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Abstract
Discrete Markov chains are frequently used to analyse transition behaviour in sequen-
tial data.Here, the transition probabilities can be estimated using varying orderMarkov
chains, where order k specifies the length of the sequence history that is used to model
these probabilities. Generally, such amodel is fitted to the entire dataset, but in practice
it is likely that some heterogeneity in the data exists and that some sequences would
be better modelled with alternative parameter values, or with a Markov chain of a dif-
ferent order. We use the framework of Exceptional Model Mining (EMM) to discover
these exceptionally behaving sequences. In particular, we propose an EMM model
class that allows for discovering subgroups with transition behaviour of varying order.
To that end, we propose three new quality measures based on information-theoretic
scoring functions. Our findings from controlled experiments show that all three quality
measures find exceptional transition behaviour of varying order and are reasonably
sensitive. The quality measure based on Akaike’s Information Criterion is most robust
for the number of observations. We furthermore add to existing work by seeking
for subgroups of sequences, as opposite to subgroups of transitions. Since we use
sequence-level descriptive attributes, we form subgroups of entire sequences, which
is practically relevant in situations where you want to identify the originators of excep-
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tional sequences, such as patients. We show this relevance by analysing sequences of
blood glucose values of adult persons with diabetes type 2. In the experiments, we find
subgroups of patients based on age and glycated haemoglobin (HbA1c), a measure
known to correlate with average blood glucose values. Clinicians and domain experts
confirmed the transition behaviour as estimated by the fitted Markov chain models.

Keywords Exceptional Model Mining · Markov chains · Information-theoretic
scoring functions · Sequential medical data

1 Introduction

Markov models in all their variants are frequently used to mine patterns in sequential
data. Consider, for instance, 1st order Markov chains (Wilks 1999; Pirolli and Pitkow
1999; Sarukkai 2000), Hidden Markov Models (HMM) (Jaroszewicz 2010; Peharz
et al. 2014; Meier et al. 2015; Bueno et al. 2019) and Dynamic Bayesian Networks
(DBN) (Dagum et al. 1992; Bueno et al. 2020). All thesemodels are calledmemoryless
if they satisfy the Markov property: given the data at time t − 1, the data at time t is
independent of the data before time t − 1. Furthermore, a model is homogeneous if
its parameters do not change over time, and the sequences are stationary if the initial
values follow the same model (Zucchini et al. 2017).

We consider discrete Markov chains where the observations are discrete values, or
states, from a countable set which is called the state-space. Generally, such a model
is fitted to the entire dataset and the parameter estimates give information about the
average transition behaviour between states. However, some heterogeneity in the data
often likely exists, and hence some sequences would be better modelled separately.We
use Exceptional Model Mining (EMM) (Leman et al. 2008; Duivesteijn et al. 2016)
to discover these exceptionally behaving sequences.

EMM is a local pattern mining technique seeking subsets of the dataset that
behave somehow exceptionally. Here, exceptional behaviour is measured in terms
of parameters of a model class over target attributes. A quality measure quantifies
this exceptionality (see Sect. 2). Since EMM allows for ≥ 2 attributes to be part
of the target model, it can be seen as a generalisation of Subgroup Discovery (SD)
(Klösgen 1996; Wrobel 1997; Herrera et al. 2011), which uses 1 target attribute. Both
frameworks employ a rule-based description language where resulting subgroups are
described as a conjunction of attribute-value pairs.

An EMM model class exists for 1st order Markov chains (Lemmerich et al. 2016).
We extend their work by considering Markov chains of varying order, where order k
specifies the length of the sequence that is used as memory in the model. Specifically,
our method allows for discovering subgroups in situations where the order of the
Markov chain differs between the subgroup and the dataset. This situation requires
comparing unequal numbers of parameters. Hence, we do not use a parameter-based
quality measure, as is common in EMM, but show how information-theoretic scoring
functions can evaluate a subgroup’s exceptionality.

We furthermore add to existingworkby seeking subgroups of sequences, as opposed
to subgroups of transitions (Lemmerich et al. 2016). Whereas the latter detects het-
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erogeneity within sequences, we find subgroups of homogeneous sequences that are
heterogeneous w.r.t. the entire dataset. Our model class is practically relevant for iden-
tifying the originator of an exceptional sequence, such as a patient with exceptional
blood glucose fluctuations (see Sect. 6.1) or an atypical user session in click-stream
data (f.e. Sadagopan and Li 2008).

In sum, our main contributions include (1) an EMM model class for detecting
exceptional transition behaviour of varying order, (2) a new set of quality measures
based on information-theoretic scoring functions and (3) an understanding of how
descriptive attributes can be used to form subgroups of entire sequences. In the rest
of this paper, we introduce EMM and Markov chains in Sect. 2 and discuss related
work in Sect. 3. We then propose our methodology in Sect. 4. In Sect. 5 we present
our findings from controlled experiments and in Sect. 6 we analyse real-world data.
Finally, Sect. 7 contains a discussion and Sect. 8 concludes.

2 Background

In the following, we will explain theoretical concepts by means of the DIALECT-2
study (Gant et al. 2017). DIALECT-2 is an observational study of adult persons with
diabetes type 2, where blood glucose is measured every 15 minutes for a period of 14
days.We discretise the continuous measurements into five blood glucose levels: below
range 2 (BR2), below range 1 (BR1), in range (IR), above range 1 (AR1), and above
range 2 (AR2), where range refers to desired blood glucose values. We then analyse
transition patterns between these levels. As a running example to aid illustration of
concepts introduced in the subsequent sections, some DIALECT-2 transition patterns
can be found in Fig. 1; more details on the study and its interpretation are provided in
Sect. 6.1.

2.1 Preliminaries

Assume a dataset Ω with N independently but not identically distributed sequences
of discrete random variables Xt : t ∈ {1, 2, ..., T }. The data realisation at time t is
denoted with xt . Although sequence r ∈ Ω has length Tr , without loss of generality,
we assume one fixed length T for every sequence. We refer to N as the data size and
write M to denote the total number of observations, where M = ∑

r∈Ω Tr = NT
(note that the total number of transitions is M−N ). The set of possible discrete values
is V = {v1, v2, ..., vS} for all xt . For instance, in the DIALECT-2 dataset, N = 126,
T = 1344, M ≈ 170000, V = {BR1,BR2, IR,AR1,AR2} and S = 5.

We assume the availability of an extra set of attributes with information about
the sequences: the descriptive attributes. The full form of sequence r then becomes
(x1, x2, ..., xTr , a1, a2, ..., am) for all r ∈ Ω . Here, m simply denotes the number of
descriptive attributes. Depending on the application, these attributes could describe
personal or medical characteristics such as HbA1c category, duration of the illness
and BMI (Fig. 1b), user session information such as browser language and timezone
(if the sequences are click-streams) or contain meta-information about the sequences
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382 R. M. Schouten et al.

Fig. 1 Transition patterns of blood glucose levels. (a) The entire dataset follows a 2nd order Markov chain.
(b) The top subgroup follows a 1st order Markov model

such as its length, state-space and starting time (see Sect. 6.2). We now explain how
these descriptive attributes are used to form subgroups.

2.2 Exceptional model mining

Exceptional Model Mining (EMM) is a local pattern mining framework, seeking
subgroups in a population that behave somehow exceptionally (Leman et al. 2008;
Duivesteijn et al. 2016). Those subgroups have interpretable descriptions and explain-
able circumstances under which exceptional behaviour occurs. In short, EMM splits
the data attributes into two distinct sets. The exceptionality of a candidate subgroup
is gauged with a quality measure, exploring a model class over target attributes. We
will further explain quality measures and model classes in Sect. 2.2.2. Descriptive
attributes are used to form interpretable subgroups by deploying a rule-based descrip-
tion language using conjunctions of attribute-value pairs. For instance, the subgroup
in Fig. 1b is described by HbA1c category = low ∧ diabetes duration ≤ 20 years ∧
21.3 ≤ BMI ≤ 35.7.
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Mining sequences with exceptional transition behaviour 383

2.2.1 Defining subgroups: descriptions

Denoting the collective domain of the descriptive attributes (a1, a2, . . . , am) by A,
a description is formally defined as a function D : A → {0, 1}. Subsequently, a
sequence r is covered by description D if and only if D(ar1, a

r
2, . . . , a

r
m) = 1.

Definition 1 (Subgroup) The subgroup corresponding to a description D is the bag
of sequences SGD ⊆ Ω that D covers:

SGD = {r ∈ Ω | D(ar1, a
r
2, . . . , a

r
m) = 1}

It is important to realise that we define a subgroup such that a sequence is either
covered by a description or not (we thus replaced the word record in Definition 1 of
Duivesteijn et al. (2016) with the word sequence). We do not allow for a sequence
to be split into pieces and to be partly assigned to a subgroup. The reason is that we
want to find the originators of exceptional sequences because this could assist domain
experts in adopting appropriate policies. For instance, an interpretable description of
patients could assist doctors in selecting the most useful treatment; descriptions that
only partly include certain patients are less helpful.

The strict partitioning between target and descriptive attributes is a powerful feature
in EMM, allowing us to form subgroups of independently distributed cases while
analysing sequential patterns. We are thus able to make subgroups of entire sequences
because the descriptive attributes contain sequence-level information (see Sect. 2.1).
In contrast, Lemmerich et al. (2016) find subgroups of transitions, using descriptive
information on the transition (or time) level.

