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H∞ performance analysis and distributed controller synthesis for
interconnected linear systems from noisy input-state data

Tom R.V. Steentjes, Mircea Lazar, Paul M.J. Van den Hof

Abstract— The increase in available data and complexity of
dynamical systems has sparked the research on data-based
system performance analysis and controller design. In this
paper, we extend a recent data-based approach for guaranteed
performance analysis to distributed analysis of interconnected
linear systems. We present a new set of sufficient LMI condi-
tions based on noisy input-state data that guarantees H∞ per-
formance and has a structure that is applicable to distributed
controller synthesis from data. Sufficient LMI conditions based
on noisy data are provided for the existence of a dynamic
distributed controller that achieves H∞ performance. The
presented approach enables scalable analysis and control of
large-scale interconnected systems from noisy input-state data.

I. INTRODUCTION

Data is becoming increasingly relevant for the analysis
and control of dynamical systems. The rise in complexity
of systems implies that the well-known model-based ap-
proaches can become unsuitable in applications for which
the mathematical modelling is tedious. Especially for inter-
connected systems, such as smart grids, smart buildings or
industrial processes, models are not readily available and
the spatial distribution or dimensionality complicates first-
principles modelling. On the other hand, data is available
with increased ease. Data can be used either indirectly by
performing system identification with model-based analysis
and control, or directly via data-based system analysis and
controller synthesis.

Several methods have been developed for data-based sys-
tem analysis and controller synthesis, we refer to [1] for
a survey on data-based control. Some methods rely on the
reference model paradigm, such as virtual reference feedback
tuning [2] and optimal controller identification [3]. Exten-
sions for interconnected systems to data-based distributed
controller synthesis include distributed virtual reference feed-
back tuning in the noiseless [4], and noisy [5] case.

A recent trend in data-based system analysis and control
originates from Willems’ fundamental lemma [6]. Appli-
cations include data-based predictive control [7], [8], the
data-based parameterization of stabilizing controllers [9] and
robust data-based state-feedback design with noisy data [10].
The data-based verification of dissipativity properties was
considered in [11], [12], which allows to determine system
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measures such as the H∞ norm or passivity properties from
data corrupted by a noise signal satisfying quadratic bounds.
A similar noise description was considered in [13], which
extends the data-based controller design results in [14] to
the noisy case. The data-based conditions in [13] are nec-
essary and sufficient for stabilizing state feedback synthesis,
including H2 or H∞ performance specifications.

In this paper, the data-basedH∞ performance analysis and
distributed controller synthesis problem for interconnected
systems is considered. We extend the data-based frame-
work for parameterizing an unknown system, considered
in the two distinct papers [12] and [13], to the situation
of interconnected systems. The analysis in this paper is
enabled by considering a dual parameterization of the set
ΣD: the set of systems that are compatible with input-state
data D for unmeasured noise trajectories in a set W that
captures quadratic bounds on the noise sequence. A feature
of the dual parameterization is the applicability of standard
(primal) conditions for unstructured [15] and structured [16]
robust performance analysis. For an interconnected system,
we consider sets Σi

D of subsystems that are compatible with
the local input-state and neighbors’ state data, given prior
knowledge on the noise signals confined to a set Wi. We
develop sufficient data-based conditions forH∞ performance
analysis and for the existence of a dynamic distributed
controller that achieves a given H∞ performance level.

A feature of our results is that no model of the inter-
connected system is identified from the data. The identifi-
cation of interconnected systems is considered in the field
of network identification, which provides structured and
consistent methods for identification [17]. If an identified
model is only used for controller synthesis, however, it is
arguably more efficient to consider data-based synthesis con-
ditions directly. Additionally, with our data-based method,
stability and performance guarantees for the closed-loop
interconnected system come with a finite number of data
points. Comparatively, system-identification methods come
with consistency results asymptotic in the number of data,
but do not provide guarantees for finite data.

Basic nomenclature

The integers are denoted by Z. Given a ∈ Z, b ∈ Z such
that a < b, we denote Z[a:b] := {a, a+ 1, . . . , b− 1, b}. Let
In ∈ Rn×n, or simply I , denote the identity matrix and 1n ∈
Rn, or simply 1, denote the column vector of all ones. For a
subset A ⊂ Z, the vertical, respectively horizontal, stacking
of matrices Xa, a ∈ A is denoted cola∈AXa, respectively
rowa∈AXa. The kernel of a matrix A is denoted kerA and



a matrix A⊥ denotes a basis matrix of kerA. For a real
symmetric matrix X , X > 0 (X ≥ 0) denotes that X is
positive (semi-) definite. Matrices that can be inferred from
symmetry are denoted by (?).

