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Abstract
Ductal carcinoma in situ (DCIS) is a non-invasive breast cancer that can progress into invasive ductal carcinoma (IDC).
Studies suggest DCIS is often overtreated since a considerable part of DCIS lesions may never progress into IDC. Lower
grade lesions have a lower progression speed and risk, possibly allowing treatment de-escalation. However, studies show
significant inter-observer variation in DCIS grading. Automated image analysis may provide an objective solution to address
high subjectivity of DCIS grading by pathologists. In this study, we developed and evaluated a deep learning-based DCIS
grading system. The system was developed using the consensus DCIS grade of three expert observers on a dataset of 1186
DCIS lesions from 59 patients. The inter-observer agreement, measured by quadratic weighted Cohen’s kappa, was used to
evaluate the system and compare its performance to that of expert observers. We present an analysis of the lesion-level and
patient-level inter-observer agreement on an independent test set of 1001 lesions from 50 patients. The deep learning system
(dl) achieved on average slightly higher inter-observer agreement to the three observers (o1, o2 and o3) (κo1,dl= 0.81,
κo2,dl= 0.53 and κo3,dl= 0.40) than the observers amongst each other (κo1,o2= 0.58, κo1,o3= 0.50 and κo2,o3= 0.42) at the
lesion-level. At the patient-level, the deep learning system achieved similar agreement to the observers (κo1,dl= 0.77, κo2,dl=
0.75 and κo3,dl= 0.70) as the observers amongst each other (κo1,o2= 0.77, κo1,o3= 0.75 and κo2,o3= 0.72). The deep learning
system better reflected the grading spectrum of DCIS than two of the observers. In conclusion, we developed a deep
learning-based DCIS grading system that achieved a performance similar to expert observers. To the best of our knowledge,
this is the first automated system for the grading of DCIS that could assist pathologists by providing robust and reproducible
second opinions on DCIS grade.

Introduction

Breast cancer remains one of the leading causes of death in
women [1]. Most breast cancers are invasive ductal carcino-
mas (IDCs) which arise from epithelial cells lining the ducts.
Ductal carcinoma in situ (DCIS) refers to the pre-invasive
stage whereby the cancer cells remain contained within the
basement membrane. Studies suggest that a considerable part
of DCIS lesions may never progress into IDC [2–4]. Autopsy
studies indicate that occult DCIS exists in 9% (range 0–15%)
of women [5]. A few small-scale studies have been done on
patients where misdiagnosis of DCIS led to the omission of
surgery. In the course of 30 years, 14–53% of these patients
developed IDC [6–8]. A meta-analysis of multiple studies of
patients with DCIS showed a 15-year invasive local recur-
rence rate of 28% after a diagnosis of DCIS on excisional
biopsy [9]. Thus, there is a substantial portion of DCIS lesions
that may never develop into IDC.
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Since it is challenging to predict which patients will and
will not progress to IDC [10], the diagnosis of DCIS
prompts immediate surgical treatment. This decision is
currently made regardless of the histologic grade of the
lesion, while lower grade lesions have a lower progression
speed and risk [11]. High-grade DCIS cases represent
42–53% of total cases [12–15] and are considered to have a
high risk for recurrence [14, 16–18] and breast cancer-
specific mortality [19].

In view of the perceived need to de-escalate treatment of
DCIS, ongoing clinical trials (LORD [2], LORIS [3],
COMET [20, 21] and LARRIKIN [22]) aim to monitor
disease progression of patients with low risk DCIS (based
on the histologic grade of their DCIS lesions) that forgo
surgical treatment. As such, accurate histologic grading of
DCIS is crucial for the clinical management of these
patients. The aforementioned clinical trials utilize different
classification systems to grade DCIS lesions as good (grade
1), moderate (grade 2) or poor (grade 3) differentiation.
Histologic grading systems commonly used in practice are
the Van Nuys classification [23], Holland classification
[24], and Lagios classification [25]. Schuh et al. [26]
compared grading among 13 pathologists using these three
grading systems and 43 DCIS cases. They found that all
systems had at best moderate agreement, the best being the
Van Nuys classification (κ= 0.37). Other studies also
showed significant inter-observer variation in DCIS grad-
ing, regardless of the grading system used [27–32].

