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Berwald geometries are Finsler geometries close to (pseudo)-Riemannian geometries. 
We establish a simple first order partial differential equation as necessary and 
sufficient condition, which a given Finsler Lagrangian has to satisfy to be of Berwald 
type. Applied to (α, β)-Finsler spaces or spacetimes, respectively, this reduces to a 
necessary and sufficient condition for the Levi-Civita covariant derivative of the 
geometry defining 1-form. We illustrate our results with novel examples of (α, β)-
Berwald geometries which represent Finslerian versions of Kundt (constant scalar 
invariant) spacetimes. The results generalize earlier findings by Tavakol and van 
den Bergh, as well as the Berwald conditions for Randers and m-Kropina resp. very 
special/general relativity geometries.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In Finsler geometry the geometry of a manifold is derived from a 1-homogeneous length measure for 
curves and its corresponding canonical Cartan non-linear connection on the tangent bundle, instead of from 
a metric and its Levi-Civita connection, as it is done in (pseudo)-Riemannian geometry. The first one who 
considered the possibility to derive the geometry of spacetime from a more general length measure than the 
metric one, was Riemann himself [1]. Only years later Finsler started a systematic study of such manifolds 
[2]. Since then, Finsler geometry became an established field in mathematics, usually as generalization of 
Riemannian geometry, [3,4], and gained interest in its application to physics as generalization of pseudo-
Riemannian (Lorentzian) geometry [5–9].
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Berwald geometries are Finslerian geometries whose canonical Cartan non-linear connection on the tan-
gent bundle is in one to one correspondence to an affine connection on the base manifold [10]. In other words 
the Cartan non-linear connection is linear in its dependence on tangent directions. Berwald geometries can 
be regarded as Finsler geometries close to (pseudo)-Riemannian geometries.

In this article we present a necessary and sufficient condition, a first order partial differential equation, 
which classifies if a Finsler geometry is of Berwald type or not. After introducing the mathematical setup 
in Section 2, the general theorem will be presented in Section 3. We will apply it to (α, β)-Finsler spaces 
and spacetimes in Section 4, where we find a necessary and sufficient condition on the Levi-Civita covariant 
derivative of the geometry defining 1-form, which ensures that the geometry is Berwald. This condition then 
is used to find Berwald Finsler Lagrangians for which the 1-form does not have to be covariantly constant. We 
illustrate our results with novel examples of (α, β)-Berwald geometries, which represent Finslerian versions 
of Kundt (constant scalar invariant) spacetimes for both covariantly constant and not covariantly constant 
1-forms. In the end we conclude in Section 5.

The results presented here generalize the findings of Tavakol and Van Den Bergh [11–13] as well as 
conditions that where found in the context of (α, β)-Finsler spaces [14–16] and spacetimes [17–19].

2. Finsler geometry

We consider an n-dimensional smooth manifold M and its tangent bundle TM . The later is equipped with 
manifold induced coordinates, which means that an element X ∈ TM is labeled as X = ẋa∂a|x = (x, ẋ), 
where x denotes local coordinates on M and ẋ the coordinate basis components of the vector X ∈ TxM . 
The canonical local coordinate basis of the tangent spaces to the tangent bundle, T(x,ẋ)TM , is labeled by 
{∂a = ∂

∂xa , ∂̇a = ∂
∂ẋa }.

A Finsler geometry is a smooth manifold M endowed with a continuous Finsler Lagrangian L : TM → R, 
which has at least the following properties:

• L(x, ẋ) is positively homogeneous of degree two with respect to ẋ, i.e. L(x, λẋ) = λ2L(x, ẋ), ∀λ > 0;
• the L-metric, the Hessian of L with respect to the tangent space coordinates,

gLab(x, ẋ) = 1
2 ∂̇a∂̇bL(x, ẋ) , (1)

is non-degenerate and L is smooth on a conic subbundle A of TM , such that TM \ A is of measure 
zero.

