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Controller identification for data-driven model-reference
distributed control

Tom R.V. Steentjes, Mircea Lazar, Paul M.J. Van den Hof

Abstract— This paper considers data-driven distributed con-
troller synthesis for interconnected linear systems subject to
unmeasured disturbances. The considered problem is the op-
timization of a model-reference control criterion, where the
reference model is described by a decoupled system. We provide
a method to determine the optimal distributed controller by
performing network identification in an augmented network.
Sufficient conditions are provided for which the data-driven
method solves the distributed model-reference control problem,
whereas state-of-the-art methods for data-driven distributed
control can only provide performance guarantees in the absence
of disturbances. The effectiveness of the method is demonstrated
via a simple network example consisting of two interconnected
systems.

I. INTRODUCTION

Data-driven methods for controller design are applicable
to systems for which a mathematical description is not avail-
able. A common property of these methods is that they are
based on the model-reference paradigm [1], which employs
a user-specified model to describe the desired behavior of
the closed-loop system. State-of-the-art data-driven methods
that solve the model-reference control problem using a
single batch of data are virtual reference feedback tuning
(VRFT) [2], optimal controller identification (OCI) [3,4] and
asymptotically exact controller tuning [5].

The aforementioned methods are typically applicable to
(multi-variable) isolated or small-scale systems. For inter-
connected systems, the controllers are not implementable
due to their lumped nature or cannot be synthesized due
to the dimensionality of the system. A sensible approach
for interconnected systems would be to synthesize a dis-
tributed controller directly from data. Data-driven distributed
control removes the need for identifying large-scale models,
as required by model-based distributed controller synthesis
methods [6,7] and provides the scalability that data-driven
methods for lumped systems do not provide.

An initial approach to data-driven distributed control based
on the model-reference paradigm was developed in [8], based
on virtual reference feedback tuning in dynamic networks.
By constructing a virtual reference network, the distributed
model-reference control problem can be equivalently stated
as a network identification problem [8], cf. [9].
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The interconnected system considered in [8] is not influ-
enced by any uncontrollable and unmeasured inputs. Even
for scalar systems, however, VRFT inherently introduces a
bias in the controller estimates when disturbances affect the
system [10], leading to degradation of the closed-loop perfor-
mance. This problem can be solved by using an instrumental
variable (IV) approach in case the controller is linearly
parametrized. In general, however, it is not straightforward
to obtain unbiased estimates. Furthermore, depending on the
choice of IV, the introduction of IVs can require additional
experiments on the system [10] and increase the parameter
variance with a negative effect on the control performance.

In this paper, we solve the distributed model-reference
control problem for a decoupled reference model, in the
case that the interconnected system is subject to distur-
bances. By using the direct method for identification in
dynamic networks [9], we provide sufficient conditions for
the consistent identification of the ideal distributed controller
defined in [8], which solves the considered model-reference
control problem. The decoupled nature of the identifica-
tion problems enables a decentralized computation of the
distributed controller. The data-driven distributed controller
synthesis method developed in this paper generalizes OCI to
interconnected systems and provides a solution to the control
problem introduced in [8] for a class of interconnected linear
systems with disturbances.

Remark: In the literature, various data-driven methods
have been developed to solve other (non-model-reference)
control problems, including data-enabled predictive con-
trol [11] and control enabled by data-based linear matrix
inequalities [12]. In recent developments, it has been shown
that data-enabled predictive control allows for a distributed
implementation [13,14].

II. PRELIMINARIES

A. Dynamic network and distributed controller

Consider a simple and undirected graph G = (V, E) with
vertex set V of cardinality L and edge set E ⊆ V × V . The
neighbour set of vertex i ∈ V is defined as Ni := {j ∈
V | (i, j) ∈ E}. The graph G describes the structure of a
network of linear discrete-time systems, where the dynamics
associated with vertex i ∈ V are described by

yi(t) = Gi(q)ui(t) +
∑
j∈Ni

Gij(q)yj(t) +Hi(q)ei(t), (1)

with ui : Z → R the control input, yi : Z → R the output,
ei an unmeasured zero-mean white-noise process and q the
forward shift defined as qx(t) = x(t + 1). The process ei
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Fig. 1: Two output coupled process with noise represented
as a dynamic network.