2.2.2 Evaluating exceptionality: quality measures

A quality measure quantifies the difference between behaviour within the subgroup
and behaviour within the entire dataset (or the subgroup’s complement). The choice
of model over the target attributes is called the model class, and the quantification of
the difference is given by a quality measure. The challenge in EMM is to effectively
search through the descriptive space to find the top-q best-scoring subgroups.

Definition 2 (Quality Measure) A quality measure is a function ϕ : D → R that
assigns a numerical value to a description D.

Generally, quality measures directly compare one or more parameter estimates,
such as the difference between estimated slopes in a regression model (Duivesteijn
et al. 2012) or the difference between estimated correlations of two target attributes
(Duivesteijn et al. 2016). Following the terminology of Song (2017), we call these
quality measures parameter-based. Their advantage is that you immediately know
why a resulting subgroup is exceptional. However, a parameter-based approach also
restricts themodel in the subgroup to have the same number of parameters as themodel
in the entire dataset. In case of Markov chains, for instance, parameter-based quality
measureswould not allow the subgroup to be fittedwith a higher (or lower) ordermodel
than the one that is fitted in the entire dataset. In this paper, we therefore propose to
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evaluate a subgroup’s exceptionality using quality measures based on information-
theoretic scoring functions. We call these quality measures evaluation-based. For
instance, in the DIALECT-2 study, the entire dataset is best modelled with a second-
order Markov chain, as illustrated in Fig. 1a, while the top subgroup is best modelled
with a first-order Markov chain, as illustrated in Fig. 1b. Our evaluation-based quality
measures can gauge the exceptionality of the difference between these two models
and their respective transition probabilities.

2.3 Markov chains

We will now first introduce 1st order Markov chains, and then extend the principles
to kth order chains. In this section, we overload the symbol Ω to refer only to the
target attributes xt for all t ∈ {1, 2, ..., T } and temporarily forget about the descriptive
attributes. We write SG to denote the same set of attributes for the subgroup.

Using the product rule and the Markov property that given the data at time t − 1,
the data at time t is independent of the data before time t − 1, the joint probability
distribution of Ω is modelled with a 1st order Markov chain by

P(Ω|θ) = P(x1, x2, ..., xT |π,A) = p(x1)
T∏

t=2

p(xt |xt−1). (1)

The prior distribution p(x1) is parameterised with an initial probabilities vector π =
[π1, ..., πS]. The main interest is in the transition behaviour between time t − 1 and t ,
which is parameterised with an S × S probability matrix denoted with A. Parameters
αi j ∈ A ∀i, j ∈ {1, 2, ..., S} are estimated using Maximum Likelihood Estimation
(MLE) where

p(xt = v j |xt−1 = vi ) = αi j = ni j
∑S

j=1 ni j
. (2)

Here, ni j denotes the total number of transitions from source state vi to target state v j

∀i, j ∈ {1, 2, ..., S}. Eq. (2) thus practically means that we first calculate a transition
frequency matrix, and then calculate the probabilities by dividing by the sum of each
row. Consequently, ∀i ∑S

j=1 αi j = 1.
Figure 1b shows such a 1st order transition probability matrix. The dark purple

square in the top left corner expresses the probability (which is α11 = 0.85) that the
next blood glucose level is BR2 (column) given that the current blood glucose level is
BR2 (row). The high probabilities on the diagonal indicate that patients are likely to
stay at the same blood glucose level, although patients with a current blood glucose
level of AR2 are also quite likely to transition to a lower blood glucose value (to AR1,
α54 = 0.28).

The Markov chain model in Eq. (1) assumes homogeneous sequences where the
transition parameters do not change over time (Zucchini et al. 2017). If we additionally
assume that the initial probabilities vector π follows that same transition model, we
say the sequences are stationary (Zucchini et al. 2017). It makes sense to make both
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assumptions together. After all, if we assume that the transition behaviour does not
change between time points 1 and T , it does not matter where or when the sequence
starts. For example, if we estimate that 30% of the sequences move from state vi to
state v j , it is also likely that 30% of the sequences start with state vi . As a consequence,
it is not necessary to separately estimate the parameters in π . Instead, we derive the
initial probabilities by normalising over all j target states in the frequency matrix. The
total number of free parameters in a 1st orderMarkov chain is therefore K = S(S−1).

However, depending on the application or for very short sequences, the starting
point of the sequence could be of separate interest. Consider, for example, a subgroup
of patients who present themselves with different symptoms than the overall patient
population. In that case, the parameters in π are separately estimated using only the
data from the first time point,

p(x1 = vh) = πh = n(t=1)
h

∑S
h=1 n

(t=1)
h

. (3)

Here, we indicate the selection of time points in the superscript (t = 1). Separately
estimating initial probabilities would add another S−1 free parameters to the Markov
chain model.

Extending the 1st orderMarkov chainmodel to a kth ordermodel gives the following
joint probability distribution,

P(Ω|θ) = P(x1, x2, ..., xT |θ) = p(x1) · p(x2|x1) · ... · p(xk |xk−1, ..., x2, x1)·
T∏

t=k+1

p(xt |xt−k, xt−k+1, ..., xt−2, xt−1).

Such a model uses the memory of time t − 1, t − 2, ..., t − k to predict the state value
at time t . To understand the transition matrix, it can be helpful to consider the k-length
history as one time point with Sk possible states. Transitionmatrix kA is then an Sk×S
probability matrix where value kαi j models the probability of moving towards state
v j ∀ j ∈ {1, 2, ..., S} given the i ∈ {1, 2, ..., Sk} k-length history. Figure 1a shows the
probability matrix of such a 2nd order Markov chain, fitted on the entire DIALECT-2
dataset, where the rows represent the 52 = 25 possibilities of a 2-length history given
5 blood glucose levels.

In higher order Markov chains, the main interest is still in the transition behaviour
and under the assumption of stationary sequences, the k initial probability distributions
are often ignored. If needed, those initial probabilities can be calculated by normalising
over the last time point in the k-length history, just as we calculated π by normalising
over all j target states. We denote the normalisation of kA down to the �th order with
a tilde: �

kÃ ∀� ∈ {0, 1, 2, ..., k − 1}. Its parameters are then written as �
k α̃i j . For this

reason, the number of free parameters in a kth order Markov chain is k K = Sk(S−1).
In Sect. 4, we will discuss quality measures based on information-theoretic scoring

functions. These quality measures use log likelihood to quantify the goodness of fit
of a given Markov chain. Here, we start making a distinction between two datasets:

123
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on the one hand, the dataset for which we calculate the goodness of fit, and on the
other hand, the dataset on which we estimate the parameters of the Markov chain.
We denote the latter with a superscript; kAF refers to a kth order transition matrix
estimated on dataset F . We can now calculate the log likelihood of dataset G using
parameter estimates kAF by

L(P(G|kAF )) =
S∑

h=1

nG
(t=1)

h log 0
k α̃

F
h +

S∑

i=1

S∑

j=1

nG
(t={1,2})

i j log 1
k α̃

F
i j + ...

+
Sk−1
∑

i=1

S∑

j=1

nG
(t={1,2,...,k})

i j log k−1
k α̃F

i j +
Sk∑

i=1

S∑

j=1

nGi j log kα
F
i j .

In the rest of this paper we use L(P(SG|AΩ)) and L(P(SG|ASG)) to denote the
log likelihood score for a subgroup using parameter values estimated on the entire
dataset and on the subgroup respectively.1

3 Related work

Lemmerich et al. (2016) introduced an EMMmodel class for 1st order Markov chains.
They focus on finding subgroups of transitions and thus detect heterogeneity within
sequences. We propose to extend this model class such that 1) we find subgroups
of entire sequences and detect homogeneous sequences that are heterogeneous with
respect to the other sequences, and 2) we allow for discovering subgroups that are best
modelled with a different order Markov chain.

Since Lemmerich et al. (2016) considered the situation where subgroups follow the
same 1st order model as the entire dataset, they proposed a parameter-based quality
measure related to the total variation distance or Manhattan distance:

ωtv(1ASG , 1AΩ) =
S∑

i=1

⎛

⎝
S∑

j=1

nSGi j

S∑

j=1

∣
∣
∣1a

SG
i j − 1a

Ω
i j

∣
∣
∣

⎞

⎠ . (4)

The quality measure ωtv can be extended to situations where the subgroup follows
the same higher order Markov chain as the entire dataset, but it cannot be used in
situations where the subgroup follows a different order model.

Song et al. (2015, 2016) propose what they call Model-Based Subgroup Discovery
(MBSD) where the divergence between the target probability estimates and the true
labels of an outcome variable is evaluated using Proper Scoring Rules (PSR) (Gneiting
and Raftery 2007). We analyse sequential data without labels, but our evaluation
measures are still related to those in Song et al. (2016) since the information-theoretic
scoring function AIC is derived from the Kullback-Leibler divergence (Burnham and

1 Note that while calculating the log likelihood, we use normalised probabilities for the first k time points.
In general, in this paper we assume homogeneous and stationary sequences, except for Sect. 5.2, where we
analyse non-stationary sequences.
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Anderson 2004), which is associated with the logarithmic score as a PSR (Gneiting
and Raftery 2007).

