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For a fixed finite family of graphs F , the F-Minor-Free Deletion problem takes as input 
a graph G and integer � and asks whether a size-� vertex set X exists such that G − X
is F-minor-free. {K2}-Minor-Free Deletion and {K3}-Minor-Free Deletion encode Vertex 
Cover and Feedback Vertex Set respectively. When parameterized by the feedback vertex 
number of G these two problems are known to admit a polynomial kernelization. We 
show {P3}-Minor-Free Deletion parameterized by the feedback vertex number is MK[2]-
hard. This rules out the existence of a polynomial kernel assuming NP � coNP/poly. Our 
hardness result generalizes to any F containing only graphs with a connected component 
of at least 3 vertices, using as parameter the vertex-deletion distance to treewidth 
min tw(F), where min tw(F) denotes the minimum treewidth of the graphs in F . For 
all other families F we present a polynomial Turing kernelization. Our results extend to
F-Subgraph-Free Deletion.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Background and motivation. Kernelization is a framework for the scientific investigation of provably effective preprocessing 
procedures for NP-hard problems. It uses the notion of a parameterized (decision) problem to capture meaningful perfor-
mance guarantees for preprocessing. In a parameterized problem, every problem input x has an associated integer k called 
the parameter, which captures the difficulty of the input in some way. A kernelization for a parameterized problem is a 
polynomial-time algorithm that transforms any parameterized instance (x, k) into an instance (x′, k′) with the same answer, 
such that |x′| and k′ are both bounded by f (k) for some computable function f . The function f is the size of the kernel. Of 
particular interest are kernels of polynomial size. Determining which parameterized problems admit kernels of polynomial 
size has become a rich area of algorithmic research [1–3].

A common approach in kernelization [4–7] is to take the solution size as the parameter k, with the aim of showing 
that large inputs that ask for a small solution can be efficiently reduced in size. However, this method does not give any 
nontrivial guarantees when the solution size is known to be proportional to the total size of the input. For that reason, 
there is an alternative line of research [8–15] that focuses on parameterizations based on a measure of nontriviality of the 
instance (cf. [16]). One formal way to capture nontriviality of a graph problem is to measure how many vertex-deletions are 
needed to reduce the input graph to a graph class in which the problem can be solved in polynomial time. Since many graph 
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problems can be solved in polynomial time on trees and forests, the structural graph parameter feedback vertex number (the 
minimum number of vertex deletions needed to make the graph acyclic, i.e., a forest) is a relevant measure of the distance 
of the input to a trivially solvable one.

Previous research has shown that for the Vertex Cover problem, there is a polynomial kernel parameterized by the 
feedback vertex number [12]. This preprocessing algorithm guarantees that inputs which are large with respect to their 
feedback vertex number can be efficiently reduced. The Vertex Cover problem is the simplest in a family of so-called 
minor-free deletion problems. For a fixed finite family of graphs F , an input to F -Minor-Free Deletion consists of a 
graph G and an integer �. The question is whether there is a set S of at most � vertices in G , such that the graph G − S
obtained by removing these vertices does not contain any graph from F as a minor. Various classic graph optimization 
problems such as Vertex Cover, Feedback Vertex Set, and Vertex Planarization fit this framework by a suitable choice 
of F . The investigation of minor-free deletion problems has led to numerous advances in the study of kernelization and 
parameterized algorithmics [17,18,5,19]. Motivated by the fact that Vertex Cover and Feedback Vertex Set, arguably the 
simplest F -Minor-Free Deletion problems, admit polynomial kernels when parameterized by the feedback vertex number, 
we set out to resolve the following question: Do all F -Minor-Free Deletion problems admit a polynomial kernel when 
parameterized by the feedback vertex number?

Results. To our initial surprise, we prove that the answer to this question is no. While the parameterization by feedback 
vertex number admits polynomial kernels for F = {K2} [12], for F = {K3} [20,21,7], and for any set F containing a planar 
graph2 but no forests [5], there are also cases that do not admit polynomial kernels (under the assumption that NP �
coNP/poly, which we tacitly assume throughout the informal discussion in this introduction). For example, the case of F
consisting of a single graph P3 that forms a path on three vertices does not admit a polynomial kernel. This lower bound 
for F = {P3} follows from a more general theorem that we state below.

Recall that a graph is a forest if and only if its treewidth is one [22]. Hence the feedback vertex number is exactly 
the minimum number of vertex deletions needed to obtain a graph of treewidth one. Let tw(G) denote the treewidth of 
graph G , and define min tw(F) := minH∈F tw(H). Our lower bound also holds for F -Subgraph-Free Deletion, which is the 
related problem that asks whether there is a vertex set S of size at most k such that G − S contains no graph H ∈ F as a 
subgraph. We prove the following.

Theorem 1. Let F be a finite set of graphs, such that each graph in F has a connected component on at least three vertices. Then F -

Minor-Free Deletion and F -Subgraph-Free Deletion do not admit polynomial kernels when parameterized by the vertex-deletion 
distance to a graph of treewidth min tw(F), unless NP ⊆ coNP/poly.

To see that Theorem 1 implies the claimed lower bound for F = {P3}, observe that whenever F contains an acyclic 
graph with at least one edge we have min tw(F) = 1 and therefore the vertex-deletion distance to treewidth min tw(F)

equals the feedback vertex number. The theorem also generalizes earlier results of Cygan et al. [9, Theorem 13], who 
investigated the problem of losing treewidth. They proved that for each fixed 1 ≤ η < ρ , the η-Transversal problem (delete 
at most � vertices to get a graph of treewidth at most η) does not have a polynomial kernel when parameterized by the 
vertex-deletion distance to treewidth ρ . Since the treewidth of a graph does not increase when taking minors, there is a 
finite set Fη of forbidden minors (cf. [23]) that characterize the graphs of treewidth at most η. As the members of the 
obstruction set for η ≥ 1 are easily seen to be connected, have treewidth η + 1, and at least three vertices, the lower bound 
of Theorem 1 encompasses the theorem of Cygan et al. and generalizes it to arbitrary F -Minor-Free Deletion problems.

Theorem 1 is obtained through a polynomial-parameter transformation from the cnf-sat problem parameterized by 
the number of variables, for which a superpolynomial kernelization lower bound is known [24,25]. The main technical 
contribution in the hardness proof consists of the design of a gadget that acts as a clause checker. A certain budget of 
vertex deletions is available to break all F -minors present in the gadget, and this is possible if and only if one of the 
neighboring vertices in a variable gadget is removed by the solution. This removal encodes that the variable is set in a way 
that satisfies the clause. The intricate part of the construction is to design the gadget knowing only that F has a graph 
with a connected component of at least three vertices. Here we extensively rely on the fact that minimal minor models of 
biconnected graphs live in biconnected subgraphs, together with the fact that the treewidth of a graph does not increase 
when attaching structures along cut vertices in a tree-like manner.

Using the framework of Hermelin et al. [26], our polynomial-parameter transformation from cnf-sat parameterized 
by the number of variables to the structural parameterization of F -Minor-Free Deletion, also rules out the existence of 
polynomial-size Turing kernelizations under a certain hardness assumption. Turing kernelization [27] is a relaxation of the 
traditional form of kernelization. Intuitively, it investigates whether inputs (x, k) can be solved efficiently using the answers 
to subproblems of size f (k) which are provided by an oracle, which models an external computation cluster. Note that a 
parameterized problem that has a kernel of size O(kc) can be solved by a polynomial-time algorithm that first spends poly-
nomial time to prepare a query of size O(kc), and then queries an oracle for its answer. Turing kernelization investigates 

2 If F contains no forests, then any acyclic graph is F -minor free, implying the size of an optimal solution is at most the size of a feedback vertex set. 
Hence the kernelization for the solution-size parameterization yields a kernel of size bounded polynomially in the feedback vertex number.
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if and how polynomial-time algorithms can solve NP-hard parameterized problems by querying an oracle for the answers 
to instances of size kO(1) , potentially multiple times. Some problems that do not admit polynomial kernelizations, do admit 
polynomial-size Turing kernelizations [28–32].

Formally, a Turing kernelization of size f for a parameterized problem Q is an algorithm that can query an oracle 
to obtain the answer to any instance of problem Q of size and parameter bounded by f (k) in a single step, and using 
this power solves any instance (x, k) in time polynomial in |x| + k. The reduction proving Theorem 1 also proves the 
non-existence of polynomial-size Turing kernelizations, unless all parameterized problems in the complexity class MK[2]
defined by Hermelin et al. [26] have polynomial Turing kernels. (The cnf-sat problem with clauses of unbounded length, 
parameterized by the number of variables, is MK[2]-complete [26, Thm. 1, cf. Thm. 10] and widely believed not to admit 
polynomial-size Turing kernels.)

Motivated by the general form of the lower bound statement in Theorem 1, we also investigate upper bounds and derive 
a complexity dichotomy. For any F that does not meet the criterion of Theorem 1, we obtain a polynomial Turing kernel.

Theorem 2. Let F be a finite set of graphs, such that some H ∈ F has no connected component of three or more vertices. Then F -

Minor-Free Deletion and F -Subgraph-Free Deletion admit polynomial Turing kernels when parameterized by the vertex-deletion 
distance to a graph of treewidth min tw(F).

The main insight in the Turing kernelization is the following. If H ∈ F has no connected component of three or more 
vertices, then H consists of disjoint edges and isolated vertices. If H only has isolated vertices, then F -Minor-Free Deletion

is polynomial-time solvable because the leftover graph has less than |V (H)| ∈ O(1) vertices, for which we can search by 
brute force. Otherwise, H is a matching of size t ≥ 1 plus potentially some isolated vertices. The isolated vertices turn out 
only to make a difference if the solution F -free graph has constant size. In the interesting case, we can focus on H ∈ F
being a matching of size t . Then a graph that is F -minor-free does not admit a matching of size t , and therefore has a 
vertex cover of size at most t . Hence a solution to F -Minor-Free Deletion can be extended to a vertex cover by includ-
ing O(1) additional vertices. Using the Tutte-Berge formula, we can make the relation between F -Minor-Free Deletion and 
the vertex cover precise, and use it to reduce an instance of F -Minor-Free Deletion parameterized by deletion distance 
to min tw(F), to the logical OR of a polynomial number of instances of Vertex Cover parameterized by deletion distance 
to min tw(F). If F has a graph with no component of size at least three, then min tw(F) = 1, implying that the parameter 
is the feedback vertex set size. This allows us to use the polynomial kernel for Vertex Cover parameterized by feedback 
vertex set on each generated instance. We query the resulting instances of size kO(1) to the oracle to find the answer.

Organization. We present preliminaries on graphs and kernelization in Section 2. Section 3 develops the lower bounds on 
(Turing) kernelization when all graphs in F have a connected component with at least three vertices. In Section 4 we show 
that in all other cases, a polynomial Turing kernelization exists.