is assumed to be uncorrelated to all ej , j ∈ V \ {i} and
to all uj , j ∈ V . The rational transfer functions Gi, Gij
and Hi, (i, j) ∈ E , describe the local dynamics, coupling
dynamics and noise dynamics, respectively. The noise filter
Hi is assumed to be monic, stable and minimum phase. The
network can be compactly written as

y = GIy +Gu+He, (2)

where G = diag(G1, . . . , GL), H = diag(H1, . . . ,HL) and

GI =


0 G12 · · · G1L

G21 0 · · · G2L

...
...

. . .
...

GL1 GL2 · · · 0

 .
Furthermore, y = (I−GI)−1(Gu+He), where it is assumed
that GI := (I −GI)−1 exists. A two-node network (L = 2)
is depicted in Figure 1.

Consider a reference tracking problem for the network:
each system is equipped with a reference signal ri and the
corresponding tracking error zi := ri − yi, i.e.,

Pi :

{
yi = Giui +

∑
j∈Ni

Gijyj +Hiei,

zi = ri − yi.
(3)

The dynamic network is operating in closed-loop with a
distributed controller that consists of local controllers

Ci(ρi) :


ui = Cii(q, ρi)zi +

∑
j∈Ni

Cij(q, ρi)s
c
ij ,

ocij = Kij(q, ρi)ei +
∑
h∈Ni

Kijh(q, ρi)s
c
ih, j ∈ Ni.

Each controller is parametrized by a parameter vector
ρi. The controller class for node i is defined as Ci :=
{Ci(q, ρi) | ρi ∈ Rli}. Controllers Ci and Cj are inter-
connected if and only if (i, j) ∈ E . The interconnection
is defined by constraints on the controller interconnection
signals scij and ocij :

scij = ocji and scji = ocij , (i, j) ∈ E .

With the definitions sci := colj∈Ni
scij and oci := colj∈Ni

ocij ,
we compactly represent Ci by

Ci(ρi) :

[
ui
oci

]
= Ci(q, ρi)

[
zi
sci

]
. (4)

B. Distributed model reference control

Model reference control in dynamic networks considers
the synthesis of a structured controller such that the closed-
loop network dynamics are optimal with respect to a struc-
tured reference model [8]. We consider here a decoupled
reference model described by subsystems Ki, i ∈ V:

Ki : ydi = Ti(q)ri. (5)

For well-posedness, we assume that the reference model
satisfies yd 6= r for all non-zero r, i.e., det(T − I) 6= 0,
and that Ti is stable for each i ∈ V .

Given ei = 0 for all i ∈ V , the distributed model reference
control problem is

min
ρ1,...,ρL

JMR(ρ1, . . . , ρL) = min
ρ1,...,ρL

L∑
i=1

Ē[ydi (t)− yi(t)]2, (6)

where Ē := limN→∞
1
N

∑N
t=1E and E is the expectation.

A distributed controller that solves (6) was developed in [8].
Define the column vector 1 := col(1, . . . , 1) and, for i ∈ V ,
define GiI := rowj∈Ni

Gij .

Proposition II.1 Consider ei = 0 for all i ∈ V and consider
a distributed controller described by the subsystems

Cdi :

[
ui
oci

]
=


Ti

Gi(1− Ti)
− 1

Gi
GiI

Ti
1− Ti

1 0


︸ ︷︷ ︸

=:Cd
i (q)

[
zi
sci

]
, (7)

for i ∈ V and the controller interconnections described by

scij = ocji and scji = ocij , (8)

for (i, j) ∈ E . The network (2) in closed-loop with the
distributed controller (7)-(8) satisfies

yi = ydi , i ∈ V.

We refer the reader to [8] for the proof and the corresponding
result [8, Theorem III.1]. The controller described by (7)-(8)
provides a solution to (6), by showing the existence of a
minimizing argument (ρd1, . . . , ρ

d
L). Details on how to obtain

(ρd1, . . . , ρ
d
L) from Cdi , i ∈ V , can be found in [8, Section III].