The subjectivity and low reproducibility of histologic
DCIS grading make it amenable for automated assessment
by image analysis. Automated systems have the potential to
decrease the workload of pathologists and standardize
clinical practice [33, 34]. Deep learning-based grading and
survival prediction have been previously applied to histo-
pathology images [34–38] and deep neural network models
have been successfully developed for other tasks specific to
breast histopathology [39–46]. Bejnordi et al. [47] designed
a successful DCIS detection algorithm that works fully
automatically on whole slide images (WSIs). The system
detects epithelial regions in WSIs and classifies them as
DCIS or benign/normal (i.e., malignant tissue was not a part
of this study). Eighty percent of DCIS lesions were detec-
ted, at an average of 2.0 false positives per WSI. This
system only detects DCIS lesions and does not grade them.

In this paper we describe the development of an auto-
mated deep learning DCIS grading system. Our unique
system was developed using consensus grades based on
grading by three expert observers and also incorporates the
uncertainty in DCIS grading between these expert obser-
vers. In an independent test set, we compared the DCIS
grading results at both lesion- and patient-level between our
deep learning system and three expert observers.

Materials and methods

Study design and population

Digital slides were retrieved from the digital pathology
archive of the University Medical Center in Utrecht, The
Netherlands, from cases dated between Jan 1, 2016 and Dec
31, 2017, for patients who underwent a breast biopsy or
excision and were labeled with ‘ductal carcinoma in situ’.
This included all cases that contained DCIS regardless of
the main diagnosis (i.e., cases with IDC and DCIS were also
included). Since images were used anonymously, informed
consent was not needed. For each patient up to three
representative hematoxylin and eosin (H&E) stained WSIs
containing DCIS lesions were selected by expert observers.
In total, 116 WSIs from 109 patients were included in this
study. The slides were scanned using the Nanozoomer 2.0-
XR (Hamamatsu Phonics Europe GmbH, CJ Almere, The
Netherlands) at ×40 magnification with a resolution of
0.22 µm per pixel.

Pathological assessment

Histologic grading into grades 1, 2 or 3 was performed
according to the Holland classification system [24]. This
classification system is recommended by The Netherlands
Comprehensive Cancer Organisation [48] and focuses on
nuclear morphologic and architectural features. Low grade
nuclei have a monotonous appearance and a small size not
much larger than normal epithelial cell size. Nucleoli and
mitoses only occur occasionally. In contrast, high grade
nuclei show marked pleomorphism, are large in size and
contain one or more conspicuous nucleoli. Intermediate
grade nuclei are defined as neither low nor high grade [49].
Architecturally, low grade DCIS is cribriform and/or
micropapillary, while high grade DCIS is solid and often
shows central necrosis.

All DCIS lesions present in the 116 WSIs were annotated
by two experienced pathologists and one pathology assis-
tant who grades cases on a regular basis. This was done
using the open-source software Automated Slide Analysis
Platform (ASAP; Computation Pathology Group, Radboud
University Medical Center, Nijmegen, The Netherlands).
Each DCIS lesion was outlined by one observer and, if
necessary, the diagnosis of DCIS was confirmed with
immunohistochemical staining. All outlined lesions were
independently graded by all three observers. In total, 2187
lesions were annotated. A consensus grade for each DCIS
lesion was obtained by majority voting. In the case where
all three observers gave a different grade the assigned
consensus grade was grade 2. For the expert observers, the
DCIS grade at the patient-level was assigned as the highest
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lesion grade present for the respective patient, although
patients can have heterogeneous lesions [50].

