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A B S T R A C T   

Colorectal polyps (CRP) are precursor lesions of colorectal cancer (CRC). Correct identification of CRPs during in- 
vivo colonoscopy is supported by the endoscopist's expertise and medical classification models. A recent 
developed classification model is the Blue light imaging Adenoma Serrated International Classification (BASIC) 
which describes the differences between non-neoplastic and neoplastic lesions acquired with blue light imaging 
(BLI). Computer-aided detection (CADe) and diagnosis (CADx) systems are efficient at visually assisting with 
medical decisions but fall short at translating decisions into relevant clinical information. The communication 
between machine and medical expert is of crucial importance to improve diagnosis of CRP during in-vivo pro
cedures. In this work, the combination of a polyp image classification model and a language model is proposed to 
develop a CADx system that automatically generates text comparable to the human language employed by 
endoscopists. The developed system generates equivalent sentences as the human-reference and describes CRP 
images acquired with white light (WL), blue light imaging (BLI) and linked color imaging (LCI). An image feature 
encoder and a BERT module are employed to build the AI model and an external test set is used to evaluate the 
results and compute the linguistic metrics. The experimental results show the construction of complete sentences 
with an established metric scores of BLEU-1 = 0.67, ROUGE-L = 0.83 and METEOR = 0.50. The developed CADx 
system for automatic CRP image captioning facilitates future advances towards automatic reporting and may 
help reduce time-consuming histology assessment.   

1. Introduction 

Colorectal polyps (CRP) are precursor lesions and indicators of 
colorectal cancer (CRC). CRPs are roughly divided between benign 
CRPs, which include the hyperplastic polyps (HPs), and pre-malignant 
CRPs, comprising adenomas (ADs) and the sessile serrated adenomas 
(SSAs). HPs are the most common polyp type found during colonoscopy 
and are usually considered benign. In contrast, ADs and SSAs are capable 
of developing into CRC when kept untreated [1]. Current medical pro
tocols dictate that all detected CRPs should be resected to undergo 
histological evaluation, but this protocol has two considerable 

drawbacks, since (1) unnecessary removal of benign polyps exposes the 
patient to additional risks of polypectomy-related complications, and (2) 
histological examination of all resected polyps leads to significantly 
increased costs. To minimize both the cost and risk, the strategy of resect- 
and-discard has been proposed for diminutive (≤5 mm) adenomatous 
polyps [2–4] and the diagnose-and-leave strategy for diminutive hyper
plastic polyps [5,6] in the left colon. 

Optical diagnosis of CRPs is often supported by clinical classification 
models. A commonly used scheme is the Paris classification [7,8] based 
on endoscopic appearance and morphology of observed CRPs during 
colonoscopy. White light endoscopy (WL) is the most common technique 
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to visually assess lesions in the colon, but it less capable of enhancing the 
visualization of surface and vessel patterns. The injection of chemical 
dyes into the colon, also referred to as chromoendoscopy [9], achieves 
higher contrast results than WL imaging. The Kudo pit pattern [10] 
classification takes advantage of improved visualization through 
magnification and staining, to classify polyps according to the pit 
appearance, structure, and staining patterns. Despite the benefits over 
WL, the use of stains requires the injection of chemicals inside the in
testinal tissue, which is often time-consuming. Similar visual effects can 
be achieved with the use of in-vivo optical filters, like Narrow-Band 
Imaging (NBI) (Olympus) [11,12]. The incorporation of NBI to colo
noscopy procedures has introduced the need of clinical models for in- 
vivo characterization, such as the NICE classification [13,14]. This 
clinical model has been developed for differentiation of HPs, ADs and 
deep submucosal invasive cancer on non-magnifying images and, the 
JNET classification [15] for magnifying images. The Workgroup 
serrAted polypS and Polyposis proposed the WASP [16] classification as 
a modification of the NICE criteria to facilitate the differentiation of 
SSAs. Alternatively, enhancement of endoscopic images can be achieved 
by means of post-processing technologies. Flexible spectral imaging 
color enhancement (FICE) (Pentax) and I-Scan digital contrast are two 
existing technologies that improve the contrast, sharpening and spec
trum of the images. For the latter imaging mode, the ICE classification 
[17] was proposed for diagnosis of non-adenomatous and adenomatous 
CRPs. Lastly, laser technology, powered by the four-LED Multi Light 
Technology (Fujifilm Co.) provides an innovative approach to visualize 
the intestinal tissue. This technology is based on the combination of four 
types of light as source emitters: blue-violet, blue, green and red. Blue 
Light Imaging (BLI) and Linked Color Imaging (LCI) are two of the 
observation modes of the four-LED Multi Light Technology, that allow 
enhanced visualization of haemoglobin. BLI intensifies the blue-light 
emission in the range of 410 nm, which enhances the visualization of 
the vessels and the mucosa. Alternatively, LCI accentuates color contrast 
by decreasing the blue-light intensity while emphasizing the red-light 
signal, providing better delineation and detection of lesions and in
flammations [18]. To take advantage of the visual improvements of BLI, 
the Blue light imaging Adenoma Serrated International Classification 
(BASIC) [19] was created to help clinicians in visually differentiating 
non-neoplastic and neoplastic lesions. 

