, pp. 17–37.
[2] F.V. Fomin, D. Lokshtanov, S. Saurabh, M. Zehavi, Kernelization: Theory of Parameterized Preprocessing, Cambridge University Press, 2019.
[3] D. Lokshtanov, N. Misra, S. Saurabh, Kernelization - preprocessing with a guarantee, in: The Multivariate Algorithmic Revolution and Beyond, 2012,

pp. 129–161.
[4] A. Agrawal, D. Lokshtanov, P. Misra, S. Saurabh, M. Zehavi, Feedback vertex set inspired kernel for chordal vertex deletion, ACM Trans. Algorithms 15

(2019) 11:1–11:28, https://doi .org /10 .1145 /3284356.
[5] F.V. Fomin, D. Lokshtanov, N. Misra, S. Saurabh, Planar F -deletion: approximation, kernelization and optimal FPT algorithms, in: Proc. 53rd FOCS, 2012,

pp. 470–479.
[6] S. Kratsch, M. Wahlström, Compression via matroids: a randomized polynomial kernel for odd cycle transversal, ACM Trans. Algorithms 10 (2014)

20:1–20:15, https://doi .org /10 .1145 /2635810.
[7] Y. Iwata, Linear-time kernelization for feedback vertex set, in: Proc. 44th ICALP, in: LIPIcs, vol. 80, 2017, pp. 68:1–68:14.
[8] M. Bougeret, I. Sau, How much does a treedepth modulator help to obtain polynomial kernels beyond sparse graphs?, Algorithmica 81 (2019)

4043–4068, https://doi .org /10 .1007 /s00453 -018 -0468 -8.
[9] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, S. Saurabh, On the hardness of losing width, Theory Comput. Syst. 54 (2014) 73–82, https://

doi .org /10 .1007 /s00224 -013 -9480 -1.
[10] F.V. Fomin, B.M.P. Jansen, M. Pilipczuk, Preprocessing subgraph and minor problems: when does a small vertex cover help?, J. Comput. Syst. Sci. 80

(2014) 468–495, https://doi .org /10 .1016 /j .jcss .2013 .09 .004.
[11] J. Guo, F. Hüffner, R. Niedermeier, A structural view on parameterizing problems: distance from triviality, in: Proc. 1st IWPEC, 2004, pp. 162–173.
[12] B.M.P. Jansen, H.L. Bodlaender, Vertex cover kernelization revisited - upper and lower bounds for a refined parameter, Theory Comput. Syst. 53 (2013)

263–299, https://doi .org /10 .1007 /s00224 -012 -9393 -4.
[13] B.M.P. Jansen, S. Kratsch, Data reduction for graph coloring problems, Inf. Comput. 231 (2013) 70–88, https://doi .org /10 .1016 /j .ic .2013 .08 .005.
[14] B.M.P. Jansen, A. Pieterse, Polynomial kernels for hitting forbidden minors under structural parameterizations, Theor. Comput. Sci. 841 (2020) 124–166,

https://doi .org /10 .1016 /j .tcs .2020 .07.009.
[15] J. Uhlmann, M. Weller, Two-layer planarization parameterized by feedback edge set, Theor. Comput. Sci. 494 (2013) 99–111, https://doi .org /10 .1016 /j .

tcs .2013 .01.029.
[16] R. Niedermeier, Reflections on multivariate algorithmics and problem parameterization, in: Proc. 27th STACS, 2010, pp. 17–32.
[17] J. Baste, I. Sau, D.M. Thilikos, Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth, in: Proc. 12th IPEC, in: LIPIcs, vol. 89,

2017, pp. 4:1–4:12.
[18] F.V. Fomin, D. Lokshtanov, N. Misra, G. Philip, S. Saurabh, Hitting forbidden minors: approximation and kernelization, SIAM J. Discrete Math. 30 (2016)

