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Abstract: Over the past years, device-free sensing has received considerable attention due to its
unobtrusiveness. In this regard, context recognition using WiFi Channel State Information (CSI) data
has gained popularity, and various techniques have been proposed that combine unobtrusive sensing
and deep learning to accurately detect various contexts ranging from human activities to gestures.
However, research has shown that the performance of these techniques significantly degrades due to
change in various factors including sensing environment, data collection configuration, diversity of
target subjects, and target learning task (e.g., activities, gestures, emotions, vital signs). This problem,
generally known as the domain change problem, is typically addressed by collecting more data and
learning the data distribution that covers multiple factors impacting the performance. However,
activity recognition data collection is a very labor-intensive and time consuming task, and there
are too many known and unknown factors impacting WiFi CSI signals. In this paper, we propose
a domain-independent generative adversarial network for WiFi CSI based activity recognition in
combination with a simplified data pre-processing module. Our evaluation results show superiority
of our proposed approach compared to the state of the art in terms of increased robustness against
domain change, higher accuracy of activity recognition, and reduced model complexity.

Keywords: device-free sensing; unobtrusive sensing; WiFi CSI; generative adversarial network;
domain change; domain adaptation

1. Introduction

With the accelerating development of new sensing and communication technologies,
monitoring human activities in everyday life has become more popular than ever in various
fields such as surveillance, entertainment, and healthcare. Sensing technologies in the
field of human context (e.g., activities, gestures, emotions, vital signs) recognition can be
categorised into two sub-categories: device-based and device-free. While device-based
sensing refers to a situation in which sensors are attached to the human body to measure
and monitor a specific context, device-free sensing refers to situations in which not the
human body, but the environment in which a human is present in is monitored.

Although many device-based sensing systems have become quite popular, in some
situations it is impractical and cumbersome to wear them all the time. In order to overcome
the limitations of device-based sensing, device-free sensing, such as visual-based sensing
(cameras), has been considered. Although this technology is quite popular, with computer
vision algorithms (object detection/recognition) advancing rapidly, it only operates in
scenarios in which a subject is in line-of sight and no occluding obstacles are in the view.
Additionally, it requires robust and continuous lighting conditions, as a subject may
not be visible throughout the entire day. Moreover, visual-based sensing devices are
intrusive as they impact the privacy of an individual. Therefore, in order to overcome all of
these limitations, device-free solutions, using radio signals such as WiFi, are considered.
In particular, the IEEE 802.11 protocol contains channel state information (CSI), which
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characterizes how well wireless signals propagate from a transmitter to a receiver at
a certain carrier frequency [1]. WiFi CSI contains carrier signal amplitude and phase.
Recently, it has been commonly used for fine-grained activity recognition in combination
with data-driven, learning-based models [2–8].

However, research has shown that, the performance of these learning-based ap-
proaches in the context of WiFi CSI-based activity recognition significantly degrades due to
various domain factor changes. For instance, it was shown that performance of WiFi-based
activity recognition systems are impacted by a change of the environment in which the
activity is performed [5,7,9], change of orientation with respect to the sensing device [5],
CSI data quality [1], different physical properties of human subjects or slight difference
in movement patterns of a user [4,6]. Even the time of day may have a big impact, as
electromagnetic waves are impacted differently during the day and night in office or home
environments [4,10]. Therefore, the focus of this paper is on addressing the performance
degradation issue discussed above, which is referred to as “domain change”.

Typically, the domain change problem can be addressed by collecting more data and
learning the data distribution that covers multiple factors impacting the performance.
However, activity recognition data collection is a very labor-intensive and time consuming
task, and yet there are too many known and unknown factors impacting WiFi CSI signals.
In particular, each new environment setup has multiple paths from the transmitter to
receiver [9]. Therefore, a learning-based system trained once on one particular environment,
activity, or human subject at a specific time may not be sufficiently robust and consistent
against the change. This indicates the need for robust recognition models, which are capable
of performing well independent of the factors that a recognition system is exposed to.

Contributions

The main contributions of this paper are:

• A new generative adversarial network for domain adaptation with UNet architecture
and a simplified set of CSI pre-processing module.

• A convolutional neural network model combined with a triplet loss for feature extraction.
• A thorough impact analysis of various internal parameters and design choices of the

proposed generative adversarial network and convolutional neural network models.

2. Problem Statement

In order to formalize the “domain change” problem, we present it using clear mathe-
matical notations. First of all, a WiFi-based activity recognition system operates in domain
D(a1, a2, ..., an), which contains n number of domain attributes an that impact performance
either negatively or positively. In general, for a given domain, denoted by D, an activity
recognition task, denoted by T , can be written as a set {Y, P(Y|X)}, where P is a function
of a conditional probabilistic model, Y is a label space and X ∈ D is the input data space.
Using supervised learning techniques, P(Y|X) is learnt from the labeled data {xi, yi},
where xi ∈ X and yi ∈ Y.

Let us assume that the source domain, denoted by Ds, is used for training, the tar-
get domain, denoted by Dt, is used for testing, and a recognition task is defined as
T s = {Ys, P(Ys|Xs)} and T t = {Yt, P(Yt|Xt)}. In normal cases, i.e., if Ds = Dt and
T s = T t [4,11,12], the learning-based model of activity recognition there will have no
performance degradation. In case of domain change, however, the tasks do not change
(which means T s = T t), but the source and target domains are no longer the same (which
means Ds 6= Dt) [11], resulting in activity recognition performance degradation.

The domain shift problem can be further categorized into two categories: (i) homo-
geneous, where the input data space of the domain attributes an are the same (which
means Xs = Xt), but the data distribution is not (which means P(Xs)s 6= P(Xt)t) and
(ii) heterogeneous, where the input data space is different Xs 6= Xt [11,13]. In the former
case, there is an assumption that domains differ only in marginal distributions. Therefore,
domains can be adapted by correcting the sample selection bias. The latter case, however,
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is more challenging, as the input data space of an is available from the source domain,
but it is represented in a different way than that of the target [13]. In order to relate the
general domain change problem to the context of WiFi CSI-based activity recognition, both
homogeneous and heterogeneous cases will be discussed, with the focus on major body
activities such as various hand gestures or body movement/exercises, as described in
Section 5.1 further explored in this paper.