The broad spectrum of new acquisition systems coupled with the 
wide range of clinical models for in-vivo classification of CRPs, in
troduces new challenges for image and text interpretation. Computer- 
aided detection (CADe) and diagnosis (CADx) systems facilitate medi
cal decisions during clinical assessment, providing additional informa
tion for medical diagnosis. Furthermore, the incorporation of CADx 
systems into clinical practice can also reduce the learning curve of new 
acquisition modalities, by offering visual and textual clues for treatment 
decisions. 

The success of machine learning, and more recently deep learning, 
has advanced the development of CADx systems to classify CRPs. For the 
NBI imaging mode, artificial intelligence techniques have been applied 
for the Hiroshima classification [20], the Kudo classification [21], and 
more predominantly, the NICE classification [22–24]. Alternatively, 
other studies have solely focused on neoplastic tissue differentiation, 
developing CADx based on off-the-shelf deep learning architectures 
[25–27]. The aforementioned CADx studies have focused on the po
tential of NBI applications, whereas BLI and LCI have not yet seen sig
nificant developments. In Scheeve et al. [28] a CADx pipeline was 
proposed for the WASP classification using handcrafted features directly 
obtained from existing medical knowledge. More recently, in Weight 
et al. [29] a CADe and CADx system was developed to detect and 
characterize neoplasia using a dataset of WL, BLI, and LCI polyps, after 
which the results were compared with non-experts and experts endo
scopists. The outcomes of the study showed that the CADx system can 
help to improve the classification made by less experienced endoscopists 
for identification and classification of CRPs. 

The growth in CADx systems poses new challenges for image inter
pretation and providing automated explanations of decision-making 
systems (explainable AI). The integration of new systems into clinical 
procedures, call for a better explainable understanding of artificial in
telligence to endoscopists [30–32]. The addition of saliency maps such 
as GRAD-CAM in CRP workflows [33–35] allows the clinicians to visu
alize the decisions of the CADx and refine the diagnosis with medical 
expertise. Although graphic maps can improve the diagnosis, textual 
descriptions could greatly facilitate understanding of CADx and allow 
for a more precise decision-making. In the field of deep learning, image 
captioning is the term for automatically generating a textual description 
from an image. For medical applications, image captioning has been 
applied mainly to radiology [36–38], thanks to publicly available 
datasets [39,40]. In Mishra et al. [41], an image captioning pipeline was 
proposed for retinal diseases, while the study of Rojas-Muñoz et al. [42] 
reported a CADx system to guide physicians during surgical procedures, 
by providing medical instructions automatically generated from surgery 
images. 