Development of the deep learning system

For the development and validation of the deep learning
system the 109 patients were randomly assigned to
three distinct subsets: training, validation (used for model
selection and parameter tuning) and test datasets, whilst
ensuring the distribution of DCIS grades was similar in each
subset. The training set contained 879 DCIS lesions from
40 patients, the validation set contained 307 lesions
from 19 patients and the test set contained 1001 lesions
from 50 patients.

The data acquisition process resulted in WSI with out-
lined DCIS lesions. The DCIS lesions were extracted from
the WSI by fitting a rectangular box around the manually
annotated lesions. An additional 90 µm border was drawn
around these boxes in order to include the DCIS lesion as
well as the surrounding stroma. The stroma was included
because tumor-associated stroma has been shown to be
detected in greater amounts around DCIS grade 3 than
DCIS grade 1 [42] and DCIS associated stromal changes
might play a role in progression to IDC [51]. The boxes
were extracted at magnification level ×10.

The deep learning system developed to grade DCIS takes
into account the inter-observer variability in DCIS grading.
The system was trained on two targets: (1) the consensus of
the DCIS grades given by the three expert observers, and
(2) the number of observers that agreed with this consensus
grade. This was done as we believe there can be extra
information in the inter-observer variability in DCIS anno-
tations. A lesion that was annotated as grade 1 by two
observers and as grade 2 by the third observer is probably a
borderline case, while a lesion that was annotated as grade 1
by all three observers is more clear-cut. By giving the
system the information which cases in the training set are
borderline cases it might be able to learn the distinction
between the grades better. To evaluate the added value of
the inclusion of observer agreement we compared our deep
learning system with a baseline system which was trained
on the consensus DCIS grades only. Our deep learning
system outperformed this baseline system on the
validation set.

The deep learning system was based on the Densenet-
121 [52] network architecture. As input to the network we
cropped a random patch of 512 × 512 pixels (about 450
µm × 450 µm) from a DCIS lesion and used data augmen-
tation to overcome the variability of the tissue staining
appearance, which is an important hurdle in histopathology
image analysis [53]. The deep learning system was trained
on patches extracted from the training dataset. The valida-
tion dataset was used to monitor the performance of the

network during training and to prevent overfitting. All
further results shown in this paper will be results on the
independent test set. During evaluation on the test dataset,
we extracted 10 randomly located patches from one lesion
and took the median of the predicted grades as the predicted
grade. No data augmentation was used during test time.
More details on the deep learning system and its hyper-
parameters can be found in Supplementary Information.
The deep learning system developed in this study was made
available for scientific and non-commercial use through our
Github page (https://github.com/tueimage/DCIS-grading).
The dataset will also be made publicly available via the
grand-challenge.org platform.

As stated before, for the expert observers the DCIS grade
at the patient-level was determined by the highest lesion
grade present for the respective patient. Expert observers
grade a case by examining all DCIS lesions in a WSI while
the algorithm is only shown one lesion at a time. Examining
all lesions at once might lead to grading lesions more
similarly, leading to “regression to the mean”. To mimic the
practice of expert observers, we chose to let the automated
patient-level grade be determined by the lesion at the Pth
percentile, where the value of P was determined by best
patient-level DCIS grading performance on the validation
dataset. For the deep learning system, this resulted in the
patient-level grade being determined by the lesion at the
80th percentile.

Statistical analysis

The inter-observer and model-vs-observer agreement for the
DCIS grading was measured using quadratic weighted
Cohen’s Kappa. This measure is commonly used for inter-
rater agreement on an ordinal scale because it compensates
for the degree of error in category assessment. This means
that disagreement by one grade point is weighted less than
disagreement by two grade points. Using this method, each
observer was compared with every other and Kappa values
were recorded for each pairing. All analyses were per-
formed using Python version 3.6 and the deep learning
model was implemented using the Keras deep learning
framework [54].