The Finsler function F , which defines the length measures for curves on M ,

S[x] =
∫

dτ F (x, ẋ) , (2)

is derived from L as F (x, ẋ) =
√

|L(x, ẋ)|. We denote Finslerian geometries by a tuple (M, L).
We do not specify the signature of the L-metric nor do we further specify the conic subbundle A,1 since 

the result we present here holds for Finsler spaces with positive definite L-metric, for Finsler spacetimes 
with L-metric of Lorentzian signature and for any other choice of signature of the L-metric one may like 
to impose. The only necessary requirement is that the L-metric be invertible on a large enough subset of 
the tangent bundle. When we do not need to distinguish between signatures, we use the term Finslerian 
geometry.

1 For Finsler spaces A is usually TM \ {0}, while A has a more complicated structure for Finsler spacetimes [5,7–9].
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The fundamental object that describes the geometry derived from L is the Cartan non-linear connection, 
which is the unique torsion-free, L-compatible, homogeneous non-linear connection on A. Its connection 
coefficients are given by

Na
b(x, ẋ) = 1

4 ∂̇b(g
Laq(x, ẋ)(ẋm∂m∂̇qL(x, ẋ) − ∂qL(x, ẋ))) . (3)

It defines the Finsler geodesic equation, for arc length parametrized curves x(τ) on M ,

ẍa + 2Ga(x, ẋ) = 0 (4)

in terms of the geodesic spray

2Ga(x, ẋ) = Na
b(x, ẋ)ẋb , (5)

as well as the horizontal derivative δa = ∂a −N b
a∂̇b. The L-compatibility as defining property manifests in 

the fact that the horizontal derivative annihilates L and that the L-metric is covariantly constant

δaL(x, ẋ) = 0 , ẋcδcg
L
ab(x, ẋ) −N c

a(x, ẋ)gLcb(x, ẋ) −N c
b(x, ẋ)gLca(x, ẋ) = 0 . (6)

This property of Finsler geometry is crucial for the proof of the main theorem of this article.
For general Finslerian geometries, the Cartan non-linear connection coefficients (3) are 1-homogeneous 

with respect to ẋ.

Definition 1. A Finsler geometry (M, L) is said to be of Berwald type if the Cartan non-linear connection 
coefficients are linear in ẋ

Na
b(x, ẋ) = Ξa

bc(x)ẋc . (7)

This implies that the functions Ξa
bc(x) are connection coefficients of an affine connection on M . Equiva-

lently one can define Berwald geometries by the demand that the geodesic spray (5) be quadratic in ẋ. The 
definition goes back to the original article by Berwald [10], a modern overview on Berwald geometries can 
be found in [14]. For positive definite Finsler geometry it is known by Szabos Theorem [20] that Berwald 
spaces are metrizable, i.e. the connection coefficients Ξa

bc are the Levi-Civita connection coefficients of a 
Riemannian metric. For indefinite Finsler geometries this is not the case: in general they are not necessarily 
pseudo-Riemannian metrizable [21].

The first condition that comes to mind to characterize Berwald geometries is ∂̇b∂̇c∂̇dGa(x, ẋ) =
∂̇b∂̇cN

a
d(x, ẋ) = 0, which in general is difficult to evaluate and analyse. In the next section we present 

a simpler, first order partial differential equation, which is necessary and sufficient for a Finsler Lagrangian 
to be of Berwald type.

3. The Berwald condition

The strategy to find the Berwald condition in this section is as follows. We introduce an auxiliary positive 
definite metric g on M , which defines the non-vanishing function A = g(ẋ, ẋ), in local coordinates define by 
components of the metric as A = gab(x)ẋaẋb on TM \ {0}. With help of this function we can introduce the 
factor Ω = L

A on A ⊆ TM \ {0} to rewrite any Finsler Lagrangian as L = AΩ. For Finsler Lagrangians of 
this form it is possible to derive a necessary and sufficient first order partial differential equation Ω has to 
satisfy as in order for the Finslerian geometry to be of Berwald type.
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Having proven this statement we will discuss the dependence of this result on the choice of the metric g. 
We will demonstrate that if L satisfies the Berwald condition for a decomposition with respect to the metric 
g, then it satisfies the Berwald condition for a decomposition L = g̃Ω̃ in terms of any other metric g̃ on the 
set B ⊂ TM \ {0}, where B is the set on which g̃(ẋ, ẋ) �= 0. The other way around, this implies that if one 
would start with a decomposition of L with respect to a metric g̃ for which B �= TM \ {0} and one would 
prove the Berwald condition only on B, then one can extend the proof by changing the decomposition of L
from g̃ to any positive definite metric g.