In our previous studies [43], a CADx system for BLI and LCI mo
dalities was proposed to differentiate between HP and SSA/ADs polyps, 
where the results of the study were compared with a total of 19 endo
scopists knowledgeable with the BASIC classification, achieving an ac
curacy of 95.0%, sensitivity of 93.3%, and specificity of 95.6% on a test 
set of 60 CRPs previously evaluated by experts and novices alike. The 
development of a CADx system to classify and differentiate between 
polyp malignancy improves the diagnosis of CRPs, but the absence of 
explanatory guidance in the system for in-vivo diagnosis of CRPs di
minishes the potential value between AI and gastroenterologist. Such 
guidance for CADx systems is called explainable AI (further used as a 
term in this paper), which is further pursued as a concept to add trust 
value to an automated CADx system. 

In this work, we present a CADx system, that incorporates an image 
captioning block based on the Bidirectional Encoder Representations 
from Transformers (BERT) language model [44]. The presented image 
captioning CADx system utilizes the foundations of our previous 
developed CADx [43] to transfer the knowledge of the learned polyp 
features. Our system is capable of providing an automated description of 
individual polyps in WL, BLI, and LCI modalities, according to the BASIC 
classification. The inclusion of automatically generated captions could 
provide a better diagnosis to gastroenterologists and further differenti
ation of HP, SSAs and ADs during in-vivo procedures. Our deep learning 
model is evaluated on the same test set as our previous studies, thereby 
preserving the consistency of our data. The results are evaluated using 
the BLEU (Bilingual Evaluation Understudy) [45], the ROUGE (Recall 
Oriented Understudy for Gisting Evaluation) [46], and the METEOR 
(Metric for Evaluation for Translation with Explicit Ordering) [47] 
score, based on each key point of the BASIC classification 1. 

The contributions of our work are threefold. (1) A CADx system that 
automatically generates text descriptions related to the BASIC classifi
cation from a single polyp image. (2) A solution that is modality- 
independent and accepts the information of WL, BLI and LCI images. 
(3) A system capable of providing text-based suggestions to experts and 
novices alike, allowing for further development towards a more 
powerful explainable AI and automated report generation. The devel
oped extension of the CADx system adds clarity to contribute to a 
smooth decision-making. 

The remainder of this paper is outlined as follows. In Section 2, the 
acquisition and analysis of the image and textual data are explained, 
followed by the implementation of the CADx system. Section 3 in
troduces the results in a structured table, followed by Section 4, where 
the findings and future work of AI and endoscopy are discussed. Section 
5 wraps up the contributions and benefits of the study in current 
endoscopy routine. 
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2. Methodology 

2.1. Data acquisition 

The data collection was carried out in a prospective fashion, ac
cording to a pre-defined image acquisition protocol, in the Maastricht 
University Medical Center (MUMC), Catharina Hospital Eindhoven 
(CZE), both in the Netherlands, and the Queen Alexandra Hospital in 
Porthsmouth, United Kingdom. The training dataset includes polyps 
acquired in WL, BLI, LCI and I-Scan (HDWL, Modes 1, 2 and 3) modal
ities. A total of 468 patients were included, of which only 95 contained 
textual descriptions of the polyps. The data collected for the test set was 
obtained from a prospective, endoscopist-blinded, non-interventional 
study, conducted both at the MUMC and CZE. The study was in accor
dance with the declaration of Helsinki as well as the General Data Pro
tection Regulation. A total of 19 endoscopists optically diagnosed 60 
colonoscopy images, containing a single polyp acquired in WL, BLI 
modalities (later referred to as test data). Two person groups were 
derived from the medical professionals. The first group consisted of six 
expert endoscopists from the international BLI-expert group, who were 
knowledgeable in using BLI and BLI Adenoma Serrated International 
Classification (BASIC) [19,48] (Table 1) and had an experience of more 
than 2000 colonoscopies. The second group consisted of thirteen Dutch 
novices with limited colonoscopy experience (less than 400 colonos
copies) without prior experience in using BLI or BASIC. More extended 
information of the study can be found at van der Zander et al. [35]. All 
collected data was fully anonymized prior to the study. Out of all the 
collected training data, 95 patients had additional textual descriptions of 
the diagnosed polyps, with the potential to be used as ground truth for 
training the explainable AI system. The textual descriptions were pro
vided by expert endoscopists following the BASIC classification, and 
were supplementary information connected to each polyp image. Each 
polyp lesion was acquired at least with WL and BLI modalities with some 
patients containing more than one lesion. The testing set consisted of an 
additional 60 patients which also included the same textual classifica
tion descriptions. Each polyp lesion was uniquely acquired with WL, BLI 
and the LCI modalities and selected according to good image quality and 
availability of the corresponding histology results (gold standard). Each 