Results

Population characteristics

Patient- and lesion-level characteristics for our test dataset
are summarized in Table 1. Mean patient age was 58 years
(95% CI: 55–61 years) and the number of lesions per patient
was 20 (95% CI: 11–30). Using the consensus grade of the
three observers, there were seven patients with DCIS
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grade 1, 24 patients with grade 2 and 19 patients with
grade 3. The average lesion area was 0.48 mm2 (95% CI:
0.37–0.60 mm2). There were 152 grade 1 lesions, 645 grade
2 lesions and 204 grade 3 lesions.

Lesion-level inter-observer agreement in test
dataset

Inter-observer agreement on DCIS grading at the lesion-
level between three expert observers and the deep learning
system is shown in Table 2. Inter-observer agreement
between expert observers was κ= 0.58, κ= 0.50 and κ=
0.42. The deep learning system showed agreement with the
observers of κ= 0.81, κ= 0.53 and κ= 0.40. The average
agreement between expert observers was lower than that
between expert observers and the deep learning system. The
confusion matrices of inter-observer agreement on DCIS
grading between expert observers and the deep learning
system are shown in Fig. 1. Interestingly, there was high
agreement between observers 2 and 3 for grade 2 (563
lesions), but both observers graded more than half of the
lesions as grade 2 (observer 2: 693 out of 1001, observer 3:
749 out of 1001 lesions). In contrast, observer 1 and the
deep learning system graded only 481 and 512 lesions,
respectively, as grade 2.

Ten lesions from five patients had high disagreement
(i.e., cases being assigned grade 1 and grade 3) between
two expert observers or between an expert observer and
the deep learning system (Fig. 2). These lesions were all
very small with an area ≤0.06 mm2, while the average

lesion area was 0.48 mm2 (95% CI: 0.37–0.60 mm2).
Upon review of the lesions, by a consensus meeting of the
three expert observers, two lesions concerned small iso-
lated detachments (floaters) and five were potentially
incorrectly annotated as DCIS. For the remaining three
lesions, the deep learning system classified two correctly
(the high disagreement was caused by one of the expert
observers) and one incorrectly.

Patient-level inter-observer agreement in test
dataset

Inter-observer agreement between three expert observers
and the deep learning system on DCIS grading at the
patient-level is shown in Table 3. Inter-observer agreement
between expert observers was κ= 0.77, κ= 0.75 and κ=
0.72. The deep learning system showed agreement with the
observers of κ= 0.77, κ= 0.75 and κ= 0.70. The average
agreement between expert observers was slightly higher
than that between expert observers and the deep learning
system. The confusion matrices for DCIS grading at the
patient-level by expert observers and our deep learning
system are shown in Fig. 3. At the patient level, there was
no large disagreement (i.e., no case assigned as grade 1 and
grade 3) between two expert observers or between an expert
observer and the deep learning system.

Discussion

DCIS currently prompts immediate surgical treatment while
a considerable part of DCIS lesions may never progress into
IDC. Lower grade lesions progress into IDC less often and
at a slower pace. However, grading systems dividing DCIS
lesions into low/middle/high grade were shown to have
significant inter-observer variation. Accurate and repro-
ducible DCIS grading may be possible with the help of
automated image analysis.

Table 1 Patient and lesion characteristics in the test dataset.

Patient characteristics

n 50

Age at biopsy

Mean years (95% CI) 58 (55–61)

Number of lesions per patient

Mean n (95% CI) 20 (11–30)

Consensus grade (n, %)

Grade 1 7 (14%)

Grade 2 24 (48%)

Grade 3 19 (38%)

Lesion characteristics

n 1001

Lesion size

Mean mm2 (95% CI) 0.48 (0.37–0.60)

Consensus grade (n, %)

Grade 1 152 (15%)

Grade 2 645 (64%)

Grade 3 204 (20%)

Table 2 Inter-observer quadratic weighted Cohen’s Kappa for ductal
carcinoma in situ (DCIS) grading at the lesion-level among three
observers and the deep learning system.

