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Abstract—Non-transparent shipping processes of transporting 

goods with special handling needs (special cargoes) have resulted 

in inefficiency in the airfreight industry. Special cargo ontology 

elicits, structures, and stores domain knowledge and represents 

the domain concepts and relationship between them in a machine-

readable format. In this paper, we proposed an ontology 

population pipeline for the special cargo domain, and as part of 

the ontology population task, we investigated how to build an 

efficient information extraction model from low-resource domains 

based on available domain data for industry use cases. For this 

purpose, a model is designed for extracting and classifying 

instances of different relation types between each concept pair. 

The model is based on a relation representation learning approach 

built upon a Hierarchical Attention-based Multi-task architecture 

in the special cargo domain. The results of experiments show that 

the model could represent the complex semantic information of the 

domain, and tasks initialized with these representations achieve 

promising results.  

Keywords—Transportation Ontology, Special Cargo Domain, 

Relation Extraction, Natural Language Processing 

I. INTRODUCTION  

The airfreight industry suffers from a lack of knowledge 
standardization, poor and non-transparent shipping processes 
[1]. The products and goods with special handling need during 
transportation such as temperature-sensitive pharmaceuticals, 
live animals, dangerous goods (e.g., lithium batteries), flowers, 
and food products are known as special cargo or special freight. 
A concrete example in healthcare shipping is the distribution of 
COVID-19 vaccines using temperature-sensitive distribution 
systems that requires careful route planning supported by 
industry stakeholders. Routing based on carriers, services, and 
other conditions is a complex task, as there are many 
combinations for freight shipments. 

                                                           
1 Air carriers and Ground Handling Agents (GHA) 

Airfreight forwarders (i.e., the individuals or companies that 
plan the transportation of shipments) need to know all 
information concerning the routing, such as guidelines, 
restrictions, and risks. Currently, the forwarders are relying on 
expert knowledge, and most operations are handled manually. 
This is difficult due to the complexity of specific product 
features (e.g., different types of chemical products such as 
lithium batteries) and the lack of transparency and 
standardization of capabilities and services offered by the air 
freight supplier 1 . Manually gathering this information is 
problematic and time-consuming and affects the efficiency of 
the process. There might be possible selections that could lead 
to a lower-cost efficiency. Hence, route planning at freight 
forwarders has significant potential for optimization and 
efficiency with the application of advanced data analytics and 
Artificial Intelligence (AI) [1]. 

Automating route planning and comparison requires a 
knowledge base of special cargo services, and domain 
information elicitation is crucial in developing and populating 
this special cargo ontology. Due to the lack of domain data, 
training a model for extracting information and populating the 
cargo ontology is a challenging task. In this paper, we collect 
and structure the available knowledge related to shipping and 
cargo services from a variety of sources to populate the special 
cargo ontology developed based on knowledge elicitation and 
UPON 2  methodology [2], [3] in LARA project [4], [5]. 
Information Extraction (IE), as a part of the ontology population 
task, is the process of extracting relevant information from 
massive data, such as corpora, web, database, semi-structured, 
and multimedia documents that has a wide range of applications 
in Natural Language Processing (NLP) tasks such as question 
answering [6], [7] text classification [8], [9] semantic similarity  
[10],  etc. 

2 Unified Process for Ontology 



Essential information in cargo services can be found on the 
web pages of airline and airport companies. However, each 
company provides the information in a different format, using 
textual descriptions, tables, and possibly different languages, 
etc. The terms and concepts used in the descriptions are not 
standardized and contain a high diversity and terminology 
difference. The lack of terminology resources for the cargo 
domain is another challenge and due to the large amount of data 
and maintenance problems, manual extraction of such 
information is costly.  

This research focuses on the automatic information 
extraction from cargo-related texts using deep neural networks. 
The scarcity of the annotated domain data makes the training of 
a robust classifier difficult. This research sheds light on the 
problem of eliciting special cargo information for populating the 
domain ontology given minimum human involvement and in the 
absence of enough training data for target task. We first develop 
a model by automatically generated domain-specific train data 
for simple tasks in a hierarchical multi-task fashion; then, we use 
this pre-trained model as a feature extractor for the target task. 
This paper makes the following contributions:  

• We propose a special cargo ontology population pipeline 
by using deep neural networks to extract information 
from the domain documents. 

• A relation representation model is proposed by a 
hierarchical attention-based multi-task architecture that 
achieves reasonable performance with limited domain-
specific training data.  

• We provide some practical lessons on developing and 
designing the deep neural relation extractors in the 
special cargo shipment domain w.r.t. the balance 
between domain data and efficiency. 