2. Preliminaries

All graphs we consider in this paper are simple, finite and undirected. We denote the vertex set and edge set of a 
graph G by V (G) and E(G) respectively. We call the graph on the empty vertex set the null graph. For a vertex set S ⊆ V (G)

let G[S] be the subgraph of G induced by S , and let G − S denote the subgraph of G induced by V (G) \ S . For a vertex v
we use G − v as shorthand for G − {v}. For a non-negative integer n we use n · G to denote the graph consisting of n
disjoint copies of G . Let NG(S) and NG(v) denote the open neighborhood in G of a vertex set S and a vertex v respectively. 
Let degG(v) denote the degree of v in G . The subscript may be omitted when G is clear from the context. We use fvs(G)

to denote the feedback vertex number of G .
A graph H is a minor of graph G , denoted by H � G , if H can be obtained from G by a series of edge contractions, edge 

deletions, and vertex deletions. An H-model in G is a function ϕ : V (H) → 2V (G) such that (i) for every vertex v ∈ V (H), 
the graph G[ϕ(v)] is connected, (ii) for every edge {u, v} ∈ E(H) there exists an edge {u′, v ′} ∈ E(G) with u′ ∈ ϕ(u) and v ′ ∈
ϕ(v), and (iii) for distinct u, v ∈ V (H) we have ϕ(v) ∩ ϕ(u) = ∅. The sets ϕ(v) are called branch sets. Clearly, H � G if and 
only if there is an H-model in G . For any function f : A → B and set A′ ⊆ A we use f (A′) as a shorthand for

⋃
a∈A′ f (a). 

Specifically in the case of an H-model ϕ in a graph G , we use ϕ(H) to denote
⋃

v∈V (H) ϕ(v). An H-model ϕ is called 
minimal if there does not exist an H-model ϕ′ with ϕ′(H) � ϕ(H). We say a graph H is a component-wise minor of a 
graph G , denoted as H � G , when every connected component of H is a minor of G .

Observation 3. For graphs H and G, if H � G and G � H then H and G are isomorphic.

Observation 4. For graphs H and G, if H � G then tw(H) ≤ tw(G). (The treewidth of H is the maximum treewidth of its connected 
components and each connected component H ′ of H is a minor of G, hence tw(H ′) ≤ tw(G).)

Definition 1. Let F be a family of graphs and let G ∈ F . For every relation � ∈ {�, �} we define minimal and maximal 
elements as follows:
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• G is said to be �-minimal in F when for all graphs H ∈F we have H � G ⇒ G � H .
• G is said to be �-maximal in F when for all graphs H ∈F we have G � H ⇒ H � G .

Definition 2. We call a connected component C of a graph G a �-maximal component of G when C is �-maximal in the set 
of graphs that form the connected components of G .

For type ∈ {minor, subgraph} and a finite family of graphs F , we define:

F -type-Free Deletion

Input: A graph G and an integer �.
Parameter: vertex-deletion distance of G to a graph of treewidth min tw(F).
Question: Is there a set X ⊆ V (G) of at most � vertices such that G − X does not contain any H ∈F as a type?

A vertex v ∈ V (G) is a cut vertex when its removal from G increases the number of connected components. A graph is 
called biconnected when it is connected and contains no cut vertex. A biconnected component of a graph G is a maximal 
biconnected subgraph of G . For any integer α, a graph G is called α-robust when |V (G)| ≥ α and no vertex v ∈ V (G) exists 
such that G − v contains a connected component with strictly less than α − 1 vertices.

Proposition 5. Any graph G has a unique maximal α-robust subgraph. Any α-robust subgraph of G is a subgraph of the maximal α-
robust subgraph of G.

Proof. The proposition follows straightforwardly from the fact that if G[A] and G[B] are α-robust, then so is G[A ∪ B]. We 
now prove this fact.

Consider two vertex sets A, B ⊆ V (G), such that G[A] and G[B] are α-robust. We show that G[A ∪ B] is α-robust. 
Since G[A] is α-robust we have |A| ≥ α so then |A ∪ B| ≥ α. Suppose for contradiction that there exists a vertex v ∈
A ∪ B such that G[A ∪ B] − v contains a connected component of size smaller than α − 1. Let C be the vertices of this 
connected component. We know C contains vertices of at least one of A and B . Assume, without loss of generality, A ∩C �= ∅. 
Then G[A ∩ C] is a connected component of size less than α − 1 in G[A] − v . If v ∈ A this directly contradicts α-robustness 
of G[A], so assume v /∈ A. Now G[A] contains a connected component with less than α − 1 vertices. Since |C | < α ≤ |A|
there exists a vertex u ∈ A \ C , so then G[A] − u contains a connected component with less than α − 1 vertices, which 
contradicts α-robustness of G[A]. �

We define a leaf-block of a graph G as a biconnected component of G that contains at most one vertex v that is a cut 
vertex in G . The size of a leaf-block H is |V (H)|. The size of a smallest leaf-block of a graph G is denoted as λ(G). Observe 
that G is α-robust if and only if λ(G) ≥ α. For any graph G and integer α, let α -prune(G) denote the unique maximal α-
robust subgraph of G , which may be empty. Note that α -prune(G) can be obtained from G by repeatedly removing interior 
vertices of leaf blocks of size less than α.

A polynomial-parameter transformation from parameterized problem P to parameterized problem Q is a polynomial-time 
algorithm that, given an instance (x, k) of P , outputs an instance (x′, k′) of Q such that all of the following are true:

1. (x, k) ∈P ⇔ (x′, k′) ∈Q,
2. k′ is upper-bounded by a polynomial in k.

3. Lower bound

In this section we consider the case where all graphs in F contain a connected component of at least three vertices and 
give a polynomial-parameter transformation from cnf-sat parameterized by the number of variables. In order to construct 
a clause gadget G for a clauses with more than two literals, our construction relies on the presence of a connected com-
ponent H↑ with at least three vertices in a �-minimal graph in F . Such a graph only exists when all graphs in F have a 
connected component on at least 3 vertices. Intuitively, the reason we need at least three vertices is as follows. The gadget 
for a clause Ci is constructed based on the sequence of its literals �1, . . . , �|Ci | . For each literal �i , there is a correspond-
ing part of the gadget which checks three things: whether a literal before �i is satisfied, whether �i itself is satisfied, and 
whether a literal after �i is satisfied. To implement this check, we need that H has at least three vertices.

3.1. Properties of biconnected and robust subgraphs

Our construction exploits the way in which biconnected components of H and the clause gadget G restrict the options 
for an H-model to exist in G . We therefore first derive some relevant properties.

Proposition 6. If H is an α-robust graph and ϕ is a minimal H-model in a graph G, then G[ϕ(H)] is α-robust.
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Proof. Since H is α-robust we have |V (H)| ≥ α. So |ϕ(H)| ≥ |V (H)| ≥ α and it remains to verify that G[ϕ(H)] − v does 
not have any connected components smaller than α − 1 for any v . Take an arbitrary vertex v ∈ ϕ(H) and let u ∈ V (H)

be such that v ∈ ϕ(u). Since H − u does not have connected components smaller than α − 1, the graph G[ϕ(H)] − ϕ(u)

cannot have connected components smaller than α − 1. Consider a spanning tree of G[ϕ(u)]. Each leaf of this spanning tree 
must be connected to a vertex in a different branch set, otherwise ϕ is not minimal. We know every connected component 
in G[ϕ(u)] − v contains at least one leaf of this spanning tree, hence every connected component of G[ϕ(u)] − v is connected 
to G[ϕ(H)] − ϕ(u). So G[ϕ(H)] − v does not contain a connected component smaller than α − 1. Since v was arbitrary, the 
graph G[ϕ(H)] is α-robust. �
Proposition 7. If ϕ is an H-model in G and B is a biconnected component of H, then G[ϕ(B)] contains a biconnected subgraph on at 
least |B| vertices.

Proof. Since G[ϕ(B)] clearly contains B as a minor, there is a minimal B-model ϕ′ in G with ϕ′(B) ⊆ ϕ(B), so that G[ϕ′(B)]
is a subgraph of G[ϕ(B)]. It suffices to show that G[ϕ′(B)] contains a biconnected component on at least |V (B)| vertices. 
Since B is biconnected, it is |V (B)|-robust so by Proposition 6 we know G[ϕ′(B)] is |V (B)|-robust. Hence G[ϕ′(B)] contains 
a biconnected component on at least |V (B)| vertices. �
Observation 8. For any graph H, which may be the null graph, and integers α ≥ β we have α -prune(β -prune(H)) = α -prune(H).

Proposition 9. For graphs H and G we have H � G ⇒ α -prune(H) � α -prune(G) for any integer α.

Proof. Clearly α -prune(H) � H so since H � G we have α -prune(H) � G . For simplicity let H ′ := α -prune(H). Let ϕ be a 
minimal H ′-model in G and observe H ′ � G[ϕ(H ′)]. From Proposition 6 we know G[ϕ(H ′)] is α-robust. Since G[ϕ(H ′)] is an 
α-robust subgraph of G it is also a subgraph of α -prune(G) by Proposition 5. Hence α -prune(H) � G[ϕ(H ′)] � α -prune(G). �
Proposition 10. For any � ∈ {�, �}, two integers α ≥ β , and graphs H and G we have that H � G ⇒ α -prune(H) � β -prune(G).

Proof. Suppose H � G , then

α -prune(H) � α -prune(G) by Proposition 9

= α -prune(β -prune(G)) by Observation 8

� β -prune(G).

Alternatively, suppose H � G . Let H ′ be a connected component of α -prune(H), then there exists a connected 
component H ′′ of H such that H ′ � H ′′ . Since H � G we have H ′′ � G so then H ′ � G . As shown above, this im-
plies α -prune(H ′) � β -prune(G). Note that α -prune(H ′) = H ′ since H ′ is a connected component of α -prune(H). It follows 
that α -prune(H) � β -prune(G). �
3.2. Clause gadget construction

We proceed to construct a clause gadget to be used in the polynomial-parameter transformation from cnf-sat.

Lemma 11. For any connected graph H with at least three vertices there exists a polynomial-time algorithm that, given an integer n ≥
1, outputs a graph G and a vertex set S ⊆ V (G) of size n such that all of the following are true:

1. tw(G) ≤ tw(H),
2. G contains a packing of 3n − 1 vertex-disjoint H-subgraphs,
3. G − S contains a packing of 3n − 2 vertex-disjoint H-subgraphs, and
4. ∀v ∈ S there exists X ⊆ V (G) of size 3n − 1 s.t. all of the following are true:

(a) v ∈ X,
(b) G − X is H-minor-free,
(c) λ(H) -prune(G − X) � H, and
(d) for all connected components Gc of G − X that contain a vertex of S we have |V (Gc)| < λ(H) and Gc contains exactly one 

vertex of S.

