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Chapter 1

Introduction

Computers and, in a broad sense, electronic hardware play a crucial role in modern
society. Correct functioning of electronic hardware is important as flaws can be
costly and even unacceptable in safety-critical areas such as aircraft and nuclear
plants. Designing new hardware usually starts from a high-level specification, which
undergoes refinement and ultimately crystallizes in a final design. A new hardware
design needs to undergo validation to make sure that it meets expectations in terms
of desired functionality. Conventionally, validation of a new hardware design is done
using simulation and testing [KG02].

Traditional means of hardware design validation have shortcomings. Testing and
simulation of sophisticated designs often cannot offer exhaustive coverage, which
only gives probabilistic assurance that the design is correct. Technologies evolve fast,
and hardware is becoming more complex, which is making exhaustive coverage less
and less feasible.

Formal verification becomes more widely adopted in the industry [KG02], aiming
to address the shortcomings of the traditional approaches to hardware validation.
Formal verification is, in essence, the use of the formal methods of mathematics to
prove that an abstract representation of the object of interest conforms to the desired
properties expressed formally. In contrast to simulation and testing, proving that
the desired properties hold for the hardware design guarantees that all possible
behaviors of the hardware are correct.

There are two main approaches to formally verifying hardware: property verification
and implementation verification [KG02]. In property verification, the desired functionality
is formulated in the form of temporal logic properties, which are then proved for an
abstract representation of the design under verification. The use of temporal logic
as a framework for specifying properties of hardware designs allows describing the
desired behavior. In implementation verification, an implementation is made according
to the specification. Ultimately, implementation verification establishes a formal relation
between the specification and the implementation to verify that the implementation
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Chapter 1. Introduction

is correct.

In practice, both property and implementation verification co-exist – a new hardware
design is first verified using property verification; implementation verification takes place
during further refinement iterations of the design so that each iteration uses a new
implementation [KG02]. When both verification approaches are applied in combina-
tion, the properties formulated within the property verification phase have to hold for
all the subsequent implementations of the design [KG02].

Unfortunately, formal verification is not a silver bullet. It is a challenge to scale
the approach to the system level (this is usually related to the so-called "state space
explosion problem"), which is one of the main reasons why the conventional means
for hardware design validation are not yet superseded by formal verification.

1.1 xMAS

xMAS is a graphical language aimed at modeling and verification of hardware, in-
troduced originally by researchers at Intel [CKO10]. The language has a compact
set of easy-to-understand primitives. By composing these primitives, one can build
hardware designs that cover many possible design scenarios. The composition of
primitives in xMAS is made simple. It is enough to connect the output of one prim-
itive to the input of another without the need of thinking of glue logic. Henceforth
we will be using the term xMAS networks to refer to hardware designs expressed in
the xMAS language.

Figure 1.1: Core xMAS primitives [CKO10].

Figure 1.1 depicts the core primitives of xMAS. For now, we consider a high-level
explanation of every primitive; more details will be given further when it is required.
The queue primitive acts as a buffer for data packets. Queues in xMAS are parame-
terized by the size and act according to the "first in, first out" principle. The function
primitive is used to transform data according to a pre-defined data transformation
function f . The source primitive generates data packets; the decision to stay idle or
to transfer a certain packet through output o is taken non-deterministically during
every clock cycle. The assumption is that data packets are generated infinitely often.
The sink primitive uses its input i to accept data packets. Analogously to the source,
the assumption is that it accepts data infinitely often. The fork primitive has two
pre-defined data transformation functions: f and g; the primitive takes a data packet
d from its input i, and immediately transfers f (d) through a and g(d) through b. The
join primitive has a predefined binary data-transforming function h; the primitive
simultaneously takes data packets d and e from its inputs a and b, and immediately
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1.1. xMAS

transfers h(d, e) through output o. The switch primitive is used for routing data –
whenever a data packet comes to the input i of the switch, a (user-defined) arbitra-
tion function r is used to decide which of the two outputs is used for the propagation
of the packet. Finally, the merge primitive is used for data arbitration. Whenever
there are data packets coming to both inputs a and b simultaneously, the merge uses a
(user-defined) arbitration policy to give priority to one of the packets. For verification
purposes, the merge can be assumed to be non-deterministic; that covers all possible
arbitration policies.

A B
x.data

x.trdy
x.irdy

Figure 1.2: Connecting primitives in xMAS.

To explain the connection between primitives and the concept behind data transfers,
let us refer to Figure 1.2. In the figure, we have two primitives A and B connected
using channel x. We call primitive A the initiator and primitive B the target. We use
three arrows to depict channel x on purpose since every channel in xMAS carries
three signals – irdy, trdy, and data; irdy is used by the initiator to indicate that
its ready to transfer, trdy is used by the target to indicate the readiness to accept
a transfer, and data carries data from the initiator to the target. The three signals
implement the hand-shake principle – data is only transferred if both the initiator
and the target are ready for the transfer. The channels in xMAS are assumed to be
persistent in terms of data transfers. That is, whenever irdy of a particular channel
becomes set, it remains set, and the value of data of the channel stays the same until
trdy of the channel becomes set and data is transferred successfully.

Intuitively, the semantics of xMAS can be explained as follows. We split an xMAS
network into two parts – let the contents of all queues be the sequential part of the
network and let irdy, trdy, and data signals of all channels be the combinatorial
part of the network. Initially, all queues are empty. In every clock cycle, first, the
combinatorial part gets updated, then the sequential part. More details on the xMAS
semantics will be provided further as needed.

x

1
y

Figure 1.3: xMAS example

Example 1.1. In Figure 1.3, we show an xMAS network consisting of a source, a queue
of size one, and a sink. For simplicity, we assume that the source can only generate
simple tokens (that is, the data type of the source consists of a single element). Hence
we can safely omit the values of data. For better understanding of how xMAS works,
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Chapter 1. Introduction

we walk the reader through a possible execution of the network. We consider three
states starting from an initial state.

1. Execution starts in a state where the queue is empty, the source is ready to
generate a token, and the sink is ready to accept data. In that case, we have
x.irdy since the source is ready to produce data, x.trdy since the queue is
empty, ¬y.irdy since the queue is empty and therefore has no data to transfer,
and y.trdy since the sink is ready to accept data.

2. The queue contains a token since a data transfer happened from the source to
the queue, the source decides to stay idle, and the sink is ready to accept data.
We have ¬x.irdy as the source does not attempt to transfer data, ¬x.trdy as the
queue is full and cannot accept more packets, y.irdy as the queue has data to
transfer further, and y.trdy as the sink is ready to accept data.

3. The queue became empty since a data transfer happened from the queue to the
sink, the source decides to stay idle again, and the sink decides not to accept
data. In that case, we have ¬x.irdy, x.trdy, ¬y.irdy, and ¬y.trdy.

1.2 Research questions

The state-based perspective on xMAS is important due to several factors. Firstly,
the original authors of the xMAS language define various properties of xMAS net-
works [GCK11] using Linear Temporal Logic (LTL) [BK08]; by its nature, LTL assumes
a state-based setting. In addition, Wouda et al. introduced a verification technique,
which relies on symbolic model checking [BK08] to analyze the reachability of dead-
lock states in a given xMAS network [WJS15]. The technique by Wouda et al. implies
a state-based representation of xMAS. Despite its importance, there is no state-based
formalization of xMAS in the literature; this raises the following question.

RQ1. What is the state-based semantics of xMAS?

Since its introduction, xMAS was extended with a Finite State Machine primitive
by Verbeek et al. [Ver+17]. The FSM extension made xMAS more expressive. The
authors of the extension demonstrated simultaneous verification of cache coherence
protocols and the communication fabric. In their experiments, the authors assumed
random access buffers instead of conventional for xMAS first-in-first-out queues. In
that regard, it is interesting to find out whether xMAS with the FSM extension can
tackle verification at the system level1 in a more generic setting.

RQ2. Is xMAS with the FSM extension suitable for the verification at the system
level?

The authors of xMAS introduced an efficient technique based on SAT-solving [Cla+08;
BHM21]; given an xMAS network, the technique translates the liveness problem of
the network into a boolean satisfiability problem [GCK11; CKO12]. By the nature

1By the verification at the system level, we mean verification of whole systems and not just isolated parts
of systems.
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1.3. Contributions

of the technique, the absence of a satisfying assignment to the satisfiability problem
guarantees the absence of deadlocks. However, a satisfying assignment might yield a
false deadlock that is not reachable. The SAT-based verification technique for xMAS
networks is not prone to false deadlocks only if the network under verification
is acyclic and made of the core xMAS components [CK10]. Hence, the following
research question arises.

RQ3. How can we improve the SAT-based verification technique so that it is not
prone to false deadlocks in the case of xMAS networks with FSMs?

As a high-level modeling language, xMAS can be used for specifying new hardware
designs. However, there is a gap between high-level specifications expressed in
xMAS and Register Transfer Level (RTL)2 implementations. The literature lacks
methodologies for verifying the correctness of RTL implementations built according
to the corresponding xMAS specifications. Naturally, there is the following research
question.

RQ4. How can we verify the correctness of RTL implementations with respect
to the xMAS specifications?

1.3 Contributions

Further we focus on the contributions of the thesis which are grouped into chapters.
Each of the chapters is mostly self-contained.

In Chapter 2, we answer RQ1 by precisely formulating the semantics of the xMAS
language in terms of Kripke Structures [BK08] and proving its correctness with
respect to the semantics in terms of irdy, trdy, and data signals. The formal semantics
for xMAS lays the theoretical foundation for the subsequent work related to xMAS
liveness verification techniques.

Looking for an answer for RQ2, we found out that the liveness verification technique
for the xMAS FSM extension proposed by Verbeek et al. [Ver+17] is unsound. In
Chapter 3, we provide a counter-example for the technique by Verbeek et al. We
propose an alternative liveness verification approach for xMAS with FSMs, and
prove that it is sound. We also show that our approach allows to verify liveness at
the system level. The chapter is based on the work presented in a technical report
Sound idle and block equations for finite state machines in xMAS by Fedotov et al. [FKS19]
and in a conference paper Effective System Level Liveness Verification by Fedotov et
al. [FKS20].

Our liveness verification technique for xMAS with FSMs, introduced in Chapter 3
is not complete, i.e., it can report deadlock situations, which are unreachable. In
Chapter 4, we propose two approaches to make the technique complete and evaluate
their scalability; this answers RQ3.

2That is, hardware is modeled using the flow of signals between registers
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Chapter 1. Introduction

In Chapter 5, we introduce a method which, given an xMAS network and a corre-
sponding RTL implementation, automatically turns the xMAS network into an RTL
specification, and further, the method checks the correctness of the implementation
by verifying that the set of traces produced by the implementation is included in
the set of traces produced by the specification. The chapter is based on the work
presented in a conference paper Automatic generation of hardware checkers from formal
micro-architectural specifications by Fedotov and Schmaltz [FS18]. The work presented
in the chapter gives an answer to RQ4.

1.4 Related Work

1.4.1 Hardware modeling and verification

Describing hardware at the level of logic gates is cumbersome, especially with the
modern hardware complexity. Hardware Description Languages (HDLs) were intro-
duced to make the process of describing hardware more convenient. HDLs represent
hardware using a Register Transfer Level abstraction. The two most widely-used
HDLs are SystemVerilog [Tar20] and VHDL3 [HH12]. An HDL description of hard-
ware can be simulated and synthesized. Simulation is conducted by supplying data
to the HDL description and monitoring the outputs of the simulation; the aim of
the simulation of HDL is to reveal potential design errors. Synthesis of HDL yields
a description of the hardware in terms of logic gates; an HDL synthesizer might
also optimize the HDL description [HH12]. Methodologies for formal verification
of both SystemVerilog and VHDL are presented in the literature. In particular, Sys-
temVerilog models can be verified using nuXmv model-checker [Irf+16] and CADP
toolbox [Bou+18]; verification of VHDL models can be tackled using Cadence SMV
model-checker[KRŠ06] and CV toolset [DSC98]. In comparison to xMAS, HDLs de-
scribe hardware at a lower level. While xMAS is tailored for specifying hardware
designs, HDLs are more suitable for describing hardware implementations.

Besides low-level textual languages such as SystemVerilog and VHDL there exists a
high-level graphical language SCADE, which is now widely used in safety-critical
areas such as avionics and railways. Although the primary focus of the language is to
model, simulate, and verify control software for embedded systems, the language can
also be adapted for high-level modeling and verification of hardware. SCADE com-
bines synchronous data-flow and Finite State Machines; data-flow can be controlled
by means of merges and user-defined nodes [Ber07]. There is a precise formalization
of the semantics of SCADE in the literature [Ber07]. SCADE is similar to xMAS
in the sense that SCADE models consist of block diagrams that communicate syn-
chronously using channels. In the context of hardware, xMAS stands out by the fact
that it contains a compact set of primitives that are made specifically for hardware
modeling. In addition, xMAS has an efficient verification method that translates the
source model into a SAT-problem; SCADE lacks an analogous methodology.

3VHDL stands for VHSIC Hardware Description Language, where VHSIC is for Very High-Speed Inte-
grated Circuits Program.
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1.4. Related Work

1.4.2 xMAS

Besides the techniques by the authors of xMAS and Wouda et al. that we already men-
tioned in the research questions subsection, there exist more verification techniques
associated with xMAS. In addition, Verbeek and Schmaltz developed an algorithm
based on wait-for graphs [SGG08] for xMAS liveness verification [VS11]. Chatterjee
et al. developed a method that involves using a model checker that takes Register
Transfer Level (RTL) specifications as input to verify several classes of properties on
xMAS networks [CK10]. Van Gastel and Schmaltz formalized a subset of xMAS in
ACL2 and developed a method to check certain properties on xMAS networks, such
as non-emptiness of routing and correctness of progress conditions [GS13].

We already mentioned an FSM extension by Verbeek et al. [Ver+17] in the research
questions subsection. Besides that, there are more extensions to xMAS. Burns et al.
extended xMAS with support of synthesis and verification of Globally Asynchronous
Locally Synchronous (GALS) architectures [BSY15]. The extension by Burns et al.
involves a new synchronization primitive and a translation of xMAS into Circuit
Petri nets [YGL00].

Joosten and Schmaltz bridged the gap between Register Transfer Level specifications
expressed in such languages as SystemVerilog [Tar20] and abstract models [JS15].
They introduced a method that extracts an xMAS network automatically from a
given RTL specification. The method is beneficial since high-level models are often
more accessible to verification than low-level RTL specifications. In addition, high-
level models can provide invariants that are useful for the verification at the RTL
level.

Das et al. developed a methodology to translate a subset of xMAS into Finite State
Machines [DKB17]. It is worth noting that the work of Das et al. does not support
queues. In their work, Das et al. propose to turn the FSM obtained from a given
xMAS network into an SMV model manually. A symbolic model checker can be used
on the SMV model to verify data progress properties of the xMAS model.

Zhao and Lu introduced a method to analyze the per-flow delay bound property
on xMAS networks [ZL13]. The analysis is conducted by mapping a given xMAS
network to its network calculus [Cru91a; Cru91b] model.

Verbeek and Schmaltz generalized xMAS to a family of Micro-architecture Descrip-
tion Languages [VS12]; the family of languages gives the ability to extend the set of
basic xMAS primitives by describing new custom ones. Verbeek and Schmaltz also
developed a methodology to derive liveness verification algorithms automatically
for models built using custom primitives [VS12].

7





Chapter 2

Semantics of xMAS

2.1 Introduction

Hardware design starts with a high-level specification, which is usually made using
block diagrams and accompanied with informal text describing the desired function-
ality. Subsequently, the high-level design undergoes refinement until a final design is
obtained. Validation of the design consists of checking the conformance of the design
to the desired specification. Conventionally, this is tackled by simulation and testing.
However, growing complexity of hardware designs makes coverage of simulation
and testing less and less complete. In this regard, formal verification becomes more
and more adopted as a measure to address the above mentioned challenges [KG02].
However, scaling formal verification to the system level remains a challenge.

Figure 2.1: xMAS primitives [CKO10].

To address some of the issues with modeling and verification of communication
fabrics, Intel introduced the xMAS (eXecutable Microarchitectural Specification) lan-
guage [CKO10]. xMAS is a graphical language for modeling and verification of
microarchitectures. The language has a small set of well-understood primitives, see
Figure 2.1, which is expressive enough to capture the functionality of most communi-
cation fabrics. The language is designed in such a way that it is not required to write
complex "glue" logic in order to connect the primitives. One builds microarchitectural
models by structurally composing the primitives of the language.

Since its introduction, xMAS has been efficiently used for modeling, verification
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Chapter 2. Semantics of xMAS

and quality of service analysis of microarchitectures. In [GCK11], Gotmanov et al.
introduce a method which reduces liveness verification of xMAS to a satisfiability
problem. In [HBS11; Hol+12], Holcomb et al. use xMAS for performance analysis of
performance analysis of large scale networks-on-chips. In [ZL13], Zhao et al. analyze
per-flow delay bounds of xMAS networks. In [GVS14], Gastel et al. infer automat-
ically channel types in xMAS networks. In [BSY15], Burns et al. conduct Globally
Synchronous Locally Asynchronous (GALS) synthesis and verification by extend-
ing and translating xMAS into Petri nets. Verbeek et al. add Finite State Machines
to xMAS and use xMAS with FSMs to verify cache coherence protocols [Ver+17].
Joosten et al. infer xMAS networks from RTL specifications and conduct liveness
verification [JS13; JS14].

Chatterjee et al. present a semantics of xMAS by describing dependencies between
input and output signals of primitives [CKO10]. Wouda et al. formalise a process
algebra semantics of xMAS [WJS15]. Note that process algebra semantics induces
Labelled Transition System (LTS) semantics. Although there exists work on trans-
forming Labelled Transition Systems to Kripke Structures [RSW12], this approach is
indirect, and the resulting KSs would differ from the Kripke Structure representation
of xMAS that is already assumed in symbolic model checking techniques associated
with the xMAS language. A Kripke Structure semantics of the language was never
formalized in the literature.

Contributions. First of all, we give a presentation of xMAS semantics in terms
of signal structures. To make the presentation of the semantics by Chatterjee et al.
more structured, we define the notion of signal state, which also allows us to define
initial signal states, the transition relation between signal states, and the composition
of signal structures. We also formalize the semantics of xMAS in terms of Kripke
Structures. In addition, we carefully prove that the signal semantics and the Kripke
Structure semantics are bisimilar.

Structure of the chapter. In Section 2.2, we introduce the necessary notation that we
use throughout the chapter. In the same section, we also recall the xMAS language
as it was introduced by Chatterjee et al. In Section 2.3, we define xMAS networks
as mathematical objects. In the same section, we formalise a semantics of xMAS
networks in terms of irdy, trdy, and data signals, define the notion of signal state,
initial signal state and define the transition relation between signal states. In Section
2.4, we formalise a semantics of xMAS networks in terms of Kripke Structures. In
Section 2.5, we prove that our Kripke Structure semantics for xMAS networks is
bisimilar to the signal structure semantics defined in Section 2.3. Finally, Section 2.6
concludes the chapter.

2.2 Preliminaries

We first introduce some notation that is used in the rest of the chapter. We write N

to denote the set of natural numbers, B = {false, true} to denote the set of booleans.
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2.2. Preliminaries

Given a partial function f : A1 × . . .×An 7→ B and arguments a1 ∈ A1, . . . , an ∈ An, we
write f (a1, . . . , an) = ⊥ in case f is undefined for a1, . . . , an. Given a set D, we write
List(D) to denote the set of all lists of elements of D. Empty lists are denoted using [].
Given a list xs, the length of xs is denoted by |xs|. We write rhead(xs) to denote the
last element of list xs. That is, given a list xs = [x0, . . . , xn], we have rhead(xs) = xn.
Note that rhead([]) = ⊥. We write rtail(xs) to denote list xs without its last element.
That is, given a list xs = [x0, . . . , xn], we have rtail(xs) = [x0, . . . , xn−1]. Similarly to
rhead, rtail is undefined for empty lists.

2.2.1 xMAS Networks

An xMAS network consists of a set of primitives, connected using channels. Each
channel transfers three signals: boolean signals irdy and trdy, and a signal data. The
signals are used to implement a handshake principle. That is, signals irdy and data
are used to signal that the initiator of the data transfer is ready, while trdy is used to
signalize that the target of the data transfer is ready. The data is transferred when
both irdy and trdy are true. For primitives A and B connected using channel x, this
is illustrated in Figure 2.2.

A B
x.data

x.trdy
x.irdy

Figure 2.2: Connection between primitives in xMAS.

For an execution of an xMAS network, we assume a synchronous timing model,
which means that at each clock cycle:

• every initiator sets values for the corresponding irdy and data,

• every target sets a value for trdy,

• data transfers happen simultaneously in all channels which are ready to transfer
(i.e., channels whose irdy and trdy are set).

2.2.2 xMAS Primitives

The behavior of xMAS primitives is described in terms of irdy, trdy and data sig-
nals [CKO10]. Further we recall the description of the core xMAS primitives as they
were introduced by Chatterjee et al.

o

d

At each clock cycle, a source non-deterministically tries to insert packet
d in output channel o. Formally, for a single datum d it is defined as
follows. Let oracle be an unconstrained binary input (i.e., the value
to oracle is assigned non-deterministically every clock cycle), and pre

be the standard synchronous operator that returns the value of its argument in the
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Chapter 2. Semantics of xMAS

previous clock cycle, and false in the very first cycle. Then, the values of irdy and
data signals of channel o are defined as follows:

o.irdy := oracle∨ pre(o.irdy∧¬o.trdy), o.data := d.

i
A sink non-deterministically tries to consume data from input channel
i at every clock cycle. Formally, the values of trdy signal of channel i
are defined as follows:

i.trdy := oracle∨ pre(i.trdy∧¬i.irdy).

i
k o

A queue is a FIFO-buffer parameterized with a size k. A queue
is ready to write data to output channel o when it is not empty.
The queue is ready to write as data the contents of its head.

A queue is ready to accept data from input channel i when it is not full. Let xs be
a list which represents the current contents of the queue. Then, the values of trdy
signals of channel i and the values of irdy and data signals of channel o are defined
as follows:

o.irdy := |xs| > 0, o.data :=

rhead(xs) if |xs|>0
⊥ otherwise,

i.trdy := |xs| < k.

i
f

o
A function primitive is parameterized with a function f , that is
used to transform all data that flows through the primitive. Let i
and o be its input and output channels respectively, and let f be

its data transforming function. Then, the values of trdy signals of channel i and the
values of irdy and data signals of channel o are defined as follows:

o.irdy := i.irdy, o.data := f (i.data), i.trdy := o.trdy.

i
o0

o1

f

g

A fork is parameterized with two data transforming functions: f
and g; it has one input i and two outputs: o0 and o1. A fork reads
a data packet d at its input and writes f (d) and g(d) to o0 and o1
respectively. A data transfer only happens when the input and

both outputs are ready. The values of trdy signals of channel i, and the values of irdy
and data signals of channels o0 and o1 are defined as follows:

o0.irdy := i.irdy∧ o1.trdy, o0.data := f (i.data),
o1.irdy := i.irdy∧ o0.trdy, o1.data := g(i.data),

i.trdy := o0.trdy∧ o1.trdy.

h
o

i0

i1

A join is the dual of a fork. It has two inputs: i0 and i1, and one
output o; it is also parameterized by a binary data transforming
function h. A join reads data packets d and e from inputs i1 and i2
simultaneously, and immediately writes h(d, e) to output o. A data
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2.3. Semantics of xMAS Networks

transfer only happens, when the output and both inputs are ready. The values of
trdy signals of channels i and i′, and the values of irdy and data signals of channel o
are defined as follows:

o.irdy := i0.irdy∧ i1.irdy, o.data := h(i0.data, i1.data),
i0.trdy := i1.irdy∧ o.trdy, i1.trdy := i0.irdy∧ o.trdy.

r
i

o0

o1

A switch routes packets in the network. It has one input i, and two
outputs o0 and o1. A switch is parameterized by a routing boolean
function r. Informally, the switch applies r to a packet d at its input,
and it routes the packet to the first output if r(d), and to the second

output otherwise. Formally the values of trdy signals of channel i, and the values of
irdy and data signals of channels o0 and o1 are defined as follows:

o0.irdy := i.irdy∧ r(i.data), o0.data := i.data,
o1.irdy := i.irdy∧¬r(i.data), o1.data := i.data,

i.trdy := (o0.irdy∧ o0.trdy)∨ (o1.irdy∧ o1.trdy).

o
i0

i1

A merge has two inputs i0 and i1, and one output o. It selects
one packet among two competing packets. Let u be an uncon-
strained input, that is used for choosing between the input chan-
nels. Without constraints imposed on u, we leave the arbitration

non-deterministic.1 The values of trdy signals of channels i0 and i1, and the values
of irdy and data signals of channel o are defined as follows:

o.irdy := (u∧ i0.irdy)∨ (¬u∧ i1.irdy), o.data :=


i0.data if u∧ i0.irdy,
i1.data if ¬u∧ i1.irdy,
⊥ otherwise,

i0.trdy := u∧ o.trdy∧ i0.irdy, i1.trdy := ¬u∧ o.trdy∧ i1.irdy.

Before moving on, let us consider an example of an xMAS network depicted in
Figure 2.3. The network consists of a source, a queue, and a sink. The queue in
the example can store up to one datum. The source is connected to the queue using
channel x, channel y connects the queue and the sink.

2.3 Semantics of xMAS Networks

In the previous section we described xMAS primitives and their behavior in terms of
signals. We now formalize the structure of xMAS networks, and define semantics in
terms of signals.

1Note, that in [WJS15] o.irdy is defined as o.irdy := i0.irdy ∨ i1.irdy, which is not correct, in case u is
unconstrained. The problem arises when, for example, u = false, i0.irdy = true, and i1.irdy = false.
Then, we have o.irdy = true, i0.trdy = false, i1.trdy = false, and o.data = false, which can lead to a data
transfer through o, while neither of the inputs is ready, and the data at the output is undefined.
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x

1
y

Figure 2.3: xMAS network example.

2.3.1 xMAS Networks

We first formalise xMAS networks. The set of component types is

Γ = {source, sink, function, fork, join, switch,merge} ∪ {queuek | k ∈N}.

Note that the queue type is parameterized in order to reflect the sizes of queues.

Definition 2.1. An xMAS network is a structure (P,G,C, c, chan, type) where:

• P is a non-empty set of components;

• G is a non-empty set of channels;

• C is a non-empty set of data, which consists of all possible values of data signals
of all channels x ∈ G;

• c : G→ (2C
\ {∅}) is the function that assigns sets of data to channels from G;

• chan : P × {in, out} ×N 7→ G is a partial function which, given a component
p ∈ P, an input/output identifier and a channel number n ∈ N, returns the
channel connected to input (output) number n of component p;

• type : P→ Γ assigns a type to a component.

Sets of data that are transferred through channels g ∈ G can be computed using
the data propagation algorithm defined by Wouda et al. [WJS15]. In case data is
undefined for a certain channel g ∈ G, data g can be overapproximated such that
c(g) = C.

The semantics of an xMAS network is only well-defined if the network is valid.

Definition 2.2. Given an xMAS network N = (P,G,C, c, chan, type), we say that N is
valid if and only if each of the following holds:

1. |P| > 0, that is, it has at least one primitive;

2. c is such that for all x ∈ G, c(x) returns the set which consists of all possible
values of x.data 2;

3. G = {chan(p, io,n) | p ∈ P, io ∈ {in, out},n ∈ N, chan(p, io,n) , ⊥}, that is, every
channel is connected to at least one primitive;

4. for all primitives p, p′ ∈ P, and io ∈ {in, out}, and n,n′ ∈N it holds that

chan(p, io,n) = chan(p′, io,n′)⇒ p = p′ ∧ n = n′,
2Consistency of c can be checked using the data propagation defined by Wouda et al. [WJS15]
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2.3. Semantics of xMAS Networks

that is, a channel cannot have more than one initiator and more than one target;

5. for all primitives p, p′ ∈ P, and n,n′ ∈N it holds that

chan(p, out,n) = chan(p′, in,n′)⇒ p , p′,

that is, a channel cannot have the same primitive as both the initiator and the
target;

6. for all primitives p ∈ P:

(a) if type(p) = source then

• for all n ∈N, chan(p, in,n) = ⊥;

• for all n ∈N such that n > 0, chan(p, out,n) = ⊥;

• there is o ∈ G, such that chan(p, out, 0) = o,

that is, every source primitive has no input channels and one output
channel;

(b) if type(p) = sink then

• for all n ∈N, chan(p, out,n) = ⊥;

• for all n ∈N such that n > 0, chan(p, in,n) = ⊥;

• there is i ∈ G, such that chan(p, in, 0) = i,

that is, every sink primitive has no output channels and one input channel;

(c) if type(p) = queuek or type(p) = function then

• for all n ∈N such that n > 0 and for all io ∈ {in, out},

chan(p, io,n) = ⊥;

• there is i ∈ G such that chan(p, in, 0) = i;

• there is o ∈ G such that chan(p, out, 0) = o,

that is, every queue primitive and every function primitive has one input
and one output channel;

(d) if type(p) = fork or type(p) = switch then

• for all n ∈N such that n > 0, chan(p, in,n) = ⊥;

• for all n ∈N such that n > 1, chan(p, out,n) = ⊥;

• there is i ∈ G such that chan(p, in, 0) = i;

• there is o0 ∈ G such that chan(p, out, 0) = o0;

• there is o1 ∈ G such that chan(p, out, 1) = o1,
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that is, every fork primitive and every switch primitive has one input
channel and two output channels;

(e) if type(p) = join or type(p) = merge then

• for all n ∈N such that n > 1, chan(p, in,n) = ⊥;

• for all n ∈N such that n > 0, chan(p, out,n) = ⊥;

• there is i0 ∈ G such that chan(p, in, 0) = i0;

• there is i1 ∈ G such that chan(p, in, 1) = i1;

• there is o ∈ G such that chan(p, out, 0) = o,

that is, every join primitive and every merge primitive has two input
channels and one output channel.

2.3.2 Signal Semantics of xMAS Networks

In Section 2.2, we described the behavior of xMAS primitives in terms of inter-
dependencies between irdy, trdy and data signals of the input and output channels
of the primitives. We now extend this to xMAS networks. Our approach is to
introduce the notion of signal states, that is, values of irdy, trdy, and data signals of
all channels and contents of all queues in the given network at a given moment in
time. We also define initial signal state, that is, initial values of irdy, trdy, and data
signals of all channels and initial contents of all queues. We also define transition
relations between signal states.

First, we define Qk
D, which represents all possible contents of a queue of type D with

capacity k.

Definition 2.3. Given k ∈ N+, and data D, then we define Qk
D = {xs | xs ∈

List(D), |xs|≤ k}.

Now we introduce a set of signal labels Sig(N), which we use to represent values of
irdy, trdy and data signals, as well as contents of queues.

Definition 2.4. Given an xMAS network N = (P,G,C, c, chan, type), the set of signal
labels for N is defined as follows:

Sig(N) ={x.irdy | x ∈ G} ∪ {x.trdy | x ∈ G} ∪ {x.data = d | x ∈ G, d ∈ c(x)}

∪{p.queue = xs | p ∈ P, type(p) = queuek, xs ∈ Qk
c(chan(p,in,0))

}.

Given a valid xMAS network N, we define a validity property for all subsets S of
Sig(N), such that S is valid if and only if:

• every channel in N has exactly one corresponding data label in S, and

• every queue in N has exactly one label in S that reflects its contents, and
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• all signal labels in S are consistent with signal definitions for primitives from
Subsection 2.2.2.

More formally, the validity property for subsets of a set of signal labels is defined as
follows.

Definition 2.5. Given a valid xMAS network N = (P,G,C, c, chan, type), let Sig(N) be
its set of signal labels. For all S ⊆ Sig(N), we say that S is a valid set of signal labels
if the following properties hold:

1. for all channels x ∈ G:

(a) there is datum d ∈ c(x) such that x.data = d ∈ S, and

(b) for all data d, e ∈ c(x) if x.data = d ∈ S and x.data = e ∈ S then d = e;

2. for all primitives p ∈ P:

(a) if type(p) = queuek with chan(p, in, 0) = i and chan(p, out, 0) = o, then

• there is xs ∈ Qk
c(i) such that p.queue = xs ∈ S, and

• for all xs, xs′ ∈ Qk
c(i) if p.queue = xs ∈ S and p.queue = xs′ ∈ S then

xs = xs′, and

• for all xs ∈ Qk
c(i), if p.queue = xs ∈ S then |xs| < k⇔ i.trdy ∈ S, and

• for all xs ∈ Qk
c(i), if p.queue = xs ∈ S then |xs| > 0⇔ o.irdy ∈ S, and

• for all xs ∈ Qk
c(i), if p.queue = xs ∈ S then |xs| > 0⇒ o.data = last(xs) ∈

S;

(b) if type(p) = function with chan(p, in, 0) = i, chan(p, out, 0) = o, and with a
data transforming function f , then for all d ∈ c(i)

• i.irdy ∈ S⇔ o.irdy ∈ S, and

• o.trdy ∈ S⇔ i.trdy ∈ S, and

• i.data = d ∈ S⇒ o.data = f (d) ∈ S;

(c) if type(p) = fork with chan(p, in, 0) = i, and chan(p, out, 0) = o0, and
chan(p, out, 1) = o1, and with data transforming functions f and g, then
for all d ∈ c(i)

• i.irdy ∈ S∧ o1.trdy ∈ S⇔ o0.irdy ∈ S, and

• i.irdy ∈ S∧ o0.trdy ∈ S⇔ o1.irdy ∈ S, and

• o0.trdy ∈ S∧ o1.trdy ∈ S⇔ i.trdy ∈ S, and

• i.data = d ∈ S⇔ o0.data = f (d) ∈ S, and

• i.data = d ∈ S⇔ o1.data = g(d) ∈ S;
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(d) if type(p) = join with chan(p, in, 0) = i0, and chan(p, in, 1) = i1, and
chan(p, out, 0) = o, and with a data transforming binary function h, then
for all d ∈ c(i0), e ∈ c(i1)

• i1.irdy ∈ S∧ o.trdy ∈ S⇔ i0.trdy ∈ S, and

• i0.irdy ∈ S∧ o.trdy ∈ S⇔ i1.trdy ∈ S, and

• i0.irdy ∈ S∧ i1.irdy ∈ S⇔ o.irdy ∈ S, and

• i0.data = d ∈ S∧ i1.data = e ∈ S⇒ o.data = h(d, e) ∈ S;

(e) if type(p) = switch with chan(p, in, 0) = i, and chan(p, out, 0) = o0, and
chan(p, out, 1) = o1, and a routing function r, then for all d ∈ c(i)

• i.irdy ∈ S∧ i.data = d ∈ S∧ r(d)⇔ o0.irdy ∈ S, and

• i.irdy ∈ S∧ i.data = d ∈ S∧¬r(d)⇔ o1.irdy ∈ S, and

• (o0.irdy ∈ S ∧ o0.trdy ∈ S) ∨ (o1.irdy ∈ S ∧ o1.trdy ∈ S) ⇔ i.trdy ∈ S,
and

• i.data = d ∈ S∧ r(d)⇒ o0.data = d ∈ S, and

• i.data = d ∈ S∧¬r(d)⇒ o1.data = d ∈ S;

(f) if type(p) = merge with chan(p, in, 0) = i0, and chan(p, in, 1) = i1, and
chan(p, out, 0) = o, then for all u ∈ B, d ∈ c(i0), e ∈ c(i1):

• o.irdy ∈ S⇔ (u∧ i0.irdy ∈ S)∨ (¬u∧ i1.irdy ∈ S), and

• i0.trdy ∈ S⇔ u∧ o.trdy ∈ S∧ i0.irdy ∈ S, and

• i1.trdy ∈ S⇔ ¬u∧ o.trdy ∈ S∧ i1.irdy ∈ S, and

• u∧ i0.irdy ∈ S∧ i0.data = d ∈ S⇒ o.data = d ∈ S, and

• ¬u∧ i1.irdy ∈ S∧ i1.data = e ∈ S⇒ o.data = e ∈ S.

The set of signal states is now defined as follows.

Definition 2.6. Given a valid xMAS network N = (P,G,C, c, chan, type), we define
the set of signal states as State(N) = {S ⊆ Sig(N) | S is valid}.

Further, we define the set of initial signal states. The initial signal states are those
signal states in which all queues are empty. Formally, it is defined as follows.

Definition 2.7. Given a valid xMAS network N = (P,G,C, c, chan, type), the set of
initial signal states Init(N) is defined as {s ∈ State(N) | ∀p ∈ P.type(p) = queue ⇒
p.queue = [] ∈ s}.

The successor relation for signal states needs to reflect the effect of the standard
synchronous operators pre of sources and sinks and the updates of the contents of
the queues.
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Definition 2.8. Given a valid xMAS network N = (P,G,C, c,H, type), successor
relation Next(N) ⊆ State(N) × State(N) is the minimal relation satisfying, for all
(s, s′) ∈ Next(N), and all primitives p ∈ P:

• if type(p) = source with chan(p, out, 0) = o, then o.irdy ∈ s∧ o.trdy 6∈ s∧ o.data =
d ∈ s implies o.irdy ∈ s′ ∧ o.data = d ∈ s′;

• if type(p) = sink with chan(p, in, 0) = i, then i.trdy ∈ s ∧ i.irdy 6∈ s implies
i.trdy ∈ s′;

• if type(p) = queue with chan(p, in, 0) = i, and chan(p, out, 0) = o, then:

– ¬(i.irdy ∈ s ∧ i.trdy ∈ s) ∧ ¬(o.irdy ∈ s ∧ o.trdy ∈ s) ∧ p.queue = xs ∈ s
implies p.queue = xs ∈ s′, and

– i.irdy ∈ s ∧ i.trdy ∈ s ∧ o.data = d ∈ s ∧ ¬(o.irdy ∈ s ∧ o.trdy ∈ s) ∧
p.queue = xs ∈ s implies p.queue = (d : xs) ∈ s′, and

– ¬(i.irdy ∈ s∧ i.trdy ∈ s)∧ o.irdy ∈ s∧ o.trdy ∈ s∧ p.queue = xs ∈ s implies
p.queue = rtail(xs) ∈ s′, and

– i.irdy ∈ s∧ i.trdy ∈ s∧ o.data = d ∈ s∧ o.irdy ∈ s∧ o.trdy ∈ s∧ p.queue =
xs ∈ s implies p.queue = (d : rtail(xs)) ∈ s′.

Definition 2.8 only restricts sources, sinks, and queues since sources (sinks) need
to take into account their previous states so that production (consumption) of data
needs to be persistent; queues need to keep track of their contents; primitives with
the other types can behave freely regardless of their previous states.

We combine the signal states, initial signal states and successor relations for signal
states into the signal structure.

Definition 2.9. Given a set of signal states State, a set of signal initial states Init, and
a signal successor relation Next, we define a signal structure M = (State, Init,Next).

For a given xMAS network, the signal structure is defined as follows.

Definition 2.10. Given a valid xMAS network N = (P,G,C, c, chan, type), the signal
structure of N is M(N) = (State(N), Init(N),Next(N)).

xMAS networks can be composed to obtain larger networks, provided that they are
compatible. Networks are compatible if the sets of primitives are disjoint, they agree
on the data sent along their shared channels, and each channel is connected to an
input/output in at most one network.

Definition 2.11. Given two xMAS networks N = (P,G,C, c, chan, type), and N′ =
(P′,G′,C′, c′, chan′, type′), we say that N and N′ are compatible, if and only if the
following holds:

• P∩ P′ = ∅, and

• for all channels x ∈ G∩G′ : c(x) = c′(x), and
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• for all primitives p ∈ P, p′ ∈ P′, and for all io ∈ {in, out}, and for all n,n′ ∈ N it
holds that chan(p, io,n) , chan′(p′, io,n′).

We now formally define the composition of two compatible xMAS networks into a
larger network.