The rest of the paper is organized as follows: In Section II, 
related works are reviewed; Section III presents our proposed 
model in detail; Section IV and Section V are dedicated to the 
details of the datasets, experiments and results; and finally, 
Section VI concludes the paper.  

II. RELATED WORK 
Numerous relation extraction methods for the ontology 

population task have been proposed in recent years that support 
a large variety of different approaches, from simple rule-based 
[11] and statistical methods [12] to complex machine learning 
[13] and hybrid structures [14]. Rule-based methods are based 
on some predefined rules that describe the structure of the 
required information. Hearst [11] proposed a well-known 
domain-independent rule-based method that is based on the 
lexico-syntactic patterns. These patterns are generated by using 
the bootstrapping of a set of seed instances. The method can be 

used for constructing the taxonomic relations in the ontology by 
extracting hyponymy relations from large corpora. Rule-based 
methods need a comprehensive understanding of the domain. 
Massive demand for human intervention is the main drawback 
of these methods [15]. Machine learning approaches have been 
developed to overcome these limitations. They are the most 
widely used methods in ontology population and are divided into 
three main categories, namely supervised [16], weakly 
supervised [17], and unsupervised [18] learning methods. 
Generating annotated text for supervised methods is costly and 
time-consuming. Semi-supervised and unsupervised approaches  
alleviate this problem by using less or no training data. 

Since the fundamental distinguishing characteristic of deep 
neural network models w.r.t other machine learning methods is 
that the feature extraction process is done automatically, deep 
neural networks are the state-of-the-art methods that have 
attracted increasing interest in the ontology population task. 
Some methods consider relation classification and exploit 
different deep neural network models such as convolutional 
deep neural networks [19], [20] to extract lexical and context 
level features from sentences. These features are then fed into a 
softmax classifier to predict the relation type between a pair of 
name entities. These methods often need a tagged corpus in 
which the concepts and the semantic relations among them are 
annotated. Recent state-of-the-art solutions rely on using pre-
trained models to achieve high performance [21]. A task-
independent relation representation method is proposed in [22] 
that builds representations based on the entity-linked text. This 
method was inspired by Harris’ distributional hypothesis and the 
recent advances in text representation learning, specifically 
BERT [23]. These models are designed for the general text 
domains, and few works were done on relation extraction for 
ontology learning in specific domains.  

III. METHODOLOGY 
In this section, we introduce the pipeline of the special cargo 

ontology population. Since the focus of the paper is on the 
relation representation task, we describe the methodology used 
in the Relation Extractor component with more details. 

Due to the lack of domain training data, developing and 
populating special cargo ontology is challenging. We generated 
specific conceptualizing of special cargo shipment based on 
UPON methodology [2], [3]. This preliminary work structures 
the available domain knowledge with elicitation techniques to 
derive knowledge from domain experts [3]. In order to 
determine a choice set for the routing options of special cargo 
shipment, concepts need to be instantiated with domain data. 

As shown in Fig. 1, in the Preprocessing step, online 
documents are processed to remove images, tables, references. 
Instances of concepts and relations are extracted based on the 



Fig. 1. Special cargo ontology population pipeline. 

seed ontology in Information Extraction Engine. Redundancy 
Eliminator eliminates redundant instances of extracted entities 
and relations. Thereafter, the instances that contradict the 
knowledge of special cargo ontology are removed. 
Disambiguation is necessary for performing consistency and 
redundancy checks. Finally, the result instances are inserted into 
the special cargo ontology by Mapper. The last three 
components require expert intervention in providing a set of 
heuristics and rules. A part of the special cargo ontology is 
shown in Fig. 2. 

There is a massive amount of useful information available 
on cargo websites, online documents, and databases. For 
populating this specific ontology, the relevant information 
should be extracted from these resources and connected 
coherently in the ontology. Since the existing information 
extractors are highly dependent on the underlying ontology or 
knowledge graph used in their design, there is a large variance    
between the available information extraction systems, which 
makes applying them difficult in specific domains. Due to the 
scarcity of labeled training data for the transportation domain, 
developing an efficient relation extractor for special cargo 
shipment is difficult and requires significant human investment. 

To address this problem, a relation representation model is 
proposed based on a hierarchical attention-based multi-task 

architecture. The model is trained using simple tasks where 
automatically generating domain-specific train data is relatively 
easy. Then it is applied for initializing a supervised multi-class 
domain-specific relation classifier with small train data. More 
details about the model are described in the next section.  