383–410, https://doi .org /10 .1137 /140997889.
[19] A.C. Giannopoulou, B.M.P. Jansen, D. Lokshtanov, S. Saurabh, Uniform kernelization complexity of hitting forbidden minors, ACM Trans. Algorithms 13

(2017) 35:1–35:35, https://doi .org /10 .1145 /3029051.
[20] H.L. Bodlaender, T.C. van Dijk, A cubic kernel for feedback vertex set and loop cutset, Theory Comput. Syst. 46 (2010) 566–597.
[21] S. Thomassé, A 4k2 kernel for feedback vertex set, ACM Trans. Algorithms 6 (2010), https://doi .org /10 .1145 /1721837.1721848.
[22] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theor. Comput. Sci. 209 (1998) 1–45, https://doi .org /10 .1016 /S0304 -3975(97)

00228 -4.
[23] N. Robertson, P.D. Seymour, Graph minors. XX. Wagner’s conjecture, J. Comb. Theory, Ser. B 92 (2004) 325–357, https://doi .org /10 .1016 /j .jctb .2004 .08 .

001.
[24] H. Dell, D. van Melkebeek, Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses, J. ACM 61 (2014) 23:1–23:27,

https://doi .org /10 .1145 /2629620.
[25] L. Fortnow, R. Santhanam, Infeasibility of instance compression and succinct PCPs for NP, J. Comput. Syst. Sci. 77 (2011) 91–106, https://doi .org /10 .

1016 /j .jcss .2010 .06 .007.
[26] D. Hermelin, S. Kratsch, K. Soltys, M. Wahlström, X. Wu, A completeness theory for polynomial (Turing) kernelization, Algorithmica 71 (2015) 702–730,

https://doi .org /10 .1007 /s00453 -014 -9910 -8.
[27] H. Fernau, Kernelization, Turing kernels, in: Encyclopedia of Algorithms, Springer, 2016, pp. 1043–1045.
[28] D. Binkele-Raible, H. Fernau, F.V. Fomin, D. Lokshtanov, S. Saurabh, Y. Villanger, Kernel(s) for problems with no kernel: on out-trees with many leaves,

ACM Trans. Algorithms 8 (2012) 38, https://doi .org /10 .1145 /2344422 .2344428.
[29] D. Lokshtanov, New methods in parameterized algorithms and complexity, Ph.D. thesis, University of Bergen, Norway, 2009.
[30] B.M.P. Jansen, Turing kernelization for finding long paths and cycles in restricted graph classes, J. Comput. Syst. Sci. 85 (2017) 18–37, https://doi .org /

10 .1016 /j .jcss .2016 .10 .008.
[31] B.M.P. Jansen, M. Pilipczuk, M. Wrochna, Turing kernelization for finding long paths in graph classes excluding a topological minor, Algorithmica 81

(2019) 3936–3967, https://doi .org /10 .1007 /s00453 -019 -00614 -4.
[32] M. Weller, Aspects of preprocessing applied to combinatorial graph problems, Ph.D. thesis, Technische Universität Berlin, 2013.
[33] C. Berge, Sur le couplage maximum d’un graphe, C. R. Hebd. Séances Acad. Sci. 247 (1958) 258–259.
[34] A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency, Springer, Berlin, 2003.
[35] V. Bafna, P. Berman, T. Fujito, A 2-approximation algorithm for the undirected feedback vertex set problem, SIAM J. Discrete Math. 12 (1999) 289–297,

https://doi .org /10 .1137 /S0895480196305124.
[36] J.M. Lewis, M. Yannakakis, The node-deletion problem for hereditary properties is NP-complete, J. Comput. Syst. Sci. 20 (1980) 219–230.
[37] N. Robertson, P.D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Comb. Theory, Ser. B 63 (1995) 65–110, https://doi .org /10 .1006 /jctb .1995 .

