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Summary

Inkjet printing involves several key challenges. An important aspect is the flow dy-
namics after deposition of an ink droplet onto a substrate. The drop will evaporate
and – if the substrate is porous – absorb at the same time. Typically, this process also
involves additional components like surfactants. Surfactants are molecules that ad-
sorb onto interfaces, thereby reducing the local surface tension, which has significant
ramifications for the droplet dynamics. The reduced interfacial tension can result in
rich behavior, including circulatory flow patterns and accelerated absorption dynam-
ics. It is therefore of no surprise that there are still many open questions regarding
the mechanisms of surfactants in sessile droplets. In this thesis an attempt is made to
answer some of these questions in a satisfactory way.

In order to gain insight into the dynamics of surfactant-laden droplets, a numeri-
cal model is employed. This model is based on lubrication theory, meaning that the
assumption is made that the contact radius of the droplet has a significantly larger
magnitude that the height. By making this assumption it becomes possible to describe
the droplet evolution only in terms of a height profile, making lubrication theory an
efficient and transparent modeling technique. With this model as a basis, several ex-
tensions are introduced of which the surfactant transport is the most prominent one.
This transport is governed by several convection-diffusion-adsorption equations both
at the interfaces and in the bulk of the fluid. Furthermore, absorption into the porous
medium is modeled with Darcy’s law and the evaporation field is calculated using an
analytical solution.

First, the contact line dynamics of an evaporating droplet with insoluble surfactants
are examined using two different methods: a precursor film model and a slip model.
For pure droplets these models are shown to perform comparably with respect to
literature data, but when surfactants are involved the precursor film model results in
several problems, because it does not inherently distinguish between the droplet and
the film. Therefore, surfactants can freely flow in and out of the precursor film, which
is an issue that requires to be solved before this model can be used in the current
context. The slip model, on the other hand, reveals that even if there is no explicit
pinning force present, surfactants can still keep the contact line fixed. This is caused
by the reduction in space on the interface during evaporation, which increases the
surfactant concentration and decreases the surface tension accordingly. The result is
a lower equilibrium contact angle, which slows down the contact line retraction as if
actually pinning it.

Furthermore, the various regimes of the fluid flow in evaporating droplets with solu-
ble surfactants are mapped. It is shown that with the inclusion of surfactants typically
one out of two flow patterns exists: a circulatory flow, where there is the combina-
tion of an outward capillary flow in the bulk of the droplet and an inward Marangoni
flow close to the interface (called the ‘Marangoni regime’), and a purely outward flow,
where there is only a capillary flow towards the contact line, while the flow at the
interface nearly halts due to Marangoni effects (called the ‘coffee-ring regime’). Sur-
factant properties that are found to typically promote the Marangoni regime over the
coffee ring regime are fast sorption kinetics and high solubility, while for the droplet

i



conditions fast evaporation is a promoting factor.

Also, the absorption of droplets in porous media is modeled and the effects of surfac-
tants on this process are analyzed. It is found that for pure droplets with both pinned
and moving contact lines the penetration depth, being the deepest point where fluid
has absorbed, evolves in a similar manner. However, for a moving contact line case
the absorption process is much slower than for a pinned case, because the contact
area shrinks over time. This also results in the wetted region having a more pointed
shape after absorption in the moving contact line case. It is shown that surfactants
can accelerate the absorption process, but only if the adsorption kinetics are not too
fast compared to the absorption time scale. Otherwise, all surfactant adsorbs onto the
pore walls before reaching the wetting front.

Lastly, a start is made with developing a model that describes particle transport during
evaporation, both for small and large concentrations. For small concentrations, the
colloidal dynamics can be described by a ‘tracer particle model’, where the particles
are considered to be massless and passive. For the tracer particle model it is shown
that the lubrication model does not describe the velocity field in the contact line region
accurately. If a circulatory flow is present, particles still accumulate at the contact line
as if there is only a capillary flow. Possible solutions to this issue lie in the introduction
of correction terms that are otherwise neglected in lubrication theory or to use an al-
together different model that fully incorporates the Navier-Stokes equation for viscous
flows.