C. Problem formulation

The problem that we consider in this paper is to determine
the ideal controller described by (7)-(8) in the case that the
network described by (2) is unknown, i.e., in the case that the
transfer functions Gi, Gij and Hi, (i, j) ∈ E , are unknown.
The local controller modules Cdi contain known modules,

Kij :=
Ti

1− Ti
, j ∈ Ni,



depending solely on the reference model dynamics Ki and
unknown modules describing the top row in (7):

ui = Cdii(q)zi +
∑
j∈Ni

Cdij(q)s
c
ij . (9)

Given data collected from the network (2), the transfer
functions Cdii and Cdij , j ∈ Ni, can be determined through
VRFT in dynamic networks [8], in the case that no noise is
present, i.e., ei = 0. The application of VRFT for systems
affected by noise leads to biased estimates, both for the
single-process case [10] and the network case [8].

Due to the bias, controller parameter estimates will in
general not minimize the cost function (6) and hence lead to
a reduced closed-loop performance if the process is subject
to noise. The problem that is considered in this paper is:
how to obtain consistent distributed controller estimates in
the presence of noise?

Optimal controller identification (OCI) [3] and VRFT in
conjunction with instrumental variables (IVs) [10,15] are
two methods for obtaining consistent estimates of controllers
for lumped systems. The use of IVs can lead to estimators
with a high variance, however, which in turn affects the
controller performance (illustrated for an example network
in Section IV). As such, in what follows we consider the
identification of auxiliary controller modules in order to
obtain consistent estimates of the ideal controllers modules
Cdi , i ∈ V , by extending the OCI method to dynamic
networks.

III. MAIN RESULT: INDIRECT DISTRIBUTED
CONTROLLER IDENTIFICATION

In order to formulate an identification problem, we start
by rewriting the network dynamics in terms of the ideal
distributed controller dynamics. The approach of rewriting
the dynamics of a single-input single-output system in terms
of an ideal controller for prediction-error identification was
introduced in [3].

Let us consider the decoupled reference model, i.e., for
each i ∈ V ,

Ki : ydi = Ti(q)ri.

By (7), we observe that the transfer functions in (9) are

Cdii =
Ti

Gi(1− Ti)
, Cdij = −Gij

Gi
, (i, j) ∈ E .

Hence, we can write the network dynamics (1) in terms of
the ideal distributed controller and the reference model as

Gi =
1

Cdii

Ti
1− Ti

and Gij = −CdijGi = −
Cdij
Cdii

Ti
1− Ti

.

Models for the transfer functions within the network can then
be written in terms of the controller parameters as

Gi(ρi) :=
1

Cii(ρi)

Ti
1− Ti

and Gij(ρi) := −Cij(ρi)
Cii(ρi)

Ti
1− Ti

.

u1 ū1 y1

u2 ū2 y2

e1

e2

C̄d
11

C̄d
22

C̄d
12 −T̄2

C̄d
21−T̄1

T̄1

T̄2

H2

H1

ȳ12 ȳ21

Fig. 2: The dynamic network represented by modules of the
ideal distributed controller and reference model.

We can thus rewrite the network dynamics (1) as

yi =
1

Cdii

Ti
1− Ti

ui −
∑
j∈Ni

Cdij
Cdii

Ti
1− Ti

yj +Hiei,

or

yi = C̄diiūi +
∑
j∈Ni

C̄dij ȳij +Hiei, (10)

with C̄dii := 1
Cd

ii

, C̄dij :=
Cd

ij

Cd
ii

, and the signals

ūi :=
Ti

1− Ti
ui = T̄iui, (11)

ȳij := − Ti
1− Ti

yj = −T̄iyj . (12)

In the case that Ti is proper, T̄i, i ∈ V , will be proper and
the dynamical relations (10)-(12) can be interpreted as an
(augmented) dynamic network:yȳ

ū

 =

 0 C̄dI C̄d

T̄N 0 0
0 0 0

yȳ
ū

+

0
0
T̄

u+

H0
0

 e, (13)

with the matrices C̄dI := diagi∈V rowj∈Ni
C̄dij , C̄d :=

diag(Cd11, . . . , C̄
d
LL), T̄ := diag(T̄1, . . . , T̄L), T̄N :=

coli∈V colj∈Ni
−T̄ie>j , with ei the i-th unit vector, and T̄ :=

diag(T̄1, . . . , T̄L). This augmented network is visualized in
Figure 2 for L = 2, with the first row visualized in Figure 3.