II. PRELIMINARIES

In this paper, we consider interconnected systems com-
posed of L linear time-invariant systems of the form

xi(k + 1) = Aixi(k) +
∑
j∈Ni

Aijxj(k) +Biui(k) + wi(k),

yi(k) = Cixi(k) +Diui(k) for i = 1, . . . , L, (1)

where xi ∈ Rni denotes the state, ui ∈ Rmi the input and
wi ∈ Rni is a noise signal. The set Ni := {j ∈ V | (i, j) ∈
E} denotes the neighbours of system i, where V and E ⊆
V ×V denote the set of vertices and the set of non-oriented
edges defining the connected graph G = (V, E).

Let there exist a true interconnected system defined by the
matrices A0

i , A0
ij and B0

i , (i, j) ∈ E , generating the input-
state data {(ui(t), xi(t)), t = 0, . . . , N} for i ∈ V . This
data is collected in the matrices

Xi := [xi(0) · · · xi(N)], U−i := [ui(0) · · · ui(N − 1)].

By defining the matrices

X+
i := [xi(1) · · · xi(N)], X−i := [xi(0) · · · xi(N − 1)],

W−i := [wi(0) · · · wi(N − 1)],

we obtain the following data equation for each i ∈ V:

X+
i = A0

iX
−
i +

∑
j∈Ni

A0
ijX

−
j +B0

i U
−
i +W−i . (2)

Consider the stacked input, state and noise variables
u := col(u1, . . . , uL), x := col(x1, . . . , xL) and w :=
col(w1, . . . , wL). Then the interconnected system (1) is
compactly described by

x(k + 1) = Ax(k) +Bu(k) + w(k), (3)
y(k) = Cx(k) +Du(k),

with straightforward definitions for A, B, C and D. The
corresponding data equation is

X+ = A0X− +B0U− +W−,

with the data matrices defined for system (3) as was done
for each subsystem. The transfer matrix from u to y of (3)
is G(q) := C(qI − A)−1B +D and the H∞ norm of G is
denoted ‖G‖H∞ . For γ > 0, we say that the interconnected
system achieves H∞ performance γ if ‖G‖H∞ < γ.

III. INFERRING SYSTEM PERFORMANCE
FROM NOISY DATA

In this section, we consider the data-based dissipativity
analysis for an unstructured system. We recall a parame-
terization from [12] and introduce a dual parameterization
of systems that are compatible with input-state data. The
dual parameterization allow us to (i) derive a dual result
with respect to [12] for concluding dissipativity properties

from data, and (ii) extend the data-based results to structured
results for interconnected systems.

Consider the system

x(k + 1) = A0x(k) +B0u(k) + w(k), (4)
y(k) = Cx(k) +Du(k) (5)

with collected data

X+ := [x(1) · · · x(N)], X− := [x(0) · · · x(N − 1)],

U− := [u(0) · · · u(N − 1)],

and noise sequence W− := [w(0) · · ·w(N−1)]. We assume
that the data (U−, X) are known, while W− is unknown, but

W− ∈ W :=

{
W |

[
W>

I

]> [
Qw Sw

S>w Rw

] [
W>

I

]
≥ 0

}
,

with Qw < 0 so that W is bounded. No assumptions on the
statistics of w are made. This noise model can represent, e.g.,
an energy bound W−W>− ≤ Rw for Qw = −I and Sw = 0
or bounds on individual components w(k) [13]. The square
of sample cross-covariance bounds, as considered in [18]
for parameter-bounding identification, can be captured byW
with Qw generally not strictly negative definite; this is a topic
of current research. We assume that the data are informative
in the sense that the matrix col(X−, U−) has full row rank.

Because the noise term is unknown, there exist multiple
pairs of system matrices that are consistent with the data.
The set of all pairs (A,B) that are consistent with the data
is defined as

ΣD = {(A,B) |X+ = AX−+BU−+W for some W ∈W}.

We note that the true system (A0, B0) ∈ ΣD by construction.
Furthermore, in the noiseless case (W− = 0), ΣD reduces to
the singleton {(A0, B0)} if col(X−, U−) has full rank [14].