polyp image was described by up to 9 BASIC terms, based on the second- 
left column of Table 1. 

2.2. Data preprocessing 

2.2.1. Image data 
In order to obtain optimal analysis, the central region of the image 

was automatically selected as the ROI. The cropped region ensures a 
coverage of the polyp area, as well as its surrounding texture. The 
dataset was sequentially normalized by subtracting the mean and by 
dividing the standard deviation of the pre-trained ImageNet data. As last 
step, each input image was resized to 299 × 299 pixels in the RGB color 
space. To increase the generalization of the network, data augmentation 
was used to enhance the model capabilities. In this study, the training 
images are augmented by a combination of flipping, shifting and ±90◦

rotation, contrast enhancement, blurring and scaling. 

2.2.2. Text data 
For the analysis of the textual data, each polyp image was charac

terized by the descriptors grouped in four distinct blocks. The first block 
is associated with the Paris classification (morphology and size) and the 
three remaining to the BASIC classification (surface, pit pattern and 
vessels), as shown in Fig. 1. For each descriptor, a standardized sentence 
was constructed resulting in a total of four sentences for each polyp 
sequence. Each set of descriptors was carefully analyzed to correct for 
any inconsistency with the BASIC classification. If more than one block 
presented a disagreement then the whole sentence was discarded, 
otherwise only the erroneous block was removed. The blocks that 
remained, were considered as ‘gold standard’ for the text analyses. Each 
of the polyp sequence was restricted to a maximum length of 45 tokens 
or words, including the starting word [‘CLS’] and the ending word 
[‘SEP’] which are used in the BERT dictionary. In case of a sequence 
containing a lesser amount of tokens, the special word [‘PAD’] was used 
to reach the maximum desired length. Each sentence within the 
sequence was separated by the ending word [‘SEP’]. 

After a thorough analysis of all polyp sequences, a total of 95 patients 
were selected for the training set, comprising a total of 6525 polyp se
quences and 507 images. The test set consisted of 55 patients with a total 

Table 1 
The BASIC classification comprises a list of visual BLI features, employed by endoscopists to classify hyperplastic, sessile serrated and adenomatous polyps. A more in- 
depth clinical analysis can be found in the study of Subramaniam et al. [48]. In this Figure the cancer category is not present, although it is part of the official 
classification.    

Hyperplastic Adenoma Sessile serrated 

Surface Presence of mucus No No Yes 
Regular/irregular Regular Regular/irregular Regular/irregular 
Pseudodepression No Yes No 
Depression No No No 

Pit pattern Featureless Yes No No 
Type Round Not round Round pits with/wo dark spots 
Distribution Homogeneous Homo/heterogeneous without focal loss Homo/heterogeneous 

Vessels Present Yes/no Yes yes/no 
Type if present Lacy Pericryptal Pericryptal  

Fig. 1. Example of a polyp sequence created from individual polyp descriptors.  
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of 1857 sequences and 165 images (note that 5 patients were removed 
due to data inconsistency). A more detailed diagram can be found in 
Fig. 2. 

