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In small-scale mechanical tests, such as micropillar compression tests, plastic deformation is often local-
ized in narrow slip traces. These slip traces result from a few dislocation sources with relatively low
nucleation stresses that are present in the material. In order to accurately simulate such small-scale
experiments, the stochastics of the underlying dislocation network must be taken into account, which
is usually done by performing discrete dislocation dynamics simulations. However, their high computa-
tional cost generally restricts these simulations to small and simple geometries and small applied dis-
placements. Furthermore, effects of geometrical changes are usually neglected in the small strain
formulation adopted. In this study, a discrete slip plane model for simulating small-scale experiments
on single crystals is proposed, which takes the most important characteristics of dislocation plasticity
for geometries in the micrometer range into account, i.e. the stochastics and physics of dislocation
sources. In the model, the properties of all lattice planes are sampled from a probability density function.
This results in a heterogeneous flow stress within a single crystal, unlike the uniform properties assumed
in conventional crystal plasticity formulations. Moreover, the slip planes can be grouped together in
bands via a weakest-link principle. The resulting equations are implemented in a standard crystal plas-
ticity finite element model, using a finite deformation formulation. Within this setting, only the collective
dislocation motion on glide planes is modeled, resulting in a significantly lower computational cost com-
pared to frameworks in which the dynamics of individual dislocations are considered. This allows for
simulating multiple realizations in 3D, up to large deformations. A small case study on micropillar com-
pression tests is presented to illustrate the capabilities of the model.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Small-scale experiments on metal alloys have great scientific
value because they can be used to test the mechanical response
of isolated features in a microstructure, such as individual phases
in multi-phase materials (Ghassemi-Armaki et al., 2014; Tian
et al., 2020), or the effect of isolated grain boundaries by testing
bi-crystals (Kirchlechner et al., 2017; Malyar et al., 2017). Such
experiments have provided invaluable insights in the often com-
plex and unexpected microdeformation mechanisms that control
the macroscopic material behavior of the corresponding bulk poly-
crystalline materials from which the microspecimens were
extracted. Moreover, the extracted local information, e.g. the criti-
cal resolved shear stress of individual slip systems, can be used to
identify parameters in polycrystalline plasticity models used to
improve advanced steel grades (Ghassemi-Armaki et al., 2013;
Chen et al., 2014). One of the most prominent experimental tech-
niques for testing crystals at the microscale is the micropillar com-
pression test developed by Uchic, Dimiduk and coworkers (Uchic
et al., 2004; Uchic and Dimiduk, 2005; Dimiduk et al., 2005). Since
then, a large range of micropillar compression tests have been done
on a variety of metals and alloys (Frick et al., 2008; Greer et al.,
2005; Brinckmann et al., 2008; Zaiser et al., 2008). Besides com-
pression, also tensile tests on single crystals have been performed
(Kiener et al., 2008; Du et al., 2018). For more extensive overviews
on small-scale testing the reader is referred to (Greer and de
Hosson, 2011; Kraft et al., 2010; Uchic et al., 2009).

A prime reason for small-scale testing is the fact that the behav-
ior of single crystals with dimensions in the (sub-) micron range is
clearly different compared to that of the bulk material. Only a few
localized slip traces are commonly observed. Furthermore, yield
stresses of comparable samples can vary significantly. In larger
samples, plasticity is dominated by the collective behavior of dislo-
cations. At the scale of individual crystals, individual dislocation
sources and/or obstacles play a more dominant role. As a result,
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plastic slip is concentrated on the weakest glide planes. Conse-
quently, the stochastics of these weakest links may dominate the
behavior of microcrystals (Norfleet et al., 2008; El-Awady et al.,
2009; Parthasarathy et al., 2007; Pan et al., 2015). Other remark-
able observations in microcrystals are size effects, despite the
absence of strain gradients, and scale-free intermittent strain
bursts (Miguel et al., 2001; Csikor et al., 2007).

In order to exploit the full potential of microscale experiments
that allow for a detailed analysis of the complex dislocation mech-
anisms, each experiment should be complemented by large-strain
simulations which account for the microstructure heterogeneities,
stochastic behavior and geometrical effects due to shape changes.

Discrete dislocation dynamics (DDD) simulations have signifi-
cantly contributed to the understanding of the physical processes
of plasticity in microcrystals (Tang et al., 2008; Rao et al., 2008;
Senger et al., 2008; El-Awady et al., 2009; Cui et al., 2014;
El-Awady, 2015). In DDD, the dislocation network is modeled by
discrete line segments and their evolution over time is simulated.
However, because all dislocation segments need to be tracked indi-
vidually, DDD simulations entail a significant computational cost.
Therefore, simulations are mostly limited to small strains as well
as small and simple geometries or are simplified in two dimen-
sions. Otherwise, they typically require massive parallelization to
obtain results in a reasonable time. To the best of the authors
knowledge, the 2D framework developed by Irani and co-workers
(Deshpande et al., 2003; Irani et al., 2015) is the only DDD frame-
work formulated in a finite strain setting. This restricts the possi-
bilities to use DDD for studying the influence of (i) geometric
effects including large changes in specimen shapes, (ii) lattice rota-
tions, (iii) influence of statistical variations and (iv) changes in the
evolution of the local loading conditions arising in microscale
experiments.