The following result from [13], cf. [12], provides a
parametrization of the set ΣD.

Lemma III.1 (Parameterization ΣD) It holds that

ΣD = {(A,B) |

−A>−B>
I

> [Q̄D S̄D
S̄>D R̄D

]−A>−B>
I

 ≥ 0},

with
[
Q̄D S̄D
S̄>D R̄D

]
=

X− 0
U− 0
X+ I

[Qw Sw

S>w Rw

]X− 0
U− 0
X+ I

> .
We now present a dual parameterization of ΣD.

Lemma III.2 (Dual parameterization ΣD) Let the matrix[
Qw Sw

S>w Rw

]
be invertible. Then it holds that

ΣD = {(A,B) |

I 0
0 I
A B

> [QD SD
S>D RD

]I 0
0 I
A B

 ≤ 0},



where RD > 0 with
[
QD SD
S>
D RD

]
:=
[
Q̄D S̄D
S̄>
D R̄D

]−1

.
Proof: We refer to Appendix I in [19] for the proof.

Since any system that is consistent with the data is an
element of ΣD, every such system admits a representation

x(k + 1) =
[
A B

] [x(k)
u(k)

]
, with (A,B) ∈ ΣD.

As it was shown in [12], this uncertain system admits the
following linear fractional transformation (LFT) representa-
tionx(k + 1)

y(k)
p(k)

 =


0 0 I
C D 0
I 0 0
0 I 0


x(k)
u(k)
l(k)

 , l(k) =
[
A B

]
p(k),

with (A,B) ∈ ΣD.

Proposition III.1 (Dissipativity from data) If there exist a
P and α such that P > 0, α > 0 and (6) hold, then

I 0
A B
0 I
C D


>
−P 0 0 0
0 P 0 0
0 0 −Q −S
0 0 −S> −R



I 0
A B
0 I
C D

< 0 (7)

holds for all (A,B) ∈ ΣD.
Proof: Let (6) hold and let M =

[
A B

]
. By

Lemma III.2, it holds that for α > 0,[
I
M

]> [−αQD −αSD
−αS>D −αRD

] [
I
M

]
≥ 0

for all (A,B) ∈ ΣD. Therefore, by the full block S-
procedure [15], it follows that (7) holds.

Inequality (7) is the well known condition for dissipativity
for a quadratic supply rate matrix Π = −

[
Q S

S> R

]
. A special

case of the supply rate matrix is Q = γ2I , S = 0 and
R = −I for γ > 0. For this specific case there exists a
P > 0 so that (7) holds if and only if the channel u → y
achieves H∞ performance γ.

We have derived a dual parameterization of ΣD, which
allows the application of standard robust control tools to the
LFT representation. The parameterization from Lemma III.1,
see also [12, Lemma 2], requires the application of the
dualization lemma on the data-based LMI. A feature of the
dual parameterization of ΣD in Lemma III.2, is that robust
analysis tools for interconnected systems can be applied
mutatis mutandis, as we will show in the next section.

IV. INTERCONNECTED SYSTEM ANALYSIS

Let us return to the interconnected system (1). We consider
the data U−i , Xi and Xj , j ∈ Ni, is available for each system
i, while W−i is unknown. For each i ∈ V , we assume

W−i ∈ Wi =

{
Wi |

[
W>i
I

]> [
Qi

w Si
w

(Si
w)> Ri

w

]
︸ ︷︷ ︸

=:Πi
w

[
W>i
I

]
≥ 0

}
,

with Qi
w < 0. We assume that the data are informative

enough in the sense that the matrix col(X−i , X
−
Ni
, U−i ) has

full row rank for each i ∈ V .
For each subsystem, there exist multiple tuples

(Ai, ANi
, Bi) that are consistent with the data, i.e.,

that satisfy

X+
i = AiX

−
i +

∑
j∈Ni

AijX
−
j +BiU

−
i +Bw

i Wi (8)

for some Wi ∈ Wi. Here, we define ANi
:= rowj∈Ni

Aij .
Hence, for each i ∈ V , the set of subsystems that are
consistent with the data is

Σi
D := {(Ai, ANi

, Bi) | (8) holds for some Wi ∈ Wi}

We note that under the assumption that W−i ∈ Wi, the true
system matrices are in the set Σi

D by construction.