A. Learning Relation Representation for Special Cargo 

Domain Using Hierarchical Multi-task Architecture 

Recent language representation models are mostly designed 
to encode the various sets of linguistic, syntactic, and semantic 
features for the down-stream tasks [24]. Since multi-task 
systems take the benefit of inductive transfer among different 
tasks, they achieve complementary aspects in the encoded 
representation and, therefore a better generalization 
performance [25], [26]. Furthermore, training such a model by 
simple tasks with automatically generated domain-specific 
training data can produce a rich representation. This inspired us 
to develop a novel hierarchical model with a combination of 
three different attention-based NLP models that embeds simple 
tasks in the low levels of the hierarchy and more complex tasks 
in the high-level of the hierarchy. Fig. 3 depicts the framework 
of the model architecture. This model is built upon the previous 
work [26] where a supervised hierarchical model proposed 
based on a multi-task architecture. 

 
Fig. 2. “Shipment” concept in the spcial cargo ontology 
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Word Representation: The input of the model is an 
embedded vector of the input sentence using three different pre-
trained models, namely GloVe [27] for word embedding, ElMo 
[28] for contextual embedding, and a convolutional neural 
network (CNN) based model [29] for character-level 
embedding. Therefore, the model takes a sentence s = (w1, w2, 
…, wn) as input and encodes word wt as a concatenation of three 
pre-trained word embeddings denoted as ge that provides a rich 
representation range from character to context level. In order to 
have a fair comparison with state-of-the-art language 
representation models (e.g., BERT), such representation 
models are not applied in the input. 

Name Entity Recognition (NER): The first underlying task 
in the hierarchical model is NER that has a Conditional Random 
Field (CRF) for detecting NER tags. NER recognizes and 
classifies name entity mentions in the input sequence. A 2-layer 
BiLSTM with attention mechanism is used for encoding the 
input. It takes the word embeddings ge and outputs sequence 
embeddings gner that then fed into CRF-based sequence tagging 
layer. 

Entity Detection (ED): This task is similar to NER but more 
general in terms of detecting all mentions related to a real life 
entity, while NER only relies on the name entities. ED is 
considered as a sequence tagging task that employs a 2-layer 
BiLSTM with attention mechanism followed by a CRF layer. 
Thus, the concatenated embedding vector [ge,gner] from lower 
layers is fed into the encoder that outputs embeddings denoted 
by ged. 

Binary Relation Extraction: The task of identifying 
semantic relation between entities in the text is Relation 
Extraction (RE). It requires mention detection and classification 
of the relation between identified mentions. We adopted a joint 
model proposed in [30] that jointly learns these subtasks. This 
binary relation classifier is able to detect whether or not there is 
a relation between entities in the input sentence. 

Having the similar 2-layer BiLSTM with attention on top of 
the NER and ED tasks, RE encoder takes [ge, ged] as input and 
outputs an embedding denoted gre. These embeddings are used 
as input to a feed forward network.  

There is no apparent agreement about training a hierarchical 
multi-task model. We applied the effective training method 
proposed in [31], [26]. For training the model, after each 
parameter update, a task and a batch of its training data are 
sampled randomly, and the task is trained. Each task is sampled 
uniformly, and the training process is iterated until convergence. 

Multi-class Relation Extraction: The hierarchical multi-
task architecture is trained using domain-specific data. We use 
this base model as a feature extractor for a new model. The last 
layer of this binary classification is removed, and the remaining 
layers are used as a feature extractor for the multi-class relation 
classifier. Due to the lack of data for training a multi-class 
relation extraction classifier in the special cargo domain, 
applying pre-trained models can bring the shared features to the 
target task. In this case, training the new model using the pre-  

 

Fig. 3. Architecture of the attention-based hierarchical multi-task 
relation representation model for multi-class relation classification. 

trained model with few samples of target task results in a 
reasonable performance boost. In other words, a binary relation 
classifier is trained using the enriched representation in a 
hierarchical multi-task architecture with a generated corpus of 
sufficient instances in the cargo domain. The final architecture 
for the model is obtained, by leveraging the relation 
representation derived from the hierarchical multi-task 
architecture as a feature extractor for the multi-class relation 
extraction task. To the best of our knowledge, no previous 
research investigates applying an attention-based hierarchical 
multi-task transforming model as relation representation for 
multi-class relation classification.   

IV.  DATASETS 

For training and testing different parts of the proposed 
architectures, different datasets are prepared. These datasets are 
described in more detail in this section.   