Regarding the homogeneous case, marginal probability distributions data spaces
are different (P(Xs)s 6= P(Xt)t). For instance, they are different if a recognition system is
trained to classify major hand movements in an environment/room, where electromagnetic
wave interference is lower and less frequent (suburbs) than in the target domain (city).
Moreover, probability distributions may differ, for example, when a group of people (source
domain) performs specific body activities less often than another group of people (target
domain). The performance of a learning model may degrade in both examples as the
marginal probability distributions between the source and target domains (environments
and people respectively) are different. Regarding the heterogeneous case, the input data
space in the source domain is different compared to the target domain (Xs 6= Xt). For
instance, assuming a learning model is trained on one group of people—female (source
domain)—with different physical properties an than the other group of people—male
(target domain)—then the way that the movements of the activities are performed would
be different. Consequently, this would cause a domain change problem, as the input data
space of an (physical body properties) between groups of female and male are not the same.
Additionally, physical properties may be different regionally based on the average human
height or any other physical property that is relevant to one specific geographical region or
human race, etc.

3. Related Work

Different methods have been developed in the past for domain independent activity
recognition using WiFi CSI data. These methods can be categorized into two main cate-
gories, i.e., (i) model-based, and (ii) learning-based [10]. Since most of the learning-based
approaches have shown huge success in the recent years, model-based approaches will
not be reviewed in this paper. Learning-based approaches are data-driven and can be
trained to perform an activity recognition task using a machine learning algorithm. These
learning-based approaches may be categorized into three sub-categories, i.e., supervised,
semi-supervised, and unsupervised learning [14]. Based on this categorization, we present
in the following sections an overview of various deep learning methods, designed for
activity recognition using WiFi CSI data.

3.1. Supervised Learning Approaches

Various supervised learning algorithms have been successfully applied for activity
recognition using WiFi CSI data. Supervised learning algorithms are based on training
with labelled data sets, where each piece of input data x has an associated label y and a
model can learn to extract relevant features to map each input x to a corresponding output
label y. This algorithm training setting is quite common in the literature.

A baseline paper, called SignFi [6], was published in 2018. Authors designed a deep
learning model based on convolutional neural networks (CNN) to recognize hand sign
gestures. In total, 5 people volunteered, and CSI traces of 276 different sign gestures
in two different environments, i.e., home and lab, were collected. Authors showed that
the performance of classical machine learning methods, such as k-Nearest Neighbour,
degrades with the increasing number of gesture categories. Although their model showed
high performance in each individual environment, based on leave-one-subject-out cross
validation, they showed that their model degrades on a new user that the model has not
been trained on.

Authors of [15] addressed the domain change problem in the field of hand gesture
recognition. Their model worked well in new environments with minimal tuning and
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few additional training samples. In order to achieve this, they proposed to use Siamese
neural network architecture [2], where two identical twin networks were used with shared
weights and two input samples were fed to each of the two networks. They first utilized
the convolution neural network to extract spatial information, and then coupled it with the
recurrent neural network BILSTM (Bi-directional Long-Short Term Memory) to capture
temporal information. Secondly, they proposed to use a pairwise loss function with the
combination of Mk-MMD (multiple kernel maximum mean discrepancies) [15]. While this
pairwise loss function maximizes the L2 distance between the samples of different classes,
and minimizes the distance between the gesture samples of the same class, MMD aids
better domain adaptation. In order to test their architecture, they invited 10 volunteers
to collect data on six major hand movements in two different meeting rooms (large and
small). Overall, the authors concluded that their architecture improved existing methods
under very small sample conditions, however its performance degraded with fine grained
finger gestures.

Authors of [5] introduced a robust supervised cross-domain recognition system. They
collected one of the largest open-source WiFi CSI datasets, which will be described in
more details in Section 5.1 and will be used throughout this paper. It consists of seventeen
subjects performing various hand gestures in three different environments. The dataset
was used to study domain independent features, which eres found to be the body velocity
profile (BVP). Authors developed a pre-processing module, which transforms CSI data
to signal power distribution over velocity components in the body coordinate system.
Regarding the classification, a hybrid spatial-temporal deep learning model was designed.
Their model takes the BVP as an input, and outputs prediction of the gesture. Based
on the experiments, their entire recognition system achieves quite robust results, being
environment, person, location and orientation independent. The major contribution of this
paper is the use of the BVP as an input feature.

3.2. Un/Semi—Supervised Learning Approaches

Unsupervised and semi-supervised learning have shown huge success, outperforming
most of the supervised learning activity recognition models using WiFi CSI data. Both semi-
supervised and unsupervised learning are beneficial when labeled data is not available or
is too expensive or time consuming to label.

Authors of [3] achieved model robustness in different environments by utilizing the
unsupervised domain adaptation [16]. They employed labeled and unlabeled parts of
the dataset to train three neural networks for feature extraction, activity recognition, and
domain discrimination via an adversarial learning approach. Although the proposed
model uses both labeled and unlabeled data, each environment had to be labeled to get a
clear distinction. Due to the fact that the model requires new discriminator construction
every time additional domain factors are introduced, this may lead to scalability problem,
when the system is going to be deployed and used in real life and as such needs to be
addressed in the future.

Authors of [9] introduced WiADG to identify human gestures accurately under differ-
ent environmental dynamics using adversarial domain adaptation [16]. Their main system
architecture was divided into three steps. In the first step, authors assumed that only source
domain training data is available, so they trained a source encoder and source classifier
to get high performance only in one specific source environment. Then, in the second
step, an unsupervised adversarial domain adaptation technique was applied, by utilizing
trained source encoder, new target encoder, and an environment discriminator. Inspired
by generative adversarial networks , where the discriminator distinguishes between the
fake and real images, the WiADG discriminator separates the source and target domains.
The main learning objective was set such that target encoder forced the discriminator to
classify unlabeled target samples as source samples, while the discriminator seeks the
opposite. Finally, in the last step, a trained target encoder and source classifier were used
to identify gestures in the target domain. In order to test performance, authors collected
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CSI data on various hand gestures in two different environments, i.e., office and conference
room. They showed that with adversarial domain adaptation, their system improved the
overall accuracy.