2.3. CADx captioning model 

The model employed in this study is divided in two distinct blocks: 
(1) the polyp image module which serves as encoder and image feature 
extractor, and (2) the BERT Module which allows for the learning of the 
polyp sequences. The main stages are depicted in Fig. 3. 

2.3.1. Polyp image module for visual information 
The image encoding section of the model receives a single image as 

input of any of the modalities present in the training set (WL, BLI and 
LCI). The employed architecture consists of the base network 
EfficientNet-B4 [49], where the classification layers are removed and 
replaced by a global average pooling layer (GAP). This leads to an N × 1 
vector where N is the size of the GAP layer. 

2.3.2. BERT module for textual information 
The learning of the polyp sequences is achieved through the lan

guage model. A pre-trained BERT transformer is used to obtain the 
language features. The main task of this model is to learn and predict the 
next word in the input sequence. The module receives a matrix of polyp 
sequences, where the first sequence contains the start token, the sub
sequent sequence is the combination of the previous sequence plus the 

next sequence word, and so forth, until the end of the polyp sequence is 
reached. This leads to an L × M, where L is the max sequence and M the 
size of the BERT dictionary. 

2.3.3. Combining visual and textual information 
To merge the contents of both networks, a concatenation layer is 

added to combine the polyp image module and the BERT module. This 
operation is depicted in Fig. 3 with the Concatenate box. On one hand, 
the output of the BERT module is dictated by the maximum length 
sequence and the total amount of tokens in the original trained dictio
nary. On the other hand, the output of the polyp image module is only a 
feature vector dictated by the last convolutional layer of the image 
model. Since these outputs are intrinsically different, the smaller one 
(GAP layer) is redistributed to become aligned with the language model 
and facilitate smooth integration. To adequately implement the com
bination of the output of both modules, the GAP layer is repeated L times 
to match it with the maximum length of the text sequence resulting in a 
L × M × N matrix. Following the concatenation layer, the output is 
supplied to a Long Short-Term Memory (LSTM) to capture the temporal 
relation between words. The model concludes with a dense layer of the 
size of the BERT dictionary where each prediction yields a probability 
for each word in the dictionary. 

2.4. Training 

The model is trained in two separate stages. The first stage 

Fig. 2. Data cleaning process of polyp sentences to remove inconsistencies between diagnosis and ground truth (BASIC classification).  

Concatenate

Dense

BLI

WL

LCI

BERT ModuleWord sequence

Global Average Pooling

LSTM

Fig. 3. End-to-end framework of the proposed CADx system. The training batch contains independent images of each modality (WL, BLI and LCI) and a polyp 
sequence which describes the associated image. The output of the system is a probability for each word in the text dictionary. 
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individually trains the polyp image module, which was originally 
designed in our previous study [43] where a polyp classification model 
was trained to differentiate between benign and pre-malignant polyps. 
The model was initialized with Imagenet weights and trained with Adam 
optimizer with batch size of 8 and using an exponential learning rate, 
with hard restarts at every two epochs, ranging from 1e − 2 to 4e − 3. 
The model was trained for 100 epochs or until convergence was reached 
on the validation set, using a Titan Xp GPU. For this study, all the pre
vious learned weights are transferred to the polyp image module and all 
the layers are frozen until the GAP layer. A transfer learning approach is 
used for the BERT module, where the pre-trained weights are loaded into 
the language model and all the layers are kept frozen until the concat
enation layer. The combined models are again trained with an Adam 

optimizer using a learning rate of 1e − 3 and a batch size of 5. The model 
is trained for 3 epochs using a Xeon E5–1660 v4 with clock frequency of 
3.20 GHz and 16-core CPU to replace the Titan Xp GPU, as its perfor
mance was not sufficient for our experiments. As a result, the total 
training took 5 days of continuous computing. 