A. Train/Test Data for the Attention-based Hierarchical 

Multi-task Model 

In order to train the binary relation classifier, we scraped 
28,809 news texts from the cargo news websites that contain 
formal texts. Since not all articles are related to the special cargo 
domain, an automatic filtering method is exploited. For this 
purpose, we used Latent Dirichlet Allocation (LDA) [32] topic 
model to produce 10 clusters. In contrast to keyword-based 
methods, topic modeling approaches do not require a predefined 
set of keywords. The most relevant topic is selected based on the 
topic containing the most representative terms. To ensure that  



  
Fig. 4. The workflow of generating dataset for training the hierarchical multi-task model. 

 

news with potentially high relevance is collected, a threshold of 
0.9 is applied. Finally, 775 filtered documents are collected. 

Various NLP tasks are considered in the preprocessing step 
that consists of sentence splitting, tokenization, NER, and Part-
of-Speech (POS) tagging. Since deep learning models require a 
huge amount of training data and manually generating this data 
is expensive, we used a fully automatic labeling policy for 
annotating train data for special cargo documents. The automatic 
labeling process consists of two tasks, namely entity extraction 
and, relation extraction. An unsupervised domain-specific entity 
extraction framework [33] and a NER tool [34]  are used to 
extract entities from the documents. Fig. 4 shows the different 
steps for generating the training data. 

The goal of automatic labeling is to produce annotations for 
special cargo news articles with minimum human involvement. 
There are three main steps for the entity extraction task. The first 
step is selecting the candidate keywords using heuristics with a 
list of acceptable POS. In the second step, the selected lexical 
units are ranked based on the text representation. The ranked 
candidate keywords are purified, and the final keyphrases are 
formed in the last step. We used pke [35], an open source 
python-based keyphrase extraction toolkit that consists of 
various statistical and graph-based approaches. Based on our 
evaluations, KPM [36] a statistical-based and, PositionRank 
[37], a graph-based approach have a higher performance than 
the other available algorithms for special cargo keyphrase 
extraction.  

A generic clustering-based relation extraction approach 
consists of four major steps, as shown in Fig. 4. All sentences 
along with tagged entities from the Entity Extraction task are fed 
into the Relation Extraction task as input. A pair of name entities 
and the context between them that occurs within a fixed window 
size are elicited in a co-occurrence calculation step. The 
similarity between the contexts of entities that co-occur is 
measured. There is a wide variety of methods for measuring the 
similarity between contexts. Levenshtein [38] is a well-known 
fast lexical similarity measurement that computes the minimum 
edit distance between two strings. Calculating co-occurrence 
and similarity are crucial for the context-clustering task. We 
exploited DBSCAN [39], a density-based clustering method that 

doesn’t require a prior determination of the number of clusters. 
Since the combination of KPM and DBSCAN has the highest 
performance, KPM is selected as a keyphrase extraction method. 
Labeling is the final step that determines which relation clusters 
are relevant to the special cargo domain. Patterns from the 
manually annotated development set are used for labeling the 
clusters as relevant or irrelevant. 

For generating test data, we randomly sampled 223 
documents to be annotated manually as relevant or irrelevant for 
the binary classifier from the filtered documents. Due to 
irrelevance, 118 documents are removed, and the remaining 
documents are used in the Dev and Test set. Along with a dataset 
of 10 domain, online documents are randomly selected. The 
statistics of the data are depicted in Table I. The training set 
tends to have more sentences per document than the 
development set and test set 1, despite all of them being news 
articles. On the other hand, test set 2 (online documents) has 
even higher sentences and entities per document, while the 
number of words per sentence is lower than the training set. This 
comparison indicates a higher density of relevant information in 
the online documents compared to the news articles.  

TABLE I.  STATISTICS OF THE DATASET FOR THE ATTENTION-BASED 
HIERARCHICAL MULTI-TASK MODEL. 

 
Train 

Set 

Dev 

Set 

Test 

Set1 

Test 

Set2 

Total documents 552 53 52 10 
Total sentences 8361 556 548 221 
Sentences per document  15.15 10.49 10.54 22.10 

 

B. Train/Test Data for the Multi-Class Relation Classification 

Model 

There are 43 different relation types in the cargo ontology. 
Each of these relation types can have two different argument 
orders. A list of the relation types is selected based on the broad 
coverage of the relations that participated in special cargo 
domain ontology [3]. An example of the relation type and a 
sample sentence for it are shown in Table II. The dataset is 
provided in the standard format of SemEval-2 Task8 [40] and is 
available in https://github.com/VahidehReshadat/CargoRela 
tionExtraction. 



Available datasets often contain a hundred examples for 
each relation type. Building such a dataset for the special cargo 
shipment domain is expensive. For each relation type, only a few 
instance sentences are selected and labeled. Each sentence is 
labeled by two domain experts independently. The annotators 
reached an agreement on 87% of the samples. A subset of the 
data that annotators have an agreement with is used in the 
experiments to evaluate multi-class classifiers. The statistics of 
the datasets are depicted in Table III.  