Generative Adversarial Network-Based Approaches

Since our proposed method is based on generative adversarial networks (GANs) [17],
in this section we focus on techniques inspired by GAN. A GAN-based semi-supervised
architecture was proposed in [8]. The authors addressed performance degradation of leave-
one-subject-out, when the data of one person was used for training (source domain) and
another for testing (target domain). The main contribution of the paper is that they used two
generators in their GAN architecture. One generator is a vanilla GAN [17] to generate fake
samples, and another generator is a complement GAN, trained using the “CycleGAN” [18],
which generates the source domain samples in accordance with the data of the left-out user
(target domain). In order to test their performance, authors used SignFi [6] and Falldefi [19]
datasets. Although, they had quite a low performance degradation when performing
leave-one-out-subject validation, they did not test the performance of their model on data
from different environments. Finally, they faced some stability issues during training.

Another paper based on GAN is WiGAN [7], in which the authors showed that their
proposed modelis environmental and user independent. First, the authors combined the
structure of Deep Convolutional GAN [20] with the main characteristics of Conditional
GAN [21]. This combination resulted in altered generator G input, which consists of the
prior latent z together with the sample label yi ∈ Y . This improved sample generation,
solving the small sample problem. The second contribution was the discriminator network
D, for which they proposed a convolutional neural network module to fuse the feature
maps of the last four layers of D. Those compressed feature maps were then further
processed by the “softmax” activation function to output the probability distribution of
each category, which is used in GAN training. Taking the feature maps of the last four
layers instead of only the last one provided an effective way to learn by choosing an
optimal set of features. The third contribution was related to the fact that, instead of using
the discriminator D directly as a classifier, the authors proposed to use Support Vector
Machine (SVM) [22]. Based on the experiments with Widar3.0 dataset [5], they showed
that SVM outperforms CNN under small sample conditions. The trade-off, however, was
that performance was degraded while testing on a large number of activity categories. The
authors did not further explore different classification methods based on deep learning
and left it for future studies.

Furthermore, the authors of [7] proposed to add a data pre-processing module for the
training deep learning model , whose main purpose was to convert raw CSI data into the
sanitized CSI amplitude. This module consists of several data pre-processing steps, such
as activity detection, interpolation, Discrete Wavelet Transform and sub-carrier selection.
Several experiments were performed to check the impact of the data pre-processing module
on overall model performance. It was showed that, without it, 10% to 20% performance
degradation was experienced. Although this indicates that the raw data already contains
unnecessary noisy components and it should be pre-processed, the authors did not further
explore which pre-processing steps are the most optimal ones and did not experiment with
other methods available in the literature.

4. A Generative Adversarial Network Pipeline for Activity Recognition Using WiFi
CSI Data

In this section, we first explain the standard pipeline of learning-based activity recog-
nition models using WiFi CSI data and its common building blocks. We then present
our contribution, including the new generative adversarial networks, CNN-based feature
extraction, and simplified CSI data pre-processing.

The standard pipeline of activity recognition (see Figure 1) consists of building blocks
for data pre-processing, feature extraction, feature selection, and classification. Recent
deep learning-based activity recognition using WiFi CSI data has adapted this standard
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pipeline by replacing some parts with artificial neural networks. For instance, Figure 2
depicts the Widar3.0 [5] deep learning-based activity recognition pipeline, which is used
as a reference for comparison in this paper. It can be seen from the figure that (i) feature
extraction, feature selection, and classification are replaced by a deep learning model and
(ii) the data pre-processing phase consists of several stages. Firstly, the noise and phase
offsets are removed in the pre-processing phase. Then, using pre-processed CSI data, a
body velocity profile (BVP) is generated. Finally, the BVP is normalized for the input of the
deep learning model.

Figure 1. Standard pipeline of activity recognition using WiFi CSI data.

Figure 2. Pipeline of Widar3.0 paper’s activity recognition using WiFi CSI data, taken from [5].

In this paper, we propose a generative adversarial network-based pipeline, illustrated
in Figure 3, with a simplified pre-processing module. The adversarial training, using
which the generator competes against the discriminator to classify CSI gestures and to
categorise the domains such as subject ID or room ID. The generator is generating CSI
gesture amplitude samples in such a way that it confuses the discriminator to classify the
sample domain, leading the discriminator to a classification performance independent of
the domain change.
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Figure 3. Our proposed generative adversarial network-based pipeline (ADA).

Our data pre-processing begins with amplitude data extraction from raw CSI, followed
by amplitude normalization and interpolation. The former is required due to the fact that
standard neural networks do not provide support for complex numbers and for a more
stable training process [23]. Research regarding deep neural networks that support complex
numbers is an emerging research field [24]. Regarding the latter, amplitude sample constant
shape is required for the input of the artificial neural network. Whilst there are methods to
construct a CNN model with varying input shape [25,26], this is out of the scope of this
paper and is left for future work. Our deep learning model, as it can be seen in Figure 3,
is different than the deep learning model of the Widar3.0 paper, as it utilizes only spatial
feature extraction—a Convolutional Neural Network, which directly takes normalized and
interpolated CSI amplitudes as input. The reason we opt for a CNN architecture for feature
extraction is that various papers have shown that deep learning approaches, in which the
model learns the features by itself, can achieve higher performance compared to models
that use hand-crafted/statistical features.