In fact, for outcome variables with a probability density distribution, Song (2017)
defines a quality measure called weighted divergence where the information gain of
the subgroup is calculated using log likelihood as the negative of the expected loss, or
information content,

ϕWD(SG, θ SG , θΩ) = L(P(SG|θ SG)) − L(P(SG|θΩ)). (5)

Although our quality measures based on information-theoretic scoring functions only
differ from ϕWD by the addition of a penalty for model complexity, it is exactly this
penalty that allows for discovering subgroups with a different order Markov chain. In
Sect. 5 we will show the difference in performance between our quality measures and
ϕWD .

Several papers proposed information-theoretic scoring functions as the basis of a
quality measure. For tabular data, Lijffijt et al. (2018) seek exceptional location and
spread in multiple real-valued targets, by means of a quality measure based on the
information gain of subgroups that allows the user to incorporate prior knowledge
in the process. For graph data, Deng et al. (2020) aim to identify pairs of subgraphs
with exceptional connectivity by looking at the density between the subgraphs, also
allowing for the incorporation of prior knowledge.

In the context of sequence data, Bueno et al. (2020) consider dynamic Bayesian
networks as model class and use BIC to define amismatch score between the subgroup
and its complement.We look atMarkov chains, and compare the subgroup to the entire
dataset because this is conceptually easier to understand and computationally more
efficient than comparing to the subgroup’s complement.

LikeLemmerich et al. (2016); Song (2017);Bueno et al. (2020),we take an approach
where candidate subgroups are evaluated using a bottom-up, heuristic search through
the descriptive space. In comparison, Becker et al. (2017) take a top-down approach
where the subgroups are hypothesised beforehand based on theory and evaluated using
Bayes Factors. Kiseleva et al. (2013) hypothesise two groups of sequences based on
descriptive information and distributional characteristics. The two groups are analysed
with a Markov model and compared on their prediction accuracy.

A global approach to detecting (groups of) outliers is taken by Sadagopan and Li
(2008), who calculate the log likelihood scores of individual sequences under a 1st

orderMarkovmodel. Specifically, they create aMahalanobis distribution of sequences
by combining these log likelihood scores with meta information such as the sequence
length. Although their approach points at unusual sequences in an existing dataset,
it does not describe or explain in any other way why specifically those sequences
are considered outliers. In contrast, the framework of EMM is a local pattern mining
technique that not only allows for interpretable descriptions of exceptional subgroups
but also for an explanation of why those subgroups are selected.

Yet, in Sect. 5, we will compare our method to a quality measure that only uses a
globally fitted model and does not require the fit of separate models in each candidate
subgroup. In particular, we compare against a quality measure calledweighted relative
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likelihood (Song 2017),

ϕWRL(SG,Ω, θΩ) = MSG ·
∣
∣
∣
∣
L(P(Ω|θΩ))

MΩ
− L(P(SG|θΩ))

MSG

∣
∣
∣
∣ . (6)

Here, the average fit of the dataset is evaluated under parameters estimated on the
dataset and compared against the average fit of the subgroup under those same param-
eters. Note that MSG and MΩ denote the total number of observations in the subgroup
and dataset respectively and not the total number of sequences (see Sect. 2.1).

Recently, Mollenhauer and Atzmueller (2020) propose Sequential Exceptional Pat-
tern Discovery using Pattern-Growth (SEPP) as a general approach to the problem of
Sequential Exceptional Model Mining (SEMM). Their work combines EMM with
sequential pattern mining, the task to identify frequent subsequences, and as such they
develop a search strategy based on GP-growth (Lemmerich et al. 2012) and PrefixS-
pan (Pei et al. 2004). Mathonat et al. (2021) also combine sequential pattern mining
with EMM, developing theMCTSExtentmethod building onMonte Carlo Tree Search
(MCTS) (Bosc et al. 2018). Both MCTSExtent and SEPP consider the data to be in
the traditional sequential pattern mining form where Xt is an itemset. Such a dataset
is inherently binary: an item is present in an itemset or not. A subgroup’s exception-
ality is then evaluated in terms of frequency or precision. In contrast, our sequences
come with m descriptive attributes; subgroups are formed using these attributes and
evaluated based on exceptional sequential behaviour.

4 Proposedmethod: Exceptional transition behaviour of any order

We will now explain how we derive our quality measures based on information-
theoretic scoring functions in Sect. 4.1. In Sect. 4.2, we then discuss the proposed
search strategy.

4.1 Quality measures based on information-theoretic scoring functions

In order to evaluate the exceptionality of candidate subgroups with varying order
Markov chains, we develop a set of quality measures that allows for the comparison
of two sets of parameters of different size. Such quality measures should not simply
select the subgroup with the largest number of parameters, because a more complex
model may overfit the data. The quality measures should further take the subgroup
size into account, since deviations from the norm are more easily obtained in smaller
subgroups.

To that end, we base our quality measures on information-theoretic scoring func-
tions. In general, for a dataset G, such as scoring function is defined by

φLL(G, θG) = L(P(G|θG)) − f (MG) · KG, (7)

where we use subscript LL to indicate that we use log likelihood as a way to quantify
the goodness of fit. Given that θG are MLE parameters, L(P(G|θG) is maximal. The
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second part of the equation is a penalty for model complexity. Here, KG denotes the
number of free parameters in a model estimated on dataset G. The term f (MG) is a
penalty based on the number of observations in G.

Wewill apply three information-theoretic scoring functionswhich all use a different
penalty term. First, Akaike (1973, 1974) (see also Burnham and Anderson 2004)
derived that the bias in the log likelihood score (due to overfitting) converges to K
as M → ∞ (we temporarily leave out the superscript G). In Akaike’s Information
Criterion (AIC), the penalty is therefore set to K , whichmeans that f (M) = 1. Second,
the Bayesian Information Criterion (BIC) (Schwarz 1978) sets f (M) = 1

2 logM . In
this paper, we refer to BIC as an information-theoretic scoring function because it
only differs from AIC by the extent of the penalty. However, BIC is derived from a
Bayesian viewpoint, is related to Bayes factors (Kass and Raftery 1995) and originally
focuses on model selection instead of prediction accuracy (Pohle et al. 2017). Third,
a scoring function called AIC with small sample correction (AICc) penalises with an
additional 2K 2+2K

M−K−1 . The term corrects for overfitting if the number of free parameters
is large with respect to M , but AICc converges to AIC as M increases (Sugiura 1978;
Hurvich and Tsai 1995; Burnham and Anderson 2004).

Several authors have investigated the use of AIC and BIC in determining the appro-
priateMarkov chain order (e.g. Tong 1975; Schoof and Pryor 2008; Singer et al. 2014).
Wewill now use these scoring functions to evaluate whether candidate subgroups have
exceptional transition behaviour. This goes as follows.

In the situation that datasetΩ is heterogeneous and contains one or more subgroups
of sequences that follow a different model than the rest of the sequences, it is likely that
the parameters of the subgroup, θ SG , describe the subgroup better than the parameters
of the entire dataset, θΩ . This means that in the presence of a subgroup, the log
likelihood of dataset Ω will increase if the parameters of the subgroup are separately
estimated and evaluated. We write that

L(P(SG|θ SG)) + L(P(SGC |θΩ)) > L(P(Ω|θΩ)), (8)

where SGC denotes the subgroup’s complement. SinceL(P(SGC |θΩ)) is part of both
the left and the right side of Eq. (8), we can write that

L(P(SG|θ SG)) > L(P(SG|θΩ)). (9)

We now derive our quality measures by combining Eqs. (7) and (9). We further-
more multiply φLL with -2 for conventional reasons, and again multiply with -1 to
obtain quality measures that should be maximised (see Definition 2). This gives us the
following three quality measures.

ϕAIC = 2L(P(SG|θ SG)) − 2K SG − 2L(P(SG|θΩ)) + 2KΩ, (10)

ϕBIC = 2L(P(SG|θ SG)) − K SG logMSG − 2L(P(SG|θΩ)) + KΩ logMSG , (11)

ϕAICc = 2L(P(SG|θ SG)) − 2K SG − 2K SG2 + 2K SG

MSG − K SG − 1
−
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2L(P(SG|θΩ)) + 2KΩ + 2KΩ2 + 2KΩ

MSG − KΩ − 1
. (12)

Note that quality measure ϕWD as defined earlier in Eq. (5) sets f (M) = 0 and
therefore uses no penalty. Furthermore, if the subgroup has the same order Markov
chain model as the dataset, KΩ = K SG and the penalty terms cancel out for all three
quality measures.

4.2 Extended beam search algorithm

Beam search is a commonly used strategy to search through the space of candidate
subgroups. It has the ability to use descriptive attributes from any domain (i.e. it can
natively handle any mix of attributes that are binary, categorical or numerical without
the requirement for static pre-algorithm discretisation). The algorithm (Duivesteijn
et al. 2016, Algorithm 1, page 60) performs a level-wise search of d levels, where
at each level the descriptions of a set of candidate subgroups are further refined and
evaluated with a quality measure. The w best-scoring subgroups are selected for the
next level. In the end, the algorithm outputs a list of the top-q subgroups.