Theorem 1. Let (M, L) be a manifold equipped with a Finsler Lagrangian and let g be an auxiliary positive 
definite metric on M . On A we can write

L = ΩA , (8)

with Ω = LA−1.

1. On the subbundle A, (M, L) is of Berwald type if and only if there exists a (1, 2)-tensor field T on M , 
such that Ω satisfies

∂aΩ − Γb
acẋ

c∂̇bΩ = T b
acẋ

c

(
∂̇bΩ + 2ẋbΩ

A

)
, (9)

where Γa
bc = 1

2g
am(∂bgac + ∂cgab − ∂mgbc) are the Christoffel symbols of the auxiliary metric g.

2. The geodesic spray components of the Berwald type Finslerian geometry are given by

Ga = 1
2(Γa

bc + T a
bc)ẋbẋc . (10)

The proof of the theorem uses ideas from Tavakol and van den Bergh [12].

Proof of Theorem 1. The starting point for the proof is to realize that δaL = 0 implies the equation

0 = AδaΩ + 2ẋc(Γc
abẋ

b −N c
a)Ω

= A(∂aΩ −N b
a∂̇bΩ) + 2ẋc(Γc

abẋ
b −N c

a)Ω . (11)

Assume L defines a Finslerian geometry of Berwald type. Then its connection coefficients can be written 
as Na

b(x, ẋ) = Ξa
bc(x)ẋc, see (7). Since Ξa

bc(x) are affine connection coefficients, the can written as a 
sum of the Christoffel symbols of the auxiliary metric g and a tensor field T a

bc(x), which yields Na
b =

(Γa
bc(x) + T a

bc(x))ẋc. Using this in equation (11) we obtain the Berwald condition (9) with tensor T a
bc =

Ξa
bc(x) − Γa

bc(x).
The other way around, assume (9) holds for some tensor components T a

bc. Solving for ∂aΩ gives

∂aΩ = Γb
acẋ

c∂̇bΩ + T b
acẋ

c

(
∂̇bΩ + 2ẋbΩ

A

)
. (12)

Employing this identity in (11) yields

((Γb
ac + T b

ac)ẋc −N b
a)(A∂̇bΩ + 2ẋbΩ) = 0 . (13)

Realizing that ∂̇bL = A∂̇bΩ + 2ẋbΩ and applying another ∂̇d derivative to the above equation results in
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2gLbd((Γb
ac + T b

ac)ẋc −N b
a) + (A∂̇bΩ + 2ẋbΩ)(Γb

ad + T b
ad − ∂̇dN

b
a) = 0 . (14)

Multiplication with ẋa simplifies the expression to

gLbdẋ
a((Γb

ac + T b
ac)ẋc −N b

a) = 0 , (15)

since the second term in (14) becomes precisely the left hand side of (13). This statement is true due to the 
symmetry in the lower indices of ∂̇dN b

a (i.e. torsion-freeness), the 1-homogeneity of Na
b with respect to ẋa

and Euler’s theorem for homogeneous functions.2
Since we assumed the L-metric to be non-degenerate on A, equation (15) yields the desired result that 

N b
aẋ

a = (Γb
ac + T b

ac)ẋcẋa = 2Ga, which completes the proof. �
This theorem offers a simple way how to find Berwald Finsler geometries in practice, since it reduces the 

problem to finding a function Ω which satisfies a first order partial differential equation. Moreover, it is a 
direct extension of the results of Tavakol and van den Berg [12], which is an immediate corollary.