Lemma IV.1 (Parameterization Σi
D) It holds that

Σi
D = {(Ai, ANi

, Bi) | (?)>
[
Q̄i
D S̄i

D
(S̄i
D)> R̄i

D

]
−A>i
−A>Ni

−B>i
I

 ≥ 0},

with
[
Q̄i
D S̄i

D
(S̄i
D)> R̄i

D

]
:=


X−i 0
X−Ni

0

U−i 0
X+

i I

Πw
i


X−i 0
X−Ni

0

U−i 0
X+

i I


>

.

Lemma IV.2 (Dual parameterization Σi
D) Let Πw

i be in-
vertible. It holds that Σi

D is equal to

{(Ai, ANi , Bi) | (?)>
[
Qi
D Si

D
(Si
D)> Ri

D

]
I 0 0
0 I 0
0 0 I
Ai ANi Bi

 ≤ 0},

where Ri
D > 0 with

[
Qi

D Si
D

(Si
D)> Ri

D

]
:=
[

Q̄i
D S̄i

D
(S̄i

D)> R̄i
D

]−1

.



I 0 0
0 I 0
0 I 0
I 0 0
0 0 I
0 0 I
C 0 D



> 
−P 0 0 0 0 0
0 P 0 0 0 0
0 0 −αRD −αS>D 0 0
0 0 −αSD −αQD 0 0
0 0 0 0 −Q −S
0 0 0 0 −S> −R





I 0 0
0 I 0
0 I 0
I 0 0
0 0 I
0 0 I
C 0 D


< 0 (6)



The proofs for Lemma IV.1 and IV.2 follow an analogue rea-
soning as the proofs for Lemma III.1 and III.2, respectively,
and are omitted for brevity.

We note that if any interconnected system with subsystems
in Σi

D, i.e., any interconnected system that is consistent
with the data, has a certain property, then also the true
interconnected system has this property. To show a property
for all interconnected systems that are consistent with the
data, we use the following LFT representation.

Every interconnected system that is consistent with the
data can be described by subsystems Σi

D, i ∈ V ,

xi(k + 1)
yi(k)
pi(k)

=


0 0 0 I
Ci 0 Di 0I0
0

 0
I
0

 0
0
I

 0
0
0





xi(k)
colj∈Ni

xj(k)
ui(k)
li(k)


and li(k) =

[
Ai ANi Bi

]
pi(k), with (Ai, ANi

, Bi) ∈ Σi
D.

This LFT representation for each subsystem allows us to
apply robust analysis results for interconnected systems, to
conclude H∞ performance for all interconnected systems
that are compatible with the data. Consider the matrices Zi

defined in Appendix II in [19].

Proposition IV.1 (Performance from structured data)
Let Qi

D < 0 and γ > 0. If there exist Pi, Zi and
αi so that Pi > 0, αi > 0 and (9) holds for all
i ∈ V , then all interconnected systems with subsystems
(Ai, ANi

, Bi) ∈ Σi
D, i ∈ V , achieveH∞ performance γ.

The proof follows by a similar argument as in Proposi-
tion III.1 and the application of [16, Theorem 1] to the LFT
representation, and it is omitted due to space limits.

V. DISTRIBUTED CONTROLLER SYNTHESIS FROM DATA

So far we have considered the performance analysis of
(interconnected) systems from data for the channel u → y.
We will now consider a distributed control problem for the
interconnected system (1), where we take ui and yi as the
control input and measured output respectively. Recall that
we assume that input-state data is collected to determine Σi

D
for each i. With the system matrices defined as Ci = I ,
Di = 0, this implies only state-measurements are available
for control. We note, however, that Ci is allowed to be chosen

arbitrarily in this section and that Di = 0; this implies
that output measurements can be utilized for control. Future
research will focus on extending the framework to the case
when only input-output data is available for synthesis. The
problem under consideration is to guarantee that the channel
w → z achieves H∞ performance γ > 0, with performance
output

zi = Cz
i xi +

∑
j∈Ni

Cz
ijxj +Dz

i ui. (10)

We consider a distributed controller that is an intercon-
nected system with dynamic subsystemsξi(k + 1)

oi(k)
ui(k)

 = Θi

ξi(k)
si(k)
yi(k)

 , i = 1, . . . , L, (11)

where ξi ∈ Rni is the state of controller i and oi =
colj∈Ni

oij , si = colj∈Ni
sij are interconnection variables

satisfying sij = oji ∈ Rnij for (i, j) ∈ E . By representing
every interconnected system with performance output (10)
and subsystems (Ai, ANi , Bi) ∈ Σi

D in LFT form, we obtain
conditions on the data for the existence of a distributed
controller by [16, Theorem 2].