In order to find subgroups with varying order Markov chains, we have to take a few
additional steps to evaluate candidate subgroups. First, we have to find the Markov
chain order that best fits the entire datasetΩ . Algorithm 1 describes the procedure. As
explained in Sect. 2.3, a higher order Markov chain can be transformed into a lower
order model by normalising the transition matrix. We use this feature to calculate the
transition probabilities only once using a Markov chain of order s (line 2), where s is
a user-defined parameter which we call the start parameter. In line 3, we calculate the
penalised log likelihood given penalty p ∈ {AIC, BIC, AICc} as described in Sect.
4.1. In lines 5-13, we repeatedly normalise the transition matrix (line 7), calculate
the new score (line 8) and check whether the score has increased or not (line 9). The

Algorithm 1 Finding the best fitting Markov chain order
Input A dataset G, a penalty p from {AIC, BIC, AICc}, start parameter s
Output The estimated Markov chain parameters, the Markov chain order

1: procedure BestFittingOrder
2: sAG ← MarkovChain(G, order = s)
3: scores ← φLL (G, sAG , p) � Eq. (7), with penalty term replaced by p
4: counter = 1
5: while f < s do
6: � = s − f

7: �
s Ã

G ← normalise(sAG )

8: score� ← φLL (G, �
s Ã

G
, p) � Eq. (7), with penalty term replaced by p

9: if score� < scores then

10: return �+1
s Ã

G
, � + 1

11: else
12: counter = counter + 1
13: scores = score�
14: return �

s Ã
G

, �
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Algorithm 2 Evaluating a subgroup with varying order Markov chains
Input A subgroup SG, a penalty p from {AIC, BIC, AICc} and according quality measure ϕ, dataset

parameters �
s Ã

Ω
, start parameter s

Output Real number expressing the exceptionality of subgroup SG
1: procedure EvaluatingSubgroup

2: u
s Ã

SG
, u ← BestFittingOrder(SG, p, s)

3: quality ← ϕ(SG, us Ã
SG

, �
s Ã

Ω
)

4: return quality

procedure returns the parameter estimates and the Markov chain order of the model
that maximises the penalised log likelihood fit.

Algorithm 2 describes how a candidate subgroup is evaluated. First, procedure
BestFittingOrder is repeated for the subgroup (line 2). Then, the subgroup is evalu-
ated with qualitymeasure ϕAIC , ϕBIC or ϕAICc (Eqs. (10), (11) and (12) respectively),
depending on parameter p ∈ {AIC, BIC, AICc}. Like usual, beam search returns
the q best scoring subgroups.

The worst-case computational complexity of the beam search algorithm is
O(dwZE(c + M(N , f ) + log(wq))) (Duivesteijn et al. 2016, page 60, we have
slightly adapted the notation to avoid confusion). Here, d, w, q are as explained ear-
lier, Z is the number of descriptors and E the worst-case number of nominal values
(numerical and binary descriptors are refined faster). Parameter c refers to the com-
plexity of comparing two models. In our approach, we compare the fit of the subgroup
under two models (θ SG and θΩ ) but the parameters of the data model are calculated
only once at the beginning of the beam search. The term M(N , f ) refers to the cost
of learning a model M from N records on f targets. In case of Markov chains, this
would compare to fitting a kth order model for S state-values on N sequences of length
T . The computational complexity is then a linear function of N , T and the number of
free parameters K , which grows exponentially with base S and exponent s (Sect. 2.3).

The fact that we can evaluate lower order Markov chains by normalising higher
order transitionmatrices is a powerful feature that keeps the computational complexity
of our approach tractable. Still, parameter s is an important parameter because if s is
too large, fitting theMarkov chain model may take unnecessarily long, while if s is too
small, it is hard to evaluate more complex models. Note furthermore that s determines
which parts of the sequences are used for model fitting. After all, fitting a kth order
Markov chain can only be done with the data from time points k + 1 to T . Although
it is possible to normalise higher order transition matrices all the way down to a 1st

order Markov model, the drawback of such a procedure is that not all observations are
used for estimating the probabilities.

5 Experiments on synthetic data

In the following, we assess the performance of our proposed method by means of
experiments on synthetic data. The goal of the experiments is to see whether the
proposed quality measures can indeed detect subgroups with exceptional transition
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behaviour of varying order. For varying data characteristics such as sequence length
and the state-space, we will create ground truth subgroups and analyse whether they
are ranked first in the top-q result list. Specifically, Sect. 5.1 analyses exceptional
transition behaviour, Sect. 5.2 analyses exceptional starting behaviour and Sect. 5.3
contains a sensitivity analysis.

5.1 Exceptional transition behaviour of varying order

5.1.1 Experimental methodology

We generate synthetic data with N = 100 sequences with T ∈ {10, 50, 200} time
points, S ∈ {2, 5, 10} states and Z ∈ {5, 10, 20} binary, descriptive attributes.2 The
descriptive attributes are sequence-level attributes, as explained in Sect. 2. For each
sequence, p(az = 1) = 0.5 for z ∈ {1, 2, ..., Z}. A ground truth subgroup is defined
for sequences where a1 = 1 ∧ a2 = 1. Thus, approximately 25% of the sequences
are part of the true subgroup. All other sequences follow a 1st order Markov chain
with probabilities drawn from a uniform probability distribution. The probabilities are
normalised to sum to 1. In line with the assumption of stationary sequences, the first
time points are sampled using a normalisation as well.

Two types of subgroups are generated, as specified by simulation parameter order ∈
{1, 2, 3, 4}.

1. If order = 1, the subgroup has an exceptional 1st order transition model. This
means that both the subgroup and the rest of the dataset follow a 1st orderMarkov
chain, but the parameter values of the subgroup are different. We can write that
1ASG = 1AΩ .

2. If order = k for k ∈ {2, 3, 4}, the subgroup follows a kth order Markov model.
This means that the subgroup is best modelled with Sk × S transition matrix
kASG while the rest of the data is modelled with a 1st order transition model
1AΩ . Here, Algorithm 1 will fit a 1st order Markov chain to the entire dataset,
and the subgroups should be fitted with a more complex model.

Every combination of simulation parameters is repeated nreps = 50 times.
Given a synthetic dataset with a ground truth subgroup, we perform EMM with

6 different quality measures. First, we apply the three quality measures based on
information-theoretic scoring functions as proposed in Sect. 4.1: ϕAIC , ϕBIC and
ϕAICc. We compare our quality measures against three reference measures as men-
tioned in Sect. 3: ωtv , ϕWD and ϕWRL (Eqs. (4), (5) and (6) respectively).

Since ωtv is a parameter-based quality measure, we cannot use it to evaluate sub-
groups of varying order. Instead, we will first determine the Markov chain order of the
entire dataset by applying Algorithm 1 with p = AIC and then evaluate candidate
subgroups using that same order. Similarly for ϕWRL . In case of ϕWD , p = AIC
when determining the Markov chain order of the dataset, but candidate subgroups are
evaluated with p = none. Note that since 75% of the sequences are generated with a
1st order Markov chain, it is unlikely that we will evaluate subgroups against higher

2 Source code available at github.com/RianneSchouten/simulations_markov_chains_emm.
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order models. However, determining the order of the entire dataset is an important
step when analysing real-world data (see Sect. 6).

For each quality measure, we save the rank of the ground truth subgroup in the
q = 20 output of the extended beam search algorithm. Since every dataset undoubtedly
contains 1 ground truth subgroup, we expect the quality measures to give a first rank to
that subgroup. We furthermore check the estimated Markov chain order of the ground
truth subgroup and calculate the percentage of simulation repetitions where the correct
order is given. If the result list does not contain the ground truth subgroup, we set the
rank to q + 1 and the order to NaN.

The other parameters of the beam search are w = 25 and d = 3. We further-
more constrain the subgroup to minimally contain 10% of the sequences. We set start
parameter s = 4.

5.1.2 Results

Figures 2 and 3 respectively show the rank and the order of the ground truth
subgroup. We present the results for Z = 20 descriptive attributes. Our information-
theoretic based quality measures ϕBIC , ϕAIC , and ϕAICc give similar results and they
are therefore presented in one row. Clearly, they give a first rank to the ground truth
subgroup when the sequences are relatively long (T ≥ 50). For shorter sequences
(T = 10), the subgroup is sometimes, but not always, ranked first. Here, it is easier
to find the ground truth subgroup if the state-space is small, the ground truth order is
close to 1 and the descriptive space is small (the latter is not visible in Fig. 2).

Doubtlessly, the ground truth order of the subgroup can only be detected if there are
enough observations. First, the estimation of a kth order Markov chain requires T > k
time points, and M > Sk(S − 1) observations. Second, a larger subgroup allows for
a more precise estimation of the Markov chain. For instance, for a state-space of 2,
a subgroup with a 1st, 2nd, 3rd, or 4th order Markov chain can be found when the
sequences are long (T = 200, Fig. 3). However, when the state-space increases or the
number of time points decreases, it is not always possible to detect higher orderMarkov
models (the subgroups are still ranked first, though). Note that in the experiment, we
fixed the number of sequences to N = 100. In addition to increasing the sequence
length, increasing the number of sequences would possibly also allow for a correct
estimation of the Markov chain order.

Quality measures ϕAIC and ϕAICc are slightly more robust for the number of
observations than ϕBIC . We can see this in Fig. 3, where ϕAIC finds subgroups with a
k = 2 Markov chain order when S = 5 and T = 50 or S = 10 and T = 200, or with
a k = 3 order when S = 5 and T = 200. In contrast, ϕBIC finds the order in none of
those subgroups. These findings seem logical since we know that the BIC uses a larger
penalty than AIC (Sect. 4.1). We do not see important differences between ϕAIC and
ϕAICc.