Corollary 1. A Finslerian geometry

L = e2σA (16)

has a geodesic spray given by Ga = 1
2Γa

bcẋ
bẋc if and only if

∂aσ − Γb
acẋ

c∂̇bσ = 0 . (17)

Proof of Corollary 1. The proof is obtained by simply inserting Ω = e2σ and T a
bc = 0 into (9). �

To conclude this section we discuss the decomposition of the Finsler Lagrangian with respect to another 
auxiliary metric g̃ of arbitrary signature.

Since g̃ is of arbitrary signature the function Ã = g̃ab(x)ẋaẋb is non-vanishing only on B ⊂ TM \ {0}. 
Thus, on B we can write

L = AΩ = ÃΩ̃. (18)

If L is of Berwald type then A and Ω satisfy (9), which implies the existence of the tensor field with 
components T a

bc. Moreover δaL = 0 implies for Ã and Ω̃

Ã(∂aΩ̃ −N b
a∂̇bΩ̃) + 2 ˙̃xc(Γ̃c

abẋ
b −N c

a)Ω̃ = 0 . (19)

Using again that we assumed L is Berwald, we can expand Na
b = (Γa

bc(x) + T a
bc(x))ẋc and define a new 

tensor field with components T̃ a
bc = T a

bc + Γa
bc − Γ̃a

bc. Using these in (19) yields that on B, Ã and Ω̃
satisfy

∂aΩ̃ − Γb
acẋ

c∂̇bΩ̃ = T̃ b
acẋ

c

(
∂̇bΩ̃ + 2ẋbΩ

Ã

)
, (20)

which is again the Berwald condition (9) just expressed in terms of Ã and Ω̃.
Alternatively one could start by using the Berwald condition on B for g̃ and Ω̃ to determine if a Finslerian 

geometry is of Berwald type or not, and then rewrite the condition in terms of a positive definite metric g
to extend the result to the whole set A.3

2 Let f(x) be a r-homogeneous function with respect to x, i.e. f(λx) = λrf(x), then xa∂af(x) = rf(x), see for example [3].
3 While this article was under revision, this has also been pointed out in [22, Sec. 4.1].
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4. (α, β)-Berwald Finsler geometries

We will now apply Theorem 1 to a special class of Finslerian geometries, so-called (α, β)-geometries, and 
demonstrate the application of our findings on some examples. An (α, β)-geometry is one for which the 
Finsler Lagrangian L = L(α, β) is constructed from a Riemannian metric a and a 1-form, b = ba(x)dxa, on 
M , defining the variables α = α(ẋ, ẋ) =

√
aab(x)ẋaẋb, and β = β(ẋ) = ba(x)ẋa. Since we want to include 

the possibility of a being pseudo-Riemannian, we parametrize such Finsler geometries by the variables 
a = a(α) = α2 = aab(x)ẋaẋb and β.

This kind of Finslerian geometries, constructed from simple building blocks, has been considered in 
mathematics and physics. Famous examples are for example Randers geometry [23] and the m-Kropina 
[24] respectively very special/general relativity (VGR) geometries [25,26,17]. The latter were originally 
Bogoslovsky in the context of invariance properties of the massless wave equation [27].

For Randers geometries, which are defined by the Finsler Lagrangian L = (
√
a + β)2, it is well known 

that they are Berwald if and only if the 1-form b is covariantly constant with respect to the Levi-Civita 
connection of the metric a, ∇abb = 0. For m-Kropina/V GR geometries of the type L = anβ2(1−n) it is known 
that there must exist a vector field Z = Za(x)∂a on M such that ∇abb = (n −1)bcZcaab+baZb−(n −1)bbZa

holds, for L to be of Berwald type [17,33].
Using Theorem 1, we find a necessary and sufficient condition for general (α, β)-Finsler geometries to be 

Berwald, characterized by the Levi-Civita covariant derivative of the involved 1-form. As auxiliary metric 
we choose to use the metric a itself to perform the following calculations, one could use any other auxiliary 
metric of choice, as discussed below equation (18).

