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Transactive Energy for Flexible Prosumers Using

Algorithmic Game Theory
Georgios Tsaousoglou, Pierre Pinson, Fellow, IEEE, and Nikolaos G. Paterakis, Member, IEEE

Abstract—In modern smart grids, the focus is increasingly
shifted towards distributed energy resources and flexible electric-
ity assets owned by prosumers. A system with high penetration
of flexibility assets, has a very large number of variables and
constraints, while a lot of the information is local and non-
observable. Decomposition methods and local problem solving is
considered a promising approach for such settings, particularly
when the implementation of a decomposition method features a
market-based analogy, i.e. it can be implemented in a Transactive
Energy fashion. In this paper we present an auction-theoretic
scheme for a setting with non-convex prosumer models and
resource constraints. The scheme is evaluated on a particular case
study and its scalability and efficiency properties are tested and
compared to an optimal benchmark solution. A game-theoretic
analysis is made with respect to how an intelligent agent, that
bids on behalf of a prosumer can try to strategize within the
auction, in order to make itself better-off. Our simulations show
that there is an alignment of incentives, i.e., when the prosumers
try to strategize, they actually improve the auction’s efficiency.

Index Terms—flexibility, Transactive Energy, Algorithmic
Game Theory, Auction

I. INTRODUCTION

IN modern power systems there is a profound trend towards

investing in electricity assets located at the edge of the

network [1]. These include batteries, smart appliances, electric

vehicles etc. Such flexibility assets, owned by prosumers,

create several challenges regarding their integration in the

electricity markets and the network management algorithms.

In contrast to power plants, the local constraints of each

prosumer (and its flexibility assets) are not visible to the op-

erator and they can also be changing from one day to another.

Thus, when it comes to energy management, there is a general

consensus that local problem solving is necessary [2], [3].

Naturally, in a distributed optimization where each prosumer

solves a local problem, certain coordination is needed in order

to satisfy global constraints (i.e. constraints that involve more

than one prosumer). Such constraints can relate to the physical

flows of the electrical grid or to capacity limits of system

resources. For example, the operator of the distribution net-

work can ex-ante allocate an upper limit of network capacity

that is available to a community of prosumers, for reasons of

managing congestion in the distribution grid, as explained in

[4]. Also, the capacity of a distribution network transformer

is another type of a constraint that jointly involves multiple

prosumers [5]. These types of constraints are generally referred

to as resource constraints.
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2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No.754462

G. Tsaousoglou, and N.G. Paterakis are with the Eindhoven University of
Technology. P. Pinson is with the Technical University of Denmark.

A. Motivation

Managing and coordinating a set of hundreds, or thou-

sands of prosumers creates an important scalability barrier

and the research community has been trying to build effi-

cient and scalable algorithms for the energy management and

global constraint satisfaction problem. Several decomposition

methods have been proposed in the recent literature, where

prosumer decisions are made locally and the coordination is

typically achieved by the iterative exchange of energy prices.

This framework is often referred to as Transactive Energy [6].

However, most such methods can only accommodate convex

problems; hence, a convexity assumption is very common in

the relevant literature. While convex models facilitate model

analysis and strong theoretical results, the extent to which they

can realistically model the prosumers’ flexibility assets is often

deemed quite limited.

On the other hand, the non-convex nature of asset models

makes it extremely difficult to obtain decomposition meth-

ods with optimality guarantees for allocating energy among

a community’s prosumers. Even achieving global feasibility

alone, is reported as a quite challenging issue [7]. A few

theoretical tools are available (e.g. Bender’s decomposition)

but those are not suitable to be implemented in a market-

oriented framework, i.e., with Bender’s decomposition the

local information is communicated to a central node and the

centralized optimization problem is decomposed to multiple

cores for computational reasons. This method is not com-

patible with a Transactive Energy framework where prices

are communicated to the prosumers and the latter make their

energy management decisions locally.

Another important issue arises with respect to incentivizing

the prosumers to make their local decisions in accordance

to some social objective (e.g. minimizing the operational

cost of the system or accommodating global constraints).

Market frameworks can be very efficient in this aspect, but,

if not designed carefully, they can also be prone to strategic

participant behavior and a consequent vast inefficiency or even

a plain failure. Especially in the community context, where

the reach of market monitoring and auditing procedures is

naturally limited, intelligent agents with computational capa-

bilities, acting on behalf of prosumers can find an inviting

place to exploit. Based on the previous observations, one

can identify some important requirements for market-based

community energy management algorithms:

• Scalability: supporting local decision-making and inte-

grating large numbers of prosumers and their flexibility

assets in a reasonable computational time.
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• Efficiency: coordinating prosumer decisions by providing

suitable market signals, so as to achieve a social objective

and satisfy global constraints.

• Incentives: designing a market framework that is strategy-

proof and cannot be gamed/manipulated by intelligent

agents that participate on behalf of prosumers.

• Non-convexities: taking into account the non-convex na-

ture of realistic DER models.

B. Related Work

Along with high penetration of flexibility assets in the

electricity system, the issue of scalability has been the focus of

several studies. Reference [8], presents a literature review on

distributed optimization techniques applied to modern smart

grids. In [5], a resource constraint is considered by taking

into account the limit of a prosumer community’s aggregated

energy exchange through the distribution transformer. In [9]

a P2P trading scheme is proposed where the transactions

have to be approved by the operator, in order to ensure

the satisfaction of global constraints. In [10], the alternate

direction method of multipliers (ADMM) is used to solve the

energy management problem of a community of prosumers.

