
 

Handling unmeasured disturbances in data-driven distributed
control with virtual reference feedback tuning
Citation for published version (APA):
Steentjes, T. R. V., Van den Hof, P. M. J., & Lazar, M. (2021). Handling unmeasured disturbances in data-driven
distributed control with virtual reference feedback tuning. IFAC-PapersOnLine, 54(7), 204-209.
https://doi.org/10.1016/j.ifacol.2021.08.359

DOI:
10.1016/j.ifacol.2021.08.359

Document status and date:
Published: 01/07/2021

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1016/j.ifacol.2021.08.359
https://doi.org/10.1016/j.ifacol.2021.08.359
https://research.tue.nl/en/publications/e141c059-3a11-4c9d-8904-f0412b684c16


IFAC PapersOnLine 54-7 (2021) 204–209

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2021.08.359

10.1016/j.ifacol.2021.08.359 2405-8963

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Handling unmeasured disturbances in
data-driven distributed control with virtual

reference feedback tuning �

Tom R.V. Steentjes, ∗ Paul M.J. Van den Hof, ∗

Mircea Lazar ∗

∗ Department of Electrical Engineering, Eindhoven University of
Technology, The Netherlands (e-mails: t.r.v.steentjes@tue.nl,

p.m.j.vandenhof@tue.nl, m.lazar@tue.nl)

Abstract: The data-driven synthesis of a distributed controller in the presence of noise is
considered, via the distributed virtual reference feedback tuning (DVRFT) framework. The
analysis is performed for a linear interconnected system on an arbitrary graph that is subject
to unmeasured exogenous inputs. By solving a dynamic network identification problem with
prediction-error filtering and a tailor-made noise model, we show that the distributed model-
reference control problem can be solved directly from data. Sufficient conditions are provided for
which the local controller estimates are consistent. Moreover, it is shown how the method can
be applied in the single-input-single-output case, leading to consistent estimates with standard
virtual reference feedback tuning as well. The effectiveness of the method is demonstrated via
a small network example with two interconnected systems.
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1. INTRODUCTION

Plant models are typically not directly available for con-
troller design. When data from the plant is available, two
approaches to controller design can be followed: (i) indirect
data-driven control and (ii) direct data-driven control.
Indirect data-driven control is model based: first a plant
model is estimated on the basis of data and consecutively
a controller design is performed on the basis of the plant
model. In direct data-driven control, the plant modelling
step is omitted; a controller is synthesized directly from
data. Typical advantages of direct-data driven controller
design are that no loss of data can occur due to undermod-
elling of the plant and the order of the controller can be
fixed. Therefore, direct data-driven control is particularly
interesting for the design of distributed controllers for
interconnected systems, due to their complex nature and
involved data-driven modelling (Van den Hof et al., 2013).

State-of-the art methods for direct data-driven controller
design are virtual reference feedback tuning (VRFT)
(Campi et al., 2002), optimal controller identification
(OCI) (Campestrini et al., 2017; Huff et al., 2019),
correlation-based tuning (CbT) (van Heusden et al., 2011),
asymptotically exact (Formentin et al., 2015) and moment-
matching (Breschi et al., 2019) controller tuning. Afore-
mentioned methods are typically applicable to (multi-
variable) isolated or small-scale systems. In (Steentjes
et al., 2020), a data-driven distributed controller design
method was introduced, called distributed virtual refer-
ence feedback tuning (DVRFT). Through DVRFT, a dis-
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tributed model-reference control problem can be equiv-
alently stated as a network identification problem (Van
den Hof et al., 2013), by constructing a virtual reference
network (Steentjes et al., 2020).

When the considered plant is affected by disturbances,
VRFT inherently introduces a bias in the controller es-
timates (Bazanella et al., 2011), leading to a degraded
closed-loop performance. For DVRFT, also biased esti-
mates are obtained for local controllers in the case that
a process noise affects the corresponding subsystem. One
approach to solve this problem is the use of an instru-
mental variable (IV), in case the controller model is linear
with respect to the parameters. Depending on the choice
of IV, however, additional experiments on the system
are required (Bazanella et al., 2011) and the parameter
variance is increased with a negative effect on the control
performance. In the general case, no method for obtaining
consistent estimates for VRFT is present in the literature,
to the best of the author’s knowledge.

In this paper, we present a method for dealing with noise in
VRFT and DVRFT. The method relies on the VRFT and
DVRFT frameworks, while modifying the prediction-error
identification criteria via prediction-error filtering. With
the introduction of a tailor-made noise model for VRFT,
we provide sufficient conditions under which consistent
controller estimates are obtained. The method extends
naturally to the DVRFT framework in (Steentjes et al.,
2020) and solves the distributed model reference control
problem via DVRFT for a class of interconnected systems
with unmeasured exogenous inputs.

The remainder of this paper is organized as follows: In
Section 2, we introduce the considered dynamical network
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tributed model-reference control problem can be equiv-
alently stated as a network identification problem (Van
den Hof et al., 2013), by constructing a virtual reference
network (Steentjes et al., 2020).

When the considered plant is affected by disturbances,
VRFT inherently introduces a bias in the controller es-
timates (Bazanella et al., 2011), leading to a degraded
closed-loop performance. For DVRFT, also biased esti-
mates are obtained for local controllers in the case that
a process noise affects the corresponding subsystem. One
approach to solve this problem is the use of an instru-
mental variable (IV), in case the controller model is linear
with respect to the parameters. Depending on the choice
of IV, however, additional experiments on the system
are required (Bazanella et al., 2011) and the parameter
variance is increased with a negative effect on the control
performance. In the general case, no method for obtaining
consistent estimates for VRFT is present in the literature,
to the best of the author’s knowledge.