Expert observers Deep learning
system

Observer 2 Observer 3

κ (95% CI) κ (95% CI) κ (95% CI)

Observer 1 0.58 (0.49–0.66) 0.50 (0.41–0.60) 0.81 (0.75–0.86)

Observer 2 – 0.42 (0.29–0.54) 0.53 (0.44–0.62)

Observer 3 – – 0.40 (0.29–0.54)

The results are shown on the test set which contains 1001 lesions from
50 different patients. The 95% confidence interval (CI) was determined
analytically.
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We developed a fully automated deep learning system to
grade DCIS lesions of the breast. To the best of our
knowledge, this is the first automated classification system
for the grading of DCIS. Our study demonstrated that our
automated system achieved a performance similar to expert
observers. The system has the potential to improve DCIS
grading by acting as a reliable and consistent first or second
reader.

In this study, three observers achieved an average
quadratic weighted Kappa score at the lesion-level of 0.50.
This is similar to Douglas-Jones et al. [30] who found an
average quadratic weighted Kappa score of 0.48 between 19
pathologists for Van Nuys classification of 60 DCIS lesions.
Other studies have also shown high inter-observer varia-
bility for DCIS grading but used other measures of agree-
ment, like unweighted Cohen’s Kappa or percentage of
agreement between observers [26–29, 31, 32]. The high
inter-observer variability between observers reiterates the
need to create a consistent system for DCIS grading.

We developed a deep learning system to grade DCIS that
incorporates the inter-observer variability (aleatoric uncer-
tainty) in the training process. At the lesion-level, the sys-
tem achieved agreement with observers comparable to
observers amongst each other. The confusion matrices

(Fig. 1) showed high agreement between observer 1 and the
deep learning system. These matrices also showed that
observers 2 and 3 graded many cases (69% and 75%,
respectively) as grade 2. In contrast, observer 1 and the deep
learning system graded only 48% and 51% of lesions,
respectively, as grade 2. Therefore, grading by both
observer 1 and the deep learning system was more diver-
sified, better reflecting the grading spectrum of DCIS.

We found high disagreement (i.e., cases being assigned
grade 1 and grade 3) between observers and between
observers and the deep learning system in ten lesions as
shown in Fig. 2. Re-examination of these lesions showed
that two lesions concerned small isolated detachments
(floaters) and five were potentially incorrectly annotated as
DCIS. Since these errors only occurred in 7 out of 1001
lesions (i.e., 0.7%), we decided neither to exclude the
floaters and wrongly annotated lesions from the dataset nor
rerun the analysis as it would unlikely yield significantly
better results. For the remaining three lesions, the
deep learning system classified two correctly (one of the
expert observers caused the high disagreement) and
one incorrectly. All of these lesions were very small
(area ≤0.06 mm2). We hypothesize that both expert obser-
vers and deep learning have difficulties classifying tiny

Fig. 1 Confusion matrices for DCIS grading at the lesion-level. Confusion matrices for DCIS grading at the lesion-level between observers
(A) and between observers and the deep learning system (B). These are results on the test set which contained 1001 DCIS lesions from 50 patients.
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lesions because there is less information to work with, and
observers may have graded these lesions not so much on
their specific morphologic appearance but similar to the
larger surrounding ones, leading to “regression to
the mean”.

At the patient-level, the expert observers were slightly
more in agreement with each other than with the deep
learning system. The confusion matrices (Fig. 3) show that
there were no grade 1 vs. grade 3 discrepancies between
expert observers nor between expert observers and the deep
learning system. Expert observers amongst each other
agreed more on grade 3, whereas expert observers and the
deep learning system agreed more on grade 1.