Besides DDD, continuum plasticity frameworks have been used
for analyzing small-scale experiments on single crystals. For exam-
ple, Zhang et al. (2006) used finite element simulations with isotro-
pic plasticity to develop guidelines for the design of
microcompression experiments. Similarly, Kiener et al. (2009) used
isotropic plasticity simulations to study the influence of deforma-
tion constraints imposed at the top and bottom of micropillars.
While isotropic plasticity simulations have clear merit, the discrep-
ancy with small-scale experiments revealing slip on specific glide
planes is obvious. Other groups have used crystal plasticity finite
element (CPFE) simulations, in which the crystalline nature of
the material is taken into account through the tensorial deforma-
tion resulting from plastic slip on pre-defined slip systems, to par-
tially close this gap. For example, Raabe et al. (2007) used CPFE
simulations to study the effects of the initial orientation, sample
geometry and friction in micropillar compression tests. Similarly,
Shade et al. (2009) studied lateral constraint effects, focussing on
crystals orientated in single-slip and loaded in compression.
Du et al. (2018) used CPFE to explain slip activity in microtensile
tests of interstitial free ferrite. While CPFE does take the crystal ori-
entation and associated dislocation glide in specific slip directions
into account, it is still a continuum framework in which one gener-
ally assumes homogeneous properties throughout individual
grains. Consequently, it does not include the discrete and stochas-
tic nature of the underlying slip planes and dislocation structure,
which is a key characteristic of small-scale tests on single crystals
and which is adequately captured in computationally much more
expensive DDD simulations.

Various modeling frameworks have been proposed that par-
tially fill the gap between DDD and crystal plasticity theories.
Zaiser and Moretti (2005) introduced a 2Dmodel considering a sin-
gle slip system which combined random stress fluctuations as a
function of space and strain with long-range interaction stresses
mediated by Green’s function, resulting in plastic strain hetero-
2

geneities. In the 1D gradient plasticity framework of Zhang and
Aifantis (2011) a pillar was divided into elastic and plastic layers,
where each plastic layer has its own yield stress. In this higher-
order continuum theory a third order stress arises which accounts
for significant changes in internal stresses as the plastic layers
yield. By requiring this third order stress to be continuous across
boundaries when two adjacent layers deform plastically, strain
burst were predicted. Implementing their framework in a cellular
automaton made it possible to also capture the stochastic variation
between stress–strain curves (Konstantinidis et al., 2014). In the
theoretical crystal plasticity model of Lin et al. (2015) the plastic
strain is composed of a series of strain bursts that follow a
power-law distribution, while the yield stress is based on the
single-arm dislocation source model of Parthasarathy et al.
(2007). However, none of these frameworks is able to simulate
complex geometries together with plastic deformation resulting
from slip on multiple slip systems. The dislocation-based CPFE
framework introduced by Lin et al. (2016) was used to study the
size-dependent deformation morphology of pillars. However, in
that study localization into a single slip band had to be triggered
by incorporating strain-softening into the slip resistance evolution
law and by introducing a material imperfection in the center of the
pillar.

The present study presents a model in which the collective
behavior of dislocations gliding over discrete slip planes is mod-
eled, without considering individual dislocations. Instead, it is
assumed that the discrete slip planes exhibit a relative displace-
ment (slip) which is smooth in time and space along the plane.
Large differences in the amount of slip may however exist between
neighboring planes. The properties of the slip planes are connected
to the stochastics of the underlying dislocation sources. This results
in a heterogeneous flow stress and a stochastic stress–strain
response of the crystal. It is shown that the computational effort
can be reduced significantly via a weakest-link principle that only
considers the weakest glide plane in a slip band of finite width.
With small adaptations, the resulting equations of this discrete slip
plane model can be implemented in a standard CPFE model using a
finite deformation formulation, enabling large strain simulations.
The framework allows the simulation of small-scale experiments
in the micrometer range, where the behavior is dominated by
the weakest links and in which the plastic deformation is localized
in a finite number of slip traces.

The structure of the paper is as follows. The model and corre-
sponding assumptions will be introduced in Section 2. In Section 3
the assumptions are assessed, whereby the mesh independency of
the model is demonstrated. Finally, in Section 4 a small case study
is presented to illustrate its added value and its capabilities in
terms of modeling small-scale experiments on single crystals.
2. Methodology

2.1. Model assumptions

Dislocation glide is considered to be the main mechanism
underlying plastic deformation. This mechanism results in crystal-
lographic slip, i.e. the sliding of two crystal regions with respect to
each other along a slip plane. Instead of modeling all dislocations
individually, as is done in DDD simulations, slip is modeled as a
continuous process in time and in space along a slip plane, similar
to the perspective taken in crystal plasticity. However, unlike crys-
tal plasticity, the plastic slip is concentrated in discrete, parallel
slip planes and the amount of slip on these planes may vary signif-
icantly, even between neighboring planes. Initially, all discrete
atomic slip planes of the possibly active slip systems are taken into
account. The spacing of these slip planes is equal to d ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2þk2þl2
p ,
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where a is the lattice constant of the material and h; k and l are the
Miller indices of the plane. The thin bands in between the discrete
planes are considered to behave as a purely elastic continuum. An
example is shown in Fig. 1. Here, the slip planes of two possible slip
systems are depicted. Slip steps on both slip systems are indicated
with lengths v1 and v2, for which the resulting geometry is shown.

2.2. Model equations

The constitutive equation used to describe the plastic slip of
adjacent atomic planes along the slip plane between them, as
described in the previous section, is based on the widely adopted
power-law relation for the plastic shearing rate introduced by
Hutchinson and Hill (1976). Here, it is assumed that the amount
of slip, v, on a certain slip system can be described by a visco-
plastic (rate-dependent) relation, i.e. the velocity, _v , between the
crystallographic blocks separated by the slip plane of a slip system
is dependent on the resolved shear stress, s, which is acting on the
same slip system according to

_v ¼ _v0
jsj
s

� �1
r

signðsÞ; ð1Þ

where s is the slip resistance, _v0 is a reference velocity and r is a rate
sensitivity parameter. Note that when the rate sensitivity parame-
ter approaches zero, a rate-independent response is recovered.