We know that ϕWD does not use a penalty. Therefore, the estimated order will
always be equal to start parameter s, since a more complex model will have a better
log likelihood fit. The only limitation is M < K , which happens when, for instance,
T = 50, S = 10, and s ∈ {3, 4}. Consequently, in Fig. 3, 100% of the subgroups
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Fig. 2 Boxplots of the rank of the ground truth subgroup. The ideal value is a rank of 1. We present the
simulation results for 20 descriptive attributes (Z = 20) and 50 repetitions (nreps = 50). Results for
ϕBIC , ϕAIC , and ϕAICc are similar and therefore presented in one row

with a true 2nd order Markov model are found, but none of the subgroups with a true
Markov model of other orders. Similar results are obtained when S = 5 and T = 200.

AlthoughϕWD fits thewrong 2nd orderMarkov chain to all subgroupswhen T = 50
and S = 10, almost all subgroups are still ranked first (Fig. 2). By contrast, when
T = 50 and S = 5, subgroups are also estimated with the wrong model (3rd order),
but these do not end up in the top-20 result list. We obtain similar results for S = 10
and T = 200 (Fig. 2). Apparently, for S = 10, the availability of longer sequences
amplifies the difference between the subgroup and the entire dataset, and estimating
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Fig. 3 Percentage of the number of simulations where the true order of the subgroup is found. The ideal
value is 100%. We present the simulation results for 20 descriptive attributes (Z = 20) and 50 repetitions
(nreps = 50)
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the wrong order therefore disturbs the ranking, while for S = 5, the availability of
longer sequences allows for a low ranking even though the estimated Markov chain
order is wrong.

The last two rows in Figs. 2 and 3 show the results forωtv and ϕWRL . Bothmeasures
evaluate subgroups using the order as estimated on the entire dataset. When T = 200,
the estimated dataset order sometimes equals the subgroup order, and ωtv and ϕWRL

will therefore sometimes correctly estimate the ground truth Markov chain order (Fig.
3).

It may still be surprising that ωtv and ϕWRL give a first rank to ground truth sub-
groups with a higher order Markov chain model (Fig. 2). The likely reason for ωtv

is as follows. As discussed in Sect. 4.1, the difference between a normalised and a
directly estimated 1st order transition model is that the latter uses the observations of
all available time points whereas the first uses only time points k + 1 to T . For long
sequences, this difference is negligible and therefore ωtv (which uses all time points)
finds parameter estimates that are close to reality. However, for short sequences with
a large number of states, noise disturbs the estimation.

Quality measure ϕWRL greatly relies on the parameters that are estimated on the
entire dataset. We see that the higher the ground truth order, the more frequently the
ground truth subgroup is ranked first (T = 50, Fig. 3). Possibly, when the subgroup
follows a higher orderMarkovmodel, the dataset parameters aremore directed towards
the subgroup’s complement thanwhen the subgroup follows a 1st orderMarkovmodel.

5.2 Exceptional starting behaviour

5.2.1 Experimental methodology

We further evaluate subgroups of sequences with exceptional initial probabilities, or
exceptional starting behaviour. In other words, the subgroup follows the same 1st order
transition model with the same parameter values as the rest of the data: 1ASG = 1AΩ .
However, the subgroup has a distinct set of initial probabilities (Eq. (3)), which should
not be modelled with normalised probabilities but with a separate set of probability

values:π SG = 0
1Ã

SG
.We thus reject the assumption of stationary sequences (see Sect.

2.3).
Here, the number of free parameters in the subgroup is S(S − 1) for the transition

probabilities and an additional S−1 free parameters for the initial probabilities vector
π . In practice, such a model only makes sense when sequences are very short. We
therefore decide to run the simulation for exceptional starting behaviour with param-
eters N ∈ {100, 500, 1000}, S ∈ {2, 5, 10}, T ∈ {2, 5, 10}, Z ∈ {5, 10, 20}, s = 1
and nreps = 25. Again, the beam search parameters are q = 20, w = 25, d = 3 and
a subgroup should cover at least 10% of all sequences.

5.2.2 Results

Subgroups with exceptional starting behaviour follow the same 1st order transition
model as the rest of the dataset, but have a distinct pattern for the very first time point.
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Fig. 4 Boxplots of the rank of the ground truth subgroup with exceptional starting behaviour. The ground
truth subgroup differs from the rest of the dataset by its initial probabilities. The transition behaviour of
subgroup and dataset is the same. The ideal value is a rank of 1. We present the simulation results for 5
states (S = 5) and 25 repetitions (nreps = 25). Results for ϕBIC , ϕAIC , ϕAICc , and ϕWD are similar
and therefore presented in one row. Quality measure ωtv cannot detect exceptional starting behaviour and
is therefore not shown

Figures 4 and 5 present our findings for a state-space of 5. In general, the smaller the
state-space, the more advantageous the result.

It turns out that the log likelihood based quality measures (either with or without
penalty) perform comparably in ranking the ground truth subgroup. Therefore, these
measures are shown in a single row in Fig. 4. These quality measures give a first rank
to the ground truth subgroup when (1) there are enough sequences, (2) the sequences
are not too long and (3) there are not too many descriptive attributes. Although it is
difficult for evaluation measures ϕAIC , ϕBIC and ϕAICc to give a first rank to a ground
truth subgroup with exceptional starting behaviour, especially if the sequences are
long, these information-theoretic scoring functions do allow for a correct estimation
of theMarkov chain order (see Fig. 5). The reason is that exceptional starting behaviour
causes an increase in the number of free parameters (see Sect. 2.3). As a result, for
short sequences (T = 2), the penalties are too large to counter-effect the increase
in log likelihood. For long sequences however, the model fit increases sufficiently.
Logically, since ϕWD does not use a penalty, it is good at estimating more complex
models (Fig. 5).

Both ωtv and ϕWRL evaluate candidate subgroups using the same Markov chain
order as estimated on the entire dataset, which is a 1st order chain without additional
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Fig. 5 Percentage of the number of simulations where the ground truth subgroup is found. The ground truth
subgroup differs from the rest of the dataset only by its initial probabilities: transition behaviour of subgroup
and dataset is the same. The ideal percentage is 100%.We present the simulation results for 5 states (S = 5)
and 25 repetitions (nreps = 25). Results for ϕBIC , ϕAIC , and ϕAICc are similar and therefore presented
in one row. Quality measures ωtv and ϕWRL cannot find the ground truth subgroup order and are therefore
not shown

initial parameters. Using such a model, ωtv never manages to rank the true subgroup
first (and we therefore omit the results from the figures), while ϕWRL achieves it
sometimes when the sequences are as short as possible (T = 2) and there are only
Z = 5 descriptive attributes (Fig. 4).

5.3 Sensitivity analysis

In Sect. 5.1, we analysed the performance of the quality measures for the setting where
the global model is fitted with a 1st order Markov chain, the start parameter s = 4, and
the subgroups are fitted with a Markov chain order between 1 and 4. The combination
of these settings allows our algorithms to find the correct order. In Sect. 5.3.1, we
ask ourselves what would happen if the parameters are misspecified such that the
algorithms are steered away from finding the correct order. In Sect. 5.3.2, we vary the
subgroup size and description length.
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Table 1 Median (interquartile range) of the rank (q = 20) of the ground truth subgroup using quality
measure ϕAIC

T = 10 T = 50 T = 200

True SG order True SG order True SG order

Gl.order Start s 2 3 2 3 2 3

1 2 2 (16) 3 (3) 1 (0) 1 (0) 1 (0) 1 (0)

4 11 (17) 13 (20) 1 (0) 1 (0) 1 (0) 1 (0)

3 2 21 (0) 21 (0) 1 (0) 21 (11) 1 (0) 1 (0)

4 21 (0) 21 (0) 1 (0) 21 (0) 1 (0) 1 (0)

The order of the global model is either 1 or 3, and the search is started with parameter s = 2 or s = 4.
We show the results for subgroups where order ∈ {2, 3} and for sequences with length T ∈ {10, 50, 200}.
Further, N = 100, Z = 20, S = 5, and nreps = 10

Table 2 Median (interquartile range) of the rank (q = 20) of the ground truth subgroup using quality
measure ϕWD

T = 10 T = 50 T = 200

True SG order True SG order True SG order

Gl.order Start s 2 3 2 3 2 3

1 2 4 (12) 21 (4) 1 (0) 1 (0) 1 (0) 1 (0)

4 5 (19) 21 (0) 21 (0) 21 (0) 1 (0) 1 (0)

3 2 21 (0) 21 (0) 1 (0) 21 (0) 1 (0) 1 (0)

4 21 (0) 21 (0) 21 (0) 21 (0) 1 (0) 1 (0)

The order of the global model is either 1 or 3, and the search is started with parameter s = 2 or s = 4.
We show the results for subgroups where order ∈ {2, 3} and for sequences with length T ∈ {10, 50, 200}.
Further, N = 100, Z = 20, S = 5, and nreps = 10

5.3.1 Varying global model order and varying start parameter s

First, we investigate the effect of:

1. Changing the start parameter to s = 2
2. Changing the global model to a 3rd order Markov chain.

Therefore, we sample N = 100 sequences with a state-space of S = 5 and Z = 20
descriptive attributes. We vary the length of the sequences with T ∈ {10, 50, 200}.
The simulation is repeated nreps = 10 times. The beam search settings are as before.