Proof. Before describing the construction of G and S , we define a few subgraphs and vertices. Let L be a smallest leaf-block 
of H . Let R be the graph obtained from H by removing all vertices of L that are not cut vertices in H . Note that when H
is biconnected, L = H and R is the null graph. We distinguish three distinct vertices a, b, c in H . Vertices c and b are both 
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Fig. 1. We show the situation where a is contained in R . Note that a can always be chosen such that it is contained in R when H is not biconnected. Note 
that the graphs in Fig. 1b and 1c are isomorphic but drawn differently.

part of L, where c is the cut vertex (if there is one) and b is any other vertex in L. Finally vertex a is any vertex in H that 
is not c or b. See Fig. 1a. In the construction of G we will combine copies of H such that a, b, and c form cut vertices 
in G and are part of two different H-subgraphs. Intuitively this choice of b and c ensures that removing either one from a 
copy of H in G means no vertex from the L-subgraph of this copy of H can be used in a minimal H-model in G . In the 
remainder of this proof we use f K→K ′ : V (K ) → V (K ′) for isomorphic graphs K and K ′ to denote a fixed isomorphism.

Construction. Take two copies of H , call them H1 and H2. Let R1 and L1 denote the subgraphs of H1 related to R
and L, respectively, by the isomorphism between H and H1. Similarly let R2 and L2 denote the subgraphs of H2. Take 
a copy of L which we call L3. Let M be the graph obtained from the disjoint union of H1, H2, and L3 by identifying the 
pair f H→H1 (c) and f H→H2(b) into a single vertex s, and identifying the pair f H→H2(c) and f L→L3(c) into a single vertex t . 
We label f H→H1 (a), f H→H1(b), and f L→L3(b) as u, w , and v respectively.

This construction is motivated by the fact that the graphs M − {v, s}, M − {u, t}, and M − {w, t} are all H-minor-free, 
which we will exploit in the formal correctness argument later. We will connect copies of M to each other via the vertices u, 
v , and w such that, although two vertices need to be removed in every copy of M , one such vertex can always be in two 
copies of M at the same time.

Now take 2n − 1 copies of M , call them M1, . . . , M2n−1. For readability we denote f M→Mi as f i for all 1 ≤ i ≤ 2n − 1. For 
all 1 ≤ i < n we identify f i(w) and fn+i(v), and we identify fn+i(w) and f i+1(u). Let this graph be G , and let S be the set 
of vertices f i(v) for all 1 ≤ i ≤ n. Let H1,i , H2,i , R1,i , R2,i , L1,i , L2,i , and L3,i denote the subgraphs in Mi that correspond to 
the subgraphs H1, H2, R1, R2, L1, L2, and L3 in M . See Fig. 1b and 1c.

This concludes the description of graph G and set S , see Fig. 2 for an illustration. In Fig. 5 the subgraphs W1, W2, 
and W3 form a concrete example of G with the choice H = P3 and n = 4, n = 3, and n = 3 respectively. It is easily seen 
that G and S can be constructed in polynomial time.

Correctness. It remains to verify that all conditions of the lemma statement are met.
1. Since we connected copies of L and R in a treelike fashion along cut vertices, we did not introduce any new bicon-

nected components. The treewidth of a graph is equal to the maximum treewidth over all its biconnected components so 
we know that tw(G) ≤ max{tw(R), tw(L)} = tw(H).

2. For each 1 ≤ i ≤ n we can distinguish two H-subgraphs in Mi , namely H1,i and L3,i ∪ R2,i . This gives us 2n H-subgraphs 
in G . Note that since all M1, . . . , Mn are vertex-disjoint, these 2n H-subgraphs are also vertex-disjoint in G . For each n <
i ≤ 2n − 1 we distinguish one H-subgraph, namely H2,i . Note that since H2,i is vertex-disjoint from all M1, . . . , Mi−1, 
Mi+1, . . . , M2n−1 we have a total of 2n + n − 1 = 3n − 1 vertex-disjoint H-subgraphs in G . This packing is shown in Fig. 2a.

3. Alternatively, for each 1 ≤ i ≤ n we can distinguish one H-subgraph in Mi , namely H2,i . For each n < i ≤ 2n − 1 we 
distinguish two H-subgraphs in Mi , namely H1,i and L3,i ∪ R2,i . Again these H-subgraphs are vertex-disjoint, and since they 
also do not contain any vertices of S , they form a packing of n + 2(n − 1) = 3n − 2 vertex-disjoint H-subgraphs in G − S . 
See Fig. 2b.

4. Finally we prove that for all v ∈ S there exists a set X ⊆ V (G) of size 3n − 1 such that the four parts listed in 
condition 4. are true. For this purpose we first identify a family Q of vertex sets such that any H-model in G spans at least 
one vertex set in Q. Let Q be defined as follows: (see Fig. 3)

Q = {{ f i(v), f i(t)} | 1 ≤ i ≤ 2n − 1} ∪ {{ f i(t), f i(s)} | 1 ≤ i ≤ 2n − 1}
∪ {{ f i(s), f i(w)} | n + 1 ≤ i ≤ 2n − 1} ∪ {{ f i(u), f i(s), f i(w)} | 1 ≤ i ≤ n}.
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Fig. 2. Two packings of vertex-disjoint H-subgraphs in G and G − S . Vertices in S are marked black.

Fig. 3. Vertex sets in Q are encircled.

Claim 12. If ϕ is an H-model in G, then ϕ(H) ⊇ Q for some Q ∈Q.

Proof. Let ϕ be an arbitrary H-model in G . We know from Proposition 7 that G[ϕ(L)] contains a biconnected subgraph 
on at least |L| vertices. Let B be such a biconnected subgraph in G . Subgraph B must be fully contained in a biconnected 
component of G . Such a biconnected component must contain at least |B| ≥ |L| vertices. We make a case distinction over 
all biconnected components in G with size at least |L|, and prove that if B is contained in them, then ϕ(H) ⊇ Q for 
some Q ∈Q.

• L2,i for any 1 ≤ i ≤ 2n − 1: We know |L2,i| = |L| so B = L, hence f i(t), f i(s) ∈ ϕ(L).
• L3,i for any 1 ≤ i ≤ 2n − 1: We know |L3,i| = |L| so B = L, hence f i(v), f i(t) ∈ ϕ(L).
• L1,i for any n + 1 ≤ i ≤ 2n − 1: We know |L1,i| = |L| so B = L, hence f i(s), f i(w) ∈ ϕ(L).
• L1,i for any 1 ≤ i ≤ n: We know |L1,i| = |L| so B = L, hence f i(s), f i(w) ∈ ϕ(L). If f i(t) ∈ ϕ(H) or f i(u) ∈ ϕ(H) then 

clearly Q � { f i(t), f i(s)} ⊆ ϕ(H) or Q � { f i(u), f i(s), f i(w)} ⊆ ϕ(H). If fn+i(t) ∈ ϕ(H) then Q � { fn+i(v), fn+i(t)} ⊆
ϕ(H), since f i(w) = fn+i(v). Suppose ϕ(H) does not contain f i(t), f i(u), or fn+i(t), then ϕ must be an H-model in the 
graph G ′ := (H1,i − f i(u)) ∪ (L2,i − f i(t)) ∪ (L3,n+i − f i(t)), so H � G ′ . By Proposition 9 we know that |L| -prune(H) �
|L| -prune(G ′). Clearly |L| -prune(H) = H . The graph G ′ contains at least two leaf blocks that are smaller than |L|, 
namely L2,i − f i(t) and L3,n+i − f i(t), so |L| -prune(G ′) is a subgraph of H1,i − f i(u). But then |V (|L| -prune(G ′))| <
|V (H)| so |L| -prune(G ′) cannot contain an H-model. Contradiction.

• There can be biconnected components of size at least |L| in R2,i for any 1 ≤ i ≤ 2n − 1. Suppose f i(t) /∈ ϕ(H), then ϕ
must be an H-model in the graph R2,i − f i(t). Clearly this is not possible since |V (R2,i − f i(t))| < |V (H)|, so f i(t) ∈ ϕ(H). 
If f i(v) ∈ ϕ(H) or f i(s) ∈ ϕ(H) then Q � { f i(v), f i(t)} ⊆ ϕ(H) or Q � { f i(t), f i(s)} ⊆ ϕ(H). Suppose ϕ(H) does not 
contain f i(v) or f i(s), then ϕ must be an H-model in the graph G ′ := R2,i ∪ (L3,i − f i(v)) ∪ (L2,i − f i(s)), so H � G ′ . By 
Proposition 9 we know that |L| -prune(H) � |L| -prune(G ′), so H � |L| -prune(G ′) = R2,i . This is a contradiction since R2,i
cannot contain H as a minor.

• There can be biconnected components of size at least |L| in R1,i for any n +1 ≤ i ≤ 2n −1. Suppose f i(s) /∈ ϕ(H), then ϕ
must be an H-model in the graph R1,i − f i(s). As before this is not possible since |V (R1,i − f i(s))| < |V (H)|, so f i(s) ∈
ϕ(H). If f i(t) ∈ ϕ(H) or f i(w) ∈ ϕ(H) then Q � { f i(t), f i(s)} ⊆ ϕ(H) or Q � { f i(s), f i(w)} ⊆ ϕ(H). Suppose ϕ(H) does 
not contain f i(t) or f i(w), then ϕ must be an H-model in the graph G ′ := R1,i ∪ (L2,i − f i(t)) ∪ (L1,i − f i(w)), so H � G ′ . 
As before, by Proposition 9 it follows that H � R1,i which is a contradiction.

• There can be biconnected components of size at least |L| in R1,i for any 1 < i < n. Suppose fn+i−1(s) ∈ ϕ(H)

then f i(u) = fn+i−1(w) ∈ ϕ(H) since any path in G connecting fn+i−1(s) to any vertex in R1,i includes f i(u). 
So Q � { fn+i−1(s), fn+i−1(w)} ⊆ ϕ(H). Similarly if f i(t) ∈ ϕ(H) then Q � { f i(t), f i(s)} ⊆ ϕ(H) and if fn+i(t) ∈ ϕ(G)

then Q � { fn+i(v), fn+i(t)} ⊆ ϕ(H). Suppose ϕ(H) does not contain fn+i−1(s), f i(t), or fn+i(t), then ϕ must be an H-
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Fig. 4. The graph G − X . Vertices in X that are removed from the graph are marked by a cross. Vertices in S are marked black. A supergraph 
of λ(H) -prune(G − X) is shown in gray. Note that when |V (R)| = |V (L)|, not all subgraphs and vertices marked gray are necessarily part of λ(H) -prune(G −
X). Note that the subgraphs W1, W2, and W3 (shaded in gray) include some vertices from G var .

model in the graph G ′ := H1,i ∪ (L1,n+i−1 − fn+i−1(s)) ∪ (L2,i − f i(t)) ∪ (L3,n+i − fn+i(t)). If Q � { f i(u), f i(s), f i(w)} ⊆
ϕ(H), then the claim holds, so suppose { f i(u), f i(s), f i(w)} � ϕ(H), then for some p ∈ { f i(u), f i(s), f i(w)} we have 
that ϕ is an H-model in G ′ − p. Therefore H � G ′ − p and by Proposition 9 we know |L| -prune(H) � |L| -prune(G ′ − p), 
so H � |L| -prune(G ′ − p) = |L| -prune(H1,i − p). However |L| -prune(H1,i − p) has at most |V (H1,i − p)| = |V (H)| − 1
vertices, so it cannot contain an H-model. Contradiction.