In this paper, we present a method for dealing with noise in
VRFT and DVRFT. The method relies on the VRFT and
DVRFT frameworks, while modifying the prediction-error
identification criteria via prediction-error filtering. With
the introduction of a tailor-made noise model for VRFT,
we provide sufficient conditions under which consistent
controller estimates are obtained. The method extends
naturally to the DVRFT framework in (Steentjes et al.,
2020) and solves the distributed model reference control
problem via DVRFT for a class of interconnected systems
with unmeasured exogenous inputs.

The remainder of this paper is organized as follows: In
Section 2, we introduce the considered dynamical network
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and the distributed control problem. In Section 3, a
method for consistent VRFT is developed for the scalar
case. Section 4 describes sufficient conditions for solving
the data-driven control problem in the network case via
DVRFT. A numerical example is an analyzed in Section 5
and concluding remarks are provided in Section 6.

2. PRELIMINARIES

2.1 Dynamical network and distributed controller

Consider a simple and undirected graph G = (V, E) with
vertex set V of cardinality L and edge set E ⊆ V × V.
The neighbour set of vertex i ∈ V is defined as Ni :=
{j ∈ V | (i, j) ∈ E}. The graph G describes the structure
of a network of linear discrete-time systems, where the
dynamics associated with vertex i ∈ V are described by

yi(t) = Gi(q)ui(t) +
∑
j∈Ni

Gij(q)yj(t) +Hi(q)ei(t), (1)

with ui : Z → R the control input, yi : Z → R the
output, ei an unmeasured zero-mean white-noise proces
such that, for all (t, s), Eei(t)ej(s) = 0 for (i, j) ∈ E and
Eei(t)uj(s) = 0 for (i, j) ∈ V × V, and q the forward shift
defined as qx(t) = x(t+1). The rational transfer functions
Gi, Gij and Hi, (i, j) ∈ E , describe the local dynamics,
coupling dynamics and noise dynamics, respectively. The
noise filterHi is assumed to be monic, stable and minimum
phase. We omit the time and shift arguments t and q
occasionally for brevity, when the context does not yield
ambiguity. The network can be compactly written as

y = GIy +Gu+He, (2)

where G = diag(G1, . . . , GL), H = diag(H1, . . . , HL) and

GI =




0 G12 · · · G1L

G21 0 · · · G2L

...
...

. . .
...

GL1 GL2 · · · 0


 .

The transfer between external inputs and outputs is de-
scribed by

y = (I −GI)
−1(Gu+He), (3)

under the assumption that the network (2) is well posed,
i.e. G := (I −GI)

−1 exists. The simplest network consists
of one node (L = 1), so that

y = Gu+He, (4)

which is a standard single-input-single-output process with
a disturbance.

Considering a reference tracking problem for the network,
each system is equipped with a reference signal ri and the
corresponding tracking error zi := ri − yi:

Pi :




yi = Giui +
∑
j∈Ni

Gijyj +Hiei,

zi = ri − yi.

(5)

The dynamical network is operating in closed-loop with a
distributed controller that consists of local controllers

Ci(ρi) :




ui = Cii(q, ρi)zi +
∑
j∈Ni

Cij(q, ρi)s
c
ij ,

ocij = Kij(q, ρi)zi +
∑
h∈Ni

Kijh(q, ρi)s
c
ih, j ∈ Ni,

where each controller is parametrized by a parameter
vector ρi, and is interconnected with other controllers as:

scij = ocji for j ∈ Ni and scij = 0 otherwise.

With the definitions si := colj∈Ni s
c
ij and oi := colj∈Ni o

c
ij ,

we compactly represent Ci by

Ci(ρi) :
[
ui

oci

]
= Ci(q, ρi)

[
zi
sci

]
. (6)

2.2 Distributed model reference control

Model reference control in dynamic networks considers
the synthesis of a structured controller such that the
closed-loop network dynamics are optimal with respect to
a structured reference model. In general, the structured
reference model is composed of subsystems Ki, i ∈ V,
that can be interconnected (Steentjes et al., 2020). In
this paper, for clarity of presentation, we will consider a
special, but important, case of such a reference model with
subsystems that are decoupled:

Ki : ydi = Ti(q)ri. (7)

For well-posedness, we assume that the reference model is
such that yd �= r for all non-zero r, i.e., diagi∈V Ti �= I.

The distributed model reference control problem is defined
for the situation where ei = 0 for all i ∈ V:

min
ρ1,...,ρL

JMR(ρ1, . . . , ρL) = min
ρ1,...,ρL

L∑
i=1

Ē[ydi (t)− yi(t)]
2, (8)

where Ē := limN→∞
1
N

∑N
t=1 E and E is the expectation.

A distributed controller that solves (8) was developed
in (Steentjes et al., 2020). For i ∈ V, define GiN :=
rowj∈Ni Gij .