Theorem V.1 (Distributed control from data) Let Ψi and
Φi be matrices that are a basis of ker

[
Ci 0

]
and

ker
[
0 I (Dz

i )>
]
, respectively, and let nij = 3ni. If there

exist Pi, P̄i, Zi, Z̄i, αi such that Pi > 0, P̄i > 0, αi > 0,
(12)-(13) hold (see next page) with βi = α−1

i and[
Pi I
I P̄i

]
≥ 0,

then there exist Θi, i ∈ V , so that all closed-loop in-
terconnected systems described by (1), (10) and (11) with
subsystems (Ai, ANi

, Bi) ∈Σi
D achieveH∞ performance γ.

Remark V.1 The conditions in Proposition V.1 are sufficient
for any αi > 0 are LMIs for fixed αi. Conservatism can
be reduced by, e.g., verifying feasibility of the LMIs on a
discrete interval for αi, i ∈ V .

In particular, Theorem V.1 implies that the existence of a
distributed controller for which the ‘true’ interconnected sys-
tem achievesH∞ performance, can be verified by checking a
set of LMIs based on noisy input-state data. Suitable matrices

(?)>



−Pi 0 0 0 0 0 0 0
0 Pi 0 0 0 0 0 0
0 0 Z11

i Z12
i 0 0 0 0

0 0 (Z12
i )> Z22

i 0 0 0 0
0 0 0 0 −αiR

i
D −αi(S

i
D)> 0 0

0 0 0 0 −αiS
i
D −αiQ

i
D 0 0

0 0 0 0 0 0 −γ2I 0
0 0 0 0 0 0 0 I





I 0 0 0
0 0 I 0

1⊗ I 0 0 0
0 I 0 0
0 0 I 0I0
0

 0
I
0

 0
0
0

 0
0
I


0 0 0 I
Ci 0 0 Di


< 0 (9)



Pi, P̄i, Zi, Z̄i are thus indirectly based on the data; these
matrices can be used for the subsequent construction of the
controller matrices Θi as described in [20], cf. [16]. We note
that neither our existence conditions, nor the construction of
Θi is based on the unknown matrices (Ai, ANi

, Bi).

VI. EXAMPLES

A. Example 1: H∞-norm analysis

Consider a system of the form (4) with L = 3,

A0 =

0.5 0.1 0
0.1 0.4 0.1
0 0.1 0.6

 and B0 = I.

We choose y = x so that C = I and D = 0. The input
entries are drawn from a normal distribution with zero mean
and unit variance. The noise w(k) is drawn uniformly from
the set {w | ‖w‖2 ≤ σ}, where σ > 0 determines the noise
level. Hence, considering the setW with Qw = −I , Sw = 0
and Rw = Nσ2I , we have that the noise satisfies W− ∈ W .

The aim is to find an upperbound on the H∞ norm of
the channel u → y using the noisy data (U−, X) with
N = 50 samples. The true H∞ norm is γ0 = 2.8836. We
choose eleven noise levels σ in the interval [0.04, 0.25] and
generate one data set for each noise level. For each data
set, we minimize γ subject to (6) with Q = γ2I , S = 0
and R = −I . The results are displayed in Figure 1 in blue.
By Proposition III.1, the corresponding solutions satisfy (7),
hence γ is an upperbound on the H∞ norm for all systems
in ΣD and, therefore, for (A0, B0).

Next, we perform the analysis through Proposition IV.1
using the same data sets. It is clear that W−i ∈ Wi for each
i with Qi

w = −I , Si
w = 0 and Ri

w = Nσ2I . For each data
set, we minimize γ subject to the LMIs (9) for i = 1, 2, 3.

The resulting γ values provide a guaranteed upper bound on
the H∞ norm of u→ y and are shown in Figure 1 in red.