Definition 2.12. Given two valid, compatible xMAS networks N′ = (P′,G′,C′, c′,
chan′, type′), and N′′ = (P′′,G′′,C′′, c′′, chan′′, type′′), the composition of the net-
works N′ q N′′ = (P,G,C, c, chan, type) is defined as follows:

1. P = P′ ∪ P′′,

2. G = G′ ∪G′′,

3. C = C′ ∪C′′,

4. c is such that for all channels x ∈ G :

c(x) =

c′(x) if x ∈ G′,
c′′(x) otherwise,

5. for all primitives p ∈ P, and for all io ∈ {in, out}, and for all n ∈N it holds that

chan(p, io,n) =

chan′(p, io,n) if p ∈ P′,
chan′′(p, io,n) otherwise.

6. for all primitives p ∈ P it holds that

type(p) =

type′(p) if p ∈ P′,
type′′(p) otherwise.

All valid xMAS networks with more than one primitive can be decomposed into two
compatible networks. This is shown by the following lemma.

Lemma 2.13. For each valid xMAS network N = (P,G,C, c, chan, type) with |P| > 1, there
are valid, compatible xMAS networks N′ and N′′, such that N = N′ q N′′.

Proof. Fix valid xMAS network N = (P,G,C, c, chan, type), with |P| > 1. We define
N′ = (P′,G′,C′, c′, chan′, type′), and N′′ = (P′′,G′′,C′′, c′′, chan′′, type′′) such that:

• P′ = {a} for some a ∈ P, and P′′ = P\P′;

• G′ = {g ∈ G | p ∈ P′, io ∈ {in, out},n ∈ N, chan(p, io,n) = g}, G′′ = {g ∈ G | p ∈
P′′, io ∈ {in, out},n ∈N, chan(p, io,n) = g};

• C′ =
⋃

x∈G′ c(x), and C′′ =
⋃

x∈G′′ c(x);

• c′ : G′ → 2C′ is such that for all channels x ∈ G′ it holds that c′(x) = c(x), and
c′′ : G′′ → 2C′′ is such that for all channels y ∈ G′′ it holds that c′′(y) = c(y);
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• chan′ : P′ × {in, out} ×N→ G′ is such that for all primitives p ∈ P′, and for all
io ∈ {in, out}, and for all n ∈ N it holds that chan′(p, io,n) = chan(p, io,n), and
chan′′ : P′′ × {in, out} ×N → G′′ is such that for all primitives p ∈ P′′, and for
all io ∈ {in, out}, and for all n ∈N it holds that chan′′(p, io,n) = chan(p, io,n);

• type′ : P′ → Γ is such that for all primitives p ∈ P′ it holds that type′(p) =
type(p), and type′′ : P′′ → Γ is such that for all primitives p ∈ P′′ it holds that
type′′(p) = type(p).

From the way we define N′ and N′′, it is clear that N = N′ q N′′. It remains to
be shown that N′ and N′′ are valid and compatible. We check each of the validity
conditions for N′ and N′′.

1. |P′| > 0 and |P′′| > 0. Since |P| > 1, P′ = {a}, and P′′ = P\P′, this follows
immediately.

2. We prove that for all x ∈ G′, c′(x) returns the set which consists of all possible
values of x.data, and for all y ∈ G′′, c′′(y) returns the set which consists of all
possible values of y.data. Since N is valid, for all x ∈ G, c(x) returns the set
which consists of all possible values of x.data. Since for all x ∈ G′, c′(x) = c(x),
and for all y ∈ G′′, c′′(y) = c(y), the property holds.

3. We prove

G′ = {chan′(p, io,n) | p ∈ P′, io ∈ {in, out},n ∈N, chan′(p, io,n) , ⊥}, and
G′′ = {chan′′(p, io,n) | p ∈ P′′, io ∈ {in, out},n ∈N, chan′′(p, io,n) , ⊥}.

Since N is valid, for every channel g ∈ G, there are p ∈ P, io ∈ {in, out},n ∈ N,
such that chan(p, io,n) = g. From definition of chan′ and chan′′, for all p′ ∈
P′, p′′ ∈ P′′, io ∈ {in, out},n ∈ N, we have chan′(p′, io,n) = chan(p′, io,n) and
chan′′(p′′, io,n) = chan(p′′io,n). Hence, using the definition of G′ and G′′, we
conclude that the property holds.

4. We prove for all primitives p, p′ ∈ P′, io ∈ {in, out}, and n,n′ ∈N,

chan′(p, io,n) = chan′(p′, io,n′)⇒ p = p′ ∧ n = n′.

Fix p, p′ ∈ P′, io ∈ {in, out}, and n,n′ ∈ N. Since N is valid, for all p, p′ ∈ P,
io ∈ {in, out}, and n,n′ ∈N, it holds that

chan(p, io,n) = chan(p′, io,n′)⇒ p = p′ ∧ n = n′.

From the definition of N′, we have that chan′(p, io,n) = chan(p, io,n). Hence,

chan′(p, io,n) = chan′(p′, io,n′)⇒ p = p′ ∧ n = n′.

Similarly, it follows that for all primitives p, p′ ∈ P′′, io ∈ {in, out}, and n,n′ ∈N,

chan′′(p, io,n) = chan′′(p′, io,n′)⇒ p = p′ ∧ n = n′.
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5. We prove for all p, p′ ∈ P′, io ∈ {in, out}, and n,n′ ∈N, it holds that

chan′(p, out,n) = chan′(p′, in,n′)⇒ p , p′.

Fix p, p′ ∈ P, and n,n′ ∈N. Since N valid,

chan(p, out,n) = chan(p′, in,n′)⇒ p , p′.

From the definition of N′, we have that for all primitives p ∈ P′, and for all
io ∈ {in, out}, and for all n ∈ N it holds that chan′(p, io,n) = chan(p, io,n).
Hence,

chan′(p, out,n) = chan′(p′, in,n′)⇒ p , p′.

Similarly, it follows that for all primitives p, p′ ∈ P′′, and n,n′ ∈N, it holds that

chan′′(p, out,n) = chan′′(p′, in,n′)⇔ p , p′.

6. We prove that conditions 6 (a) - 6 (e) of Definition 2.2 hold for N′ and N′′. Since
N is valid, for all p ∈ P, io ∈ {in, out}, n ∈ N, chan(p, io,n) is consistent with
conditions 6 (a) - 6 (e) of Definition 2.2. From the fact that P = P′ ∪P′′, and since
for all p′ ∈ P′, io′ ∈ {in, out}, n′ ∈N, we have chan′(p′, io′,n′) = chan(p′, io′,n′)
and for all p′′ ∈ P′′, io′′ ∈ {in, out}, n′′ ∈ N, we have chan′′(p′′, io′′,n′′) =
chan(p′′, io′′,n′′), we conclude that conditions 6 (a) - 6 (e) of Definition 2.2 hold
for N′ and N′′.

Finally, we show that N′ and N′′ are compatible.

• P∩ P′ = ∅. This follows immediately from P′ = {a} and P′′ = P\{a}.

• For all channels x ∈ G′ ∩G′′, it holds that c′(x) = c′′(x). Fix x ∈ G′ ∩G′′. Then,
by definition of c′ and c′′, c′(x) = c(x) and c′′(x) = c(x). Hence, c′(x) = c′′(x).

• We prove that for all p′ ∈ P′, p′′ ∈ P′′, io ∈ {in, out}, n′,n′′ ∈ N it holds that
chan′(p, io,n) , chan′′(p′, io,n′). Fix p′ ∈ P′, p′′ ∈ P′′, io ∈ {in, out},n′,n′′ ∈ N.
Since N is valid, according to condition 4 of Definition 2.2, chan(p′, io,n′) ,
chan(p′′, io,n′′). By definition of chan′, chan′(p′, io,n′) = chan(p′, io,n′). By
definition of chan′′, chan′′(p′′, io,n′′) = chan(p′′, io,n′′). Hence, it holds that
chan′(p′, io,n′) , chan(p′′, io,n′′). ut

Another property of the composition of xMAS networks is that for all networks
N, composed from networks N′ and N′′ it holds that any signal state of N can be
composed from the union of a signal state of N′ and a signal state of N′′. We formulate
it in the following lemma.

Lemma 2.14. Given three valid xMAS networks N,N′,N′′ such that N = N′ q N′′, for all
s ∈ State(N), there are s′ ∈ State(N′) and s′′ ∈ State(N′′) such that s = s′ ∪ s′′.

Proof. Let N,N′,N′′ be arbitrary xMAS networks such that N = N′ q N′′. Assume N =
(P,G,C, c, chan, type), N′ = (P′,G′,C′, c′, chan′, type′), N′′ = (P′′,G′′,C′′, c′′, chan′′,
type′′).
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Fix arbitrary s ∈ State(N). We construct s′, s′′ such that s = s′ ∪ s′′, s′ ∈ State(N′), and
s′′ ∈ State(N′′) as follows:

s′ ={x.irdy | x.irdy ∈ s, x ∈ G′}∪
{x.trdy | x.trdy ∈ s, x ∈ G′}∪
{x.data = d | x.data = d ∈ s, x ∈ G′}∪
{p.queue = xs | p.queue = xs ∈ s, p ∈ P′}.

s′′ ={x.irdy | x.irdy ∈ s, x ∈ G′′}∪
{x.trdy | x.trdy ∈ s, x ∈ G′′}∪
{x.data = d | x.data = d ∈ s, x ∈ G′′}∪
{p.queue = xs | p.queue = xs ∈ s, p ∈ P′′}.

We show that s = s′ ∪ s′′. Since N = N′ q N′′, according to Definition 2.12, we have:

• P = P′ ∪ P′′,

• G = G′ ∪G′′,

• ∀x ∈ G : c(x) =

c′(x) if x ∈ G′,
c′′(x) otherwise.

From this and definitions of s′ and s′′ it immediately follows that s = s′ ∪ s′′.

Further we prove s′ ∈ State(N′) by checking that s′ satisfies all conditions of Defini-
tion 2.5.

1. We check condition 1 of Definition 2.5.

(a) For all x ∈ G′, there is datum d ∈ c′(x) such that x.data = d ∈ s′. Fix an
arbitrary channel x ∈ G′. Since N = N′ q N′′, from Definition 2.12, G′ ⊆ G.
By the definition of s, there is d ∈ c(x) such that x.data = d ∈ s, pick such d.
By the definition of c′, c′(x) = c(x), hence d ∈ c′(x). By the definition of s′,
x.data = d ∈ s′.

(b) For all data d, e ∈ c′(x), if x.data = d ∈ s′ and x.data = e ∈ s′ then d = e.
Fix arbitrary x ∈ G, d, e ∈ c′(x), such that x.data ∈ s′ and x.data = e ∈ s′.
Since N = N′ q N′′, from Definition 2.12, G′ ⊆ G. From the latter and from
the definition of s′, we conclude that x.data ∈ s and x.data = e ∈ s. Thus,
according to Definition 2.5 (1), d = e.

2. We check condition 2 of Definition 2.5. Fix arbitrary p ∈ P.

(a) We demonstrate that if type(p) = queuek, and chan(p, in, 0) = i, and
chan(p, out, 0) = o, then

• there is xs ∈ Qk
c′(i) such that p.queue = xs ∈ s′, and

• for all xs, xs′ ∈ Qk
c′(i) if p.queue = xs ∈ s′ and p.queue = xs′ ∈ s′

then xs = xs′, and
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• for all xs ∈ Qk
c′(i), if p.queue = xs ∈ s′ then |xs| < k ⇔ i.trdy ∈ s′,

and

• for all xs ∈ Qk
c′(i), if p.queue = xs ∈ s′ then |xs| > 0 ⇔ o.irdy ∈ s′,

and

• for all xs ∈ Qk
c′(i), if p.queue = xs ∈ s′ then |xs| > 0 ⇒ o.data =

last(xs) ∈ s′;

Assume type(p) = queuek with chan(p, in, 0) = i and chan(p, out, 0) = o.
We start with proving the first two items.

• From the definition of s, there is xs ∈ Qk
c(i), such that p.queue =

xs ∈ s; pick such xs. Since N = N′ q N′′, from Definition 2.12,
P′ ⊆ P. Therefore, from the definition of s′, we conclude that
p.queue = xs ∈ s′. From the definition of c′, we have c(i) = c′(i),
hence xs ∈ Qk

c′(i).

• Fix arbitrary xs, xs′ ∈ Qk
c′(i) such that p.queue = xs ∈ s′ and

p.queue = xs′ ∈ s′. Since P′ ⊆ P, and according to definition
of c′, c′(i) = c(i), therefore p.queue = xs ∈ s and p.queue = xs′ ∈ s.
From Definition 2.6, we conclude that xs = xs′.

We now prove the rest of the items. Fix an arbitrary xs ∈ Qk
c′(i), such

that p.queue = xs ∈ s′. Recall that P′ ⊆ P, and c′(i) = c(i). From the
definition of s′ we have that p.queue = xs ∈ s′ only if p.queue = xs ∈ s,
hence p.queue = xs ∈ s.

• ⇒ Assume |xs| < k. Then, by Definition 2.6, i.trdy ∈ s. Since
G′ ⊆ G, it follows from definition of s′ that i.trdy ∈ s′.

⇐ Assume i.trdy ∈ s′. Since G′ ⊆ G, i.trdy ∈ s. Then, by Defini-
tion 2.6, |xs|< k.

• ⇒ Assume |xs| > 0. Then, by Definition 2.6, o.irdy ∈ s. Since
G′ ⊆ G, it follows from definition of s′, that o.irdy ∈ s′.

⇐ Assume o.irdy ∈ s′. Since G′ ⊆ G, o.irdy ∈ s. Then, by
Definition 2.6, |xs|> 0.

• ⇒ Assume |xs| > 0. Then, by Definition 2.6, o.data = last(xs) ∈ s.
Since G′ ⊆ G, it follows from definition of s′, that o.data =
last(xs) ∈ s′.

(b)-(f) We follow the same lines as in 2 (a) to check that conditions 2 (b) - 2(f)
hold.

The proof that s′′ ∈ State(N′′) is completely analogous to that of s′ ∈ State(N′). ut
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2.4 Kripke Structure Semantics

A Kripke structure (KS) is a natural way to capture the state-based semantics of
xMAS networks. In this section we define the KS that captures the behavior of a
given xMAS network.

Definition 2.15. A Kripke structure is a tuple (S, I,→,AP,L), where:

• S is a set of states,

• I ⊆ S is the set of initial states,

• →⊆ S× S is a transition relation,

• AP is a set of atomic propositions,

• L : S→ 2AP is a labelling function.

We assume the transition relation→ to be total, that is, for all s ∈ S, there is s′, such
that (s, s′) ∈→. By convention, we write s→ s′, whenever (s, s′) ∈→.

Definition 2.16. Given a Kripke structure K, a path of K is a (possibly infinite)
sequence of states s0s1s2 . . . , such that for all i ≥ 0 it holds that si → si+1.

2.4.1 Kripke Structure Semantics of Individual Components

We first describe the semantics of a valid xMAS network consisting of a single
primitive as a Kripke Structure. For the rest of the subsection, fix an arbitrary valid
xMAS network N = (P,G,C, c, chan, type) with |P| = 1.

For convenience, let us first introduce some supplementary notation.

Notation 1. For x ∈ G, we define the atomic propositions related to channel x as

ap(x) = {x.irdy, x.trdy} ∪ {x.data = d | d ∈ c(x)}.

For primitives p ∈ P with type(p) = queuek and chan(p, in, 0) = i, we define the atomic
propositions for queue p as

apq(p) = {p.queue = xs | xs ∈ Qk
c(i)}.

For primitives p ∈ P with type(p) = merge, chan(p, in, 0) = i, and chan(p, in, 1) = j we
define the arbitration atomic propositions as follows:

apm(p) = {p.msel = x | x ∈ {i, j}}.

For variable v and x ∈ B∪C, we define the following:

labv(x) =

{v | x = true} if x ∈ B,

{v = d | x = d} otherwise.
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Given a variable name v, and a value e, labv(e) generates the singleton set of labels
containing v = e; if e is a Boolean, and e = false, labv(e) generates ∅.

We generalize this notation to a family of functions lab(v1,...,vn)(x1, . . . , xn), defined as

lab(v1,...,vn)(x1, . . . , xn) =

n⋃
i=1

labvi (xi).

Further, we define the KS depending on the type of p ∈ P. Note, that the KS controls
the trdy signals of its input channels, and irdy and data of its output channels.
Therefore, irdy and data signals of input channels, and trdy of output channels are
left unconstrained.

Source If type(p) = source with chan(p, out, 0) = o, the KS for N is defined as
KS(N) = (S, I,→,AP,L), where:

• S = B×B× c(o),
• I = S,
• → is the smallest relation satisfying the following:

Src1
oirdy ⇒ otrdy

(oirdy, otrdy, d)→ (o′irdy, o
′

trdy, d
′)

Src2
(true, false, d)→ (true, o′trdy, d)

,

• AP = ap(o),
• L = lab(o.irdy,o.trdy,o.data).

Sink If type(p) = sink with chan(p, in, 0) = i, the KS for N is defined as KS(N) =
(S, I,→,AP,L), where:

• S = B×B× c(i),
• I = S.
• → is the smallest relation satisfying the following:

Snk1
itrdy ⇒ iirdy

(iirdy, itrdy, d)→ (i′irdy, i
′

trdy, d
′)

Snk2
(false, true, d)→ (i′irdy, true, d′)

,

• AP = ap(i),
• L = lab(i.irdy,i.trdy,i.data).

Queue If type(p) = queuek with chan(p, in, 0) = i and chan(p, out, 0) = o, the KS for
N is defined as KS(N) = (S, I,→,AP,L), where:
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• S = {(xs, iirdy, itrdy, d, oirdy, otrdy, e) ∈ Qk
c(i) ×B×B× c(i)×B×B× c(o) | |xs| < k⇔

itrdy, |xs| > 0⇔ oirdy, |xs| > 0⇒ e = last(xs)}.
• I = {(xs, iirdy, itrdy, d, oirdy, otrdy, e) ∈ S | xs = []}.
• Assume s = (xs, iirdy, itrdy, d, oirdy, otrdy, e), s′ = (xs′, i′irdy, i

′

trdy, d
′, o′irdy, o

′

trdy, e
′).

Then,→ is the smallest relation satisfying the following:

Q1
¬(iirdy ∧ itrdy) ¬(oirdy ∧ otrdy) xs′ = xs

s→ s′

Q2
(iirdy ∧ itrdy) ¬(oirdy ∧ otrdy) xs′ = (d : xs)

s→ s′

Q3
¬(iirdy ∧ itrdy) (oirdy ∧ otrdy) xs′ = (rtail(xs))

s→ s′

Q4
(iirdy ∧ itrdy) (oirdy ∧ otrdy) xs′ = (d : (rtail(xs)))

s→ s′
,

• AP = ap(i)∪ ap(o)∪ apq(p),
• L = lab(p.queue,i.irdy,i.trdy,i.data,o.irdy,o.trdy,o.data).

Function If type(p) = function with chan(p, in, 0) = i, chan(p, out, 0) = o, and with
a data transforming function f , the KS for N is defined as KS(N) = (S, I,→,AP,L),
where:

• S = {(iirdy, itrdy, d, oirdy, otrdy, e) ∈ B×B× c(i)×B×B× c(o) |

itrdy = otrdy, oirdy = iirdy, e = f (d)}.
• I = S.
• → is the smallest relation satisfying the following, for all s, s′ ∈ S:

Fun1
s→ s′

,

• AP = ap(i)∪ ap(o),
• L = lab(i.irdy,i.trdy,i.data,o.irdy,o.trdy,o.data).

Fork If type(p) = fork with channels chan(p, in, 0) = i, chan(p, out, 0) = o, and
chan(p, out, 1) = u, and with data transforming functions f and f ′, the KS for N is
defined as KS(N) = (S, I,→,AP,L), where:

• S = {(iirdy, itrdy, d, oirdy, otrdy, e,uirdy,utrdy, j) ∈ B ×B × c(i) ×B ×B × c(o) ×B ×

B × c(u) | e = f (d),u = f ′(d), oirdy = iirdy ∧ utrdy,uirdy = iirdy ∧ otrdy, itrdy =
otrdy ∧ utrdy},

• I = S,
• → is the smallest relation satisfying the following, for all s, s′ ∈ S:

Frk1
s→ s′

,

• AP = ap(i)∪ ap(o)∪ ap(u),
• L = lab(i.irdy,i.trdy,i.data,o.irdy,o.trdy,o.data,u.irdy,u.trdy,u.data).
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Join If type(p) = join with chan(p, in, 0) = i, chan(p, in, 1) = j, chan(p, out, 0) = o,
and with a binary data transforming function h, the KS for N is defined as KS(N) =
(S, I,→,AP,L), where:

• S = {(iirdy, itrdy, d, jirdy, jtrdy, e, oirdy, otrdy, l) ∈ B ×B × c(i) ×B ×B × c(o) ×B ×

B× c(u) | l = h(d, e), itrdy = jirdy ∧ otrdy, jtrdy = iirdy ∧ otrdy, oirdy = iirdy ∧ jirdy},
• I = S,
• → is the smallest relation satisfying the following, for all s, s′ ∈ S:

Jn1
s→ s′

,

• AP = ap(i)∪ ap( j)∪ ap(o),
• L = lab(i.irdy,i.trdy,i.data, j.irdy, j.trdy, j.data,o.irdy,o.trdy,o.data).

Switch If type(p) = switch with channels chan(p, in, 0) = i, chan(p, out, 0) = o,
chan(p, out, 1) = u, and a routing function r, the KS for N is defined as KS(N) =
(S, I,→,AP,L), where:

• S = {(iirdy, itrdy, d, oirdy, otrdy, e,uirdy,utrdy, l) ∈ B ×B × c(i) ×B ×B × c(o) ×B ×

B × c(u) | (r(d) ⇒ l = d), (¬r(d) ⇒ l = e), (oirdy = iirdy ∧ r(d)),uirdy = iirdy ∧

¬r(d), itrdy = (oirdy ∧ otrdy)∨ (uirdy ∧ utrdy)},
• I = S,
• → is the smallest relation satisfying the following, for all s, s′ ∈ S:

Sw1
s→ s′

• AP = ap(i)∪ ap(o)∪ ap(u),
• L = lab(i.irdy,i.trdy,i.data,o.irdy,o.trdy,o.data,u.irdy,u.trdy,u.data).

Merge If type(p) = merge with channels chan(p, in, 0) = i, chan(p, in, 1) = j, and
chan(p, out, 0) = o, the KS for N is defined as KS(N) = (S, I,→,AP,L), where:

• S = {(u, iirdy, itrdy, d, jirdy, jtrdy, e, oirdy, otrdy, l) ∈ B×B×B× c(i)×B×B× c( j)×
B × B × c(o) | oirdy = (i ∧ iirdy) ∨ (¬u ∧ jirdy), itrdy = u ∧ otrdy ∧ iirdy, jtrdy =
¬u∧ otrdy ∧ jirdy,u∧ iirdy ⇒ l = d,¬u∧ jirdy ⇒ l = e},

• I = S,
• → is the smallest relation satisfying the following, for all s, s′ ∈ S:

Mrg1
s→ s′

• AP = ap(i)∪ ap( j)∪ ap(o)∪ apm(p),
• L = lab(u,i.irdy,i.trdy,i.data, j.irdy, j.trdy, j.data,o.irdy,o.trdy,o.data).

Note that for every type of p,→ is total.

2.4.2 Kripke Structure Semantics of xMAS Networks

To build Kripke Structures for more complex xMAS networks, we compose Kripke
Structures of smaller networks. For this, we use the parallel composition of two KSs
as introduced by Clarke et al.
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Definition 2.17. ([CGL96]) Let K′ = (S′, I′,→′,AP′,L′), K′′ = (S′′, I′′,→′′,AP′′,L′′)
be two Kripke Structures, then the parallel composition of K′ and K′′, denoted as
K′‖K′′ is the Kripke Structure K = (S, I,→,AP,L) defined as follows:

• S = {(p, q) | p ∈ S′, q ∈ S′′, (L′(p)∩AP′′) = (L′′(q)∩AP′)},

• I = (I′ × I′′)∩ S,

• → is the smallest relation satisfying, for all p, p′ ∈ S′, q, q′ ∈ S′′

p→′ p′ q→′′ q′

(p, q)→ (p′, q′)
,

• L((p, q)) = L′(p)∪ L′′(q), for (p, q) ∈ S,

• AP = AP′ ∪AP′′.

Note that states p ∈ S′ and q ∈ S′′ can only be combined into (p, q) in S if they agree
on the values of the shared atomic propositions.

Using parallel composition, we can define the KS for a given valid xMAS network
N = (P,G,C, c, chan, type) with |P| > 1.

Definition 2.18. Given a valid xMAS network N = (P,G,C, c,H, type), the KS which
represents N, denoted KS(N), is defined inductively in the number of primitives as
follows.

• |P| = 1. Then KS(N) is obtained as described in Section 2.4.1.

• |P| > 1. According to Lemma 2.13, N can be split into N′ and N′′, such that
N = N′ q N′′. Let N′ and N′′ be such. Then KS(N) = KS(N′)‖KS(N′′).

For any xMAS network N, the labelling function of KS(N) is bijective. We prove this
in the lemma below.

Lemma 2.19. Let KS(N) = (S, I,→,AP,L) be the KS for a valid N = (P,G,C, c, chan, type).
Then, L is bijective.

Proof. Proof by induction on the number of primitives in N.

• |P| = 1. Let P = {p}. For all types of p, it follows immediately from the definition
of L that L is bijective.

• |P| > 1. It follows from Definition 2.18 that there are xMAS networks N′

and N′′ such that KS(N) = KS(N′)‖KS(N′′); let N′ and N′′ be such. Assume
KS(N′) = (S′, I′,→′,AP′,L′) and KS(N′′) = (S′′, I′′,→′′,AP′′,L′′). According to
the induction hypothesis, L′ and L′′ are bijective. We prove that L is bijective,
that is, for all (p, q), (p′, q′) ∈ S, that L((p, q)) = L((p′, q′)) if and only if (p, q) =
(p′, q′). Fix arbitrary (p, q), (p′, q′) ∈ S. We prove both directions separately.

⇒ Assume L((p, q)) = L((p′, q′)). By Definition 2.18, KS(N) = KS(N′)‖KS(N′′).
According to Definition 2.17, thus L((p, q)) = L′(p) ∪ L′′(q) and L(p′, q′) =
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L′(p′)∪ L′′(q′). Since L((p, q)) = L((p′, q′)), we have

L′(p)∪ L′′(q) = L′(p′)∪ L′′(q′) (2.1)

From Definition 2.17, we also get

L′(p)∩AP′′ = L′′(q)∩AP′ (2.2)
L′(p′)∩AP′′ = L′′(q′)∩AP′ (2.3)

We use these observations to prove that L′(p) = L′(p′); the argument for
L′′(q) = L′′(q′) is analogous. We prove both directions separately.

* Fix l ∈ L′(p). Note that l ∈ AP′ by definition of L′. We distinguish two
cases:

· l 6∈ L′′(q). From (2.2), we find l 6∈ AP′′, hence using (2.1) we
immediately find l ∈ L′(p′).

· l ∈ L′′(q). Then l ∈ AP′′. From (2.1), l ∈ AP′ ∩AP′′ and (2.2),
and (2.3) it immediately follows that l ∈ L′(p′) (and l ∈ L′′(q′)).

* Assume l ∈ L′(p′); using the symmetric argument it follows that l ∈
L′(p).

We have now established that L′(p) = L′(p′) and L′′(q) = L′′(q′). According
to the induction hypothesis, therefore p = p′ and q = q′. Hence (p, q) =
(p′, q′)

⇐ Assume (p, q) = (p′, q′). Then, p = p′ and q = q′. Hence, by the induction
hypothesis, we have L′(p) = L′(p′) and L′′(q) = L′′(q′). From this, it follows
that L′(p) ∪ L′′(q) = L′(p′) ∪ L′′(q′). Using Definition 2.17, we conclude
L((p, q)) = L((p′, q′)). ut

2.5 Correctness of the KS Semantics

We show correctness of the KS semantics of xMAS networks by establishing a corre-
spondence between the signal semantics and the KS semantics.

To relate a signal structure and a Kripke Structure, we formulate a bisimulation
relation between both formalisms.

Definition 2.20. Given signal structure M(N) = (State(N), Init(N),Next(N)) for some
xMAS network N and Kripke structure K = (S, I,→,AP,L), relation R ⊆ State(N)× S
is a bisimulation relation if and only if for every s ∈ State(N) and p ∈ S such that
s R p, the following hold:

• s = L(p), and

• s ∈ Init(N) if and only if p ∈ I, and

• for all s′ ∈ State(N) such that (s, s′) ∈ Next(N), there exists p′ ∈ S such that
p→ p′ and s′ R p′, and
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• for all p′ ∈ S such that p→ p′, there exists s′ ∈ State(N) such that (s, s′) ∈ Next(N)
and s′ R p′.

We say that s ∈ State(N) and p ∈ P are bisimilar, denoted s ↔ p, iff there exists a
bisimulation relation R such that s R p. Signal structure M(N) and Kripke structure
K are bisimilar iff for all s ∈ Init(N) there exists p ∈ I such that s ↔ p and for all p ∈ I
there exists s ∈ Init(N) such that s ↔ p.

As a stepping stone towards proving bisimulation between a signal structure and
the KS of a given xMAS network, we show that the set of signal states of the signal
structure is equal to the set of atomic proposition of the KS.

Lemma 2.21. Given a valid xMAS network N = (P,G,C, c, chan, type), let M(N) =
(State(N), Init(N),Next(N)) be the signal structure of N, and KS(N) = (S, I,→,AP,L) be
the Kripke Structure representing N. Then, State(N) = {L(p) | p ∈ S}.

Proof. Proof by induction on the number of primitives of N.

• Base case. Assume |P| = 1. Let P = {z}. We distinguish cases based on the type
of z.

– type(z) = source. Since N is valid, from Definition 2.2, assume without loss
of generality that G = {o} and chan(z, out, 0) = o. According to Definition
2.6, State(N) = {{o.data = d} | d ∈ c(o)} ∪ {{o.irdy, o.data = d} | d ∈ c(o)} ∪
{{o.trdy, o.data = d} | d ∈ c(o)} ∪ {{o.irdy, o.trdy, o.data = d} | d ∈ c(o)}.
By the definition of KS(N), S = B ×B × c(o), and hence {L(p) | p ∈ S} =
{lab(o.irdy,o.trdy,o.data)(p) | p ∈ S} = State(N) follows from the definition of
lab(o.irdy,o.trdy,o.data) immediately.

– type(z) = sink. Since N is valid, from Definition 2.2, assume without loss
of generality that G = {i} and chan(z, in, 0) = i. According to Definition
2.6, State(N) = {{i.data = e} | e ∈ c(i)} ∪ {{i.irdy, i.data = e} | e ∈ c(i)} ∪
{{i.trdy, i.data = i} | i ∈ c(i)} ∪ {{i.irdy, i.trdy, i.data = e} | e ∈ c(i)}. By
the definition of KS(N), S = B × B × c(i), and hence {L(p) | p ∈ S} =
{lab(i.irdy,i.trdy,i.data)(p) | p ∈ S} = State(N) follows from the definition of
lab(i.irdy,i.trdy,i.data) immediately.

– type(z) = queuek. Since N is valid, from Definition 2.2, assume without
loss of generality that G = {i, o}, chan(z, in, 0) = i, and chan(z, out, 0) = o.
According to Definition 2.6,

State(N) = {{i.data = d, o.data = e, z.queue = xs} ∪ IO |

d ∈ c(i), e ∈ c(o), xs ∈ Qk
c(i),

IO ⊆ {i.irdy, i.trdy, o.irdy, o.trdy},
|xs| < k⇔ i.trdy ∈ IO,
|xs| > 0⇔ o.irdy ∈ IO,
|xs| > 0⇒ e = last(xs)}.
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By the definition of KS(N),

S = {(xs, iirdy, itrdy, d, oirdy, otrdy, e) |

xs ∈ Qk
c(i), iirdy, itrdy, oirdy, otrdy ∈ B,

d ∈ c(i), e ∈ c(o), |xs| < k⇔ itrdy,

|xs| > 0⇔ oirdy, |xs| > 0⇒ e = last(xs)},

and hence {L(p) | p ∈ S} = {lab(p.queue,i.irdy,i.trdy,i.data,o.irdy,o.trdy,o.data)(p) | p ∈
S} = State(N) follows immediately from the definition of

lab(p.queue,i.irdy,i.trdy,i.data,o.irdy,o.trdy,o.data).

– type(z) = function. Let f be the data transforming function of z. Since N is
valid, from Definition 2.2, assume without loss of generality that G = {i, o},
chan(z, in, 0) = i, and chan(z, out, 0) = o. According to Definition 2.6,

State(N) = {{i.data = d, o.data = f (d)} ∪ IO |
d ∈ c(i),
IO ⊆ {i.irdy, i.trdy, o.irdy, o.trdy},
(i.irdy ∈ IO)⇔ (o.irdy ∈ IO),
(o.trdy ∈ IO)⇔ (i.trdy ∈ IO)}.

By the Definition of KS(N), we have that the set of states of KS(N) is

S = {(xs, iirdy, itrdy, d, oirdy, otrdy, e) ∈ B×B× c(i)×B×B× f (d) |

itrdy = otrdy ∧ oirdy = iirdy},

and hence {L(p) | p ∈ S} = {lab(i.irdy,i.trdy,i.data,o.irdy,o.trdy,o.data)(p) | p ∈ S} =
State(N) follows from the definition of lab(i.irdy,i.trdy,i.data,o.irdy,o.trdy,o.data)
immediately.

– type(z) = fork. Since N is valid, from Definition 2.2, assume without
loss of generality that G = {i, o,u}, chan(z, in, 0) = i, chan(z, out, 0) = o,
and chan(z, out, 1) = u. Let f and f ′ be data transforming functions of z.
According to Definition 2.6,

State(N) = {{i.data = d, o.data = f (d),u.data = f ′(d)} ∪ IO |
d ∈ c(i),
IO ⊆ {i.irdy, i.trdy, o.irdy, o.trdy,u.irdy,u.trdy},
(i.irdy ∈ IO)∧ (u.trdy ∈ IO)⇔ (o.irdy ∈ IO),
(i.irdy ∈ IO)∧ (o.trdy ∈ IO)⇔ (u.irdy ∈ IO),
(o.trdy ∈ IO)∧ (u.trdy ∈ IO)⇔ (i.trdy ∈ IO)}.
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By the Definition of KS(N), we have that the set of states of KS(N) is

S = {(iirdy, itrdy, d, oirdy, otrdy, e,uirdy,utrdy, j) |

iirdy, itrdy, oirdy, otrdy,uirdy,utrdy ∈ B,

d ∈ c(i), e ∈ c(o), j ∈ c(u)
e = f (d)∧ u = f ′(d)∧ oirdy = iirdy ∧ utrdy,

uirdy = iirdy ∧ otrdy, itrdy = otrdy ∧ utrdy},

and hence

{L(p) |p ∈ S} =
{lab(i.irdy,i.trdy,i.data,o.irdy,o.trdy,o.data,u.irdy,u.trdy,u.data)(p) | p ∈ S}

follows from the definition of

lab(i.irdy,i.trdy,i.data,o.irdy,o.trdy,o.data,u.irdy,u.trdy,u.data)

immediately.

– type(z) = join. Let h be the routing function of z. Since N is valid, from
Definition 2.2, assume without loss of generality that G = {i, j, o}, and
chan(z, in, 0) = i, and chan(z, in, 1) = j, and chan(z, out, 0) = o. According
to Definition 2.6,

State(N) = {{i.data = d, j.data = e, o.data = h(d, e)} ∪ IO |
d ∈ c(i), e ∈ c( j),
IO ⊆ {i.irdy, i.trdy, j.irdy, j.trdy, o.irdy, o.trdy},
( j.irdy ∈ IO)∧ (o.trdy ∈ IO)⇔ (i.trdy ∈ IO),
(i.irdy ∈ IO)∧ (o.trdy ∈ IO)⇔ ( j.trdy ∈ IO),
(i.irdy ∈ IO)∧ ( j.irdy ∈ IO)⇔ (o.irdy ∈ IO)}.

By the Definition of KS(N), we have that the set of states of KS(N) is

S = {(iirdy, itrdy, d, jirdy, jtrdy, e, oirdy, otrdy, l) |

itrdy, jirdy, jtrdy, oirdy, otrdy ∈ B,

d ∈ c(i), e ∈ c(o), l ∈ c(u)
l = h(d, e)∧ itrdy = jirdy ∧ otrdy,

jtrdy = iirdy ∧ otrdy, oirdy = iirdy ∧ jirdy},

and hence {L(p) | p ∈ S} = {lab(i.irdy,i.trdy,i.data, j.irdy, j.trdy, j.data,o.irdy,o.trdy,o.data)(p) |
p ∈ S} = State(N) follows from the definition of

lab(i.irdy,i.trdy,i.data, j.irdy, j.trdy, j.data,o.irdy,o.trdy,o.data)

immediately.
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– type(z) = switch. Let r be the routing function of z. Since N is valid,
from Definition 2.2, assume without loss of generality that G = {i, o,u},
chan(z, in, 0) = i, chan(z, out, 0) = o, and chan(z, out, 1) = u. According to
Definition 2.6,

State(N) = {{i.data = d, o.data = d,u.data = d} ∪ IO |
d ∈ c(i),
IO ⊆ {i.irdy, i.trdy, o.irdy, o.trdy,u.irdy,u.trdy},
i.irdy ∈ IO∧ r(d)⇔ o.irdy ∈ IO,
i.irdy ∈ IO)∧¬r(d)⇔ u.irdy ∈ IO,
(o.irdy ∈ IO∧ o.trdy ∈ IO)∨
(u.irdy ∈ IO∧ u.trdy ∈ IO)⇔ i.trdy ∈ IO}.

By the Definition of KS(N), we have that the set of states of KS(N) is

S = {(iirdy, itrdy, d, oirdy, otrdy, e,uirdy,utrdy, j) |

iirdy, itrdy, oirdy, otrdy,uirdy,utrdy ∈ B

d ∈ c(i), e ∈ c(o), j ∈ c(u),
r(d)⇒ j = d∧¬r(d)⇒ j = e∧ uirdy = iirdy ∧¬r(d),

itrdy = (oirdy ∧ otrdy)∨ (uirdy ∧ utrdy)},

and hence

{L(p) | p ∈ S} =
{lab(i.irdy,i.trdy,i.data,o.irdy,o.trdy,o.data,u.irdy,u.trdy,u.data)(p) | p ∈ S} =

State(N)

follows from the definition of

lab(i.irdy,i.trdy,i.data,o.irdy,o.trdy,o.data,u.irdy,u.trdy,u.data)

immediately.

– type(z) = merge. Since N is valid, from Definition 2.2, assume without
loss of generality that G = {i, j, o}, chan(z, in, 0) = i, chan(z, in, 1) = j, and
chan(z, out, 0) = o. According to Definition 2.6,

State(N) = {{i.data = d, j.data = e, o.data = l} ∪ IO |
d ∈ c(i), e ∈ c( j), l ∈ c(o),u ∈ B,

IO ⊆ {i.irdy, i.trdy, j.irdy, j.trdy, o.irdy, o.trdy},
o.irdy ∈ s⇔ u∧ i.irdy ∈ s∨¬u∧ j.irdy ∈ s,
i.trdy ∈ s⇔ u∧ o.trdy ∈ s∧ i.irdy ∈ s,
j.trdy ∈ s⇔ ¬u∧ o.trdy ∈ s∧ j.irdy ∈ s,
u∧ i.irdy ∈ s⇒ l = d,
¬u∧ j.irdy ∈ s⇒ l = e}.
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By the Definition of KS(N), we have that the set of states of KS(N) is

S = {(u, iirdy, itrdy, d, jirdy, jtrdy, e, oirdy, otrdy, l) |

u, iirdy, itrdy, jirdy, jtrdy, oirdy, otrdy ∈ B,

d ∈ c(i), e ∈ c( j), l ∈ c(o),
oirdy = iirdy ∨ jirdy, itrdy = u∧ otrdy ∧ iirdy,

jtrdy = ¬u∧ otrdy ∧ jirdy,u∧ iirdy ⇒ l = d,¬u∧ jirdy ⇒ l = e},

and hence

{L(p) | p ∈ S} =
{lab(u,i.irdy,i.trdy,i.data, j.irdy, j.trdy, j.data,o.irdy,o.trdy,o.data)(p) | p ∈ S} =

State(N)

follows from the definition of

lab(u,i.irdy,i.trdy,i.data, j.irdy, j.trdy, j.data,o.irdy,o.trdy,o.data)

immediately.