Proposition 2.1. Consider ei = 0 for all i ∈ V and consider
a distributed controller described by the subsystems

Cd
i :

[
ui

oci

]
=




Ti

Gi(1− Ti)
− 1

Gi
GiN

Ti

1− Ti
1 0




︸ ︷︷ ︸
=:Cd

i
(q)

[
zi
sci

]
, (9)

for i ∈ V and the controller interconnections described by

scij = ocji and scji = ocij , (10)

for (i, j) ∈ E . The network (2) in closed-loop with the
distributed controller (9)-(10) satisfies

yi = ydi , i ∈ V.

This result follows directly from (Steentjes et al., 2020,
Theorem III.1), where a reference model with possible
interconnections is considered. The controller described
by (9)-(10) provides a solution to (8), by showing the
existence of a minimizing argument (ρd1, . . . , ρ

d
L), if the

chosen controller class is ‘rich’ enough, i.e., for each i ∈ V,
there exists ρi such that Ci(q, ρi) = Cd

i (q).

3. VRFT: A TAILOR-MADE NOISE MODEL FOR
CONSISTENT ESTIMATION

In this section we consider the modelling of a noise filter
for consistent controller estimation with VRFT for a single
process. Consider the single process described by (4). The
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input u and e are assumed to be independent. The tracking
error for this process is denoted z := r − y, with r the
reference. A reference model for the process is assumed to
be given and described by

yd = Tdr.

Given the reference model, it is known that the ideal
controller is (Bazanella et al., 2011)

Cd =
Td

G(1− Td)
.

We will now discuss the identification of Cd from the data
(u, y).

The virtual reference r̄ and tracking error z̄ are given by

r̄ := T−1
d y and z̄ := r̄ − y.

We can rewrite (4) in terms of Cd, such that

u = Cdz̄ −G−1He = Cdz̄ + H̄de, (11)

with H̄d := −G−1H. This leads to the virtual control loop
shown in Figure 1.

It is known that if we follow the standard VRFT procedure
for the identification of Cd, we will obtain a biased estimate
due to the noise e (Bazanella et al., 2011). We will now
consider the direct identification of Cd together with the
identification of H̄d. The question is: by including the
estimation of the auxiliary noise filter, can we obtain
consistent estimates of Cd?

3.1 Modelling H̄d directly

Consider a model C(q, ρ) for Cd(q) and a model H̄(q, ρ)
for H̄d(q). Writing the predictor

û(t, ρ) = H̄(q, ρ)−1C(q, ρ)z̄(t) + (1− H̄(q, ρ)−1)u(t),

leads to the prediction error ε(t, ρ) = u(t)− û(t, ρ):

ε(t, ρ) = H̄(ρ)−1(u− C(ρ)z̄)

= H̄(ρ)−1(Cdz̄ + H̄de− C(ρ)z̄)

= H̄(ρ)−1

(
(Cd − C(ρ))

1− Td

Td
y + H̄de

)
. (12)

After manipulation it can be shown that

ε(t, ρ) =
1

H̄(ρ)Cd
(Cd − C(ρ))u+

C(ρ)

Cd

H̄d

H̄(ρ)
e. (13)

Consider now the asymptotic parameter estimate

ρ∗ = argmin
ρ

V̄ (ρ), V̄ (ρ) := Ēε2(t, ρ). (14)

The cost σ2
e is obtained if C(ρ) = Cd and H̄(ρ) =

H̄d, but we cannot conclude that this is the minimum,

since C(ρ)
Cd

H̄d

H̄(ρ)
is not necessarily monic. Hence, we cannot

conclude that C(ρ∗) = Cd and H̄(ρ∗) = Hd for the
minimizing argument ρ∗.

3.2 Tailor-made noise model with prediction-error filtering

Let us return to the (virtual) data-generating system

u = Cdz̄ + H̄de. (15)

We have seen in the previous subsection that by modelling
the auxiliary noise filter directly, consistent estimates
cannot be guaranteed. Note that if we filter the prediction
error (12) with G, then a noise filter −H is obtained in
the prediction error εG = Gε, with H monic. The plant G
is, however, assumed to be unknown.

A more attractive solution is obtained as follows. By the
definition of Cd, it follows that

Td

1− Td
= CdG.

Hence, by filtering the prediction error with L := CdG
instead of G, we have

εF (t, ρ) := CdGε(t, ρ) =
Td

1− Td
ε(t, ρ). (16)

The filter L depends only on the reference model Td, which
is known. Rewriting εF yields

εF (t, ρ) = Lε(t, ρ)

=
Td

1− Td
H̄(ρ)−1

(
(Cd − C(ρ))

1− Td

Td
y + H̄de

)

= H̄(ρ)−1

(
(Cd − C(ρ))y +

Td

1− Td
H̄de

)

= H̄(ρ)−1 ((Cd − C(ρ))y − CdHe) .

Substituting the relation y = Gu+He yields

εF (t, ρ) = H̄(ρ)−1 ((Cd − C(ρ))(Gu+He)− CdHe)

= H̄(ρ)−1 ((Cd − C(ρ))Gu− C(ρ)He) .