• There can be biconnected components of size at least |L| in R1,1. As in the previous case we can assume that ϕ(H)

does not contain f1(t) or fn+1(t), so then ϕ must be an H-model in G ′ := H1,1 ∪ (L2,1 − f i(t)) ∪ (L3,n+1 − fn+1(t)). Like 
in the previous case, by Proposition 9 this results in a contradiction.

• There can be biconnected components of size at least |L| in R1,n . As above we can assume that ϕ(H) does not con-
tain f2n−1(s) or f1(t), so then ϕ must be an H-model in G ′ := H1,1 ∪ (L1,2n−1 − f2n−1(s)) ∪ (L2,1 − f i(t)). Again, by 
Proposition 9 this results in a contradiction.

This concludes the proof of Claim 12. �

We now proceed to prove condition 4. of the lemma statement. Let f j(v) ∈ S be an arbitrary vertex in S , implying 1 ≤
j ≤ n, and let X be defined as:( ⋃

1≤i< j

{ f i(t), f i(w), f i+n(s)}
)

∪ { f j(v), f j(s)} ∪
( ⋃

j<i≤n

{ f i(t), f i(u), f i+n−1(t)}
)

.

In Fig. 4 the vertices in X are shown in graph G as a cross. Observe that |X | = 3n −1 and f j(v) ∈ X . Furthermore X contains 
at least one element from each set in Q, hence G − X is H-minor-free by Claim 12. This shows parts 4.(a) and 4.(b) of the 
lemma statement hold. We proceed to show parts 4.(c) and 4.(d).

4.(c) Consider the graph G ′ := λ(H) -prune(G − X). Fig. 4 shows a supergraph of G ′ in gray for the case that a ∈ V (R). 
Every connected component in G ′ must contain a biconnected component with at least λ(H) = |L| vertices. Consider all 
biconnected components in G − X containing at least |L| vertices. These can only be contained in the following subgraphs 
of G: R2,i for any 1 ≤ i ≤ 2n − 1, H1,i for any 1 ≤ i ≤ n, and R1,i for any n + 1 ≤ i ≤ 2n − 1. Note that any path from a 
vertex of one of these subgraphs to a vertex of another contains at least one vertex in X , hence any connected component 
in G ′ contains vertices of at most one of these subgraphs. Since all other biconnected components in G − X have size 
less than |L| we know that each connected component in |L| -prune(G − X) is a subgraph of R1,i , R2,i or H1,i for some i, 
hence |L| -prune(G − X) � H .

4.(d) Finally we show that all connected components in G − X that contain a vertex of S have size less than |L|. Since 
we have f j(v) ∈ X , there is no connected component in G − X containing f j(v). For all i �= j we have f i(t) ∈ X so the 
connected components in G − X containing a vertex from S are L3,i − f i(t) for all 1 ≤ i < j or j < i ≤ n. These all have 
size |L| − 1 and contain exactly one vertex of S . �
3.3. Reduction for connected graphs H

Using the clause gadget described in Lemma 11 we give a polynomial-parameter transformation for the case where F
contains a single, connected graph H .

Lemma 13. For any connected graph H with at least three vertices there exists a polynomial-time algorithm that, given a CNF-
formula 	 with k variables, outputs a graph G and an integer � such that all of the following are true:

1. there is a set S ⊆ V (G) of at most 2k vertices such that tw(G − S) ≤ tw(H),
2. G contains � vertex-disjoint H-subgraphs,
3. if 	 is not satisfiable then there does not exist a set X ⊆ V (G) of size at most � such that G − X is H-subgraph-free,
4. if 	 is satisfiable then there exists a set X ⊆ V (G) of size at most � such that G − X is H-minor-free, λ(H) -prune(G − X) � H, 

and tw(G − X) ≤ tw(H).
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Fig. 5. The graph G as obtained with H = P3 and 	 = (¬x4 ∨ ¬x3 ∨ x2 ∨ ¬x1) ∧ (x4 ∨ ¬x3 ∨ x1) ∧ (x3 ∨ ¬x2 ∨ x1). Vertices in a solution corresponding to 
the satisfying assignment x1 = True, x2 = True, x3 = False, x4 = True are marked with a cross.

Proof. Let x1, . . . , xk denote the variables of 	, let C1, . . . , Cm denote the sets of literals in each clause of 	, and let n
denote the total number of occurrences of literals in 	, i.e., n = ∑

1≤ j≤m |C j|.

Construction. Let H1, . . . , Hk be copies of H . In each copy Hi we arbitrarily label one vertex vxi and another v¬xi . Let G var

be the graph obtained from the disjoint union of H1, . . . , Hk . For each clause C j of 	 we create a graph called W j and vertex 
set S j ⊆ V (W j) by invoking Lemma 11 with H and |C j |. Let G be the graph obtained from the disjoint union of W1, . . . , Wm

and G var where we identify the vertices in S j with the appropriate vxi or v¬xi as follows: For each clause C j let s1, . . . , s|C j |
be the vertices in S j in some arbitrary order, and let c1, . . . , c|C j | be the literals in C j , then we identify si and vci for 
each 1 ≤ i ≤ |C j|. Finally let � = k + 3n − 2m and S = ⋃

1≤i≤k{vxi , v¬xi }. Note that S j ⊆ S for all 1 ≤ j ≤ m. This concludes 
the description of G , �, and S . See Fig. 5 for an example.

Correctness. It is easy to see they can be constructed in polynomial time. We proceed to show that all conditions in the 
lemma statement are met.

1. Clearly |S| = 2k and since every connected component in G − S is a subgraph of H1, . . . , Hk or W1, . . . , Wm , it follows 
from Lemma 11(1) that tw(G − S) ≤ tw(H).

2. For all 1 ≤ j ≤ m we know from Lemma 11(3) that W j − S contains a packing of 3|C j | − 2 H-subgraphs. Since W j − S
and W i − S are vertex-disjoint for j �= i we can combine these packings to obtain a packing in G − S of

∑
1≤ j≤m(3|C j| −2) =

3n − 2m vertex-disjoint H-subgraphs. Note that this packing does not contain vertices from H1, . . . , Hk , so we can add these 
to the packing and obtain a packing of k + 3n − 2m = � vertex disjoint H-subgraphs in G .

3. We now show that if 	 is not satisfiable, then there does not exist a set X ⊆ V (G) of size at most � such that G − X
is H-subgraph-free. Suppose there exists such a set X . Since there is a packing of � vertex-disjoint H-subgraphs in G , we 
know that X contains exactly one vertex from each H-subgraph in the packing. Since vxi and v¬xi belong to the same 
subgraph, they cannot both be contained in X . Consider the variable assignment where xi is assigned true if vxi ∈ X or false
otherwise. Since we assumed 	 is not satisfiable, there is at least one clause in 	 that evaluates to false with this variable 
assignment. Let C j denote such a clause. Since C j evaluates to false, all of its literals must be false, so for all variables xi
that are not negated in C j we have xi = false and therefore vxi /∈ X . For all negated variables xi in C j we know xi = true
meaning vxi ∈ X , so v¬xi /∈ X . This means that ∅ = X ∩ S j = X ∩ V (W j) ∩ V (G var), but since G var contains k vertex-disjoint 
H-subgraphs we have |X ∩ V (G var)| ≥ k, so then |X ∩ (V (G var) \ V (W j))| ≥ k. For all i there is a packing of 3|Ci | − 2
vertex-disjoint H-subgraphs in W i − S = W i − V (G var), so in the graph G − V (W j) there are k + ∑

i �= j(3|Ci | − 2) vertex-
disjoint H-subgraphs. This means that |X ∩ (V (G) \ V (W j))| ≥ k + ∑

i �= j(3|Ci | − 2), and since |X | = k + ∑
1≤i≤m(3|Ci | − 2)

we know that |X ∩ V (W j)| ≤ 3|C j | − 2. However W j contains 3|C j | − 1 vertex-disjoint H-subgraphs, so G − X cannot be 
H-subgraph-free. Contradiction.

4. Finally we show that if 	 is satisfiable then there exists a set X ⊆ V (G) of size at most � such that G − X is H-minor-
free, λ(H) -prune(G − X) � H , and tw(G − X) ≤ tw(H). Since 	 is satisfiable there exists a variable assignment such that 
each clause contains at least one literal that is true. Consider the set X ′ consisting of all vertices vxi when xi is true and v¬xi

when xi is false. Since every clause contains one literal that is true, we know for each 1 ≤ j ≤ m that W j contains at least 
one vertex from X ′ . So for each 1 ≤ j ≤ m we have X ′ ∩ S j �= ∅. Take an arbitrary vertex v j ∈ X ′ ∩ S j and let X j ⊆ V (W j)

be the vertex set containing v j obtained from condition 4. of Lemma 11. Let X = X ′ ∪ ⋃
1≤ j≤m X j . For all 1 ≤ j ≤ m we 

know |X ′ ∩ X j | ≥ 1 since v j ∈ X ′ ∩ X j . So |X | ≤ |X ′| + ∑
1≤ j≤m(3|C j | − 2) = k + 3n − 2m = �.
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By Lemma 11(4(b)) we have that W j − X j is H-minor-free for all 1 ≤ j ≤ m, so clearly W j − X is also H-minor-free. 
Consider an arbitrary connected component G ′ of G − X . If G ′ is also a connected component of W j − X for some 1 ≤ j ≤ m, 
then we have that G ′ is H-minor-free, λ(H) -prune(G ′) � H (by Lemma 11(4(c)), and tw(G ′) ≤ tw(W j) ≤ tw(H). If G ′ is not 
a connected component of W j − X for any 1 ≤ j ≤ m, then it contains a connected component of Hi − X as a subgraph, 
for some 1 ≤ i ≤ k. When G ′ does not contain any vertices of S we know that G ′ must be a subgraph of Hi , so G ′ is 
H-minor-free, λ(H) -prune(G ′) � G ′ � H , and tw(G ′) ≤ tw(Hi) = tw(H).