• Inductive step. Assume N is such that |P| > 1. From Lemma 2.13 it holds that N
can be split into two valid compatible networks N′ and N′′, such that N = N′ q
N′′. Let N′ and N′′ be such. Assume that N′ = (P′,G′,C′, c′, chan′, type) and
N′′ = (P′′,G′′,C′′, c′′, chan′′, type). Let M(N′) = (State(N′), Init(N′),Next(N′))
and M(N′′) = (State(N′′), Init(N′′),Next(N′′)) be the signal structures for N′ and
N′′ respectively. Let KS(N′) = (S′, I′,→′,AP′,L′) and KS(N′′) = (S′′, I′′,→′′

,AP′′,L′′) be two KSs representing N′ and N′′ respectively. The induction
hypothesis is that State(N′) = {L′(p′) | p′ ∈ S′} and State(N′′) = {L′′(p′′) | p′′ ∈
S′′}. We prove that State(N) = {L(p) | p ∈ S}.

⊆ First, we show that for all s ∈ State(N), there is p ∈ S, such that s = L(p).
Fix an arbitrary s ∈ State(N). From Lemma 2.14, it follows that there are
s′ ∈ State(N′) and s′′ ∈ State(N′′), such that s = s′ ∪ s′′; fix such s′ and
s′′. By the induction hypothesis, there are p′ ∈ S′ and p′′ ∈ S′′, such that
s′ = L′(p′) and s′′ = L′′(p′′); fix such p′ and p′′. Since s = s′ ∪ s′′, we
conclude s = L′(p′) ∪ L′′(p′′). Since N = N′ q N′′, by Definition 2.18, we
have KS(N) = KS(N′)‖KS(N′′). Therefore, according to Definition 2.17,
(p′, p′′) ∈ S with L(p′, p′′) = L(p′)∪ L(p′′).

⊇ Now we show that for all p ∈ S, there is s ∈ State(N), such that L(p) = s.
Fix an arbitrary p ∈ S. Since N = N′ q N′′, by Definition 2.18, we have
KS(N) = KS(N′)‖KS(N′′). We therefore conclude that there are p′ ∈ S′ and
p′′ ∈ S′′, such that p = (p′, p′′) and hence L(p) = L′(p′)∪ L′′(p′′). From the
induction hypothesis, there are s′ ∈ State(N′) and s′′ ∈ State(N′′), such that
L′(p′) = s′ and L′′(p′′) = s′′; fix such s′ and s′′. Since L(p) = L′(p′)∪ L′′(p′′),
we conclude L(p) = s′ ∪ s′′. Let s = s′ ∪ s′′. From the induction hypothesis,
we know that s′ and s′′ satisfy all the validity conditions of Definition 2.5
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to be signal states. Since p can be obtained by composing p′ and p′, we
know that s′ and s′′ agree on the shared signal labels. Hence, we conclude
that s satisfies all the validity conditions of Definition 2.5. Therefore, we
conclude that s ∈ State(N) and L(p) = s. ut

Consequently, we have the following corollary that we use in the proof of the theorem
that follows further.

Corollary 2.22. Given valid xMAS networks N, N′, and N′′, such that N = N′ q N′′, let
State(N), State(N′), and State(N′′) be the sets of signal states of the corresponding signal
structures, and let KS(N) = (S, I,→,AP,L), KS(N′) = (S′, I′,→′,AP′,L′), KS(N′′) =
(S′′, I′′,→′′,AP′′,L′′). For all s ∈ State(N), s′ ∈ State(N′), s′′ ∈ State(N′′), if s = s′ ∪ s′′,
then there are p ∈ S, p′ ∈ S′, p′′ ∈ P′′, such that:

• L(p) = L′(p′)∪ L′′(p′′),

• s′ = L′(p′),

• s′′ = L′′(p′′),

• p = (p′, p′′).

Proof. Fix arbitrary s ∈ State(N), s′ ∈ State(N′), s′′ ∈ State(N′′), such that s = s′ ∪ s′′.
By Lemma 2.21, there is p ∈ S, such that s = L(p). Since N = N′ q N′′, by Definition
2.18, we have KS(N) = KS(N′)‖KS(N′′). Hence, according to Definition 2.17, there
are p′ ∈ P′, p′′ ∈ P′′, such that p = (p′, p′′) and L(p) = L′(p′) ∪ L′′(p′′). By Lemma
2.19, L is bijective. Using Lemma 2.21, we conclude p = (p′, p′′), s′ = L′(p′), and
s′′ = L′′(p′′). ut

Finally, for a given valid xMAS network, we prove that its signal structure and Kripke
Structure are bisimilar.

Theorem 2.23. For every valid xMAS network N, M(N) ↔ KS(N).

Proof. We prove the stronger statement that for every valid xMAS network N, with
M(N) = (State(N), Init(N),Next(N)) and KS(N) = (S, I,→,AP,L), the relation

RN = {(s, p) | s ∈ State(N), p ∈ S, s = L(p)}

is a bisimulation relation.

We prove that RN is a bisimulation relation by induction on the number of primitives
in N.

• Base case. In this case N = (P,G,C, c, chan, type) is such that |P| = 1. Assume
P = {z}. Let M(N) = (State(N), Init(N),Next(N)) and KS(N) = (S, I,→,AP,L).
Fix arbitrary s ∈ State(N), p ∈ S such that s RN p. Note that s = L(p) by
the definition of RN. We check the condition on initial states and the transfer
conditions for each type of z.
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– type(z) = source. Since State(N) = Init(N) and S = I in this case, it
immediately follows that s ∈ Init(N) if and only if p ∈ I.

Further we check the transfer conditions. We first show that for all s′ ∈
State(N), such that (s, s′) ∈ Next(N), there exists p′ ∈ S such that p→ p′ and
s′ RN p′. We fix s′ ∈ State(N) such that (s, s′) ∈ Next(N) and distinguish
two cases:

* s = {o.irdy, o.data = d}. By the definition of RN, L(p) = s, hence
according to Lemma 2.19, p = (true, false, d). By the definition of
Next(N), (o.irdy ∈ s′) ∧ (o.data = d ∈ s′), hence either s′ = s or
s′ = {o.irdy, o.trdy, o.data = d}.

If s′ = s, this can be mimicked by (true, false, d) → (true, false, d)
according to rule Src2. By the definition of L, L((true, false, d)) = s′,
hence s′ RN (true, false, d).

If s′ = {o.irdy, o.trdy, o.data = d}, this can be mimicked by

(true, false, d)→ (true, true, d)

according to rule Src2. By the definition of L we have L((true, true, d)) =
s′, hence s′ RN (true, true, d).

* s is such that o.irdy ∈ s ⇒ o.trdy ∈ s. Let p = (oirdy, otrdy, d); note that
since s RN p, L(p) = s, and according to Lemma 2.19, oirdy =⇒ otrdy.
Let s′ be arbitrary such that (s, s′) ∈ Next(N). Note that according to the
definition of Next(N), s′ can be any state in State(N). According to rule
Src1, p→ (o′irdy, o

′

trdy, d
′) for any o′irdy, o

′

trdy, d
′, therefore we can select

o′irdy, o
′

trdy, d
′ such that L((o′irdy, o

′

trdy, d
′)) = s′, and s′ RN (o′irdy, o

′

trdy, d
′).

Now we show that for all p′ ∈ S, such that p→ p′, there exists s′ ∈ State(N)
such that (s, s′) ∈ Next(N) and s′ RN p′. We fix p′ ∈ S such that p→ p′ and
distinguish cases based on p.

* p = (true, false, d). By definition of L, L(p) = {o.irdy, o.data = d}, and
according to the definition of RN, s = {o.irdy, o.data = d}. According
to Src2, p′ = (true, false, d) or p′ = (true, true, d). We distinguish both
cases.

If p′ = (true, false, d), L(p′) = {o.irdy, o.data = d}. According to the
definition of Next(N), s′ = {o.irdy, o.data = d} ∈ Next(N) is a valid
successor of s since it satisfies o.irdy ∈ s′ ∧ o.trdy 6∈ s′, and by defini-
tion of RN, p′ R s′.

If p′ = (true, true, d), L(p′) = {o.irdy, o.trdy, o.data = d}. According to
the definition of Next(N), s′ = {o.irdy, o.trdy, o.data = d} ∈ Next(N) is
a valid successor of s since it satisfies o.irdy ∈ s′ ∧ o.trdy ∈ s′, and by
definition of R, p′ R s′.
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* p = (oirdy, otrdy, d) such that oirdy ⇒ otrdy. According to Src1, p′ can be
any state in S. Since s RN p, s is such that o.irdy ∈ s implies o.trdy ∈ s,
according to Next(N), (s, s′) ∈ Next(N) for all s′ ∈ State(N). We can
therefore select s′ such that L(p′) = s′, and by definition of RN, s′ RN p′.

– type(z) = sink. The proof is analogous to the previous case.

– type(z) = queue. According to Definition 2.7, Init(N) comprises of all
signal states s ∈ Init(N), for which it holds that z.queue = [] ∈ s, i.trdy ∈ s,
and o.irdy 6∈ s. From the definition of I, we have

I = {(xs, iirdy, itrdy, d, oirdy, otrdy, e) ∈ S | xs = [], itrdy = true, oirdy = false}.

Therefore, using the definition of L we conclude that s ∈ Init(N) if and
only if p ∈ I.

Further we check the transfer conditions. We fix s′ ∈ State(N) such that
(s, s′) ∈ Next(N). To show that there is p′ ∈ S such that p→ p′ and s′ RN p′,
we distinguish cases based on the definition of Next(N).

* s is such that ¬(i.irdy ∈ s ∧ i.trdy ∈ s) and ¬(o.irdy ∈ s ∧ o.trdy ∈
s) ∧ z.queue = xs ∈ s, s′ is such that z.queue = xs ∈ s′. By the
definition of RN, L(p) = s. Hence, according to Lemma 2.19,

p = (xs, iirdy, itrdy, d, oirdy, otrdy, e),

for some iirdy, itrdy, oirdy, otrdy ∈ B, d ∈ c(i), e ∈ c(o), such that ¬(iirdy ∧

itrdy)∧¬(oirdy ∧ otrdy).

According to Lemma 2.21, there is p′ ∈ S, such that s′ = L(p′); let p′ be
such. We have s′ RN p′ by the definition of RN. According to the rule
Q1, a successor of p is such that

(xs, i′irdy, i
′

trdy, d
′, o′irdy, o

′

trdy, e
′),

for some i′irdy, i
′

trdy, o
′

irdy, o
′

trdy ∈ B, d′ ∈ c(i), e′ ∈ c(o). Thus, using the
definition of L, we conclude p→ p′.

* s is such that (i.irdy ∈ s∧ i.trdy ∈ s∧ i.data = d ∈ s), and ¬(o.irdy ∈ s∧
o.trdy ∈ s), and z.queue = xs ∈ s, s′ is such that z.queue = (d : xs) ∈ s′.
By the definition of RN, L(p) = s. Hence, according to Lemma 2.19,

p = (xs, iirdy, itrdy, d, oirdy, otrdy, e),

for some iirdy, itrdy, oirdy, otrdy ∈ B, d ∈ c(i), e ∈ c(o), and (iirdy ∧ itrdy)∧
¬(oirdy ∧ otrdy). According to Lemma 2.21, there is p′ ∈ S, such that
s′ = L(p′); let p′ be such. We have s′ RN p′ by the definition of RN.
According to the rule Q2, a successor of p is such that

((d : xs), i′irdy, i
′

trdy, d
′, o′irdy, o

′

trdy, e
′),

for some i′irdy, i
′

trdy, o
′

irdy, o
′

trdy ∈ B, d′ ∈ c(i), e′ ∈ c(o). Thus, using the
definition of L, we conclude p→ p′.
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* s is such that ¬(i.irdy ∈ s ∧ i.trdy ∈ s), and (o.irdy ∈ s ∧ o.trdy ∈ s),
and z.queue = xs ∈ s, s′ is such that z.queue = (rtail(xs)) ∈ s′. By the
definition of RN, L(p) = s. Hence, according to Lemma 2.19,

p = (xs, iirdy, itrdy, d, oirdy, otrdy, e),

for some iirdy, itrdy, oirdy, otrdy ∈ B, d ∈ c(i), e ∈ c(o), such that ¬(iirdy ∧

itrdy) ∧ (oirdy ∧ otrdy). According to Lemma 2.21, there is p′ ∈ S, such
that s′ = L(p′); let p′ be such. We have s′ RN p′ by the definition of RN.
According to the rule Q3, a successor of p is such that

((rtail(xs)), i′irdy, i
′

trdy, d
′, o′irdy, o

′

trdy, e
′),

for some i′irdy, i
′

trdy, o
′

irdy, o
′

trdy ∈ B, d′ ∈ c(i), e′ ∈ c(o). Thus, using the
definition of L, we conclude p→ p′.

* s is such that (i.irdy ∈ s ∧ i.trdy ∈ s ∧ i.data = d ∈ s), and (o.irdy ∈
s ∧ o.trdy ∈ s), and z.queue = xs ∈ s, s′ is such that z.queue = (d :
(rtail(xs))) ∈ s′. By the definition of R, L(p) = s. Hence, according to
Lemma 2.19,

p = (xs, iirdy, itrdy, d, oirdy, otrdy, e),

for some iirdy, itrdy, oirdy, otrdy ∈ B, d ∈ c(i), e ∈ c(o), and (iirdy ∧ itrdy)∧
(oirdy ∧ otrdy). According to Lemma 2.21, there is p′ ∈ S, such that
s′ = L(p′); let p′ be such. We have s′ RN p′. According to the rule Q4,
a successor of p is such that

((d : rtail(xs)), i′irdy, i
′

trdy, d
′, o′irdy, o

′

trdy, e
′),

for some i′irdy, i
′

trdy, o
′

irdy, o
′

trdy ∈ B, d′ ∈ c(i), e′ ∈ c(o). Thus, using the
definition of L, we conclude p→ p′.

Now we show that for all p′ ∈ S, such that p → p′, there exists s′ ∈
State(N) such that (s, s′) ∈ Next(N) and s′ RN p′. Fix p′ such that p → p′.
Without loss of generality, assume p = (xs, iirdy, itrdy, d, oirdy, otrdy, e) and
p′ = (xs, i′irdy, i

′

trdy, d
′, o′irdy, o

′

trdy, e
′). We distinguish the following cases

based on the rules Q1, Q2, Q3, and Q4.

* Assume ¬(iirdy ∧ itrdy), and ¬(oirdy ∧ otrdy), and xs′ = xs. By the
definition of RN, s = L(p). Hence, according to Lemma 2.19, s is such
that ¬(i.irdy ∈ s∧ i.trdy ∈ s)∧ ¬(o.irdy ∈ s∧ o.trdy ∈ s)∧ (z.queue =
xs ∈ s). By Lemma 2.21, there is s′ ∈ State(N), such that s′ = L(p′). Let
s′ be such. Note, that s′ RN p′. According to Definition 2.8, a successor
of s is such that (z.queue = xs ∈ s) ∧ (z.queue = xs ∈ s′). Using the
definition of L, we conclude (s, s′) ∈ Next(N).

* Assume (iirdy ∧ itrdy), and ¬(oirdy ∧ otrdy), and xs′ = (d : xs). By the
definition of RN, s = L(p). Hence, according to Lemma 2.19, s is such
that (i.irdy ∈ s∧ i.trdy ∈ s∧ (o.data = d) ∈ s)∧¬(o.irdy ∈ s∧ o.trdy ∈
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s) ∧ (z.queue = xs ∈ s). By Lemma 2.21, there is s′ ∈ State(N), such
that s′ = L(p′). Let s′ be such. Note, that s′ RN p′. According
to Definition 2.8, a successor of s is such that z.queue = xs ∈ s ∧
z.queue = (d : xs) ∈ s′. Thus, using the definition of L, we conclude
(s, s′) ∈ Next(N).

* Assume ¬(iirdy ∧ itrdy), and (oirdy ∧ otrdy), and xs′ = rtail(xs). By the
definition of RN, s = L(p). Hence, according to Lemma 2.19, s is such
that ¬(i.irdy ∈ s ∧ i.trdy ∈ s) ∧ (o.irdy ∈ s ∧ o.trdy ∈ s) ∧ (z.queue =
xs ∈ s). Fix an arbitrary p, such that p → p′. By Lemma 2.21, there
is s′ ∈ State(N), such that s′ = L(p′). Let s′ be such. Note, that
s′ RN p′. According to Definition 2.8, a successor of s is such that
z.queue = xs ∈ s∧ z.queue = rtail(xs) ∈ s′. Thus, using the definition
of L, we conclude (s, s′) ∈ Next(N).

* Assume (iirdy ∧ itrdy), and (oirdy ∧ otrdy), and xs′ = (d : rtail(xs)). By
the definition of RN, s = L(p). Hence, according to Lemma 2.19, s is
such that (i.irdy ∈ s∧ i.trdy ∈ s∧ i.data = d ∈ s)∧ (o.irdy ∈ s∧ o.trdy ∈
s) ∧ (z.queue = xs ∈ s). By Lemma 2.21, there is s′ ∈ State(N), such
that s′ = L(p′). Let s′ be such. Note, that s′ RN p′. By Definition 2.8, a
successor of s is such that z.queue = xs ∈ s∧ z.queue = (d : rtail(xs)) ∈
s′. Thus, using the definition of L, we conclude (s, s′) ∈ Next(N).

– type(z) = merge. Since State(N) = Init(N) and S = I in this case, it
immediately follows that s ∈ Init(N) if and only if p ∈ I.

Further we check the transfer conditions. We first show that for all s′ ∈
State(N), such that (s, s′) ∈ Next(N), there exists p′ ∈ S such that p → p′

and s′ RN p′. Fix s′ ∈ State(N) such that (s, s′) ∈ State(N). According to
Lemma 2.21, there is p′ ∈ S, such that s′ = L(p′); let p′ be such. Hence
s′ RN p′ by the definition of RN. From the rule Mrg1, for all q ∈ S, p → q.
Thus, p→ p′.

Now we show that for all p′ ∈ S, such that p→ p′, there exists s′ ∈ State(N)
such that (s, s′) ∈ Next(N) and s′ RN p′. Fix p′ ∈ S such that p → p′.
According to Lemma 2.21, there is s ∈ State(N), such that s′ = L(p′). Let s′

be such. Note that by the definition of RN, s′ RN p′. By Definition 2.8, for
all q ∈ State(N), (s, q) ∈ Next(N). Thus, (s, s′) ∈ Next(N).

– type(z) ∈ {function, fork, join, switch}. Proofs are analogous to the case
type(z) = merge.

• Inductive step. In this case N = (P,G,C, c, chan, type) is such that |P| > 1. We
can split N into two networks N′ and N′′ such that N = N′ q N′′ accord-
ing to Lemma 2.13. Let M(N′) = (State(N′), Init(N′),Next(N′)) and M(N′′) =
(State(N′′), Init(N′′),Next(N′′)). Let KS(N′) = (S′, I′,→′,AP′,L′) and KS(N′′) =
(S′′, I′′,→′′,AP′′,L′′). Let RN′ = {(s, p) | s ∈ State(N′), p ∈ S′, s = L′(p)} and
RN′′ = {(s, p) | s ∈ State(N′′), p ∈ S′′, s = L′′(p)}. According to the induction
hypothesis, RN′ and RN′′ are bisimulation relations. We show that RN is a
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bisimulation.

Fix s ∈ State(N), p ∈ S such that s RN p. Note that s = L(p) by the definition of
RN. We first check s ∈ Init(N) if and only if p ∈ I.

⇒ Assume s ∈ Init(N). According to Lemma 2.14 there are signal states
s′ ∈ State(N′) and s′′ ∈ State(N′′), such that s = s′ ∪ s′′; let s′ and s′′ be
such. From Corollary 2.22, there are p′ ∈ S′, p′′ ∈ S′′, such that:

L(p) = L′(p′)∪ L′′(p′′),
s′ = L′(p′),

s′′ = L′′(p′′),
p = (p′, p′′),

and hence s′ RN′ p′, s′′ RN′′ p′′; we fix such p′ and p′′. Since s ∈ Init(N)
and by Definitions 2.7 and 2.12, we have s′ ∈ Init(N′) and s′′ ∈ Init(N′′).
Therefore, using the induction hypothesis and the fact that s′ RN′ p′,
s′′ RN′′ p′′, we conclude p′ ∈ I′ and p′′ ∈ I′′. By Definition 2.17, we
conclude (p′, p′′) ∈ I, and hence p ∈ I.

⇐ Assume p ∈ I. By Definition 2.18, KS(N) = KS(N′)‖KS(N′′). Hence, there
are p′ ∈ S′, p′′ ∈ S′′, such that L(p) = L′(p′)∪ L′′(p′′); let p′ and p′′ be such.
According to Lemma 2.21, there are states s′ ∈ State(N′) and s′′ ∈ State(N′′)
such that s′ = L′(p′) and s′′ = L′′(p′′). Let s′ and s′′ be such. Note that
s = s′ ∪ s′′. By the definition of RN′ , s′ RN′ p′. By the definition of RN′′ ,
s′′ RN′′ p′′. By Definition 2.17, p′ ∈ I′ and p′′ ∈ I′′. Then, from the
induction hypothesis, we conclude that s′ ∈ Init(N′) and s′′ ∈ Init(N′′). By
Definitions 2.7 and 2.12 we conclude s ∈ Init(N).

We next check the transfer conditions.

– We first show that for all u ∈ State(N), such that (s,u) ∈ Next(N), there
exists v ∈ S such that p → v and u RN v. Fix u ∈ State(N) such that
(s,u) ∈ Next(N). We have to show there exists v ∈ S such that p → v and
u RN v.

According to Lemma 2.14, there are s′ ∈ State(N′) and s′′ ∈ State(N′′)
such that s = s′ ∪ s′′; let s′ and s′′ be such. According to Corollary 2.22,
p = (p′, p′′) such that L(p) = L′(p′) ∪ L′′(p′′), s′ = L′(p′) and s′′ = L′′(p′′).
According to Lemma 2.14, there are u′ ∈ State(N′) and u′′ ∈ State(N′′)
such that u = u′ ∪ u′′; fix such u′ and u′′. Since s = s′ ∪ s′′, u = u′ ∪ u′′

and (s,u) ∈ Next(N), according to Definition 2.8, (s′,u′) ∈ Next(N′) and
(s′′,u′′) ∈ Next(N′′). Now, according to the induction hypothesis, since
s′ = L(p′), s′ RN′ p′, and since (s′,u′) ∈ Next(N′), there exists v′ ∈ S′ such
that p′ →′ v′ and u′ RN′ v′. Likewise, there exists v′′ ∈ S′′ such that
p′′ →′′ v′′ and u′′ RN′′ v′′. Let v′ and v′′ be such and let v = (v′, v′′).
Since u′ RN′ v′, u′ = L(v′); likewise since u′′ RN′′ v′′, u′′ = L(v′′). Due
to v = (v′, v′′), we know L′(v′) ∩AP′′ = L′′(v′′) ∩AP′, hence v ∈ S. By
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Definition 2.17, p → v and L(v) = L′(v′) ∪ L′′(v′′). From the latter it also
follows that L(v) = u, hence u RN v.

– Now we show that for all v ∈ S, such that p→ v, there exists u ∈ State(N)
such that (s,u) ∈ Next(N) and u RN v.

Since N = N′ q N′′, by Definition 2.18, KS(N) = KS(N′)‖KS(N′′). Hence,
there are p′ ∈ S′, p′′ ∈ S′′, such that p = (p′, p′′). Let p′ and p′′ be such and
observe L(p) = L′(p′)∪ L′′(p′′).

According to Lemma 2.21, there are states s′ ∈ State(N′) and s′′ ∈ State(N′′)
such that s′ = L′(p′) and s′′ = L′′(p′′). Let s′ and s′′ be such. Note that
s = s′ ∪ s′′. By the definition of RN′ , s′ RN′ p′. Similarly, by the definition
of RN′′ , s′′ RN′′ p′′.

Fix an arbitrary v ∈ S, such that p → v. Since KS(N) = KS(N′)‖KS(N′′),
there are v′ ∈ S′, v′′ ∈ S′′, such that v = (v′, v′′); let v′ and v′′ be such.
Hence L(v) = L′(v′) ∪ L′′(v′′). By Definition 2.17, we have p′ →′ v′ and
p′′ →′′ v′′. By the induction hypothesis, since s′ RN′ p′, the existence
of v′ implies that there is u′, such that (s′,u′) ∈ Next(N′) and u′ RN′ v′;
we fix such u′. Analogously, since s′′ RN′′ p′′, there is u′′, such that
(s′′,u′′) ∈ Next(N′′) and u′′ RN′′ v′′; fix such u′′. Since u′ RN′ v′ and
u′′ RN′′ v′′, we have u′ = L′(v′) and u′′ = L′′(v′′). Since N = N′ q N′′ and
by Definitions 2.6 and 2.12, there is u ∈ State(N), such that u = u′ ∪ u′′; let
u be such. Since (s′,u′) ∈ Next(N′) and (s′′,u′′) ∈ Next(N′′), by Definition
2.17, (s,u) ∈ Next(N). Since u = u′ ∪ u′′, u = L(v) and hence we conclude
u RN v. ut

2.6 Conclusion

In the chapter, we gave a structured view at the behavior of xMAS networks in terms
of irdy, trdy, and data signals by formulating signal semantics. We introduced a state-
based semantics for xMAS in terms of Kripke Structures. We proved the correctness
of the state-based semantics by showing bisimulation between signal structures and
the corresponding KSs. The original authors of xMAS formulate properties over
xMAS networks in terms of LTL, which assumes a KS semantics [GCK11]; Wouda
et al. assume a KS semantics in their reachability analysis of deadlock states in
xMAS [WJS15]. However, a KS semantics was not presented in the literature. The
work in the chapter closes the gap and serves as a theoretical foundation for the
subsequent work on the xMAS liveness verification.
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Chapter 3

Effective System Level Liveness
Verification

3.1 Introduction

Formal verification has been successfully introduced in many design flows of hard-
ware and software systems. More and more often, the sign-off decision for hardware
blocks is taken solely on the results of formal proofs, the so-called formal sign-off.
Scaling formal verification to the system level remains a challenge.

The xMAS language [CKO12] and associated techniques for the generation of invari-
ants [CK10], property checking [CK10], and deadlock hunting [GCK11; VS11] have
been proposed to address this challenge. These techniques are very efficient and have
been extended to performance validation [LZ18], asynchronous circuits [BSY15],
progress verification [DKB17], generalized to language families [VS12], and directly
related to the Register Transfer Level [JS13; JS15].

Initially focused on the analysis of communication fabrics, Verbeek et al. [Ver+16;
Ver+17] introduced state machines into xMAS. The state machine extension allows
the modeling and analysis of complex cooperating state machines under the con-
straints imposed by micro-architectural choices. In particular, they demonstrated the
verification of large systems consisting of nodes running cache coherence protocols
and communicating via a Network-on-Chip. The work by Verbeek et al. aims to scale
verification to the system level by translating liveness verification of xMAS extended
with (finite) state machines to satisfiability. Unfortunately, as we will show in this
chapter, their method fails to detect some deadlocks, and is therefore unsound1.

Contributions. We present an example of an xMAS network with an FSM that has a
dead input channel, and demonstrate that the approach from [Ver+17] fails to detect

1That is, the approach might yield unreachable deadlock states.
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this dead channel. This demonstrates that the approach is unsound. To address
the issue, we propose an alternative transformation of liveness verification of xMAS
networks with FSMs into a satisfiability problem. Similar to the work from [Ver+17],
we extend the idle and block equations from [GCK11]. We prove that our extension
to idle and block equations is sound, i.e., if the xMAS network has a path to a state
with a local deadlock, then there exists a satisfying assignment to the satisfiability
problem we generate. We recall the invariants from [Ver+16], that are used to restrict
the number of false deadlocks detected by our approach. Finally, we use a set of
benchmarks to demonstrate that our approach is efficient.

Structure of the chapter. In the following sections, we recall the relevant part of
the xMAS language. We introduce xMAS networks, the definition of liveness of
channels and idle and block equations in Section 3.2. We recall Verbeek et al.’s
extension of xMAS with automata and present a counterexample in Section 3.3. In
Section 3.4 we present our xMAS finite state machines (FSMs). The idle and block
equations for FSMs and their soundness are described in Section 3.5. Section 3.6
adapts the invariants from [Ver+17] to our FSMs. Our implementation is evaluated
in Section 3.7. We conclude in Section 3.8.

3.2 Preliminaries

In this section, we introduce some notation that is used throughout the chapter. We
also introduce the syntax and semantics of xMAS, specify the liveness of channels,
and reiterate how liveness can be transformed into a safety problem using idle and
block equations.

We write N to denote the set of natural numbers and B = {false, true} to denote
the set of booleans. We denote empty lists using ∅. Given a list xs, we denote its
length by |xs|. We write rhead(xs) to denote the last element of list xs. That is, given
a list xs = [x0, . . . , xn], we have rhead(xs) = xn. Note that rhead(∅) = ⊥, i.e., it is
undefined. We write rtail(xs) to denote list xs without its last element. That is, given
a list xs = [x0, . . . , xn], we have rtail(xs) = [x0, . . . , xn−1]. Similarly to rhead, rtail is
undefined for empty lists.

3.2.1 xMAS Syntax

xMAS [CKO12] is a graphical language aimed at modeling and verifying communi-
cation fabrics. An xMAS network comprises a number of primitives connected by
typed channels. The core xMAS primitives are provided in Figure 3.1.

A queue is a FIFO buffer with k places. A function transforms messages using a spec-
ified function f . Sources and sinks inject and consume messages. Sources and sinks
are assumed to be fair, namely, they always eventually inject or consume messages.
A fork duplicates the message at its input to its two outputs. The duplication occurs
if and only if the two outputs are ready to accept a copy of the input message. The
join is the dual of the fork. The output of the join depends on function h applied to
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Figure 3.1: Core xMAS primitives [CKO10].

the data at the two inputs. Typically, one of the input channels is identified as a data
input and the other input channel is called a token input, and the data input is simply
forwarded to the output. A switch routes messages depending on their content and
a switching function s. A merge is a fair arbiter passing input messages to its output.

The progress of messages between two primitives is controlled by a simple handshake
protocol. Each channel consists of three signals, one for data and two boolean control
signals called irdy and trdy. Consider the transfer of data between two primitives
called A (the initiator) and B (the target) via channel x. We say that A is ready to
transfer data through x.data if x.irdy is true. We say that B is ready to accept the data
if x.trdy is true. The data transfer occurs if and only x.irdy ∧ x.trdy.

Formally, for instance, the function primitive is defined in terms of its input port i,
output port o and function f as follows:

o.irdy := i.irdy i.trdy := o.trdy o.data := f (i.data)

We here see that the function primitive is a purely combinatorial component that
applies a function to whatever data is available on its input, provided the initiator of
the input and the target of the output are ready.

x

1
y

Figure 3.2: xMAS example.

Example 3.1. Consider the xMAS network in Figure 3.2. We use this network as a
running example. The network consists a source, a queue, and a sink. The source
produces tokens t. Channel x is the output channel of the source, hence:

x.irdy := oracle∨ pre(x.irdy∧¬x.trdy) x.data := t,

where pre is the standard synchronous operator that returns the value of its argument
in the previous clock cycle, and false in the very first cycle. Non-determinism of the
data generation of the source is represented by the unconstrained primary input
oracle [CKO12]. Let xs be the list representing the contents of the queue. Channel x
is the input channel of the queue, for which we have:

x.trdy := |xs| < 1.
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This signifies that a queue can always accept a data transfer when it is not full.
Channel y is the output channel of the queue, for which we have:

y.irdy := |xs| > 0 y.data := rhead(xs),

where head refers to the data at the head of the queue. The queue is ready to transfer
data whenever it is not empty. The same channel y is the input channel of the sink,
and we have:

y.trdy := oracle∨ pre(y.trdy∧¬y.irdy).

This definition is analogous to that of x.irdy.

3.2.2 Semantics of xMAS Networks

Recall from Chapter 2 that an xMAS network is defined as follows.

Definition 3.2. An xMAS network is a structure (P,G,C, c, chan, type) where:

• P is the set of components;

• G is the set of channels;

• C is a non-empty set of data, which consists of all possible values of data signals
of all channels x ∈ G;

• c : G→ (2C
\ {∅}) is the function that assigns sets of data to channels from G;

• chan : P × {in, out} ×N 7→ G is a partial function which, given a component
p ∈ P, an input/output identifier and a channel number n ∈ N, returns the
channel connected to input (output) number n of component p;

• type : P→ Γ assigns a type to a component.

We assume that an xMAS network is syntactically correct, and that it does not contain
combinatorial cycles of irdy and trdy signals. This can be statically checked [GVS14].

We now provide a high-level explanation of the semantics of xMAS. An xMAS
network has two parts: a sequential and a combinatorial one. The sequential part
consists of the contents of all queues in the network, whilst the combinatorial part
consists of the irdy, trdy, and data signals of all channels. In the beginning, the
queues are empty. Every clock cycle comprises two updates – first, the combinatorial
part gets updated, and then the sequential. For more details on the xMAS semantics,
we refer the reader to Chapter 2 where we formalize the semantics of xMAS using
Kripke Structures. In the Kripke Structure setting, the states of the Kripke Structure
reflect the values of irdy, trdy, and data of all channels, as well as the contents
of all queues of a given xMAS network. The combinatorial and sequential parts
are implicitly updated while transitioning from one state of the Kripke Structure to
another.
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3.2.3 Paths

Liveness of channels is defined using linear temporal logic (LTL). LTL and its seman-
tics are considered standard, and we refer to text books such as [BK08] for the details.
The semantics of LTL quantifies over all paths.

Definition 3.3 (Path). A path is a possibly infinite sequence of states π = s0, s1, s2, . . .,
such that for all j > 0, s j−1 → s j. We use π[ j] to denote the state at position j in
the path, i.e., s j, and π[i..] to denote the suffix of π starting at si. The set of paths
starting in a state s is denoted using Paths(s), and for a KS(N) = (S, I,→,AP,L) we
write Paths(KS(N)) to denote

⋃
s∈I Paths(s). For finite paths π = s0, . . . , sn we define

last(π) = sn.

Further we introduce the notion of maximal path.

Definition 3.4 (Maximal path). Given a path π, we say that π is maximal if and only
if it is infinite, or it is finite, and last(π) has no outgoing transitions.

3.2.4 Liveness of Channels

In xMAS, a channel is live whenever, always when its initiator is ready to transfer
data, transfer will eventually be successful, meaning that both initiator and target are
ready. This is formalized using the following LTL property.

Definition 3.5 (Live channel [GCK11]). Consider an xMAS network N = (P,G,C,
c, chan, type). Channel x ∈ G is live if and only if

KS(N) |= G(x.irdy =⇒ F(x.irdy ∧ x.trdy)).

Furthermore, channel x is live for value d if and only if

KS(N) |= G((x.irdy ∧ x.data = d) =⇒ F(x.irdy ∧ x.trdy ∧ x.data = d)).

Note that Gotmanov et al. [GCK11] use property G(x.irdy =⇒ F x.trdy) to describe
liveness, which does not guarantee that the transfer eventually succeeds if persistency
is not assumed.

Channels in xMAS networks are typically assumed to be (forward) persistent.

Definition 3.6 (Forward persistency [GCK11]). Consider an xMAS network (P,G,C, c,
chan, type). Channel x ∈ G is forward persistent if and only if for all d ∈ c(x)

KS(N) |= G((x.irdy ∧ x.data = d ∧ ¬x.trdy) =⇒ X(x.irdy ∧ x.data = d)).

In what follows, we assume channels to be forward persistent. Note that, when
assuming forward persistency, both notions of live channels introduced previously
are closely related.

Lemma 3.7. For all xMAS networks (P,G,C, c, chan, type), and all channels x ∈ G, if x is
forward persistent, then x is live if and only if for all d ∈ c(x) x is live for value d.
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Proof. Fix xMAS network N and channel x, such that x is forward persistent. We
prove both directions separately.

⇒ Assume x is live, which, by Definition 3.5, is equivalent to

KS(N) |= G(x.irdy =⇒ F(x.irdy ∧ x.trdy)).

To prove: x is live for d, which, by Definition 3.5 is equivalent to

KS(N) |= G((x.irdy ∧ x.data = d) =⇒ F(x.irdy ∧ x.trdy ∧ x.data = d)).

Now, consider an arbitrary path π in KS(N). Fix arbitrary i ≥ 0, and assume
π[i..] |= x.irdy ∧ x.data = d. According to the assumption, ∃ j ≥ i such that
π[ j..] |= x.irdy ∧ x.trdy. Let j be the smallest such index. Since π is persistent,
for all k such that i ≤ j ≤ k, π[k] |= x.irdy ∧ x.data = d, so π[ j..] |= x.irdy ∧
x.data = d ∧ x.trdy, hence π |= G((x.irdy ∧ x.data = d) =⇒ F(x.irdy ∧
x.trdy ∧ x.data = d)), that is, x is live for d.

⇐ Assume for all d ∈ c(x), that x is live for d, which, by Definition 3.5 is equivalent
to

KS(N) |= G((x.irdy ∧ x.data = d) =⇒ F(x.irdy ∧ x.trdy ∧ x.data = d)).

To prove: x is live, which, by Definition 3.5, is equivalent to

KS(N) |= G(x.irdy =⇒ F(x.irdy ∧ x.trdy)).

Consider an arbitrary path π in KS(N). Fix arbitrary i ≥ 0 and assume π[i..] |=
x.irdy. According to the semantics of xMAS, there exists d ∈ c(x) such that
π[i..] |= x.data = d. Hence, π[i..] |= x.irdy ∧ x.data = d. According to the
assumption, then π[i..] |= F(x.irdy ∧ x.trdy ∧ x.data = d), hence π[i..] |=
F(x.irdy ∧ x.trdy), so π |= G(x.irdy =⇒ F(x.irdy ∧ x.trdy)), that is, x is
live. ut

Using the assumption of forward persistency, we can now simplify the definition of
a live channel. This is formalized in the following theorem, which is an adaptation
of a similar, but weaker theorem in [GCK11].

Theorem 3.8. For all xMAS networks (P,G,C, c, chan, type), and all channels x ∈ G, if x
is persistent, then

KS(N) |= G((x.irdy ∧ x.data = d) =⇒ F(x.irdy ∧ x.data = d ∧ x.trdy))

if and only if

KS(N) |= FG(¬x.irdy ∨ x.data , d) ∨ GFx.trdy.

Proof. Let (P,G,C, c, chan, type) be an arbitrary xMAS network, and x ∈ G an arbitrary
channel, such that x is persistent, i.e., for all d ∈ c(x), KS(N) |= G((x.irdy ∧ x.data =
d ∧ ¬x.trdy) =⇒ X(x.irdy ∧ x.data = d)).

We prove both directions separately.
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⇒ Suppose KS(N) |= G((x.irdy ∧ x.data = d) =⇒ F(x.irdy ∧ x.data = d ∧
x.trdy)), and let π be an arbitrary path in KS(N). We need to show that π |=
FG(¬x.irdy ∨ x.data , d) ∨ GFx.trdy, from which the result immediately
follows.

Assume that π 6|= FG(¬x.irdy ∨ x.data , d), i.e., π |= GF(x.irdy ∧ x.data = d).
We show that π |= GFx.trdy, i.e., ∀i ≥ 0.∃ j ≥ i.π[ j . . .] |= x.trdy. Let i ≥ 0
be arbitrary. Since π |= GF(x.irdy ∧ x.data = d), there exists i′ ≥ i such that
π[i′ . . .] |= x.irdy ∧ x.data = d. Let i′ be such. Since π[i′ . . .] |= (x.irdy ∧ x.data =
d) =⇒ F(x.irdy ∧ x.data = d ∧ x.trdy) according to our assumption, we have
π[i′ . . .] |= F(x.irdy ∧ x.data = d ∧ x.trdy), hence there exists j ≥ i′ such that
π[ j . . .] |= x.irdy ∧ x.data = d ∧ x.trdy. Since we have chosen i arbitrarily, we
find π |= GFx.trdy.