Tables 1 and 2 show the median and interquartile range (IQR) of the rank of the
ground truth subgroup for qualitymeasures ϕAIC and ϕWD respectively, for subgroups
with order ∈ {2, 3}.We first inspect the results for ϕAIC for sequences where T = 10.
It is clear that when the global model is fitted with a 1st order Markov chain, it is
advantageous to set the start parameter to s = 2 instead of s = 4. In Table 1, we
see that the median rank decreases from 11 (13) to 2 (3) for subgroups with a 2nd

(3rd) order Markov chain. It is surprising that we can give a high rank to 3rd order
subgroups using start parameter s = 2. Consistent with earlier findings, apparently it
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can happen that subgroups are considered exceptional even when their Markov chain
order is wrongly estimated. Note that these findings hold when T increases.

When the global model is a 3rd orderMarkov chain andwe start evaluating at s = 2,
the parameter settings forbid the algorithm to correctly estimate the parameters of the
global model. However, we see that when T is sufficiently large, ϕAIC still ranks the
ground truth subgroup first (T = 200, Table 1). On the other hand, when T = 50, it
is difficult to find subgroups with a 3rd order Markov chain (but considering the IQR
of 11 when s = 2, some subgroups can still be found).

For ϕWD and a global model order of 1, starting at s = 2 instead of s = 4 does not
decrease the median rank, but it does positively affect the interquartile range (T = 10,
Table 2). When the order of the global model increases from 1 to 3, ϕWD allows for
discovering ground truth subgroups of order 2 when s = 2 and T = 50. However,
when T ≤ 50, these subgroups cannot be foundusing s = 4 (and neither can subgroups
with order = 3). When T = 200, all subgroups can be found (just as was the case
for ϕAIC ).

The results for the other quality measures are not shown here but can be accessed
in our repository.3 In sum, quality measures ϕBIC and ϕAICc perform similarly to
ϕAIC (Table 1), although the IQR of ϕBIC is sometimes a bit larger, especially when
the global model order is 3 and T = 200. For ϕWRL , setting s = 2 instead of
s = 4 is advantageous but only when the global model is a 1st order Markov chain.
When the order of the global model is 3, ϕWRL has trouble finding the ground truth
subgroup. Even though ωtv , like ϕWRL , greatly depends on the estimated order of the
global model, ωtv has large IQRs. This indicates that even when the subgroup order is
wrongly estimated, the subgroup can still be found. We saw similar results in Fig. 2.

Altogether, for shorter sequences, it canbe advantageous to decrease the start param-
eter s. This applies both to 1st and 3rd order global models. In addition, when the global
model has a 3rd order Markov chain, the ground truth subgroup can still be found as
long as there are enough observations. This holds even when the starting parameter is
set to two, which forbids the algorithm from considering the correct order.

5.3.2 Varying subgroup size and varying description length

Second, we investigate the effect of subgroup size and description length on the per-
formance of our quality measures. Therefore, we vary:

1. The description length with L ∈ {1, 2}
2. The probability p(az = 1) = pr with pr ∈ {0.35, 0.5} for z ∈ {1, 2, ..., Z}.
Note that in Sect. 5.1, pr = 0.5 and L = 2, resulting in a subgroup that contains

25% of all sequences. Here, we will evaluate subgroups with a coverage of 13%
(pr = 0.35, L = 2), 25% (pr = 0.5, L = 2), 35% (pr = 0.35, L = 1) and 50%
(pr = 0.5, L = 1). We vary the number of descriptive attributes with Z ∈ {5, 10, 20},
set parameters N = 100, S = 5, and T = 50, and we model the global model with
a 1st order Markov chain. Like before, we start our search at s = 4 and set q = 20,
w = 25, d = 3, and the minimum subgroup size to 10%. This means that theoretically
all subgroups could be found. We run the simulation nreps = 10 times.

3 All results available at github.com/RianneSchouten/simulations_markov_chains_emm.
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Table 3 Median (interquartile range) of the rank (q = 20) of the ground truth subgroup using quality
measure ϕAIC

Z = 5 Z = 10 Z = 20

True SG order True SG order True SG order

Desc.length Prob. 1 4 1 4 1 4

1 0.5 2 (1) 2 (1) 1 (1) 2 (0) 2 (1) 1 (0)

0.35 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (1)

2 0.5 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

0.35 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

The subgroup description has L ∈ {1, 2} attributes, where the probability per attribute is pr ∈ {0.35, 0.5}.
We furthermore vary the number of descriptors Z ∈ {5, 10, 20} and set N = 100, T = 50, S = 5 and
nreps = 10. Results are presented for subgroups with a true Markov chain order ∈ {1, 4}

Table 4 Median (interquartile range) of the rank (q = 20) of the ground truth subgroup using quality
measure ϕWRL

Z = 5 Z = 10 Z = 20

True SG order True SG order True SG order

Desc.length Prob. 1 4 1 4 1 4

1 0.5 11 (14) 1 (0) 12 (20) 1 (0) 2 (20) 1 (0)

0.35 3 (11) 1 (0) 12 (12) 1 (0) 18 (18) 2 (3)

2 0.5 3 (0) 3 (0) 3 (10) 3 (1) 3 (1) 3 (1)

0.35 15 (9) 8 (6) 15 (9) 10 (9) 21 (0) 18 (15)

The subgroup description has L ∈ {1, 2} attributes, where the probability per attribute is pr ∈ {0.35, 0.5}.
We furthermore vary the number of descriptors Z ∈ {5, 10, 20} and set N = 100, T = 50, S = 5 and
nreps = 10. Results are presented for subgroups with a true Markov chain order ∈ {1, 4}

Tables 3 and 4 present the results for qualitymeasures ϕAIC and ϕWRL respectively,
for subgroups with order ∈ {1, 4}. Quality measures ϕBIC and ϕAICc give similar
results as in Table 1. There, we see that in almost all simulation settings, ϕAIC gives
a first rank to all subgroups (with an IQR of 0). When L = 2 and pr = 0.5, it is a
bit harder to find the true subgroup, although it is often still ranked second (Table 3).
Clearly, when the true subgroup is large, it is more difficult to distinguish the subgroup
from its complement.

For ϕWRL , we have already seen that it can find subgroups with a higher order
Markov chain (cf. Sect. 5.1). In Table 4, we see the same effect. In addition, we see
that the larger the subgroup, the easier it is for ϕWRL to distinguish the exceptional
sequences from the other sequences. For instance, for a subgroup where order = 4,
and when Z = 20, the median rank increases from 1 to 2, to 3, and finally to 18 when
the subgroup size decreases from 50% to 35%, to 25%, and to 13%.

Results for ϕWD and ωtv can be found in the repository.3 Essentially, we find that
ωtv is fairly robust for subgroup size. For ϕWD , we see a pattern: the smaller the Z ,

123



402 R. M. Schouten et al.

the easier it is to find the true subgroup. The subgroup size does not seem to influence
the ranking.

In sum, our quality measures based on information-theoretic scoring functions give
stable results for ground truth subgroups of varying size. For very large subgroups that
containmore than 50% of the sequences, the rank increases slightly but not worryingly
much.

6 Experiments on real-world data

6.1 Continuous glucosemeasurements in DIALECT-2

We now further analyse sequential data from the second DIAbetes and LifEstyle
Cohort Twente (DIALECT-2) (Gant et al. 2017; Den Braber et al. 2021), already
shortly introduced in Sect. 2. Our interest is in analysing measurements from the
FreeStyle Libre sensor, an intermittently continuous glucose monitoring (iCGM) sen-
sor. Monitoring blood glucose values using an iCGM device may become the new
way to monitor glycemic control for patients with diabetes type 2 (Danne et al. 2017;
Den Braber et al. 2021). The current clinical accepted standard is monitoring of gly-
cated haemoglobin (HbA1c), a measure that is linearly related to the average blood
glucose concentration of the past few months (World Health Organization et al. 2011)
and known to increase the risk of comorbidities. However, monitoringHbA1c does not
help to reduce hypoglycemic episodes and it does not reflect blood glucose fluctuations
well enough (Kovatchev et al. 2003).

In general, blood glucose values are considered to be in the desired range (IR) if
they are between 3.9 and 10.0 mmol/L. Danne et al. (2017) furthermore distinguish
blood glucose values that are below (BR) and above range (AR). These lower and
upper ranges are again subdivided into BR1 (3.0–3.9 mmol/L), BR2 (<3.0 mmol/L),
AR1 (10.0 - 13.9 mmol/L) and AR2 (>13.9 mmol/L).