Global resource constraints were considered in the form of

limiting the community’s import energy due to contracted

peak-shaving services. However, the local cost functions of

the prosumers are assumed to be convex. In [11] the ADMM

approach is applied to a system with non-convex models,

although in this case the satisfaction of global constraints is

not guaranteed.

Configuring decomposition methods with market frame-

works (i.e. typically by interpreting Lagrange multipliers as

price signals), is a well-established analogy that has also

been applied in various use cases. A typical example of such

studies is [12], while in [13] global network constraints are

also considered. However, these studies also assume convex

local cost functions of prosumers and their flexibility assets.

A similar approach is proposed in [14], in a use case with

non-convex user preferences but, again, there is no guarantee

of global constraint satisfaction. Techniques from Artificial

Intelligence have been proposed in order to handle non-

convex energy management problems (e.g. actor-critic deep

reinforcement learning [15] and temporal difference learning

[16]). However, it is an open and challenging problem for such

methods to guarantee global constraint satisfaction.

At the same time, the potential of Artificial Intelligence

techniques towards making local energy management deci-

sions on behalf of a prosumer [17], or also bidding on

behalf of a community in an electricity market [18] has

been demonstrated. In [19], however, it is shown (through bi-

level optimization) that strategic bidding by intelligent agents,

acting on behalf of prosumers can compromise the system’s

efficiency.

In order to account for strategic behavior, game-theoretic

aspects need to be considered [20]. In [20] a Vickrey-Clarke-

Groves (VCG) mechanism is proposed in order to incentivize

truthful participation in the market, while [21] proposes the

same mechanism for offering Demand Response services. The

TABLE I
CLASSIFICATION OF LITERATURE BASED ON REQUIREMENTS

Scalab- Efficiency & global Incentives & Non-convex
ility constraint satisfaction strategic behavior models

[5], [9] ✔ ✔ ✕ ✔

[10], [11], ✔ ✔ ✕ ✕

[12], [13]

[14] – [16] ✔ ✕ ✕ ✔

[20] – [22] ✕ ✔ ✔ ✕

[23] – [25] ✔ ✔ ✔ ✕

This work ✔ ✔ ✔ ✔

mechanism is applied to a low-voltage network (accounting

also for power flow constraints) in [22]. In [23], distributed

mechanism design is used to achieve the same incentive

alignment in a peak-shaving use case, while also exhibiting

attractive scalability properties, in contrast to the standard

VCG mechanism. A decomposition method for accommo-

dating coupling constraints in a game-theoretic framework is

shown in [24], while in [25] a novel mechanism is proposed for

satisfying resource constraints in a setting with strategic, price-

anticipating prosumers. However, these studies again assume

convexity of prosumer models.

Overall, each of the above studies addresses a subset of

the the four requirements discussed in the introduction. A

summary of the literature review is presented in Table I.

C. Contributions and Organization

In this paper, we draw on concepts of algorithmic game

theory and propose an auction-theoretic solution for a non-

convex community energy management problem with (global)

resource constraints. We test the proposed method on a

particular case study and conduct simulations to assess its

performance with respect to all four of the above requirements.

To the best of the authors’ knowledge, this is the first study

to consider all four of the requirements of community energy

management systems. In particular, the proposed method can

handle non-convex prosumer models and maintain its global

feasibility guarantees, while leaving no room for strategic par-

ticipant behavior. Our simulation results assess the method’s

efficiency and scalability properties.

The remainder of this paper is organized as follows:

Section II presents the system model and the problem for-

mulation as well as a couple of counter-examples of how

commonly proposed approaches can fail to satisfy certain

requirements. Section III presents the proposed approach. In

Section IV, a case study is modeled with prosumers featuring

thermostatically controlled loads, electric vehicles and storage.

In Section V, the proposed solution is applied to the case study

and the results are presented. Finally, Section VI concludes the

paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We model a community of prosumers, where each prosumer

features a set of controllable flexibility assets. Each househol’s

energy management decisions are realized by a Home Energy

Management System (HEMS) agent. The set of prosumers is
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denoted by N , where each prosumer bids for electricity for

a time horizon T . The prosumer’s local information includes

DER models, local constraints and user preferences.

For a prosumer n ∈ N , let An denote the set of n’s

flexibility assets and ytm (kWh) denote the controllable power

profile of DER m in timeslot t. The prosumer’s aggregated

profile in t (from all its flexibility assets) is denoted by xt
n

(kWh). It is
∑

m∈An

ytm = xt
n (1)

Since in this paper we mainly refer to prosumers or res-

idential/commercial buildings, we adopt the convention of

generally referring to xt
n as the prosumer’s consumption. Let

xn = {xt
n}t∈T denote a consumption profile of prosumer

n. The locally feasible set of xn is denoted as Ln and is

defined by a set of local constraints on xn. The set of local

constraints Ln is defined by the operational characteristics

and models of the prosumer’s flexibility assets (e.g. DER

operational points, efficiency of power exchange of a battery

etc). Set Ln is non-convex since constraints typically include

binary variables, e.g., for controlling the operation of flexibility

assets that operate in discrete power levels. Also, intertemporal

constraints may apply, where a DER’s power ytm at timeslot

t is dependent to the power yt−1
m of the DER on the previous

timeslot t− 1.