⇐ Suppose KS(N) |= FG(¬x.irdy ∨ x.data , d) ∨ GFx.trdy. Let π be an arbitrary
path in KS(N). We show that π |= G((x.irdy ∧ x.data = d) =⇒ F(x.irdy ∧
x.data = d ∧ x.trdy)).

We distinguish cases based on the property that holds in π.

– π |= FG(¬x.irdy ∨ x.data = d). We know there exists k ≥ 0 such that for all
j ≥ k, π[ j . . .] 6|= (x.irdy ∧ x.data = d). Let k be such.

We show that for all i ≥ 0, π[i . . .] |= (x.irdy ∧ x.data = d) =⇒ F(x.irdy ∧
x.data = d ∧ x.trdy). For the case i ≥ k this follows immediately,
since x.irdy ∧ x.data = d does not hold. So, suppose 0 ≤ i < k, and
assume x.irdy ∧ x.data = d. Towards a contradiction, suppose that
π[i . . .] |= G¬(x.irdy ∧ x.data = d ∧ x.trdy). Since we have π |= G((x.irdy ∧
x.data = d ∧ ¬x.trdy) =⇒ X(x.irdy ∧ x.data = d) due to forward
persistency, we have that for all j ≥ i, π[ j] |= x.irdy ∧ x.data = d, in par-
ticular, this contradicts the fact that π[k . . .] 6|= x.irdy ∧ x.data = d, hence
π |= G((x.irdy ∧ x.data = d) =⇒ F(x.irdy ∧ x.data = d ∧ x.trdy)).

– π |= GFx.trdy. Let i ≥ 0 be arbitrary, and assume π[i . . .] |= x.irdy ∧
x.data = d. From our assumption, for some j ≥ i we have π[ j . . .] |= x.trdy.
Consider the smallest such j. We prove that π[ j . . .] |= x.irdy ∧ x.data =
d ∧ x.trdy. From forward persistency, and the fact that j is the smallest
index such that π[ j . . .] |= x.trdy ∧ x.data = d, we find that for all k,
i ≤ k ≤ j, π[k . . .] |= x.irdy ∧ x.data = d, hence π[ j . . .] |= x.irdy ∧ x.data =
d ∧ x.trdy. Therefore, π |= G((x.irdy ∧ x.data = d) =⇒ F(x.irdy ∧
x.data = d ∧ x.trdy)). ut

This inspires the following simplification [GCK11]. We say that a channel is idle for
d if eventually the initiator will never send message d along that channel, and it is
blocked if eventually the target will never be able to receive message d along that
channel.

Definition 3.9 (Idle and blocked channels [GCK11]). Let x be an arbitrary channel in
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an xMAS network, and let d ∈ c(x). We define

idle(x(d)) := FG(¬x.irdy ∨ x.data , d)
block(x) := FG¬x.trdy

Using these definitions, and Theorem 3.8, we have the following for forward persis-
tent channels in an xMAS network.

Corollary 3.10. Let N be an xMAS network, with x a forward persistent channel in N. We
have the following correspondences:

1. for all d ∈ c(x), channel x is live for d iff KS(N) |= idle(x(d)) ∨ ¬block(x),

2. channel x is live iff KS(N) |=
(∧

d∈c(x) idle(x(d))
)
∨ ¬block(x).

Proof. The proofs for both parts follow from our previous results as follows:

1. directly from Theorem 3.8.

2. directly from part 1 of this corollary and Lemma 3.7. ut

A local deadlock is defined as a dead channel, where a channel is dead for value d if
and only if it is not live for d. This means there exists a path in the xMAS network
to a state that satisfies ¬idle(x(d)) ∧ block(x). In other words, a channel is dead
whenever its initiator is ready to transfer datum d and its target will never be ready
to accept the data. In the rest of this chapter, we use the following definitions.

Definition 3.11 (Formulas for live and dead channels). Let N be an xMAS network,
with x a forward persistent channel in N, and d ∈ c(x). We define

live(x(d)) := idle(x(d)) ∨ ¬block(x)
dead(x(d)) := ¬live(x(d))

live(x) :=
∧

d∈c(x)

live(x(d))

dead(x) :=
∨

d∈c(x)

dead(x(d))

This definition allows us to formally define a dead channel.

Definition 3.12 (Dead channel). Let N be an xMAS network, with x a forward per-
sistent channel in N, and d ∈ c(x). Channel x is dead for d if and only for some path
π ∈ Paths(N), π |= dead(x(d)).

Observe that in the definition of dead channel we evaluate the LTL formula over a
path, whereas for determining whether a channel is live we evaluate the correspond-
ing LTL formula over a network.
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In Definition 3.11, block was defined only for x. We can refine this definition by
introducing block(x(d)) as follows.

block(x(d)) := FG(¬x.trdy ∨ x.data , d)

It is easy to see that block(x) implies block(x(d)) for any d ∈ c(x). In the definition
of live(x(d)) we can freely replace block(x) by block(x(d)) as shown by the following
lemma.

Lemma 3.13. Let N be an xMAS network, with x a forward persistent channel in N, and
d ∈ c(x). Then KS(N) |= live(x(d)) if and only if KS(N) |= idle(x(d)) ∨ ¬block(x(d)).

Proof. Let N, x and d be such. We prove both directions separately.

⇒ Suppose KS(N) |= live(x(d)), hence KS(N) |= idle(x(d)) ∨ ¬block(x). Fix an
arbitrary path π in KS(N). We have to show that π |= idle(x(d)) ∨ ¬block(x(d)).
Assume π |= ¬idle(x(d)). We show that π |= ¬block(x(d)), i.e., for all i ≥ 0,
there is j ≥ i such that π[ j..] |= x.trdy ∧ x.data = d. Fix arbitrary i ≥ 0.
Since π |= ¬idle(x(d)), for some j ≥ i, π[ j..] |= x.irdy ∧ x.data = d. Since
π |= ¬block(x), for some k ≥ j, π[k..] |= x.trdy. Consider the smallest such
k, than according to forward persistency, π[k..] |= x.irdy ∧ x.data = d, hence
π[k..] |= x.data = d ∧ x.trdy, so π |= ¬block(x(d)).

⇐ Suppose KS(N) |= idle(x(d)) ∨ ¬block(x(d)). Fix an arbitrary path π in KS(N),
and assume π |= ¬idle(x(d)). Then π |= ¬block(x(d)), i.e., π |= GF(x.trdy ∧
x.data = d), then it immediately follows that π |= GF(x.trdy), hence π |=
block(x). ut

As a consequence, we can freely use definitions of block that depend on a single data
value.

Additionally, it follows straightforwardly that, whenever a channel x is dead for d,
that channel is blocked for all values e. This is formalized by the following lemma.

Lemma 3.14. Let N be an xMAS network with x a forward persistent channel in N, and
d ∈ c(x). Then for all paths π ∈ Paths(N), π |= dead(x(d)) implies π |=

∧
e∈c(x) block(x(e)).

Proof. Fix an xMAS network N and channel x, such that x is forward persistent, and
let d ∈ c(x). Let π ∈ Paths(N) such that π |= dead(x(d)). Let e ∈ c(x) be arbitrary. Since
π |= dead(x(d)), π |= ¬idle(x(d)) ∧ block(x), so π |= block(x), which immediately
implies π |= block(x(e)). ut

3.2.5 Idle and Block Equations

The main contribution of Gotmanov et al. [GCK11] is to express deadlock conditions
for each primitive using equations over boolean variables. If these idle and block equa-
tions are satisfiable, a (possible) deadlock has been detected; if they are unsatisfiable,
the network is guaranteed to be deadlock free. The method is sound but incomplete;
if the equations are satisfiable, the assignment to the boolean variables may constitute
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a deadlock state that is unreachable in the network. This is alleviated to some extent
by incorporating invariants that approximate the reachable states.

The boolean variables express the conditions under which a primitive will never try
to output value d, denoted using variable idled

x, or never try to read from channel
x, denoted using variable blockx. The encoding is such that, whenever there exists
a path π in the xMAS network such that π |= dead(x(d)), then there is a satisfying
assignment to the variables in the idle and block equations in which idled

x is false, and
blockx is true.

As an example, we consider the idle and block equations for the function primitive
with input channel x and output channel y, for input value d. Equations for idle and
block are encoded as follows2:

blockx = blocky

idlee
y =

∧
d∈c(x)

(
( f (d) = e) =⇒ idled

x

)
Intuitively, this means that the input channel of the function primitive is blocked if
its output channel is blocked, and the output channel is idle for value e if the input
channel is idle for all values that are mapped onto e by the function f .

Note that in this way, the idle and block equations essentially approximate the LTL
specifications of idle and block defined before.

Example 3.15. We demonstrate idle and block equations in an xMAS network using
the running example from Figure 3.2. Channel x is the output channel of the source,
which can produce tokens k infinitely often, hence its output is not idle:

idlex := ⊥.

Channel x is the input channel of the queue. The queue is blocked if it is full and its
output is blocked:

blockx := full∧ blockx,

Channel y is the output channel of the queue. The output of the queue is idle, when
the queue is empty, and its input is idle:

idlex := empty∧ idlex.

Finally, channel y is the input channel of the sink. The sink can consume data
infinitely often, so x is not blocked:

blockx := ⊥.

2According to Gotmanov et al. [GCK11].
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3.3 Life and Death of State Machines in xMAS

Verbeek et al. describe an extension of xMAS with finite state machines for the
integrated verification of, for instance, cache coherence protocols together with their
underlying communication fabric [Ver+16; Ver+17].

3.3.1 xMAS Automata

We first recall the definition of finite state machines and the corresponding semantics
as described by Verbeek et al.

Definition 3.16 ([Ver+17, Definition 1]). Let D denote the type of packet. An XMAS
automaton is a tuple (S,T, s0,CI,CO) with S the set of states, T the set of transitions,
s0 the initial state and CI (CO) the set of in (out) channels. A transition t ∈ T is a tuple
(s, s′, ε, ϕ) with s and s′ the begin and end states, function ε :: CI ×D 7→ B an event
and function ϕ :: CI ×D ⇀ (CO ×D) a transformation.

In this definition,⇀ indicates a partial function. Given transition (s, s′, ε, ϕ), ε(x, d) =
True indicates that the transition can be enabled by packet d at input channel x.
Likewise, ϕ(i, d) indicates the output packet that is produced at a specified output
channel. If nothing is produced, this is denoted using ⊥.

Before giving the semantics of xMAS automata, we first define when a transition is
enabled.

Definition 3.17 ([Ver+17, Definition 2]). Let A be an xMAS automaton. Let t =
(s, s′, ε, φ) be a transition of A.

enabled(t, x) := A.s ∧ x.irdy ∧ ε(x, x.data) ∧ rdy(ϕ(x, x.data))

where A.s indicates A is currently in state s, rdy(⊥) = True, and rdy(y, e) = y.trdy.

Finally, for xMAS automata, the semantics in terms of irdy and trdy signals are
defined as follows.

Definition 3.18 ([Ver+17]). Let A = (S,T, s0,CI,CO) be an xMAS automaton. As-
sume selA is a fair selection function3 that chooses an enabled transition and the
corresponding input channel that enables the transition. We now define:

x.trdy := selA = (x, _)
y.irdy := selA = (y, t) ∧ ϕ(x, x.data) = (y, _)

y.data :=

e if selA = (y, t) ∧ ϕ(x, x.data) = (y, e)
⊥ otherwise

where t = (s, s′, ε, ϕ).

3That is, the function selects a transition with the corresponding input channel among enabled transitions
such that every transition and input channel pair is selected infinitely often.
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Verbeek et al. next construct idle and block equations for xMAS automata as follows.
First, they state that an xMAS automaton is dead if “there exists a state for which
all outgoing transitions can be dead”. This results in the following idle and block
equations for xMAS automaton A = (S,T, s0,CI,CO) [Ver+17]:

deadAA :=
∨
s∈S

A.s ∧
∧

t=(s,s′,ε,ϕ)∈T

∧
x∈CI

∧
d∈c(x)

ε(i, d) =⇒ (blockϕ(x,d) ∨ idlex(d))

blockx(d) := deadAA ∨
∧

t=(s,s′,ε,ϕ)∈T

¬ε(x, d)

idley(e) := deadAA ∨
∧

t=(s,s′,ε,ϕ)∈T

∧
x∈CI

∧
d∈c(x)

ε(x, d) =⇒ ϕ(x, d) , (y, e)

The intent is for the definition to be such that, when the automaton is considered
in the context of an xMAS network N, and there exists a path π in KS(N) such that
π |= dead(x(d)), for input channel x of the automaton, then blockx(d) is true. Likewise,
if for some pathπ in KS(N) such thatπ |= dead(y(e)) for output channel y, then idley(e)
is false.

Intuitively, in the definition above, block is true at an input channel if and only if
either all transitions in the state machine can never be taken or the state machine has
no transition reading on that channel. Similarly, idle holds at an output channel if and
only if either all transitions can never be taken of the state has no transition writing on
that channel.

3.3.2 Life and Death of State Machines: A Counter-Example

Unfortunately, there are xMAS networks with finite state machines that, according
to the approach of Verbeek et al. are deadlock free, but that do in fact contain a
deadlock. This is illustrated by the following example.

Example 3.19. Consider the state machine in Figure 3.3 with two input channels x
and y, connected to sources, and two output channels u and v, connected to sinks.
All channels only transfer datum d.

The functions ε and ϕ are defined (per transition) as follows:

ε1(i, d) := i = x ϕ1(i, d) := (u, d)
ε2(i, d) := i = y ϕ2(i, d) := (v, d)
ε3(i, d) := i = x ϕ3(i, d) := (v, d)

So, initially in s0, the machine can either read d from channel x and produce d on
channel u, and stay in s0, or it can read d from channel y once, and produce d on
channel v, and reach s1. In that state, the machine never reads from y nor writes to
channel u, and only reads from x, writes to v, and stays in s1.

Still, according to the definition by Verbeek et al., the machine is not dead as it will
read x infinitely often. In particular, blocky(d) is false, since ε2(i, d) = i = y, hence
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y

x

v

u

s0 s1

ε1:ϕ1

ε2:ϕ2

ε3:ϕ3

Figure 3.3: Finite state machine with deadlock not detected by Verbeek et al.’s ap-
proach

ε2(y, d) = True according to their definition. Clearly, once state s1 is reached, messages
waiting on channel y will never be read.

The example clearly illustrates that, even though channel y is dead for d, this is not
detected by the idle and block equations, since blocky(d) is false. The encoding by
Verbeek et al. to idle and block equations is therefore unsound.

Intuitively, the problem with their definition is as follows. If a state machine has no
available enabled transitions, idle and block are true on all channels. This is captured
by deadA, and is, in fact, correct. The error lies in the second part of each definition. A
state machine can block a channel while still having a transition reading that channel.
For instance, if that channel is read finitely many times. A similar argument holds for
idle and output channels.

3.4 Finite State Machines

Verbeek et al.’s definition of xMAS automata [Ver+16; Ver+17] allows for the symbolic
description of channels and data read and written along transitions. However, it still
only allows reading and writing (at most) one channel on every transition. To simplify
presentation in this chapter, we adapt the definition of xMAS automata into what
we call finite state machines (FSMs). The key difference between FSMs and xMAS
automata is that we require the explicit definition of every datum read/written on
a transition. Note that this does not fundamentally alter the expressive power: the
number of channels, as well as the data transferred along the channels are generally
assumed to be finite, so they can simply be expanded in the finite state machine.

In the rest of this section we introduce finite state machines into xMAS.

Definition 3.20 (FSM). A finite state machine (FSM) is a tuple (S, s0, I,O,T), where:

• S is a finite set of states;

• s0 ∈ S is an initial state;

• I is a finite set of input channels;
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• O is a finite set of output channels

• T ⊆ S × ((I × C)∪ {_}) × ((O × C)∪ {_}) × S is the transition relation. We require
T to be total, i.e., every state has at least one outgoing transition.

We also let G = I ∪O be the set of all channels used by the FSM.

We typically use names s, s′, s0, s1, . . . for states, and x and y for channels, and we write
? x(d) to denote a read of data d on input channel x, and ! y(e) to denote a write of data e

on output channel y. We typically write s
?x(d)/!y(e)
−−−−−−−→ s′ to denote (s, (x, d), (y, e), s′) ∈ T.

Remark 3.21. Henceforth, we require every transition to read from a channel and to
write to a channel for the sake of simplicity. In other words, we assume the signature
T ⊆ S× (I ×C)× (O×C)× S.

This is not a fundamental restriction. Transitions t = s
_/!y(e)
−−−−−→ s′ that do not read from

an input channel can be modeled by introducing a new channel xt that is connected

to a source and the FSM, and be replaced by s
?xt/!y(e)
−−−−−−→ s′. Likewise, transitions

t = s
?x(d)/_
−−−−−→ s′ that do not write to an output channel can be modeled using a channel

yt connected to a sink and the FSM, and be replaced by s
?x(d)/!yt
−−−−−−→ s′. Transitions

s
_/_
−−→ s′ that neither read an input channel nor write an output channel can be

modeled using a combination of the above.

We also introduce some notation that will be helpful in defining idle and block
equations for FSMs.

Notation 2. Given an FSM (Sz, sz
0, I

z,Oz,Tz), we introduce the following notation. For
state s ∈ Sz, we have the incoming and outgoing transitions of s:

ins(s) = {s′
x(d)/y(e)
−−−−−−→ s′′ ∈ Tz

| s = s′′}

outs(s) = {s′
x(d)/y(e)
−−−−−−→ s′′ ∈ Tz

| s = s′}

For channels x ∈ G, and data d ∈ c(x) we have the transitions reading d from x and
writing d to x:

read(x, d) = {s
i/o
−−→ s′ ∈ Tz

| i = x(d)}

write(x, d) = {s
i/o
−−→ s′ ∈ Tz

| o = x(d)}

In an FSM, exactly one state is current at a time, this state is denoted cur(s). A

transition s
x(d)/y(e)
−−−−−−→ s′ is enabled if and only if s is the current state, the input channel

x is ready to send d, and the output channel y is ready to receive. Note that whether
the input and output channels are ready depends on the environment of the FSM.

Definition 3.22. Given an FSM (Sz, sz
0, I

z,Oz,Tz), transition s
x(d)/y(e)
−−−−−−→ s′ ∈ Tz is en-

abled, denoted enabled(s
x(d)/y(e)
−−−−−−→ s′) iff each of the following hold:
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• cur(s), and

• x.irdy ∧ x.data = d, and

• y.trdy.

In any given state, there can be multiple enabled transitions. To resolve this non-
determinism, a scheduler sel is introduced that, at every clock cycle, selects an
enabled transition. If a transition t is selected, we denote this using selected(t). Note
selected(t) =⇒ enabled(t). Generally, sel is assumed to be fair, i.e., if state s is visited

infinitely often with s
x(d)/y(e)
−−−−−−→ s′ enabled, then s

x(d)/y(e)
−−−−−−→ s′ will be selected infinitely

often.

The environment of the finite state machine, in order to execute, relies on the FSM
indicating whether it is ready to send along an outgoing channel, or to read along
an incoming channel. The semantics in terms of irdy, trdy and data is defined as
follows.

Definition 3.23. Given an FSM (Sz, sz
0, I

z,Oz,Tz), for x ∈ Iz we define

• x.trdy := ∃s
x(d)/y(e)
−−−−−−→ s′ ∈ Tz.selected(s

x(d)/y(e)
−−−−−−→ s′)

For y ∈ Oz we define

• y.irdy := ∃s
x(d)/y(e)
−−−−−−→ s′ ∈ Tz.selected(s

x(d)/y(e)
−−−−−−→ s′)

• y.data :=

e if ∃s
x(d)/y(e)
−−−−−−→ s′ ∈ Tz.selected(s

x(d)/y(e)
−−−−−−→ s′)

⊥ otherwise

Note that y.data is well-defined since always exactly one of the enabled transitions
is selected.

We now introduce the KS semantics for the FSM primitive. For the semantics of other
xMAS primitives and the xMAS networks, see Chapter 2.

Notation 3. For x ∈ G, we define the atomic propositions related to channel x as

ap(x) = {x.irdy, x.trdy} ∪ {x.data = d | d ∈ c(x)}.

For FSMs z ∈ P with z = (Sz, sz
0, I

z,Oz,Tz), we define the following atomic propositions

apfsm(z) = {z.sel = t | t ∈ Tz
} ∪ {z.cur = s | s ∈ Sz

}.

For variable v and x ∈ B∪C, we define the following:

labv(x) =

{v | x = true} if x ∈ B,

{v = d | x = d} otherwise.

Given a variable name v, and a value e, labv(e) generates the singleton set of labels
containing v = e; if e is a Boolean, and e = false, labv(e) generates ∅.
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Let N = (P,G,C, c, chan, type) be a valid xMAS network and z ∈ P be a Finite State
Machine with z = (Sz, sz

0, I
z,Oz,Tz), and Iz = {i1, . . . , in}, and Oz = {o1, . . . , om}. Then

the Kripke Structure (S, I,→,AP,L) representing z is defined as follows.

• The state of the Kripke Structure has to reflect irdy, trdy, and data values of
inputs and outputs of z, its current state and the value of its arbiter. It is
also necessary to take into account that sel selects an enabled transition and
if a certain transition is selected it has the respective effect on the inputs and
outputs of z. Thus,

S = {(sel, i1irdy, i1trdy, d1, . . . , inirdy, intrdy, dn,

o1irdy, o1trdy, e1, . . . , omirdy, omtrdy, em, cur) ∈

((Tz
∪ {⊥})×

∏
i∈Iz

(B×B× c(i))×
∏
o∈Oz

(B×B× c(o))× Sz) |

∀s
?ik(d)/!ol(e)
−−−−−−−−→ s′ ∈ Tz.sel = s

?ik(d)/!ol(e)
−−−−−−−−→ s′ ⇒

(cur = s∧ ikirdy ∧ dk = d∧ oltrdy ∧ el = e),∧
1≤k≤n

(iktrdy ⇔ (∃s
?ik(d)/!ol(e)
−−−−−−−−→ s′ ∈ Tz.sel = s

?ik(d)/!ol(e)
−−−−−−−−→ s′)),

∧
1≤l≤m

(olirdy ⇔ (∃s
?ik(d)/!ol(e)
−−−−−−−−→ s′ ∈ Tz.sel = s

?ik(d)/!ol(e)
−−−−−−−−→ s′))}.

• For initial states we require that cur = sz
0. That is,

I = {(sel, i1irdy, i1trdy, d1, . . . , inirdy, intrdy, dn,

o1irdy, o1trdy, e1, . . . , omirdy, omtrdy, em, sp0) ∈ S}.

• Assume

s = (sel, v1, . . . , vk, cur)
s′ = (sel′, v′1, . . . , v′k, cur′).

Then,→ is the smallest relation satisfying the following:

FSM1
sel = p

?i(d)/!o(e)
−−−−−−−→ q cur = p cur′ = q

s→ s′

FSM2
sel = ⊥ cur = cur′

s→ s′

Note that the dependency between input signals, output signals, and the value
of the arbiter is expressed in the definition of S. The inference rules establish
the dependency between the value of the arbiter, the current state, and the
successor state.
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• The set of atomic propositions is:

AP = (
⋃
i∈Iz

ap(i))∪ (
⋃
o∈Oz

ap(o))∪ apfsm(p)

.

• The labeling function is defined as follows:

L((sel, i1irdy, i1trdy, d1, . . . , inirdy, intrdy, dn,

o1irdy, o1trdy, e1, . . . , omirdy, omtrdy, em, cur)) =

{labp.sel(sel)} ∪
⋃

1≤k≤n

{labik.irdy(ikirdy), labik.trdy(iktrdy), labik.data(dk)}∪

{labp.cur(cur)} ∪
⋃

1≤l≤m

{labol.irdy(olirdy), labol.trdy(oltrdy), labol.data(el)}.

Let KS(N) = (S, I,→,AP,L) be the KS for a given xMAS network N = (P,G,C, c,
chan, type) with P = {z} and type(z) = FSM and z = (Sz, sz

0, I
z,Oz,Tz). Then, for all

s
x(d)/y(e)
−−−−−−→ s′ ∈ Tz, p ∈ S, we have:

• enabled(s
x(d)/y(e)
−−−−−−→ s′) implies {z.cur = s, x.irdy, x.data = d, y.trdy} ⊆ L(p), and

• selected(s
x(d)/y(e)
−−−−−−→ s′) implies {z.sel = s

x(d)/y(e)
−−−−−−→ s′} ⊆ L(p).

Since the scheduler non-deterministically chooses between enabled transitions, and
irdy is only set for the output channel of a selected transition, whenever irdy is set
for an output channel of an FSM, than the target of that channel is ready to receive,
i.e., trdy is set.

Lemma 3.24. Given an xMAS network N with an FSM (Sz, sz
0, I

z,Oz,Tz), for y ∈ Oz, we
have y.irdy =⇒ y.trdy in all states of KS(N).

Proof. Fix an arbitrary state in KS(N). Let y be a channel in the FSM, with y.irdy set to

true. According to Definition 3.23, there exists a transition s
x(d)/y(e)
−−−−−−→ s′ such that cur(s)

and selected(s
x(d)/y(e)
−−−−−−→ s′). Since selected(s

x(d)/y(e)
−−−−−−→ s′) =⇒ enabled(s

x(d)/y(e)
−−−−−−→ s′), we

have enabled(s
x(d)/y(e)
−−−−−−→ s′). By Definition 3.22, we immediately get y.trdy. ut

Finite state machines in xMAS are non-deterministic. In principle, this could lead
to an enabled transition being ignored for an infinite amount of time. Since we
assume the existence of fair schedulers to resolve the non-determinism in finite state
machines, we only verify liveness of the xMAS network along fair paths. Such paths
are defined as follows.

Definition 3.25. Given a path π, we say that π is fair if and only if for all FSM
primitives M = (SM, sM

0 , I
M,OM,TM) and local transitions t ∈ TM, we have π |=

(GFenabled(t)) =⇒ (GFselected(t))
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3.5 Idle and Block Equations for FSMs

To define idle and block equations for finite state machines in the spirit of [GCK11],
recall that there are two reasons for an input channel of an FSM to become dead. The
first is structural: no state from which the channel can be read is ever reached again.
The second depends on the environment: no transition along which the channel is
read ever becomes enabled (in particular because the output channel that transition
writes to is blocked).

The following two notions help capture this intuition. If a state is never reached, we
say that it is idle. Likewise, if a transition is never enabled, we say that it is dead.
Formally, this is defined as follows.

Definition 3.26 (Idle states and dead transitions). Consider FSM (Sz, sz
0, I

z,Oz,Tz).
For s ∈ Sz and t ∈ Tz we define the following.

idle(s) := FG¬cur(s)
dead(t) := FG¬enabled(t)

We now establish some properties about finite state machines in the context of an
xMAS network. We show that whenever an FSM is in a particular state, it will stay
in that state as long as none of its outgoing transitions are enabled.

Lemma 3.27. Let M = (Sz, sz
0, I

z,Oz,Tz) be an FSM that appears in an xMAS network N,
and let s be a state in KS(N). Let s′ ∈ Sz be an arbitrary state in M. Then

s |= G((cur(s′) ∧
∧

t∈outs(s′)

¬enabled(t)) =⇒ Xcur(s′))

Proof. We need to show that the property holds for all pathsπ ∈ Paths(s). So, consider
an arbitrary such path. Towards a contradiction, suppose

π 6|= G((cur(s′) ∧
∧

t∈outs(s′)

¬enabled(t)) =⇒ Xcur(s′)).

This is equivalent to

π |= F((cur(s′) ∧
∧

t∈outs(s′)

¬enabled(t)) ∧ X¬cur(s′)).

Therefore, according to the LTL semantics, for some j ≥ 0, we have

π[ j..] |= (cur(s′) ∧
∧

t∈outs(s′)

¬enabled(t)) ∧ X¬cur(s′).

So, in π[ j], the FSM is in state s′, none of its outgoing transitions are enabled, and
in π[ j + 1], the FSM is in some state s′′ ∈ S, with s′ , s′′. However, according to the
semantics of xMAS networks, the FSM either takes an enabled transition, or s′ = s′′,
hence we have a contradiction. ut
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We also derive the following property from persistency of channels. Whenever none
of the outgoing transitions of a state in an FSM ever becomes enabled, then for all
outgoing transitions of that state, if the input channel of the transition is ready to
send a particular value, it will remain ready to send that value.

Lemma 3.28. Let M = (Sz, sz
0, I

z,Oz,Tz) be an FSM that appears in an xMAS network N.
Let (S, I,→,AP,L) be the Kripke Structure for N. For all states s′ ∈ Sz, all states s ∈ S, and
paths π ∈ Paths(s) if

π |= G(
∧

t∈outs(s′)

¬enabled(t))

then for all s′
x(d)/y(e)
−−−−−−→ s′′ ∈ outs(s′), it holds that

π |= G((cur(s′) ∧ x.irdy ∧ x.data = d) =⇒ X(x.irdy ∧ x.data = d))

Proof. Let s be an arbitrary state in the FSM, and let s be an arbitrary state in KS(N),
and π ∈ Paths(s). Assume that

π |= G(
∧

t∈outs(s′)

¬enabled(t)).

Towards a contradiction, suppose that

π 6|= G ((cur(s′) ∧ x.irdy ∧ x.data = d) =⇒ X(x.irdy ∧ x.data = d)) .

Hence,

π |= F ((cur(s′) ∧ x.irdy ∧ x.data = d) ∧ X(¬x.irdy ∨ x.data , d)) .

According to the LTL semantics, there exists j ≥ 0 such that

π[ j..] |= (cur(s′) ∧ x.irdy ∧ x.data = d) ∧ X(¬x.irdy ∨ x.data , d).

Since channels are persistent, it must be the case thatπ[ j..] |= x.trdy. But then we have
π[ j..] |= cur(s′) ∧ x.irdy ∧ x.data = d ∧ x.trdy. However x.trdy is only true if there

is an outgoing transition s′
x(d)/y(e)
−−−−−−→ s′′ in s′ such that π[ j..] |= enabled(s′

x(d)/y(e)
−−−−−−→ s′′)

according to Definition 3.23, which contradicts our assumption. ut

These lemmata allow us to relate a transition eventually never becoming enabled
along a path, to the observation that, along the same path, either the source state of
the transition is idle, the input channel is idle, or the output channel is blocked.

Lemma 3.29. Let M = (Sz, sz
0, I

z,Oz,Tz) be an FSM that appears in an xMAS network N.

Let (S, I,→,AP,L) be the Kripke Structure for N. For all transitions t = s′
x(d)/y(e)
−−−−−−→ s′′ ∈ Tz,

all states s ∈ S, and all paths π ∈ Paths(s),

π |= FG¬enabled(t) if and only iff π |= idle(s′) ∨ idle(x(d)) ∨ block(y).
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Proof. Fix an arbitrary transition t = s′
x(d)/y(e)
−−−−−−→ s′′, state s, and path π ∈ Paths(s).

We prove both directions separately.

⇒ Suppose that π |= FG¬enabled(t). So, there is an index i ≥ 0 such that

π[i..] |= G¬enabled(t). (3.1)

Towards a contradiction, suppose π 6|= idle(s′) ∨ idle(x(d)) ∨ block(y(e)).
Hence, π |= ¬idle(s′) ∧ ¬idle(x(d)) ∧ ¬block(y(e)). Therefore, also:

π |= ¬idle(s′) (3.2)
π |= ¬idle(x(d)) (3.3)
π |= ¬block(y) (3.4)

Since ¬idle(s′) ≡ GFcur(s), from Equation (3.2) and the semantics of LTL, there
exists k1 ≥ i such that π[k1..] |= cur(s′).

Since ¬idle(x(d)) ≡ GF(x.irdy ∧ x.data = d), from Equation (3.3) and the
semantics of LTL, there exists k2 ≥ k1 such that π[k2..] |= x.irdy ∧ x.data = d.
Fix the smallest such k2, and observe that for all l such that k1 ≤ l ≤ k2, we have
π[l..] |= cur(s′) according to our assumption and Lemma 3.27.

Since¬block(y) ≡ GFy.trdy, from Equation (3.4) and the semantics of LTL, there
exists k3 ≥ k2 such that π[k3..] |= y.trdy. Fix the smallest such k3, and observe
that for all l such that k2 ≤ l ≤ k3, we have π[l..] |= x.irdy ∧ x.data = d according
to our assumption and Lemma 3.28. Furthermore, we have π[l..] |= cur(s′)
according to our assumption and Lemma 3.27.

But then, in particular, we have that

π[k3..] |= cur(s′) ∧ x.irdy ∧ x.data = d ∧ y.trdy

hence π[k3..] |= enabled(s′
x(d)/y(e)
−−−−−−→ s′′). But since k3 ≥ i, this contradicts Equa-

tion 3.1.

⇐ Suppose π |= idle(s′) ∨ idle(x(d)) ∨ block(y). We split the three cases.

– π |= idle(s′). By definition of idle, π |= FG¬cur(s′). So, there exists
i ≥ 0 such that for all j ≥ i, π[ j..] |= ¬cur(s′). Since ¬cur(s′) implies

¬enabled(s′
x(d)/y(e)
−−−−−−→ s′′) according to Definition 3.22, we have shown for

all j ≥ i, π[ j..] |= ¬enabled(s′
x(d)/y(e)
−−−−−−→ s′′), hence π |= FG¬enabled(s′

x(d)/y(e)
−−−−−−→

s′′).

– π |= idle(x(d)). By definition of idle, π |= FG¬(x.irdy ∧ x.data = d). This

again immediately implies π |= FG¬enabled(s′
x(d)/y(e)
−−−−−−→ s′′) according to

Definition 3.22.

– π |= block(y). The reasoning is again similar to the previous cases. ut
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The following lemma shows that output channels of a finite state machine are never
dead. This is a consequence of how the semantics of FSMs resolves non-determinism.

Lemma 3.30. Given an xMAS network N with an FSM (Sz, sz
0, I

z,Oz,Tz), for all states s
and for channels y ∈ Oz and e ∈ c(y), we have for all paths π ∈ Paths(s), π 6|= dead(y(e)).

Proof. Let s, y ∈ Oz, e ∈ c(y) and π ∈ Paths(s) be arbitrary.

Towards a contradiction, supposeπ |= dead(y(e)). Hence,π |= ¬idle(y(e)) ∧ block(y(e)).
Since π |= ¬idle(y(e)), by definition of idle π |= ¬FG(¬y.irdy ∨ y.data , e) hence
π |= GF(y.irdy ∧ y.data = e).

Since π |= block(y(e)), π |= FG(¬y.trdy ∨ y.data , e). Hence, there exists i ≥ 0 such
that for all j ≥ i, π[ j..] |= ¬y.trdy ∨ y.data , e. Let i be such. Since π |= GF(y.irdy ∧
y.data = e), for some k ≥ i, we have π[k..] |= y.irdy ∧ y.data = e. According to
Lemma 3.24, y.irdy =⇒ y.trdy, hence π[k..] |= y.trdy ∧ y.data = e, which is a
contradiction. So, π 6|= dead(y(e)). ut

3.5.1 Idle and Block Equations for FSMs

We extend idle and block equations for xMAS networks by providing equations for
finite state machines. The equations refer to some variables that are defined in idle
and block equations of other components. Specifically, idle of incoming channels
and block of outgoing channels is used in the encoding.

Definition 3.31 (Idle and block equations for FSMs). Consider a Finite State Machine

M = (Sz, sz
0, I

z,Oz,Tz). For s′ ∈ Sz, x ∈ Iz, y ∈ Oz, d ∈ c(x), e ∈ c(y), and s′
x(d)/y(e)
−−−−−−→ s′′ ∈

Tz we define the following boolean equations.

blockd
x =

∧
t∈read(x,d)

deadt blockx =
∧

d∈c(x)

blockd
x

idlee
y =

∧
t∈write(y,e)

deadt idley =
∧

e∈c(y)

idlee
y

deads′
x(d)/y(e)
−−−−−−→s′′ = idles ∨ idled

x ∨ blocky

idles = ¬curs′ ∧
∧

t∈ins(s′)

deadt

The formula SAT(M) consists of the conjunction of all of the above equations for all
states, transitions and channels. We refer to the encoding of an entire network N as
SAT(N).

The intuition behind the encoding is as follows. If a state is not current, and none of
its incoming transitions can ever become enabled, the state is effectively unreachable,
and thus the state is idle. In turn, a transition is dead if it can never become enabled.
This is the case if either its source state or its incoming channel is idle, or its outgoing
channel is blocked. An input channel is blocked for a given data value if no transition
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will read that value from the channel. Likewise an output channel is idle for a value
if that value is never written to it. An output channel is idle if it is idle for all values,
meaning that no value will ever be written to it. In input channel is blocked if it is
blocked for all values. Intuitively, one might argue that an input channel should be
blocked if it is blocked for some value. However, since we are interested in detecting
dead channels, and in Lemma 3.14 we have proven that if a channel is dead, it is
blocked for all values that could be sent along that channel, using conjunction here
is sufficient to obtain soundness.

3.5.2 Soundness of Idle and Block Equations

We finally prove that the idle and block equations that we have constructed are sound
in the sense that, if there is a channel that is dead for a particular value, then there is
a satisfying assignment to the boolean equations that shows this.

Consistency with the environment

The idle and block evaluations of FSMs are evaluated in the context of the idle and
block equations of the entire network. We focus our reasoning on the finite state
machines and assume consistency of assignments on the other components in the
network. Correctness of the equations of the rest of the network follows from the
original results in [GCK11].

Definition 3.32 (Consistency). We say that an assignment σ that assigns constants
to variables is consistent for an equation Φ = Ψ in the encoding to idle and block
equations if and only if σ(Φ) = σ(Ψ). The assignment σ is consistent for Boolean
variable v if the defining equation v = Φ is consistent.

Note that in the above, σ(Φ) denotes the value that is obtained by assigning the
constant from σ to every variable in Φ, and subsequently simplifying the resulting
formula.

To formalise the assumption on the environment under which we can construct a
satisfying assignment for the idle and block equations of an FSM, we assume we
have a consistent assignment for all variables V that are not controlled by the FSM.
For the variables from R that are relevant to the truth value of the FSM, we further
assume that they get a value that is consistent with a given path.

Definition 3.33. Consider the encoding SAT(N) of an xMAS network N, let π ∈
Paths(KS(N)) be a path, and σ an assignment to the variables in SAT(N). Let V and
R be subsets of the variables in SAT(N). We say that σ is π-consistent with respect to
V and R if σ is consistent for all variables v ∈ V, and

• if blockd
x ∈ R then π |= block(x(d)) iff σ(blockd

x) = true, and

• if idled
x ∈ R then π |= idle(x(d)) iff σ(idled

x) = true.
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Given an FSM M = (Sz, sz
0, I

z,Oz,Tz), we define

R(M) = {idled
x | x ∈ Iz, d ∈ c(x)} ∪ {blockx | x ∈ Oz

}

V(M) = {blockd
x | x ∈ Iz, d ∈ c(x)} ∪ {blockx | x ∈ Iz

}

∪ {idled
x | x ∈ Oz, d ∈ c(x)} ∪ {idlex | x ∈ Oz

}

∪ {deadt | t ∈ Tz
}

We write V(SAT(N)) for the set of all variables in the encoding SAT(N). Note that
V(M) denotes the variables controlled by an FSM and V(SAT(N)) \V(M) consists of
all variables controlled by the environment.

Building a satisfying assignment

For the soundness proof, the idea is now as follows. If we have a path π in network
N on which channel x in an FSM is dead for d, and variable assignment σ that is
π-consistent with respect to V(SAT(N)) \V(M) and R(M), then we can modify σ to
some σ′ such that σ′ remains consistent, and such that it is a satisfying assignment
for SAT(N) ∧ ¬idled

x ∧ blockd
x.