3. Evaluation and results 

The proposed model is evaluated on a dataset of 55 patients that 
were imaged with WL, BLI and LCI. Therefore, for each patient, three 
images of a single polyp were acquired. Each lesion is associated with 
one or more sentences, describing the size, morphology and the BASIC 
classification. Measuring the quality of generated captions is a 

Fig. 4. Example of three generated captions for (a) an AD polyp and (b) a HP polyp acquired in WL, BLI and LCI. The black box shows the generated captions while 
the green box contains the human-reference generated from the descriptors of endoscopists. In the one hand, the words highlighted in red represent the generated 
text wrongly identified in the human-reference. On the other hand the blue words show the generated text not present in the ground truth captions, but which 
belongs to the training corpus. The remaining words in black are correctly identified in the human-reference polyp sentences. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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challenging task, because there is no right, or simple way to measure the 
correctness of one sentence to another. Nevertheless, three metrics are 
employed to assess the results of the proposed algorithm, in order to 
compare the generated descriptions with the human-based reference. All 
the employed metrics are based on the calculation of the n-gram 
sequence, where a unigram is defined as a sequence of one word, a 
bigram as a pair of words, and so forth. In the evaluation we employ the 
following metrics.  

(1) The BLEU score [45] is a measure of precision, which allows for 
the calculation of segments of words (several n-grams) to eval
uate the amount of words in the generated caption appearing in 
the human references. We compute the BLEU score at four 
different n-grams (BLEU-1, BLEU-2, BLEU-3 and BLEU-4).  

(2) The ROUGE score [46] is an alternative to the BLEU score and is a 
measure of recall, where the calculated metric is based on the 
amount of segment words in the human references that appear in 
the generated captions. In addition to ROUGE-1 and ROUGE-2, a 
commonly used ROUGE score is the ROUGE-L (Longest Common 
Subsequence), where the longest co-occurring sequence is 
calculated between the reference and the prediction.  

(3) METEOR is a less common score [47] but designed to address the 
weaknesses in the BLEU score. METEOR evaluates a sentence by 
calculating a score based on the explicit unigrams between the 
generated sentence and all the human-reference sentences. 

The evaluation is performed using the entirety of the generated 
caption as well as the information of each individual sentence. As such, 
the scores are individually computed for the morphology and size, the 
surface, the pit pattern and the vessel. Additionally, the three BASIC 
descriptors are evaluated as a single sequence as well. Although some 
generated sentences may be too short to be evaluated based on n-grams, 
we have decided nonetheless to calculate every descriptor to observe its 
outcome. As final remark, each generated description is associated with 
more than one human-reference sentence, hence the reported numbers 
are obtained from the mean of all available comparisons between the 
generated captions and the references. Summarizing, all the metrics are 
evaluated at the level of a complete sentence, at the level of the BASIC 
text descriptors and at a level of an individual descriptor. 

4. Discussion 

In-vivo classification of polyps is a challenge for medical doctors 
during a live colonoscopy. To aid clinicians, current CADe and CADx 
systems focus on the detection or classification of the observed polyps. 
Advances towards a more explainable CADx are required for improved 
diagnosis of CRC [50,51]. In this work, we propose a system capable of 
automatically generating informative captions based on the BASIC 
classification. Fig. 4 illustrates visual and textual examples of an HP 
polyp and an AD polyp, as well as its generated captions for each of three 
acquired modalities. 