User preferences and DER operational costs are modeled

via a cost (or disutility) function cn(xn),R
|T | → R that maps

a power profile xn to a certain cost value for n.

On top of local constraints xn ∈ Ln, there is a set G
of community coupling constraints. These global constraints

relate the power profile of more than one prosumer, such as

limits on the community’s aggregated consumption. Formally,

it is required that the community’s aggregated profile XN =
{

X1
N , X2

N , ..., X
|T |
N

}

, where Xt
N =

∑

n∈N xt
n, satisfies the

set of global constraints, i.e., XN ∈ G. Set G can be non-

convex for our purposes, however we make the following

Assumption

Assumption 1. There is a set of threshold values
{

xtn
}

n∈N,t∈T
, for which it is

{

XN : xt
n ≤ xtn, ∀n ∈ N, t ∈ T

}

∈ G

Intuitively, Assumption 1 expresses the mild condition that

if all prosumers reduce their consumption enough, the remain-

ing (inflexible) demand is feasible for the system to satisfy.

Finally, the electricity cost of the community’s energy

in timeslot t is denoted as gt (Xt
N ). The objective of the

community is to find a set of vectors xn, that are locally and

globally feasible, and also minimize the community’s system

cost:

min
xn

{

∑

n∈N

cn(xn) +
∑

t∈T

gt
(

Xt
N

)

}

s.t. xn ∈ Ln ∀n ∈ N

xn ∈ G

Xt
N =

∑

n∈N

xt
n

(2)

Problem (2) is a non-convex problem and, depending on the

form of functions cn(xn), it can be arbitrarily hard to solve

it efficiently or even find a feasible solution. Moreover, cost

functions cn(xn) and locally feasible sets Ln are private to

prosumer n and the latter may not be eager to share this

information with a central entity (or with other prosumers).

A. Maintaining a per-timeslot price: a counter-example

Since there is currently no general method for reaching an

optimal solution to a distributed non-convex problem such

as (2), the research community in power systems typically

opts for an approach where a community energy manager

iteratively sets an electricity price λt for each timeslot (e.g.

[4], [26]) and the prosumers respond by communicating their

profiles xn for the current set of prices. If the global con-

straints are not satisfied, the community manager increases the

prices accordingly and the procedure iterates until the global

constraints are satisfied. For models with continuous variables,

this approach is represented by Lagrangian relaxation methods.

However, when this procedure is used in a setting with

intelligent agents acting on behalf of prosumers, there is a

clear incentive for each prosumer to strategically misreport its

“optimal” profile along the algorithm’s iterations.

1) Numerical example and truthful case: For the sake of

demonstration, consider a setting where we have 3 prosumers

who are bidding for energy consumption in 4 timeslots.

prosumer 1 requires 2 kWh in timeslot 1, while prosumer 2

requires 2 kWh in timeslot 2. prosumer 3 needs a total of

4kWh that have to be split in two consecutive timeslots, with

2 kWh per timeslot. prosumer 3 prefers to consume energy in

timeslots 1 and 2, but can also satisfy its demand in timeslots

3 and 4, albeit with some disutility. The available energy is

only 2 kWh in each timeslot.

Using the approach described above, the community man-

ager would begin with zero price in all timeslots. In the first

iteration, prosumer 3 would opt for timeslots 1 and 2 (because

it prefers them). The demand would be higher than the supply,

so the prices in timeslots 1 and 2 would increase. This would

repeat until the prices in timeslots 1 and 2 are high enough

for prosumer 3 to migrate its demand to timeslots 3 and 4

(assuming that prosumers 1 and 2 are less elastic (are willing

to pay more) than prosumer 3, and thus prosumer 3 is the one

who migrates its demand first). The procedure would terminate

with increased prices in timeslots 1 and 2.

2) Strategic case: Now suppose that prosumer 1 acts strate-

gically and only declares demand in timeslot 4, although it

does not wish to consume energy in this timeslot. prosumers 2,

3 still compete for energy in timeslot 2 and increase the price,

whereas in timeslots 1, 3 and 4 prices remain zero. When

prosumer 3 inevitably migrates to timeslots 3, 4, prosumer 1

observes the price increase and abandons timeslot 4 to declare

its true demand, i.e., the need for consuming energy in timeslot

1. The procedure terminates with prosumer 1 receiving energy

in timeslot 1, but this time at zero price.

Intuitively, a prosumer would be better-off suppressing its

reported energy consumption in the timeslots it is interested

in, so that prices don’t rise in the early iterations. Evidently,
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this misalignment of incentives can cause a lot of trouble

when all prosumers have an incentive to misreport their true

preferences.

B. The computational cost of truthfulness

In order to tackle the problem of misreporting, we can draw

on concepts of mechanism design. In particular, the unique

mechanism that guarantees truthful participation and achieves

optimality, is the Vickrey-Clark-Groves (VCG) mechanism.