By selecting a tailor-made parametrization H̄(ρ) =

−C(ρ)H̆(ρ) with H̆(ρ) monic, we have

εF (t, ρ) = −H̄(ρ)−1H̄(ρ)e+ e

+ H̄(ρ)−1 ((Cd − C(ρ))Gu− C(ρ)He)

= H̄(ρ)−1 (∆C(ρ)Gu+ C(ρ)∆H(ρ)e) + e,

with ∆C(ρ) := Cd − C(ρ) and ∆H(ρ) := H̆(ρ) − H.
Now, since u and e are independent, ∆C(ρ)Gu and e are

uncorrelated. Furthermore, since H and H̆(ρ) are both
monic, ∆H(ρ) is strictly proper so that C(ρ)∆H(ρ)e and
e are uncorrelated. Therefore,

V̄F (ρ) := Ēε2F (t, ρ)

= Ē
[(
H̄(ρ)−1 (∆C(ρ)Gu+ C(ρ)∆H(ρ)e) + e

)2]

= Ē
[(
H̄(ρ)−1 (∆C(ρ)Gu+ C(ρ)∆H(ρ)e)

)2]
+ σ2

e ,

which implies V̄F (ρ) ≥ σ2
e for all ρ. The minimum of V̄F is

σ2
e and, if u is persistently exciting of sufficient order, then

V̄F (ρ
∗) = σ2

e if and only if ∆C(ρ∗) = 0 and ∆H(ρ∗) = 0.
We conclude that consistent estimates of Cd are obtained.

Theorem 3.1. Consider the filtered prediction error εF and
let ρ∗ be a minimizing argument of V̄F . Let the following
conditions be satisfied:
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input u and e are assumed to be independent. The tracking
error for this process is denoted z := r − y, with r the
reference. A reference model for the process is assumed to
be given and described by

yd = Tdr.

Given the reference model, it is known that the ideal
controller is (Bazanella et al., 2011)

Cd =
Td

G(1− Td)
.

We will now discuss the identification of Cd from the data
(u, y).

The virtual reference r̄ and tracking error z̄ are given by

r̄ := T−1
d y and z̄ := r̄ − y.

We can rewrite (4) in terms of Cd, such that

u = Cdz̄ −G−1He = Cdz̄ + H̄de, (11)

with H̄d := −G−1H. This leads to the virtual control loop
shown in Figure 1.

It is known that if we follow the standard VRFT procedure
for the identification of Cd, we will obtain a biased estimate
due to the noise e (Bazanella et al., 2011). We will now
consider the direct identification of Cd together with the
identification of H̄d. The question is: by including the
estimation of the auxiliary noise filter, can we obtain
consistent estimates of Cd?

3.1 Modelling H̄d directly

Consider a model C(q, ρ) for Cd(q) and a model H̄(q, ρ)
for H̄d(q). Writing the predictor

û(t, ρ) = H̄(q, ρ)−1C(q, ρ)z̄(t) + (1− H̄(q, ρ)−1)u(t),

leads to the prediction error ε(t, ρ) = u(t)− û(t, ρ):

ε(t, ρ) = H̄(ρ)−1(u− C(ρ)z̄)

= H̄(ρ)−1(Cdz̄ + H̄de− C(ρ)z̄)

= H̄(ρ)−1

(
(Cd − C(ρ))

1− Td

Td
y + H̄de

)
. (12)

After manipulation it can be shown that

ε(t, ρ) =
1

H̄(ρ)Cd
(Cd − C(ρ))u+

C(ρ)

Cd

H̄d

H̄(ρ)
e. (13)

Consider now the asymptotic parameter estimate

ρ∗ = argmin
ρ

V̄ (ρ), V̄ (ρ) := Ēε2(t, ρ). (14)

The cost σ2
e is obtained if C(ρ) = Cd and H̄(ρ) =

H̄d, but we cannot conclude that this is the minimum,

since C(ρ)
Cd

H̄d

H̄(ρ)
is not necessarily monic. Hence, we cannot

conclude that C(ρ∗) = Cd and H̄(ρ∗) = Hd for the
minimizing argument ρ∗.

3.2 Tailor-made noise model with prediction-error filtering

Let us return to the (virtual) data-generating system

u = Cdz̄ + H̄de. (15)

We have seen in the previous subsection that by modelling
the auxiliary noise filter directly, consistent estimates
cannot be guaranteed. Note that if we filter the prediction
error (12) with G, then a noise filter −H is obtained in
the prediction error εG = Gε, with H monic. The plant G
is, however, assumed to be unknown.

A more attractive solution is obtained as follows. By the
definition of Cd, it follows that

Td

1− Td
= CdG.

Hence, by filtering the prediction error with L := CdG
instead of G, we have

εF (t, ρ) := CdGε(t, ρ) =
Td

1− Td
ε(t, ρ). (16)

The filter L depends only on the reference model Td, which
is known. Rewriting εF yields

εF (t, ρ) = Lε(t, ρ)

=
Td

1− Td
H̄(ρ)−1

(
(Cd − C(ρ))

1− Td

Td
y + H̄de

)

= H̄(ρ)−1

(
(Cd − C(ρ))y +

Td

1− Td
H̄de

)

= H̄(ρ)−1 ((Cd − C(ρ))y − CdHe) .

Substituting the relation y = Gu+He yields

εF (t, ρ) = H̄(ρ)−1 ((Cd − C(ρ))(Gu+He)− CdHe)

= H̄(ρ)−1 ((Cd − C(ρ))Gu− C(ρ)He) .