The initial value of the slip resistance, s0, contains three contri-
butions, following the models by Parthasarathy et al. (2007) and
Lin et al. (2015). These are a nucleation stress, snuc, required to
nucleate new dislocations, a lattice friction term, sfric, and a forest
strength due to the initial dislocation density, qdis:

s0 ¼ snuc þ sfric þ 0:5Gb
ffiffiffiffiffiffiffiffi
qdis

p
; ð2Þ

where G and b are respectively the shear modulus of the material
and the length of the Burgers vector. The three contributions in
Eq. (2) will be elaborated on in the next section (Section 2.3).

Due to the evolution of the dislocation forest and dislocations
encountering obstacles, the slip resistance usually increases during
plastic deformation. This effect is accounted for by a phenomeno-
logical hardening law, as introduced by Bronkhorst et al. (1992)
for crystal plasticity, given by

_s ¼ k0 1� s
s1

� �a

j _v j; ð3Þ

where s1 is the saturation value of the slip resistance, k0 is the ini-
tial hardening rate and a is the hardening exponent. Note that this
Fig. 1. Schematic drawing of consecutive slip on two discrete slip planes. First, slip takes
slip step of length v2 takes place on a plane of slip system 2. This results in a deformed

3

evolution is local to the slip plane, i.e. interaction effects such as
latent hardening are neglected.

2.3. Dislocation source stochastics, introduced through the slip
resistance

For the lattice friction and the initial dislocation density in Eq.
(2), it is assumed that the spatial variation and variation between
slip systems is negligible. Therefore, the same value is adopted
for all slip planes in the crystal lattice. However, the nucleation
stress can vary strongly between different slip planes and slip sys-
tems. It is relatively easy to nucleate dislocations on slip systems
that contain dislocation sources, while nucleating dislocations on
slip systems without a source requires a high stress since they have
to be nucleated at the free surface (Xu et al., 2013; Hu et al., 2019).

In the proposed model, the nucleation stress is assumed to be
constant over the length of a slip plane, but varies per atomistic
slip plane. The variation in nucleation stresses is described by a
probability density function, pðsnucÞ. This distribution is composed
of two underlying distributions: one distribution, gþðsnucÞ, for slip
planes that contain a dislocation source and another distribution,
g�ðsnucÞ, for slip planes without a dislocation source. The full distri-
bution is obtained by employing the probability of finding a dislo-
cation source on a slip plane, f src, resulting in

pðsnucÞ ¼ f srcg
þðsnucÞ þ ð1� f srcÞg�ðsnucÞ; ð4Þ

where f src can be estimated by the dislocation source density qsrc,
via

f src ¼ qsrcAd; ð5Þ
with A the area of a lattice plane in the sample. Note that in these
definitions of pðsnucÞ and f src it is assumed that dislocation sources
are distributed homogeneously over all lattice planes and that a sin-
gle lattice plane will never contain more than one dislocation
source. The latter assumption is reasonable when f src � 1, which
is the case for typical values of the dislocation source density qsrc.

Different distributions can be used to describe the variation in
dislocation source strengths. For example, (Shishvan and van der
Giessen, 2010) used a log-normal distribution in their DDD simula-
tions of copper thin films. El-Awady et al. (2009) used different
Weibull distributions for the source length of Frank-Read (FR)
sources in DDD simulations of nickel micropillars, while a more
physics-based route was followed in the model of Parthasarathy
et al. (2007), who proposed a distribution of the source length of
single-arm (SA) sources. The latter two distributions are expressed
in terms of source length. Therefore, they are rewritten here in
place along a slip plane of slip system 1, resulting in a slip step of length v1. Next, a
geometry with visible slip traces.
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terms of source strength. The strength of a dislocation source can
be estimated based on the line tension and is related to its charac-
teristic length, k, by

snuc ¼ a
Gb
k

: ð6Þ

This relation can be used for both FR sources and SA sources.
Only the geometrical factor, a, varies for different types of sources
(Pichaud et al., 1978; Rao et al., 2007).

Two examples of nucleation stress distributions for lattice
planes, indicated by A and B, are shown in Fig. 2. Here, the shapes
of the left peaks are governed by underlying distributions gþðsnucÞ,
which thus reflect the stochastic nature of the nucleation stress of
dislocation sources. For the distribution marked A, a log-normal
distribution is used for gþðsnucÞ, while a SA source distribution is
adopted for the distribution denoted B. The right peaks in the fig-
ure are governed by the underlying distributions g�ðsnucÞ, which
are taken as narrow normal distributions at high stress around
the theoretical material strengths for both distributions A and B.
Since the behavior will be dominated by the weakest planes, the
choice for g�ðsnucÞ generally has a negligible effect. It only becomes
important in the so-called dislocation starvation regime, which is
only observed for pillars with diameters into the nanometer range
(e.g. < 160 nm Shan et al., 2008), although the exact range of diam-
eters in which dislocation starvation can be observed depends on
the initial dislocation density (El-Awady, 2015) and the applied
strain rate (Hu et al., 2019). The distribution denoted A in Fig. 2 will
be explored in Section 3, while the distribution denoted by B will
be explored in Section 4. Both source distributions will be dis-
cussed in more detail in these sections.
2.4. Model reduction

Modeling each individual discrete plane on which slip may
occur in numerical simulations would require an excessively fine
discretization, which would be computationally prohibitive. There-
fore, a simple method to reduce the number of modeled planes is
proposed. This method is based on the weakest-link principle.