By applying the VCG mechanism, the community manager

requests each prosumer to report its local cost functions

c(·) and constraints L. The community manager then solves

problem (2) in order to find the optimal allocation. After that,

it solves problem (2) another |N | times to find the prosumer

payments. Specifically, each time it removes one prosumer

from the problem and calculates the system cost of other

prosumers, with and without the said prosumer. By subtracting

the latter from the former, the payment of the prosumer is

calculated [22]. With this form of payment calculation, it is

theoretically proven that it is to the best interest of every

prosumer to truthfully report its local parameters. However the

VCG mechanism is computationally costly and suffers from

scalability issues, since it needs to solve |N |+1 optimization

problems.

In what follows we provide a decomposition method, in-

spired by auction theory, that guarantees a globally feasible

solution Moreover, the auction is especially designed in such a

way, that the prosumers’ incentives are aligned with the social

objective (as shown by simulation in Section V), while the al-

gorithm’s computational time and scalability are dramatically

improved in comparison to the VCG mechanism.

III. PROPOSED SOLUTION

In this section we adapt and modify a combinatorial auction

originally proposed in [27]1, to the problem described in

the previous section. We assume a community manager that

iteratively gathers the updated profiles xn of all prosumers

and is aware of the global constraints xn ∈ G. It is noted

that the profile aggregation and the satisfaction of the global

constraints can also be performed in a distributed fashion,

through the use of Data Hash Tables as done in [23], without

the need of a central coordinator. However, the implementation

of such a protocol is an orthogonal problem which is out of

scope for this paper.

Each prosumer n bears a maximum consumption level

xmax
n , such that xt

n ≤ xmax
n , ∀t ∈ T . prosumer n may also have

non-flexible loads, that constitute a minimum profile x
min
n .

In the proposed auction, each prosumer will maintain a bid

bn ∈ R (in monetary units), that represents n’s total payment.

1The model presented in [27] is proposed for a setting with discrete items
where participants have valuations for different item allocations that they
receive. More specifically, [27] considers participants that desire one specific
and publicly known allocation, or participants that desire different allocations
but have the same valuation among those. In contrast, in this paper we consider
the more general problem of allocating a continuous resource (i.e. energy) to a
number of participants that have different valuations for different (not publicly
known) allocations.

It is highlighted here, that bn is a payment that corresponds

to n’s whole profile xn.

The process begins by setting the requested demand for each

prosumer to xt
n = xmax

n and initializing each prosumer’s bid

bn to zero. Also, a set of currently “winning” prosumers (i.e.,

prosumers that have been granted an allocation), denoted as

W , is initialized to the empty set. At iteration k, the com-

munity manager iterates through the prosumers in decreasing

order of their bids. If the previous profile x
(k−1)
n of prosumer

n, is compatible with the aggregated profile of prosumers

already in set W , i.e., XW (k) + x
(k−1)
n ∈ G, then n is added

to set W (k). prosumer n’s profile is set equal to the previous

value, x
(k)
n = x

(k−1)
n , and it is added to the aggregated profile

XW (k) of set W (k). If n’s choice is not feasible, then the

community manager provides n with the aggregated vector

XW (k) of the rest of the prosumers in W (k), and with the

global constraints XW (k) +x
(k)
n ∈ G. prosumer n, is required

to compute a different vector x
(k)
n , that is compatible with the

profiles of the prosumers that are already in W , by solving

the following optimization problem:

x
(k)
n = argmin

{

cn(x
(k)
n ) + sn

(

x
(k)
n ,
∑

t∈T

g
(

Xt
W (k)

)

)}

s.t. x
(k)
n ∈ Ln

XW (k) + x
(k)
n ∈ G

xt,(k)
n ≤ xt,(k−1)

n , ∀t ∈ T
(3)

where function sn(·) captures the social contract that deter-

mines n’s share of the total community cost. Intuitively, the

algorithm maintains the satisfaction of global constraints, by

requiring the profile of each prosumer n that is about to enter

the set W , to be compatible with the profiles of prosumers that

played prior to n and are already in W . Also, the last constraint

in (3) obligates the prosumer’s profile in each timeslot to be

monotonically decreasing across the auction iterations. This

prevents the auction from oscillating among globally infeasible

solutions, without making any progress. In case n was not able

to find a feasible solution within a predetermined time, then, at

the end of the iteration, n can increase its bid bn and maintain

its previous profile, i.e. x
(k)
n = x

(k−1)
n . In the next iteration all

prosumers in W will be transferred to set P , and set W will

be reinitialized. Thus, n will be prioritized (since it will have a

higher bid) and it will be easier for n to find a feasible solution,

since XW will be smaller (or empty) upon n’s turn. If n could

not find a feasible solution and also cannot increase its bid,

because it will get higher than the prosumer’s current cost

cn(x
(k)
n ) + sn

(

x
(k)
n ,
∑

t∈T g
(

Xt
W (k)

)

)

, the prosumer tem-

porarily drops out, and is added to the “dropout” set D. Once

the iterative procedure terminates, the community manager

will allocate power to the prosumers in D, in decreasing order

of their reached bid based on the resources left. Each prosumer

that is accommodated will be transferred to set P . The exact

auction procedure is described in Algorithm 1.