SCRS contains only a few samples for each relation class in 
the dataset. SCRL is created by increasing the number of each 
class sample in SCRS. Since some of the relations are similar 
(e.g., Arranges and Executes), we created two other datasets, 
namely SCRSM and SCRLM by merging the similar relations in 
SCRS and SCRL, respectively. These datasets have the least 
semantic overlap between the relation classes and are coarse-
grain representatives of the domain relations.  

TABLE II.  EXAMPLES OF THE RELATION TYPES AND SAMPLE 
SENTENCES. 

Sentence Relation Type 

<e1>Brussels Airport</e1> signs MoU for the 
seamless transportation of <e2>COVID-19 
vaccine</e2>. 

Ships(e1,e2) 

<e1>Active Pharma Ingredients</e1>  is required to 
be pre-cooled within the desired temperature 
between <e2>-25°C and -15°C</e2> before loading 
by the shipper. 

HasTemperature
Range(e1,e2) 

The <e1>Va-Q-Tec containers</e1> keep the 
<e2>Pfizer/BioNTech vaccines</e2> cool enough. 

isPackedIn(e2,e1) 

 

TABLE III.  STATISTICS OF THE GENERATED DATASET FOR THE MULTI-
CLASS RELATION CLASSIFIER. 

  #annotated samples #relation types 

SCRS 
Train Set 230 43 
Test Set 104 43 

SCRL 
Train Set 420 43 
Test Set 104 43 

SCRSM 
Train Set 180 19 
Test Set 80 19 

SCRLM 
Train Set 310 19 
Test Set 80 19 

V. EXPERIMENTS 

In this section, the performance of the special cargo multi-
class relation classifiers built on the hierarchical multi-task 
model is evaluated, and the results are compared with the BERT-
base classifier. We apply the BERT relation representation 
method in [22] for encoding the relations between entity pairs. 
In this method, the beginning and end of the target entities are 
marked with special entity markers. Then, the marked input text 
is fed into the BERT model, and the corresponding states of the 
beginning of the two entity markers are concatenated, and the 
relation representation is extracted.   

A. Evaluation of the Special Cargo Multi-Class Relation 

Classifier 

In this section, we evaluated the multi-class relation 
classifier performance over the embedding learned from the 
hierarchical multi-task model on SCR datasets. Table IV shows 
the hyper-parameters of the model used in the experiments. In 

order to have a fair comparison, the same configuration is 
applied to the various experiments.  

The hierarchical multi-task embedding model can provide an 
enriched feature resource for the multi-class relation classifier 
when used for knowledge transfer in the special cargo domain. 
Table V illustrates the results of the evaluation of the classifier 
trained using extracted features from the base model. The results 
are compared with the BERT-based relation classifier in which 
the BERT-Base model is used as relation representation in the 
classification task. In this case, the concatenation of the final 
hidden states corresponding to the entities’ start tokens (<e1> 
and <e2>) is considered as the relation representation vector. 

The ability of the model to distinguish both fine-grain and 
coarse-grain relations is promising. The classifier trained using 
transferred features achieves reasonable results, although not as 
impressive as that of the BERT-base model; since it doesn’t use 
a big dataset as BERT. 

We conduct another set of experiments to measure the 
performance of the model over relations without any direction. 
In this case, the instances predicted in the correct class but with 
a different order of arguments are counted as correct in the 
performance calculation. The results are shown in Table VI. In 
summary, the evaluations revealed that the model achieves a 
higher f-measure across different datasets compared to the 
directional case. One possible reason is that regardless of 
direction, only identifying the correct class increases the 
performance.   

TABLE IV.  THE HYPER-PARAMETER SETTINGS USED IN THE 
HIERARCHICAL MULTI-TASK RELATION REPRESENTATION MODEL. 

Epochs 20 
Learning Rate 0.0005 
Dropout Rate (Embedding) 0.5 
Dropout Rate (LSTM) 0.2 
Batch Size 32 
Word Embedding Dimension 100 
Char Embedding Dimension 16 

TABLE V.  EVALUATION RESULTS (F1) FOR THE MULTI-CLASS RELATION 
CLASSIFICATION TASK. 

 
SCREHMTL BERT 

SCRS 43.31 49.5 
SCRL 46.25 52.88 
SCRSM 55.73 62.5 
SCRLM 56.48 67.09 

TABLE VI.  EVALUATION RESULTS (F1) FOR MULTI-CLASS RELATION 
CLASSIFICATION OVER THE NON-DIRECTIONAL DATASETS. 