1006.
182

http://refhub.elsevier.com/S0022-0000(21)00020-9/bib324EA8681C43F8DED8419D6BB64544DCs1
http://refhub.elsevier.com/S0022-0000(21)00020-9/bib6A19F834431E9CC69010C963D78EBE39s1
http://refhub.elsevier.com/S0022-0000(21)00020-9/bibCA207454D3E3492080D432CD9FF60F5Ds1
http://refhub.elsevier.com/S0022-0000(21)00020-9/bibCA207454D3E3492080D432CD9FF60F5Ds1
https://doi.org/10.1145/3284356
http://refhub.elsevier.com/S0022-0000(21)00020-9/bib65DC10908D90042DCE0D05FDD7ED47D9s1
http://refhub.elsevier.com/S0022-0000(21)00020-9/bib65DC10908D90042DCE0D05FDD7ED47D9s1
https://doi.org/10.1145/2635810
http://refhub.elsevier.com/S0022-0000(21)00020-9/bib30558E8F3E2B30879B12F71F2411A136s1
https://doi.org/10.1007/s00453-018-0468-8
https://doi.org/10.1007/s00224-013-9480-1
https://doi.org/10.1007/s00224-013-9480-1
https://doi.org/10.1016/j.jcss.2013.09.004
http://refhub.elsevier.com/S0022-0000(21)00020-9/bibAE5C4D56251581BE1CE2AEB62E6BE02As1
https://doi.org/10.1007/s00224-012-9393-4
https://doi.org/10.1016/j.ic.2013.08.005
https://doi.org/10.1016/j.tcs.2020.07.009
https://doi.org/10.1016/j.tcs.2013.01.029
https://doi.org/10.1016/j.tcs.2013.01.029
http://refhub.elsevier.com/S0022-0000(21)00020-9/bib20D1D501A21471BDCF37070742A77299s1
http://refhub.elsevier.com/S0022-0000(21)00020-9/bib7D2CF7C27632628A5B98359CDE5AD283s1
http://refhub.elsevier.com/S0022-0000(21)00020-9/bib7D2CF7C27632628A5B98359CDE5AD283s1
https://doi.org/10.1137/140997889
https://doi.org/10.1145/3029051
http://refhub.elsevier.com/S0022-0000(21)00020-9/bib6D8C7F120A6F1701A9597E16271CF389s1
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1145/2629620
https://doi.org/10.1016/j.jcss.2010.06.007
https://doi.org/10.1016/j.jcss.2010.06.007
https://doi.org/10.1007/s00453-014-9910-8
http://refhub.elsevier.com/S0022-0000(21)00020-9/bibEC831838DAE35EBA3F158A76DC593B91s1
https://doi.org/10.1145/2344422.2344428
http://refhub.elsevier.com/S0022-0000(21)00020-9/bib4282E3E3DAC53D3CC389767541F8D42As1
https://doi.org/10.1016/j.jcss.2016.10.008
https://doi.org/10.1016/j.jcss.2016.10.008
https://doi.org/10.1007/s00453-019-00614-4
http://refhub.elsevier.com/S0022-0000(21)00020-9/bibCFDB6765EC268B95FF03BE60D958957As1
http://refhub.elsevier.com/S0022-0000(21)00020-9/bib333E3D046D6E3AE64711F951593596D7s1
http://refhub.elsevier.com/S0022-0000(21)00020-9/bib0B54C91B1FE06AC7BCA3C5C46BA2AC48s1
https://doi.org/10.1137/S0895480196305124
http://refhub.elsevier.com/S0022-0000(21)00020-9/bibF0D39A8E5B25891F15406057D5516F94s1
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1995.1006

	A Turing kernelization dichotomy for structural parameterizations of F-Minor-Free Deletion
	1 Introduction
	2 Preliminaries
	3 Lower bound
	3.1 Properties of biconnected and robust subgraphs
	3.2 Clause gadget construction
	3.3 Reduction for connected graphs H
	3.4 Reduction for families of disconnected graphs

	4 A polynomial Turing kernelization
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