4.1. WiFi CSI Data Pre-Processing

Data pre-processing plays an important role in addressing the domain change prob-
lem in learning-based activity recognition systems using WiFi CSI data. Based on recent
research papers, the modern deep learning approaches discussed in Section 3, proposed data
pre-processing pipelines that increase recognition system performance by approximately
20% [7] or 40% [5]. However, as discussed in Section 3, commonly used pipelines in the
literature consist of a long list of different methods, and it is quite complex to find an optimal
combination of these techniques. Thus, we strive to automate the pre-processing phase by
allowing the convolutional neural network to learn the optimal set on its own. With this
idea, we further analyze different methods to reduce the complexity of the standard pre-
processing pipeline presented in Figure 2. We aim to find minimal CSI data pre-processing
operations required by the convolutional neural network to function well in the presence of
domain change.

To study the effects that our choice of data pre-processing steps will have on the overall
performance of the activity recognition system, we use a simple four-layer convolutional
neural network, as depicted in Figure 4 for activity classification, with results presented in
Section 5.2. As it can be seen, the network receives an input of pre-processed CSI amplitude.
Then pre-processed sample is further convolved by four convolutional layers, with a kernel
size of (3, 3), stride (2, 2) and the “LeakyReLU” activation (α = 0.1) function. Subsequently,
the last convolutional layer output (with shape [100, 2, 256]) is flattened to a vector of
size 51,200, which is then passed to three densely connected layers, with 256, 128, and
3 neurons each. Finally, the output of the neural network is passed through a Softmax
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activation function to obtain the probability of each gesture category. Regarding the training
process, the network weights are initialized with the Glorot uniform distribution [27] and
trained using Adam [28] optimizer, with a learning rate of 10−3 and objective loss function
(categorical cross-entropy).

Figure 4. Convolutional neural network used for activity classification.

4.2. A CNN-Based Architecture for Feature Extraction

The base architecture of the CNN model used for our feature extraction component is
shown in Figure 5, which will be used and updated with each experiment in Section 5.3.
The CNN feature extractor consists of five CNN blocks, where the first block takes an
input of CSI amplitude in a reshaped form [256, 160, 3]. Each block reduces its input by
approximately twice, and contains three operations, i.e., convolution, batch normalization,
and LeakyReLU activation. Then convolutional part of the model is followed by a stack of
four layers, which starts with an operation to flatten out feature maps of the last CNN layer,
followed by a densely connected layer of size variable z (latent dimension), which will be
varied in the experiments. After that, the vector z is processed with L2 normalization, which
is then passed to a densely connected layer of size 64. Finally, the output of the feature
extractor is then passed to a classification module, which contains a densely connected
layer, with three neurons, followed by softmax activation, in order to output the probability
distribution of the three type of gestures.

Figure 5. CNN feature extractor architecture.
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4.3. Adversarial Network Architecture

Figure 6 shows a high-level overview of the architecture of our adversarial network. It
consists of two artificial neural networks, i.e., (i) a generator and (ii) a discriminator, which
compete against one another. For the discriminator part of the model, we use the final
outcome of experiments discussed in Section 5.3 as our feature extractor and classifier. We
then borrow the idea from [3] to discriminate between the domains and gestures using the
domain discriminator (DD) and gesture discriminator (GD), respectively, in our classifier
module. In our case, we use the subject ID as domain labels and leave out other possible
domain labels, such as room ID, face orientation, or subject location in a room for future
studies. The generator and discriminator networks are trained one after another with a
data batch of size 32, an Adam optimizer (with learning rate of 0.0002 and β1 = 0.5), until
it is observed that the gesture classification test accuracy ceases to improve.

For the generator, we use a U-Net based architecture [29], which was originally
designed for translating an input image to its corresponding output image by sharing
information between intermediate layers of encoder and decoder. Based on this idea, we
propose a UNet based architecture variant that translates the CSI amplitude x into a fake
amplitude x f . The proposed architecture is depicted in Figure 7. It takes an input of
pre-processed CSI amplitude sample, one hot encoded gesture label, and subject ID. Then,
based on the provided input, it translates the amplitude sample x into a fake amplitude
sample x f , which is then passed to the discriminator.

The overall objective functions, which have to be minimized by the discriminator and
the generator, are described in Equations (1) and (2), respectively. Regarding the discrimi-
nator, it outputs probability classes of three gesture categories and k probability classes for
domain categories, where (k + 1)th is for unknown. As can be seen in Equation (1), the loss
LD consists of four terms. The first term corresponds to gesture discriminator (GD) loss
with real gesture samples (x, yg). The second term is the loss term for domain discriminator
(DD) with real gesture samples (x, yd), where yd corresponds to subject ID. Finally, the
third and fourth terms correspond to domain discriminator (DD) loss with input of fake
sample (x f , yd), where yd = k + 1—unknown domain category and triplet loss LT (margin
α = 1.75), respectively.

LD =−Ex,yg∼pdata(x,yg) log [pGD(yg|x)]

−Ex,yd∼pdata(x,yd)
log [pDD(yd|x, yd < k + 1)]

−Ex f∼pG(G(x f |(x,yg ,yd)))
log [pDD(yd = k + 1|x f )]

+LT ,

(1)

where yg for gesture type, yd for domain (subject id), k—domain categories.
The generator objective function LG consists of three loss terms. The first and second

terms motivate the opposite of the discriminator, as described in LD. The first term
corresponds to the domain discriminator (DD) with the fake sample (x f , yd) as input,
where the domain (subject ID) is yd < k + 1. This ensures that the generator is penalized if
its generated sample x f is classified by the domain discriminator as an unknown (k + 1)th
domain category. The second term defines the gesture discriminator with (x f , yg) as the
input, where yg is the corresponding gesture category. Finally, the final loss term is the L1
loss between the original CSI amplitude x and fake amplitude x f , weighted with constant β.

LG =−Ex f∼pG(G(x f |(x,yg ,yd)))
log [pDD(yd|x f , yd < k + 1)]

−Ex f∼pG(G(x f |(x,yg ,yd)))
log [pGD(yg|x f )]

+ β[Ex∼pdata(x),x f∼pG(G(x|(yg ,yd)))
||x− x f ||1],

(2)

where yg for gesture type, yd for domain (subject id), k—domain categories.



Sensors 2021, 21, 7852 10 of 23

Figure 6. Adversarial network model.

Figure 7. UNet model architecture.