 SCREHMTL BERT 

SCRS 46.72 53.39 
SCRL 47.18 55.07 
SCRSM 59.26 65.38 
SCRLM 60.88 71.05 

B. Limitations and Practical Implications 

In this paper, we discuss the task of extracting special cargo 
domain information from a variety of text sources. This work 
sheds more light on the design and development of logistic 
knowledgebases and the methodology for eliciting domain-
specific information. Subsequently, this novel palate of data 
analytics approach provides a significant role in the freight 
forwarding industry with a set of solutions for several 
organizational issues, such as determination of available choice 



set for the routing options of shipments with special handling 
needs. Determination of available routing options is currently 
very difficult for shippers and forwarders due to the complexity 
of specific product features (e.g., different types of chemical 
products such as lithium batteries) and the lack of 
standardization of capabilities and services offered by airfreight 
suppliers3. Therefore, in order to digitize the manual forwarding 
process of special cargo, which is inefficient and time-
consuming, and to optimize route options, logistics and cargo 
knowledge needs to be acquired and structured. 

We demonstrated that populating industrial scale special 
cargo ontology from free domain text with automatic labeling 
and minimum human involvement is practicable. We showed 
that how applying the proposed representation learning model 
with only a few samples for each relation type in the dataset can 
lead to an efficient relation classification model. 

Special cargo relation extractor has achieved reasonable 
performance over the various experiments. For all experiments, 
the effect of increasing the training data size in the performance 
is not significant, and applying pre-trained models for learning 
representation in special cargo domain solely increases the 
performance of the model and results in an efficient solution for 
the domain-specific tasks with decreasing the human effort in a 
large extend. 

Our approach still needs to be further improved. Relation 
extractor built on BERT-based relation representation achieves 
better results compared to the hierarchical multi-task 
representation model. This is mainly because of the size of the 
dataset used for training BERT. While the hierarchical multi-
task model solely relies on a relatively small dataset of domain-
specific texts, BERT utilizes a gigantic dataset with both general 
and domain-specific data. Although multi-task structure can 
take the complementary representation of the relation extraction 
due to the ordered encoding of the underlying tasks, the size of 
train data is still effective, and this makes it difficult for 
SCREHMTL to reach significant results. Therefore, it is possible 
to lead to even more improved performance over BERT by 
increasing the size of training data in the hierarchical multi-task 
model or utilizing powerful external knowledge and embedding 
models such as BERT and GPT-3 [41] in its architecture (e.g., 
in the Word Representation component).  

VI. CONCLUSION 

In this paper, and as a part of the LARA project, we aim to 
bring innovation in order to find a robust approach to elicit and 
model relevant information in the airfreight industry of shipping 
goods with special handling needs, which requires an urgent 
need for digital transformation. 

Due to the lack of data, training an efficient model is 
difficult. The severity of this problem intensifies when we are 
dealing with a specific domain. In this paper, we presented an 
overview of the special cargo ontology population framework 
and proposed a relation extractor for the special cargo domain 
based on a relation representation learning model with attention-
based hierarchical multi-task architecture. The hierarchical 
model is trained on a set of semantic tasks from shallow at the 
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bottom to deep at the top. The input of each task is the outputs 
of the previous lower tasks in a hierarchical structure. The 
generated embeddings are then coupled in a new model, and the 
final classifier is trained. We created different datasets in the 
special cargo domain for training each of these models. The final 
model is applied for identifying related associations in 
populating the domain ontology.  

Considering the fact that training the relation representation 
model needs minimum human intervention, the proposed 
approach is particularly effective in low-resource regimes and 
can reduce the human manual effort for creating relation 
extraction datasets in specific domains. Moreover, it is simple 
and does not require any external resources to train. To the best 
of our knowledge, this is the first study that considers 
information extraction in the cargo transportation domain, and 
this is the first work in the multi-class relation extraction in the 
special cargo domain. In future work, we plan to employ 
external knowledge along with our relation representation. 
Besides, we will investigate the performance of the attention-
based multi-task model in the other tasks of the domain, such as 
co-reference resolution.  

ACKNOWLEDGMENT 

This work is supported by TKI Dinalog on the project 
“LARA: Lane Analysis & Route Advisor”. The authors thank 
Validaide for providing domain knowledge and relevant data in 
special cargo. This work was carried out on the Dutch national 
e-infrastructure with the support of SURF Cooperative. 

REFERENCES 
[1] W. Kersten, T. Blecker, and C. M. Ringle, Digitalization in Supply Chain 

Management and Logistics: Smart and Digital Solutions for an Industry 
4.0 Environment: Berlin: epubli GmbH, 2017. 