Suppose on the other hand G ′ does contain a vertex v ∈ S . No connected component of W j − X j contains more than one 
vertex from S and each connected component of G var contains exactly two vertices of S , one of which is in X . So v is the 
only vertex in G ′ that is contained in S . Moreover, since S is the only overlap between the graphs G var and W j for all 1 ≤
j ≤ m, we have that v is a cut vertex in G ′ , such that for some 1 ≤ i ≤ k, each biconnected component of G ′ is a subgraph 
of Hi − X or W j − X for any 1 ≤ j ≤ m. So each of these biconnected components of G ′ has treewidth at most tw(H), 
hence tw(G ′) ≤ tw(H). Also, each biconnected component in G ′ that is a subgraph of W j − X = W j − X j for some 1 ≤ j ≤ m
contains a vertex from S and therefore has size at most λ(H) − 1 by condition 4.(d) on the choice of X j . So we have that 
λ(H) -prune(G ′) is a subgraph of Hi , hence λ(H) -prune(G ′) � G ′ � H . Additionally since Hi contains at least one vertex that 
is not contained in G ′ we have H �� λ(H) -prune(G ′). Because H = λ(H) -prune(H) we can conclude by Proposition 10 that G ′
is H-minor-free. Since H is connected, and all connected components of G − X are H-minor-free, G − X must also be H-
minor-free. We also know for all connected components G ′ of G − X that λ(H) -prune(G ′) � H , so λ(H) -prune(G − X) � H . 
Finally since tw(G ′) ≤ tw(H) for each connected component G ′ of G − X we have that tw(G − X) ≤ tw(H). �

The construction from Lemma 13 can directly be used to give a polynomial-parameter transformation from cnf-sat

parameterized by the number of variables. Observe that if G − X is F -minor-free, then G − X is also F -subgraph-free. 
Similarly, if G − X contains an H-subgraph for all X ⊆ V (G) with |X | ≤ �, then G − X also contains an H-minor. Therefore, 
for any type ∈ {minor, subgraph} and F consisting of one connected graph on at least three vertices, Lemma 13 gives 
a polynomial-parameter transformation from cnf-sat parameterized by the number of variables to F -type-Free Deletion

parameterized by deletion distance to min tw(F).

3.4. Reduction for families of disconnected graphs

When F contains multiple graphs, each containing a connected component of at least three vertices, it is possible to 
select a connected component H of one of the graphs in F such that the construction described in Lemma 13 forms 
the main ingredient for a polynomial-parameter transformation. This will formally be argued in the next lemma. To aid 
the intuition for this technical construction, we describe a simple special case. If F is a family of connected graphs, each 
on at least three vertices, and we choose H ∈ F as a �-minimal graph in F with tw(H) = min tw(F), we may safely 
apply the construction of Lemma 13, to reduce the satisfiability of a CNF-formula 	 to F -Minor-Free Deletion on a 
graph G . For a deletion set X ⊆ V (G) corresponding to a satisfiable assignment, the graph G − X is guaranteed to be H-
minor-free by Lemma 13, and tw(G − X) ≤ tw(H). The latter implies that G − X also does not contain any graphs F ∈ F
with tw(F ) > min tw(F) as a minor; and since H is connected and �-minimal among the treewidth-minimal graphs in F , 
the fact that G − X is H-minor-free implies that G − X does not contain any other treewidth-minimal graph in F as a 
minor either. Hence our choice of H ensures that G − X is not only H-minor-free, but also F -minor-free. The next lemma 
introduces a more sophisticated choice of H that also works when F contains disconnected graphs.

Lemma 14. For any fixed finite set of graphs F , all with a connected component of at least 3 vertices, there exists a polynomial time 
algorithm that, given a CNF-formula 	 with k variables, outputs a graph G and integer � such that all of the following are true:

1. there exists a set S ⊆ V (G) of at most kO(1) vertices such that tw(G − S) ≤ min tw(F),
2. if 	 is not satisfiable then there does not exist a set X ⊆ V (G) of size at most � such that G − X is F -subgraph-free, and
3. if 	 is satisfiable then there exists a set X ⊆ V (G) of size at most � such that G − X is F -minor-free.

Proof. Before describing the construction of G and � we define some graphs and sets based on F .
Note that as a consequence of Observation 4, there is a graph F ∈ F that is �-minimal with tw(F ) = min tw(F). 

Let F↓ ⊆ F denote the set of all �-minimal graphs in F that have treewidth min tw(F). We select a �-maximal com-
ponent H↑ of a graph H ∈ F↓ such that λ(H↑) ≤ λ(H ′↑) for all �-maximal components H ′↑ of any H ′ ∈ F↓ . Note that H↑
contains at least 3 vertices since otherwise H↑ would be a minor of at least one connected component of H containing 
at least 3 vertices, which contradicts H↑ being a �-maximal component of H . Let c ≥ 1 denote the number of connected 
components in H isomorphic to H↑ and let Y denote the set of vertices contained in these connected components, i.e., 
H[Y ] is isomorphic to c · H↑ . See Fig. 6 for an example of the choices of F↓ , H , H↑, and c for a concrete F .

Construction. We take the algorithm from Lemma 13 for the graph H↑ and apply it to 	 to construct a graph G ′ and 
integer �′ . Let S ′ ⊆ V (G ′) be the vertex set obtained from Lemma 13(1). Let G1 := (2c − 1) · G ′ , and let the set S be the 
union of all 2c − 1 corresponding copies of S ′ . Take � := (2c − 1) · �′ and let G2 := (� + 1) · (H − Y ) and G := G2 ∪ G1. See 
Fig. 7 for a concrete example of G .
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Fig. 6. In F = {F1, F2, F3} there are two graphs (F1 and F2) that are �-minimal, in this case both with treewidth 2 = min tw(F), hence F↓ = {F1, F2}. 
Together, the graphs in F↓ contain five �-maximal components. The leaf-blocks of these components are circled in gray. Observe that this leaves three 
candidates for H↑ , namely those with a leaf-block of size 2. Suppose we select H↑ = P4, so H = F1, then c = 2 since H↑ occurs twice in H . Vertices in Y
are colored gray.

Fig. 7. Based on the choices of H , H↑ , c, and Y in Fig. 6 and the CNF-formula 	 as in Fig. 5 we obtain the graph G = G1 ∪ G2 depicted above.

Before proving the conditions of the lemma statement hold for G and � we prove some properties of G2.

Claim 15. G2 has the following properties: (1) G2 � H, (2) tw(G2) ≤ tw(H), (3) G2 is H-minor-free, and (4) G2 is F -minor-free.

Proof. Property (1) follows directly from the construction and Property (2) follows directly from Property (1). To show 
Property (3), we show that G2 is H↑-minor-free. Suppose for contradiction that G2 contains H↑ as minor then, since H↑ is 
connected, there is a connected component H ′ of G2 that contains H↑ as minor. H ′ is also a connected component of H . 
Since H↑ is a �-maximal component of H and H↑ � H ′ we know H ′ � H↑ , and it follows from Observation 3 that H ′ is 
isomorphic to H↑ . This is a contradiction since G2 contains only connected components of H that are not isomorphic to H↑ .

Having shown that G2 is H↑-minor-free, Property (4) is easily shown by contradiction. Suppose G2 is not F -minor-free, 
then there exists a graph B ∈ F such that B � G2. It follows from G2 � H that B � H and since H is �-minimal in F we 
have that H � B � G2, but then H↑ � G2. This is a contradiction since G2 is H↑-minor-free. �

Correctness. We show all conditions of the lemma statement hold for G and �.
1. Observe that |S| = (2c − 1) · 2k ∈ kO(1) . By Lemma 13(1) that tw(G1 − S) ≤ tw(H↑) ≤ tw(H) and since tw(G2) ≤ tw(H)

by Claim 15, we obtain tw(G − S) ≤ tw(H) = min tw(F).
2. Suppose 	 is not satisfiable, and take an arbitrary X ⊆ V (G) of size at most �. We prove G − X is not F -subgraph-free 

by showing that G − X contains an H-subgraph. First note that G2 − X contains at least one copy of H − Y = H − c · H↑ , so 
it remains to show that G1 − X contains c vertex-disjoint H↑-subgraphs. Recall that G1 is the disjoint union of 2c − 1 copies 
of G ′ . Consider the subgraph Ĝ1 of G1 consisting of the G ′-subgraphs in G1 that contain at most �′ vertices of X . Since 	

is not satisfiable, G ′ leaves at least one H↑-subgraph when �′ or fewer vertices are removed, so each G ′-subgraph in Ĝ1

leaves at least one H↑-subgraph in G1 − X . When Ĝ1 contains at least c vertex-disjoint G ′-subgraphs, we know that there 
are at least c vertex-disjoint H↑-subgraphs in G1 − X , concluding the proof. Suppose instead that Ĝ1 contains less than c
vertex-disjoint G ′-subgraphs. Let x be the number of G ′-subgraphs in G1 − V (Ĝ1). Since G1 contains 2c − 1 vertex-disjoint 
G ′-subgraphs we have x ≥ c. Each of the G ′-subgraphs in G1 − V (Ĝ1) contains at least �′ + 1 vertices of X , so Ĝ1 contains at 
most � − x(�′ +1) vertices of X . We also know Ĝ1 contains �′((2c −1) − x) vertex-disjoint H↑-subgraphs since G ′ contains �′
vertex-disjoint H↑-subgraphs (by Lemma 13(2)) and there are (2c − 1) − x vertex-disjoint G ′-subgraphs in Ĝ1. We conclude 
that the number of vertex-disjoint H↑-subgraphs in Ĝ1 − X , and therefore also in G1 − X , is at least

�′((2c − 1) − x) − (� − x(�′ + 1)) = �′((2c − 1) − x) − (�′(2c − 1) − �′x − x)
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= �′((2c − 1) − x) − �′((2c − 1) − x) + x

= x ≥ c.

This concludes the proof of condition 2.
3. When 	 is satisfiable we know that there exists a set X ′ ⊆ V (G ′) of size at most �′ such that G ′ − X ′ is H↑-minor-free 

and λ(H↑) -prune(G ′ − X ′) � H↑ . So then there exists a set X ⊆ V (G1) of size at most (2c − 1) · �′ = � such that G1 − X is 
H↑-minor-free and λ(H↑) -prune(G1 − X) � H↑ . Since G2 is also H↑-minor-free we know that G − X is H↑-minor-free and 
therefore also H-minor-free. We now show that G − X is also F -minor-free.

First observe the following:

λ(H↑) -prune(G2 − X) � G2 − X � G2 � H , and (1)

λ(H↑) -prune(G1 − X) � H↑ � H . (2)

We now deduce

λ(H↑) -prune(G − X) = λ(H↑) -prune((G2 − X) ∪ (G1 − X))

= λ(H↑) -prune(G2 − X) ∪ λ(H↑) -prune(G1 − X))

� H (by Equation (1) and (2))

Suppose G − X is not F -minor-free, then for some H ′ ∈ F we have H ′ � G − X . There must exist a graph B ∈ F such 
that B is �-minimal in F and B � G − X since if H ′ is �-minimal in F then H ′ forms such a graph B , and if on the 
other hand H ′ is not �-minimal in F then there exists a graph H ′′ ∈ F such that H ′′ � H ′ and H ′′ is �-minimal in F , 
meaning H ′′ forms such a graph B .

Since B � G − X we know by Observation 4 that tw(B) ≤ tw(G − X). Recall that tw(G − X) ≤ min tw(F) so then B ∈F↓ . 
Because of how we chose H↑ , we know for all �-maximal components B↑ of B that λ(B↑) ≥ λ(H↑). Therefore

B � λ(H↑) -prune(B) since B = λ(H↑) -prune(B)

� λ(H↑) -prune(G − X) by Proposition 10 since B � G − X

� H .