Note that for soundness, we only have to consider the input channels of FSMs, since
we have already shown that output channels of FSMs cannot be dead in Lemma 3.30.

Theorem 3.34. Let M = (Sz, sz
0, I

z,Oz,Tz) be an FSM that appears in an xMAS network N.
Let x ∈ Iz be channel with d ∈ c(x). If there exists a fair maximal path π ∈ Paths(s) such that
π |= dead(x(d)), and an assignment σ that isπ-consistent with respect to V(SAT(N)) \V(M)
and R(M), then there exists a satisfying assignment to the formula SAT(N) ∧ ¬idled

x ∧

blockx.

We postpone the proof of the theorem, and first prove some additional results from
which the theorem follows. In particular, observe that a maximal path can either be
finite or infinite, and in an infinite path in an xMAS network, the FSM can be stuck
in a state locally. We construct satisfying assignments for each of the cases, and show
that the assignments are satisfying assignments to the equations.

We first define the assignment for the case where an FSM is stuck locally (either on a
finite or an infinite fair maximal path).

Definition 3.35. Let M = (Sz, sz
0, I

z,Oz,Tz) be an FSM in an xMAS network N, π a
path in KS(N), and let σ be a variable assignment that is π-consistent with respect to
V(SAT(N)) \V(M) and R(M). Given a state s′ ∈ Sz, we define the variable assignment
σs to V(SAT(N)) as follows. For all variables v 6∈ V(M), σs(v) = σ(v). For v ∈ V(M),
the assignment is as follows. For states s′′ ∈ Sz, transitions t ∈ Tz, channels x ∈ Iz,
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y ∈ Oz, and d ∈ c(x), e ∈ c(y):

σs(curs′′ ) := s′ = s′′ σs(idles′′ ) := s′ , s′′ σs(deadt) := true

σs(blockd
x) := true σs(blockx) := true

σs(idled
y) := true σs(idley) := true

When it is clear from the context that we evaluate a SAT formula in the context of σs
we omit it, and write, e.g., curs′ instead of σs(curs′ ).

We first show that if a (fair) maximal path in a network containing the FSM is
finite (and thus ends in a global deadlock), the previous definition gives a satisfying
assignment for the encoding to SAT.

Lemma 3.36. Let M = (Sz, sz
0, I

z,Oz,Tz) be an FSM that appears in an xMAS network N.
For all finite fair maximal paths π ∈ Paths(KS(N)), such that last(π) |= cur(s′) for some
s′ ∈ Sz, and all assignments σ that are π-consistent with respect to V(SAT(N)) \V(M) and
R(M), the assignment σs is a satisfying assignment.

Proof. Assume there exists a fair maximal path π ∈ Paths(N) such that π is finite and
last(π) |= cur(s′) for some s′ ∈ Sz.

We check consistency of the assignment σs. Note that σs is consistent for all equations
that are generated for other components. We therefore consider only the equations
generated for M. Note that the equations for block and idle of channels are trivially
consistent since they only depend on dead, and all occurrences of dead are assigned
true. We therefore focus on the other two cases:

idleq. We first show for arbitrary q ∈ S, idleq = ¬curq ∧
∧

t∈ins(q) deadt. If q = s′,
then idleq = false, and curq = true, therefore, false = idleq = ¬curq ∧∧

t∈ins(q) deadt = false ∧
∧

t∈ins(q) deadt = false is consistent. If q , s′, then
true = idleq = ¬curq ∧

∧
t∈ins(q) deadt = ¬false ∧

∧
t∈ins(q) true = true is consis-

tent.

deadt. For arbitrary q
x(d)/y(e)
−−−−−−→ q′ ∈ Tz we show deadq

x(d)/y(e)
−−−−−−→q′ = idleq ∨ idled

x ∨

blocky is consistent. If q , s′, then true = deadq
x(d)/y(e)
−−−−−−→q′ = idleq ∨ idled

x ∨

blocky = true ∨ idled
x ∨ blocky = true. If q = s′, then since π is maximal, we

have last(π) |= G¬enabled(q
x(d)/y(e)
−−−−−−→ q′). Furthermore, since last(π) |= cur(s), we

have last(π) |= ¬idle(s). Thus, from Lemma 3.29 it follows that idle(x(d)) or
block(y); since both are in R(M), and σ is π-consistent, idled

x ∨ blocky = true,
and σs is consistent. ut

In case a path is finite, but the FSM is stuck in a local deadlock, the same assignment
is also a satisfying assignment.
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Lemma 3.37. Let M = (Sz, sz
0, I

z,Oz,Tz) be an FSM that appears in an xMAS network N.
For all fair maximal paths π ∈ Paths(KS(N)), and all s′ ∈ Sz such that

π |= FG

cur(s′) ∧
∧

t∈outs(s′)

¬enabled(t)

 ,
and all assignments σ that are π-consistent with respect to V(SAT(N)) \V(M) and R(M),
the assignment σs is a satisfying assignment.

Proof. Assume there exists a fair maximal path π ∈ Paths(N) such that π is infinite,
and let s′ ∈ Sz be such that π |= FG

(
cur(s′) ∧

∧
t∈outs(s′) ¬enabled(t)

)
.

We check consistency of the assignment σs. Note that σs is consistent for all equations
that are generated for other components by construction. We therefore consider only
the equations generated for M. Note that the equations for block and idle are trivially
consistent since they only depend on dead, and all occurrences of dead are assigned
true. We therefore focus on the other two cases.

idleq. We first show for arbitrary q ∈ S, idleq = ¬curq ∧
∧

t∈ins(q) deadt. If q = s′,
then idleq = false, and curq = true, therefore, false = idleq = ¬curq ∧∧

t∈ins(q) deadt = false ∧
∧

t∈ins(q) deadt = false is consistent. If q , s′, then
true = idleq = ¬curq ∧

∧
t∈ins(q) deadt = ¬false ∧

∧
t∈ins(q) true = true is consis-

tent.

deadt. For arbitrary q
x(d)/y(e)
−−−−−−→ q′ ∈ Tz we show deadq

x(d)/y(e)
−−−−−−→q′ = idleq ∨ idled

x ∨

blocky is consistent. If q , s′, then true = deadq
x(d)/y(e)
−−−−−−→q′ = idleq ∨ idled

x ∨

blocky = true ∨ idled
x ∨ blocky = true. If q = s′, then we have deadq

x(d)/y(e)
−−−−−−→q′ =

true, and idleq = ⊥, and we need to show that idled
x ∨ blocky = true. Since

q = s′, π |= FG(cur(q) ∧
∧

t∈outs(q) ¬enabled(t)). Therefore, π |= FGcur(q) as well
as π |= FG

∧
t∈outs(q) ¬enabled(t)). From this, it follows that π |= ¬idle(q), and

π |= FG¬enabled(q
x(d)/y(e)
−−−−−−→ q′). Thus, according to Lemma 3.29, π |= idle(q) ∨

idle(x(d)) ∨ block(y). Since π |= ¬idle(q), we have π |= idle(x(d)) ∨ block(y(e))
according to Lemma 3.29. Since idle(x(d)) and block(y(e)) are in R(M), and σ
is π-consistent, we get that idled

x ∨ blocke
y = true. Thus it follows that σs is

consistent. ut

The assignment σs was used to construct a satisfying assignment in case the FSM
is stuck in a local deadlock. When an FSM is not stuck, we construct a satisfying
assignment based on an infinite path π.

Definition 3.38. Let M = (Sz, sz
0, I

z,Oz,Tz) be an FSM in an xMAS network N, let
π ∈ Paths(KS(N)) be an infinite path, and let σ be a variable assignment that is π-
consistent with respect to V(SAT(N)) \V(M) and R(M). We construct assignment σπ
such that for all v ∈ V(SAT(N)) \V(M), σπ(v) = σ(v), and for all v ∈ V(M), σπ(v) is as
follows.
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Since π is infinite and the network and all its data is finite, π is a lasso that consists
of a prefix π[0] . . . π[i] and a cycle π[i]π[i + 1] . . . π[i + n] such that π[i + n + 1] = π[i].
So, π[i] is the first state on the lasso that is on the cycle. Let s ∈ S be such that
π[i] |= cur(s′), i.e., s′ is the local state of the FSM at the beginning of the loop.

For states s′′ ∈ Sz, transitions t ∈ Tz, channels x ∈ Iz, y ∈ Oz, and d ∈ c(x), e ∈ c(y):

σπ(curs′′ ) := s′ = s′′

σπ(idles′′ ) := ∀0 ≤ k ≤ n.π[i + k] |= ¬cur(s′′)
σπ(deadt) := ∀0 ≤ k ≤ n.π[i + k] |= ¬enabled(t)

σπ(blockd
x) := ∀t ∈ read(x, d).∀0 ≤ k ≤ n.π[i + k] |= ¬enabled(t)

σπ(blockx) := ∀d ∈ c(x).∀t ∈ read(x, d).∀0 ≤ k ≤ n.π[i + k] |= ¬enabled(t)

σπ(idled
y) := ∀t ∈ write(y, e).∀0 ≤ k ≤ n.π[i + k] |= ¬enabled(t)

σπ(idley) := ∀e ∈ c(y).∀t ∈ write(y, e).∀0 ≤ k ≤ n.π[i + k] |= ¬enabled(t)

When it is clear from the context that we evaluate a SAT formula in the context of σπ
we omit it, and write, e.g., curs′′ instead of σπ(curs′′ ).

We next show that for infinite, fair maximal paths in a network containing the FSM,
on which the FSM is not stuck locally, the previous definition gives a satisfying
assignment for the encoding to SAT.

Lemma 3.39. Let M = (Sz, sz
0, I

z,Oz,Tz) be an FSM that appears in an xMAS network
N. For all infinite fair maximal paths π ∈ Paths(N), and all assignments σ, if for all
s′ ∈ Sz, π |= GF

(
cur(s) =⇒

∨
t∈outs(s′) enabled(t)

)
, and σ is π-consistent with respect to

V(SAT(N)) \V(M) and R(M), then the assignment σπ is consistent.

Proof. Fix an arbitrary fair maximal infinite path π ∈ Paths(KS(N)) and σ such that
for all s′ ∈ Sz, π |= GF

(
cur(s′) =⇒

∨
t∈outs(s′) enabled(t)

)
, and σ is π-consistent with

respect to V(SAT(N)) \V(M) and R(M).

We check that the assignment σπ is consistent. For this, let i be such that it denotes
the start of the cycle on π, and suppose s′ ∈ Sz is such that π[i] |= cur(s′).

idleq. We first show for arbitrary q ∈ Sz that idleq = ¬curs′ ∧
∧

t∈ins(s′) deadt. We
distinguish two cases. If idleq = true, then π[i..] |= G¬cur(q). Since π is fair,
π |= FG

∧
t∈ins(q) ¬enabled(t), otherwise, one of the transitions would eventually

be selected, and q would be reached. Then, for all transitions t ∈ ins(q), π |=
FG¬enabled(t), hence deadt = true for all such transitions. Since π[i..] |= cur(s′),
and π[i..] |= G¬cur(q), s′ , q, thus curq = false. Therefore, true = idleq =
¬curq ∧

∧
t∈ins(q) deadt = true.

If idleq = false, then if π[i] |= cur(q), curq = true, and the result follows imme-
diately from false = idleq = ¬curq ∧

∧
t∈ins(q) deadt = false ∧

∧
t∈ins(q) deadt =

false. Suppose π[i] 6|= cur(q). Then, for some k such that 0 ≤ k ≤ n, π[i + k] |=
cur(q). Let k be the smallest such that π[i + k] |= cur(q). Observe that k > 0.
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Then, π[i + k − 1] |= enabled(t) for some t ∈ ins(q). Hence, deadt = false for
this t. Then,

∧
t∈ins(q) deadt = false, therefore idleq = ¬curq ∧

∧
t∈ins(q) deadt =

¬curq ∧ false = false is consistent.

deadt. For arbitrary q
x(d)/y(e)
−−−−−−→ q′ ∈ Tz, we show deadq

x(d)/y(e)
−−−−−−→q′ = idleq ∨ idled

x ∨

blocky is consistent.

If deadq
x(d)/y(e)
−−−−−−→q′ = true, then π[i + k] |= ¬enabled(q

x(d)/y(e)
−−−−−−→ q′) for all 0 ≤ k ≤ n,

henceπ |= FG¬enabled(q
x(d)/y(e)
−−−−−−→ q′). If there exists 0 ≤ k ≤ n such thatπ[i + k] |=

cur(q), then it must be the case that π |= idle(x(d)) ∨ block(y), otherwise π |=

GFenabled(q
x(d)/y(e)
−−−−−−→ q′), which is a contradiction. Since idled

x,blocky 6∈ V(M),
idled

x = true or blocky = true since σ is π-consistent w.r.t V(SAT(N)) \V(M) and
R(M), and true = deadq

x(d)/y(e)
−−−−−−→q′ = idleq ∨ idled

x ∨ blocky = true is consistent.

If deadq
x(d)/y(e)
−−−−−−→q′ = false, then π[i + k] |= enabled(q

x(d)/y(e)
−−−−−−→ q′) for some k. Then

π[i + k] |= cur(q), thus idleq = false, and also, from the definition of enabled, it
follows immediately that π |= ¬idle(x(d)) ∧ ¬block(y). Since idled

x,blocky 6∈

V(M), idled
x = false and blocky = false since σ is π-consistent w.r.t V(SAT(N)) \

V(M) and R(M). Therefore, false = deadq
x(d)/y(e)
−−−−−−→q′ = idleq ∨ idled

x ∨ blocky =
false is consistent.

blockd
x. We show blockd

x =
∧

t∈read(x,d) deadt for arbitrary channel x and d ∈ c(x).
Observe that blockd

x = true if and only if ∀t ∈ read(x, d), 0 ≤ k ≤ n, π[i + k] |=
¬enabled(t). By definition of dead, deadt = true for all such transitions t as well,
and the assignment is consistent by definition.

blockx. Consistency of blockx =
∧

d∈c(x) blockd
x follows immediately from the defi-

nitions.

idlee
y. Showing for arbitrary channel y and e ∈ c(y) that idlee

y =
∧

t∈write(y,e) deadt and

idley =
∧

e∈c(y) idlee
y are consistent is analogous to the case of blockd

x.

idley. Consistency of idley =
∧

e∈c(y) idlee
y follows immediately from the definitions.

Hence σπ is a consistent satisfying assignment to SAT(N). ut

The following lemma shows that if an xMAS network N satisfies idle(s) for some FSM
state s, then there exists a satisfying assignment to SAT(N) in which idle(s) = true. In
the proof of the lemma, we demonstrate the construction of a satisfying assignment
for formulas that involve our idle and block equations for FSMs.

Lemma 3.40. Let M = (Sz, sz
0, I

z,Oz,Tz) be an FSM that appears in an xMAS network N,
and let s′ ∈ Sz be a local state in M. If there exists a fair maximal pathπ ∈ Paths(KS(N)) such
thatπ |= idle(s), and an assignment σ that isπ-consistent with respect to V(SAT(N)) \V(M)
and R(M), then there exists a satisfying assignment to the formula SAT(N) ∧ idles.
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Proof. Fix an arbitrary local state s′ ∈ Sz, and assume there exists a fair maximal
path π ∈ Paths(KS(N)) such that π |= idle(s′). Let σ be an assignment as specified.
According to the definition of idle, π |= FG¬cur(s′). We distinguish two cases: either
π is finite, or π is infinite.

π is finite. Let p ∈ Sz be such that last(π) |= cur(p). According to Lemma 3.36, σp is
a satisfying assignment for SAT(N). Since π |= idle(s′), last(π) 6|= cur(s′), hence
σp(idles′ ) = true, and the assignment also satisfies SAT(N) ∧ idles′ .

π is infinite. We distinguish two cases.

First, assume π |= FG(cur(s′′) ∧
∧

t∈outs(s′′) ¬enabled(t)) for some s′′ ∈ Sz. Let p
be such a state. According to Lemma 3.37, σp is a consistent assignment for
SAT(N).

Since π |= idle(s′), for some i ≥ 0, and all j ≥ i, π[ j] |= ¬cur(s′), which means
it must be the case that p , s′, hence σp(idles′ ) = true hence σp is a satisfying
assignment for SAT(N) ∧ idles′ .

Otherwise, π 6|= FG(cur(s′′) ∧
∧

t∈outs(s′′) ¬enabled(t)) for all s′′ ∈ Sz. Hence,
for all s′′ ∈ Sz, π |= GF(cur(s′′) =⇒

∨
t∈outs(s′′) enabled(t)). According to

Lemma 3.39, σπ is consistent with SAT(N).

Let i be the index that signals the start of the loop of the lasso. Observe that,
since π |= idle(s′), π |= FG¬cur(s′), so for all 0 ≤ k ≤ n, π[i + k] |= ¬cur(s), hence
σπ(idles) = true, and σπ is a satisfying assignment for SAT(N) ∧ idles′ .

So, in all cases, a satisfying assignment for SAT(N) ∧ idles′ exists. ut

We finally return to the proof of Theorem 3.34 to establish that our idle and block
equations are sound. The structure of the proof is similar to that of the previous
lemma.

Theorem 3.34. Let M = (Sz, sz
0, I

z,Oz,Tz) be an FSM that appears in an xMAS network N.
Let x ∈ Iz be channel with d ∈ c(x). If there exists a fair maximal path π ∈ Paths(s) such that
π |= dead(x(d)), and an assignment σ that isπ-consistent with respect to V(SAT(N)) \V(M)
and R(M), then there exists a satisfying assignment to the formula SAT(N) ∧ ¬idled

x ∧

blockx.

Proof. Assume there exists a fair maximal path π such that π |= dead(x(d)). Let σ be
an assignment as specified.

By definition of dead, π |= ¬idle(x(d)) ∧ block(x), hence π |= ¬idle(x(d)) and π |=

block(x). Since idled
x 6∈ V(M), σ(idled

x) = false according to the assumptions.

We distinguish two cases

π is finite. Let p ∈ Sz be such that last(π) = p. Then according to Lemma 3.36, the
assignment σp is consistent with SAT(N). Note that σp(blockx) = true and
since idled

x 6∈ V(M), σp(idled
x) = σ(idled

x) = false). Hence we have a satisfying
assignment for SAT(N) ∧ ¬idled

x ∧ blockx.
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π is infinite. We distinguish two cases.

First, suppose π |= FG(cur(s′) ∧
∧

t∈outs(s′) ¬enabled(t)) for some s′ ∈ S. Let
p be such. According to Lemma 3.37, σp is consistent with SAT(N). Using
similar reasoning as in the previous case, we can conclude that σp is a satisfying
assignment for SAT(N) ∧ ¬idled

x ∧ blockx.

Otherwise, for all s′′ ∈ Sz, we have π 6|= FG(cur(s′′) ∧
∧

t∈outs(s′′) ¬enabled(t)),
i.e., π |= GF(cur(s′′) =⇒

∨
t∈outs(s′′) enabled(t)).

According to Lemma 3.39, σπ is consistent with SAT(N). Note that since π |=
dead(x(d)), π |= block(x(e)) for all e ∈ c(x), according to Lemma 3.14. Consider
arbitrary e ∈ c(x), we show that the assignment satisfies blocke

x. From this
and the definition it immediately follows that is satisfies blockx. Let i be the
index that signals the start of the loop of the lasso π. Since π |= block(x(e)),
π |= FG(¬x.trdy ∨ x.data , e). By definition of enabled, this implies π |=
FG(¬enabled(t)) for all t ∈ read(x, e). Hence, for all 0 ≤ k ≤ n,π[i + k] |= ¬enabled(t)
for all t ∈ read(x, e). By definition of σπ, we then have σπ(blocke

x) = true. Since
this holds for all e, by definition also σπ(blockx) = true, and σπ is a satisfying
assignment for SAT(N) ∧ ¬idled

x ∧ blockx. ut

So, assuming that idle and block equations for other components are sound, we have
proven that also the idle and block equations for finite state machines are sound.

3.5.3 Examples

We reconsider the example that illustrated the approach from [Ver+16; Ver+17] was
unsound, and show that our approach correctly detects deadlocks.

Example 3.41. Recall the finite state machine from Figure 3.3. We repeat it here as
Figure 3.4, and update the notation to be consistent with our definitions. Note that
the FSM only uses a single token as data, and data is therefore omitted from the
figure.

y

x

z

o

s0 s1

?x/!o

?y/!z

?x/!z

Figure 3.4: Finite state machine from Figure 3.3
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The full SAT encoding of this example is the following:

idles0 = ¬curs0 ∧ deads0
x/o
−−→s1

idles1 = ¬curs1 ∧ deads0
y/z
−−→s1 ∧ deads1

x/z
−−→s1

dead
s0

x/o
−−→s1

= idles0 ∨ idlex ∨ blocko

dead
s0

y/z
−−→s1

= idles0 ∨ idley ∨ blockz

dead
s1

x/z
−−→s1

= idles1 ∨ idlex ∨ blockz

blockx = deads0
x/o
−−→s1 ∧ deads1

x/z
−−→s1

blocky = deads0
y/z
−−→s1

idleo = deads0
x/o
−−→s1

idlez = deads1
x/z
−−→s1

The environment is such that it guarantees that idlex = idley = blocko = blockz =
false. Now, the following assignment is a satisfying assignment for this system:

curs0 := false curs1 := true
idles0 := true idles1 := false

deads0
x/o
−−→s1 := true deads0

y/z
−−→s1 := true deads1

x/z
−−→s1 := false

blockx := false blocky := true
idleo := true idlez := false

Note that this assignment satisfies blocky = true. We thus satisfy ¬idley ∧ blocky,
hence y is dead, and we correctly detect the deadlock in this network.

3.6 Invariants

In the form introduced thus far, there are many satisfying assignments to Boolean
equations that are not reachable (for instance, see Figure 3.3). To restrict the num-
ber of satisfying assignments, the reachable state space can be approximated using
invariants as proposed by Chatterjee and Kishinevsky [CK12]. Essentially, for every
channel x, and datum d ∈ c(x), a variable λd

x is introduced to represents the number
of times d was transferred along channel x, i.e., the number of clock ticks at which
x.irdy ∧ x.data = d ∧ x.trdy held true. For queues q, #q.d denotes the number of d-
packets in the queue. For every primitive, the λ values for input and output channels
are related, and for queues the content is taken into account.

For example, for queues with input channel x and output channel y, we have λd
y =

λd
x − #q.d, i.e., the number of times d has been transferred along the outgoing channel

equals the number of times d has been received, minus the number of d-packets that
are still in the queue.

For the function primitive that we saw before, with input channel x, output channel
y and function f , λe

y =
∑
{λd

x | f (d) = e}, i.e., the number of times e is sent along y
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equals the number of times a packet d that is mapped onto e has been received along
x.

Verbeek et al. described invariants for xMAS automata. We here translate their
approach to our setting.

The first invariant requires that the FSM is always in exactly one state. Note that
we abuse notation and write curs = 1 whenever curs = true.4 This is [Ver+17,
Invariant (1)]:∑

s∈S

curs = 1.

The second invariant relates the number of times incoming and outgoing transi-
tions of a state s have been taken. This uses variables κt, denoting the number of
times transition t has been taken. The resulting invariant for a state s is [Ver+17,
Invariant (2)]:

∑
t∈ins(s)

κt =

 ∑
t∈outs(s)

κt

 + curs − (s = s0)

Note that s = s0 takes care of the fact that the automaton initially ends up in the initial
state s0 without taking a transition, and curs accounts for the situation where, if s is
the current state, we still have to take an outgoing transition.

Due to our simplified presentation of FSMs, the other invariants presented in [Ver+17]
can be simplified. They relate the number of times data has been transferred along
an input channel of an automaton to the number of times a transition reading that
data has been taken, and likewise for output channels.

For the input channels we thus get a simplification of [Ver+17, Invariant (3)], where
for x ∈ Iz and d ∈ c(x), we get:

λd
x =

∑
t∈read(x,d)

κt.

For output channels y ∈ Oz and d ∈ c(y), we get a similar equation inspired
by [Ver+17, Invariant (4)]:

λd
y =

∑
t∈write(y,d)

κt.

These invariants are incorporated in our proofs in a similar way as in [CK12; Ver+17].

4The expression can easily be expanded to a boolean condition.
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3.7 Experiments

We have implemented the idle and block equations described in Section 3.5 in our
MaDL design & verification toolset [FS21]. This toolset uses an an xMAS model
as input, and from this it automatically generates an SMT problem that directly
incorporates the idle and block equations. The SMT problem is then solved by a
state-of-the-art SMT-solver to verify liveness. Additionally, the toolset can generate a
model that encodes the xMAS network and the way it behaves responding to external
stimuli in the SMV specification format. In the SMV model, block and idle equations
are used as invariants. This enables the nuXmv model-checker [Cav+14] to check
reachability of a state in which a channel of the given xMAS model is not idle and
blocked.

3.7.1 Experimental Setup

We perform experiments with two kinds of models. The first set of models is in-
spired by “go/no go” testing. The second models a power domains architecture,
and is inspired by industrial practice. Every model in the set has a corresponding
modification in which some channel is dead.

Go/no go models The “go/no go” models are built as follows. The basic building
block is the FSM, depicted in Figure 3.5. The FSM has two inputs and two outputs. It
FSM reads from the first input, writing the signal which is read to the second output.
Then it reads from the second input, and depending on the data, which was read
from both inputs, it either writes ok, or nok to the first output. By combining two
such FSMs we obtain a “go/no go” building block, depicted in Figure 3.6.

s0s1 s2
?i1(nok)/!o2(nok)

?i2(ok)/!o1(nok)

?i2(nok)/!o1(nok)

?i1(ok)/!o2(ok)

?i2(ok)/!o1(ok)

?i2(nok)/!o1(nok)

i1

i2

o1

o2

Figure 3.5: “go/no go” FSM.

We construct models of varying sizes by composing these blocks similarly to the way
one builds a binary tree, i.e., we add new “go/no go” blocks by connecting the output
of each new block we are adding to an input of a block which is a leaf of the tree.
Every “go/no go” model has a number in its name, which denotes the number of
blocks from Figure 3.6.

To obtain “go/no go” models with deadlocks, we modify deadlock-free “go/no go”
models by altering an FSM which is part of a building block whose inputs are not
connected to another “go/no go” block. The modification is done as follows. We add
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i0

i i1

i2

i01

i02

o1

o2

o01

o02

o

go/no go FSM

go/no go FSM

Figure 3.6: “go/no go” block.

a new state with a self-loop reading ok from channel i. We also add a transition from
s0 to this new state, on which nok is read from channel i. The modified FSM now
has a reachable state in which channel i is blocked for nok, and in which all output
channels of the FSM are idle.

Power domain models Systems on chip require power efficiency. This is achieved
by a power control architecture that turns power domains on and off depending
on the needs of an application. For our experiments, we model a dynamic power
management policy, which is an abstraction of the ones used in industrial practice.

Figure 3.7 gives an overview of the structure of our power domain models. A power
domain controller (Figure 3.8e) powers on the domain when a device belonging to
the domain shows activity. When there is no activity within the power domain, and
all device controllers indicate that their respective devices are turned off, the power
domain controller cuts power.

Within every power domain, there is a number of device-controller pairs. Devices are
modeled using two FSMs: the activity generation FSM (Figure 3.8c), and the device
FSM (Figure 3.8a). We also connect a source to the input of every activity generator.
The device FSM reacts to turn on and turn off requests. Note that a turn off request
can be denied. Device controllers are modeled by the FSM depicted in Figure 3.8b.
A controller responds to activity, by requesting to turn on the corresponding device.
Upon turning on the device, the controller sends a turned on signal to the power
domain controller. In the absence of activity, the controller sends a turn off request
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Figure 3.7: Power domain.

to the device, and in case the request is not denied, the controller sends a turned off
signal further to the domain power controller. Activity and powered on signals are
combined using the FSM depicted in Figure 3.8d. We scale the power domain models
by adding more power domains and more device-controller pairs to domains.

Power domains, and within these domains the devices and device controllers are
indexed. To add a deadlock to a model, we change the FSM of the device controller
with the highest index within the power domain that has the highest index as follows.
We add a new state which can be reached from the on state by reading 0 from channel
act. From the newly added state, it is only possible to read 1 from act. Therefore,
from this new state, channel act is dead for 0, and all outgoing channels of the FSM
are idle.

All experiments were conducted on a MacBook Pro 2015, 2,7GHz Intel Core i5, 16Gb
RAM, running MacOS Sierra. For SMT problem solving, we use the Z3 SMT-solver,
version 4.8.0 64-bit [MB08]. For reachability checks, we use nuXmv, version 2.0.0
64-bit [Cav+14]. Instructions to reproduce the experiments and the script used to
obtain the results reported in this chapter can be found at [FS21].

3.7.2 Results

The times required for the experiments are reported in Table 3.1. The Model column
indicates the model that is evaluated. For go/no go models, the number in the name
signifies the number of blocks. For power domain models, the first and second
number in the name denote the number of power domains and device-controller
pairs in every domain, respectively. #FSMs reports the number of FSMs in the
model. In the Live column, 3 indicates that the model is deadlock free, 7 indicates it
is not. For each instance, we list the result reported by the tool (Res.), where 3 and
7 represent absence and presence of deadlocks, respectively. Running time for each
instance is reported in seconds.

For both sets of models, SAT and reachability correctly report absence and existence
of deadlocks in all models. The largest go/no go models contain 126 FSMs. Live-
ness of the largest deadlock free go/no go model is proven using SAT in 7 seconds.
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Figure 3.8: FSMs of power domain.

77



Chapter 3. Effective System Level Liveness Verification

Model #FSMs Live SAT Reachability
Res. Time (s) Res. Time (s)

gonogo_1 2 3 3 0.1 3 0.2
gonogo_1_dl 2 7 7 0.1 7 0.3
gonogo_2 6 3 3 0.1 3 0.5
gonogo_2_dl 6 7 7 0.1 7 2.4
gonogo_3 14 3 3 0.3 3 1.5
gonogo_3_dl 14 7 7 0.3 7 5.9
gonogo_4 30 3 3 0.6 3 5.5
gonogo_4_dl 30 7 7 0.6 7 18.0
gonogo_5 62 3 3 2.0 3 21.2
gonogo_5_dl 62 7 7 1.9 7 54.9
gonogo_6 126 3 3 7.9 3 92.7
gonogo_6_dl 126 7 7 6.7 7 221.7
power1_5 25 3 3 0.4 3 1.6
power1_5_dl 25 7 7 0.2 7 2.1
power10_5 259 3 3 14.0 3 120.0
power10_5_dl 259 7 7 10.1 7 104.2
power20_5 519 3 3 57.5 3 564.8
power20_5_dl 519 7 7 50.3 7 451.1
power30_5 779 3 3 352.5 3 1597.4
power30_5_dl 779 7 7 262.9 7 1107.3
power40_5 1039 3 3 410.2 3 n/a
power40_5_dl 1039 7 7 245.6 7 n/a
power50_5 1299 3 3 542.2 3 n/a
power50_5_dl 1299 7 7 481.1 7 n/a

Table 3.1: Experimental results

Reachability analysis takes 1 minute 32 seconds for the same go/no go model. For
the largest go/no go model with a deadlock, a deadlock is reported using SAT in 6
seconds. Using reachability it can be proven that a deadlock state is reachable in 3
minutes 41 seconds. As for the power domain experimental set, the largest models
(both with and without deadlock) contain 1299 FSMs. For the largest model without
a deadlock, SAT proves liveness in 9 minutes and 2 seconds. Analysis of the largest
power domain model with a deadlock takes 8 minutes and 1 second using SAT.
Reachability analysis for the power domain models with numbers of power domains
larger than 30 was not possible in our case. This was caused by nuXmv exceeding
the maximum allowed stack on MacOS.

3.7.3 Discussion

The results show that using our technique we can prove liveness of large xMAS
models with FSMs. We plot the performance results on both sets of models in
Figure 3.9. Note that we use the log-scale for the y-axis. The results show that

78



3.8. Conclusions

0 50 100
10−2

10−1

100

101

102

Number of FSMs

Ti
m

e
in

se
co

nd
s

“Go/no go” deadlock-free

SMT
Reachability

0 50 100
10−2

10−1

100

101

102

Number of FSMs

Ti
m

e
in

se
co

nd
s

“Go/no go” deadlock

SMT
Reachability

0 500 1,000
10−2

10−1

100

101

102

103

Number of FSMs

Ti
m

e
in

se
co

nd
s

Power domain deadlock-free

SMT
Reachability

0 500 1,000
10−2

10−1

100

101

102

103

Number of FSMs

Ti
m

e
in

se
co

nd
s

Power domain deadlock

SMT
Reachability

Figure 3.9: Visualization of the results.

both methods scale exponentially in the number of FSMs. However, using SAT for
liveness verification significantly outperforms reachability for xMAS extended with
FSMs. This is in line with our expectations, and aligns with results for standard
xMAS [GCK11].

Although we do not encounter false deadlocks in our experiments, the fact that our
method is incomplete implies that finding false deadlocks using SAT is possible. If
SAT reports a deadlock, it is not known if the deadlock is reachable or not. In that
case, reachability analysis is necessary.

3.8 Conclusions

We present a counter-example that is composed of a network with a deadlock that is
not found by the technique of Verbeek et al. [Ver+17]. Subsequently, we propose an
alternative encoding of liveness into a satisfiability problem. We carefully prove that
if an xMAS network has a path to a state with a deadlock, there exists a satisfying
assignment to the satisfiability problem we generate, i.e., our encoding is sound.
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Finally, we introduce two sets of benchmarks including a simplified power control
architecture inspired by industrial case-studies.

The benchmarks and our implementation are publicly available [FS21]. A network
with 1299 state machines can be proven live in less than 10 minutes.
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Chapter 4

Eliminating False Deadlocks in
xMAS

4.1 Introduction

The importance of the correct functioning of hardware is evident, especially in safety-
critical areas. Conventionally, validation of new hardware designs is conducted
using testing and simulation. When dealing with complex hardware, testing and
simulation cannot guarantee the full coverage of all possible hardware behaviors,
which results in a probabilistic conclusion regarding the correctness of the hardware
under validation. An alternative approach to validating new hardware designs,
which currently becomes more commonly used, is formal verification. In contrast to
the traditional approaches to validating hardware designs, formal verification covers
all possible hardware behaviors. Besides its advantages, formal verification has a
bottleneck as it is usually challenging to scale it to the system level.

xMAS is a language for modeling and verification of hardware designs. The language
was introduced originally by researchers of Intel [CKO10]. xMAS contains a number
of primitives, by composing which one builds models of hardware. There is a
number of verification techniques associated with xMAS. In particular, there is an
efficient SAT-based approach by Gotmanov et al. [GCK11; CKO12], which translates
the liveness problem of a given xMAS network into a satisfiability problem, which
can be then tackled using a SAT-solver. There is also an approach by Wouda et
al. [WJS15], which translates a given xMAS network into an SMV model and then
uses a symbolic model checker to analyze the reachability of deadlock states.

The SAT-based liveness verification technique discussed in Chapter 3 scales well; we
were able to prove the liveness of an xMAS network consisting of 1299 FSMs in less
than 10 minutes. Chatterjee and Kishinevsky proved the completeness of the tech-
nique for acyclic xMAS networks that contain only basic xMAS primitives [CKO10];
during the experiments with xMAS networks that involve FSMs, we observed false
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deadlocks. This chapter focuses on improving the technique so that it becomes
complete for any valid xMAS network with FSMs.

Contributions. We demonstrate an example of a false deadlock in the context of
xMAS with FSMs. Further, we address this issue while trying to keep scalability
reasonable. To check if a deadlock is spurious or not, we focus on backward reach-
ability analysis of an initial state from a deadlock state. We introduce and evaluate
two approaches to analyze backward reachability. We base both approaches on the
backward reachability analysis due to the conjecture that in practice, the set of states
that are backward reachable from a deadlock state is smaller than the set of states
that are reachable from an initial state.

First, we start with a k-step backward reachability using SMT. The method generates
a satisfiability problem that, given a deadlock state and a k ≥ 0, answers whether
an initial state is backward-reachable in up to k steps or it is possible to do k steps
backward. The method is complete for large enough k. However, for large xMAS
networks, full checking of backward reachability of an initial state from the given
deadlock state might be hard. So, our k-step backward reachability method allows
making a trade-off by using small enough k to discard some false deadlocks while
still being reasonably scalable. The experiments show that the method fails to prove
liveness within a 30-minute timeout for any model from the experimental set.

As a more effective alternative to the k-step backward reachability method, we in-
troduce and evaluate an interpolation-based method for analyzing backward reach-
ability. The method is inspired by the algorithm of McMillan [McM03]. We modified
the algorithm of McMillan such that instead of analyzing the reachability of a dead-
lock state from an initial state, we check the backward reachability of an initial state
from a deadlock state. To evaluate our interpolation-based backward reachability
method, we use a set of xMAS networks. We also use the same experimental set
to compare our interpolation-based backward reachability method with the original
method of McMillan. The experiments show that our method performs reasonably
well. Moreover, experiments show that in the context of xMAS liveness verification,
checking the backward reachability of an initial state from a deadlock state might be
advantageous than checking the reachability of a deadlock state from an initial state.

Structure of the chapter. In Section 4.2 we briefly introduce the xMAS language, an
effective liveness verification technique for xMAS, and discuss false deadlocks in the
context of xMAS liveness verification. In Section 4.3 we introduce and evaluate the
k-step backward reachability approach. In Section 4.4, interpolation-based backward
analysis is introduced and evaluated. In Section 4.5 we discuss the experimental
results. Finally, in Section 4.6 we conclude.
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4.2 Preliminaries

4.2.1 xMAS Language

xMAS is a graphical language that offers convenient modeling. The process of xMAS
modeling involves composing primitives. The primitives are connected using typed
channels.

A B
x.data

x.trdy
x.irdy

Figure 4.1: Connection between primitives in xMAS.

Data is transferred through channels following a handshake protocol. For that, every
channel carries three signals – irdy, trdy, and data. To give intuition regarding
data transfers in xMAS, let us refer to Figure 4.1, where we depict channel x which
connects primitives A and B. We call A the source and B the target of x. Signal irdy
of x is controlled by the source and is used to signalize that the source is ready to
transfer data. Signal trdy of x is used by B to signalize that it is ready to accept data.
Both irdy and trdy are binary signals and can be seen as booleans. Data goes from
A to B through signal data of x; data transfer only happens if both irdy and trdy are
true. In xMAS we assume that all channel are persistent. Whenever the initiator of a
channel decides to transfer data, it keeps its irdy and data unchanged until the target
of the channel accepts the data. In the current chapter, we only consider synchronous
execution of xMAS networks. That is, we assume that all channels which are ready
to transfer data do so simultaneously.

The core primitives of xMAS are depicted in Figure 4.2. In the current chapter we
consider the xMAS language with the FSM extension, thus we provide an example
of an FSM primitive in Figure 4.3. Further, we will be using source, sink, queue, and
FSM primitives in our examples; thus, we provide a detailed description of these
primitives. For a detailed description of the other primitives, we refer the reader to
Chapter 2.

Figure 4.2: Core xMAS primitives [CKO10].

A source non-deterministically injects data into the network infinitely often. This
is modeled using the unconstrained primary input oracle. Once a source decides
to transfer datum d, it will keep trying until the transfer succeeds. This is modeled
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Figure 4.3: A Finite State Machine in xMAS.

using the standard synchronous operator pre that returns the value of its argument
in the previous clock cycle, and false in the very first cycle. Formally, the source is
described as follows:

o.irdy := oracle∨ pre(o.irdy∧¬o.trdy)
o.data := d.

A sink consumes data from the network infinitely often:

i.trdy := oracle∨ pre(i.trdy∧¬i.irdy).

A queue is a FIFO buffer with k places. A queue is ready to write data to the output
when it is not empty. The data the queue is ready to write is the head of the queue.
A queue is ready to accept data when it is not full. Formally,

o.irdy := |xs| > 0, o.data := rhead(xs),
i.trdy := |xs| < k,

where i and o are the input and output channels of the queue respectively.