First, instead of considering all slip planes of a slip system sep-
arately, planes are grouped together into bands of thickness l. The
geometry is thus divided into multiple potential slip bands. This is
done for every possible slip system independently, which means
that slip bands of different slip systems may intersect. Conse-
quently, every material point belongs to as many slip bands as
Fig. 2. Two different probability density functions for the nucleation stress, each
having two peaks, one below 100 MPa, the other above 10 GPa. The shape of the left
peaks, i.e. gþðsnucÞ, reflects the stochastic nature of the nucleation stress of
dislocation sources, while the shape of the right peaks, i.e. g�ðsnucÞ, corresponds
to the distribution of the nucleation stress required to nucleate dislocations without
a dislocation source. Inset: zoom of the left peaks.

4

there are slip systems. This is schematically shown in Fig. 3, where
the slip planes of Fig. 1 are grouped together in a number of slip
bands. Note that for a slip band width of l ¼ d the original atomistic
model is recovered, i.e. each slip band then contains only a single
slip plane.

Following the weakest-link principle, dislocation nucleation
happens only in one or a few of the weakest dislocation sources.
As a result, these weakest dislocation sources dominate the behav-
ior of a single crystal. Therefore, it is assumed that within the
group of slip planes within a slip band, slip only occurs on the
weakest plane, i.e. the slip plane with the lowest nucleation stress.
This single slip step is then distributed over the thickness of the
slip band, which hence becomes elasto-plastic instead of elastic.

Following this concept, an amount of slip v on the weakest slip
plane in a slip band is smeared out over a thickness l. This results in
a shear strain in the slip direction with magnitude c ¼ v

l . Eq. (1)
may hence be rewritten as

_c ¼ _v0

l
jsj
s

� �1
r

signðsÞ: ð7Þ

Similarly, Eq. (3) now reads

_s ¼ k0l 1� s
s1

� �a

j _cj: ð8Þ

As a further refinement of the modeling, cross hardening may
be accounted for by introducing the hardening matrix q. This
matrix has a value of 1 on the diagonal and a value of qn off-
diagonally. The final result is given by

_sa ¼ k0l 1� sa

sa1

� �aXN
b¼1

qabj _cbj; ð9Þ

where N is the total number of slip systems taken into account and
a and b are used to denote a particular slip system. The form of Eqs.
(7) and (9), by construction, is identical to hardening laws used in
many standard crystal plasticity models (Cuitiño and Ortiz, 1992;
Kalidindi et al., 1992) based on the multiplicative split of the defor-
mation gradient tensor into an elastic part, Fe, and a plastic part, Fp:

F ¼ Fe � Fp; ð10Þ
and where the plastic velocity gradient tensor is given by

Lp ¼ F
_

p � F�1
p ¼

XN
a¼1

c
_ a
s
!a

0 � n
!a

0 ; ð11Þ

where~sa0 and~na0 are respectively the slip direction and the slip plane
normal of slip system a in the lattice configuration. The implemen-
tation of the model can thus take benefit of existing CPFE codes.

Note that only the nucleation stress of the weakest slip plane in
a slip band has to be known, since the whole slip band will expe-
rience the same nucleation stress. Therefore, it is no longer neces-
sary to sample the nucleation stress of all slip planes within the
band from the distribution defined in Eq. (4). Instead, order statis-
tics is used to find the probability density function of the weakest
plane in a slip band (David and Nagaraja, 2003):

pminðsnucÞ ¼ nð1� PðsnucÞÞn�1pðsnucÞ; ð12Þ
where PðsnucÞ is the cumulative distribution function of pðsnucÞ and n
is the number of slip planes grouped together in a single slip band.
Sampling the nucleation stress for a slip band can thus be efficiently
done from this weakest-link distribution, pminðsnucÞ.

2.5. Finite element implementation

As stated earlier, Eqs. (7) and (9) are common expressions used
in rate-dependent CPFE models based on the multiplicative split of
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the deformation gradient. Therefore, the implementation of the
”lumped” discrete slip plane model is straightforward. Only the
division of the geometry in different slip bands, as depicted in
Fig. 3, requires special treatment. Since there are as many slip band
orientations as there are slip systems, it is not possible to create a
mesh that conforms to all these slip bands. Therefore, a regular
mesh is used instead and for each integration point (not each ele-
ment) it is determined, for each slip system, to which slip band it
belongs based on its global position in the reference configuration.
This means that in a single material integration point, the different
slip systems will generally have different properties. Similarly, the
properties at integration points within a single element will almost
always be different.

A Saint Venant-Kirchhoff type of model is adopted for the elas-
tic response of the material. The multiplicative split of Eq. (10) first
maps the material from its initial configuration to a stress-free
intermediate configuration through Fp. The second Piola-
Kirchhoff stress tensor defined in this intermediate configuration,
Se, is computed by
Se ¼ 1
2

4C : ðFT
e � Fe � IÞ; ð13Þ
where 4C is the fourth-order elasticity tensor and : denotes a double
contraction. The resolved shear stress on a slip system in the inter-
mediate configuration is now calculated as
sa ¼~sa0 � FT
e � Fe � Se �~na0: ð14Þ

The finite element model is implemented in the form of a for-
tran user subroutine in the commercial finite element package
Msc.Marc (Marc user’s manual, 2014). The update of state variables
Fp and s is done implicitly via a trapezoidal integration scheme.
3. Model assessment

In this section the impact of grouping slip planes together in
bands on the computed response is assessed. In particular, we
study the influence of the thickness of the bands. This is done
based on an idealized one-dimensional version of the model, with
only one slip system, so that the comparison can be made with the
reference case in which all planes are modeled individually,
i.e. l ¼ d. At the end of the section, the finite element implementa-
tion is verified by a mesh convergence study.
5

3.1. Geometry and material properties

Throughout this section, we consider a problem which is
inspired by the microtensile tests on a single crystal of ferrite as
performed by Du et al. (2018). The dimensions of the gauge section
of the specimen are 9� 3� 2 lm. The crystal considered here,
denoted as Grain 2 in Du et al. (2018), is orientated with respect
to the loading axis such that the highest Schmid factor has a value
of 0.495, while the second highest Schmid factor takes a value of
0.445.