Since H is �-minimal in F , it follows that H � B . By definition of � we have H↑ � B � G − X . Since H↑ is connected 
we conclude H↑ � G − X . This is a contradiction since G − X is H↑-minor-free. �

We conclude that a polynomial-parameter transformation exists for all type ∈ {minor, subgraph} and F containing only 
graphs with a connected component on at least three vertices. Together with the fact that cnf-sat is MK[2]-hard and 
does not admit a polynomial kernel unless NP ⊆ coNP/poly (cf. [26, Lemma 9]), this proves the following generalization of 
Theorem 1.

Theorem 16. For type ∈ {minor, subgraph} and a set F of graphs, all with a connected component of at least three vertices, F -type-

Free Deletion parameterized by vertex-deletion distance to a graph of treewidth min tw(F) is MK[2]-hard and does not admit a 
polynomial kernel unless NP ⊆ coNP/poly.

4. A polynomial Turing kernelization

In this section we consider the case where F contains a graph with no connected component of more than two vertices; 
or in short F contains a P3-subgraph-free graph. This graph consists of isolated vertices and disjoint edges. Let isol(G)

denote the set of isolated vertices in a graph G , i.e., isol(G) = {v ∈ V (G) | deg(v) = 0}. We first show that the removal of all 
isolated vertices from all graphs in F only changes the answer to F -Minor-Free Deletion and F -Subgraph-Free Deletion

when the input is of constant size.

Lemma 17. For type ∈ {minor, subgraph} and any family of graphs F containing a P3-subgraph-free graph, let F ′ = {F − isol(F ) |
F ∈F}. For any graph G, if G is F -type-free but not F ′-type-free, then |V (G)| < max

F∈F
(|V (F )| + 2|V (F )|3).

Proof. We first prove the lemma for type = subgraph. Suppose G is F -subgraph-free but not F ′-subgraph-free. Now G
contains an H ′-subgraph for some graph H ′ ∈ F ′ . This subgraph consists of |V (H ′)| vertices. Let H ∈ F be the graph for 
which H ′ = H − isol(H). The graph G cannot contain | isol(H)| vertices in addition to the vertices in the H ′-subgraph because 
otherwise G trivially contains an F -subgraph. Hence |V (G)| < |V (H ′)| + | isol(H)| = |V (H)| ≤ max |V (F )|.
F∈F
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Next, we show the lemma holds for type = minor. If some graph G is F -minor-free but not F ′-minor-free then for some 
graph H ∈ F we have H ′ � G but not H � G where H ′ = H − isol(H). Let ϕ be a minimal H ′-model in G . The graph G has 
less than |V (isol(H))| vertices that are not in any branch set of ϕ , since otherwise an H-model could be constructed in G
by taking the branch sets of ϕ and adding |V (isol(H))| branch sets consisting of a single vertex.

The number of vertices in G that are contained in a branch set of ϕ can also be limited. For an arbitrary vertex v ∈ V (H ′)
consider a spanning tree T of G[ϕ(v)]. If ϕ(v) contains multiple vertices then for each leaf p of T , there must be a 
vertex u ∈ NH ′(v) and q ∈ NG(p) ∩ ϕ(u), such that p is the only vertex from ϕ(v) that is adjacent to ϕ(u); otherwise, 
removing leaf p from the branch set φ(v) would yield a smaller H ′-model in G . Hence there can only be max{1, degH ′(v)}
leaves in T .

To give a bound on the size of each branch set consider a smallest graph D ∈F ′ that is P3-subgraph-free. Take � = |V (D)|
and note that D � P� . Since we know that G is F ′-minor-free, G must also be P�-subgraph-free, therefore T is also P�-
subgraph-free. Consider an arbitrary vertex r in T . Since T is a tree, there is exactly one path from r to each leaf of T and 
every vertex of T lies on at least one path from r to a leaf of T . Since there are no more than max{1, degH ′(v)} leaves in T
there are at most max{1, degH ′(v)} such paths, and all these paths contain less than � vertices since T is P�-subgraph-free, 
hence in total T contains less than degH ′(v) · � vertices. We can now give a bound on the total number of vertices in G as 
follows:

|V (G)| < | isol(H)| +
∑

v∈H−isol(H)

|ϕ(v)|

≤ | isol(H)| +
∑

v∈H−isol(H)

(degH ′(v) · �)

≤ | isol(H)| + 2 · |E(H)| · �
≤ |V (H)| + 2 · |V (H)|2 · |V (D)|
≤ max

F∈F (|V (F )| + 2|V (F )|3)
This concludes the proof. �
After the removal of isolated vertices in F to obtain F ′ , we know that F ′ contains a graph consisting entirely of disjoint 

edges, i.e., this graph is isomorphic to c · P2 for some integer c ≥ 0. If c = 0 then F -type-free graphs have constant size 
and the problem is polynomial-time solvable. We proceed assuming c ≥ 1. Let the matching number of a graph G , denoted 
as ν(G), be the size of a maximum matching in G . We make the following observation.

Observation 18. For all c ≥ 1, a graph G is c · P2-subgraph-free if and only if ν(G) ≤ c − 1.

We give a characterization of graphs with bounded matching number, based on an adaptation of the Tutte-Berge for-
mula [33]. We use odd(G) to denote the number of connected components in G that consist of an odd number of vertices.

Lemma 19. For any graph G and integer m we have ν(G) ≤ m if and only if V (G) can be partitioned into three disjoint sets U , R, S
such that all of the following are true:

• all connected components in G[R] have an odd number of at least 3 vertices,
• G[S] is independent,
• NG(S) ⊆ U , and
• |U | + 1

2 (|R| − odd(G[R])) ≤ m.

Proof. Consider the Tutte-Berge formula [33] (cf. [34, Chapter 24]):

ν(G) = 1
2 min

U⊆V (G)
(|V (G)| − odd(G − U ) + |U |).

Suppose ν(G) ≤ m. It follows from the Tutte-Berge formula that there exists a U1 ⊆ V (G) such that 1
2 (|V (G)| − odd(G −

U1) + |U1|) = ν(G) ≤ m. From each connected component H in G − U1 on an even number of vertices, select a vertex 
that is not a cut vertex of H (any leaf of a spanning tree of H suffices) and add the selected vertices to a set U2. Now 
take U = U1 ∪ U2. Note that G − U contains only connected components with an odd number of vertices and odd(G − U ) =
odd(G − U1) + |U2|. Let S be the set of isolated vertices in G − U and let R = V (G) \ (U ∪ S). Observe that U , R , and S
satisfy the first three conditions in the lemma statement: G[R] contains only connected components with an odd number 
of at least 3 vertices, G[S] is independent, and NG(S) ⊆ U . Note that this implies that odd(G[R]) + |S| = odd(G[R ∪ S]) =
odd(G − U ). The last requirement follows from the Tutte-Berge formula as follows:
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|U | + 1
2 (|R| − odd(G[R])) = 1

2 (2|U | + |S| − |S| + |R| − odd(G[R])
= 1

2 ((|U | + |S| + |R|) − (odd(G[R]) + |S|) + |U |)
= 1

2 (|V (G)| − odd(G − U ) + |U |)
= 1

2 (|V (G)| − (odd(G − U1) + |U2|) + |U1| + |U2|)
= 1

2 (|V (G)| − odd(G − U1) + |U1|)
= ν(G) ≤ m

For the reverse direction of the proof, suppose V (G) can be partitioned into disjoint sets U , R, S as described in the 
lemma statement. A maximum matching in G[R] has size at most 1

2 (|R| − odd(G[R]) since at least one vertex in each odd 
component remains unmatched and every matching edge covers two vertices. Since NG(S) ⊆ U we know that S is isolated 
in G − U , so ν(G − U ) = ν(G[R]) ≤ 1

2 (|R| − odd(G[R]). Since a matching in G is at most |U | edges larger than a matching 
in G − U we conclude ν(G) ≤ |U | + 1

2 (|R| − odd(G[R]) ≤ m. �
Let us showcase how Lemma 19 can be used to attack F -Minor-Free Deletion when F consists of a single graph c · P2, 

so that the problem is to find a set X ⊆ V (G) of size at most � such that G − X has matching number less than c.

Theorem 20. For any constant c, the {c · P2}-Minor-Free Deletion problem parameterized by the size k of a feedback vertex set, can 
be solved in polynomial time using an oracle that answers Vertex Cover instances with O(k3) vertices.

Proof. If an instance (G, �) admits a solution X , then Lemma 19 guarantees that V (G − X) can be partitioned into U , R, S
satisfying the four conditions for m = c − 1. We try all relevant options for the sets U and R in the partition, of which there 
are only polynomially many since |U | + 1

3 |R| ≤ m ∈O(1).
For given sets U , R ⊆ V (G), we can decide whether there is a solution X of size at most � for which U , R , and S :=

V (G) \ (U ∪ R ∪ X) form the partition witnessing that G − X has matching number at most m, as follows. If some component 
of G[R] has an even number of vertices or less than three vertices, we reject outright. Similarly, if |U | + 1

2 (|R| −odd(G[R])) >
m, we reject. Now, if U and R were guessed correctly, then Lemma 19 guarantees that the only neighbors of R in the 
graph G − X belong to U . Hence we infer that all vertices of X ′ := NG(R) \ U must belong to the solution X . Note that 
since S is an independent set in G − X , the solution X forms a vertex cover of G − (U ∪ R), so that X ′′ := X \ X ′ is a vertex 
cover of G ′ := G − (U ∪ R ∪ X ′). On the other hand, for every vertex cover X ′′ of G ′ , the graph G − (X ′ ∪ X ′′) will have 
matching number at most m, as witnessed by the partition. Hence the problem of finding a minimum solution X whose 
corresponding graph G − X has U and R as two of the classes in its witness partition, reduces to finding a minimum vertex 
cover of the graph G ′ . In terms of the decision problem, this means G has a solution of size at most � with U and R as 
witness partite sets, if and only if G ′ has a vertex cover of size at most � − |X ′|. Since fvs(G ′) ≤ fvs(G), we can apply the 
known [12] kernel for Vertex Cover parameterized by the feedback vertex number to reduce (G ′, � − |X ′|) to an equivalent 
instance with O(fvs(G)3) vertices, which is queried to the oracle. If the oracle answers positively to any query, then (G, �)
has answer yes; otherwise the answer is no. �

We remark that by using the polynomial-time reduction guaranteed by NP-completeness, the queries to the oracle can 
be posed as instances of the original F -Minor-Free Deletion problem, rather than Vertex Cover. The following lemma 
formalizes this and will be used as a black box for our general Turing kernelization.

Lemma 21. Let F be a finite set of graphs such that each graph in F contains at least one edge, and let type ∈ {minor, subgraph}. 
There is a polynomial-time algorithm that, given a graph G and integer �, decides whether G has a vertex cover of size at most �, using 
an oracle that answers F -type-Free Deletion instances with fvs(G)O(1) vertices.