By selecting a tailor-made parametrization H̄(ρ) =

−C(ρ)H̆(ρ) with H̆(ρ) monic, we have

εF (t, ρ) = −H̄(ρ)−1H̄(ρ)e+ e

+ H̄(ρ)−1 ((Cd − C(ρ))Gu− C(ρ)He)

= H̄(ρ)−1 (∆C(ρ)Gu+ C(ρ)∆H(ρ)e) + e,

with ∆C(ρ) := Cd − C(ρ) and ∆H(ρ) := H̆(ρ) − H.
Now, since u and e are independent, ∆C(ρ)Gu and e are

uncorrelated. Furthermore, since H and H̆(ρ) are both
monic, ∆H(ρ) is strictly proper so that C(ρ)∆H(ρ)e and
e are uncorrelated. Therefore,

V̄F (ρ) := Ēε2F (t, ρ)

= Ē
[(
H̄(ρ)−1 (∆C(ρ)Gu+ C(ρ)∆H(ρ)e) + e

)2]

= Ē
[(
H̄(ρ)−1 (∆C(ρ)Gu+ C(ρ)∆H(ρ)e)

)2]
+ σ2

e ,

which implies V̄F (ρ) ≥ σ2
e for all ρ. The minimum of V̄F is

σ2
e and, if u is persistently exciting of sufficient order, then

V̄F (ρ
∗) = σ2

e if and only if ∆C(ρ∗) = 0 and ∆H(ρ∗) = 0.
We conclude that consistent estimates of Cd are obtained.

Theorem 3.1. Consider the filtered prediction error εF and
let ρ∗ be a minimizing argument of V̄F . Let the following
conditions be satisfied:

• the spectral density of u, Φu, is positive definite for
almost all ω ∈ [−π, π],

• there exists a ρd such that C(ρd) = Cd and H̆(ρd) =
H.

Then C(ρ∗) = Cd and H̆(ρ∗) = H. �

For the single-process case, a tailor-made noise model was
considered in (van Heusden et al., 2011) for correlation-
based tuning (CbT) of a linearly parametrized controller.
To the best of the authors’ knowledge, modelling the noise
filter to obtain consistent estimates for VRFT is new. This
approach also provides a method to deal with noise for
distributed VRFT, which will be discussed in the following
section.

4. DISTRIBUTED VRFT IN DYNAMIC NETWORKS:
CONSISTENT ESTIMATION

In distributed VRFT with a decoupled reference model,
the virtual reference signal r̄i and virtual tracking error z̄i
are determined for each i ∈ V such that (Steentjes et al.,
2020)

yi = Tir̄i and z̄i = r̄i − yi. (17)

As was done in Section 3 for the single process, we can
similarly form an inverse model of the network (1). From
(1), we can write

ui = G−1
i yi −

∑
j∈Ni

G−1
i Gijyj −G−1

i Hiei

= Cd
iiz̄i +

∑
j∈Ni

Cd
ij ō

c
ji + H̄d

i ei, i ∈ V, (18)

where we have used the definition of the ideal controller
modules, (17), and, in accordance with (9), Kd

ji := Ti(1−
Ti)

−1 for j ∈ Ni such that

ōcji := Kjiz̄j = yj , j ∈ Ni, (19)

H̄d
i := −G−1

i Hi.

In conjunction with the network dynamics described by
(1), equation (18) describes a virtual network, with the
transfer functions describing the ideal controller Cd

i being
unknown modules in this network. Figure 2 depicts this
network for L = 2.

Consider now the predictor

ûi(t, ρi) = H̄i(ρi)
−1


Cii(ρi)z̄i +

∑
j∈Ni

Cij(ρi)ō
c
ji




+ (1− H̄i(ρi)
−1)ui,

which leads to the prediction error

εi(t, ρi) := ui(t)− ûi(t, ρi)

= H̄i(ρi)
−1

(
ui − Cii(ρi)z̄i −

∑
j∈Ni

Cij(ρi)ō
c
ji

)
.

Now, by filtering the prediction error εi with a filter
Li := Cd

iiGi = Ti(1 − Ti)
−1, the filtered prediction

error εFi (t, ρi) := Liεi(t, ρi) is obtained. We can now
formulate conditions for the corresponding filtered network
identification problem. Consider the asymptotic parameter
estimate

ρ∗i = argmin
ρi

ĒεFi (t, ρi)
2

︸ ︷︷ ︸
=:V̄ F

i
(ρi)

.
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Fig. 2. Virtual network for L = 2, with a controller Cd for
plant P with disturbance model H.

Theorem 4.1. Consider a tailor-made noise model defined
by H̄i(ρi) := −Cii(ρi)H̆i(ρi) with H̆i a monic transfer
function and let the following conditions be satisfied:

• the spectral density of ζi := col(z̄i, ui, colj∈Ni
ōcji),

Φζi , is positive definite for almost all ω ∈ [−π, π],
• there exists a ρdi such that Cii(ρ

d
i ) = Cd

ii, Cij(ρ
d
i ) =

Cd
ij and H̆i(ρ

d
i ) = Hi,

• Gji contains a delay for every j ∈ Ni.

Then it holds that Cii(ρ
∗
i ) = Cd

ii, Cij(ρ
∗
i ) = Cd

ij , j ∈ Ni,

and H̆i(ρ
∗
i ) = Hi. �

A proof for Theorem 4.1 is given in Appendix B, which is
preceded by two instrumental lemmas in Appendix A.

The filter Li is known, since Ti is a known transfer
function that describes the reference model Ki. Hence, the
distributed model reference control problem (8) can be
solved using data, via a DVRFT framework by (i) filtering
a prediction-error with a known filter and (ii) a tailor-made
noise model. Consistent estimates are guaranteed under
the conditions in Theorem 4.1, but one should note that
the identification criteria V̄ F

i are not convex, in general.
‘Standard’ DVRFT (Steentjes et al., 2020) does lead
to convex identification criteria for linearly-parametrized
controllers, but provides non-consistent estimates in the
presence of noise.