Corollary 2. Let a = a(ẋ, ẋ) = aab(x)ẋaẋb and β = β(ẋ) = ba(x)ẋa, where ba are the components of a 
1-form b on M . Any (α, β)-Finsler geometry (M, L), i.e. L = L(a, β) = Ω(β

2

a
)a is of Berwald type if and 

only if there exists a tensor field T a
bc on M such that

ẋc∇abc = T b
acẋ

cbb + T b
acẋ

cẋb

(
Ω

Ω′β
− β

a

)
, (21)

where Ω′ denotes the derivative of Ω with respect to its argument. A further ∂̇d derivative yields the equivalent 
condition

∇abd = T b
adbb +

(
T b

adẋb + T b
acẋ

cgdb
)( Ω

Ω′β
− β

a

)

+ T b
acẋ

cẋb

[
ẋd

2β
a2

ΩΩ′′

Ω′ 2 − bd

(
−1
a

+ Ω
Ω′β2 + 2ΩΩ′′

Ω′ 2a

)]
. (22)

Proof of Corollary 2. Consider Ω = Ω(β
2

a
). Employing the identities

∂aΩ = Ω′ 2β
a

(
ẋc∂abc −

β

a
Γb

acẋ
cẋb

)
, (23)

∂̇aΩ = Ω′ 2β
a

(
ba −

β

a
ẋa

)
, (24)

in (9) yields the desired expression

ẋc∇abc = T b
acẋ

cbb + T b
acẋ

cẋb

(
Ω

Ω′β
− β

a

)
, (25)

which completes the proof. �
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In particular the choice T a
bc = 0 always exist, so this corollary also reproduces the result that a sufficient 

condition for an (α, β)-Finsler geometry to be Berwald is that b is covariantly constant with respect to 
the metric a. This is well-known in the positive definite case and was recently shown to hold for arbitrary 
signature of gL as well (Theorem 2 in [17]). It also follows immediately that if b is not covariantly constant, 
then the connection of the resulting Finsler geometry will never be equal to the Levi-Civita connection of a, 
since T a

bc �= 0 determines the deviation of the affine connection of the Berwald space from the Christoffel 
symbols of a.

In case we choose a certain form of the tensor components T a
bc we can find the most general (α, β)-Finsler 

Lagrangian which can be Berwald, without demanding that β is covariantly constant.

Corollary 3. Consider the most general (1, 2)-tensor field, which is symmetric in its vector field arguments 
and whose components are constructed from the 1-form b and the metric a, not involving further derivatives 
of these building blocks,

T a
bc = λbabbbc + ρ(bcδab + bbδ

a
c ) + σβaabc , (26)

where λ, ρ and σ are smooth functions on M . In order to find (α, β)-Berwald Finsler Lagrangians of the 
type L = Ωa with a non covariantly constant 1-form β, the functions must be related as

ρ = −σ, and σ

λ
= const . (27)

Moreover, Ω must be of the form

Ω =
(
β2

a

)−n (
c + m

β2

a

)n+1

, (28)

where n, m, and c are constants. The 1-form β must satisfy

∇abb = q
(
[c(1 − n) + mg−1(β, β)]babb + cng−1(β, β)gab

)
, (29)

for some function q = q(x).

The proof involves lengthy derivations and is therefore displayed in Appendix A. This corollary generalizes 
the result for m-Kropina or VGR geometries derived in [17], which is obtained by setting c = 1 and m = 0 in 
(28) and (29). Moreover it is interesting to remark that up to redefinition of constants, the same condition as 
(29) on the covariant derivative of the 1-form was found in [28] as condition for an (α, β)-Finsler geometry 
to be of Douglas type.