Proposition 1. The auction of Algorithm 1, always terminates

with a globally feasible allocation.
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Algorithm 1 Combinatorial auction for transactive energy

1: Initialize bn for every bidder n
2: Initialize xt

n = xmax
n , ∀t for every bidder n

3: Initialize k = 1 P 1 = ∅, D1 = ∅,W 1 = ∅
4: while P (k) ∪D(k) ⊂ N :

5: Iterate through the bidders n /∈ D(k), from highest to

lowest bid bn
6: if XW (k) + x

(k−1)
n ∈ G and x

(k−1)
n ≤ x

max
n

7: set n ∈W (k), x
(k)
n = x

(k−1)
n

8: else

9: n solves problem (3)

10: if feasible

11: n updates current profile x
(k)
n

12: set n ∈W (k)

13: else

14: n stays with previous profile, x
(k)
n = x

(k−1)
n

15: if
∑

n∈W (k) bn >
∑

n∈P (k) bn
16: clear P (k) and set P (k) ←W (k)

17: for each n /∈ P (k) ∪D(k):

18: if bn + ε ≤ cn(x
min
n )

19: bn = bn + ε
20: else

21: set n ∈ D(k), xt
n = 0, ∀t

22: k = k + 1
23: W (k) = ∅, P (k) = P (k−1), D(k) = D(k−1)

24: end while

25: P k →W (k)

26: Iterate through the bidders n ∈ D(k), from highest to

lowest bid bn
27: n solves problem (3)

28: if feasible

29: n updates current profile x
(k)
n

30: set n ∈W (k), n /∈ D(k)

31: P (k) ←W (k)

Proof. Notice that, in each iteration of the while loop of

Algorithm 1, unless a prosumer enters set P , then it either has

to increase its bid (i.e., reduce its reward/ increase its bill) or

enter set D (lines 17-21). Moreover, by line 18, a prosumer’s

bid is bounded above. Thus, eventually all prosumers find

themselves either in P or D, which (by line 4), means that

the algorithm always exits the while loop and, consequently,

always terminates.

Also, by lines 30-31, after the while loop terminates, a

prosumer is added to P if and only if the prosumer is removed

from D. Thus, when Algorithm 1 terminates, all prosumers are

either in set P , or have dropped out.

Sets P and W are initialized to the empty set, and a

prosumer can only enter set P by first entering set W (lines

16 and 31 of Algorithm 1). However, a prosumer cannot enter

set W , unless its latest updated vector is consistent with the

vectors of prosumers that are already in W (lines 7, 12, 30).

Thus, at any point, the profile vectors of prosumers in set P
are locally and globally feasible, i.e., XP (k) ∈ G, ∀k.

By combining the three arguments made respectively in the

three paragraphs above, it follows that Algorithm 1 always

converges and it converges to a globally feasible allocation.

Using this procedure, problem (2) is effectively decomposed

into local optimization problems, while global constraints are

satisfied by always maintaining a feasible set of profiles.

With respect to the functions sn(·), their choice has been

subject to discussion in recent literature on energy commu-

nities (e.g. [10], [28], [25]) and relates to how the costs of

energy are shared among the community members. Never-

theless, it is easy for the community manager to make sure

that the payments received add up to the energy costs, i.e.,
∑

n∈N sn

(

x
(k)
n ,
∑

t∈T g
(

Xt
W (k)

)

)

=
∑

t∈T g
(

Xt
W (k)

)

as is

in fact the case for the schemes proposed in the cited literature.

A straightforward choice is to simply pass the wholesale

energy price λt of each timeslot, on to the prosumers. In this

case sn(·) would be sn(x
t
n) = xt

nλ
t. Based on this remarks,

an important observation is that the proposed scheme is always

able to achieve revenue adequacy, i.e., the community manager

never runs a budget deficit. This is formally stated in the

next Proposition. Note that this is another advantage against

the optimal and incentive-compatible VCG mechanism, since

the latter is notorious for suffering from issues with revenue

inadequacy.

Proposition 2. By choosing the functions sn(·) such that
∑

n∈N sn

(

x
(k)
n ,
∑

t∈T g
(

Xt
W (k)

)

)

=
∑

t∈T g
(

Xt
W (k)

)

, the

auction of Algorithm 1, is always revenue adequate for the

community manager.

Proof. The total amount of payments received

by the community manager is
∑

n∈N bn +
∑

n∈N sn

(

x
(k)
n ,
∑

t∈T g
(

Xt
W (k)

)

)

while the total amount

of payments made by the community manager for buying

the community’s energy is
∑

t∈T g
(

Xt
W (k)

)

. Therefore, the

difference between revenues and costs for the community

manager is equal to
∑

n∈N bn. Observe that the bid of each

prosumer is non-decreasing throughout the auction, while the

initial bid is non-negative. Thus, the community manager

never runs into a budget deficit.

In the proposed combinatorial auction each prosumer n
is required to solve problem (3) at each iteration k and

respond either with a feasible profile x
(k)
n or remain with

its previous profile (x
(k)
n = x

(k−1)
n ) and increase its bid.

Let us refer to a “strategy” as the way through which a

prosumer decides between these two options throughout the

auction’s iterations. It is important to note that, in any given

iteration, the prosumer cannot know which of the two choices

will eventually result in a better outcome for itself since

that depends also on the strategies of other prosumers. In

technical terms, we say that there is no dominant strategy for

a prosumer, i.e., there is not any strategy for prosumer n that

achieves a weakly better outcome for n over other strategies.