[2] A. De Nicola, M. Missikoff, and R. Navigli, “A proposal for a unified 
process for ontology building: UPON,” in International Conference on 
Database and Expert Systems Applications, 2005, pp. 655-664. 

[3] T. Kolkman, “An Ontology for Special Cargo,” Master's thesis, 
Eindhoven University of Technology, The Netherlands, Retrieved from 
https://pure.tue.nl/ws/portalfiles/portal/148941906/Master_Thesis_Tess
_Kolkman_.pdf, 2020. 

[4] R. v. d. Mei, “Lane Analysis & Route Advisor (LARA),” TKI Dinalog, 
pp. https://www.dinalog.nl/project/lane-analysis-route-advisor-lara/, 
2019. 

[5] V. Reshadat, T. Kolkman, K. Zervanou, Y. Zhang, and A. Akcay, 
“Knowledge Modelling and Incident Analysis for Special Cargo,” in 
Springer, ed, 2021. 

[6] Y. Pınar, İ. Şahin, and E. Adalı, “Knowledge-Based Question and 
Answering System for Turkish,” 2019 4th International Conference on 
Computer Science and Engineering (UBMK), pp. 307-312, 2019. 

[7] İ. Dönmez and E. Adalı, “Turkish question answering application with 
course-grained semantic matrix representation of sentences,” in 2017 
International Conference on Computer Science and Engineering 
(UBMK), 2017, pp. 6-11. 

[8] V. Reshadat and H. Faili, “A New Open Information Extraction System 
Using Sentence Difficulty Estimation,” Computing and Informatics, vol. 
38, pp. 986–1008, 2019. 

[9] V. Reshadat, M. Hourali, and H. Faili, “Confidence Measure Estimation 
for Open Information Extraction,” Information Systems & 
Telecommunication, p. 1, 2018. 

[10] V. Reshadat and M.-R. Feizi-Derakhshi, “Studying of semantic similarity 
methods in ontology,” Research Journal of Applied Sciences, 
Engineering and Technology, vol. 4, pp. 1815-1821, 2012. 



[11] M. A. Hearst, “Automatic acquisition of hyponyms from large text 
corpora,” in Coling 1992 volume 2: The 15th international conference on 
computational linguistics, 1992. 

[12] D. Maynard, Y. Li, and W. Peters, “NLP Techniques for Term Extraction 
and Ontology Population,” ed, 2008. 

[13] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. 
Nigam, and S. Slattery, “Learning to construct knowledge bases from the 
World Wide Web,” Artificial intelligence, vol. 118, pp. 69-113, 2000. 

[14] V. RESHADAT, M. HOORALI, and H. FAILI, “A Hybrid Method for 
Open Information Extraction Based on Shallow and Deep Linguistic 
Analysis,” Interdisciplinary Information Sciences, vol. 22, pp. 87-100, 
2016. 

[15] M. Cui, L. Li, Z. Wang, and M. You, “A survey on relation extraction,” 
in China Conference on Knowledge Graph and Semantic Computing, 
2017, pp. 50-58. 

[16] [16] A. Fader, S. Soderland, and O. Etzioni, “Identifying relations for 
open information extraction,” in Proceedings of the 2011 conference on 
empirical methods in natural language processing, 2011, pp. 1535-1545. 

[17] C. Brewster, F. Ciravegna, and Y. Wilks, “User-centred ontology learning 
for knowledge management,” in International Conference on Application 
of Natural Language to Information Systems, 2002, pp. 203-207. 

[18] B. Rosenfeld and R. Feldman, “Clustering for unsupervised relation 
identification,” in Proceedings of the sixteenth ACM conference on 
Conference on information and knowledge management, 2007, pp. 411-
418. 

[19] X. Han, H. Zhu, P. Yu, Z. Wang, Y. Yao, Z. Liu, and M. Sun, “Fewrel: A 
large-scale supervised few-shot relation classification dataset with state-
of-the-art evaluation,” Proceedings of the 2018 Conference on Empirical 
Methods in Natural Language Processing, vol. 4803–4809, 2018. 

[20] T. Gao, X. Han, H. Zhu, Z. Liu, P. Li, M. Sun, and J. Zhou, “FewRel 2.0: 
Towards more challenging few-shot relation classification,” Proceedings 
of the 2019 Conference on Empirical Methods in Natural Language 
Processing and the 9th International Joint Conference on Natural 
Language Processing, pp. 6250–6255, 2019. 

[21] C. Li and Y. Tian, “Downstream Model Design of Pre-trained Language 
Model for Relation Extraction Task,” Association for Computational 
Linguistics, pp. 1-15, 2020. 