5. Performance Evaluation
5.1. WiFi CSI Dataset and Computing Resources

We used a large and rich open-source WiFi CSI dataset called Widar3.0 [5], which
has been used by many other researchers for model training and performance evaluation.
The dataset contains WiFi CSI data collected from 17 people performing different hand
gestures such as push-pull, sweep, and clap, (see Figure 8 for some example gestures) in
three different environments, i.e., classroom, hall and office (identified as room 1, room 2,
and room 3, respectively). Experiments were performed at each room, following the setup
depicted in Figure 9, consisting of one transmitter and six receivers placed in different
positions. Each human subject had to perform each gesture at five different locations and
orientations with respect to the transmitter. Correctly recognizing gestures is beneficial for
applications in sign language, simultaneous translation for people with hearing difficulties,
dementia, gaming, etc, where gestures performed by users need to automatically be
recognized by a computer/machine.
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Figure 8. Widar3.0 dataset gesture samples, taken from [5].

Figure 9. Experiment setup of Widar3.0 dataset, taken from [5].

Data sample distribution per subject in each room is depicted in Figure 10. As it
can be seen, the largest amount of data samples were collected by subjects 1, 2 and 3.
The other subjects collected approximately 2000 CSI samples each. Furthermore, the data
set is gesture class balanced: an approximately equal number of the three gesture types
were performed by each subject in each room. Overall, this data set will be used for our
experiments in the following section, as it allows us to study the impact of the domain
change problem caused by change of rooms, change of human subjects, and change of user
orientation and location with respect to a transmitter.
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Figure 10. Data distribution of Widar3.0 dataset per subject in different rooms, taken from [5].
(a) Subjects in room 1; (b) Subjects in room 2; (c) Subjects in room 3.

To train and test our approaches presented in Sections 4.3 and 5.3.1, using the Widar3.0
dataset, we used, in terms of computing infrastructure and resources, a Linux server
(Ubuntu 18.04.5) with Intel(R) Core(TM) i7-6900K CPU (3.20 GHz) and 126 GB RAM that
has two NVIDIA “TITAN X” graphic processing units with 12GB of video RAM each.
The simulations were done in Python and we used Tensorflow and Keras frameworks for
building and training the models.

5.2. Data Pre-Processing

To analyze the effect of various pre-processing steps on the model performance, we
used part of the Widar3.0 dataset, as represented in Table 1, for experiments. Two people,
with the user IDs’ 1 and 2, were taken for experiments for the training set and test set,
respectively. Users performed three hand gestures: push/pull, sweep and clap (Figure 8),
in room 1 (classroom) and location 5 (Figure 9).

Table 1. Part of Widar3.0 dataset (described in Section 5.1) for pre-processing pipeline experiments.

Number of
Categories Train Set Test Set Room

Location
Room
Type

Face Orientation
w.r.t Tx Amplitude

3 User ID 1 User ID 2 5 Room 1 All +

5.2.1. Effect of Interpolation

As the CSI sample shape is similar to a digital image with three channels [Height, Width, 3],
image processing interpolation methods were used in accordance with two survey papers,
i.e., [30,31]. These survey papers indicate that bi-linear and bi-cubic interpolation methods
are computationally cheap, having relatively low peak signal to noise ration. Therefore,
we study the impact of bi-linear and bi-cubic interpolation (without normalization step)
on the accuracy of our convolutional neural network trained over 11 epochs with varying
input size [N, 30, 3], when N decreases from 2000 to 500. As can be seen from Figure 11a,
while the bi-linear interpolation training accuracy gradually decreases, the accuracy of the
bi-cubic interpolation remains approximately the same across all varying values of N. This
indicates that bi-cubic interpolation is more robust against varying resolution of input data
and, therefore, will be used for the final pre-processing module. Regarding the test set
accuracy, as can be seen in Figure 11b, we observe that the model performed almost like
random guessing, when both interpolation methods were used, with bi-cubic performing
slightly better for lower values of N.
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Figure 11. Effect of interpolation with varying input size N. (a) Model train accuracy. (b) Model
test accuracy.

5.2.2. Effect of Normalization and DWT De-Noising

In this section, the impact of batch normalization and Discrete Wavelet Transform
(DWT) de-noising on the training accuracy of our convolutional neural network model
is studied. Firstly, de-noising helps to remove high frequency components from input
data, which do not contribute to model performance. In particular, Figure 12 depicts
the comparison of amplitude sample with and without Discrete Wavelet Transform. The
amplitude sample is first pre-processed with bi-cubic interpolation (shape [1600,30,3]),
then reshaped for visualization purposes (shape [320,150,3]). As the final step, DWT is
applied, resulting in smoothed shades and colors. As it can be seen in Figure 13, four
different pre-processing configurations of bi-cubic interpolation with and without DWT
de-noising are compared, when CNN model was trained over 11 epochs. In particular,
we experiment with (i) bi-cubic interpolation, (ii) bi-linear interpolation, (iii) bi-cubic with
batch normalization, and (iv) bi-linear with batch normalization. First of all, it can be
observed, that average training accuracy (62.75%) of all configurations with DWT is higher
than without it by approximately 7.5%. This shows that DWT de-noising of input data
contributes to a better model training process, leading to a higher recognition accuracy
than without it. Although, DWT shows positive results on model training accuracy, it will
not be further used in this paper, due to the fact that, our main objective, as it was already
mentioned, is to simplify the pre-processing pipeline by finding minimal pre-processing
steps that convolutional neural network could work with.

Figure 12. Amplitude sample visualized with and without DWT (wavelet: “sym3”, decomposition
threshold 0.5).

Additionally, we noticed that training a model with batch normalization showed
higher training accuracy than without. It can be seen in Figure 13 that the models trained
with bi-cubic interpolation and bi-linear interpolation with batch normalization show
approximately 2 to 3 percent higher training accuracy. This indicates that normalization of
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the input data contributes to a better model performance, and therefore the pre-processing
pipeline with bi-cubic interpolation and batch normalization will be used for further
analysis in Sections 5.3 and 5.4.