To demonstrate the application of the corollaries we discuss some explicit example geometries. On the 
one hand we can look for pairs of metrics and 1-forms which satisfy (22) or (29), from which we can then 
build (α, β)-Finsler geometries:

• (α, β)-CCNV spacetimes: A large family of such examples arises by considering Lorentzian spacetimes 
with a covariantly constant null vector (CCNV), so-called CCNV spacetimes. A CCNV spacetime in N
dimensions is always of the (higher-dimensional) Kundt type and can be written in local coordinates 
(u, v, x1, . . . , xN−2) as [29]

g = 2 dudv + 2H(u, xi) du2 + 2Wa(u, xi) dudxa + hab(u, xi) dxadxb,

a, b = 1, . . . , N − 2 (30)
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where u = (1/
√

2)(xN−1 − t), v = (1/
√

2)(xN−1 + t) are light-cone coordinates and for real functions 
H, Wa and a (N − 2)-dimensional Riemannian metric hab, all of them independent of coordinate v. An 
interesting subclass is given by CCNV geometries with constant scalar invariants (CSI), for which hab

is locally homogeneous and independent of coordinate u. In 4D the transverse space is two-dimensional, 
and local homogeneity implies constant curvature. The transverse metric is then (up to isometry) that 
of the 2-sphere, 2D hyperbolic space or 2D Euclidean space4 [30].
For any metric of the form (30), du is a covariantly constant null 1-form. Thus, together, they satisfy 
(22) with T a

bc = 0 and therefore any (α, β)-Finsler geometry constructed from them is Berwald. The 
functional dependence of the Finsler Lagrangian L(a, β) can be chosen nearly arbitrarily, as long as 
it is homogeneous and regular enough to define a Finsler geometry. In addition the Cartan non-linear 
connection coincides with the Levi-Civita connection of g, cf. (10).

• (α, β)-Kundt spacetimes: Consider a (α, β)-Finsler Lagrangian of the form (28), with a 4D Lorentzian 
metric g of the Kundt type given by

g = 2du
(
dv + H(u, v, xi) du + W1(u, xi) dx1 + W2(u, xi) dx2)

+ hab(u, xi) dxadxb, a, b = 1, 2 (31)

and the null 1-form du, expressed in coordinates (u, v, x1, x2), where u = (1/
√

2)(x3−t), v = (1/
√

2)(x3+
t), H, W1 and W2 are real functions and hab is a 2D Riemannian metric. A particularly interesting 
subclass is given again by those Kundt spacetimes of the form (31) with constant scalar invariants, 
for which the transverse metric hab is 2D Euclidean space and function H is H(u, v, xi) = Φ(u, xi) +
v Φ̃(u, xi) + v2σ, with Φ, Φ̃ real functions and σ a constant [30]. If σ = 0 we obtain (α, β)-vanishing 
scalar invariant (VSI) spacetimes, which generalize the Finsler VSI spacetimes presented in [17]. Such 
a Lagrangian is of Berwald type. The 1-form is not covariantly constant and the only non-vanishing 
covariant derivative component is:

∇ubu = ∂H
∂v . (32)

It satisfies condition (29), note that g−1(β, β) = 0 in this case, with q(x) = ( ∂
∂vH/c(n − 1)). The fact 

that β is not covariantly constant implies that T a
bc �= 0, and of the form (26) with

σ = n

1 − n
∂H
∂v , ρ = −σ, λ = m

nc
σ (33)

where c, m, n are constants appearing in the Finsler Lagrangian (28).
Remark. The previous examples seem to indicate that the theorem found in [19], which states that a 
m-Kropina/VGR Finsler spacetime with 1-form b = du and a Lorentzian metric g of the Kundt type 
with Wi,v = 0 and Euclidean transverse space is always Berwald, could generalize to Finsler Lagrangians 
of the (α, β)-type with 1-form b = du and Kundt metrics with Wi,v = 0 and non-Euclidean transverse 
space.