A finite state machine (FSM) is a tuple (S, s0, I,O,T), where S is a finite set of states;
s0 ∈ S is an initial state; I is a finite set of input channels; O is a finite set of output
channels; and T ⊆ S × (I × C) × (O × C) × S is the total transition relation. We use

names s, s′, s1, . . . for states. We write s
?x(d)/!y(e)
−−−−−−−→ s′ for (s, (x, d), (y, e), s′) ∈ T. For

state s ∈ S, ins(s) and outs(s) denote the sets of incoming and outgoing transitions
of s, respectively. Similarly, for channels x ∈ (I ∪O), and data d ∈ C(x), read(x, d)
and write(x, d) represent the sets of transitions reading d from x and writing d to x,
respectively. In an FSM, exactly one state is current at a time, this state is denoted
cur(s).

A transition s
?x(d)/!y(e)
−−−−−−−→ s′ is enabled if and only if s is the current state, the input

channel x is ready to send d, and the output channel y is ready to receive. In any
state, there can be multiple enabled transitions. To resolve this non-determinism, an
arbiter sel is introduced that selects an enabled transition during every clock cycle.
If transition t is selected, this is denoted sel = t. Formally, given FSM (S, s0, I,O,T),
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for all i ∈ I, o ∈ O:

i.trdy := ∃s ∈ S, d ∈ c(i), t ∈ (ins(s)∩ read(i, d)).sel = t,
o.irdy := ∃s ∈ S, e ∈ c(o), t ∈ (ins(s)∩write(o, e)).sel = t,

o.data :=

e if ∃s ∈ S, e ∈ c(o), t ∈ (ins(s)∩write(o, e)).sel = t
⊥ otherwise.

To give a more formal perspective on xMAS, let us introduce the following definitions.
The set of component types is

Γ = {source, sink, function, fork, join, switch,merge,FSM} ∪ {queuek | k ∈N}.

Note that the queue type is parameterized in order to reflect the sizes of queues.

Definition 4.1. An xMAS network is a structure (P,G,C, c, chan, type) where:

• P is the set of components;

• G is the set of channels;

• C is a non-empty set of data, which consists of all possible values of data signals
of all channels x ∈ G;

• c : G→ (2C
\ {∅}) is the function that assigns sets of data to channels from G;

• chan : P × {in, out} ×N 9 G is a partial function which, given a component
p ∈ P, an input/output identifier and a channel number n ∈N, returns the input
(output) channel number n of the component p;

• type : P→ Γ is the function that assigns a type to a component.

4.2.2 Liveness in xMAS

Before we discuss liveness in the context of xMAS, it is important to recall the notion
of idle and block from [GCK11]; see also Chapter 3. A channel is idle for some datum
d if eventually the initiator of the channel will never transfer d through the channel.
A channel is blocked if eventually the target of the channel will never accept data
transfers through the channel. In terms of LTL, idle and block are defined as follows.
Given a channel x and a datum d ∈ c(x),

idle(x(d)) := FG(¬x.irdy ∨ x.data , d),
block(x) := FG¬x.trdy.

Channel x is live for some d ∈ c(x) when it is idle for d or not blocked:

live(x(d)) := idle(x(d)) ∨ ¬block(x).

Channel x is dead for some d ∈ c(x) when there is a path to a state that satisfies not
live:

dead(x(d)) := ¬live(x(d)).
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Channel x is live when it is live for all d ∈ c(x):

live(x) :=
∧

d∈C(x)

live(x(d)).

Channel x is dead when there is d ∈ c(x) for which x is dead:

dead(x) :=
∨

d∈C(x)

dead(x(d)).

The idea behind the SAT-based liveness verification technique for xMAS is to translate
the liveness problem for a given xMAS network into a satisfiability problem by
approximating dead property for every channel x ∈ G. The method works such that if
the given xMAS network can reach a situation where one of its channels is dead, then
the liveness satisfiability problem is satisfiable. However, if the liveness satisfiability
problem has a satisfying assignment, it does not mean that the xMAS network can
reach a situation with a dead channel. That is, the method is incomplete. When used
with flow invariants introduced by Chatterjee and Kishinevsky [CK12], the method
is complete for acyclic xMAS networks that contain only the core primitives. The
invariants work as follows. For every channel x, and datum d ∈ c(x), we introduce a
variable λd

x which reflects the number of times d was transferred throughout channel
x. For every queue q, we introduce a variable #q.d which expresses the number of
d-packets stored in the queue. Invariants relate the λ values for input and output
channels, also taking into account the #q variables.

• For a queue primitive with input channel i and output channel o, for all d ∈ c(i),
the number of d packets transferred through output o equals the number of d
packets transferred through input i minus the number of d packets that are still
in the queue:

∀d ∈ c(i).λd
o = λd

i − #q.d.

• For a function primitive with input channel i, output channel o, and a bijective
data transforming function f , for all d ∈ c(i), the number of f (d) packets trans-
ferred through output o is equal to the number of d packets transferred through
i. That is:

∀d ∈ c(i).λ f (d)
o = λd

i .

• For a fork primitive with input channel i, and output channels o and u, for
all d ∈ c(i), the number of d packets transferred through each of the outgoing
packets is equal to the number of d packets transferred through i:

∀y ∈ {o,u}, d ∈ c(y).λd
y = λd

i .

• For a join primitive with input channels {i, j}, and output channel o, for all
x ∈ {i, j}, and for all d that go through x and o, the number of d packets transferred
through o equals the number of d packets transferred through x. That is:

∀x ∈ {i, j}, d ∈ (c(o)∩ c(x)).λd
o = λd

x.
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• For a switch primitive with input channel i, and output channels {o,u}, for all
y ∈ {o,u}, d ∈ c(y), the number of d packets transferred through output y equals
the number of d packets transferred through i. That is:

∀y ∈ {o,u}, d ∈ c(i).λd
y = λd

i .

• For a merge primitive with input channels {i, j}, and output channel o, for all
d ∈ c(o), the number of d packets transferred through output o equals the sum
of the numbers of d packets transferred through i and j. That is:

∀d ∈ c(o).λd
o = λd

i + λd
j .

Verbeek et al. introduced invariants for FSMs in xMAS [Ver+17]. For the details, we
refer the reader to Chapter 3.

4.2.3 Incompleteness of Flow Invariants

Even though the invariants presented above provide completeness for acyclic xMAS
networks that contain core primitives only, incompleteness is still a problem for
xMAS with FSMs. Further, we provide a detailed example of a false deadlock that
cannot be ruled out using the flow invariants. Consider an xMAS network depicted
in Figure 4.4. For simplicity, assume that data in the network is limited to tokens.
Assume that the source provides tokens infinitely often and the sink is ready to
consume tokens infinitely often. The invariants, in that case, would be as follows.

curs0 + curs1 = 1
curp0 + curp1 = 1
κi = κs0→s1 + κs1→s0

κa = κs0→s1

κb = κs1→s0

κa′ = κp0→p1 + κp1→p1

κb′ = kp1→p0

κo = κp0→p1 + κp1→p1 + κp1→p0

κa′ = κa − #q0

κb′ = κb − #q1

κo′ = κo − #q2

κs1→s0 = κs0→s1 + curs0 − (s0 = s0)
κs0→s1 = κs1→s0 + curs1 − (s1 = s0)
κp1→p0 = κp0→p1 + curp0 − (p0 = p0)

κp1→p1 + κp0→p1 = κp1→p1 + κp1→p0 + curp1 − (p1 = p0)

These equations have a satisfying assignment provided below.

curs0 := 0 curs1 := 1
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curp0 := 1 curp1 := 0
κi := 3 κa := 2
κb := 1 κa′ := 2
κb′ := 0 κo := 2
κo′ := 2 #q0 := 0
#q1 := 1 #q2 := 0

κs0→s1 := 2 κs1→s0 := 1
κp0→p1 := 0 κp1→p0 := 0
κp1→p1 := 2

Thus, states s1 and p0 are the current states of the leftmost and rightmost FSMs,
respectively. The leftmost FSM needs q1 to be empty in order to leave its current

state, but q1 is full. The only way to make q1 empty is to take p1
?b′/!o
−−−−→ p0 transition

in the rightmost FSM. However, the rightmost FSM is stuck in p0 since it needs q0
to be non-empty in order to leave its current state. Note that channel i is not idle
since the source tries to transfer tokens infinitely often, but the leftmost FSM lost the
ability to accept data transfers. Hence, channel i is also blocked, which makes it dead.
The argument that the deadlock described above is unreachable is as follows. The

s0 s1

?i/!a

?i/!b

p0 p1

?a′/!o

?b′/!o
?a′/!o

i

a 1 a′

q0

b
1 b′

q1

o 1 o′

q2

Figure 4.4: False deadlock example in xMAS

situation does not correspond to an initial state. So, it must have been reached by

performing a transition. Call this transition t. Transition t can only be s0
?i/!a
−−−→ s1 or

p1
?b′/!o
−−−−→ p0. Distinguish these two cases:

• t = s0
?i/!a
−−−→ s1. After taking the transition, #q0 = 1. This contradicts that #q0 = 0

in the assignment. So, this is impossible.

• t = p1
?b′/!o
−−−−→ p0. After taking the transition, one element is removed from #q1.

So, #q1 < 1, which contradicts that #q1 = 1 in the assignment.

Hence, there cannot be a last transition allowing us to enter the situation mentioned
above, and therefore it is unreachable.
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4.3 k-step Backward Reachability

To limit the number of false deadlocks reported by the SAT-based xMAS liveness
verification method, we add k-step backward reachability encoding to the original
liveness satisfiability problem. The added backward reachability encoding ensures
that either an initial state is backward-reachable in up to k steps, or it is possible to do
k steps backward without visiting the same state more than once. We further prove
that the method guarantees completeness with a large enough k.

We start with considering important notions and definitions.

Definition 4.2. A Kripke Structure is a tuple (S, I,→,AP,L), where:

• S is a set of states,

• I ⊆ S is the set of initial states,

• →⊆ S× S is a transition relation,

• AP is a set of atomic propositions,

• L : S→ 2AP is a labelling function.

Further we introduce several types of reachability, starting with a k-step reachability
of one state from another.

Definition 4.3. Given a KS (S, I,→,AP,L), k ≥ 0, and states s, p ∈ S, reachability of p
from s in k steps, denoted s→k p, is defined as follows:

s→0 p if s = p,

s→k+1 p if there is s′ ∈ S such that s→k s′ and s′ → p.

Next, we introduce reachability of one state in a KS from another in any number of
steps.

Definition 4.4. Given a KS (S, I,→,AP,L), and states s, p ∈ S, we say that p is reachable
from s, denoted s→∗ p if and only if there is k ≥ 0 such that s→k p.

We also introduce reachability of one state from another with the requirement to visit
only the states from the given set S′.

Definition 4.5. Given a KS (S, I,→,AP,L), states s, p ∈ S, and S′ ⊆ S, we say that state
s is reachable from state p visiting S′, denoted p→∗S′ s if and only if:

s = p, or
∃s′ ∈ (S′ \ {s}).(p→∗S′\{s} s′ ∧ s′ → s).

Reachability with the requirement to visit particular states that we introduced above
is helpful for requiring to avoid visiting the same state twice before the destination
state is reached. In other words, that definition allow us to require avoiding cycles
on the way to the target state.

89



Chapter 4. Eliminating False Deadlocks in xMAS

Given a state s ∈ S, and a non-negative number k, we want to encode steps backward,
such that with every step, we keep track of the states that were seen so far, and we
also keep track of the number of steps that we have done so far; we stop when exactly
k steps backward were taken. We express such backward reachability recursively as
follows.

Definition 4.6. Given a KS (S, I,→,AP,L), for all s ∈ S,S′ ⊆ S,

Back0(s,S′) := >,
Backn+1(s,S′) := ∃s′ ∈ S \ (S′ ∪ {s}).(Backn(s′,S′ ∪ {s})∧ s′ → s)∨ (s ∈ I).

For all s ∈ S, S′ ⊆ S and 0 ≤ i ≤ k, Backi(s,S′) are boolean-valued formulas, where
S′ is used to keep track of the states that were discovered so far; i is used to keep
track of the steps that were taken backward. Thus, Back0(s,S′) is always true since
the number of backward steps is exceeded.

As part of establishing the correctness of Backi(s,S′), we need to show that for
all states s ∈ S if there is an initial state s0 ∈ I such that s is reachable from s0, then
Backn(s, ∅) holds for any n. But first, we introduce and prove a lemma and a corollary
as stepping stones.

Lemma 4.7. Let S,S′ be sets such that S′ ⊆ S, and let s ∈ S. Then S \ (S′ \ {s}) ≡ (S \S′)∪{s}.

Proof. Fix sets S,S′ such that S′ ⊆ S and fix s ∈ S. We prove both direction separately.

⇒ We fix p ∈ (S \ (S′ \ {s})) and prove that p ∈ ((S \ S′)∪ {s}). By the definition of \,
p ∈ S and p 6∈ (S′ \ {s}). Also, by the definition of \, either p 6∈ S′ or p = s. We
distinguish both cases.

– if p 6∈ S′, then p ∈ (S \ S′). Hence, p ∈ ((S \ S′)∪ {s}).

– If p = s, then it immediately follows that p ∈ ((S \ S′)∪ {s}).

⇐ We fix p ∈ ((S \ S′)∪ {s}) and prove that p ∈ (S \ (S′ \ {s})). By the definition of ∪,
either p ∈ (S \ S′) or p = s. We distinguish both cases.

– If p ∈ (S \ S′), then by the definition of \, p ∈ S and p 6∈ S′. Since p 6∈ S′

then p 6∈ (S′ \ {s}). Since p ∈ S and p 6∈ (S′ \ {s}), we use the definition of \
to conclude p ∈ (S \ (S′ \ {s})).

– If p = s, then p ∈ S. Also, p 6∈ (S′ \ {s}). Since p = s and p 6∈ (S′ \ {s}),
p ∈ (S \ (S′ \ {s})). ut

Corollary 4.8. Let S,S′ be sets such that S′ ⊆ S, and let s ∈ S′. Then S \ (S′ \ {s}) ≡
(S \ S′)∪ {s}.

Proof. Fix sets S,S′ such that S′ ⊆ S, and let s ∈ S′. Since S′ ⊆ S, s ∈ S. Therefore,
using Lemma 4.7, we conclude S \ (S′ \ {s}) ≡ (S \ S′)∪ {s}. ut

Now we can use the lemma and corollary to prove that if a state s is reachable from
an initial state, then Backn(s, ∅) is true holds for all n ≤ 0.
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Lemma 4.9. Given a KS (S, I,→,AP,L), for all n ∈ N, s ∈ S, if there is s0 ∈ I such that
s0 →

∗ s then Backn(s, ∅).

Proof. We prove that for all n ∈ N, s ∈ S,S′ ⊆ S, if there is s0 ∈ I such that s0 →
∗

S′ s
then Backn(s,S\S′), which is a stronger statement. Further we proceed by induction
on n.

• Base case, n = 0. Let s0 ∈ I. Fix s ∈ S, and S′ ⊆ S such that s0 →
∗

S′ s. By
Definition 4.6, Back0(s,S\S′) is true.

• Inductive step, n = l + 1. The induction hypothesis is that for all s′ ∈ S,S′′ ⊆ S,
if there is s0 ∈ I such that s0 →

∗

S′′ s′ then Backl(s′,S\S′′) is true. Let s0 ∈ I.
Fix s ∈ S and S′ ⊆ S such that s0 →

∗

S′ s. We prove that Backl+1(s,S\S′) is true.
Distinguish the following cases based on s.

– s ∈ I. Back′l+1(s,S\S′) follows immediately from Definition 4.6.

– s 6∈ I. By Definition 4.5, there is s′ ∈ (S′ \ {s}) such that s0 →
∗

S′\{s} s′ and s′ →
s; let s′ be such. According to the induction hypothesis, Backl(s′,S\(S′\{s}))
is true. Therefore, since S′ ⊆ S and s ∈ S, by Corrolary 4.8, Backl(s′, (S \
S′) ∪ {s}). Since s′ → s and Backl(s′, (S\S′) ∪ {s}), we use Definition 4.6 to
conclude that Backl+1(s,S\S′) is true. ut

We relate Definition 4.4 and Definition 4.5, which we further use to prove that given
a state s, if s is not reachable from an initial state, then Backn(s, ∅) does not hold.

Lemma 4.10. Given a KS (S, I,→,AP,L), S′ ⊆ S, and states s, p ∈ S, if s →∗S′ p then
s→∗ p.

Proof. Proof by induction on the size of |S′|.

• Base case, |S′|= 0. S′ = ∅. Fix s, p ∈ S such that s →∗
∅

p. Since S′ = ∅,
from Definition 4.5, s = p. Hence, by Definition 4.3, s →0 p and therefore, by
Definition 4.4, s→∗ p.

• Inductive step, |S′|= l + 1. Fix S′ ⊆ S, s, p ∈ S such that |S′|= l + 1 and s →∗S′ p.
The IH is that for all S′′ ⊆ S such that |S′′|= l, and for all p′ ∈ S, if s→∗S′′ p′ then
s→∗ p′. We prove that s→∗ p. Since s→∗S′ p and |S′|= l + 1, from Definition 4.5,
we know that there is p′ ∈ (S′ \ {p}) such that s →∗S′\{p} p′ and p′ → p; let p′ be
such. Since s →∗S′\{p} p′, by the IH, s →∗ p′. By Definition 4.4, there is k ≥ 0,

such that s→k p′. Therefore, using Definition 4.3 and p′ → p, we conclude that
s→k+1 p. Finally, by Definition 4.4, we conclude s→∗ p. ut

We next prove a supplementary lemma that will come in handy in the subsequent
lemma.

Lemma 4.11. Let S,S′ be sets such that S′ ⊆ S and s ∈ S′. Then S \ ((S \S′)∪ {s}) ≡ S′ \ {s}.
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Proof. By Corollary 4.8, S \ (S′ \ {s}) ≡ (S \ S′) ∪ {s}. We therefore prove S \ (S \ (S′ \
{s})) ≡ S′ \ {s}. Consider both directions separately.

⇒ We fix p ∈ (S \ (S \ (S′ \ {s}))) and prove p ∈ ((S \ S′)∪ {s}). By the definition of \,
p ∈ S and p 6∈ (S \ (S′ \ {s})). Again, by the definition of \, p 6∈ S or p ∈ (S′ \ {s}).
Since p ∈ S∧ (p 6∈ S∨ (S′ \ {s})), we conclude p ∈ (S′ \ {s})

⇐ We fix p ∈ ((S \ S′) ∪ {s}) and prove p ∈ (S \ (S \ (S′ \ {s}))). Since p ∈ (S′ \ {s})
and (S′ \ {s}) ⊆ S, p ∈ S. Assume p ∈ (S \ (S′ \ {s})). Then p ∈ S and p 6∈ (S′ \ {s}),
which is a contradiction, since p ∈ (S′ \ {s}). Hence, p 6∈ (S \ (S′ \ {s})). Since
p ∈ S and p 6∈ (S \ (S′ \ {s})), we conclude p ∈ (S \ (S \ (S′ \ {s}))). ut

Let us split the set of states S into S′ ⊆ S and S \ S′, such that there are no initial
states in S′. We show that if Back|S′ |(s,S \ S′) then s is reachable from an initial state
by visiting states in S′.

Lemma 4.12. Given a KS (S, I,→,AP,L), for all S′ ⊆ S, such that I ∩ S′ , ∅, and for all
s ∈ S′, if Back|S′ |(s,S \ S′) is true then there is s0 ∈ I such that s0 →

∗

S′ s.

Proof. Proof by induction on the size of S′.

• Base case, |S′|= 1. Fix s ∈ S′ such that Back1(s,S \ S′) is true. Since I ∩ S′ , ∅
and I = S′ = {s0}, we have s = s0. Hence, by Definition 4.5, s0 →

∗

S′ s.

• Inductive step, |S′|= l + 2. Fix S′ ⊆ S such that I∩ S′ , ∅ and |S′|= l + 2, fix s ∈ S′

such that Backl+2(s,S \ S′). The IH is that for all S′′ ⊆ S such that I∩ S′′ , ∅ and
|S′′|= l + 1, and for all s′ ∈ S′′, if Backl+1(s′,S \ S′′) then there is s0 ∈ I such that
s0 →

∗

S′′ s′. We prove that there is s0 ∈ I such that s0 →
∗

S′ s. From Definition 4.6,
since Backl+2(s,S \ S′), either s ∈ I or there is s′ ∈ (S \ ((S \ S′) ∪ {s})) such that
Backl+1(s′, (S \ S′)∪ {s}) and s′ → s. Consider both cases separately.

– Assume s ∈ I, then s0 →
∗

S′ s immediately follows from Definition 4.5.

– Assume there is s′ ∈ (S \ ((S \ S′) ∪ {s})) such that Backl+1(s′, (S \ S′) ∪ {s})
and s′ → s; let s′ be such. Since S′ ⊆ S and s ∈ S′, using Corollary 4.8, we
have s′ ∈ (S′ \ {s}) and using Lemma 4.11, we have Backl+1(s′,S \ (S′ \ {s})).
Since |S′|= l + 2 and s ∈ S′, we conclude |S′ \ {s}|= l + 1. Since S′ ⊆ S such
that I ∩ S′ , ∅ and s 6∈ I, (S′ \ {s}) ⊆ S such that I ∩ (S′ \ {s}) , ∅. Therefore,
we can use the IH and conclude that there is s0 ∈ I such that s0 →

∗

S′\{s} s′;
let s0 be such. Since s0 →

∗

S′\{s} s′ and s′ → s, we use Definition 4.6 to
conclude s0 →

∗

S′ s. ut

Finally, we prove that given a state s, if s cannot be reached from an initial state, then
Backn(s, ∅) is false.

Lemma 4.13. Given a KS (S, I,→,AP,L), there is n ∈ N such that for all s ∈ S, if there is
s0 ∈ I such that s0 6→

∗ s then Backn(s, ∅) is false.
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Proof. Observe that by Lemma 4.12, for all s ∈ S, if Back|S|(s, ∅) then there is s0 ∈ I
such that s0 →S′ s and moreover by Lemma 4.10, s0 →

∗ s. Hence, |S| witnesses the
claim. ut

4.3.1 Encoding k-step Backward Reachablity

In this subsection, we describe how to obtain a boolean-valued formula based on
a given xMAS network N so that the formula expresses deadlock states in N and
the k-step backward reachability from a deadlock state; the formula can be easily
adapted for using with an SMT-solver.

We base the encoding on the Kripke Structure semantics of xMAS described in
Chapter 2. However, in the said chapter we introduced a KS semantics only for the
core primitive of the xMAS language. Since in the current chapter we also consider
Finite State Machines in xMAS, we need to introduce the KS semantics for the FSM
primitive.

Given an xMAS network N, let KS(N) = (S, I,→,AP,L) be the Kripke Structure
reflecting N and let k ≥ 0 be a backward reachability bound. Let π = s0s1 . . . sk be an
arbitrary sequence of states in KS(N), such that for all 0 ≤ i < k it holds that si → si+1
and s0 ∈ I. Then, to express symbolically si, we use a vector of variables Vi defined
as follows. Let G = {g1, . . . , gn}. Let {p1, . . . , pm} ⊆ P be the set of merges of N. Let
{z1, . . . , zl} ⊆ P be the set of FSMs of N. Then,

Vi = (g1.irdyi, g0.trdyi, g0.datai, . . . , gn.irdyi, gn.trdyi, gn.datai,

p1.mseli, . . . , pm.mseli, z1.seli, z1.curi, . . . , zl.sell, zl.curl),

such that:

• for all 1 ≤ j ≤ n, the values of g j.irdyi and g j.trdyi are booleans and the value
of g j.datai is an element of c(g j); the variables express the signals of channel g j
after i steps of execution;

• for all 1 ≤ j ≤ m, the value of p j.mseli is an element of the following set

{chan(p j, in, 0), chan(p j, in, 0)};

p j.mseli expresses the value of the arbiter of p j after i steps of execution;

• for all 1 ≤ j ≤ l, the value of z j.seli is an element of Tz j and the value of z j.curi

is an element of Sz j , where Tz j is the transition relation of z j and Sz j is the set of
states of z j; z j.curi expresses the current state of z j after i steps of execution.

Given a vector of variables V = (v1, . . . , vn), S = (s1, . . . , sn) is a vector of values
for V. A state predicate P is a boolean-valued formula over variables V. Given a
vector of variables W = (w1, . . . ,wn) and a formula P over some vector of variables
V = (v1, . . . , vn), we write P(W) to denote formula P with W substituting V. Similarly,
given a vector of state values S and a formula P over some vector of variables V,
we write P(S) to denote formula P with values S substituting V. A state relation T
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is a boolean-valued formula over two vectors of state variables; we write T(V,V′) to
denote that there is a transition from V to V′.

Let Init be a state predicate that expresses the condition for a state to be in I, Final
be a state predicate that expresses the deadlock condition, State be a state predicate
that expresses state consistency with respect to the KS semantics of N, NotSeen be a
state predicate that expresses the condition for a state to be different from the states
S j, where i < j ≤ k. Let T be a boolean-valued formula that expresses the transition
relation of KS(N) symbolically. For all 0 ≤ i ≤ k, let Backi be a boolean variable that
is used to characterize that it is possible to do i steps backward without visiting the
same state more than once. Then, the k-step backward reachability is expressed using
the following formula.

KReachk :=
∧

1≤i≤k

(Backi ⇔ ((Backi−1 ∧NotSeen(Vi−1)∧ T(Vi−1,Vi)))∨ Init(Vi)))

∧

∧
0≤i≤k

State(Vi)∧Back0 ∧Backk ∧ Final(Vk).

We characterize states using the following predicate. The characterization is based
on the definition of the set of states of KS(N), see Chapter 2.

State(Vi) :=
∧

p∈P.type(p)=queuek

QueueStatep(Vi)∧∧
p∈P.type(p)=function

FunctionStatep(Vi)∧∧
p∈P.type(p)=fork

ForkStatep(Vi)∧∧
p∈P.type(p)=join

JoinStatep(Vi)∧∧
p∈P.type(p)=switch

SwitchStatep(Vi)∧∧
p∈P.type(p)=merge

MergeStatep(Vi)∧∧
p∈P.type(p)=fsm

FSMStatep(Vi).

Let p ∈ P be a queue primitive with chan(p, in, 0) = x and chan(p, out, 0) = y. Then,

QueueStatep(Vi) :=(x.trdyi
⇔ ¬(|p.queue|= k))∧

(y.irdyi
⇔ ¬(|p.queuei

|= 0))∧

(y.datai = last(p.queue)).

Let p ∈ P be a function primitive with chan(p, in, 0) = x, chan(p, out, 0) = y, and a
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data transforming function f . Then,

FunctionStatep(Vi) :=(y.irdyi
⇔ x.irdyi)∧

(x.trdyi
⇔ y.trdyi)∧

(y.datai = f (x.datai)).

Let p ∈ P be a fork primitive with chan(p, in, 0) = x, chan(p, out, 0) = y, and
chan(p, out, 1) = z, and data transforming functions f and f ′. Then,

ForkStatep(Vi) :=(y.irdyi
⇔ x.irdyi

∧ z.trdyi)∧

(z.irdyi
⇔ x.irdyi

∧ y.trdyi)∧

(x.trdyi
⇔ y.trdyi

∧ z.trdyi)∧

(y.datai = f (x.datai))∧

(z.datai = f ′(x.datai)).

Let p ∈ P be a join primitive with chan(p, in, 0) = x, chan(p, in, 1) = y, chan(p, out, 0) =
z, and a routing function h. Then,

JoinStatep(Vi) :=(z.irdyi
⇔ x.irdyi

∧ y.irdyi)∧

(x.trdyi
⇔ y.irdyi

∧ z.trdyi)∧

(y.trdyi
⇔ x.irdyi

∧ z.trdyi)∧

(z.datai = h(x.datai, y.datai)).

Let p ∈ P be a switch primitive with chan(p, in, 0) = x, and chan(p, out, 0) = y, and
chan(p, out, 1) = z, and a routing function r. Then,

SwitchStatep(Vi) :=(y.irdyi
⇔ x.irdyi

∧ r(x.datai))∧

(z.irdyi
⇔ x.irdyi

∧¬r(x.datai))∧

(x.trdyi
⇔ (y.irdyi

∧ y.trdyi)∨ (z.irdyi
∧ z.trdyi))∧

(y.datai = x.datai)∧

(z.datai = x.datai).

Let p ∈ P be a merge primitive with chan(p, in, 0) = x, and chan(p, in, 1) = y, and
chan(p, out, 0) = z. Then,

MergeStatep(Vi) :=(z.irdyi
⇔ (p.mseli

∧ x.irdyi)∨ (¬p.mseli
p ∧ y.irdyi))∧

(x.trdyi
⇔ p.mseli

∧ z.trdyi
∧ x.irdyi)∧

(y.trdyi
⇔ ¬p.mseli

∧ z.trdyi
∧ y.irdyi)∧

((p.mseli
∧ x.irdyi)⇒ z.datai = x.datai)∧

((¬p.mseli
∧ y.irdyi)⇒ z.datai = y.datai).
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Let p ∈ P be an FSM primitive with p = (Sp, sp
0, I

p,Op,Tp), and Ip = {i1, . . . , iv}, and
Op = {o1, . . . , ow}. Then,

FSMStatep(Vi) := (∀s
?ik(d)/!ol(e)
−−−−−−−−→ s′ ∈ Tp.(p.seli = s

?ik(d)/!ol(e)
−−−−−−−−→ s′)

⇒ (p.curi = s∧ ik.irdyi
∧ ik.datai = d∧ ol.trdyi

∧ ol.datai = e))∧∧
1≤k≤v

(ik.trdyi
⇔ (∃s

?ik(d)/!ol(e)
−−−−−−−−→ s′ ∈ Tp.(p.seli = s

?ik(d)/!ol(e)
−−−−−−−−→ s′)))∧

∧
1≤l≤w

(ol.irdyi
⇔ (∃s

?ik(d)/!ol(e)
−−−−−−−−→ s′ ∈ Tp.(p.seli = s

?ik(d)/!ol(e)
−−−−−−−−→ s′))).

State predicate NotSeen requires that for all i < j ≤ k, the given state Vi differs from
V j. Hence,

NotSeen(Vi) :=
∧

i< j≤k

Vi , V j.

According to the KS semantics, the transition relations of functions, forks, joins,
switches, and merges allow to transition from any state to any state. Hence, in T we
only need to take care of sources, sinks, queues and FSMs.

T(Vi,Vi+1) :=
∧

p∈P.type(p)=source

SourceStepp(Vi,Vi+1)∧

∧
p∈P.type(p)=sink

SinkStepp(Vi,Vi+1)∧

∧
p∈P.type(p)=queue

QueueStepp(Vi,Vi+1)∧

∧
p∈P.type(p)=fsm

FSMStepp(Vi,Vi+1).

For sources, we encode that in case the source tried to transfer data of certain type
after step i but failed to do so, the source tries to transfer data of the same type after
step i + 1. Let p ∈ P be a source primitive with chan(p, out, 0) = o. Using Src1 and Src2
from the definition of the transition relation for the source primitive (see Chapter 2),
we get

SourceStepp(Vi,Vi+1) := (o.irdyi
∧¬o.trdyi)⇒ (o.irdyi+1

∧ o.datai = o.datai+1).

For sinks, the encoding reflects that if the sink tried to accept data after step i, but
there was no data to accept, then the sink tries to accept data after step i + 1. Let p ∈ P
be a sink primitive with chan(p, in, 0) = i. Using Snk1 and Snk2 from the definition
of the transition relation for the sink primitive (see Chapter 2), we get

SinkStepp(Vi,Vi+1) := (i.trdyi
∧¬i.irdyi)⇒ i.trdyi+1.
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For queues, we encode the relation between contents of the queue after step i and
contents of the queue after step i + 1 with respect to the input and output signals after
step i. Let p ∈ P be a queue primitive with chan(p, in, 0) = x and chan(p, out, 0) = y.
Using Q1 −Q4 from the definition of the transition relation for the queue primitive
(see Chapter 2), we get

QueueStepp(Vi,Vi+1) := (¬(i.irdyi
∧ i.trdyi)∧¬(o.irdyi

∧ o.trdyi)

⇒ p.queuei+1 = p.queuei)∧

((i.irdyi
∧ i.trdyi)∧¬(o.irdyi

∧ o.trdyi)

⇒ p.queuei+1 = (i.datai : p.queuei))∧

(¬(i.irdyi
∧ i.trdyi)∧ (o.irdyi

∧ o.trdyi)

⇒ p.queuei+1 = (rtail(p.queuei)))∧

((i.irdyi
∧ i.trdyi)∧ (o.irdyi

∧ o.trdyi)

⇒ p.queuei+1(i.datai : (rtail(p.queuei)))).

For FSMs, if a transition s
?i(d)/!o(e)
−−−−−−−→ s′ of an FSM was selected after step i, the

FSM after step i + 1 is at the target state s′. Let p ∈ P be an FSM primitive with
p = (Sp, sp

0, I
p,Op,Tp). Using FSM1 and FSM2 from the definition of the transition

relation for the FSM primitive, we get

FSMStepp(Vi,Vi+1) :=
∧

s
x(d)/y(e)
−−−−−−→s′∈Tp

(p.seli = s
x(d)/y(e)
−−−−−−→ s′ ⇒ p.curi+1 = s′)

Initial state predicate Init is expressed as follows. We require that all queues are
empty, and the states of all FSMs are initial. That is,

Init(Vi) =
∧

p∈P.type(p)=queuek

|p.queue|= 0∧
∧

p∈P.type(p)=fsm

p.cur = sp
0.

4.3.2 Evaluation of k-step Backward Reachability

We have implemented a tool that, given an xMAS network and a non-negative bound
k, generates an SMT-problem that approximates the liveness of the given xMAS
network. In addition, the SMT-problem contains the k-step backward reachability
from every state with a dead channel. If there is no satisfying assignment to the SMT-
problem, we conclude that the xMAS network is deadlock-free. Otherwise, there is
a deadlock state, from which it is possible to do k steps backward without visiting
the same state more than once. Note, that with a large enough k, completeness of the
method is guaranteed for any valid xMAS network.

To evaluate the effectiveness of the k-step backward reachability method, we used
a modification of power domain models described in Chapter 2. The SAT-based
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off to on

onto off

denied

?act(1)

!state(1)

!act(1)

?act(0)

?d
en

y(
1)

?deny(0)/!state(0)

(a) Original top controller.

off to on

onto off

?act(1)

!state(1)

!act(1)

?act(0)

?deny(1)

?deny(0)/!state(0)

(b) Modified top controller.

Figure 4.5: Modification of the top controller FSM.

liveness verification approach did not report false deadlocks for the original power
domain models from Chapter 2. Hence, we modified the top controller FSM as
depicted in Figure 4.5. Consequently, the SAT-based liveness verification approach
reports a false deadlock for the modified power domain models. The fact that there
are no real deadlocks was checked by the reachability analysis of deadlock states
using nuXmv. For the experiments with the k-step backward reachability, we used
the modified power domain models containing one power domain and from two to
seven device-controller pairs. The goal of the experiments was to verify if the k-step
backward reachability is effective enough to prove the liveness of every modified
power domain model from our experimental set.
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We executed the experiments on a MacBook Pro 2015, 2,7GHz Intel Core i5, 16Gb
RAM, running MacOS Big Sur 11.3. For SAT solving, we use the MathSAT5 solver,
version 5.6.5 64-bit [Cim+13]. Instructions to reproduce the experiments and the
script used to obtain our results are available at [FS21].

We scripted our experimental runs such that when the tool reports a deadlock,
the bound is increased, and the experiment is re-started; the script re-starts the
experiment until either the tool reports the absence of deadlocks or a 30-minute
timeout is reached. The initial values of bounds for every experiment was set to 3.

We observe that for every model from our experimental set, the tool reports the pres-
ence of deadlocks; deadlock freedom was not reported for any of the models within 30
minutes. Using k-step backward reachability makes the problem of proving liveness
hard even for a model with 9 FSMs. If we refer to the results of the experiments with
power domain models from Chapter 3, the SAT-based liveness verification method
proved the liveness of a power domain model that contained 1299 FSMs in less than
10 minutes. This comparison leads us to the conclusion that adding k-step backward
reachability to the SAT-based liveness verification method reduces the performance
of the method dramatically, which makes it hardly applicable in practice.

The results show that none of the models from the experimental set can be proven
deadlock-free within 30 minutes. This leads to a conclusion that the k-step backward
reachability is not effective from the practical point of view.

4.4 Interpolation-Based Backward Reachability

As a more advanced alternative to encoding backward reachability explicitly, we
adapt the idea to use interpolation in reachability analysis presented by McMil-
lan [McM03] to the xMAS setting. In contrast to McMillan et al., we unroll the
transition relation backwards and use interpolation to over-approximate the set of
states that are backward reachable. We start by introducing notation and notions that
are important in introducing interpolation-based backward reachability analysis.

Definition 4.14 ([McM03]). Given two boolean-valued formulas A and B, such that
there is no satisfying assignment to A∧B, an interpolant IPL(A,B) is a boolean-valued
formula such that:

• A⇒ IPL(A,B), and

• there is no satisfying assignment to IPL(A,B)∧ B.

For the purpose of analyzing backward reachability using interpolation, we represent
a Kripke Structure symbolically using boolean-valued formulas. Reuse the notation
for vectors of state variables, vectors of state values, state predicates and state rela-
tions from Subsection 4.3. Given a boolean-valued formula ϕ, we write SAT(ϕ) if ϕ
has a satisfying assignment and UNSAT(ϕ) otherwise.

Given an xMAS network N = (P,G,C, c, chan, type), let KS(N) = (S, I,→,AP,L)
be the corresponding Kripke Structure. We express KS(N) symbolically as M =
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(Init,State,T,Final), where Init,State, and Final are state predicates introduced in
Subsection 4.3.1. Further, we also use the vectors of state variables and state values
that we used in Subsection 4.3.1.

Given M, we call a sequence of states S0 . . . Sk a path if and only if it holds that∧
0≤i<k

T(Si,Si+1)∧
∧

0≤i≤k

State(Si),

where k is the length of the path (i.e. the number of steps needed to reach Sk from
S0). We say that a sequence of states S0 . . . Sk is a backward run of M if and only if
the following holds:

Final(S0)∧ (
∧

0≤i<k

T(Si+1,Si))∧ Init(Sk)∧
∧

0≤i≤k

State(Si).

To introduce a characterization of all backward runs of M with length up to k it is
convenient to prove that from any initial state of KS(N) it is possible to take a step
backwards to an initial state.

Lemma 4.15. Given a valid xMAS network N = (P,G,C, c, chan, type), let KS(N) =
(S, I,→,AP,L) be the Kripke Structure representing N. Then there is W ⊆ I such that the
following properties hold.

(1) ∀s ∈W, g ∈ G.(g.irdy 6∈ L(s)).

(2) Let H = {g ∈ G | ∀p ∈ P,n ∈ N.chan(p, in,n) , g} and K = {g ∈ G | ∀p ∈ P,n ∈
N.chan(p, out,n) , g}. Then the following hold.

• If H , ∅ ∧K = ∅, assume H = {g1, . . . , gl}. Then,

∀(b1, . . . , bl) ∈ Bl.(∃s ∈W.
∧

1≤ j≤l

(b j ⇔ g j.trdy ∈ L(s))).

• If H = ∅ ∧K , ∅, assume K = {x1, . . . , xh}. Then,

∀(d1, . . . , dh) ∈ (
∏

1≤u≤h

c(xu)).(∃s ∈W.
∧

1≤u≤h

(xu.data = du ∈ L(s))).

• If H , ∅ ∧K , ∅, assume H = {g1, . . . , gl} and K = {x1, . . . , xh}. Then,

∀(b1, . . . , bl) ∈ Bl, (d1, . . . , dh) ∈ (
∏

1≤u≤h

c(xh)).

(∃s ∈W.
∧

1≤ j≤l

(b j ⇔ g j.trdy ∈ L(s))∧

∧
1≤u≤h

(xu.data = du ∈ L(s))).
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(3) W , ∅.

(4) ∀s ∈W, s′ ∈ I.(s, s′) ∈→.

Proof. Proof is by induction on the number of primitives in N.

• Base case. Assume |P|= 1. Let P = {z}. We distinguish cases based on the type
of z.