4.1. General performance 

The performance of the system is shown in Table 2. From the 
observed results, the BLEU score for all experiments is marginally lower 
than the ROUGE score. The observed trend may indicate that the ma
jority of the test corpus or dictionary is being represented in the 
generated captions. The similarity and standardization of the 
morphology and BASIC descriptors between the training and the test set 
does contribute to the homogeneity on the generated captions. On the 
contrary, an intermediate BLEU score (about 0.50) may indicate that not 
enough words from the test dictionary are being generated by the pro
posed system. This can be associated to the difficulties of BLEU score at 
evaluating complex words, such as those found in the morphology and 
pit pattern description. Similar results are observed in the BASIC sub- 
division, where an identical trend is shown all across the scores. 
Larger n-grams, both in BLEU and ROUGE, are not suited to evaluate 
short sequences, such as found in the sub-divisions of morphology and 
the individual BASIC descriptors. A more significant evaluation can be 
extracted from ROUGE-L and METEOR. On one hand, ROUGE-L auto
matically obtains the longest sequence of n-grams between reference 
and generated caption, so that it can give insights to the word occur
rence or shorter sentences of varying size. On the other hand, METEOR 
calculates the harmonic mean or F1-score, based solely on unigram 
precision. Moreover and different from the other metrics, METEOR can 
be calculated from multiple references and compared to one generated 
sentence accordingly. 

4.2. Individual performance and textual inconsistencies 

From the observations of individual descriptors, the surface out
performs the rest of the descriptors, both in ROUGE-L (0.92) and 
METEOR (0.96). This observation can be explained by the homogeneity 
on surface descriptors and the simplicity of its wording. Less rewarding 
results are observed for the vessels descriptor, where the complexity of 
the sentence as well as the sparsity of the words in the training vocab
ulary may have affected its performance. Out of all descriptors, the 
vessels were the sequences that were most affected by the harsh pre- 
processing, which diminished the amount of useful training sentences 
compared to the rest of the corpus. This loss is caused by regular oc
currences of inconsistencies between the diagnosis and the BASIC clas
sification (ground truth), which lead to discarding word descriptions 
(see Fig. 2). For example, an HP polyp cannot contain pericryptal vessels 
and an AD/SSA cannot contain lacy vessels according to the BASIC 
classification, see Table 1, where such occurrence leads to an inconsis
tency in diagnosis. 

4.3. Quality of the generated text 

The quality of the generated sentences is quite comparable with the 
ground truth. To illustrate the quality, some visual and textual results 
are presented in Fig. 4. The incorrectly generated words which are not 
present in the human-sentence references, are indicated in red color. A 
remark that was encountered during the inspection of test human- 
references and the training captions is that the latter did contain more 

Table 2 
Evaluation results in the unity interval for the automatically generated captions of the test set. The first two rows present the results for the entirety of the sentence and 
for the sequence containing the BASIC descriptors (which excludes morphology and size). The last four rows belong to the evaluation of each individual block from a 
polyp sequence.   

BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR 

Complete sentence  0.67  0.54  0.46  0.36  0.80  0.58  0.83  0.50 
BASIC descriptors  0.50  0.38  0.27  0.09  0.66  0.43  0.70  0.55 
Morphology & size  0.52  0.34  0.29  0.00  0.87  0.62  0.89  0.69 
Surface  0.89  0.87  0.85  0.77  0.91  0.86  0.92  0.96 
Pit pattern  0.52  0.40  0.34  0.05  0.83  0.72  0.85  0.76 
Vessels  0.43  0.13  0.02  0.00  0.53  0.11  0.59  0.45  
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information and deeper description of the size and morphology. Hence, 
the generated captions from the test set do contain extra information not 
present in the references (denoted in color blue in Fig. 4). The question 
arises whether the generation of extra words is helpful or not for the 
clinical application. This aspect considered differently by the metrics. 
For example, a BLEU will degrade by this extra information, whereas 
ROUGE score will positively affected by this aspect. As an illustration, 
we have computed the corresponding scores of the top experiment (AD) 
in Fig. 4, which results for white light in (BLEU-1 0.70 vs ROUGE-L 
0.88), BLI (0.62 vs 0.67) and LCI (0.47 vs 0.61). The HP example fol
lows the same trend where white light scores (BLEU-1 0.59 vs ROUGE-L 
0.76), BLI (0.75 vs 0.88) and LCI (0.74 vs 0.92). This result confirms our 
statement, but is only a single example and more study would further 
assess this aspect. The assessment of the text is based on the BERT ca
pacity to generate text, further studies should focus on other modules 
such as GPT family or variants of BERT such as ALBERT or RoBERTa. 