On the other hand, Corollary 2 can be used to find that certain Finsler Lagrangians are Berwald if and 
only if β is covariantly constant:

4 In this last case the resulting spacetime is in fact VSI, meaning it has vanishing scalar invariants.
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• Randers geometry, Ω =
(

1 +
√

β2

a

)2

: For this case (21) becomes

ẋc∇abc = T b
acẋ

cbb + T b
acẋ

cẋb
1√
a
. (34)

For any non-trivial choice of the tensor components T a
bc the term T b

acẋ
cẋb is quadratic in ẋ and can 

never cancel the (
√
a)−1 term. Thus it is impossible to make the right hand side of this expression linear 

in ẋ, as it is necessary for a solution to exist. Hence the only choice to have a chance to satisfy this 
equation is to set T a

bc(x) = 0, which is a known result for positive definite Finsler geometries.
• An exponential Finsler Lagrangian, Ω = e−

β2
a : For this case (21) becomes

ẋc∇abc = T b
acẋ

cbb − T b
acẋ

cẋb

(
1
β

+ β

a

)
. (35)

Again it is clear that the last term can never be linear in ẋ for any choice of T a
bc since it is impossible 

that T b
acẋ

cẋb cancel the different denominators in the bracket simultaneously. Hence, as in the Randers 
case, these exponential kind of Finsler geometries can only be of Berwald type if ∇abb = 0, which is a 
new result.

5. Conclusion

In Theorem 1 we found a simple geometric partial differential equation, which classifies under which 
conditions a given Finsler Lagrangian is of Berwald type. Equation (9) states that a Finsler Lagrangian 
written in the form L = Ω(x, ẋ)g(ẋ, ẋ), with g being an auxiliary Riemannian metric, is of Berwald type 
if and only if the 0-homogeneous factor Ω has a specific behavior under the tangent bundle lift of the 
Levi-Civita covariant derivative of the metric g. It needs not be covariantly constant with respect to this 
derivative, but the deviation of being covariantly constant must be sourced by a (1, 2)-tensor field T on the 
base manifold M in a very specific way. This criterion identifies Berwald Finsler geometries among Finslerian 
geometries in a simple way. Moreover, we demonstrated that it is not necessary to choose a Riemannian 
metric for this decomposition, but any auxiliary (possibly indefinite) metric g̃ can be used, where g̃(ẋ, ẋ) is 
non-vanishing, as we discussed below (18).

The application of this result to (α, β)-Finsler Lagrangians in Corollary 2 leads to a necessary and suffi-
cient condition on the Levi-Civita covariant derivative of the 1-form defining β, which makes the geometry 
of Berwald type. In particular, in Corollary 3, we demonstrated how a specific choice of the tensor T leads 
to new (α, β)-Finsler Lagrangians, generalized m-Kropina/VGR geometries, which can be of Berwald type 
without demanding that β is covariantly constant.

Since Berwald geometries are Finsler geometries close to (pseudo)-Riemannian geometries, their identi-
fication is of great value for the application of Finsler geometry in physics, since theories of gravity based 
on Berwald geometry can be seen as theories which are close to general relativity [17,7,31].

An interesting future research direction is to answer the question if the Berwald condition found here is 
related to the existence of a special frame basis of the tangent spaces of TxM , as it was found in [19] for 
the case of m-Kropina/VGR Finsler Lagrangians.
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Appendix A

In this appendix we display the details for the proof of Corollary 3.

Proof of Corollary 3. The most general tensor components T a
bc, which can be constructed from the com-

ponents of a 1-form and a metric on M , ba and gab, is characterized by three functions λ(x), ρ(x) and σ(x)
and is given by

T a
bc = λβabbbc + ρ(bcδab + bbδ

a
c ) + σβagbc . (A.1)

Inserting this expression into the result of Corollary 2, see equation (21), yields

ẋc∇abc = ba
ρ(a2Ω + β2aΩ′) + λ(β2aΩ + (β2g−1(β, β)a− β4)Ω′)

βaΩ′

+ ẋa

(
σg−1(β, β) + (σ + ρ)

(
Ω
Ω′ −

β2

a

))
. (A.2)

In order for this equation to have a solution for the 1-form components ba, both terms on the right hand 
side must be linear in their dependence on ẋ. For the second term, proportional to ẋa, this means that 
either ρ = −σ or that

∂̇a

(
Ω
Ω′ −

β2

a

)
= 0 . (A.3)

Setting s = β2

a
this partial differential equation can easily be solved by Ω = (c1 + s)ec2 , where c1, c2, in 

general, can be functions on M . However, in order that the resulting L defines a (α, β) geometry they 
actually must be constants. This kind of solutions are trivial since for them L = ac + β2 is quadratic in ẋ
and thus not only Berwald but (pseudo)-Riemannian.