At higher concentrations, the particle dynamics can be described by a ‘two-phase
model’, where the particles are considered as a distinct phase that affects the fluid
dynamics. It is found that any two-phase particle model for evaporating droplets re-
quires to take into account the maximum packing density of particles, since this con-
centration is already reached in the initial stages of the drying process. By introducing
several ad-hoc corrections when the maximum packing density is reached, it is shown
that reasonable results can be obtained. However, in order to make the model viable it
also needs to take into account the underlying physics, which can possibly be achieved
by modeling the transition from a Stokes regime flow to a Darcy regime flow at high
particle fractions.
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1. Introduction

Inkjet printing is a technology with a wide range of applications. It can, amongst
other things, be employed for the printing of graphics and text on paper, polymers,
textile and other materials, but also for more specific purposes such as the manufac-
turing of microarray slides for medical applications and the printing of electronics.
Consequently, it is unsurprising that the estimated worldwide value of the commer-
cial printing market was about 420 billion USD in 2020 and is expected to grow in
the coming years [76]. Furthermore, also in the scientific community inkjet printing
is a growing topic in itself. For example, in the last two editions of the prominent
international conference ‘Droplets’ (2019 and 2021) separate parallel sessions were
scheduled, purely to discuss inkjet printing as a technology.

In the context of this broad scientific and industrial interest, the program ‘Fundamen-
tals of Inkjet Printing’ (FIP), of which this thesis is a result, was set up. In a cooperation
between an industrial partner (Canon Production Printing Netherlands b.v.), a govern-
mental partner (Nederlandse Organisatie voor Wetenschappelijk Onderzoek) and two
academic partners (Eindhoven University of Technology and University of Twente), a
total number of twelve PhD tracks were defined and funded. As illustrated in Figure
1.1, each of these twelve projects considers a different aspect of the inkjet printing
process, including acoustic jetting, satellite drop formation and drop coalescence.

Figure 1.1.: Fundamentals of Inkjet Printing program (FIP) : This project is #10 in this
large PhD program

The project of which this thesis is a result is number 10 in this program and it focuses
on the evaporation and absorption of sessile droplets in the presence of surfactants.
After an ink droplet has been jetted onto the substrate, it will evaporate and absorb
into the paper over time, leaving behind a residue of the particles which are one of the
constituents of ink. Often surfactants are added as a component to ink droplets in or-
der to influence their dynamical behavior, such as the internal flow during evaporation
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(e.g. Marangoni circulation [73]) and the absorption rate [169]. Because the exact
mechanisms of surfactants in inkjet printing are still unclear, this project was set up as
a method of increasing our understanding of this topic using numerical models.

The model that is used in this work employs lubrication theory, which is a way to
describe the dynamics of a thin liquid film (including relatively flat droplets). The
method hinges on the assumption that the typical height of the considered film is
small compared to its typical width. Due to that assumption several terms in the
Navier-Stokes equation can be neglected, resulting in a much simpler equation. This
allows for a more transparent and computationally efficient model compared to more
standard models employed in computational fluid dynamics.

Employing the lubrication model, the dynamics of surfactant-laden droplets under
evaporation and absorption are to be investigated. The aspects that are examined in
this thesis, are given in the following section.

Goals and Outline

The goals of this thesis involve the investigation of several aspects of the fluid dynam-
ics of sessile droplets in the presence of surfactants.

First of all, it is of relevance to understand the contact line dynamics of an evaporating
droplet when surfactants cover the interface. Besides the behavior if the contact line
is pinned, it is also important to know how it moves in the presence of surfactants.
Will the contact angle change over time and how does it compare to the dynamics of
a pure droplet? Furthermore, what models can best be used to describe the motion of
the contact line?

Besides that, also the internal flow dynamics in the droplet are of interest, one reason
being that the flow determines the final deposition pattern of the ink particles. What
kind of flow regimes can be distinguished? And how do surfactant properties, such
as solubility, adsorption kinetics and diffusion rate, determine which flow pattern is
dominant?