The computed value of γ using either Proposition III.1 or
Proposition IV.1 is a guaranteed upper bound for the H∞
norm of the true system for all noise levels. The bound
provides a good approximation of γ0 for low noise levels.
For increasing noise levels, the bound γ becomes more
conservative for both methods. Comparing the results from
Proposition III.1 (unstructured data) with Proposition IV.1
(structured data), the bounds obtained from (9) are conser-
vative with respect to those from (6) for higher noise levels,
while the difference is small for low noise levels. By solving
the unstructured data-based conditions in [12, Theorem 4],
we find the same bounds as obtained per Proposition III.1,
as expected from the duality of the results.

B. Example 2: Distributed H∞ controller synthesis
Consider an interconnected system with L = 25 subsys-

tems, each having one state (ni = 1). The subsystems are
interconnected according to a cycle graph G and the matrices
Ai and Aij are drawn uniformly on the interval [0, 1] and
[0, 0.1], respectively, and Bi = 1. We consider yi = xi for all
subsystems and consider the performance output zi = xi, so
that Cz

i = I and Cz
ij = Dz

i = 0. For the data acquisition, the
input entries are drawn from a normal distribution with zero
mean and unit variance. The noise signals wi(k) are drawn
uniformly from the set {w | |w| ≤ σ}, where σ = 0.05 is the
noise level. Hence, considering the sets Wi with Qi

w = −I ,
Si
w = 0 and Ri

w = Nσ2I , we have that the noise sequences
satisfy W i

− ∈ Wi, i = 1, . . . , L.
The goal is to synthesize a distributed controller that

yields an upperbound γ on the H∞ norm of the channel
w → z, without using knowledge of Ai, Aij and Bi. First,
we verify what the smallest upperbound γ is, for which there

Ψ>i (?)>



−Pi 0 0 0 0 0 0 0
0 Pi 0 0 0 0 0 0
0 0 Z11

i Z12
i 0 0 0 0

0 0 (Z12
i )> Z22

i 0 0 0 0
0 0 0 0 −αiR

i
D −αi(S

i
D)> 0 0

0 0 0 0 −αiS
i
D −αiQ

i
D 0 0

0 0 0 0 0 0 −γ2I 0
0 0 0 0 0 0 0 I





I 0 0 0
0 0 I I

1⊗ I 0 0 0
0 I 0 0
0 0 I 0I0
0

 0
I
0

 0
0
0

 0
0
0


0 0 0 I
Cz

i Cz
Ni

0 0


Ψi < 0 (12)

Φ>i (?)>



−P̄i 0 0 0 0 0 0 0
0 P̄i 0 0 0 0 0 0
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Fig. 1. Example 1: Upper bound on the H∞ norm determined from noisy
data with increasing noise levels σ via lumped (blue) and structured (red)
data analysis. The H∞ norm of the true system is shown in orange.

Fig. 2. Example 2: Achievable H∞ norm with distributed control from
noisy data with increasing noise levels σ (red) and achievable H∞ norm
with distributed control computed using the true system (blue).

exists a model-based distributed controller by the nominal
LMIs in [16, Theorem 2]. This smallest upperbound of γ
is 1.00 and serves as a benchmark: our data-based method
for distributed control cannot perform better than the model-
based distributed controller. We generate the data matrices
(U−i , Xi) for N = 50 samples. For αi := α = 1, we observe
that the LMIs (12) and (13) are feasible for γ = 1.10. Hence,
by Theorem V.1, there exists a distributed controller that
achieves an H∞ norm less than 1.10 in closed-loop with
the true interconnected system.

Next, we increase the noise level, up to σ = 0.4. The
resulting values of γ are shown in Figure 2 and obtained from
the conditions in Theorem V.1 by varying α in a discrete
interval. We observe that the conservatism increases for in-
creasing noise levels. This can be explained by the increasing
size of Σi

D, leading to the existence of a more conservative
distributed controller that achieves H∞ performance for all
interconnected systems consistent with the data.

VII. CONCLUDING REMARKS

We have considered the problem of analyzing the H∞
norm of an interconnected system and finding a distributed
controller that achieves H∞ performance based on noisy
data. First, we considered a dual parameterization of the set
of systems consistent with the data and we presented a dual
result for data-based dissipativity analysis, with respect to the
results in [12]. A dual parameterizations of data-compatible

subsystems allowed us to introduce an interconnected system
with LFT representations of the subsystems. We have pre-
sented sufficient LMI conditions based on data that guarantee
H∞ performance or the existence of a distributed controller
that achieves H∞ performance.
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