Let C̄ii(ρi) := 1
Cii(ρi)

and C̄ij(ρi) :=
Cij(ρi)
Cii(ρi)

, (i, j) ∈ E ,
define the controller models for the augmented network. The
predictor is defined as

ŷi(t, θi) := H−1
i (θi)

C̄ii(ρi)ūi +
∑
j∈Ni

C̄ij(ρi)ȳij

 (14)

+
(
1−H−1

i (θi)
)
yi,



ū1

y1

ȳ12

e1

C̄d
11

C̄d
12

H1

Fig. 3: Building block of the augmented network (13) for
identification of the controller modules of Cd1 , L = 2.

with θi = col(ρi, ηi), where ηi is a parameter vector for
independent parametrization of the noise model Hi(θi).

By using the direct method for dynamic network identifi-
cation [9], the estimates are obtained as

θ̂i = arg min
θi

Vi(θi), Vi(θi) =
1

N

N∑
t=1

ε2
i (t, θi), (15)

with the prediction error defined by εi(t, θi) := yi(t) −
ŷi(t, θi). By definition of the auxiliary controller models,
the controller estimates are then

Cii(ρ̂i) =
1

C̄ii(ρ̂i)
, Cij(ρ̂i) = C̄ij(ρ̂i)Cii(ρ̂i), (i, j) ∈ E .

Under standard assumptions [9], the estimator θ̂i con-
verges asymptotically [16], i.e.,

θ̂i → θ∗i w.p. 1 as N →∞,

where θ∗i = arg minθi V̄i(θi) with V̄i(θi) := Ē[ε2
i (t, θi)].

Theorem III.1 Let i ∈ V and assume that the following
conditions hold true:

• the spectral density of z̄i := col(ūi, ȳi1, . . . , ȳiL),
Φz̄i(ω), is positive definite for almost all ω ∈ [−π, π],

• there exists a θdi such that Ci(θdi ) = Cdi and Hi(θ
d
i ) =

Hi,
• [GI ]ji contains a delay for every j ∈ Ni.

Then it holds that Cii(θ∗i ) = Cdii, Hi(θ
∗
i ) = Hi and

Cij(θ
∗
i ) = Cdij for all j ∈ Ni.

Proof: We will first show that the minimum of the
objective function V̄i is σ2

ei = Ee2
i . By the definition of the

predictor (14) and the prediction error, V̄i(θi) is equal to

Ē

(
Hi(θi)

−1

(
vi +

∑
j∈Ni

∆C̄ij(θi)ȳij + ∆C̄ii(θi)ū)i

))2

.

Then, by (13) it follows that V̄i(θi) is equal to

Ē

(
Hi(θi)

−1

(
vi −

∑
j∈Ni

∆C̄ij(θi)T̄iyj + ∆C̄ii(θi)T̄iui

))2

,

which, by (2), is equal to

Ē

(
Hi(θi)

−1

(
vi + ∆C̄ii(θi)T̄iui

−
∑
j∈Ni

∆C̄ij(θi)T̄i
∑
k∈V

[GI ]jk(Gkuk +Hkek)

))2

= Ē

(
Hi(θi)

−1

(
∆Hi(θi)ei + ∆C̄ii(θi)T̄iui

−
∑
j∈Ni

∆C̄ij(θi)T̄i
∑
k∈V

[GI ]jk(Gkuk +Hkek)

)
+ ei

)2

.