Figure 13. Discrete Wavelet Transform and batch normalization pre-processing results.

5.3. CNN-Based Feature Extraction Hyper-Parameter Study

In this section we focus on the deep learning model used in the feature extraction
part of the pipeline. In the previous Section 5.2, we used a simple 4-layer CNN as a
feature extractor to identify the minimal pre-processing operations that a deep learning
model could work with and still achieve an accepted activity recognition accuracy on the
training data set. However, based on the experimental results (Figure 11), we observed
that the CNN model used was not robust in the presence of domain change—change of
user, when the model was trained on one person and validated on another. Thus, in this
section we re-use the data pre-processing module found and propose a different model for
feature extraction. In particular, we improve the Convolutional Neural Network model
and its objective function in order to address the domain change problem. To analyze
theeffect of different parameters and design choices of our CNN model on the accuracy of
activity recognition in the presence of domain change, we use part of Widar3.0 dataset, as
represented in Table 2. The CNN model takes all gesture samples performed by all subjects
in room 1, except subject 11, which is used only for testing purposes.

Table 2. Widar3.0 dataset, discussed in Section 5.1.

Number of
Categories Train Set Test Set Room

Location
Room
Type

Face
Orientation

w.r.t Tx

Repetition
ID

3

U1, U2, U3,
U5, U10, U12,
U13, U14, U15,

U16, U17

User ID 11 All Room 1 All 1–3

5.3.1. Training and Testing CNN Model

Regarding the training configuration, the network showed in Figure 5 weights were
initialized with Glorot uniform distribution [27] and trained using the Adam [28] optimizer,
with a learning rate of 10−3 for all experiments. Since the task is to classify person gestures,
i.e., push/pull, sweep, and clap, we used a combination of cross-entropy Lc and triplet loss
LT , with margin α = 1 (originally coined by [32]) as an objective loss function L = Lc +LT
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and aim to minimize it. By adding triplet loss in the objective function, we sought to
improve model training convergence, by forcing it to group CSI gesture samples into
clusters in the embedding space, with z dimensions (a.k.a. latent dimension). This will be
discussed in more detail in Section 5.3.4. For model training, we used data that creates
conditions of domain change issue. For that we use samples from all users in room 1 except
user 11, which was used only for testing purposes. The samples include all gesture samples
collected at all locations and face orientations with respect to the transmitter. Due to the
highly time consuming training procedure, only the first three user gesture repetitions
were used in training and test datasets.

5.3.2. Effect of Max Pooling and Kernel Stride

In the very first experiment, we strived to analyse the effect of changing CNN block
parameters of the base model in Figure 5. As can be seen in Figure 5, the base model CNN
block consists of a convolution operation, followed by batch normalization and LeakyReLU
(a = 0.1). Then, as depicted in Figure 14b, we alter the CNN block, by inserting max
pooling operation and changing the convolution kernel stride to 1. Based on [25], the
max pooling layer allows the extraction of statistics that are invariant to small changes of
the input to the convolutional layer. This may help to address the shortcomings of the
minimal pre-processing, which were found not to be contributing to addressing the domain
change issue.

Figure 14a illustrates the results of our CNN model with and without max pooling in
terms of validation accuracy, with respect to latent dimension z of the densely connected
layer in the feature extractor module. As the first observation, we noticed that the CNN
model with max pooling and convolution kernel stride 1 outperforms the CNN model
without max pooling and convolution kernel stride 2 by, on average, approximately 30%.
This shows that the former has a high impact on model performance when tested on a “not
seen” user. Moreover, the impact of latent dimension z can be identified. We observe that
model test accuracy positively correlates with the increasing latent dimension z, from 64 to
512 in both CNN block types, with the test accuracy peaking at z = 256. As a result, based
on this experiment, we further use z = 256 and modified version of CNN block, depicted
in Figure 14b.

(a) (b)
Figure 14. Effect of adding max pooling and changing convolution kernel stride. (a) Test accuracy
of CNN feature extractor max-pooling and stride w.r.t latent dimension z experiment. (b) Feature
extractor CNN block.

5.3.3. Effect of Dropout Regularization

In this section, we evaluate the effect of adding the dropout regularization to parts of
the feature extractor module (Figure 5). Based on the previous experiment (Figure 15a), the
best CNN architecture was chosen and, as represented in Figure 15b, a dropout layer was
added after each densely connected layer. The test accuracy of the resulting new model
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with varying dropout probabilities p are shown in Figure 15a. It can be observed that
test accuracy negatively correlates with increasing p, showing the best test accuracy when
p = 0. This indicates that dropout regularization after each densely connected layer in the
feature extractor is not contributing towards better accuracy, when user 11 is left out of
testing. Therefore, dropout regularization is not used in further experiments in this section.
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(a) (b)
Figure 15. Effect of dropout regularization on test accuracy. (a) Dropout regularization results.
(b) Classifier module with dropout regularization.

5.3.4. Effect of Triplet Loss Function

The triplet loss function aims to group CSI gesture samples into three clusters (3 cate-
gories) in the embedding space of z dimensions. Based on [32], this is achieved by maximizing
the L2 distance between the samples belonging to different categories with a margin of at
least α and minimizing the distance samples belonging to the same category. As depicted in
Figure 5, the embedding of each gesture sample is computed by passing it through the CNN
module, followed by a densely connected layer, with z neurons, and L2 normalization.

Based on the previous experiments, we take the best model architecture, which
contains max pooling operations in each CNN block and embeds gesture samples into size
z = 256 vector (embedding space). Figure 16 shows test accuracy with varying α. It can be
seen that increasing the margin α from 0.1 to 1 results in decreasing test accuracy, while,
on the other hand, increasing α from 1 to 1.75 shows an increasing trend, peaking at 80%,
when α = 1.75. This indicates that triplet loss with sufficiently high margin contributes
to addressing the domain change problem. Thus, a margin of α = 1.75 is used for further
experimentation in the following Section 5.4.
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Figure 16. Effect of triplet loss margin.