As explained in more detail in [27], because of this property,

the concept of dominant-strategy incentive compatibility is no

longer relevant, which hinders a game-theoretic analysis of the
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way that the auction will play out. Thus, the ability to predict

the auction’s outcome is lost which, in turn, takes away the

ability of prosumers to strategize.

Rather, the best that a prosumer can do is choose an

(one of many possible) undominated strategy. A prosumer’s

undominated strategies in our setting are characterized by not

opting out unless the prosumer’s bid is about to become higher

that the prosumer’s cost of its minimum possible profile x
min
n ,

i.e., bn + ε ≥ cn(x
min
n ). Based on these properties, we say

that the auction is implementable in undominated strategies,

i.e., achieves strategy-resistance, which is equivalent to the

property of incentive compatibility for such mechanisms [29].

Finally, it is noted that the proposed scheme could in

principle be extended in order to cope with use cases where

the set of constraints G includes power flow constraints of the

physical grid. However, in that case, the constraints G would

not depend only on the vector X
t
N of the prosumers’ aggre-

gated profiles, but more generally to the particular combination

{xn}n∈N of prosumers’ profiles. Therefore, solving problem

(3) would require gathering all the prosumers’ profiles xn as

well as the constraints G (including the network topology)

to a single point for computations. In practice, this would

also require a trusted third party, responsible for gathering the

necessary data in a secure way and performing the computa-

tions, so as to guarantee data privacy and security. In contrast,

when the constraints depend only on the aggregated profile

X
t
N of the community, the assumption of a third party is not

necessary.

IV. CASE STUDY

In this section we present a case study where we will

apply the proposed algorithm and compare it to the optimal

benchmark in terms of optimality and scalability. We con-

sider a setting where a community manager is responsible

for the dispatch of a set N of prosumers. Each prosumer

n ∈ N features a set An of flexibility assets, namely an

electric vehicle (EV), a thermostatically controlled load (TCL)

e.g. an air-conditioner, a battery and a small generator. The

electricity consumption of asset m ∈ An, in timeslot t ∈ T is

denoted as ytm, while prosumer n’s total consumption in t is

xt
n =

∑

m∈An
ytm.

We consider a setting with limited resources. The commu-

nity is constrained on the amount of total energy consumption

by a parameter R, as in
∑

n∈N

xt
n ≤ R, ∀t ∈ T (4)

Constraints (4) (one per timeslot), correspond to the globally

feasible set G, described in Section II.

An asset m ∈ An is constrained by an upper and lower

power consumption level:

ymin
m ≤ ytm ≤ ymax

m (5)

and it cannot consume energy before its plug-in time am or

after its plug-out time dm:

ytm = 0, t < am, t > dm (6)

Also, an EV i ∈ An has a certain energy requirement Ei

(kWh) that must be fulfilled, and the State-Of-Energy SOE
(kWh), of the EV, follows a certain transition function

hi
∑

t∈T

yti ≥ Ei (7)

SOEt
i = SOEt−1

i + hiy
t
i (8)

where parameter hi relates to charging efficiency. When charg-

ing at full power capacity ymax
i , the EV’s energy demand

will be fulfilled in a total of ⌈Ei/hiy
max
i ⌉ timeslots, where

⌈·⌉ denotes rounding to the nearest integer above. When the

controlled power is generally lower than hiy
max
i , the EV will

suffer an extra waiting time (beyond ⌈Ei/hiy
max
i ⌉). Let the

binary variable ut
i denote whether in timeslot t, EV i still has

unsatisfied demand:

ut
i =

{

1, SOEt
i − Ei < 0

0, SOEt
i − Ei ≥ 0

(9)

Then, the extra waiting time θEV , (beyond ⌈Ei/hiy
max
i ⌉

timeslots) that the EV has to wait in order to receive its

required energy, is

θEV =
∑

t∈[ai,|T |]

ut
i − ⌈Ei/hiy

max
i ⌉ − ai (10)

where in order to define the net waiting time, we subtract the

timeslots before the EV’s arrival and the timeslots that the EV

would wait if it was charging at ⌈Ei/hiy
max
i ⌉, from the total

timeslots that the EV’s energy requirement was not satisfied.

For a TCL j ∈ An let F t
j denote the temperature measured

by the TCL’s sensor. The transition function of the temperature

is defined as:

F t
j = F t−1

j + insj(F
t
env − F t−1

j )− conjy
t−1
j (11)

where Ft
env is the environment’s temperature, insj is a pa-

rameter related to temperature decay (e.g., insulation) and

conj is a conversion factor (from electrical power to thermal

energy). The set points of the TCL controller are denoted as

Fmin
j for minimum comfortable temperature and Fmax

j for

maximum comfortable temperature. We assume that when

the temperature F t
j is within [Fmin

j ,Fmax
j ], the demand is

considered satisfied. Let ut
j denote whether F t

j is beyond the

comfort levels in a timeslot that the device is turned on:

ut
j =

{

1, F t
j /∈ [Fmin

j ,Fmax
j ] ∧ t ∈ [aj , dj ]

0, F t
j ∈ [Fmin

j ,Fmax
j ] ∨ t /∈ [aj , dj ]

(12)

The cost of a TCL, defined as the number of timeslots that

the temperature preference is not satisfied, is:

θTCL =
∑

t∈T

ut
j (13)

Note that the timeslots in which the TCL is turned off do not

count in the device’s cost.