Regarding absorption due to capillary action, it is relevant to understand how the
wetted region in the porous medium evolves, both with and without surfactants. The
surfactant monomers will adsorb onto the pore walls and it is therefore important to
consider how this would affect the capillary suction. How much surfactant will adsorb
close to the wetting front, thereby changing the suction? What kind of effect will this
have on the absorption dynamics and rate?

The last goal of this project is to investigate particle dynamics during drop evapora-
tion. One of the key factors in inkjet printing is the final deposition pattern of the ink
particles and therefore it is important to analyze how particles flow during evapora-
tion, both with and without surfactants. Where do particles accumulate if surfactants
are added, if anywhere? What effect do particles have on the fluid flow itself?

The outline of this thesis is the following. Chapter 2 treats the models and numerical
procedures that are used to investigate droplet behavior. In Chapter 3 the effects of
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insoluble surfactants on the contact line dynamics of evaporating droplets are consid-
ered and in Chapter 4 the influence of soluble surfactants on the internal fluid flow. In
Chapter 5 it is analyzed how the absorption behavior of droplets changes when sur-
factants are involved and in Chapter 6 an attempt is made to create an accurate model
for particle dynamics. In Chapter 7 the main conclusions of this thesis are summarized
and recommendations are made for future research.

Reader guide

This thesis is written in such a way that each chapter (with the exception of the In-
troduction and the Conclusion) can be read independently. Therefore, however, some
parts tend to repeat content that was already outlined before. If the reader wishes to
read the thesis in its entirety, it is recommended to skip the second sections of Chapters
3 to 6, each entitled ‘Mathematical model’. This material is also considered in Chapter
2. Employing this strategy will likely save some of the reader’s valuable time.
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2. Numerical model

This chapter introduces the relevant equations and their derivations. It is shown how
under given assumptions the governing differential equations can be derived and how
they are solved numerically.

In Section 2.1 the evolution equation of the droplet profile is derived both with and
without a slipping contact line. Extra attention is given to the disjoining pressure,
which is a pressure term that becomes relevant in the case that a precursor film is
covering the substrate around the droplet. Furthermore, in Section 2.2 a derivation is
made for a droplet absorption model, starting from Darcy’s law. This is of relevance if
the substrate is porous (see Chapter 5).

In Section 2.3 the transport equation of the surfactant at the liquid-air interface is
derived and in Section 2.4 the transport equation of the surfactant in the bulk of the
droplet, either in the form of monomers or as micelles. Similarly, in Section 2.5, a
transport equation is given for the surfactant transport in the porous medium.

In Section 2.6 the evaporation model is explained and an analytical solution is given
for the case of a spherical cap and in Section 2.7 the sorption models of the surfactant
are given. Furthermore, in Section 2.8 the two solute transport models are covered
and in Section 2.9 the numerical solution procedure is outlined.

2.1. Droplet evolution

In this section the evolution equation for the drop profile is derived (both with and
without slip) and the relevant pressure terms are considered.

2.1.1. Basic derivation

The flow in the droplet is governed by the three-dimensional Navier-Stokes equation
and the continuity equation for an incompressible Newtonian fluid with constant vis-
cosity given, respectively, by

ρ(
∂~U

∂t
+ ~U · ∇~U) = −∇p+ µ∇2~U + ρ~g, (2.1)

∇ · ~U = 0. (2.2)

Here, ρ is the mass density of the fluid, ~U the fluid velocity vector, p the pressure, µ
the dynamic viscosity and ~g the gravitational acceleration vector.

The droplet has a typical height H, contact radius R and contact angle θ. Only small
aspect ratios are considered, meaning ε = H/R � 1. A small Reynolds number is
assumed and also a small Bond number, Bo = ρgH2

σsl
� 1, with g the magnitude of the
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gravity and σsl the liquid-gas surface tension. The latter assumption means that grav-
ity does not affect the shape of the droplet. A cylindrical coordinate system (r, α, z)
is used, with the assumptions of no swirl (angular velocity Uα = 0) and axisymmetry
( ∂
∂α = 0).