We further analyze the effect of the triplet loss by visualizing the embedding vec-
tors. Firstly, we take the trained model with triplet loss margin of α = 1.75 to compute
embedding vectors of each gesture sample in train data set and test data set. Then each
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embedding sample vector of size z = 256 was reduced to the size of z = 3, using Principal
Component Analysis (PCA) for visualization purposes in three dimensional space. The
resulting visualization can be seen in Figure 17. It can be observed that three clusters corre-
sponding to each gesture category were obtained. While in the training set, no outliers were
observed (see Figure 17a), forming almost perfect clusters. The test set showed clusters,
which were quite scattered and had a number of outliers (see Figure 17b). This confirms
the lower test accuracy (80%) compared with the training accuracy (99.99%), indicating
worse model performance in the presence of domain change.

Overall, triplet loss forces the model to automatically group all gesture samples into
clusters in the embedding space, regardless of where, when, and who from, the gesture
samples were taken. By doing so, it contributes to addressing the domain change problem.

(a) (b)
Figure 17. Visualization of effect of triplet loss. Each cluster corresponds to a gesture type. (a) Training
set embedding vectors visualized in 3-dimensional space with PCA. (b) Test set embedding vectors
visualized in 3-dimensional space with PCA.

5.4. Adversarial Domain Adaptation

Results described in Section 5.3 show that a certain degree of robustness in the domains
of different subjects and rooms was achieved by fine tuning different hyper-parameters
of the feature extractor CNN model. In this Section, we further seek to improve model
performance in the presence of domain change by utilizing domain information and
adversarial training. To study the effect of different design choices of our adversarial
network architecture on the accuracy of activity recognition in the presence of domain
change, we performed a number of experiments. In particular, we studied the effects of
the L1 loss term in Section 5.4.1, UNet regularization in Section 5.4.2, and Discriminator
regularization in Section 5.4.3.

5.4.1. Effect of L1 Loss

In the first experiment, we analyzed the effect of the L1 loss term of the generator,
which describes how similar the original input sample x and a fake sample x f are. In
our model, we vary the constant weight β. As can be seen in Figure 18a, the model test
accuracy of gesture classification shows a decreasing trend when β is increased from 50
to 300, peaking at points β = 50 & β = 100. As the generator aims to translate an input
sample x in a way that confuses the discriminator, higher values of β force the generator to
produce samples that are too similar, resulting in worse performance. Therefore, we select
β = 50 for further analysis in the following experiments in this Section.

Regarding the domain discriminator classification accuracy, it was observed that it
quite quickly reaches approximately 99%, over performing the generator, with loss that
showed an increasing trend over the entire training session (Figure 18b). As a consequence,
it can be observed that the generator and discriminator are imbalanced. Thus, in order
to maintain the balance, we further investigate various regularization methods in the
following experiments.
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Figure 18. Effect of L1 loss. (a) Generator L1 β constant w.r.t test accuracy. (b) Comparison between
generator and discriminator losses during training, when β = 50.

5.4.2. UNet Regularization

In this experiment, we further sought to improve the adversarial training balance
between generator and discriminator, by firstly conducting experiments with different
regularization methods used in the generator network, which would introduce some
“randomness” for fake sample generation. In particular, for each UNet generator layer we
tried different regularization methods: dropout, with p = 0.25 and addition of Gaussian
noise (with standard deviation σ =0.1 & σ = 0.05). Additionally, we experimented with
adding a fourth input, i.e., a Gaussian noise vector of size 256 (σ = 0.1) to the generator,
and concatenating it with the UNet bottleneck layer the same way as the gesture label, as
depicted in Figure 7.

The test accuracy using each method is shown in Figure 19a. It can be clearly noticed
that adding Gaussian noise to each layer output of the UNet decoder part results in the
worst performance out of all methods. The standard deviation σ = 0.05 shows slightly
better results than σ = 0.1, reaching approximately 68% and 69% test accuracy. On the
other hand, adding (i) Gaussian noise as input to the Unet network and (ii) the dropout,
gives stronger results, reaching approximately 73% and 78%, respectively, outperforming
the test accuracy of previous experiment. Therefore, we use p = 0.25 dropout after each
UNet layer as the regularization method for further experiments.

We also analyze the balance between generator and discriminator during training,
with the dropout regularization in UNet. As can be seen in Figure 19b, the generator
loss, with some fluctuations, stayed at approximately the same value until epoch = 60,
followed by an increasing trend until the end of the training. This indicates that dropout
regularization contributes to improving performance of the generator to compete against
the domain discriminator.
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Figure 19. Effect of UNet regularization. (a) Experiments of various regularization methods in UNet
(generator). (b) Comparison between generator and discriminator losses during training, when using
dropout in UNet and L1 loss β = 50.
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5.4.3. Effect of Discriminator Regularization

Experiments in the previous section showed that the dropout positively affected
balancing between the generator and the discriminator during the training phase, leading
to 78.3% test accuracy. In this section, we further investigate the effect of the dropout on
the discriminator network. The effect of dropout regularization with varying dropout
probabilities p from 0.1 to 0.5 is depicted in Figure 20a. As can be seen, we apply the
dropout to different parts of the discriminator network, i.e., (i) after each CNN block of
the feature extractor, and (ii) after each densely connected layer in feature extractor (see
Figure 6). Applying the dropout to the (i) leads to an increasing accuracy, with test accuracy
peaking at 84.7%, when dropout p = 0.5. On the other hand, applying the dropout to
the (ii) leads to a decreasing accuracy, with the lowest test accuracy 70.1%, when p = 0.5.
Therefore, we select (i) dropout regularization with p = 0.5 for the CNN feature extractor
for our final discriminator network.

The training loss plots are shown in Figure 20b. Compared with the previous ex-
periment (Figure 19b), the generator loss shows a more steady trend over 80 epochs of
training. Additionally, the discriminator loss shows a decreasing trend, which was not that
steep compared with the previous experiment, when no dropout in CNN was used. This
indicates that the dropout regularization has a positive effect on balancing the training
of the generator and discriminator. As a result, the test accuracy of 84.7% was achieved,
which outperforms the best accuracy obtained in Section 5.3.4.
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Figure 20. Effect of discriminator regularization. (a) Results of applying dropout regularization to the
CNN feature extractor and classifier module. (b) Comparison between generator and discriminator
losses during training, using dropout in UNet and CNN feature extractor, with L1 loss β = 50.