[22] L. B. Soares, N. FitzGerald, J. Ling, and T. Kwiatkowski, “Matching the 
blanks: Distributional similarity for relation learning,” Proceedings of the 
57th Annual Meeting of the Association for Computational Linguistics, 
pp. 2895–2905, 2019. 

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of 
deep bidirectional transformers for language understanding,” Proceedings 
of the 2019 Conference of the North American Chapter of the Association 
for Computational Linguistics: Human Language Technologies, vol. 1, 
pp. 4171–4186, 2018. 

[24] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes, 
“Supervised learning of universal sentence representations from natural 
language inference data,” Proceedings of the 2017 Conference on 
Empirical Methods in Natural Language Processing, vol. Association for 
Computational Linguistics, pp. 670-680, 2017. 

[25] R. Caruana, “Multitask Learning: A Knowledge-Based Source of 
Inductive Bias ICML,” Google Scholar Google Scholar Digital Library 
Digital Library, 1993. 

[26] V. Sanh, T. Wolf, and S. Ruder, “A hierarchical multi-task approach for 
learning embeddings from semantic tasks,” in Proceedings of the AAAI 
Conference on Artificial Intelligence, 2019, pp. 6949-6956. 

[27] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for 
word representation,” in Proceedings of the 2014 conference on empirical 
methods in natural language processing (EMNLP), 2014, pp. 1532-1543. 

[28] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and 
L. Zettlemoyer, “Deep contextualized word representations,” 
Proceedings of the 2018 Conference of the North American Chapter of 
the Association for Computational Linguistics: Human Language 
Technologies, pp. 2227–2237, 2018. 

[29] J. P. Chiu and E. Nichols, “Named entity recognition with bidirectional 
LSTM-CNNs,” Transactions of the Association for Computational 
Linguistics, vol. 4, pp. 357-370, 2016. 

[30] G. Bekoulis, J. Deleu, T. Demeester, and C. Develder, “Joint entity 
recognition and relation extraction as a multi-head selection problem,” 
Expert Systems with Applications, vol. 114, pp. 34-45, 2018. 

[31] A. Søgaard and Y. Goldberg, “Deep multi-task learning with low level 
tasks supervised at lower layers,” in Proceedings of the 54th Annual 
Meeting of the Association for Computational Linguistics (Volume 2: 
Short Papers), 2016, pp. 231-235. 

[32] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” 
Journal of machine Learning research, vol. 3, pp. 993-1022, 2003. 

[33] K. S. Hasan and V. Ng, “Conundrums in unsupervised keyphrase 
extraction: making sense of the state-of-the-art,” in Proceedings of the 
23rd International Conference on Computational Linguistics: Posters, 
2010, pp. 365-373. 

[34] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, “Stanza: A 
python natural language processing toolkit for many human languages,” 
Proceedings of the 58th Annual Meeting of the Association for 
Computational Linguistics: System Demonstrations, pp. 101–108, 2020. 

[35] F. Boudin, “PKE: an open source python-based keyphrase extraction 
toolkit,” in Proceedings of COLING 2016, the 26th International 
Conference on Computational Linguistics: System Demonstrations, 2016, 
pp. 69-73. 

[36] S. R. El-Beltagy and A. Rafea, “KP-Miner: A keyphrase extraction 
system for English and Arabic documents,” Information systems, vol. 34, 
pp. 132-144, 2009. 

[37] C. Florescu and C. Caragea, “Positionrank: An unsupervised approach to 
keyphrase extraction from scholarly documents,” in Proceedings of the 
55th Annual Meeting of the Association for Computational Linguistics 
(Volume 1: Long Papers), 2017, pp. 1105-1115. 

[38] V. I. Levenshtein, “Binary codes capable of correcting deletions, 
insertions, and reversals,” in Soviet physics doklady, 1966, pp. 707-710. 

[39] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm 
for discovering clusters in large spatial databases with noise,” in Kdd, 
1996, pp. 226-231. 

[40] I. Hendrickx, S. N. Kim, Z. Kozareva, P. Nakov, D. O. Séaghdha, S. Padó, 
M. Pennacchiotti, L. Romano, and S. Szpakowicz, “Semeval-2010 task 8: 
Multi-way classification of semantic relations between pairs of 
nominals,” Proceedings of the 5th International Workshop on Semantic 
Evaluation, pp. 33–38, 2019. 

[41] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. 
Neelakantan, P. Shyam, G. Sastry, and A. Askell, “Language models are 
few-shot learners,” arXiv preprint arXiv:2005.14165, 2020. 

 

 

 