Proof. For a fixed F and type, the following procedure solves the Vertex Cover instance (G, �) in polynomial time using an 
oracle for F -type-Free Deletion instances with fvs(G)O(1) vertices.

1. Compute a 2-approximate feedback vertex set S on G in polynomial time, for example using the algorithm by Bafna et 
al. [35].

2. Apply the kernelization by Jansen and Bodlaender [12] for Vertex Cover parameterized by feedback vertex set to the in-
stance (G, �) and the approximate feedback vertex set S . This takes polynomial time, and results in an instance (G1, �1)

of Vertex Cover on O(|S|3) ≤O(fvs(G)3) vertices that is equivalent to (G, �).
3. Since every graph in F contains at least one edge, the F -type-Free Deletion problem is NP-complete [36]. The Vertex 

Cover problem is also known to be NP-complete, hence there exists a polynomial-time algorithm that transforms the
Vertex Cover instance (G1, �1) into an equivalent F -type-Free Deletion instance (G2, �2). Since this algorithm runs in 
polynomial time and the size of its input is fvs(G)O(1) , the number of vertices in G2 is upper-bounded by fvs(G)O(1) .
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�
4. Query the instance (G2, �2) of size fvs(G)O(1) to the F -type-Free Deletion oracle, and output the oracle’s answer as 
the decision on the Vertex Cover instance (G, �). 

We point out that in Lemma 21, the oracle that answers F -type-Free Deletion instances with fvs(G)O(1) vertices may be 
replaced with an oracle that answers Vertex Cover instances on O(fvs(G)3) vertices, due to the application of the Vertex 
Cover kernelization in Step 2. Hence when using an oracle for Vertex Cover, the query size can be bounded uniformly and 
does not depend on F .

We now present our general (non-adaptive) Turing kernelization for the minor-free and subgraph-free deletion problems 
for all families F containing a P3-subgraph-free graph, combining three ingredients. Lemma 17 allows us to focus on 
families whose graphs have no isolated vertices. The guessing strategy of Theorem 20 is the second ingredient. The final 
ingredient is required to deal with the fact that a solution subgraph G − X that is c · P2-minor-free for some c · P2 ∈ F , 
may still have one of the other graphs in F as a minor. To cope with this issue, we show in Lemma 23 that if G − X has 
no matching of size c (i.e., G − X has a vertex cover of size at most 2c), but does contain a minor model of some graph 
in F , then there is such a minor model of constant size. By employing a more expensive (but still polynomially bounded) 
guessing step, this allows us to complete the Turing kernelization. In the following lemmas vc(G) will denote the vertex 
cover number and �(G) will denote the maximum degree of G .

Proposition 22 ([10, Proposition 1]). If G contains H as a minor, then there is a subgraph G∗ of G containing an H-minor such 
that �(G∗) ≤ �(H) and |V (G∗)| ≤ |V (H)| + vc(G∗) · (�(H) + 1).

Lemma 23. For any type ∈ {minor, subgraph}, let F be a family of graphs, let G be a graph with vertex cover C , and let S = V (G − C). 
If G contains an F -type, then there exists S ′ ⊆ S such that G[C ∪ S ′] contains an F -type and |S ′| ≤ maxH∈F |V (H)| + |C | · (�(H) +
1).

Proof. Suppose type = minor, then by Proposition 22 we know that if G contains H ∈ F as a minor, then there is a 
subgraph G∗ of G containing an H-minor such that |V (G∗)| ≤ |V (H)| + vc(G∗) · (�(H) + 1). Take S ′ = V (G∗) ∩ S , then G[C ∪
S ′] = G[C ∪ V (G∗)] contains an F -minor and

|S ′| ≤ |V (G∗)|
≤ |V (H)| + vc(G∗) · (�(H) + 1)

≤ |V (H)| + |C | · (�(H) + 1)

≤ max
H∈F |V (H)| + |C | · (�(H) + 1).

On the other hand, when type = subgraph then G contains an H-subgraph for some H ∈ F , and trivially there exists a 
set X ⊆ V (G) of |V (H)| vertices such that G[X] contains an H-subgraph. Take S ′ = X − C and clearly G[C ∪ S ′] contains an 
H-subgraph. �

Armed with Lemma 23 we now present the proof of the general Turing kernelization.

Theorem 2. Let F be a finite set of graphs, such that some H ∈ F has no connected component of three or more vertices. Then F -

Minor-Free Deletion and F -Subgraph-Free Deletion admit polynomial Turing kernels when parameterized by the vertex-deletion 
distance to a graph of treewidth min tw(F).

Proof. Fix some type ∈ {minor, subgraph}. First, consider input instances (G, �) for which |V (G)| − � ≤ maxF∈F (|V (F )| +
2|V (F )|3). If |V (G)| −� < 0, there is a trivial solution. Otherwise, there exists a vertex set X of size at most � such that G − X
is F -type-free if and only if there exists a set X ′ of size exactly � such that G − X ′ is F -type-free, since F -type-free graphs 
are hereditary and X ′ be obtained by adding sufficiently many vertices to X . Such a set X ′ exists if and only if there 
exists a vertex set Y of size exactly |V (G)| − � ≤ maxF∈F (|V (F )| + 2|V (F )|3) such that G[Y ] is F -type-free. Since there 
are only polynomially many such vertex sets Y , and for each Y we can check in polynomial time whether G[Y ] contains 
an F -type [37], we can apply brute force to solve the instance in polynomial time.

So from now on we only consider instances (G, �) for which |V (G)| − � > maxF∈F (|V (F )| + 2|V (F )|3). This means 
that for any vertex set X of size at most �, the graph G − X contains more than maxF∈F (|V (F )| + 2|V (F )|3) vertices. 
Take F ′ = {F − isol(F ) | F ∈ F} and we obtain from Lemma 17 that if G − X is F -type-free, it is also F ′-type-free, and 
clearly if G − X contains an F -type it also contains an F ′-type. Hence the F -type-Free Deletion instance (G, �) is equivalent 
to the F ′

-type-Free Deletion instance (G, �). Note that if F contains an edgeless graph then F ′ contains the null graph. In 
this case the instance is trivially false since every graph contains the null graph as a subgraph. In the rest of the algorithm 
we assume each graph in F ′ contains at least one edge.

Since every graph in F contains an edge and at least one graph in F has no component of three vertices or more, we 
have min tw(F) = 1. Therefore the parameter, the deletion distance to treewidth min tw(F), is equal to fvs(G).
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To complete the Turing kernelization for F -type-Free Deletion, it suffices to give a polynomial-time algorithm solv-
ing F ′

-type-Free Deletion using an oracle that can solve F -Minor-Free Deletion instances (G ′, �′) for which |V (G ′)| ≤
fvs(G)O(1) and fvs(G ′) ≤ fvs(G)O(1) . Note that the latter condition on (G ′, �′) is redundant since fvs(G ′) < |V (G ′)| for any 
graph G ′ .

Our Turing kernelization will use the algorithm described in Lemma 21 to solve Vertex Cover instances (G ′′, �′′) for 
induced subgraphs G ′′ of G . This algorithm requires an oracle for F -type-Free Deletion instances with fvs(G ′′)O(1) vertices. 
Note that since G ′′ is an induced subgraph of G , we have fvs(G ′′) ≤ fvs(G), hence our F -type-Free Deletion oracle for 
instances with fvs(G)O(1) suffices. We will refer to this algorithm as VCoracle.

Using this subroutine, the Turing kernelization algorithm is given in Algorithm 1. The high-level idea is as follows. Let M
be the smallest graph in F ′ that has no component of three or more vertices, or equivalently, which is P3-subgraph-free; 
then M consists of isolated edges. The Turing kernelization first guesses the sets U and R as per Lemma 19 witnessing that 
the graph G − X obtained after removing the unknown solution X does not have a matching of |E(M)| edges (i.e., that G − X
does not contain M ∈ F ′ as both a minor and a subgraph). Since Lemma 19 guarantees that in the graph G − X we 
have NG−X (R) ⊆ U , it follows that NG(R) \ U must belong to the unknown solution X if this guess was correct. The 
algorithm then considers the remaining vertices Q := V (G) \ (U ∪ R ∪ NG(R)) and classifies them into 2|U | types based 
on their adjacency to U . An additional guessing step attempts to guess up to α (line 2) vertices of each type in G − X , 
which will be part of the set S in the partition of Lemma 19, by taking them into the range of the function f (line 9). 
The algorithm tests whether the graph G[ f (2U ) ∪ U ∪ R] is F ′-type-free. If not, then the guess was incorrect. If so, then for 
each type of which fewer than α vertices were guessed to remain behind in G − X , the algorithm collects the remaining 
vertices of that type in a set Q ′ to be added to the solution X , and a Vertex Cover instance is formulated on the remaining 
vertices of Q . For types of which α vertices remained behind, no vertices have to be added to Q ′ or the solution X in this 
step, because using Lemma 23 it can be guaranteed that having more vertices of that type will not lead to an F ′-type. The 
algorithm returns true if the formulated instance of Vertex Cover has a solution that yields a set of size at most � when 
combined with the vertices of NG(R) \ U and Q ′ .

Algorithm 1: Solving F ′
-type-Free Deletion instances using VCoracle with F ′ containing a P3-subgraph-free 

graph and no edgeless graphs.
input : A graph G and an integer �

output : true if there exists a set X of size at most � such that G − X is F ′-type-free, or false otherwise.
1 m := |E(M)| − 1 where M is a smallest P3-subgraph-free graph in F ′
2 α := maxH∈F ′ |V (H)| + 3m(�(H) + 1)

3 forall U ⊆ V (G) with |U | ≤ m do
4 forall R ⊆ V (G − U ) such that
5 all connected components in G[R] have an odd number of at least 3 vertices

6 and |U | + 1
2 (|R| − odd(G[R])) ≤ m

7 do
8 Q := V (G) \ (U ∪ R ∪ NG (R))

9 forall functions f : 2U → 2Q such that
10 G[ f (2U )] is independent and � Recall that f (2U ) = ⋃

Y ⊆U f (Y )

11 G[ f (2U ) ∪ U ∪ R] is F ′-type-free and
12 ∀Y ⊆U | f (Y )| ≤ α and
13 ∀Y ⊆U ∀v∈ f (Y )NG (v) ∩ U = Y
14 do
15 Q ′ := {v ∈ Q \ f (2U ) | | f (NG (v) ∩ U )| < α}
16 if VCoracle(G[Q ] − Q ′ , � − |(NG (R) \ U ) ∪ Q ′|) then
17 return true

18 return false

Soundness. When the algorithm returns true, then consider the values of U , R , Q , f , and Q ′ at the time that true is 
returned. There exists a vertex cover X ′ of size at most � − |(NG(R) \ U ) ∪ Q ′| in G[Q ] − Q ′ . Let X = X ′ ∪ (NG(R) \ U ) ∪ Q ′ , 
which has size at most �. The set X is a vertex cover in G − (U ∪ R), since G − (U ∪ R) − X = (G[Q ] − Q ′) − X ′ . Hence S :=
V (G − (U ∪ R)) \ X is an independent set, even in G . The sets U , R, S, X form a partition of V (G). See Fig. 8a for a visual 
representation of these sets. We will show that X is a solution to F ′

-type-Free Deletion on G .
Consider an arbitrary vertex v ∈ S . Note that since NG(R) ⊆ U ∪ X we have S = V (G) \ (U ∪ R ∪ X) ⊆ V (G) \ (U ∪ R ∪

NG(R)) = Q , so v ∈ Q . By definition of X we know Q ′ ⊆ X so v /∈ Q ′ . Then by definition of Q ′ on line 15 we observe the 
following:

Observation 24. For all v ∈ S we have v ∈ f (2U ) or | f (NG(v) ∩ U )| ≥ α.