In this example, the adopted nucleation stress distribution cor-
responds to the distribution used by (Shishvan and van der
Giessen, 2010); it is shown as distribution A in Fig. 2. The source
distribution is a log-normal distribution in which 99.7% of the
probability density function lies between the physically minimum
and maximum values of the nucleation stress. The minimum value
of the nucleation stress corresponds to the largest possible Frank-
Read source with length kmax that fits in the sample (equal to the
smallest dimension of the geometry), i.e. smin

nuc ¼ aGb
kmax

(see Eq. (6)).
The maximum value of the nucleation stress corresponds to the
theoretical strength of the crystal, smax

nuc ¼ Gb
2pd (Hull and Bacon,

2011). With this choice for smin
nuc and smax

nuc the mean, l, and standard
deviation, r, of the distribution are given by

l ¼ 1
2

ln smax
nuc þ ln smin

nuc

� � ð15Þ

and

r ¼ 1
6

ln smax
nuc � ln smin

nuc

� �
: ð16Þ

The non-source distribution, g�ðsnucÞ, is chosen as a normal
distribution with mean smax

nuc and a standard deviation of
0:01ðsmax

nuc � smin
nuc Þ, such that it does not interfere with gþðsnucÞ. How-

ever, as stated before, the precise choice of g�ðsnucÞ has a negligible
effect on the results. The resulting distribution, pðsnucÞ, was already
shown in Fig. 2 as Distribution A. All other relevant material prop-
erties can be found in Table 1. Note that the initial hardening rate,
k0, as well as the saturation value of the slip resistance, s1, scale
with the initial slip resistance, s0, and hence also vary per slip
plane.

3.2. One-dimensional implementation

In order to explore some basic characteristics of the model, a
one-dimensional (1D) implementation of the model with a simpli-
fied elastic response is used. This simplification allows us to model



Table 1
Model parameters used for simulating the tensile tests of ferrite.

Parameter Value

qdis 7 � 1011 m�2

k0 1:6 � 105s0 MPa/mm

s1 2s0 MPa
a 2.1 –
f src 0.005 –
b 2.47 Å
d 2.02 Å
E 208 GPa
G 90.4 GPa
kmax 2.0 lm
_v0 9:0 � 10�5 mm/s

r 0.02 –
m 0.495 –
h 0.85 rad
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all atomistic slip planes of a slip system, i.e. the case l ¼ d, which
would not be possible with a finite element implementation. Fur-
thermore, given the low computational cost of the 1D model, many
realizations can be simulated, so that mean values and standard
deviations can be statistically assessed.

Only the slip system with the highest Schmid factor is consid-
ered, since it is expected that most slip activity will occur on this
slip system. Furthermore, by neglecting geometrically nonlinear
effects, it can be assumed that the elastic response of the whole
system is given by

r ¼ E
L

upðtÞ �
Xn
i¼1

v i cos h

 !
; ð17Þ

where upðtÞ is the total prescribed displacement in the direction of
the loading axis, v i is the slip displacement on the ith plane, h is the
angle between the slip direction of the considered slip system and
the loading axis, E is the Young’s modulus and L is the length of
the 1D domain. The resolved shear stress is related to the uniaxial
stress via the Schmid factor, m, by

s ¼ mr: ð18Þ
Eq. (17), together with Eqs. (1), (3) and (18), upon sampling the

distribution pðsnucÞ as discussed above, can be solved with a stan-
dard solver for a set of nonlinear ordinary differential equations,
e.g. the forward Euler method.

3.3. Slip band width

First, the effect of grouping atomistic slip planes together in a
slip band of a certain width with properties governed by the weak-
est link will be examined. For computational efficiency of the 3D
model it would be beneficial if the response is not too sensitive
to the ratio of the band width to the atomistic slip plane distance,
l=d, so that a large band width can be adopted. Therefore, the error
made by grouping planes together in bands of width l is assessed
here, using the 1D implementation of the model.

There are 23304 atomistic slip planes of the considered slip sys-
tem that fit in the 9 lm long gauge section of the specimen. First,
the nucleation strengths of all these slip planes are sampled from
the distribution given by Eq. (4). For the realization obtained, the
weakest planes are subsequently determined for a range of band
widths, starting with a width of l ¼ 23304d (i.e. a single band)
and then successively dividing it by two. This whole procedure is
repeated for 100 different realizations.

The average responses, together with the standard deviations,
obtained for the different band widths l are plotted in Fig. 4a; the
average and standard deviation of the reference solutions in which
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every slip plane is tracked (i.e. l ¼ d) is also shown. This figure
reveals that both the average response and the standard deviation
quickly converge upon refining the band width. With a band width
of l ¼ 2913d, i.e. the gauge section is divided into 8 slip bands, the
maximum deviation in stress, relative to the response where all
individual slip planes are taken into account (l ¼ d) is only 1.5 per-
cent. Furthermore, the error introduced by weakest-link principle
is much smaller than the standard deviation, even if all slip planes
in the gauge section of the specimen are grouped together in just a
single band.