The DIALECT-2 dataset contains the information of 126 patients, with an average
sequence length of T = 1210 (SD: 158). Not all sequences have the same length
because sometimes patients forget to upload the stored data or to charge the iCGM-
device. On average, 55 (SD: 38) measurements were missing, and no patient had more
than 312 missing values. As numerical descriptive attributes, we use age, diabetes
duration, body mass index, waist/hip ratio, predicted muscle mass, systolic blood
pressure, diastolic blood pressure, heart rate, alcohol intake and smoking pack years.
The binary descriptors are sex, whether or not someone uses insulin, and if so, with
what type of scheme, whether or not someone uses metformin, repaglinide or sulpho-
nylurea, the presence of micro vascular disease and the presence of macro vascular
disease. We use one ordinal descriptive attribute: HbA1c category. A HbA1c value
≤ 53 mmol/mol is considered low, a value from 54 to 62 mmol/mol medium and a
value ≥ 63 mmol/mol high (e.g. McGuire et al. 2016; Battelino et al. 2019).
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Fig. 6 Parameter estimates of the globalmodel (left; reproduction of Fig. 1a for purposes of easy comparison
with the figure on the right) and the difference between the sixth best-scoring subgroup and the global model
(right). Description is HbA1c category = low ∧ alcohol intake ≤ 25 units/month. Coverage: 24%

6.1.1 Long sequences of discrete blood glucose level

We analyse the sequences of blood glucose values in two ways. First, we discretise the
continuous glucose measurements into the 5 blood glucose levels as discussed before.
As a quality measure, we use ϕAIC since our findings from controlled experiments
indicate that this measure is more robust for the number of observations than ϕBIC

(Sect. 5) and performs similarly to ϕAICc.
We apply the extended beam search algorithms (Sect. 4.2) with parametersw = 25,

d = 3 and q = 20. Descriptive attributes are refined with standard strategies (cf.
Duivesteijn et al. (2016)), where we treat numerical attributes with the dynamic
discretisation strategy lbca4 from Meeng and Knobbe (2021) using b = 4 bins. Fur-
thermore, we set a minimum subgroup size of 10% and use start parameter s = 4.

It is generally known that the beam search algorithm can discover redundant sub-
groups. Therefore, we implement three techniques as proposed by Van Leeuwen and
Knobbe (2012). First, we perform description-based selection with a fixed-size of
2w = 50. Here, subgroups are skipped if they have 1) equal quality and 2) the same
description except for 1 condition. Second, we perform fixed-size cover-based beam
selection where the quality value of a subgroup is weighted based on how many

4 Here, lbca is a concatenation of Local discretisation timing, Binary interval type, Coarse granularity, and
All selection method.
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instances (i.e. sequences) were already covered by another subgroup (Lavrač et al.
2004; Van Leeuwen and Knobbe 2012). The weight of subgroup SG is defined as

wSG = 1

NSG

NSG
∑

r=1

γ cr

where count cr is the number of times that sequence r is covered by other subgroups.
We set γ = 0.9. Third, we apply dominance pruning to the result list.

We find that the entire dataset is best modelled using a 2nd order Markov chain
(Alg. 1), where we see both diagonal patterns and unusual fluctuations such as blood
glucose values changing from IR → AR2 and from AR1 → BR2 (left plot in Figure
6).

The top-20 subgroups are best fitted with either a 1st or 2nd order Markov chain.
The first subgroup contains 18% of the patients with description HbA1c category =
low ∧ diabetes duration ≤ 20 years ∧ 21.3 ≤ BMI ≤ 35.7. The subgroup’s parameter
estimates were already shown in Fig. 1b. Actually, the conditions for diabetes duration
and BMI cover all patients that are in the first three quartiles of the respective variable
distributions; they only remove a few extreme patients from the full subgroup. How-
ever, the first condition that selects patients with a low HbA1c value is very interesting
as we know that HbA1c correlates with the average blood glucose concentration of the
past few months and increases the risk for comorbidities (World Health Organization
et al. 2011).

For the first subgroup, we find a strong diagonal transition pattern (i.e. people
tend to stay at the same blood glucose level) and the blood glucose values of these
patients fluctuate less than those in the overall patient population. This may also be
the reason that a 1st order Markov chain suffices. The second-best-scoring subgroup
selects patients with a high HbA1c value. Figure 7 shows the difference in parameter
estimates between subgroup 2 and subgroup 1. It is immediately visible that patients
in subgroup 2 are more likely to transition towards higher blood glucose levels than
patients in subgroup 1 (see red squares for BR1 → IR and IR → AR1) and less likely
to transition to lower levels (see blue squares). Since HbA1c is known to correlate with
average blood glucose values, these findings are confirmed by clinicians and domain
experts.

The right plot in Fig. 6 presents the difference in parameter estimates between the
sixth subgroup and the global model. Both were best fitted with a 2nd order Markov
chain.Here, like for subgroup1, patientswith lowHbA1cvalues are selected.Although
we see more fluctuations than for subgroup 1, we see a similar trend where blood
glucose levels are likely to either stay the same (see for instance the red squares in the
first and last two rows), or transition towards a lower blood glucose level (see the red
squares for (AR1,AR1) → IR and (AR1,AR2) → AR1).

6.1.2 Short sequences of TIR, TBR, and TAR

For our second analysis, we derive the percentage per day that a patient has blood
glucose values at level BR2, BR1, IR, AR1, or AR2. This is referred to as the Time
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Fig. 7 Difference between
parameter estimates of second
best-scoring subgroup and first
best-scoring subgroup (Fig. 1b).
Description is HbA1c category
= high ∧ 30.9 ≤ fat percentage
≤ 60.3 ∧ 118.7 ≤ syst.bp ≤
158.7. Coverage: 24%

In Range (TIR), Time Below Range (TBR), and Time Above Range (TAR) (Danne
et al. 2017; Battelino et al. 2019; Den Braber et al. 2021). For each of these values,
we compare the percentages with the guidelines (see Table 5) (Danne et al. 2017).
Subsequently, for each day, we assign one out of 8 state-values (see Table 5). This
gives us one sequence of length T = 14 per patient.

The entire dataset is best modelled with a 1st order Markov chain, because the
sequences are relatively short and the dataset size is relatively small. In general, patients
stay in or move towards state AC (low TIR, good TBR, high TAR) or state AH (good
TIR, good TBR, good TAR) (top left plot in Fig. 8).

The amount of available data for the subgroups is even smaller than for the entire
dataset, and it is therefore not possible to find subgroups with higher order Markov
chains. The first subgroup contains 24% of the patients with description 18.2 ≤ fat
percentage ≤ 42.2 ∧ 34.6 kg ≤ predicted mean mass ≤ 65.5 kg ∧ HbA1c category =
high. These patients are likely to transition to state AA, AC and AG (see top right plot
in Fig. 8, red columns), which corresponds to the situation where TAR is too high.

The third best-scoring subgroups covers patients with, among others,HbA1c = low
(bottom left plot in Fig. 8). Here, we see transitions AC → AG (TIR is good instead
of low) and AE → AF (TAR is good instead of high).

The fourteenth best-scoring subgroup covers patients with a high HbA1c value,
who are additionally older than the average patient. These patients not only have a
TAR that is too high, but they are also less likely to have a TIR that is good. We see
this in the bottom right plot in Fig. 8 by the blue columns, and by the two red columns
for state AA and state AC. Clinicians and domain experts confirm these findings. It
is generally accepted that the blood glucose values of older patients are a bit higher
since their risk for comorbidities is lower and their life expectancy shorter.
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Table 5 Conversion of time spent in glucose level ranges into states suitable for Markov chains

(a) Time In Range (TIR), Time Below Range (TBR) and Time Above Range (TAR) are calculated
based on whether glucose values are IR, BR1,BR2,AR1 or AR2.

TIR IR < 70% IR ≥ 70%

low good

TBR BR1 < 4% BR1 ≥ 4%

BR2 < 1% good high

BR2 ≥ 1% high high

TAR AR1 < 25% AR1 ≥ 25%

AR2 < 5% good high

AR2 ≥ 5% high high

(b) Eight state-values are created based on the combination of the TIR, TBR and TAR.

State TIR TBR TAR

AA low high high

AB low high good

AC low good high

AD low good good

AE good high high

AF good high good

AG good good high

AH good good good

Medically inspired cut-off percentages are taken from Danne et al. (2017)

6.2 MovieLens

Finally, we analyse the MovieLens 100K dataset.5 The dataset consists of 943 users,
each rating at least 20 movies on an integer scale from 1 to 5. We consider sequences
of ratings per user where 20 ≤ T ≤ 737 with an average (SD) sequence length of
T = 203 (139). The Markov chain uses the movie rating values as its state space,
so we have V = {1, 2, 3, 4, 5} and S = 5. Specifically, we search for subgroups
of users with exceptional rating patterns based on demographic information (age,
gender, occupation) and sequence information (sequence length T ). The idea behind
using sequence length as a descriptive attribute is to form subgroups of users who rate
a lot, or subgroups of users who rate relatively little. As described earlier in Sect. 2.2,
a user’s rating sequence is either entirely part of a subgroup, or not; we do not split
sequences.

The extended beam search algorithms are performed with parameters q = 20,
w = 25, d = 3, b = 4, and s = 4. Subgroups should cover at least 10% of all
users. We adopt the same redundancy strategies as in Sect. 6.1 with γ = 0.9 and the

5 MovieLens 100K dataset is available at https://grouplens.org/datasets/movielens/.
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Fig. 8 Parameter estimates of the global model (top left) and the difference between three subgroups and
the global model. Top right: First best-scoring subgroup with description HbA1c category = high ∧ 18.2 ≤
fat percentage≤ 42.2∧ 34.6 kg≤ predicted mean mass≤ 65.5 kg. Coverage: 24%. Bottom left: Third best-
scoring subgroup with description HbA1c category = low ∧ alcohol intake ≤ 18 units/month. Coverage:
22%. Bottom right: Fourteenth best-scoring subgroup with description HbA1c category = high ∧ 67 ≤ age
≤ 84 ∧ 0.9 ≤ waist/hip ratio ≤ 1.2. Coverage: 21%

description-based selection procedure with a fixed-size of 2w = 50. Again, we use
quality measure ϕAIC to evaluate candidate subgroups.