5. NUMERICAL EXAMPLE

Consider a two-node network, described by

y1 = G1u1 +G12y2 +H1e1,

y2 = G2u2 +G21y1 +H2e2,

with e1 and e2 Gaussian white-noise processes with vari-
ance σ2

e1 = σ2
e2 = σ2

e , u1 and u2 white-noise processes with
distribution U(0, 1) and

G1 =
1

q − 0.8
, G12 =

0.1

q − 0.8
, H1 =

q

q − 0.8
,

G2 =
1

q − 0.6
, G21 =

0.1

q − 0.6
, H2 =

q

q − 0.6
.
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Fig. 3. Achieved performance versus noise power σ2
e for

DVRFT (red), DVRFT with IVs (blue) and DVRFT
with tailor-made noise modelling and PE filtering
(green). The solid lines indicate the median perfor-
mance and the shaded areas are bounded by the 25th

and 75th percentiles.

In order to synthesize the data-driven controller, we con-
sider that for each i = 1, 2, data (ui(t), yi(t)), t = 1, . . . , N ,
is collected for N = 500 samples. We choose the reference
models T1 = T2 = 0.2(q − 0.8)−1 and the parametrization
as

Cii(ρi) =
ρi1q + ρi2
q − 1

, Cij(ρi) = ρi3, H̄i(ρi) = −Cii(ρi)q

q + ρi4
,

such that the second condition in Theorem 4.1 is satisfied.
Each controller Ci(ρi), i = 1, 2, is obtained by minimizing

the identification criterion V F
i (ρi) :=

∑N
t=1 ε

F
i (t, ρi)

2,
using the lsqnonlin.m function in Matlab, with initial
parameters ρiniti = 0.1ρdi relatively ‘far’ from ρdi .

To illustrate the obtained closed-loop performance with
respect to the influence of the disturbances, a Monte-Carlo
simulation over 25 experiments is performed for each noise
power level σ2

e ∈ {0, 0.05, . . . , 0.045}. The obtained closed-
loop transfer TI from r → y results in a performance
for DVRFT with the tailor-made noise model and filtered
prediction error as depicted in Figure 3, in green. For com-
parison, we compute two distributed controllers from the
same experiments via (i) DVRFT (Steentjes et al., 2020)
and (ii) DVRFT with IVs (obtained by performing an
additional experiment for each estimation, cf. (Bazanella
et al., 2011)). As shown in Figure 3 in red, the results
confirm the expectation that the noise-induced bias for
DVRFT degrades the closed-loop performance consider-
ably. The use of IVs in combination with DVRFT provides
consistent estimates, but leads to an increased variance for
the estimates. This can be observed for the corresponding
closed-loop performance for DVRFT with IVs as well, as
illustrated in blue in Figure 3. By Theorem 4.1, DVRFT
with a tailor-made noise model and prediction-error filter-
ing also provides consistent estimates. However, due to a
decrease in estimator variance, the method described in
this paper outperforms DVRFT with IVs considerably for
higher noise levels.

6. CONCLUDING REMARKS

In this paper we have considered virtual reference feedback
tuning in dynamics networks with noise. The standard
VRFT method yields biased estimates for the controller in
the single-process case. So does the corresponding DVRFT
method for dynamic networks. We have shown for the
single-process case that by including the direct modelling
of the auxiliary noise filter, it cannot be concluded that
consistent estimates are obtained. However, a filtered
prediction-error identification problem can be formulated
for which consistent estimates are obtained when a tailor-
made noise model is used. For DVRFT applied to dynamic
networks, a similar approach is obtained for estimating a
local controller that is part of a distributed controller. Suf-
ficient conditions have been given for obtaining consistent
estimates in the considered framework, thereby solving
the distributed model-reference control problem in the
presence of noise. Through an example network consisting
of two subsystems, we have shown that the developed
method provides a substantial closed-loop performance
improvement for increasing levels of noise power.

Appendix A. INSTRUMENTAL LEMMAS

In this appendix, we provide two lemmas that will be
instrumental in the proof for Theorem 4.1. The proofs are
omitted due to space limitations.

Lemma A.1. G = I + Ḡ, where Ḡ := GGI .

Lemma A.2. If Gji is strictly proper for each j ∈ Ni, then

• Ḡii is strictly proper,
• Ḡji is strictly proper for j ∈ Ni.

Appendix B. PROOF OF THEOREM 4.1

To prove Theorem 4.1, we start by writing the prediction
error as

εi(t, ρi) = H̄i(ρi)
−1

(
∆Cii(ρi)z̄i +

∑
j∈Ni

∆Cij(ρi)ō
c
ji + H̄d

i ei
)
,

using (18), where ∆C(ρi) := Cd
ii − Cii(ρi), ∆Cij(ρi) :=

Cd
ij −Cij(ρi), j ∈ Ni. The virtual signals are related to yi

and yj by (17) and (19), leading to

εi(t, ρi) = H̄i(ρi)
−1

(
∆Cii(ρi)

1− Ti

Ti
yi +

∑
j∈Ni

∆Cij(ρi)yj

+ H̄d
i ei

)
.

Now consider the filtered prediction error εFi , with filter
Li = Cd

iiGi. By definition, the filter is

Li = Cd
iiGi =

Ti

1− Ti
.