To investigate the other case assume ρ = −σ. Equation (A.2) becomes

ẋc∇abc = −ba

(
β(σ − λg−1(β, β)) + Ω

Ω′

(
σ
a

β
− λβ

)
+ λ

β3

a

)

+ ẋaσg
−1(β, β) . (A.4)

To be linear in ẋ, the factor multiplying ba must satisfy that its second partial derivative with respect to ẋ
must vanish, which is ensured if and only if

∂̇a∂̇b

(
Ω
Ω′

(
σ
a

β
− λβ

)
+ λ

β3

a

)
= 0 . (A.5)

Performing the derivatives yields terms proportional to gab, ẋabb, ẋbba, babb and ẋaẋb, which all have to 
vanish. Their derivation is straightforward but lengthy and was done with help of the computer algebra 
add-on xAct for Mathematica [32]. The factor multiplying gab is given by
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2
(

Ω
Ω′

(
σ

β
− 2λβ3Ω′′

a2Ω′ + σβΩ′′

aΩ′

)
− σ

β

a

)
(A.6)

and must be solved for Ω such that it is identically zero. Multiplying this expression by β and Ω′ 2 as well 
as introducing again s = β2

a
results in the differential equation

Ω′Ω
(
σ + s

Ω′′

Ω′ (σ − 2λs)
)
− σΩ′ 2s = 0 . (A.7)

The solution of this equation can be obtained with help of Mathematica and is

Ω(s) = c2s
− σ

c1 (sλ + c1)
σ
c1

+1 , (A.8)

where c1 = c1(x) and c2 = c2(x) are functions on M . To verify that we found the desired solution, we 
evaluate (A.4) with Ω as in (A.8) and see that the equation is now consistently linear in ẋ. Note that

Ω′ = c2s
−( σ

c1
+1)(sλ + c1)

σ
c1 (λs− σ) , (A.9)

which implies

Ω
Ω′ = s(sλ + c1)

λs− σ
. (A.10)

Thus, the relevant term in (A.4) becomes

Ω
Ω′

(
σ
a

β
− λβ

)
+ λ

β3

a
= s(sλ + c1)

λs− σ

(σ
s
− λ

)
β + λsβ = −c1β , (A.11)

which is indeed linear in ẋ.
In order to define a (α, β) geometry these functions must be chosen such that Ω depends only via s on 

the tangent space points (x, ẋ), so in particular on the base manifold point x. This requirement immediately 
implies that we must choose c1(x) = σ(x)/n for a constant n, which turns (A.8) into

Ω(s) = c2s
−n

(
sλ + σ

n

)n+1
. (A.12)

Choosing now c
1

n+1
2 = m

λ , where m is a constant, yields

Ω(s) = s−n
(
ms + m

n

σ

λ

)n+1
. (A.13)

Hence to obtain a (α, β) geometry the fraction σλ must be constant and we can identify the constant c = m
n

σ
λ , 

which finally turns (A.8) into the form (28).
To verify equation (29) we employ λ = mσ

cn in (A.4) to obtain

ẋc∇abc = −baβ
(
σ − mσ

cn
g−1(β, β) − σ

n

)
+ ẋaσg

−1(β, β)) . (A.14)

Applying a ẋ derivative and factoring σ
nc gives

∇abb = σ

nc

(
[c(1 − n) + mg−1(β, β)]babb + cng−1(β, β)gab

)
. (A.15)

Last but not least σ
nc can be replaced by an arbitrary function q, which corresponds to the freedom that 

the tensor components T a
bc are fixed only up to multiplication with an overall function. �
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