Since both Hi and Hi(θi) are monic, ∆Hi(θi) is
strictly proper. Hence, ∆Hi(θi)ei is uncorrelated with ei.
Also −

∑
j∈Ni

∆C̄ij(θi)T̄i
∑
k∈V [GI ]jkGkuk is uncorre-

lated with ei, since it is a filtered linear combination of
uk, k ∈ V , which are uncorrelated with ei by assumption.
Moreover, −

∑
j∈Ni

∆C̄ij(θi)T̄i
∑
k∈V [GI ]jkHkek is uncor-

related with ei, since ∆C̄ij(θi) is proper and [GI ]ji is strictly
proper for all j ∈ Ni. Hence, V̄i(θi) is equal to

Ē

(
Hi(θi)

−1

(
∆Hi(θi)ei + ∆C̄ii(θi)T̄iui

−
∑
j∈Ni

∆C̄ij(θi)T̄i
∑
k∈V

[GI ]jk(Gkuk +Hkek)

))2

+ Ēe2
i

≥ σ2
ei .

It remains to show that V̄i(θi) = σ2
ei ⇒ θi = θdi . This follows

from the first two assumed conditions; for this part of the
proof, the reader is referred to [9, Appendix B], due to space
limits.

Positive definiteness of Φz̄i is implied by sufficient ex-
citation of the filtered input ūi = T̄iui and the signals
ȳij , j ∈ Ni. The condition on Φz̄i can be translated to
conditions on external signals uj , ej , j ∈ V , and conditions
on the augmented network topology, as described in [17].
While the excitation conditions are sufficient, they can be
conservative. We point out the results on data informativity
for centralized control problems in [18], which open the way
for the formulation of sufficient excitation conditions that are
also necessary for the distributed model-reference control
problem.

The data-driven distributed controller synthesis method in
this paper amounts to solving L multi-input-single-output
(MISO) identification problems, i.e., optimizing Vi in (15)
for each i ∈ V . The optimization is distributed in the sense
that the optimization problems (15) are not coupled and is,
therefore, scalable with respect to the size L of the network.
The MISO identification problems can lead to non-convex
optimization schemes, depending on the parametrization. We
note that regularization, as employed by the method devel-
oped in [19], can reduce the compuational complexity of
each MISO problem through iteratively solving linear least-
squares problems. Comparatively, model-based distributed
controller synthesis as in, e.g., [6], [7], in conjunction
with dynamic network identification of the subsystems Pi,
requires to solve L MISO identification problems [9] plus



one centralized LMI for synthesis of the controller. The
data-driven method in this paper, respectively model-based
distributed controller synthesis with network identification,
achieve stability of the closed-loop network for N →∞, if
the estimates of the controller (Theorem III.1), respectively
the estimates of Pi ([9, Proposition 2]), are consistent; the
stability is dictated by the reference model (Proposition II.1),
respectively by the imposed dissipation inequality ([7, Propo-
sition 1]).

IV. ILLUSTRATIVE EXAMPLE

Consider a two-node network (L = 2) described by (3)
for i ∈ {1, 2}, with transfer functions

G1(q) =
c1

q − a1
, G12(q) =

d1

q − a1
, H1 = 1,

G2(q) =
c2

q − a2
, G21(q) =

d2

q − a2
, H2 = 1,

where a1 = 0.5, a2 = 0.2, c1 = c2 = 1 and d1 = d2 = 0.1.
The objective is to let the closed-loop interconnected system
behave as two decoupled processes with first-order dynamics,
according to

ydi (t) = Ti(q)ri(t), Ti(q) =
1− γi
q − γi

, i ∈ {1, 2}, (16)

with γ1 = γ2 = 0.8.
As presented in Section II-B, the ideal distributed con-

troller is described by (7) for i ∈ {1, 2}, with the intercon-
nections sc1 = oc2, sc2 = oc1, and

Cd11(q) =
1− γ1

c1

q − a1

q − 1
, Cd12(q) = −d1

c1
,

Cd22(q) =
1− γ2

c2

q − a2

q − 1
, Cd21(q) = −d2

c2
,

Kd
12(q) =

1− γ1

q − 1
, Kd

21(q) =
1− γ2

q − 1
.