Assume for a contradiction that G − X = G[U ∪ R ∪ S] contains an F ′-type. Since G[S] is independent, U ∪ R is a 
vertex cover in G − X , and by Lemma 23 there exists a set S ′ ⊆ S with |S ′| ≤ max′ |V (H)| + |U ∪ R| · (�(H) + 1) such 
H∈F
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Fig. 8. We show two partitions of G . Fig. 8a shows a partition of G given that Algorithm 1 returns true, while Fig. 8b shows a partition of G given that G − X
is F -type-free. Note that in both cases there can be no edges between R and Q .

that G[U ∪ R ∪ S ′] contains an F ′-type. Note that |R| − 3 odd(G[R]) ≥ 0 since every connected component in G[R] contains 
at least 3 vertices, so then

|S ′| ≤ max
H∈F ′ |V (H)| + |U ∪ R| · (�(H) + 1)

≤ max
H∈F ′ |V (H)| + (|U | + |R| + 1

2
(|R| − 3 odd(G[R]))) · (�(H) + 1)

≤ max
H∈F ′ |V (H)| + 3(|U | + 1

2
(|R| − odd(G[R]))) · (�(H) + 1)

≤ max
H∈F ′ |V (H)| + 3m(�(H) + 1)

= α.

Claim 25. The graph G[U ∪ R ∪ S ′] is isomorphic to a subgraph of G[U ∪ R ∪ f (2U )].

Proof. Observe that S contains no neighbors of R , and since G[S] is independent, we know for all v ∈ S that NG(v) ⊆ U ∪ X
and therefore NG−X (v) = NG(v) ∩ U . From Observation 24 it follows for all v ∈ S ′ that v ∈ f (2U ) or | f (NG(v) ∩ U )| ≥ α. In 
the latter case v is a false twin of any vertex u ∈ f (NG(v) ∩ U ) in G − X since by definition of f we have NG(u) ∩ U =
NG(v) ∩ U for all vertices u ∈ f (NG(v) ∩ U ). We have |S ′| ≤ | f (NG(v) ∩ U )| for all v ∈ S ′ , so there exists a bijection that 
maps all vertices v ∈ S ′ to a vertex in u ∈ f (2U ) that is a false twin of v in G − X . Any two false twins in G − X are 
interchangeable in G − X , hence G[U ∪ R ∪ S ′] is isomorphic to a subgraph of G[U ∪ R ∪ f (2U )]. �

Since f is chosen such that G[U ∪ R ∪ f (2U )] is F ′-type-free on line 11, Claim 25 leads to a contradiction with the 
fact that G[U ∪ R ∪ S ′] contains an F ′-type. We conclude that if the algorithm returns true a set X of size � exists such 
that G − X is F ′-type-free.

Completeness. Next, we consider the reverse direction. We show that the algorithm returns true when there exists a set X
of size at most � such that G − X is F ′-type-free. Let m = |E(M)| −1 where M is the smallest P3-subgraph-free graph in F ′ , 
i.e., M is isomorphic to (m + 1) · P2 since no graph in F ′ contains isolated vertices. The graph G − X is F ′-type-free so it 
is also (m + 1) · P2-subgraph-free, and by Observation 18 we know ν(G − X) ≤ m. Therefore by Lemma 19 there exists a 
partition U ′, R ′, S of V (G − X) such that all of the following are true:

• all connected components in (G − X)[R ′] = G[R ′] have an odd number of at least 3 vertices,
• (G − X)[S] = G[S] is independent,
• NG−X (S) ⊆ U or equivalently NG(S) ⊆ U ∪ X , and
• |U ′| + 1

2 (|R ′| − odd(G[R ′])) ≤ m.

Clearly U ′ and R ′ are such that there is an iteration in the algorithm where U = U ′ and R = R ′ . Let Q be the set as defined 
on line 8 in this iteration, see Fig. 8b. Let g : 2U → 2S be defined as g(Y ) = {v ∈ S | Y = NG(v) ∩ U } for all Y ⊆ U . We define 
a function f ′ : 2U → 2S that maps any Y ⊆ U to an arbitrary subset of g(Y ) of size min{|g(Y )|, α}. We make the following 
observations:

• Since NG(S) ⊆ U ∪ X we have NG(R) ∩ S = ∅ so S = S \NG(R) = V (G) \(U ∪ R ∪ X ∪NG (R)) ⊆ V (G) \(U ∪ R ∪NG (R)) = Q , 
so f ′ : 2U → 2Q .

• G[S] is independent, so G[ f ′(2U )] is also independent because f ′(2U ) ⊆ S .
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• G[U ∪ R ∪ f ′(2U )] is a subgraph of G[U ∪ R ∪ S] = G − X , and since G − X is F ′-type-free, G[U ∪ R ∪ f ′(2U )] is also 
F ′-type-free.

• Clearly ∀Y ⊆U | f ′(Y )| ≤ α, and
• ∀Y ⊆U ∀v∈ f ′(Y )NG(v) ∩ U = Y .

Hence f ′ satisfies all conditions stated in line 9 of the algorithm, so there is an iteration of the algorithm where f =
f ′ . Let Q ′ be the set as defined on line 15 in this iteration. We now show that there exists a vertex cover of size at 
most � − |(NG(R) \ U ) ∪ Q ′| in G[Q ] − Q ′ .

Since G[S] is independent, X is a vertex cover in G[X ∪ S] = G − (U ∪ R). Then clearly X \ (NG(R) \ U ) is a vertex cover 
in G − (U ∪ R ∪ (NG(R) \ U )) and since NG(R) \ U ⊆ X we have |X \ (NG(R) \ U )| ≤ � − |NG(R) \ U |. Similarly consider 
the set A = (NG(R) \ U ) ∪ Q ′ . Clearly X \ A is a vertex cover in G − (U ∪ R ∪ A) and |X \ A| ≤ � − |A| if A ⊆ X . We will 
show that A ⊆ X . We know NG(R) \ U ⊆ X so it remains to be shown that Q ′ ⊆ X . Consider an arbitrary v ∈ Q ′ and 
suppose v /∈ X . Since Q ′ ⊆ Q we obtain from the definition of Q that v /∈ U and v /∈ R , so then v ∈ S . We also note 
from the definition of Q ′ that | f (NG(v) ∩ U )| < α. Since f = f ′ we have | f ′(NG(v) ∩ U )| < α, and from the definition 
of f ′ we know that if | f ′(Y )| < α for some Y ⊆ U , then f ′(Y ) = g(Y ). By definition of g we have v ∈ g(NG(v) ∩ U ), so 
then v ∈ f (NG (v) ∩ U ) ⊆ f (2U ). This is a contradiction since v /∈ f (2U ) by definition of Q ′ .

Now we have shown that X \ A is a vertex cover of size at most � − |A| = � − |(NG(R) \ U ) ∪ Q ′| in G − (U ∪ R ∪ A) =
G[Q ] − Q ′ , hence the VCoracle should report that a vertex cover exists on line 8.

Running time and query size. The sets U and R have a maximum size of m and 2m respectively, so there are at 
most

(|V (G)|
m

) ≤ |V (G)|m and
(|V (G)|

2m

) ≤ |V (G)|2m possibilities for U and R respectively. The function f maps all subsets 
of U to subsets of Q with a maximum size of α, so there are at most 2|U | · (|Q |

α

) ≤ 22m · |V (G)|α possible functions f . From 
the definition of m and α on lines 1 and 2 it can be determined that m ∈O(maxH∈F |V (H)|) and α ∈O(maxH∈F |V (H)|2). 
It can now be seen that the total number of calls to VCoracle is at most |V (G)|O(maxH∈F |V (H)|2) . Since F is fixed and
VCoracle runs in polynomial time, this yields a polynomial bound on the running time of Algorithm 1.

The VCoracle subroutine (Lemma 21) is invoked on induced subgraphs G ′′ of G which therefore have a feedback vertex 
number of at most fvs(G). Hence Lemma 21 only queries the oracle for instances with fvs(G ′′)O(1) ≤ fvs(G)O(1) vertices. �
5. Conclusion

Earlier work [20,7,12,21] has shown that several F -Minor-Free Deletion problems admit polynomial kernelizations 
when parameterized by the feedback vertex number. In this paper we showed that when F contains a forest and each 
graph in F has a connected component of at least three vertices, the F -Minor-Free Deletion and F -Subgraph-Free Dele-

tion problems do not admit such a polynomial kernel unless NP ⊆ coNP/poly. This lower bound generalizes to any F
where each graph has a connected component of at least three vertices, when we consider the vertex-deletion distance to 
treewidth min tw(F) as parameter.

For all other choices of F we showed that a polynomial Turing kernelization exists for F -Minor-Free Deletion and
F -Subgraph-Free Deletion parameterized by the feedback vertex number. The size of the Vertex Cover queries generated 
by the Turing kernelization does not depend on F : the Turing kernelization can be shown to be uniformly polynomial
(cf. [19]). However, it remains unknown whether the running time can be made uniformly polynomial, and whether the 
Turing kernelization can be improved to a traditional kernelization. Due to the large degree of the polynomial running time, 
the algorithm is mainly of theoretical interest.

In our paper we discussed F -Minor-Free Deletion and F -Subgraph-Free Deletion. We leave open the case of F -

Induced-Subgraph-Free Deletion where a vertex set S is a solution for a graph G if G − S does not contain any graph in F
as induced subgraph. Although a number of our lower bound results also apply to this problem, the Turing kernelization 
we present cannot easily be generalized to F -Induced-Subgraph-Free Deletion. This is mainly because we make use of a 
characterization of graphs that do not have a size-c matching. A similar characterization for graphs that do not have a size-c
induced matching is unlikely to exist since finding a maximum induced matching is NP-complete while finding a maximum 
matching is not.

Our results leave open the possibility that all F -Minor-Free Deletion problems admit a polynomial kernel when pa-
rameterized by the vertex-deletion distance to a linear forest, i.e., a collection of paths. Resolving this question may be an 
interesting direction for future work.
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