– type(z) = source with chan(z, out, 0) = o. By definition, I = B ×B × c(o).
Let W = {(false, otrdy, d) ∈ I}. We check that W satisfies properties (1)-(4) of
the lemma.

(1) By the definition of L, for all s ∈W it holds that o.irdy 6∈ L(s).

(2) Observe that H = {o} and K = ∅. We show that for all b ∈ B there is
s ∈W such that b⇔ o.trdy ∈ L(s).

Fix arbitrary b ∈ B. Observe that (false, b, d) ∈W. Using the definition
of L we have b⇔ o.trdy ∈ L(s).

(3) Proving (2), we showed a witness that W , ∅.

(4) Fix arbitrary s ∈W, s′ ∈ I. Without loss of generality, let

s = (oirdy, otrdy, d),

s′ = (o′irdy, o
′

trdy, d
′).

By the definition of W, oirdy = false, hence according to rule Src1 from
the definition of→ of the source KS we conclude (s, s′) ∈→.

– type(z) = sink with chan(z, in, 0) = i. By definition, I = B ×B × c(i). Let
W = {(false, false, d) ∈ I}. We check that W satisfies properties (1)-(4) of the
lemma.

(1) By the definition of L, for all s ∈W it holds that i.irdy 6∈ L(s).

(2) Observe that H = ∅ and K = {i}. We show that for all d ∈ c(i) there
is s ∈ W such that i.data = d ∈ L(s). Fix arbitrary d ∈ c(i). Observe
that (false, false, d) ∈W; using the definition of L we have i.data = d ∈
L((false, false, d)).

(3) Proving (2), we showed a witness that W , ∅.

(4) Fix arbitrary s ∈ I, s′ ∈W. Without loss of generality, let

s =(iirdy, itrdy, d),

s′ =(i′irdy, i
′

trdy, d
′).

By the definition of W, iirdy = false, hence according to rule Snk1 from
the definition of→ of the sink KS we conclude (s, s′) ∈→.
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– type(z) = queue with chan(z, in, 0) = i and chan(z, out, 0) = o. By defi-
nition, I = {(∅, iirdy, true, e, false, otrdy, d) | iirdy, otrdy ∈ B, e ∈ c(i), d ∈ c(o)}.
Let W = {(∅, false, true, e, false, otrdy, d) ∈ I}. We check that W satisfies
properties (1)-(4) of the lemma.

(1) By the definition of L, for all s ∈W, g ∈ {i, o} it holds that g.irdy 6∈ L(s).

(2) Observe that H = {o} and K = {i}. We show that for all b ∈ B, d ∈ c(i)
there is s ∈W such that b⇔ o.trdy ∈ L(s) and i.data = d ∈ L(s).

Fix arbitrary b ∈ B, d ∈ c(i). Observe that for all e ∈ c(o), there is

(∅, false, true, d, false, b, e) ∈W

. Using the definition of L we have

b⇔ o.trdy ∈ L((∅, false, true, d, false, b, e)),
i.data = d ∈ L((∅, false, true, d, false, b, e)).

(3) Proving (2), we showed a witness that W , ∅.

(4) Fix arbitrary s ∈W, s′ ∈ I. Without loss of generality, let

s = (xs, iirdy, itrdy, e, oirdy, otrdy, d),

s′ = (xs′, i′irdy, i
′

trdy, e
′, o′irdy, o

′

trdy, d
′)

By the definitions of W it holds that ¬(iirdy ∧ itrdy), ¬(oirdy ∧ otrdy), by
the definition of I it holds that xs = xs′, hence according to rule Q1
from the definition of→ of the queue KS we conclude (s, s′) ∈→.

– type(z) = FSM with z = (Sz, sz
0, I

z,Oz,Tz), and Iz = {i1, . . . , in}, and Oz =
{o1, . . . , om}. By definition,

I = {(sel, i1irdy, i1trdy, d1, . . . , inirdy, intrdy, dn,

o1irdy, o1trdy, e1, . . . , omirdy, omtrdy, em, sz
0) ∈

((T ∪ {⊥})×
∏
i∈Iz

(B×B× c(i))×
∏
o∈Oz

(B×B× c(o))× Sz) |

∀s
?ik(d)/!ol(e)
−−−−−−−−→ s′ ∈ T.sel = s

?ik(d)/!ol(e)
−−−−−−−−→ s′ ⇒

(cur = s∧ ikirdy ∧ dk = d∧ oltrdy ∧ el = e),∧
1≤k≤n

(iktrdy ⇔ (∃s
?ik(d)/!ol(e)
−−−−−−−−→ s′ ∈ T.sel = s

?ik(d)/!ol(e)
−−−−−−−−→ s′)),

∧
1≤l≤m

(olirdy ⇔ (∃s
?ik(d)/!ol(e)
−−−−−−−−→ s′ ∈ T.sel = s

?ik(d)/!ol(e)
−−−−−−−−→ s′))}.

Let

W = {(sel, false, false, d1, . . . , false, false, dn,

false, o1trdy, e1, . . . , false, omtrdy, em, s0z) ∈ I}.
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We check that W satisfies properties (1)-(4) of the lemma.

(1) By the definition of L, for all s ∈W, g ∈ G it holds that g.irdy 6∈ L(s).

(2) Observe that H = Oz and K = Iz. Assume H = {o1, . . . , om} and
K = {i1, . . . , in}. We show that for all (b1, . . . , bm) ∈ Bm, (d1, . . . , dn) ∈
(
∏

1≤u≤n c(iu)) there is s ∈W such that∧
1≤ j≤m

(b j ⇔ o j.trdy ∈ L(s))∧
∧

1≤u≤n

(iu.data = du ∈ L(s)).

Fix arbitrary (b1, . . . , bm) ∈ Bm, (d1, . . . , dn) ∈ (
∏

1≤u≤n c(iu)). Observe
that there is

{(sel, false, false, d1, . . . , false, false, dn,

false, b1, e1, . . . , false, bm, em, s0z)} ∈W,

let s be such state. According to the definition of L, it holds that∧
1≤ j≤m

(b j ⇔ o j.trdy ∈ L(s))∧
∧

1≤u≤n

(iu.data = du ∈ L(s)).

(3) Proving (2), we showed a witness that W , ∅.

(4) Fix arbitrary s ∈W, s′ ∈ I. Without loss of generality, let

s = (sel, i1irdy, i1trdy, d1, . . . , inirdy, intrdy, dn,

o1irdy, o1trdy, e1, . . . , omirdy, omtrdy, em, sz),

s′ = (sel′, i′1irdy, i
′

1trdy, d
′

1, . . . , i
′
nirdy, i

′
ntrdy, d

′
n,

o′1irdy, o
′

1trdy, e
′

1, . . . , o
′
mirdy, o

′
mtrdy, e

′
m, s
′z).

Observe that in s there is no enabled transition since all trdy are false.
Hence, we have sel = ⊥. By the definition of W we have sz = s′z = sz

0.
Hence, according to rule FSM1 from the definition of → of the FSM
KS we conclude (s, s′) ∈→.

– type(z) = function with chan(z, in, 0) = i, chan(z, out, 0) = o, and with a
data transforming function f . By definition,

I = {(iirdy, itrdy, d, oirdy, otrdy, e) ∈ B×B× c(i)×B×B× c(o) |

itrdy = otrdy, oirdy = iirdy, e = f (d)}.

Let W = {(false, itrdy, d, false, otrdy, e) ∈ I}. We check that W satisfies prop-
erties (1)-(4) of the lemma.

(1) By the definition of L, for all g ∈ {i, o}, s ∈W it holds that g.irdy 6∈ L(s).
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(2) Observe that H = {o} K = {i}. We show that for all b ∈ B, d ∈ c(i) there
is s ∈ W such that b ⇔ o.trdy ∈ L(s)∧ i.data = d ∈ L(s). Fix arbitrary
b ∈ B, d ∈ c(i). Observe that there is

(false, false, d, false, b, e) ∈W.

Using the definition of L we have

b⇔ o.trdy ∈ L((false, false, d, false, b, e))∧
i.data = d ∈ L((false, false, d, false, b, e)).

(3) Proving (2), we showed a witness that W , ∅.

(4) Fix s ∈W, s′ ∈ I. Without loss of generality, let

s =(iirdy, itrdy, d, oirdy, otrdy, e),

s′ =(i′irdy, i′trdy, d′, o′irdy, o′trdy, e′).

According to rule Fun1 from the definition of → of the function KS
we conclude (s, s′) ∈→.

– type(z) = fork with chan(z, in, 0) = i, chan(z, out, 0) = o, chan(z, out, 1) = u,
and with data transforming functions f and f ′. According to the definition
of the fork KS,

I = {(iirdy, itrdy, d, oirdy, otrdy, e,uirdy,utrdy, j)

∈ B×B× c(i)×B×B× c(o)×B×B× c(u) |
e = f (d), j = f ′(d), oirdy = iirdy ∧ utrdy,uirdy = iirdy ∧ otrdy,

itrdy = otrdy ∧ utrdy}.

Let W = {(false, itrdy, d, false, otrdy, e, false,utrdy, j) ∈ I}.

We check that W satisfies properties (1)-(4) of the lemma.

(1) By the definition of L, for all s ∈W, g ∈ {i, o,u} it holds that g.irdy 6∈ L(s).

(2) Observe that H = {o,u} and K = {i}. We show that for all (b1, b2) ∈
B2, d ∈ c(i) there is s ∈ W such that b1 ⇔ o.trdy ∈ L(s) and b2 ⇔

u.trdy ∈ L(s) and i.data = d ∈ L(s).

Fix arbitrary (b1, b2) ∈ B2, d ∈ c(i). Observe that there is

(false, itrdy, d, false, b1, e, false, b2, j) ∈W,

let s be such state. Using the definition of L we have b1 ⇔ o.trdy ∈ L(s),
and b2 ⇔ u.trdy ∈ L(s), and i.data = d ∈ L(s).

(3) Proving (2), we showed a witness that W , ∅.
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(4) Fix s ∈W, s′ ∈ I. Without loss of generality, let

s =(iirdy, itrdy, d, oirdy, otrdy, e,uirdy,utrdy, j),

s′ =(i′irdy, i′trdy, d′, o′irdy, o′trdy, e′,u′irdy,u′trdy, j′).

According to rule Frk1 from the definition of → of the fork KS we
conclude (s′, s) ∈→.

– type(z) = join with chan(z, in, 0) = i, chan(z, in, 1) = j, chan(z, out, 0) = o,
and a routing function h. According to the definition of the join KS,
I = {(iirdy, itrdy, d, jirdy, jtrdy, e, oirdy, otrdy, l) ∈ B ×B × c(i) ×B ×B × c(o) ×
B × B × c(u) | l = h(d, e), itrdy = jirdy ∧ otrdy, jtrdy = iirdy ∧ otrdy, oirdy =
iirdy ∧ jirdy}. Let W = {(false, itrdy, d, false, jtrdy, e, false, otrdy, l) ∈ I}.

We check that W satisfies properties (1)-(4) of the lemma.

(1) By the definition of L, for all s ∈W, g ∈ {i, j, o} it holds that g.irdy 6∈ L(s).

(2) Observe that H = {o} and K = {i, j}. We show that for all b ∈ B, (d1, d2) ∈
(c(i)× c( j)) there is s ∈W such that b⇔ o.trdy ∈ L(s), and i.data = d1 ∈

L(s), and j.data = d2 ∈ L(s).

Fix arbitrary b ∈ B. Observe that there is

(false, itrdy, d1, false, jtrdy, d2, false, b, l) ∈W,

let s be such state. Using the definition of L we have b⇔ o.trdy ∈ L(s),
and i.data = d1 ∈ L(s), and j.data = d2 ∈ L(s).

(3) Proving (2), we showed a witness that W , ∅.

(4) Fix s ∈W, s′ ∈ I. Without loss of generality, let

s =(iirdy, itrdy, d, jirdy, jtrdy, e, oirdy, otrdy, l),

s′ =(iirdy, i′trdy, d′, j′irdy, j′trdy, e
′, o′irdy, o′trdy, l′).

According to rule Jn1 from the definition of → of the join KS we
conclude (s, s′) ∈→.

– type(z) = switch with chan(z, in, 0) = i, chan(z, out, 0) = o, chan(z, out, 1) =
u, and a routing function r. According to the definition of the switch
KS, I = {(iirdy, itrdy, d, oirdy, otrdy, e,uirdy,utrdy, l) ∈ B × B × c(i) × B × B ×

c(o) × B × B × c(u) | (r(d) =⇒ l = d), (¬r(d) =⇒ l = e), (oirdy = iirdy ∧

r(d)),uirdy = iirdy ∧ ¬r(d), itrdy = (oirdy ∧ otrdy) ∨ (uirdy ∧ utrdy)}. Let W =
{(false, itrdy, d, false, otrdy, e, false,utrdy, l) ∈ I}.

We check that W satisfies properties (1)-(4) of the lemma.

(1) By the definition of L, for all s ∈W, g ∈ {i, o,u} it holds that g.irdy 6∈ L(s).

(2) Observe that H = {o,u} and K = {i}. We show that for all (b1, b2) ∈
B2, d ∈ c(i) there is s ∈ W such that b1 ⇔ o.trdy ∈ L(s), and b2 ⇔

u.trdy ∈ L(s), and i.data = d ∈ L(s).
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Fix arbitrary (b1, b2) ∈ B2, d ∈ c(i). Observe that there is

(false, itrdy, d, false, b1, e, false, b2, l) ∈W,

let s be such state. Using the definition of L we have b1 ⇔ o.trdy ∈ L(s)
and b2 ⇔ u.trdy ∈ L(s), and i.data = d ∈ L(s).

(3) Proving (2), we showed a witness that W , ∅.

(4) Fix arbitrary s ∈W, s′ ∈ I. Without loss of generality, let

s =(iirdy, itrdy, d, oirdy, otrdy, e,uirdy,utrdy, l),

s′ =(i′irdy, i′trdy, d′, o′irdy, o′trdy, e′,u′irdy,u′trdy, l′).

According to rule Sw1 from the definition of→ of the switch KS we
conclude (s, s′) ∈→.

– type(z) = merge with chan(z, in, 0) = i, chan(z, in, 1) = j, chan(z, out, 0) = o.
According to the definition of the merge KS,

I = {(u, iirdy, itrdy, d, jirdy, jtrdy, e, oirdy, otrdy, l)

∈ B×B×B× c(i)×B×B× c( j)×B×B× c(o) |
oirdy = (u∧ iirdy)∨ (¬u∧ jirdy), itrdy = u∧ otrdy ∧ iirdy,

jtrdy = ¬u∧ otrdy ∧ jirdy,u∧ iirdy ⇒ l = d,¬u∧ jirdy ⇒ l = e}.

Let W = {(u, false, itrdy, d, false, jtrdy, e, false, otrdy, l) ∈ I}.

We check that W satisfies properties (1)-(4) of the lemma.

(1) By the definition of L, for all g ∈ {i, j, o}, s ∈W it holds that g.irdy 6∈ L(s).

(2) Observe that H = {o} and K = {i, j}. We show that for all b ∈ B, (d1, d2) ∈
(c(i)× c( j)) there is s ∈W such that b⇔ o.trdy ∈ L(s), and i.data = d1 ∈

L(s), and j.data = d2 ∈ L(s). Fix arbitrary b ∈ B, (d1, d2) ∈ (c(i) × c( j)).
Observe that there is

(u, false, itrdy, d1, false, jtrdy, d2, false, b, l) ∈W,

let s be such state. Using the definition of L we have b⇔ o.trdy ∈ L(s),
and i.data = d1 ∈ L(s), and j.data = d2 ∈ L(s).

(3) Proving (2), we showed a witness that W , ∅.

(4) Fix s ∈W, s′ ∈ I. Without loss of generality, let

s =(u, iirdy, itrdy, d, jirdy, jtrdy, e, oirdy, otrdy, l),

s′ =(u′, i′irdy, i′trdy, d′, j′irdy, j′trdy, e
′, o′irdy, o′trdy, l′).

According to rule Mrg1 from the definition of→ of the merge KS we
conclude (s, s′) ∈→.
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• Inductive step. Assume N is such that |P|> 1. From Lemma 2.13 it holds
that N can be split into two valid compatible networks N′ and N′′, such that
N = N′ q N′′. We fix such N′ and N′′. Assume that

N′ = (P′,G′,C′, c′, chan′, type), and
N′′ = (P′′,G′′,C′′, c′′, chan′′, type).

Let

KS(N′) = (S′, I′,→′,AP′,L′), and
KS(N′′) = (S′′, I′′,→′′,AP′′,L′′)

be two KSs representing N′ and N′′ respectively. Then, by the definition of
KS(N), we have KS(N) = KS(N′) ‖ KS(N′′). The induction hypothesis is that
there are W′ ⊆ I′ and W′′ ⊆ I′′ such that the following properties hold.

– For all s′ ∈W′, g′ ∈ G′ it holds that g′.irdy 6∈ L′(s′) and for all s′′ ∈W′′, g′′ ∈
G′′ it holds that g′′.irdy 6∈ L′′(s′′).

– Let H′ = {g ∈ G′ | ∀p ∈ P′,n ∈ N.chan(p, in,n) , g}, K′ = {g ∈ G′ | ∀p ∈
P′,n ∈N.chan(p, out,n) , g}. Then the following holds.

* If H′ , ∅ ∧K′ = ∅, assume H′ = {g′1, . . . , g
′

l′ }. Then,

∀(b1, . . . , bl′ ) ∈ Bl′ .(∃s ∈W′.
∧

1≤ j≤l′
(b j ⇔ g′j.trdy ∈ L′(s))).

* If H′ = ∅ ∧K′ , ∅, assume K′ = {x′1, . . . , x
′

h′ }. Then,

∀(d1, . . . , dh′ ) ∈ (
∏

1≤u≤h′
c′(xu)).

(∃s ∈W′.
∧

1≤u≤h

(x′u.data = du ∈ L′(s))).

* If H′ , ∅ ∧ K′ , ∅, assume H′ = {g′1, . . . , g
′

l′ } and K′ = {x′1, . . . , x
′

h′ }.
Then,

∀(b1, . . . , bl′ ) ∈ Bl, (d1, . . . , dh′ ) ∈ (
∏

1≤u≤h′
c′(xu)).

(∃s ∈W′.
∧

1≤ j≤l′
(b j ⇔ g′j.trdy ∈ L′(s))∧

∧
1≤u≤h′

(x′u.data = du ∈ L′(s))).

Similarly, let H′′ = {g ∈ G′′ | ∀p ∈ P′′,n ∈ N.chan(p, in,n) , g}, K′′ = {g ∈
G′′ | ∀p ∈ P′,n ∈N.chan(p, out,n) , g}. Then the following holds.
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* If H′′ , ∅ ∧K′′ = ∅, assume H′′ = {g′′1 , . . . , g
′′

l′′ }. Then,

∀(b1, . . . , bl′′ ) ∈ Bl′′ .(∃s ∈W′′.
∧

1≤ j≤l′
(b j ⇔ g′′j .trdy ∈ L′′(s))).

* If H′′ = ∅ ∧K′′ , ∅, assume K′′ = {x′′1 , . . . , x
′′

h′′ }. Then,

∀(d1, . . . , dh′′ ) ∈ (
∏

1≤u≤h′′
c′′(x′′u )).

(∃s ∈W′′.
∧

1≤u≤h′′
(x′′u .data = du ∈ L′′(s))).

* If H′′ , ∅ ∧K′′ , ∅, assume H′′ = {g′′1 , . . . , g
′′

l′′ } and K′′ = {x′′1 , . . . , x
′′

h′′ }.
Then,

∀(b1, . . . , bl′′ ) ∈ Bl′′ , (d1, . . . , dh′′ ) ∈ (
∏

1≤u≤h′′
c′′(x′′u )).

(∃s ∈W′′.
∧

1≤ j≤l′′
(b j ⇔ g′′j .trdy ∈ L′′(s))∧

∧
1≤u≤h′′

(x′′u .data = du ∈ L′′(s))).

– W′ , ∅ and W′′ , ∅.

– For all s′ ∈ W′, s ∈ I′ we have (s′, s) ∈→′. Similarly, for all s′ ∈ W′′, s ∈ I′′

we have (s′, s) ∈→′′.

We construct set W and show that W ⊆ I and properties (1)-(4) of the lemma
hold for W.

Let W be as follows.

W = {(s′, s′′) ∈W′ ×W′′ |
∀g ∈ H′ ∩K′′.(g.trdy ∈ L′′(s′′)∧ g.data = d ∈ L′′(s′′)

⇒ g.trdy ∈ L′(s′)∧ g.data = d ∈ L′(s′)),
∀g ∈ H′′ ∩K′.(g.trdy ∈ L′(s′)∧ g.data = d ∈ L′(s′)

⇒ g.trdy ∈ L′′(s′′)∧ g.data = d ∈ L′′(s′′))}.

Fix arbitrary (s′, s′′) ∈ W and show that (s′, s′′) ∈ I. By the definition of the
parallel composition of two KSs, we have I = (I′ × I′′)∩ S. Hence, showing that
(s′, s′′) ∈ I is equivalent to showing that (s′, s′′) ∈ (I′ × I′′) and (s′, s′′) ∈ S. From
the induction hypothesis, we know that W′ is a subset of I′ and W′′ is a subset
of I′′, hence we conclude (s′, s′′) ∈ (I′ × I′′).

Now we show that (s′, s′′) ∈ S. Since KS(N) = KS(N′) ‖ KS(N′′), by the
definition of the parallel composition of two KSs we have S = {(q′, q′′) | q′ ∈
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S′, q′′ ∈ S′′, (L′(q′) ∩ AP′′) = (L′′(q′′) ∩ AP′)}. We show that (L′(q′) ∩ AP′′) =
(L′′(q′′)∩AP′).

Fix arbitrary atomic proposition a such that a ∈ (L′(s′)∩AP′′). Since N′ and N′′

are valid and compatible, a can be either of the form g.irdy, g.trdy, or g.data = d
for some g ∈ G′ ∩G′′ and d ∈ c(g). From the induction hypothesis we know that
atomic propositions of the form g.irdy are neither in L(s′) nor in L′′(s′′). Thus
a can be of the form g.irdy or g.data = d. By the definition of W we conclude
that if a ∈ (L′(s′)∩AP′′) then a ∈ (L′′(s′′)∩AP′). Hence, (s′, s′′) ∈ S. We showed
that (s′, s′′) ∈ (I′ × I′′) and (s′, s′′) ∈ S and hence we conclude that (s′, s′′) ∈ I.

Now we show that conditions (1)-(4) of the lemma hold for W.

(1) We show that for all g ∈ G, (s′, s′′) ∈W it holds that g.irdy 6∈ L(s′, s′′). From
the definition of the parallel composition of two KSs, we have L((s′, s′′)) =
L′(s′) ∪ L′′(s′′). By the induction hypothesis we have that for all g ∈ G′,
g.irdy 6∈ L′(s′) and for all g ∈ G′′, g.irdy 6∈ L′′(s′′). By the definition of the
parallel composition of two xMAS networks we have G = G′ ∪G′′ hence
for all g ∈ G it holds that g.irdy 6∈ L(s′, s′′).

(2) Let H = {g ∈ G | ∀p ∈ P,n ∈ N.chan(p, in,n) , g} and K = {g ∈ G | ∀p ∈
P,n ∈N.chan(p, out,n) , g}. We distinguish three cases.

* Assume H , ∅ ∧ K = ∅. Assume H = {g1, . . . , gl} and fix (b1, . . . , bl) ∈
Bl. We construct (s′, s′′) and show (s′, s′′) ∈W and∧

1≤ j≤l

(b j.trdy⇔ g j.trdy ∈ L(s)).

From the induction hypothesis, we know that there are s′ ∈ W′, s′′ ∈
W′′ such that the following holds.

(∗1) ∀g ∈ H′ ∩ K′′.(g.trdy ∈ L′′(s′′) ∧ g.data = d ∈ L′′(s′′) ⇒ g.trdy ∈
L′(s′) ∧ g.data = d ∈ L′(s′)). The intuition here is that, by the
induction hypothesis, for all channels g that are in both H′ and
K′′, we can find a pair of states s′ ∈W′ and s′′ ∈W′′, such that all
the labels in L′(s′) and L′′(s′′) that correspond to g match.

(∗2) ∀g ∈ H′′ ∩ K′.(g.trdy ∈ L′(s′) ∧ g.data = d ∈ L′(s′) ⇒ g.trdy ∈
L′′(s′′) ∧ g.data = d ∈ L′′(s′′)). Here, the intuition is the same as
for (∗1)

(∗3)
∧

1≤ j≤l′ (g′j ∈ (H′ \K′′)⇒ (b′j ⇔ g′j.trdy ∈ L′(s′)), and

(∗4)
∧

1≤u≤l′′ (g′′j ∈ (H′′ \K′)⇒ (b′′j ⇔ g′′j .trdy ∈ L′′(s′′)).

Let s′ ∈ W′ and s′′ ∈ W′′ be such states. From (∗1) and (∗2) it immedi-
ately follows that (s′, s′′) ∈W.

Observe that for all g ∈ H it holds that g ∈ (H′ \ K′′) or g ∈ (H′′ \ K′).
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Hence, from (∗3) and (∗4) we have∧
1≤ j≤l

((b j ⇔ g j.trdy ∈ L′(s′))∨ (b j ⇔ g j.trdy ∈ L′′(s′′))).

From the definition of L we have L(s′, s′′) = L′(s′)∪ L′′(s′′). Hence, we
conclude ∧

1≤ j≤l

((b j ⇔ g j.trdy ∈ L((s′, s′′)))).

* Assume H = ∅ ∧ K , ∅. Assume K = {x1, . . . , xh} and fix (d1, . . . , dh) ∈
(
∏

1≤u≤h(c(xu))). From the induction hypothesis, we know that there
are s′ ∈W′, s′′ ∈W′′, such that the following holds.

(∗1) ∀g ∈ H′ ∩ K′′.(g.trdy ∈ L′′(s′′) ∧ g.data = d ∈ L′′(s′′) ⇒ g.trdy ∈
L′(s′)∧ g.data = d ∈ L′(s′)), and

(∗2) ∀g ∈ H′′ ∩ K′.(g.trdy ∈ L′(s′) ∧ g.data = d ∈ L′(s′) ⇒ g.trdy ∈
L′′(s′′)∧ g.data = d ∈ L′′(s′′)).

(∗3)
∧

1≤ j≤h′ (x′j ∈ (H′ \K′′)⇒ (x′j.data = d′j ∈ L′(s′)), and

(∗4)
∧

1≤u≤h′′ (x′′j ∈ (H′′ \K′)⇒ (x′′j .data = d′′j ∈ L′′(s′′)).

Let s′ ∈ W′ and s′′ ∈ W′′ be such states. From (∗1) and (∗2) it immedi-
ately follows that (s′, s′′) ∈W.

Observe that for all x ∈ K it holds that x ∈ (H′ \ K′′) or x ∈ (H′′ \ K′).
Hence, from (∗3) and (∗4) we have∧

1≤u≤h

((xu.data = du ∈ L′(s′))∨ (xu.data = du ∈ L′′(s′′))).

From the definition of L we have L(s′, s′′) = L′(s′)∪ L′′(s′′). Hence, we
conclude ∧

1≤u≤h

((x j.data = d j ∈ L((s′, s′′)))).

* Assume H , ∅ ∧K , ∅. Assume H = {g1, . . . , gl}, K = {x1, . . . , xh}, and
fix (b1, . . . , bl) ∈ Bl, (d1, . . . , dh) ∈ (

∏
1≤u≤h(c(xu))). From the induction

hypothesis, we know that there are s′ ∈ W′, s′′ ∈ W′′ such that the
following holds.

(∗1) ∀g ∈ H′ ∩ K′′.(g.trdy ∈ L′′(s′′) ∧ g.data = d ∈ L′′(s′′) ⇒ g.trdy ∈
L′(s′)∧ g.data = d ∈ L′(s′)), and

(∗2) ∀g ∈ H′′ ∩ K′.(g.trdy ∈ L′(s′) ∧ g.data = d ∈ L′(s′) ⇒ g.trdy ∈
L′′(s′′)∧ g.data = d ∈ L′′(s′′)).

(∗3)
∧

1≤ j≤l′ (g′j ∈ (H′ \K′′)⇒ (b′j ⇔ g′j.trdy ∈ L′(s′)), and
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(∗4)
∧

1≤ j≤l′′ (g′′j ∈ (H′′ \K′)⇒ (b′′j ⇔ g′′j .trdy ∈ L′′(s′′)), and

(∗5)
∧

1≤u≤h′ (x′u ∈ (H′ \K′′)⇒ (x′u.data = d′u ∈ L′(s′)), and

(∗6)
∧

1≤u≤h′′ (x′′u ∈ (H′′ \K′)⇒ (x′′u .data = d′′u ∈ L′′(s′′)).

Let s′ ∈ W′ and s′′ ∈ W′′ be such states. From (∗1) and (∗2) it immedi-
ately follows that (s′, s′′) ∈W.

Observe that for all g ∈ (H ∪ K) it holds that g ∈ (H′ \ K′′) or g ∈
(H′′ \K′). Hence, from (∗3)− (∗6) we have∧

1≤ j≤l

((b j ⇔ g j.trdy ∈ L′(s′))∨ (b j ⇔ g j.trdy ∈ L′′(s′′)))∧

∧
1≤u≤h

((xu.data = du ∈ L′(s′))∨ (xu.data = du ∈ L′′(s′′))).

From the definition of L we have L((s′, s′′)) = L′(s′) ∪ L′′(s′′). Hence,
we conclude∧

1≤ j≤l

(b j ⇔ g j.trdy ∈ L(s))∧
∧

1≤u≤h

(xu.data = du ∈ L(s)).

(3) For cases when H , ∅ ∧ K = ∅, H = ∅ ∧ K , ∅, and H , ∅ ∧ K , ∅, we
already showed witnesses that W , ∅. Now we assume H = ∅ ∧ K = ∅.
From the induction hypothesis we know that W′ , ∅, W′′ , ∅, and there
are s′ ∈W′, s′′ ∈W′′, such that:

(∗1) ∀g ∈ H′ ∩ K′′.(g.trdy ∈ L′′(s′′) ∧ g.data = d ∈ L′′(s′′) ⇒ g.trdy ∈
L′(s′)∧ g.data = d ∈ L′(s′)), and

(∗2) ∀g ∈ H′′ ∩K′.(g.trdy ∈ L′(s′)∧ g.data = d ∈ L′(s′)⇒ g.trdy ∈ L′′(s′′)∧
g.data = d ∈ L′′(s′′)).

From the induction hypothesis it immediately follows that (s′, s′′) ∈ W.
Hence (s′, s′′) witnesses that W , ∅when H = ∅ ∧K = ∅.

(4) We need to show that for all s ∈ W, s′ ∈ I it holds that ((s′, s′′)) ∈→. Fix
arbitrary (p′, p′′) ∈ W, (q′, q′′) ∈ I. By the induction hypothesis we have
that for all p′ ∈ W′, q′ ∈ I′ (p′, q′) ∈→′ and for all p′′ ∈ W′′, q′′ ∈ I′′ it
holds that (p′′, q′′) ∈→′′. Hence, using the definition of→ of the parallel
composition of two KSs we conclude that (p′, p′′)→ (q′, q′′). ut

Theorem 4.16. Given a valid xMAS network N = (P,G,C, c, chan, type), let KS(N) =
(S, I,→,AP,L) be the Kripke Structure representing N. Then, for all s ∈ I there is s′ ∈ I such
that (s′, s) ∈→.

Proof. Let W be a subset of I such that the following holds.

(1) ∀s ∈W, g ∈ G.(g.irdy 6∈ L(s)).
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(2) Let H = {g ∈ G | ∀p ∈ P,n ∈ N.chan(p, in,n) , g} and K = {g ∈ G | ∀p ∈ P,n ∈
N.chan(p, out,n) , g}. Then the following hold.

• If H , ∅ ∧K = ∅, assume H = {g1, . . . , gl}. Then,

∀(b1, . . . , bl) ∈ Bl.(∃s ∈W.
∧

1≤ j≤l

(b j ⇔ g j.trdy ∈ L(s))).

• If H = ∅ ∧K , ∅, assume K = {x1, . . . , xh}. Then,

∀(d1, . . . , dh) ∈ (
∏

1≤u≤h

c(xu)).(∃s ∈W.
∧

1≤u≤h

(xu.data = du ∈ L(s))).

• If H , ∅ ∧K , ∅, assume H = {g1, . . . , gl} and K = {x1, . . . , xh}. Then,

∀(b1, . . . , bl) ∈ Bl, (d1, . . . , dh) ∈ (
∏

1≤u≤h

c(xh)).

(∃s ∈W.
∧

1≤ j≤l

(b j ⇔ g j.trdy ∈ L(s))∧

∧
1≤u≤h

(xu.data = du ∈ L(s))).

(3) W , ∅.

(4) ∀s ∈W, s′ ∈ I.(s, s′) ∈→.

Fix arbitrary s ∈ I. From Lemma 4.15 it follows that there is s′ ∈W such that (s′, s) ∈→.
Since W ⊆ I we conclude that for all s ∈ I there is s′ ∈ I such that (s′, s) ∈→. ut

4.4.1 Characterizing All Backward Runs in M

Further, we characterize all backward runs of M with length up to k. Let V0, . . . ,Vk
be vectors of state variables. Theorem 4.16 allows us to use the following characteri-
zation:

BackRuns(M) = Final(V0)∧ (
∧

0≤i<k

T(Vi+1,Vi))∧ (
∨

0≤i≤k

Init(Vi))∧
∧

0≤i≤k

State(Vi).

Note that without the fact that every initial state has a possibility to do a step backward
to an initial state, the formula provided above would be incorrect.

All backward runs of M with length up to k + 1 can be split up into prefixes and
suffixes as follows. Prefixes of backward runs of M are characterized by:

Pref(M) = T(V1,V0)∧ Final(V0)∧
∧

0≤i≤1

State(Vi).

Suffixes with length up to k of backward runs of M are then characterized by:

Sufk(M) = (
∨

1≤i≤k+1

Init(Vi))∧ (
∧

0<i≤k

T(Vi+1,Vi))∧
∧

1≤i≤k+1

State(Vi).
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Algorithm 1 Interpolation-based backward reachability analysis

1: function BackReach(M,k)
2: if SAT(Init(V0)∧ Final(V0)) then
3: return true
4: end if
5: R← Final(V0)
6: while true do
7: M′ ← (Init,State,T,R)
8: A← Pref(M′)
9: B← Sufk(M′)

10: if SAT(A∧ B) then
11: if Final(V0) = R then
12: return true
13: else
14: Abort
15: end if
16: else
17: P← IPL(A,B)
18: R′ ← P(V0)
19: if R′ ⇒ R then
20: return false
21: end if
22: R← R∨R′

23: end if
24: end while
25: end function

4.4.2 The Algorithm

Algorithm 1 uses interpolation to check if it is possible to discover an initial state
by going backwards from a final state in M = (Init,State,T,Final). The intuition
behind the algorithm is as follows. The algorithm iteratively over-approximates
the states that are backward reachable from a deadlock state; when a fix-point is
reached, the over-approximation is done. If there are no initial states in the over-
approximation, the conclusion is that there is no backward run in M of any length.
Note that the algorithm is unbounded; parameter k is used to set the precision of the
over-approximation.

Given M and a k > 0, the algorithm first checks if there exists an initial state which
is also final. This is done by checking satisfiability of Init(V0) ∧ Final(V0). If there
is no such state, we let R = Final(V0). That is, we start approximating backward
reachable states with the set of final states. We then treat R as the condition for a state
to be final and check satisfiability of Pref((Init,State,T,R))∧Sufk((Init,State,T,R)). If
Pref((Init,State,T,R))∧Sufk((Init,State,T,R)) is satisfiable, we know that it is possible
to discover an initial state by taking at least one and not more than k + 1 steps
backwards from R. In the first iteration of the algorithm, since R = Final(V0), we
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know that we found a path that connects an initial and a final state. In the subsequent
iterations of the algorithm, we need to check if R = Final(V0). If it is not the case,
the algorithm aborts without deciding backward reachability of an initial state, since
due to over-approximation, R might contain a state which is not final. In that case,
we need to re-run the algorithm with an increased k.

If there is no satisfying assignment to

Pref((Init,State,T,R))∧Sufk((Init,State,T,R)),

we compute an interpolant P of Pref((Init,State,T,R)) and Sufk((Init,State,T,R)). By
Definition 4.14, we have Pref((Init,State,T,R))⇒ P, and since

Pref((Init,State,T,R)) = T(V1,V0)∧R(V0)∧
∧

0≤i≤1

State(Vi),

we know that P holds in V1. Since P ∧ Sufk((Init,State,T,R)) is not satisfiable, we
conclude that there is not path form an initial state to V1 with length k. Thus R∨P(V0)
gives us a new over-approximation of states from which it is not possible to discover
an initial state by going backwards. Since M is finite, we inevitably reach a fix-point
when the new over-approximation is the same as the previous one, which will give
us an inductive invariant that holds in all states that can be discovered by going
backwards from a deadlock state. Since no state in R satisfies I, we conclude that it
is not possible to discover an initial state by going backwards from an initial state at
all. To establish correctness of the algorithm, we first prove that if it terminates, it
returns true if and only if M has a backward run.

Theorem 4.17. For k > 0, if BackReach(M, k) terminates without aborting, it returns true
if and only if M has a backward run.

Proof. Fix arbitrary M and k > 0 and assume that Algorithm 1 terminates without
aborting. Distiniguish the following cases.

• BackReach(M, k) returns true. We know that either Init(V0) ∧ Final(V0) has a
satisfying assignment, or Pref(M′)∧Suffk(M′) has a satisfying assignment and
R = Final(V0). That is, either there is a backward run of zero length, or there is
a backward run with length up to k steps.

• BackReach(M, k) returns false. Further we prove that there is no backward
run of any length. Fix arbitrary n and a sequence of states S0 . . . Sn such that
Final(S0) and for all 0 ≤ i < n it holds that T(Si+1,Ti). We show that S0 . . . Sn is
not a backward run.

As a stepping stone towards proving that S0 . . . Sn is not a backward run, we
first show that for all 0 ≤ i ≤ n, we have R(Si). Since during the first iteration of
the algorithm R← Final(V0) and during the subsequent iterations R← R∨R′,
we conclude that Final(V0) ⇒ R. Since Final(S0) is true, we conclude that
R(S0). By the definition of P we have A → P, hence for all states S,S′ we have
R(S)∧T(S′,S)⇒ R′(S′). Since Algorithm 1 returned false, we know that R′ ⇒ R
and hence we conclude that for all states S,S′ we have R(S)∧ T(S′,S)⇒ R(S′).
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From the latter, from the fact that R(S0), and since for all 0 ≤ i < n it holds that
T(Si+1,Si), we conclude that for all 0 ≤ i ≤ n we have R(Si).

As another stepping stone towards showing that S0 . . . Sn is not a backward
run, we prove that R ∧ Init has no satisfying assignment. Initially, R = Final
and since Algorithm 1 returned false, we know that Init∧Final is not satisfiable.
Within subsequent iterations of Algorithm 1 P∧B was not satisfiable and hence
R′ ∧ Final had no satisfying assignment within each iteration. Hence, after
Algorithm 1 terminated, we conclude that R∧ Init has no satisfying assignment.

We already established that R holds in all states of the sequence S0 . . . Sn. Since
R(Sn) and R∧ Init is not satisfiable, we conclude that Sn is not an initial state and
hence S0 . . . Sn is not a backward run. We showed that all sequences of states
are not backward runs. ut

Now we prove that with a sufficiently large k, the algorithm terminates by returning
either true or false.

Theorem 4.18. For every M, there is k such that BackReach(M, k) terminates without
aborting.

Proof. Fix arbitrary M and let k be equal to the length of the longest path which starts
in the initial state and involves unique states only. Distinguish the following cases.

• M is such that there is a backward run. Since k is such that there is a path starting
in the initial state which involves all reachable states, there is a satisfying
assignment to A ∧ B. Hence, the algorithm terminates in the first iteration
returning a true.