A battery l ∈ An can charge at timeslot t, at a charging

rate ytl,ch or discharge at ytl,dis. The binary variable ut
l denotes

whether the battery charges (ut
l = 1) or discharges at t. It is

0 ≤ ytl,ch ≤ ut
ly

max
l (14)
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0 ≤ ytl,dis ≤ (1− ut
l)y

max
l (15)

The battery’s state of charge SOCt
l follows the dynamics

SOCt
l = SOCt−1

l + hchl ytl,ch − hdisl ytl,dis (16)

where hchl and hdisl are parameters for the battery’s charging

and discharging efficiency. The battery’s capacity constraint is

modelled as

0 ≤ SOCt
l ≤ 1 (17)

The operating cost relates to the battery’s degradation, which

depends on the amount of charge-discharge cycles, is modelled

as

θBat =
∑

t∈T

ytl,disdegl (18)

Finally, a microgenerator g ∈ An generates ytg in timeslot

t, and is constrained by (5) and by ramp constraints as

− rampg ≤ ytg − yt−1
g ≤ rampg (19)

The generator’s cost is approximated by a quadratic function

as

θgen =
∑

t∈T

cg(y
t
g)

2 (20)

We can then define the cost function of a prosumer n ∈ N ,

using the above notions for θm and a cost parameter wn:

cn(xn) = wn

∑

m∈An

θm (21)

Finally, we assume that the community buys energy from

a single connection point, at a per-timeslot price λt and each

prosumer n pays proportionally for its hourly consumption,

i.e.,

sn(x
t
n) = xt

nλ
t (22)

Based on the formulations above, the set of local constraints

Ln of a prosumer consists of eqs. (5) – (20) together with

constraints (1). The cost functions are defined by (21) and

the global constraints G are defined by (4). Thus, having

defined the cost functions and the local and global constraints,

the optimal solution of problem (2) can be obtained by

having each prosumer communicate its cost functions and

local constraints to the community manager. The latter solves

an optimization problem (in this case study, a mixed-integer

linear program) to determine the profile of every asset of every

prosumer. We use this approach as a benchmark to evaluate

the proposed method. The simulation setup and results are

presented in the next section.

V. SIMULATION SETUP AND RESULTS

We simulated the above setting for an horizon of 14 times-

lots, and a setup with 15 prosumers, unless stated otherwise.

Each prosumer features a TCL and an EV, i.e., the decision

variables for each prosumer are ytm, xt
n, SOEt

i, u
t
m, θm, F t

j .

For each test, the results were averaged out over a number

of experiments, where in each experiment different parameter

values were sampled from random normal distributions. The

values or random distributions of setting’s parameters are

presented in Table II. The outside temperature Ft
env was set

between 77 and 110 degrees Fahrenheit (so as to resemble typ-

ical summer temperatures). The resource parameters Rt were

sampled from a normal distribution with standard deviation

of 1, and an average value of r|N |max(ymax
m ), where r is

a percentage value. The lower the r, the less the available

resources. Unless stated otherwise, parameter r was set to the

minimum value for which problem (2) remains feasible.

TABLE II
VALUES/DISTRIBUTIONS OF SETTING’S PARAMETERS

Parameter Comments Value Average Value Standard deviation

ymin
m ∀m 0 - -

ymax
m for EVs - 3 0.1

ymax
m for TCLs - 4 0.1

ymax
m for batteries - 2 0.1

ymax
m for generators - 1.5 0.2

am for EVs - 4 2

am for TCLs 0 - -

dm ∀m |T | - -

hi - - 1 0.1

hch
l

- 1/3ymax
m - -

hdis
l

- 1/2ymax
m - -

Ei - - 8 1

insj - 0.05 - -

conj - 3.5 - -

degl - - 0.01 0.003

cg - - 0.1 0.02

rampg - - 0.5 0.2

Fmin

j - 73 - -

Fmax

j - 80 - -

wn ∀n - 1 0.2

λt ∀t - 0.09 0.02

A. Scalability

Compared to the optimal and incentive compatible VCG

mechanism, the proposed approach sacrifices optimality guar-

antees, in order to achieve faster computational time and scal-

ability. The computational time of VCG, rises quickly with the

number of prosumers as can be observed in Fig. 1, in contrast

to the proposed approach. Moreover, the proposed approach

scales remarkably well to large numbers of prosumers as can

be seen in Fig. 2. The experiments were run in Python 3

environment, using CPLEX. The hardware was an i5, 2.7GHz

computer with 8GB RAM and two cores.

B. Efficiency vs Computational time trade-off

A design choice of the auction is the step ε with which

the prosumers’ bids are increased. We simulated the setting

using different values for ε. For each value of ε, a number of

30 experiments were run, where in each experiment a different

combination of system parameters was used, by sampling from

the parameter distributions of Table II. For each experiment

the resulted computational time and system cost were scattered

on a 2D plane, using a different color depending on ε. The

result is depicted in Fig. 3. A general trend is observed, that

lower choices of step ε result in higher computational times.
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Fig. 1. Scalability of the optimal VCG approach compared to the proposed
scheme
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Fig. 2. Scalability of the proposed scheme to large numbers of prosumers

Interestingly, the auction’s efficiency does not seem to be

improved by further reducing the step ε, after a certain point,

and it even deteriorates. To demonstrate this on the figure, a

second degree polynomial was fitted to the resulting points and

is shown on the same graph with a red line. The best choice in

terms of efficiency is a step around 0.1. Another observation

is that by using a higher step (e.g. ε = 0.4), the computational

time can be shortened, usually without significant loss of

efficiency on average. However, a choice of such a large step,

comes with a risk of severe efficiency loss, as can be seen by

the purple outliers on the upper left part of the figure.