Hence, we have that

εFi (t, ρi) = Liεi(t, ρi)

= H̄i(ρi)
−1

(
∆Cii(ρi)yi +

Ti

1− Ti

∑
j∈Ni

∆Cij(ρi)yj

+ Cd
iiGiH̄

d
i ei

)

= H̄i(ρi)
−1

(
∆Cii(ρi)yi +

∑
j∈Ni

∆Cij(ρi)K
d
ijyj

− Cd
iiHiei

)
.
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Fig. 3. Achieved performance versus noise power σ2
e for

DVRFT (red), DVRFT with IVs (blue) and DVRFT
with tailor-made noise modelling and PE filtering
(green). The solid lines indicate the median perfor-
mance and the shaded areas are bounded by the 25th

and 75th percentiles.

In order to synthesize the data-driven controller, we con-
sider that for each i = 1, 2, data (ui(t), yi(t)), t = 1, . . . , N ,
is collected for N = 500 samples. We choose the reference
models T1 = T2 = 0.2(q − 0.8)−1 and the parametrization
as

Cii(ρi) =
ρi1q + ρi2
q − 1

, Cij(ρi) = ρi3, H̄i(ρi) = −Cii(ρi)q

q + ρi4
,

such that the second condition in Theorem 4.1 is satisfied.
Each controller Ci(ρi), i = 1, 2, is obtained by minimizing

the identification criterion V F
i (ρi) :=

∑N
t=1 ε

F
i (t, ρi)

2,
using the lsqnonlin.m function in Matlab, with initial
parameters ρiniti = 0.1ρdi relatively ‘far’ from ρdi .

To illustrate the obtained closed-loop performance with
respect to the influence of the disturbances, a Monte-Carlo
simulation over 25 experiments is performed for each noise
power level σ2

e ∈ {0, 0.05, . . . , 0.045}. The obtained closed-
loop transfer TI from r → y results in a performance
for DVRFT with the tailor-made noise model and filtered
prediction error as depicted in Figure 3, in green. For com-
parison, we compute two distributed controllers from the
same experiments via (i) DVRFT (Steentjes et al., 2020)
and (ii) DVRFT with IVs (obtained by performing an
additional experiment for each estimation, cf. (Bazanella
et al., 2011)). As shown in Figure 3 in red, the results
confirm the expectation that the noise-induced bias for
DVRFT degrades the closed-loop performance consider-
ably. The use of IVs in combination with DVRFT provides
consistent estimates, but leads to an increased variance for
the estimates. This can be observed for the corresponding
closed-loop performance for DVRFT with IVs as well, as
illustrated in blue in Figure 3. By Theorem 4.1, DVRFT
with a tailor-made noise model and prediction-error filter-
ing also provides consistent estimates. However, due to a
decrease in estimator variance, the method described in
this paper outperforms DVRFT with IVs considerably for
higher noise levels.

6. CONCLUDING REMARKS

In this paper we have considered virtual reference feedback
tuning in dynamics networks with noise. The standard
VRFT method yields biased estimates for the controller in
the single-process case. So does the corresponding DVRFT
method for dynamic networks. We have shown for the
single-process case that by including the direct modelling
of the auxiliary noise filter, it cannot be concluded that
consistent estimates are obtained. However, a filtered
prediction-error identification problem can be formulated
for which consistent estimates are obtained when a tailor-
made noise model is used. For DVRFT applied to dynamic
networks, a similar approach is obtained for estimating a
local controller that is part of a distributed controller. Suf-
ficient conditions have been given for obtaining consistent
estimates in the considered framework, thereby solving
the distributed model-reference control problem in the
presence of noise. Through an example network consisting
of two subsystems, we have shown that the developed
method provides a substantial closed-loop performance
improvement for increasing levels of noise power.

Appendix A. INSTRUMENTAL LEMMAS

In this appendix, we provide two lemmas that will be
instrumental in the proof for Theorem 4.1. The proofs are
omitted due to space limitations.

Lemma A.1. G = I + Ḡ, where Ḡ := GGI .

Lemma A.2. If Gji is strictly proper for each j ∈ Ni, then

• Ḡii is strictly proper,
• Ḡji is strictly proper for j ∈ Ni.

Appendix B. PROOF OF THEOREM 4.1

To prove Theorem 4.1, we start by writing the prediction
error as

εi(t, ρi) = H̄i(ρi)
−1

(
∆Cii(ρi)z̄i +

∑
j∈Ni

∆Cij(ρi)ō
c
ji + H̄d

i ei
)
,

using (18), where ∆C(ρi) := Cd
ii − Cii(ρi), ∆Cij(ρi) :=

Cd
ij −Cij(ρi), j ∈ Ni. The virtual signals are related to yi

and yj by (17) and (19), leading to

εi(t, ρi) = H̄i(ρi)
−1

(
∆Cii(ρi)

1− Ti

Ti
yi +

∑
j∈Ni

∆Cij(ρi)yj

+ H̄d
i ei

)
.

Now consider the filtered prediction error εFi , with filter
Li = Cd

iiGi. By definition, the filter is

Li = Cd
iiGi =

Ti

1− Ti
.