Next, one of the 100 realizations with 23304 slip planes is
examined in more detail. In Fig. 4b, the shear strain of this realiza-
tion is plotted as a function of the longitudinal position for the dif-
ferent values of l at the same prescribed displacement upðtÞ.
Consequently, the area below all curves is the same. The solid blue
line (l ¼ d) represents the case where all individual atomistic slip
planes are taken into account, where the most significant shear
strain peaks are shown. Four extremely narrow peaks are visible,
which indicates that almost all slip is localized on four atomistic
slip planes. This implies that there are four relatively weak disloca-
tion sources present on the primary slip system. The exact heights
of these four peaks are not depicted in the figure, but are corre-
sponding, from left to right respectively, to slip steps of v ¼ 0:43
lm, v ¼ 0:11 lm, v ¼ 0:11 lm and v ¼ 0:02 lm, i.e. most plastic
deformation is concentrated in the most left peak. For l ¼ 23304d
(brown dashed line), the strain is smeared out over the whole
length of the geometry. In this case the response is fully governed
by the weakest plane of the entire geometry, i.e. the model
assumes that all plastic deformation is concentrated on the most
left weak slip plane, but smears this slip across the entire length
of the specimen. Refining once results in two strain plateaus, each
smeared out over half the length of the geometry (purple dashed
line). In this case the response is governed by the weakest plane
in the left half and the weakest plane in the right half. More plastic
deformation has occurred in the left half of the geometry, since this
half contains a weaker plane than the right half of the geometry.
For a slip band width of l ¼ 2913d (green dashed line) all four weak
slip planes appear in different bands. This means that all four weak
slip planes are taken into account by the model. For this specific
case, this slip band width thus adequately captures the response
of all atomistic slip planes. Refining the band width further (orange
dashed line) results in more localized strain peaks. However, the
number of strain peaks and the response of the system is no longer
affected by this refinement.

In general, an error is made if more than one relatively weaker
atomistic planes on which significant plastic deformation occurs
fall within the same slip band. In such cases only the slip occurring
on the weakest of these planes is taken into account and that on
the other ones is neglected. The probability of such an error
decreases with decreasing band width, which explains the conver-
gence in Fig. 4a. The minimum band width that should be adopted
is dependent on the adopted distributions and parameters. For
example, the probability of finding a dislocation source, f src, has a
significant effect on the band width which should be adopted
because it determines the number of weak lattice planes present
in the sample.
3.4. Mesh convergence

Based on the results presented in the previous section, a band
width of l ¼ 2913d is adopted, i.e. 8 slip bands over the specimen
length. Instead of using the 1D idealization, the model is now
solved with the finite element method for a 3D specimen geometry
of 9� 3� 2 lm. The geometry is discretized with hexahedral ele-
ments with 20 nodes and integrated with 8 Gaussian quadrature



Fig. 4. (a) The average stress–strain responses and standard deviations for different band widths obtained with the 1D idealization of the model. (b) The longitudinal strain
profile over the length of the geometry for a single simulation obtained with the 1D idealization of the model. The strain profile corresponding to l ¼ d (blue solid line)
consists of four very narrow peaks with significant amounts of slip (v ¼ 0:43 lm, v ¼ 0:11 lm, v ¼ 0:11 lm and v ¼ 0:02 lm) marking the locations where plastic slip has
actually taken place. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. (a) The stress–strain response obtained with the finite element implementation for different element sizes for one realization of slip planes from one slip family. The
result of the idealized 1D model is shown as well. (b) The slip profile over the length of the geometry for different element sizes, along with the result of the 1D model.
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points (reduced integration), because this element is known to be
less sensitive to volumetric locking compared to other standard
continuum elements (Hughes, 1987). Initially, an element size of
0.5 lm is used, i.e. 8� 6� 4 cubic elements, which equals 0:85l.
Subsequently, the discretization is successively refined by a factor
of 2 in all directions for the same realization of slip planes. We con-
sider only one slip system to be able to compare with the 1D
model. The considered realization is identical to the one that is
used for Fig. 4b.

The resulting stress–strain curves are presented in Fig. 5a. With
the initial element size of 0:85l, the response is too stiff. The error
is relatively large because the discretization is not conforming with
the slip bands. Upon refinement, the response converges. Based on
this analysis, an element size of h ¼ 0:212l, i.e. approximately
1=5th of the band width, seems appropriate. The result obtained
with the idealized 1D model is also shown, by the solid purple line
in the diagram. Both results adequately match. Mesh convergence
has also been confirmed for simulations with all slip families
included (not shown).

In Fig. 6 the contours of the accumulated slip are shown as com-
puted with the coarsest mesh (h ¼ 0:85l) and the finest mesh
(h ¼ 0:115l). Most slip is localized into a single band. Furthermore,
the accumulated slip in that band has a much lower value for the
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coarse mesh than for the fine mesh. This is also visible in Fig. 5b,
where the accumulated slip profile over the length of the geometry
is plotted for different element sizes and as well as for the 1D ide-
alization. This confirms that the element size needs to be suffi-
ciently small compared to the band width and that an element
size of h ¼ 0:25l is an appropriate choice.
4. Application to micropillar compression of nickel

As an application of the model we consider the microcompres-
sion tests on nickel micropillars, as done by Dimiduk et al. (2005).
These micropillars are loaded in the ½269� direction of the FCC crys-
tal. 3D simulations up to large strains are performed. Because of
the relatively low computational cost, multiple realizations, simu-
lated with multiple sets of boundary conditions, can be considered.
4.1. Strength distribution and size effects

The measured yield stresses of pillars with different diameters
show an apparent size effect, in the sense that the pillars with a
smaller diameter result in a higher strength. The five slip systems
with the highest Schmid factors are shown in Table 2.