• M is such that there is no backward run. Since k is big enough to explore all
reachable states starting from the initial state and at the same time there is no
backward run, we conclude that there is no backward run of any length. Hence,
at every iteration of the while-loop, there will be no satisfying assignment to
A∧B. At the same time, R will continue to grow. Due to the fact that M is finite,
at some point R reaches a fix-point and the algorithm terminates returning a
false. ut

We showed correctness of the interpolation-based backward reachability analysis as
well as the fact that there is always a sufficiently large k which leads to termination
of the lagorithm without the execution. It is also important to note that using inter-
polation in the backward reachability analysis is superior to the explicit backward
reachability analysis presented earlier in the chapter, since the interpolation-based
method is unbounded.

4.4.3 Evaluation of Interpolation-Based Backward Reachability

We implemented the interpolation-based backward reachability analysis discussed
earlier in this chapter. The implementation works in such a way that based on a given
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xMAS network and a given parameter k, it generates problems for an SMT-solver to
approximate backward reachable states. The tool terminates when either it decides
that the given xMAS network is deadlock-free, or it concludes that an initial state is
reachable from a deadlock state, or it decides that the precision of the approximation
is not enough to draw a conclusion. In the latter case, the verification should be
re-run with an increased parameter k.

Additionally, we implemented the McMillan’s method for conducting the reachabil-
ity analysis of a deadlock state from an initial state. We did this with the purpose of
comparing the forward and backward interpolation-based reachability analysis.

We also used the IC3 algorithm of NuXmv in order to compare it with backward
(forward) interpolation-based reachability analysis.

For the experiments, we used two sets of models. One set is the same power do-
mains set of models as we used for the k-step backward reachability analysis; see
Subsection 4.3.2 of the current chapter. Every model in the set is deadlock-free, but
SAT-based verification reports a deadlock. For the other set of models, we modified
each power domain model from the first experimental set in such a way that the
model contains a deadlock; these deadlock modifications were done in the same way
as in Chapter 3.

Similar to the experiments with k-step backward reachability, the experiments with
interpolation-based backward reachability analysis were conducted using a MacBook
Pro 2015, 2,7GHz Intel Core i5, 16Gb RAM, running MacOS Big Sur 11.3. For SAT
solving, we use the MathSAT5 solver, version 5.6.5 64-bit [Cim+13]. MathSAT5 was
chosen due to the fact that it conveniently computes interpolants needed for our
method. Instructions to reproduce the experiments and the script used to obtain our
results are available at [FS21].

For experimental runs, we used a script, which started an experiment with a k = 3.
Such starting value of k was due to the fact that mostly, runs with k < 3 are redundant.
If the result is inconclusive, the script re-started the experiment with k = k + 1. Every
run lasted until either the deadlock freedom or the presence of a deadlock was
concluded.

Based on the results that we obtained we conclude that IC3 outperforms both
backward and forward interpolation-based reachability analysis methods for both
deadlock-free and deadlock models. Backward interpolation-based reachablity per-
forms worse than forward interpolation-based reachablity approach on deadlock-free
models. On the models with real deadlocks, backward interpolation-based reacha-
bility method shows advantage over the forward interpolation-based method.

4.5 Discussion

Let us refer to Table 4.1 and Figure 4.6. Our experiments showed that the k-step
backward reachability approach is hardly applicable on practice. Although, from the
theoretical standpoint, the method is sound and complete.

116



4.5. Discussion

Model #FSMs DLF Backward Forward IC3
DLF Time (s) DLF Time (s) DLF Time (s)

pd_1_2 9 3 3 23.922 3 20.261 3 1.004
pd_1_3 14 3 3 46.950 3 13.704 3 1.279
pd_1_4 19 3 3 65.919 3 20.929 3 1.759
pd_1_5 24 3 3 93.327 3 35.278 3 3.234
pd_1_6 29 3 3 190.044 3 55.889 3 3.073
pd_1_7 34 3 3 259.032 3 116.807 3 3.883
pd_1_2_dl 9 7 7 5.730 7 12.421 7 2.163
pd_1_3_dl 14 7 7 10.757 7 21.108 7 2.979
pd_1_4_dl 19 7 7 17.828 7 32.780 7 7.574
pd_1_5_dl 24 7 7 23.042 7 52.356 7 9.173
pd_1_6_dl 29 7 7 31.304 7 67.720 7 7.467
pd_1_7_dl 34 7 7 38.219 7 88.684 7 20.204

Table 4.1: Experimental results on limiting false deadlocks
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Figure 4.6: Visualization of the results.

Based on the evaluation of the interpolation-based backward reachability analy-
sis, we observed that the backward reachability performed worse than the forward
reachability on the deadlock-free models. This refutes our initial conjecture that, in
practice, the set of states that are backward reachable from a deadlock state is smaller
than the set of states that are reachable from an initial state. In addition, our experi-
ments showed that the backward reachability is superior to the forward reachability
for finding real deadlocks. Our interpolation-based backward reachability analysis
is applicable in practice. However, the comparison with IC3 showed that our method
is not state-of-the-art.
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4.6 Conclusion

The SAT-based approach to verify liveness of xMAS networks is prone to false dead-
locks. In the current chapter we investigated ways of limiting the numbers of false
deadlocks reported by the SAT-based liveness verification. For that, we presented
two approaches to make the SAT-based approach to verify liveness complete. The
first approach adds k-step reachability encoding to the original SAT-problem. The
second approach is inspired by interpolation-based reachability analysis method in-
troduced by McMillan et al. [McM03]. The chapter contains correctness proofs for
both methods as well as the evaluation of effectiveness of the methods.
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Chapter 5

Automatic Generation of
Hardware Checkers from
Formal Micro-architectural
Specifications

5.1 Introduction

Interconnects play a crucial role in the correctness and performance of modern Multi-
Processor Systems-on-Chips (MPSoC’s). The significant number of queues induces
a large state space and the distributed control hinders the application of localisa-
tion techniques [RB12]. To combat this challenge, researchers have explored tech-
niques to formally model and analyse abstractions of interconnect implementations.
In particular, techniques based on the xMAS language proposed by Intel have at-
tracted a lot of interest: modeling [CKO12], verification of safety [CK12] and liveness
properties [VS11; GCK11], performance evaluations [HS14; XZ15], or asynchronous
designs [BSY17; VJS13].

These analyses are performed on abstractions. Establishing a relation between these
abstract models and Register Transfer Level (RTL) implementations is the challenge
tackled in this chapter. An approach was proposed by Joosten and Schmaltz [JS15].
The authors proposed to automatically extract xMAS models from RTL designs. A
limitation is that this approach only discovers the basic xMAS primitives. In contrast
with the work of Joosten and Schmaltz, we infer RTL code from abstract micro-
architectural models. We consider the Micro-architectural Description Language
(MaDL), a textual version of xMAS with new primitives easing the modeling but
making their discovery even more challenging. We propose a method to turn a
given xMAS network into a Non-deterministic Finite Automaton (NFA) with actions
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corresponding to the behavior of the interface of the given network (i.e. the behavior
of its sources and sinks). The NFA is then determinized. We also add a special
error state to the DFA such that whenever the DFA gets an action that is impossible
w.r.t. to the xMAS semantics, the DFA then gets to the error state and gets stuck
there. We then translate the resulting DFA into SystemVerilog [Tar20]. We call the
obtained SystemVerilog code a hardware checker. It is then possible to use the hardware
checker with the corresponding RTL implementation as inputs to a SystemVerilog
model-checker so that the model checker verifies if one of the traces of the RTL
implementation can be used to reach the error state in the hardware checker. The said
methodology is used to prove trace inclusion between an RTL design and a MaDL
model.

Contributions. Our contributions are (1) a method to represent the visible be-
haviour of MaDL models, (2) a method to turn this representation into a System-
Verilog checker, and (3) several experimental examples, including a virtual channel
and a re-order buffer.

Structure of the chapter. In Section 5.2, we provide background information about
MaDL. In Section 5.3, we explain how we extract the visible behavior of a given
MaDL model and encode it in an NFA. In Section 5.4, we describe how we obtain
hardware checkers using the visible behavior of the given MaDL model; this includes
determinization of the NFA obtained before and adding an error state, and translating
it into SystemVerilog. Section 5.5 contains experimental results and discussion. We
conclude in Section 5.6.

5.2 Background and Overview

MaDL is an open-source project1 that involves a description language and associated
analysis techniques. The language originates from xMAS – for eXecutable Micro-
Architectural Specifications – proposed by Intel [CKO12]. In contrast to xMAS,
MaDL has a textual syntax, recursive data types, loops and parameters. It allows
the definition of macro blocks for compositional modeling. Its verification engines
implement invariant generation [CK12], deadlock analysis [VS11; GCK11], deadlock
reachability [WJS15], and the generation of SystemVerilog prototypes. We introduce
the concepts of MaDL relevant to this chapter. More details can be found in the
MaDL GitHub pages.

Channels, transfers, and persistency

Primitives are connected via typed channels. A channel connects exactly two primi-
tives called the initiator and the target. A channel consists of three signals:

• irdy: high when the channel contains valid data, that is, the initiator is ready
to transfer;

1https://github.com/MaDL-DVT/madl-dvt
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Figure 5.1: Original primitives of the xMAS language [CKO10].

• data: the data contained in the channel;

• trdy: high when the target of the channel is ready to accept data.

When both irdy and trdy are true, the data is transferred from the initiator to the
target.

Persistency means that every primitive commits to a transfer, namely, when irdy is
true it must remain high until trdy is true.

Data types and colors

MaDL supports the following data types: constant, enumeration, and struct. The
following code snippet declares several constant types, making up enumeration
types, used in a struct type.

const dst0, dst1, req, rsp;
enum dst_t {dst0;dst1;};
enum trans_t {req;rsp;};
struct pkt_t { dst : dst_t; type: trans_t; };

We often refer to a value of a packet type using the term color. In the above example,
a packet with dst = dst0 and type = req is a color.

Primitives

The basic primitives of MaDL are the ones originally proposed in the xMAS lan-
guage2. Their graphical representation is pictured in Figure 5.1. We briefly sketch
their semantics.

A source non-deterministically injects a packet in the network. A sink consumes a
packet non-deterministically. Sources and sinks are assumed to be fair. They always
eventually inject or consume packets. A fork consumes the input packet and produces
two output packets. This happens if and only if both outputs can accept a new packet.
A join consumes two packets and produces one packet. As generally done in related
works [VS11; GCK11], a join has a control input and a data input. When both inputs
have a packet, the packet on the data input is propagated to the output. A merge
non-deterministically arbitrates when its two inputs have a packet. Arbitration is
left abstract but is assumed to be fair. Each input always eventually is granted. A

2That is, sources, sinks, queues, functions, forks, switches, joins, and merges
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switch routes the input packet to one output. The decision solely depends on the data
contained in the input packet. A function modifies its input packet. A queue stores
and forwards packets following a First-In-First-Out (FIFO) policy.

MaDL also adds new primitives. In particular, it adds a non-deterministic demul-
tiplexer, called LoadBalancer and a complex sorting primitive called MultiMatch.
A LoadBalancer has one input and n outputs; if there is data at its input, the
LoadBalancer decides non-deterministically, through which output the data is trans-
ferred further. A MultiMatch has n outputs each controlled by a match input. It also
has m data inputs. At each cycle, a predicate between each data input and each control
input is evaluated. If the predicate holds, the data input is forwarded to the output
controlled by the match input. Otherwise, the data input stalls. The experimental
section shows the construction of a re-order buffer using these two primitives.

5.2.1 Running Example

The basic syntax of MaDL consists of statements declaring and connecting channels.
These statements have the following syntax:

chan <outs> := <Primitive> (<ins>);

Note that in this example, channels in list "ins" must be declared somewhere else.

Example 5.1. We consider a simple network composed of a source injecting pack-
ets with color red. Packets are sent to both queues q0 and q1. The merge non-
deterministically takes one packet from either queue and forwards it to the sink. The
corresponding MaDL code is the following:

const red;
chan to_q0, to_q1 := Fork(Source(red));
chan q0_out := Queue(1,to_q0)[q0];
chan q1_out := Queue(1,to_q1)[q1];
Sink(Merge(q0_out, q1_out));

to q0

q0

q0 out

to q1
q1

q1 out

1

1

Figure 5.2: A simple network (running example).

In Figure 5.2, we visualise the example using xMAS. This example will further be
used as a running example.
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5.3 Interface Behaviour

In this section, we define the notion of the interface of a given MaDL model. We then
define the interface actions for the model; using the set of actions we describe how
we obtain the NFA that represents the visible behavior of the given MaDL model.

In contrast to the Kripke Structure semantics that we introduced in Chapter 2, the
interface behavior gives an action-based perspective on xMAS/MaDL. Based on a
given xMAS network, we generate a Non-deterministic Finite Automaton (NFA); the
states of the generated NFA capture the contents of all queues of the network, the
actions of the NFA reflect the irdy, trdy, and data values of output channels of all
sources and input channels of all sinks of the network.

5.3.1 Interface Actions

The interface of a MaDL model consists of all sources and sinks. Let Src be the set
of all sources of a given model. Let Snk be the set of all sinks of a given model. For
any s ∈ Src ∪ Snk, let Cs be the set of colors produced by source s or consumed by
sink s. A source s ∈ Src either stays idle – represented by an Idle action – or requests
the injection of a packet with color c ∈ Cs – represented by an Injectc action. Note
that in our setting, sources are not restricted to produce values of a singleton type.
An idle action corresponds to ¬irdy of the source’s output, whereas an Injectc action
corresponds to irdy ∧ data = c. A sink s ∈ Snk either rejects packets of any color
– represented by a Reject action – or is ready to consume a packet with color c –
represented by a Consumec action. Reject corresponds to ¬trdy of the sink’s input,
while Consumec corresponds to trdy∧data = c. The complete set of interface actions
is the cross-product of all source and sink actions. The formal definition of actions is
as follows:

Definition 5.2. (Actions). For any s ∈ Src, let Rs = {x | x = Idle∨ x = Injectc, c ∈ Cx}

be the set of source actions of s. For any s ∈ Snk, let Ns = {x | x = Reject ∨ x =
Consumec, c ∈ Cs}, be the set of sink actions of s. Let R′ =

∏
s∈Src Rs be a cartesian

product of sets of actions of all sources from Src. Let N′ =
∏

s∈Snk Ns be a cartesian
product of sets of actions of all sinks from Snk. Then, the set of global actions A is
defined as R′ ×N′.

Thereby, global actions involve sources and sinks only.

Example 5.3. Consider the running example. The set of sources is Src = {src0}. The
set of colors possibly injected at that source is Csrc0 = {red}. The source therefore has
two possible actions: either it is idle or it tries to inject a red packet. The possible
actions at the source are the following:

Rsrc0 = {Idle, Injectred}

Similarly, the sink either consumes a red packet or rejects any packet. The possible
actions at the sink are the following:

Nsnk0 = {Reject,Consumered}

123



Chapter 5. Automatic Generation of Hardware Checkers from Formal
Micro-architectural Specifications

The set of global actions is then the cross product of the source and sink actions. This
defines the following set:

A = {(Idle,Reject),
(Idle,Consumered),
(Injectred,Reject),
(Injectred,Consumered)}

5.3.2 Action Behaviour

The behaviour of the network in terms of its interface actions is represented by an
NFA. We now (1) define the notion of states, (2) define possible actions in a state, and
(3) define the state update function.

NFA states

The state is defined by the states of the queues and the states of the sources. Each
queue is represented by an ordered list of the colors stored in the queue. The head
of the list corresponds to the head of the queue.

Sources need to be persistent. This implicit assumption in MaDL needs to be explicit
in the NFA to properly characterise possible legal actions. Persistency of sources
means that if a source tries to inject a packet with a given color – that is, executes an
action Injectc for some color c – the source is obliged to keep trying to inject this color
until it succeeds. To reflect this, a source is either in a state "free" – where it is free to
inject any color or to remain idle – or in a state "next c" expressing the fact that the
source is committed to inject color c.

The global state of the NFA is defined by the product of the queue states and the
source states.

Definition 5.4. Given a set of sources Src, for all s ∈ Src, the set of source states of s
is defined as Ss = {Free} ∪ {Nextc1 ,Nextc2 , ...,Nextcn }, where c1, c2, ..., cn are the colors
that can be injected by s. Given a set of queues Q and a set of sources Src, for any
q ∈ Q, let Sq be the set of all possible contents of q, and for any s ∈ Src, let Ss be the
set of states of s. Then, the set of all global states is defined as follows:

S =
∏
q∈Q

Sq ×
∏
s∈Src

Ss

In the initial state of the NFA, all sources are free, and all queues are empty. Note
that by not defining states of sinks, we do not take into account the persistency of
sinks. This results in a more compact global state space.

Example 5.5. Consider the running example. The states of the source are either idle
or committed to color red:

Ssrc0 = {Free,Nextred}

124



5.3. Interface Behaviour

Given the set of queues Q = {q0, q1}, we define the set of states of q0 and q1 as
Sq0 = Sq1 = {[], [red]}, where [] denotes an empty queue. Finally, the set of global
states is the cross product of source and queue states:

S = {(Free, [], []), (Free, [red], [red]), (Nextred, [red], [red]),
(Free, [], [red]), (Free, [red], []), (Nextred, [], [red]),
(Nextred, [red], []), (Nextred, [], [])}.

NFA transition relation

To define the transition relation, we need to specify (1) the possible transitions and
their labels, that is, the possible actions in the current state and (2) the state update,
that is, the new occupancy of the queues and the new state of the sources.

Persistency creates the constraint that if a source is in state "next c", the local action
at that source must be a re-try of sending color c, namely, action Injectc. If a source is
free, then a source can try to inject any of the colors defined by its type or choose to
remain idle.

Definition 5.6. Given a global action a ∈ A, a global state s ∈ S. Let Src={p_0,. . . ,p_n}
be the set of all sources, a = (ap0 , . . . , apn , a0, . . . , am), s = (sp0 , . . . , spn , s0, . . . , sl). Action
a is a valid action in state s if the following condition holds:∧

0≤i≤n

(spi = Nextc ⇒ api = Injectc).

Except for persistency, actions are unconstrained. In any state, any valid action is
possible. The NFA has a transition labelled with this global action in that state.

Example 5.7. Figure 5.3 shows the states and transitions of the NFA obtained for the
running example.

Note, that there are four non-deterministic transitions from state 1. This happens
because both queues contain packets, and the merge can decide non-deterministically,
from which queue to consume a packet. Also, the NFA is not input enabled. The
transitions that are not allowed according to Definition 5.6 are absent.

State update

In a MaDL model, forks and joins ensure that several channels transfer together, that
is, they all have their irdy and trdy signals asserted at the same time. Wouda and
Schmaltz formalised this notion of transfer islands [WJS15]. A transfer island is a set
of channels such that a channel fires – irdy and trdy are asserted – if and only if all
other channels in the island also fire.

Definition 5.8. Let M denote the set of channels of a MaDL model. A transfer
island is a non-empty set of channels I ⊆ M, such that for any x ∈ I, x transfers –
x.irdy ∧ x.trdy – if and only if all the channels from I\{x} transfer as well.
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Action labels:
0 (Idle,Reject),
1 (Injectred,Reject),
2 (Idle,Consumered),
3 (Injectred,Consumered).

State labels:
0 (Free, [], []),
1 (Free, [red], [red]),
2 (Nextred, [red], [red]),
3 (Free, [], [red]),
4 (Free, [red], []),
5 (Nextred, [], [red]),
6 (Nextred, [red], []),
7 (Nextred, [], []).

Figure 5.3: NFA (Running example).

We denote the set of all transfer islands of a given MaDL model by I′.

Example 5.9. Consider the running example. Assume previously unnamed output
channels are named by appending ’_out’ to the name of the input primitive. An
additional ’a’ is used to denote the top and bottom outputs. The set of islands is the
following:

I′ = {{scr0:red_out, to_q0, to_q1},
{q0_out,mrg0_out},
{q1_out,mrg0_out}}

The first island groups together all channels between the source and the two queues.
The other two islands identify the selection by the merge of one of its inputs.

To manipulate islands, we define the input primitive of a transfer island. An input
primitive of a transfer island is a primitive, some output channels of which are in the
island. Similarly, an output primitive of a transfer island is a primitive some input
channels of which are in the island.

Definition 5.10. Given a transfer island x and a primitive p, let Outp denote the set
of output channels of p, and let Inp denote the set of input channels of p. We call p an
input primitive of transfer island x, if Outp ∩ I , ∅∧ Inp ∩ I = ∅. We call x an output
primitive of I, if Outx ∩ I = ∅∧ Inx ∩ I , ∅.

We are ready to introduce the firing conditions for an island. Basically, an island
fires when its input primitives are ready to transfer data and its output primitives
are ready to consume data. Given a global action, a global state, and an island I, the
island is able to transfer if the following holds:
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• for all x ∈ Src, if x is an input primitive of I, then the action of x is Injectc, where
c ∈ Cx,

• for all q ∈ Q, if q is an input primitive of I, then q is non empty,

• for all y ∈ Snk, if y is an output primitive of I, then the action of y is Consumec,
where c is the packet that is transferred to y,

• for all z ∈ Q, if z is an output primitive of I, then z is not full.

Given a global action and a global state, all queues of all firing islands are updated.
This models the synchronous update of all queues. Each queue of a firing island I is
updated in the following way:

• for all queues q ∈ Q, if q is an input primitive of I, then dequeue from q,

• for all queues q ∈ Q, if q is an output primitive of I, then enqueue the packet
that is being transferred through the island into q.

Given a source x ∈ Src, its state sx and its action a, for all packets c ∈ Cs that s can
inject and for all transfer islands I ∈ I′, the way source state is updated is as follows.

For all transfer islands I ∈ I′, if:

• sx = Nextc,

• a = Injectc,

• x is an input primitive of I,

• I can transfer,

then the successor of sx is Free.

If there exists an I ∈ I′, such that I cannot transfer and the following holds:

• a = Injectc,

• x is an input primitive of I,

then the successor of sx is Nextc.

Let a ∈ S and s ∈ S be given global action and global state. Let M be the set of all
merges, LB be the set of all loadbalancers, MM be the set of all multimatches, and
Itrans be the set of islands that can transfer w.r.t. a and s. For all m ∈ M, let Inm be
the set of input channels of m. For all l ∈ LB, let Outl be the set of output channels
of l. For all n ∈ MM, let InMn be the set of match input channels of n and InDn be
the set of data input channels of n. If there are m ∈ M, l ∈ LB,n ∈ MM, such that
Inm ∩ Itrans > 1∨Outl ∩ Itrans > 1∨ InDn ∩ Itrans > 1∨ InMn ∩ Itrans > 1, then we
need to consider maximal subsets of Itrans, such that for all m ∈M, l ∈ LB,n ∈MM it
holds that Inm∩ Itrans ≤ 1∧Outl∩ Itrans ≤ 1∧ InDn∩ Itrans ≤ 1∧ InMn∩ Itrans ≤ 1.
That is, there are no conflicting transfers. Computing several successor states for a
given state and action leads to non-determinism.
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Figure 5.4: Overall approach

5.4 SystemVerilog Checkers

Given a MaDL specification, we generate a SystemVerilog checker, which is, in
essence, a Finite Automaton expressed in SystemVerilog that captures the interface
behavior of the given MaDL network. In addition to the clock and reset inputs, this
checker has the following interface:

• for each source s ∈ Src, a s.irdy input of type bit, and a s.data input of the
corresponding type;

• for each k ∈ Snk, a k.trdy input of type bit, and a k.data input of the correspond-
ing type,

• two flags named Error and Overflow.

Figure 5.4 illustrates the connection of the checker – denoted by ’Spec’ – to an RTL
implementation – denoted by ’Impl’. Both ’Spec’ and ’Impl’ are driven by the same
source and sink actions. The data produced by ’Impl’ are fed to ’Spec’. The checker
will raise the Error flag when it detects an illegal action. Proving that the situation
when the Error flag is high is unreachable proves that the traces of ’Impl’ are included
into the traces of ’Spec’. As explained below and because of non-determinism, the
checker conducts determinization "on the fly"; for that, the checker maintains a
queue of all possible current states. Computing the size of this queue is a very
difficult problem. The overflow flag indicates an overflow on that queue. The size
of this queue is a parameter in the SystemVerilog code and can easily be adjusted.
An overflow of this queue means that we underestimated the maximum number of
possible current states.

It is important to note that in order to make our checkers suitable for formal verifica-
tion tools, the code must be restricted to the synthesizable subset of SystemVerilog.

The main computations performed by the checker are pictured in Figure 5.5. To
represent non-determinism, the checker maintains a queue containing all possible
current states. Let us call this queue st_chk_q. Each state consists of the following
elements:

128



5.4. SystemVerilog Checkers

Figure 5.5: Core checker computations

• for each source k: a commitment flag k_free that is high when the source is in a
Next state and a k_state variable representing the injected color.

• for each queue q: a queue state identifier q_state.

Instead of representing each queue by an actual queue in the checker, we precompute
for each queue all possible state transitions in a case statement. This effectively results
in a large increase in the number of gates but a major decrease in the number of flops.
This trade-off results in more efficient formal verification.

Let us now walk the reader through the computation steps conducted by a hardware
checker by referring to Figure 5.5 as an example.

Step 1O

The first step is to pick the first state in st_chk_q (i.e. one of the possible current states).
Let us call this state st_chk_curr. It is checked whether the current actions are legal
w.r.t. this state. If not, the Error flag is raised and computation stops. Otherwise, the
computation of the possible next states is started.

Example 5.11. Consider the running example. It has only one source and therefore
only one invalid action. Given a state x and a source s, an action is illegal iff:

¬x.s_free∧ (¬s.irdy∨ s.data 6= x.s_state)

Step 2O

The second step is to compute the islands that are possibly active in the current states.
This results in a bit vector where each position indicates whether a specific island is
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active or not. Let us call this bit vector isl_act.

Example 5.12. Let us recall that the set of islands is

I′ = {{scr0:red_out, to_q0, to_q1},
{q0_out,mrg0_out},
{q1_out,mrg0_out}}.

Consider state (Free, red, red), and action (Injectred,Consumered). The first island is
inactive, since both queues are full. The second and the third islands are active, since
the queues are non-empty, and the source action is Consumered. Hence, isl_act = 011.

Step 3O

In general, not all the active islands in isl_act can fire simultaneously. For instance,
two islands with a common arbiter can be active in the current state but the arbiter
must make a non-deterministic choice. The third step is to extract from the current
active islands the set of possible legal island configurations. This is a queue of bit
vectors. Let us call this queue isl_legal_confs.

Example 5.13. In case isl_act = 011, the second and the third islands are active, but
cannot fire simultaneously due to the common arbiter in the merge primitive. Hence,
we split 011 in the following way: isl_legal_confs = {010, 001}.

Step 4O

Finally, for each legal configuration a new state is computed and enqueued in a new
global state st_chk_q. When this queue is full, but a new state should be enqueued,
the Overflow flag is raised.

Example 5.14. Again, consider the following state and action respectively:

(Free, red, red),
(Injectred,Consumered).

For this state and action, isl_legal_confs = {010, 001}. Thus, we compute two state
updates. As the queues are full and the source tries to inject a packet, the next state
of the source in each case is "Next". Finally, we obtain two distinct successor states
st_chk_q = {(Nextred, [], red), (Nextred, red, [])}.

5.5 Experimental Results and Discussion

Setup. Experiments are conducted using five MaDL examples. SM is the running
example (see Figure 5.2). SMC is a modification of the running example: (1) the
fork is replaced by a switch and (2) the source can inject two distinct colors. SLB is
composed of a source, a load balancer with three outputs. Each output is connected
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name
flops
spec.

flops
impl.

time(s)
proof

time(s)
!ovf

time(s)
cex

SM 31 11 0,5 0,5 0,1
SMC 23 11 0,1 2,0 0,1
SLB 101 17 8 3,7 0,6
VC 28 27 0,2 0,1 0,1
ROB 61 18 17,5 17,6 1,9

Table 5.1: Experimental results

to a queue. Outputs of all queues are connected to sinks. VC is a virtual channel.
The implementation uses credit-flow control and corresponds to Figure 3 by Ray and
Brayton [RB12]. The specification simply consists of two independent queues, each
one with its own source and sink. The structure of the two circuits is completely
different. ROB is a re-order buffer with two inputs and one output and defined as
follows:

struct pkt { tp: [0:0];};
pred f (p: pkt, q: pkt) { p.tp == q.tp};
bus<2> j;
bus<2> i := LoadBalancer(Source(pkt));
let j[0] := Queue(1,i[0]);
let j[1] := Queue(1,i[1]);
chan q_m := Queue(1,Source(pkt));
chan o_s := MultiMatch(f,q_m,j);
Sink(o_s);

Packets enter at the source feeding the LoadBalancer. Packet leaves at the output of
the MultiMatch in the order given by the second source.

Specifications are obtained by translating the MaDL models into SystemVerilog
checkers. Implementations are obtained by translating the same MaDL models into
Verilog, except for VCwhere two different MaDL models are used. When generating
implementations, non-determinism is removed. All merges and load balancers im-
plement a round-robin policy. All queues are circular buffers. The combination of
a specification and an implementation are given to a commercial formal verification
tool to check if there is an unbounded proof of the safety properties that the Error
flag and the Overflow flag are always low. Proof times in the table are only given for
the Error flag. Experiments are run on a CentOS 6.8 server with four 16-core AMD
Opteron 6276 2,3 GHz processors and 128GB 1600MHz memory.

Results. The results are shown in the Table 5.1. The first two columns give the
number of flops of the specifications and the implementations. The next columns
give the time in seconds to prove trace inclusion, to prove absence of overflows,
and to find a counter-example. Errors are injected in implementations by either
modifying queue sizes or leaving the data input a free variable. In all cases, an illegal
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action is correctly and quickly detected.

Discussion. As expected, the number of flops is larger for specifications than for
implementations. This is due to the non-determinism in the specifications. SLB
shows that a LoadBalancer introduces more non-determinism than a merge. This
is where the increase in the number of flops is the highest (6x). ROB has a Load-
Balancer and a MultiMatch, two primitives with a high degree of non-determinism
and complex logic. Predictably, ROB is the hardest example for the verification tool,
with a proof time of 17,5 seconds. Note that even though the specification of VC
is structurally completely different from its implementation, the verification takes a
negligible amount of time.

5.6 Conclusion

The work presented in this chapter describes an approach to use xMAS in the context
of implementation verification. We presented a method to bridge the gap between
high-level hardware specifications and RTL implementations. We turned a state-
based non-deterministic specification into a hardware checker for checking the inclu-
sion of traces of the given implementation into the traces of the given specification.
We exemplified our approach on several examples including a credit-flow virtual
channel and a re-order buffer.

As for possible future work, there is still a lot to be done for improving the scalability
of the method and making implementation verification on a system level using xMAS
possible. Also, another important extension to the method is to add the support of
the Finite State Machine primitive.
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6.1 Summary

The focus of the thesis is verification techniques for the xMAS language and related
topics.

The liveness property for xMAS networks is defined using Linear Temporal Logic
(LTL) [GCK11], which assumes an xMAS semantics expressed within a framework
naturally suitable for temporal logic properties (Kripke Structures, for example).
Moreover, there exists a reachability analysis technique for xMAS, which represents
xMAS networks as Kripke Structures [GCK11; WJS15]. Despite all that, the literature
contains neither a Kripke Structure semantics of xMAS nor a semantics defined in
terms of a similar framework. In Chapter 2, we filled the said gap by formally
defining the semantics of the xMAS language in terms of Kripke Structures and
carefully proving its correctness. This answered the research question RQ1.

To make simultaneous verification of a cache coherence protocol and communication
fabrics possible, Verbeek et al. introduced a Finite State Machine extension to the
xMAS language [Ver+17]. In Chapter 3, we provided a counter-example for the
xMAS with FSMs liveness verification method of Verbeek et al. In the same chapter,
we introduced an alternative solution for the liveness verification of xMAS networks
with FSMs and proved the correctness of our solution. In addition, we showed that
using xMAS with FSMs in combination with our liveness verification method makes
system-level liveness verification possible. This answered the research question RQ2.

The state-of-the-art method of liveness verification of xMAS networks is unfortu-
nately not complete. In some instances, the method might report the presence of
a deadlock even though the deadlock situation is not reachable Chapter 4 of this
thesis is dedicated to investigating ways of solving the issue with spurious dead-
locks. In the chapter, we introduced two approaches to making the state-of-the-art
liveness verification of xMAS networks complete. One approach is based on an
SMT-encoding of k-step backward reachability of initial states from the deadlock
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state. Another approach uses interpolation to analyze the backward reachability of
initial states from the deadlock state. We proved the correctness of both approaches
and evaluated their performance. We showed possible ways to make the SAT-based
verification technique for xMAS with FSMs complete. However, the technique does
not scale well. Hence, we consider RQ3 answered partially.

Besides property verification on abstract hardware models, an essential part of hard-
ware validation is to verify the correctness of hardware implementations. In Chap-
ter 5, we bridged the gap between abstract specifications expressed in the xMAS
language and RTL implementations made according to xMAS specifications. The
method that we introduced in the chapter automatically verifies the correctness of a
given RTL implementation by turning the respective xMAS specification into an RTL
Finite State Machine and checking the inclusion of the implementation’s traces into
the specification’s traces. This answered the research question RQ4.

6.2 Future Work

Wouda et al. introduced a transfer islands optimization for xMAS [WJS15], which
can be used within the xMAS reachability analysis technique. However, Wouda et
al. do not evaluate the effect of their optimization, which leaves the question of
whether transfer islands improve the performance of reachability analysis open. The
Kripke Structure semantics, which we introduced in Chapter 2 can be used to study
the impact of the transfer islands optimization on the xMAS reachability analysis.
The KS semantics is helpful in that case because Wouda’s verification tool based
on transfer islands generates SMV models, and the KS semantics can be directly
translated into SMV as well.

Finite State Machines in xMAS discussed in Chapter 3 have a limitation – within a
single transition, it is only possible to read from (write to) a single channel. Allowing
simultaneous multiple reads and writes within a single transition would make xMAS
Finite State Machines more compact, impacting the overall sizes of xMAS networks
positively.

In Chapter 4, consider the problem of false deadlocks in the state-of-the-art SAT-
based xMAS liveness verification technique. To address the issue, Chatterjee and
Kishinevsky [CK12] proposed flow invariants that approximate the reachable state
space. The flow invariants provide completeness only to xMAS networks that neither
contain combinatorial cycles nor FSMs. We proposed two approaches to fix the in-
completeness problem. Even though with our approaches, completeness is achieved
even for xMAS networks with FSMs or cycles, scalability is an issue. It would be
interesting to work towards more efficient SMT-encoding used in our approaches. A
completely new, more scalable approach would also be beneficial.

The method for relating xMAS specifications and RTL implementations which we
introduced in Chapter 5 relies on an action-based representation of xMAS networks.
An obvious next step is to present the action-based semantics used for the said
method formally and show the correspondence between this action-based semantics
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and our Kripke Structure semantics. For proving the correspondence between the
action-based and the state-based semantics, work of Willemse et al. [RSW12] can be
used. Additionally, the action-based semantics can help to establish the action-based
xMAS deadlock property, equivalent to the LTL one.
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Summary

Verification Techniques for xMAS

Computers and related hardware are essential in the modern world. It is crucial
that new hardware functions correctly. Conventionally, validation of new hardware
designs is done using simulation and testing. The latter has a drawback as full
coverage of all possible behaviors is impossible for complex hardware designs. On
the other hand, Formal Verification covers all possible behaviors as it proves the
correctness of new hardware designs using the formal methods of mathematics.
However, Formal Verification is not a panacea as it is a challenge to scale it to the
system level. In this thesis, among other things, we scaled Formal Verification to the
system level.

xMAS is a language designed for convenient modeling and scalable formal verifi-
cation of hardware. This thesis contains work on formal verification techniques in
xMAS and related topics.

Although there exist xMAS verification techniques that rely on a state-based repre-
sentation of xMAS [WJS15], a state-based semantics is not described in the literature.
In Chapter 2, we formulated the semantics of the xMAS language in terms of Kripke
Structures and proved its correctness. It serves as a theoretical basis for the subse-
quent work and fills the gap in the existing literature.

In Chapter 3, we demonstrated that the liveness verification technique for the xMAS
Finite State Machine extension introduced by Verbeek et al. [Ver+17] is unsound by
providing a counter-example. In the same chapter, we provided our own liveness
verification approach for xMAS with FSMs and proved that it is sound. In addi-
tion, we showed that using xMAS with FSMs in combination with our verification
technique can allow liveness verification at the system level.

The state-of-the-art liveness verification technique for xMAS is prone to reporting
spurious deadlocks. In Chapter 4, we introduced two approaches to solve the spuri-
ous deadlock issue. One approach is based on an SMT-encoding of k-step backward
reachability of an initial state from the deadlock state. Another approach uses inter-
polation to tackle the reachability problem mentioned above. In the same chapter,
we prove the correctness of both approaches and evaluate their performance.
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Hardware is implemented based on high-level designs. An important question is
whether the implementation conforms to the high-level design, which is usually
called the specification. In Chapter 5, we introduced a novel method that, given
an abstract xMAS specification, automatically checks the correctness of RTL imple-
mentations made according to the xMAS specification. The method takes an xMAS
specification and the respective RTL implementation as input. It then turns the spec-
ification into an RTL Finite State Machine and checks that all the traces produced by
the implementation are included in the traces of the specification.
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Verificatietechnieken voor xMAS

Computers en computerhardware zijn van groot belang in de moderne wereld. Het
is cruciaal dat nieuwe hardware correct werkt. Normaal gesproken wordt validatie
van nieuwe hardware gedaan met behulp van simulatie en testen. Simuleren en
testen hebben een nadeel: het volledig afdekken van alle mogelijke gedragingen
is niet haalbaar voor complexe hardware-ontwerpen. Formele verificatie lost dit
probleem op. Het bewijst de juistheid van nieuwe hardware-ontwerpen met behulp
van formele, wiskundige methoden. Formele verificatie is echter niet in alle gevallen
een oplossing, omdat het lastig is om formele verificatie naar systeemniveau te
schalen.

xMAS is een taal voor het modelleren en formeel verifiëren van hardware. Dit
proefschrift doet onderzoeken naar de formele verificatietechnieken van de liveness
eigenschap in xMAS en onderwerpen die hieraan gerelateerd zijn.

In Hoofdstuk 2 hebben we de semantiek van de xMAS-taal geformuleerd in termen
van Kripke-structuren en de juistheid van deze semantiek bewezen. Dit hoofdstuk
dient als theoretische basis voor het daaropvolgende onderzoek en vult het gat in de
bestaande literatuur met betrekking tot dit onderwerp op.

In Hoofdstuk 3 hebben we aangetoond dat de verificatietechniek voor de liveness ei-
genschap voor de xMAS Finite State Machine-extensie, geïntroduceerd door Verbeek
et al. [WJS15], incorrect is. Dit wordt bewezen door een tegenvoorbeeld te geven. In
hetzelfde hoofdstuk introduceren we onze eigen benadering van verificatie van de
liveness eigenshap voor xMAS met FSM’s en hebben we bewezen dat deze correct is.
Daarnaast hebben we laten zien dat het gebruik van xMAS met FSM’s in combinatie
met onze verificatietechniek de liveness eigenshappen verificatie op systeemniveau
mogelijk maakt.

De verificatietechniek uit Hoofdstuk 3 is gevoelig voor het melden van valse dead-
locks. In Hoofdstuk 4 hebben we twee benaderingen geïntroduceerd om het valse
deadlock-probleem op te lossen en hebben we de correctheid van beide benaderingen
bewezen. We evalueerden ook de prestaties van de twee benaderingen.

In Hoofdstuk 5 hebben we een nieuwe methode geïntroduceerd die, op basis van
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de abstracte xMAS-specificatie, automatisch de correctheid controleert van RTL-
implementaties die zijn gemaakt volgens de xMAS-specificatie. De methode neemt
een xMAS-specificatie en de RTL-implementatie als input. Het zet de specificatie
vervolgens om in een RTL Finite State Machine en controleert of alle traces die
door de implementatie worden geproduceerd, zijn opgenomen in de traces van de
specificatie.
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