For the experiment, consider that u1 and u2 are Gaussian
white-noise signals with unit variance and e1 and e2 are
(unmeasured) Guassian white-noise signals with variance
σ2
e = 0.25. As discussed in Section II-C, the noise will cause

a bias in the controller parameter estimates when the dis-
tributed virtual reference feedback tuning (DVRFT) method
is applied directly. For the distributed optimal controller
identification (DOCI) method, described in Section III, we
expect consistent estimates and hence an improved closed-
loop performance.

We first represent the network as shown in Figure 2, where

C̄d11 =
c1

1− γ1

q − 1

q − a1
, C̄d12 = −d1

c1

q − 1

q − a1
.

The modules are therefore parametrized as H1(θ1) = 1 and

C̄11(θ1) = θ1a
1− q−1

1− θ1bq−1
, C̄12(θ1) = θ1c

1− q−1

1− θ1bq−1
,

so that there exists θd1 such that C̄d11 = C̄11(θd1), C̄d12 =
C̄12(θd1) and H1 = H1(θ1). By forming the predictor

ŷ1(t, θ1) := C̄11(ρ1)ū1 + C̄12(ρ1)ȳ2

Fig. 4: Step response of the closed-loop network for 20
experiments with DOCI (green), DVRFT (yellow) and the
desired closed-loop network (black).

Fig. 5: Frequency response of the closed-loop network for
20 experiments with DOCI (green), DVRFT (yellow) and the
desired closed-loop network (black). Notice that the desired
transfers ri → ydj , i 6= j, are identical to zero.

and minimizing V1(θ1) in (15) for N = 100 samples, we
find the estimate θ̂1. The estimate θ̂2 for controller 2 is
obtained by following an analogous procedure. Note that V1

and V2 are not quadratic functions in the parameters. The
corresponding DVRFT cost functions are quadratic and the
optimization problems have explicit solutions.

The distributed controller resulting from DOCI leads to a
closed-loop network with a step response shown in Figure 4
and a frequency response shown in Figure 5 in green of
the transfer r → y, for 20 experiments. For comparison,
we synthesize a DVRFT controller using the same data via
the method described in [8, Section IV]. The corresponding
responses are shown in Figure 4 and 5 in yellow. Note that
the controller classes are chosen such that the ideal controller
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Fig. 6: Parameter estimates for 100 experiments (gray) and
the true parameter (red) for Cd1 .

Fig. 7: Distribution of the achieved performance for DOCI,
DVRFT and DVRFT with IVs, where TI and Td denote the
transfers r → y and r → yd, respectively.

belongs to the controller class for each method, which
leads to a quadratic cost and non-quadratic cost function
for DVRFT and DOCI, respectively. We observe that the
distributed controller synthesized via DOCI leads to a closed-
loop network with a response that is closer to the reference
model compared to the controller synthesized via VRFT.

As discussed in Section II-C, DVRFT leads to biased con-
troller estimates when the noise terms e1 and e2 are non-zero.
This bias is illustrated in Figure 6b, where the parameter
estimates for controller 1 are plotted for 100 experiments.
The parameter estimates for controller 1 with DOCI are
plotted in Figure 6a. Finally, Figure 7 shows the distribution
of the achieved performance for DOCI and DVRFT in the
presence of noise. As described in the introduction, VRFT
can yield consistent estimates when instrumental variables
(IVs) are used. The construction of IVs for the example
network was performed using an additional experiment [10],
mutatis mutandis. The mean value of the performance of
DVRFT with IVs is significantly lower compared to DVRFT,
while the variance is significantly higher. We observe that
the mean value as well as the variance of the performance
are considerably lower for DOCI. Hence, although both
DOCI and DVRFT with IVs yield consistent estimates, the
increased variance due to IVs in DVRFT yields an overall
worse performance compared to DOCI.

V. CONCLUSIONS

We have developed a reference-model based data-driven
method for the construction of a distributed controller for an

interconnected system subject to disturbances. Sufficient con-
ditions for obtaining consistent estimates of controller mod-
ules in a dynamic network have been given. The estimated
distributed controller therefore solves the model-reference
control problem asymptotically in the number of data. By
a simple network consisting of two interconnected systems,
we have shown the effectiveness and the improvement over
biased or high-variance alternative methods on the closed-
loop performance.
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