Before implementation of our system in clinical practice,
some limitations must be addressed. First, the dataset used
to develop our deep learning system originated from a
single medical center. Although we applied data augmen-
tation to expand our training dataset, the robustness of the
system can be improved by including WSIs from different
institutions obtained using different whole slide scanners
and different staining protocols. Second, DCIS grading was
performed based on the Holland grading system [24].
Although this system is recommended by The Netherlands
Comprehensive Cancer Organization, varying systems are
used around the world. For implementation in clinical
practice elsewhere, the deep learning system should be
trained with data annotated according to the recommended
guidelines in the respective country. Third, our deep
learning system solely grades DCIS lesions. The system
cannot distinguish DCIS lesions from benign lesions or
IDC. In future research, we do aim to develop a system that
can outline DCIS lesions and make this distinction. Com-
bining this potential system and our current system could
lead to automated DCIS grading on WSIs.

Our system was able to achieve a performance similar to
that of expert observers. However, the agreement between
expert observers for this task, especially at the lesion level,
was not high. Due to the fact that the system was trained
and tested on data annotated by expert observers it would be
hard to exceed their performance. Therefore, in future

Fig. 2 All lesions with high disagreement between expert observers
and between expert observers and the deep learning system.
Lesions with the same letter come from the same patient. All lesions
had an image size of 512 × 512 pixels except for (B2) where we show
the middle 512 × 512 pixel patch. For lesion (A) the observers graded
2–3–2 and the deep learning system predicted grade 1. On final review
in a consensus meeting, grades 1 and 3 did not seem justified, therefore
the expert observers assigned this lesion as grade 2. For lesions (B1)
and (B2) the observers graded 1–3–1 and the deep learning system
predicted grade 1. Grade 3 did not seem justified during the consensus
meeting and was an error by an expert observer. For lesion (C1) the

observers graded 3–2–2 and the deep learning system predicted grade
1. For lesion (C2) the observers graded 3–2–3 and the deep learning
system predicted grade 1. Both these lesions concern floaters and
should not have been in the dataset. For lesion (D1) the observers
graded 3–1–2 and the deep learning system predicted grade 2. For
lesion (D2) the observers graded 3–1–3 and the deep learning system
predicted grade 2. On review, both lesions are not obviously DCIS.
For lesion (E1) the observers graded 2–1–1 and the deep learning
system predicted grade 3. For lesions (E2) and (E3) the observers
graded 2–2–1 and the deep learning system predicted grade 3. On
review, these three lesions are not obviously DCIS.

Table 3 Inter-observer quadratic weighted Cohen’s Kappa for ductal
carcinoma in situ (DCIS) grading at the patient-level amongst three
observers and the deep learning system.

Expert observers Deep learning
system

Observer 2 Observer 3

κ (95% CI) κ (95% CI) κ (95% CI)

Observer 1 0.77 (0.49–1.05) 0.72 (0.40–1.04) 0.77 (0.49–1.05)

Observer 2 – 0.75 (0.46–1.04) 0.70 (0.41–1.00)

Observer 3 – – 0.75 (0.46–1.04)

The results are shown on the test set which contains 50 patients. The
95% confidence interval (CI) was determined analytically.
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studies it would be interesting to gather information on
whether patients with DCIS progressed to IDC. This
information could be used to train a deep learning system to
predict which DCIS lesions have a high chance of pro-
gressing to IDC. Realistically, it would only be possible to
gather follow up information for patients with low grade
DCIS as it would not be safe to forgo treatment for patients
with high grade DCIS. Data could possibly be gathered
from low grade DCIS patients that entered clinical trials
(e.g., LORD [2], LORIS [3], COMET [20, 21] and LAR-
RIKIN [22]). The information on which low grade DCIS
lesions progress to IDC within 5–10 years could be used to
improve the grading practice of pathologists and automated
systems.

In conclusion, we developed and evaluated an auto-
mated deep learning-based DCIS grading system which
achieved a performance similar to expert observers. With
further evaluation, this system could assist pathologists by
providing robust and reproducible second opinions on
DCIS grade.
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org/licenses/by/4.0/.
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