4.4. Human interfacing 

Our system is trained with sentences generated from individual 
polyp descriptors. In order to ease the training process, a standardization 
of all the sentences is applied. Although this approach helps on reducing 
the complexity of the sentences, it does otherwise and imposes a burden 
on the semantic understanding during in-vivo colonoscopy. In Fig. 5, a 
graphic representation is shown of a plausible post-processing step to 
transfer the computer-generated captions into sentences with a semantic 
meaning, with the aim to improve the diagnosis of any observed polyp. 
The presented example in Fig. 5 poses an interesting structure of 
reporting the outcome to the endoscopist, but a much broader test would 
be needed to measure the acceptance and usage in the workflow of the 
medical experts. The proposed system was developed with static images 
captured under strict high quality imaging conditions, however in 
clinical practice video endoscopy is employed and such image quality 
cannot be guaranteed. Hence future work should focus a clear criteria 
for the captured data and the incorporation on real-time video. 

4.5. Integration of polyp characterization 

The descriptions generated by our system do not contemplate the 
characterization of the polyp label. In image captioning task such as the 
specific subject of the image is usually incorporated in the description. In 
our case, the word “polyp” is present in all descriptions, but not the more 
accurate classification such as “HP”, “AD” and “SSA”. A decision of 
excluding the polyp classification was made with the aim to focus the 
training more on the polyp descriptors, rather than the polyp type. As 
future work towards a better polyp image description, this aspect could 
be incorporated and classified with an already existing CADx system and 
supplemented with our polyp captioning system. Further studies should 
focus on including the polyp type into the generated captions with 
emphasis on checking if the classification results are in accordance with 
the polyp description generated from the BASIC classification. 

In this work, multiple human-sentences were used to compare the 

results of the generated sentences. During the pre-processing steps, all 
the references that did not comply with the diagnosis were excluded, in 
order to reduce the amount of errors produced by endoscopists. The lack 
of a concise and unique description for each polyp implies a burden 
when comparing the generated captions to the human-reference, which 
leads to various interpretations. Therefore, the results of this study are 
still in a research stage and should be taken as supportive material for 
clinical decision rather than an absolute truth, and is advisable to 
employ the generated captions as a side tool together with the clinician's 
own expertise. 

5. Conclusions 

In this study, we have presented a CADx system for automatic 
caption generation for colonoscopy images obtained with three different 
image modalities (WL, BLI and LCI). From a single input image, our 
system automatically generates a textual polyp description, based on the 
BASIC classification. The proposed CADx system is trained with a 
dataset of 6525 polyp sequences correlated to 507 polyp images and 
evaluated on an independent test set of 55 patients with 165 polyp 
images and 1857 human-reference sequences. The model demonstrates 
a good performance at generating sentences which are comparable to 
the human references. Besides its optimal performance, one of the 
downsides we have found during training is that one single GPU is not 
sufficient for training such a complex model, which restricted the 
training to only the usage of a CPU. The lack of variability on the number 
of patients with available textual data also restricted the diversity of the 
generated polyp sequences. Further studies should aim at collecting a 
broader dataset to enhance the qualities of both the generating model 
and the human dictionary. Our study opens the possibility towards 
future automatic report generation during in-vivo classification of 
colorectal polyps. The combination of existing detection and classifica
tion systems with the proposed system could potentially improve the 
diagnosis of polyps and facilitate the learning curve of the BASIC clas
sification for experts and novice endoscopists. Overall, the presented 
study can facilitate the diagnosis of colorectal polyps in two ways. First, 
the presented system may improve the cooperation and trust between a 
CADx system and gastroenterologist by providing an automatic analysis 
and reporting of colorectal polyps. Second, the system may decrease the 
burden and involved cost of histological examinations. 
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