The entire dataset is best fitted with a 2nd order Markov chain. In the top-20, we
find subgroups of users with either a 1st or a 3rd order Markov chain. For instance, the
best-scoring subgroup selects users with occupation = {other, technician} ∧ 183 ≤
sequence length ≤ 737 (cov: 16%) and is best fitted with a 3rd order Markov chain. In
subgroup 2, on the other hand, users with short sequences where 20 ≤ sequence length
≤ 73∧ occupation = technician are selected (cov: 52%) and a 1st order Markov chain
is fitted.

The results show that a quality measure that takes into account the number of free
parameters, such as ϕAIC , allows for a flexible evaluation of candidate subgroups. It is
reasonable to assume that the entireMovieLens dataset is fittedwith a 2nd orderMarkov
chain as a compromise between shorter and longer sequences. Evaluating candidate
subgroups based on such a 2nd order model (as would be done in the traditional EMM
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framework using a parameter-based quality measure) would reduce the probability
of finding patterns in subgroups that contain short, or long, sequences. Although the
MovieLens dataset seemingly does not encompass meaningful relations between user
demographics and sequence length, such patternsmay exist in other datasets and can be
searched for using quality measures based on information-theoretic scoring functions.

7 Discussion

We proposed a method for mining sequences with exceptional transition behaviour of
varying order using qualitymeasures based on information-theoretic scoring functions.
On average, the quality measures based on information-theoretic scores outperform
the othermeasures; they give a higher rank to ground truth subgroups, they find the cor-
rect Markov chain order more often and they are able to detect subgroups that would
otherwise not have been found (Sect. 5.1). In datasets with many, short sequences,
exceptional starting behaviour can be detected (Sect. 5.2). For long sequences, our
quality measures perform robustly w.r.t. the order of the global model, the start param-
eter, the subgroup size, and the description length (Sect. 5.3).

In some situations, other quality measures can be valuable as well. For instance,
if subgroups are expected to have a similar Markov chain order as the global model,
quality measure ωtv performs fine (but the information-theoretic based measures do
not perform worse). In situations where the subgroups are expected to have a (much)
higher Markov chain order than the global model, semi-evaluation measure ϕWRL can
be used. Note that ϕWRL requires a relatively large number of observations in order to
extract the subgroup. The performance of quality measure ϕWD is a bit unpredictable,
possibly due to its sensitivity to start parameter s.

The quality measures based on information-theoretic scoring functions are flexible
and can detect subgroups whose Markov chains 1) have the same order as the global
model and 2) have a deviating order. In practice, the global model is an average over
all sequences in a dataset, and quality measures that use a penalty based on the number
of observations M and the number of free parameters K are able to go beyond such an
average. In our study, we have chosen three common penalties; AIC, AIC with small
sample correction, and BIC. However, our proposed EMM framework allows for the
extension to other penalised scoring functions in a straightforward way.

Interestingly, our findings fromcontrolled experiments donot showmuchdifference
between ϕAIC , ϕAICc, and ϕBIC . The first two slightly outperform ϕBIC when the
number of observations and the number of free parameters is large (Sect. 5.1), due to
the excessive penalisation by the BIC scoring functions.

It is a bit unexpected that we do not see a difference between ϕAIC and its variant
for small sample sizes ϕAICc. When 1 < M

K < 40, the penalty in ϕAICc is supposed
to do more justice to the uncertainty of parameter estimates than the penalty in ϕAIC

(Sugiura 1978; Hurvich and Tsai 1995; Burnham and Anderson 2004). This means
that we would expect ϕAICc to give a larger penalty than ϕAIC . A possible explanation
for the absence of the effect of such a penalty is that as soon as the true subgroup is
found, it is so distinctive from the other sequences that a larger penalty does not bother
the ranking. Another possible reason could be that with our simulation parameters, we
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have not been able to capture the dataset characteristics for which such a penalty would
make a difference. Nevertheless, in our synthetic data experiments there are many
subgroups where M

K > 40 and then, the difference between AIC and AICc disappears
nonetheless (Sugiura 1978; Hurvich and Tsai 1995; Burnham and Anderson 2004).

For all our experiments, we use the extended beam search algorithm as presented in
Sect. 4.2. It is generally known that beam search may discover redundant subgroups.
Therefore, we apply three methods from Van Leeuwen and Knobbe (2012) during
our real-world data experiments (see Sect. 6.1). Note that in the synthetic data exper-
iments, we designed the simulation such that the descriptive attributes do not overlap
in coverage (i.e. binary only). Hence, redundancy did not play a role and we were able
investigate the ranking of the ground truth subgroup in a more controlled manner.

We performed the description-based selection using a fixed size of 2w. In our
implementation, description-based selection of candidate subgroups occurs before
cover-based selection. We think that it is reasonable to assume that starting the latter
with 2w subgroups allows for a beam that contains w diverse subgroups. We fur-
thermore decided that γ should not be too small in order to not be too rigorous with
decreasing the quality of subgroups that have redundant coverage. We therefore set
γ = 0.9.

The beam search algorithm requires a set of parameters that may come across as
arbitrary. In general, we suggest to choose the parameter values such that the result
list is practical and meaningful. For one thing, this means that the result list should be
diverse (Van Leeuwen and Knobbe 2012), but it also means that subgroup descriptions
should not be too long or a subgroup should not be too small. We have chosen to set
d = 3 in order to allow for descriptions that contain at most three attributes. These
descriptions can easily be remembered and interpreted by the domain expert and are
therefore practical. Furthermore, subgroups should be substantially large in order to
adopt separate policies or treatment schemes; it seems reasonable to form subgroups
that cover at least 10% of the population. Because in both synthetic and real-world data
experiments, the number of descriptive attributes is relatively small, we deemed w =
25 to allow for sufficient exploration of the search space. For much higher dimensional
datasets, possibly this parameter can be increased at some additional computational
expense. Last, parameter q is often determined in consultation with domain experts.
In our experience, a top-20 result list is not too long to prevent interpretation but long
enough to find valuable subgroups. Note that changing q will not actually change the
results; it merely specifies the cutoff point in a list of ordered subgroups.

8 Conclusion

We proposed a method for mining sequences with exceptional transition behaviour
of varying order. Specifically, we use the framework of Exceptional Model Mining
(EMM) to find subgroups of sequences and propose a model class for varying order
Markov chains. Our model class allows for discovering subgroups in situations where
the order of the Markov chain differs between the subgroup and the dataset. Such a
situation requires the comparison of a different number of parameters.We therefore do
not use a parameter-based quality measure as is common in EMM, but propose three
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new quality measures based on information-theoretic scoring functions: ϕAIC , ϕBIC ,
and ϕAICc.

Our findings from controlled experiments show that all three quality measures find
exceptional transition behaviour of varying order. They all give a first rank to the
ground truth subgroup when sequences have a length T ≥ 50. For shorter sequences,
the ability to give a first rank to the ground truth subgroup depends on the state-space,
the descriptive space and the ground truthMarkov chain order. Naturally, the higher the
Markov chain order of the subgroup, the more observations are needed. Nevertheless,
ϕAIC , ϕBIC , and ϕAICc all seem sensitive enough to detect the correct Markov chain
order but sensitive enough to prevent overfitting. Compared to ϕBIC , we find that ϕAIC

is slightly more robust for the number of observations. We have not seen important
differences between ϕAIC and ϕAICc.

We furthermore add to existing work by seeking for subgroups of sequences, as
opposite to subgroups of transitions. In particular, we say that sequence-level descrip-
tive attributes contain information about entire sequences. As such, we are able to
form subgroups of homogeneous sequences that are heterogeneous with respect to the
rest of the dataset. In contrast, transition (or time) level descriptors only partly include
a sequence in the subgroup, which is not meaningful in situations where we want to
identify the originators of sequences, such as patients or user-sessions.

The practical relevance of our approach is shown using data from an observational
study of adult persons with diabetes type 2 (Sect. 6.1). In the first experiment, a 2nd

order Markov chain is fitted to the entire dataset and we find subgroups of either
a 1st or 2nd order Markov chain. For instance, we find a first subgroup that covers
patients with low HbA1c values, a measure known to correlate with average blood
glucose values. The subgroup is best modelled with a 1st order Markov chain and its
parameter estimates show an increased probability of staying in or moving towards
desired blood glucose values. Clinicians and domain experts confirmed that the blood
glucose values of these type of patients fluctuate less.

In the second experiment, we find, among others, subgroups covering patients
with high HbA1c values and an above average age. The model parameters indicate
an increased probability of transitioning to blood glucose values that are too high.
Clinicians and domain experts confirmed these findings, and furthermore add that it
is generally accepted that the blood glucose values of older patients are a bit higher
since their risk for comorbidities is lower and their life-expectancy shorter.
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