6. Discussion

Based on the results of the previous experiments, our final generator and discriminator
networks look like Figures 6 and 7, with L1 β = 50 (Section 5.4.1), UNet dropout, with
p = 0.25 (Section 5.4.2) and discriminator, using feature extractor from Section 5.3.4 and
dropout, with p = 0.5 (Section 5.4.3). Figure 21 shows the overall performance of this
model using leave-one-out subject/room validation. We compare the best performing
models obtained in Sections 5.2, our adversarial domain adaptation network (ADA), and
Widar 3.0 [5].

Results of the leave-one-out validation on subject domain are shown in Figure 21a. In
each experiment all subjects in room 1 except the one left out were used for training and
the left out subject was used for testing. It can be seen that the worst performing model is
the one obtained in Section 5.2, with an average test accuracy 41.9%. The Widar 3.0 model
achieves an average test accuracy of 65.2%. Finally, regarding the adversarial domain
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adaptation, it can be seen that its performance is by far the best, showing an average test
accuracy of 76%.

The results of leave-one-out room validation on room domain are shown in Figure 21b.
In each experiment, CSI gesture samples of all subjects in room 1 were used during training,
and CSI samples of one chosen subject, but in different room were used for testing. Similarly
as in the leave-one-out subject validation in Figure 21a, the worst and the second worst
performing models were the ones experimented in Section 5.2 and Widar3.0, with an
average test accuracy of 40.1% and 61%, respectively. Finally, the adversarial domain
adaptation shows by far the best performance, with an average test accuracy of 73%.

Overall, the adversarial domain adaptation model shows the highest average test
accuracy in the leave-one-out validation for both subject and room domains. Since the
domain labels were used as subject ID, the model shows on average better robustness with
unseen subjects rather than unseen rooms.

To better illustrate the strong performance of our adversarial domain adaptation model
(i.e., ADA), we present the accuracy achieved by ADA (the same accuracy as reported in
Figure 21a,b) together with the achieved precision and recall for both the leave-one-out
subject and room validation in Figure 22a,b, respectively. Finally, in Figure 23 we present
cross user and cross room confusion matrices of ADA. Through our extensive evaluations,
we have shown that the performance of ADA is consistently high across different domains,
and ADA is able to cope well in the context of cross-domain recognition tasks.
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Figure 21. Leave-one-out subject/room validation. (a) Leave-one-out subject validation, where
x-axis represents left out subject in room 1 for testing. Data set used: room locations—all, face
orientations w.r.t Tx—all, gesture sample repetitions—first 3. (b) Leave-one-out room validation,
where x-axis represents left user in room x for testing, e.g., U1_R2—user 1 in room 2. Data set used:
room locations—all, face orientations w.r.t Tx—all, gesture sample repetitions—first 3.
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Figure 22. ADA—Accuracy vs. Precision vs. recall. (a) Leave-one-out subject validation, where
x-axis represents left out subject in room 1 for testing. (b) Leave-one-out room validation, where
x-axis represents left user in room x for testing.
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Figure 23. Cross user and cross room confusion matrices of the final ADA model (in % w.r.t. overall
class predictions).

7. Conclusions and Future Work

We proposed a domain-independent generative adversarial network for WiFi CSI
based activity recognition, in combination with a simplified data pre-processing module.
We showed that in using this simplified data pre-processing module and utilizing artificially
introduced domain shifts via domain-leave-out cross validation, the generative adversarial
network outperforms the model presented in Section 5.2 and the Widar 3.0 model. In
addition, the impact of various internal parameters and design choices of the generative
adversarial network was analyzed. Overall, various internal parameters and design choices
have various impacts, ranging from worsening inference performance, even when there
is no domain shift present, to improving inference performance, even in the presence
of domain shifts. For example, introducing Gaussian noise vectors to balance the game
that the generator and discriminator network are playing does not contribute to eventual
better inference performance. Triplet loss, on the other hand, contributes to domain shift
effect reduction by forcing gesture samples in respective task class specific clusters in the
embedding space.

Unfortunately, besides user, sensor device placement, environment, and user place-
ment with respect to the sensor device, not much is known about the effect of other domain
factors inducing domain shifts between data used during training or inference, especially
in large scale industrial or social environments. In this regard, future work should be
focused on acquiring more datasets, at least in accordance with the quality level set by the
Widar3.0 dataset, that include more variety in domain shift inducing factors.

The researchers that have worked on the Widar 3.0 model have shown that, in the
presence of latent domains, deep neural network inference performance can be drastically
reduced. We hypothesize that this reduction can be lowered by means of incremental learning.
In this regard, future work may be focused on how latent domain effects can be observed from
input data once a deep neural network has been deployed, and on the creation of domain
independent deep neural networks that provide support for latent domains.

We observed that models that use domain labels for learning extraction of domain
independent features do not scale well to increases in domains, because they require new
discriminator construction. Future work could be focused on two different paths. The
first path involves developing deep neural network modules that learn to extract domain
independent features without a domain label. Existing examples include an attention
layer [33] or few-shot learning [34]. The second path involves finding hyperparameter
optimization algorithms that have a time complexity that fits within the bounds of training
a single deep neural network, and combining this with a reinforcement learning task
where an agent decides on domain labeling samples and constructing a multi-task domain
label classification problem. The hypothesis here is that, when the model heads are taken
off, and a task of interest head is placed on top, the backbone weights already prioritize
cross-domain feature extraction.
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In this paper, we focused on scenarios in which multiple subjects can be present
in a single space and each subject performs an activity/gesture at a time. Future work
may consider scenarios in which multiple people at a single space perform the same
activity/gesture simultaneously. This, however, requires the collection of appropriate
datasets to capture this scenario, since there is no such data available at present.
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