Hence, we have that

εFi (t, ρi) = Liεi(t, ρi)

= H̄i(ρi)
−1

(
∆Cii(ρi)yi +

Ti

1− Ti

∑
j∈Ni

∆Cij(ρi)yj

+ Cd
iiGiH̄

d
i ei

)

= H̄i(ρi)
−1

(
∆Cii(ρi)yi +

∑
j∈Ni

∆Cij(ρi)K
d
ijyj

− Cd
iiHiei

)
.

We proceed by writing the ‘node’ variables yj in terms of
‘external’ variables. By (3) we have that

y = G(Gu+He) = G(ū+ v),

where ū := Gu and v = He. Hence, by Lemma A.1, it
follows that

GH = (I −GI)
−1H = H + GGIH.

Therefore, we can write the node variables in y as

y = Gū+ Ḡv +He, (B.1)

where Ḡ = GGI , or, equivalently,

yi = Hiei +
∑
j∈V

Gij ūj + Ḡijvj , i ∈ V.

It follows that

εFi (t, ρi) = H̄i(ρi)
−1 [xi(ρi)− Cii(ρi)Hiei] ,

where

xi(ρi) := ∆Cii(ρi)
∑
j∈V

Gij ūj +
∑
j∈Ni

Kd
ij∆Cij(ρi)

∑
k∈V

Gjkūk

+∆Cii(ρi)
∑
j∈V

Ḡijvj +
∑
j∈Ni

Kd
ij∆Cij(ρi)

(
vj +

∑
k∈V

Ḡjkvk

)
.

Now, considering the tailor-made noise model H̄i(ρi) =

−Cii(ρi)H̆i(ρi), we obtain the filtered prediction error

εFi (t, ρi) = H̄i(ρi)
−1

[
xi + Cii(ρi)H̆i(ρi)ei − Cii(ρi)Hiei

]

+ ei

= H̄−1
i [xi(ρi) + Cii(ρi)∆Hi(ρi)ei] + ei,

where ∆Hi(ρi) := H̆i(ρi)−Hi.

We will now show that the noise ei is uncorrelated with
xi(ρi) and Cii(ρi)∆Hi(ρi)ei:

• Since both H̆i(ρi) and Hi are monic, ∆Hi(ρi) is
strictly proper. Hence, Cii(ρi)∆Hi(ρi) has a de-
lay, because Cii(ρi) is proper, which implies that
Cii(ρi)∆Hi(ρi)ei is uncorrelated with ei;

• ∆Cii(ρi)
∑

j∈V Gij ūj is uncorrelated with ei, since it
is a filtered linear combination of uj , j ∈ V, which are
uncorrelated with ei by assumption;

•
∑

j∈Ni
Kd

ij∆Cij(ρi)
∑

k∈V Gjkūk is uncorrelated with
ei, since it is a filtered linear combination of uj , j ∈ V,
which are uncorrelated with ei by assumption;

• ∆Cij(ρi)
∑

j∈V Ḡijvj is uncorrelated with ei, because

(i) Ḡii is strictly proper by Lemma A.2 and (ii) ej ,
j ∈ V \ {i} is uncorrelated with ei by assumption;

•
∑

j∈Ni
Kd

ij∆Cij(ρi)
(
vj +

∑
k∈V Ḡjkvk

)
is uncorrelated

with ei, because (i) Ḡji is strictly proper for j ∈ Ni

by Lemma A.2 and (ii) ej , j ∈ V \ {i} is uncorrelated
with ei by assumption.

Hence,

V̄ F
i (ρi) = ĒεFi (t, ρi)

2 (B.2)

= Ē
[(
H̄−1

i [xi(ρi) + Cii(ρi)∆Hi(ρi)ei] + ei
)2]

= Ē
[(
H̄−1

i [xi(ρi) + Cii(ρi)∆Hi(ρi)ei]
)2]

+ σ2
ei .

But then the minimum of V̄ F
i (ρi) must be σ2

ei and a

minimizing argument is ρdi by the second condition.

Next, we will show that the minimizing argument is
unique. A minimizing argument ρ∗i must satisfy V F

i (ρ∗i ) =
σ2
ei , which, by (B.2), is equivalent with

0 = Ē
[
H̄i(ρ

∗
i )

−1 [xi(ρ
∗
i ) + Cii(ρ

∗
i )∆Hi(ρ

∗
i )ei]

]2

= Ē



∆xi(ρ

∗
i )




Ti

Hi(1− Ti)
−Gi

Hi
− 1

Hi
GiN

0 Gi GiN
0 0 Kd

iN




︸ ︷︷ ︸
=:Γi




z̄i
ui

ōcN i







2

,

with Kd
iN := diagj∈Ni

Kd
ij and

∆xi(ρ
∗
i ) =

1

H̄i(ρ∗i )

[
∆HiCii ∆Cii rowj∈Ni

∆Cij

]
(ρ∗i ).

Hence, by Parseval’s theorem,

1

2π

∫ π

−π

∆xi(e
iω, ρ∗i )

�ΓiΦζi(ω)Γ
∗
i∆xi(e

−iω, ρ∗i ) dω = 0.

Now, Γi(e
iω) has full rank for almost all ω and, by the

first condition, Φζi(ω) is positive definite for all ω. Hence,
[∆HiCii ∆Cii rowj∈Ni

∆Cij ](ρ
∗
i ) is equal to the zero row

for almost all ω, which implies Cii(ρ
∗
i ) = Cd

ii, Cij(ρ
∗
i ) =

Cd
ij , j ∈ Ni, and H̆i(ρ

∗
i ) = Hi. This concludes the proof.
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