C. Game-theoretic aspects

In the proposed scheme each prosumer n is required to

solve problem (3) at each iteration k and respond either with

a feasible profile x
(k)
n or remain with its previous profile

(x
(k)
n = x

(k−1)
n ) and increase its bid. In this subsection, we

model the prosumer’s choice by implementing a threshold

θn, where if
∑

m∈An
θ
(k)
m ≤ θn, (i.e. if the resulted waiting

time is less than the threshold), the prosumer accepts the

solution. If
∑

m∈An
θm > θn, then the prosumer opts for

passing, and prefers to increase its bid rather than accept this

solution. Intuitively, if θn is very high, the prosumer might

accept a very unfavorable profile at some iteration and it will
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Fig. 3. Computational time and efficiency of the proposed scheme for different
values of the bid-increasing step ε

not be able to escape from it in later iterations due to the

last constraint of problem (3). Formally, the aforementioned

threshold is implemented by adding constraint

∑

m∈An

θm ≤ θn (23)

to each prosumer’s local set of constraints Ln.

From the prosumer’s perspective, its payoff depends on its

own selection θn as well as on the thresholds of the other

prosumers. Thus, a game is formed, where the players are the

prosumers, the set of strategies available to each player is the

choice of θn, the set of payoffs are the local costs cn(x
∗
n)−b

∗
n,

where x
∗
n is the allocation resulted from the auction and b∗n is

the final bid of prosumer n (i.e., the amount that n is required

to pay for its allocation).

We model a case where each prosumer can choose among

6 available choices for θn, that is the set of strategies is

S = θn = {2, 4, 6, 8, 10, 12}. In order to calculate an equilib-

rium point, we simulated a best-response procedure, described

in Algorithm 2. For the experiments tested, Algorithm 2

converges to an equilibrium point only after a few iterations.

An indicative case is are shown in Fig. 4.

Algorithm 2 Best-response algorithm for equilibrium calcu-

lation

1: Initialize θn, randomly in [0, |T |] for every bidder n

2: while θ
(k)
n 6= θ

(k−1)
n , for any n:

3: for n ∈ N

4: for θ
(k)
n ∈ S

5: Run Algorithm 1 to obtain cn(x
∗
n(θ

(k)
n )), sn (x

∗
n)

and b∗n(θ
(k)
n )

6: set θ
(k)
n = argmin{cn(x

∗
n(θ

(k)
n )) + sn (x

∗
n) −

b∗n(θ
(k)
n )}

D. Efficiency of equilibria

In this test, we evaluate the efficiency of the proposed

auction, compared to the optimal solution, which was calcu-
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Fig. 4. prosumers’ strategies at each iteration of the auction (one line per
prosumer)

lated by centrally solving problem (2), assuming that all local

prosumer parameters known. The solution was obtained using

the CPLEX solver, where constraints (9) and (12) were relaxed

using the big-M method.

We assessed the efficiency of the proposed combinato-

rial auction, in terms of the system cost
∑

n∈N cn(xn) +
∑

t∈T g (Xt
W ), in two cases. In the first case an arbitrary value

for θn (within [0, 14]) was chosen randomly for each prosumer.

In the second case, the equilibrium values θeqn , as calculated

by Algorithm 2, were used. The efficiency was tested for

various values of parameter r (i.e. the parameter that defines

the level of available resources R as explained at the beginning

of this Section). The results were plotted against the optimal

benchmark. Fig. 5 depicts the results, where for each value of

r, the results were averaged out over a number of experiments.

Two important observations can be made by Fig. 5. On

the positive side, when equilibrium values θeqn were used for

the thresholds, the efficiency was better than in the case of

random threshold values. This means that, when prosumers

try to improve their own benefit by learning a good θn,

they simultaneously improve the auction’s efficiency, i.e.,

the individual incentive and the social objective are aligned.

On the negative side, in settings with very scarce resources

(lower r) the auction suffers a non-negligible efficiency loss.

Nevertheless, the only way to achieve the optimal value in a

setting with strategic users, is to employ the VCG mechanism,

which suffers from revenue adequacy issues and, as shown in

Fig.1, also from limited scalability.

VI. CONCLUSIONS

In this paper we presented a combinatorial auction through

which a community manager can make energy allocation deci-

sions for a community of prosumers in a setting with resource

constraints and strategic prosumer agents. The scheme scales

very well to large numbers of prosumers, in contrast to the

optimal Vickrey-Clarke-Groves mechanism. We evaluated the

scheme using a case study, also considering game-theoretic

aspects of prosumer participation. An equilibrium analysis

was performed and the efficiency of equilibria was evaluated.
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Fig. 5. Efficiency of the proposed scheme for two cases of threshold selection
and for various cases of resource availability, compared to the optimal solution

The design of the auction does not leave much room for

strategizing, while simulations show that the prosumers, by

trying to strategize, only improve the auction’s efficiency,

which implies an alignment of prosumer incentives with the

social objective.
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