Table 2
The five slip systems with the highest Schmid factors of a FCC crystal loaded in the
½269� direction.

Slip system Schmid factor

1 ð111Þ½10�1� 0.48
2 ð1�1�1Þ½101� 0.40
3 ð111Þ½1�10� 0.35
4 ð11�1Þ½011� 0.25
5 ð1�1�1Þ½110� 0.23

Fig. 6. The slip contours obtained for the microtensile problem of Section 3 with
element sizes h ¼ 0:85l (top) and h ¼ 0:115l (bottom). Note that the deformation is
shown on true scale.
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The adopted source nucleation stress distribution is based on
the statistical model of single-arm (SA) sources by Parthasarathy
et al. (2007). It has already been shown by these authors that such
a distribution can adequately predict the size effect observed in
micropillars. The distribution is based on the assumption that dis-
location sources in such small circular pillars are dislocation lines
which are pinned at one point, while the other end of the disloca-
tion is at the free surface. SA sources thus only need one pinning
point. These pinning points are assumed to be randomly dis-
tributed in the lattice planes. For cylindrically shaped specimens
the lattice planes are ellipse-shaped due to their orientation with
respect to the axis of the cylinder. The shortest distance from a pin-
ning point to the edge of the ellipse is taken as the characteristic
length of the SA source, k, which is related to the nucleation stress
of the source through Eq. (6). This is schematically shown in Fig. 7a,
where 3 arbitrary pinning points are depicted.

The probability density function of the nucleation stress of a SA
source is now given by

gþðsnucÞ ¼
aGb cos/ Rþ R

cos/ � 2a Gb
snuc

� �
R2s2nuc

; ð19Þ

where R is the radius of the pillar and / is the angle between the
slip plane normal and the pillar axis/loading direction. The non-
source nucleation stress is again taken as a normal distribution
around the theoretical strength. The full distribution used is
denoted by Distribution B in Fig. 2.

The parameters of the model have been chosen such that the
experimentally observed size effect, by Dimiduk et al. (2005), is
also predicted with the model presented here. The full parameter
set used may be found in Table 3. Parameters k0; s0; s1 and awere
used to fit the trend of the stress–strain response. f src mainly influ-
ences the scatter in the yield stress. All other parameters are phys-
ical quantities which are known or can be measured.
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The 1D idealization of Section 3.2 is adopted, for which only the
primary slip system is considered. Simulations have been done for
4 different pillar diameters. For every diameter 100 simulations
have been performed and the stress at 0.2% strain is taken as engi-
neering yield stress. The results are shown in Fig. 7b. Here, also a
power-law is fitted on the simulation data. The obtained exponent
of �0.68 is in good agreement with literature on micropillar com-
pression tests, where an exponent between �0.6 and �0.9 is
reported (Greer and de Hosson, 2011; Kraft et al., 2010; Uchic
et al., 2009). Furthermore, the scatter in the simulation results is
in reasonable agreement with the scatter observed in experiments.
Standard deterministic plasticity models are only able to predict
the average behavior of these experiments. The significant scatter
suggest that individual samples can behave significantly different
compared to this average behavior, which highlights the need to
include stochastic effects in the model.

4.2. Slip activity

For the 3D finite element simulations, all 12 f111g < �110 > slip
systems are taken into account. A rectangular pillar geometry with
dimensions 5� 2� 2 lm is adopted. Because small deviations in
boundary conditions may have a significant effect on such small
pillars, two different sets of boundary conditions are applied. We
consider the first case where the specimen is compressed but all
other displacements and rotations remain free. This is done by pre-
scribing the displacement in the loading direction in an average
way. The full set of boundary conditions in these simulations is
indicated as Case A in Fig. 8. Here, < ux > denotes the area average
of the displacement in x-direction, i.e.

< ux >¼ 1
A

Z
A
ux dA: ð20Þ

In Figs. 9a and 10a the deformation at an applied strain of �5 %
is shown for two different realizations. The colormaps show the
maximum value of the shear strain out of all 12 slip systems. For
the first realization (Fig. 9a), most strain is localized in one slip
band of the ð111Þ½10�1� slip system. This is also the primary slip sys-
tem, with a Schmid factor of 0.48. Some slip activity on the
ð1�1�1Þ½101� slip system is also observed. This is the secondary slip
system, with a Schmid factor of 0.40. This slip system is activated
because its weakest plane has an initial slip resistance of 34 MPa,
which is significantly lower than the second weakest plane of the
primary slip system, which has a initial slip resistance of 62 MPa.
This shows that Schmid’s law in micropillars can already break
down because of the microstructural stochastics of dislocation
source strengths. The same point was demonstrated by Ng and
Ngan (2008), who used an extension of the statistical model of
Parthasarathy et al. (2007). One should also note that slip on this
slip system would not be predicted with conventional CPFE, which
again demonstrates the importance of including stochastic behav-
ior at these small scales. For the second realization (Fig. 10a), all
strain is localized in a single band of the primary slip system.

The same samples are also simulated with more constraining
boundary conditions. The displacements at the top and bottom
are now fully prescribed, as indicated by Case B in Fig. 8. This
may be a more realistic set of boundary conditions as there is typ-
ically a significant amount of friction between the loading plates
and the sample, since this improves the geometrical stability of
micropillar compression tests (Zhang et al., 2006; Raabe et al.,
2007).

The results of the simulations with the more constraining
boundary conditions for the same two realizations considered
before are shown in Figs. 9b and 10b. The same two slip bands of
the ð111Þ½10�1� slip system are again observed in both realizations,



Fig. 7. (A) A slip plane in a cylindrical micropillar of diameter D under an angle /with respect to the loading direction. Three pinning points and their shortest distance to the
edge of the ellipse are depicted. (b) Yield stress as a function of pillar diameter. The simulation results are obtained with a 1D implementation of the model. Note that both
axes are logarithmic.

Table 3
Model parameters used for simulating compression tests of nickel.

Parameter Value

qdis 1012 m�2

k0 1:6 � 105s0 MPa/mm

s1 1:3s0 MPa
a 2.1 –
f src 0.0003 –
b 2.47 Å
d 2.02 Å
E 200 GPa
G 76 GPa
_v0 9:0 � 10�5 mm/s

r 0.02 –

Fig. 8. Two different sets of boundary conditions, termed A and B, implemented in
the finite element simulations of the compression tests of the nickel micropillars of
5� 2� 2 lm.

Fig. 9. Contour bands of the maximum accumulated slip of all 24 slip systems for the two sets of boundary conditions defined in Fig. 8 (a): Case A and (b): Case B for
realization 1. Note that the deformation is shown on true scale.

J. Wijnen, R.H.J. Peerlings, J.P.M. Hoefnagels et al. International Journal of Solids and Structures 228 (2021) 111094

9



Fig. 10. Contour bands of the maximum accumulated slip of all 24 slip systems for the two sets of boundary conditions (a): Case A and (b): Case B for realization 2. Note that
the deformation is shown on true scale.
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together with the ð1�1�1Þ½101� slip system for the first realization.
However, prominent slip activity in a band of the ð1�1�1Þ½110� slip
system can also be seen for both realizations. This slip system
has a Schmid factor of 0.23, which is only the fifth highest Schmid
factor (Table 2). The fact that it is nevertheless activated can be
explained by considering the projections of the slip directions on
the y–z plane, which are shown in the polar plot of Fig. 11. Note
that the slip directions are defined such that the x-components
are negative, since these are the directions in which slip will occur
in a compression test. Both the bottom and top of the micropillar
are constrained in such a way that no displacement in this plane
is allowed. Therefore, any displacement in y- or z-direction that
would occur by slip on the primary slip system has to be compen-
sated for – preferably by slip activity on some other system, or
otherwise elastically. The slip direction of the primary slip system
is ½10�1� (blue arrow). A slip system with ½110� as slip direction (pur-
ple arrow) is best suited to compensate the displacement of the
primary slip system in the y–z plane because its projected vector
on this plane points in almost the opposite direction. As a result,
a band of the ð1�1�1Þ½110� slip system containing a relatively weak
Fig. 11. Polar plot of the projections on the y� z plane of the slip directions of a FCC
crystal with the x-axis (loading direction) aligned with the ½269� direction of the
crystal.
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dislocation source will slip as soon as slip on a plane of the primary
slip system occurs, despite its low Schmid factor of 0.23. This
shows that it is important to analyze boundary conditions and to
take geometrical effects into account when analyzing micropillar
compression tests. Studying these effects would not be possible
with 3D DDD simulations since the computational cost restricts
these simulations to be done up to small strains only. Furthermore,
geometrical changes and rotations are not taken into account due
to the small strain formulation underlying most DDD frameworks.
5. Summary and conclusions

A model has been presented for the simulation of small-scale
experiments on single crystals. The model is based on the sliding
of discrete slip planes, instead of considering all dislocations indi-
vidually. The properties of the slip planes are sampled from a prob-
ability distribution, which is based on the underlying stochastics of
the dislocation sources. By making use of the weakest-link princi-
ple, lattice planes can be clustered together in slip bands. This
allows the model to be implemented in a standard 3D CPFE frame-
work accounting for large deformations. In this way, both crystal
heterogeneity and geometrical effects can be taken into account.
Moreover, it was shown that the weakest-link principle can be
used with relatively large band widths. This considerably reduces
the computational cost of the model.

Finally, the application of model was demonstrated on a com-
pression tests of nickel micropillars. Here, it was shown that an
appropriate distribution for the dislocation source strength allows
one to capture the experimentally observed size effects. Addition-
ally, slip is localized in only a few slip bands, which is characteristic
for small-scale experiments on single crystals with dimensions up
to a few micrometers. The added value of the model was demon-
strated by analyzing the difference in slip system activity between
two different sets of boundary conditions. Such simulations are rel-
evant for the micropillar compression community, but cannot be
done with standard CPFE which does not include stochastic influ-
ences of the underlying dislocation structure which have a domi-
nant role at these small scales.

The (orders of magnitude) lower computational cost compared
to DDD and the ability to take rotations and other finite deforma-
tion effects into account make the model attractive for analyzing
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small-scale experiments with dimensions in the order of microm-
eters and above.

A limitation of the framework in its current form is that it does
not account for intermittent strain bursts, which are often attribu-
ted to the spontaneous shutdown of active dislocation sources and
the activation of new dislocation sources (Rao et al., 2008; Tang
et al., 2008; Cui et al., 2014). Instead, it is assumed that all disloca-
tion sources are initially present in the material and the hardening
behavior is smoothly captured. This aspect, and the extension to
multiple grains are topics of further research.
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