All these model assumptions taken together, a dimensional analysis shows that the
flow in the droplet is effectively driven by three equations [9, 39, 136]:

∂p

∂r
= µ

∂2u

∂z2
, (2.3)

∂p

∂z
= 0, (2.4)

1

r

∂

∂r
(ru) +

∂w

∂z
= 0. (2.5)

Here, u and w are the radial and axial components of the velocity, respectively. At the
liquid-air interface a shear stress is present if there is a surface tension gradient. This
corresponds to a boundary condition given by

µ
∂u

∂z
=
∂σlg
∂r

. (2.6)

With the use of this boundary condition and the no-slip boundary condition u|z=0 = 0,
twofold integration of Equation (2.3) over the vertical coordinate yields the radial
velocity

u(r, z, t) =
1

µ

∫ z

0

(
−∂p
∂r

(h− z′) +
∂σlg
∂r

)
dz′

=
1

µ

(
−∂p
∂r

(hz − 1

2
z2) +

∂σlg
∂r

z

)
, (2.7)

where h(r, t) is the local droplet height.

Substituting this expression for u(r, z, t) in Equation (2.5) followed by integration over
z, enables one to find an expression for w(r, z, t):

w(r, z, t) = −
∫ h

0

1

r

∂

∂r
(ru)dz

=
1

µ

(
1

r

∂

∂r

(
r
∂p

∂r

)(1

2
hz2 − 1

6
z3
)

+
1

2
z2
(∂h
∂r

∂p

∂r
− 1

r

∂

∂r

(
r
∂σlg
∂r

)))
. (2.8)

Here, the impenetrable-substrate-condition w|z=0 = 0 is used. If the substrate is actu-
ally porous and fluid is imbibed with an (axial) absorption velocity Wp, this velocity
can simply be subtracted from Equation (2.8) as is done in Chapter 5.

The kinematic boundary condition is given by ∂th = −(∂rh)u|z=h+w|z=h+we, where
∂a denotes a partial derivative with respect to variable a and we is the evaporative
volume flux. The droplet evolution can subsequently be expressed as:

∂h

∂t
= −∂h

∂r
u|z=h −

∫ h

0

1

r

∂

∂r
(ru)dz + we. (2.9)
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With the use of the Leibniz integral rule this can be rewritten as:

∂h

∂t
= −1

r

∂

∂r

∫ h

0

rudz + we

=
1

rµ

∂

∂r

(
rh3

3

∂p

∂r
− rh2

2

∂σlg
∂r

)
+ we. (2.10)

This is the height evolution equation valid in the lubrication approximation in the
form that is used in this work. The boundary and initial conditions to which h(r, t) is
subjected are given by: (

∂h

∂r

)
r=0

= 0, (2.11)(
∂3h

∂r3

)
r=0

= 0, (2.12)

h(R, t) = 0, (2.13)

h(r, 0) = h0(r). (2.14)

These denote the symmetry condition at r = 0, the position of the contact line and the
initial shape, respectively. In this work, these boundary conditions hold unless stated
otherwise (e.g. in case there is a precursor film present).

2.1.2. Derivation with slip

If slip is allowed, boundary condition u|z=0 = 0 is replaced by the Navier slip condi-
tion

u(r, 0) = β

(
∂u

∂z

)
z=0

, (2.15)

where β is the slip length. This results in a different expression for the radial velocity,
given by:

u(r, z, t) =
1

µ

(
−∂p
∂r

(hz − 1

2
z2 + βh) +

∂σlg
∂r

(z + β)

)
. (2.16)

Substituting this expression for u in the kinematic boundary condition, along with the
new formulation of w, results in a slightly different height evolution equation given
by:

∂h

∂t
=

1

rµ

∂

∂r

[
r

(
h3

3
+ βh2

)
∂p

∂r
− r

(
h2

2
+ βh

)
∂σlg
∂r

]
+ we. (2.17)

If the contact line is allowed to slip, a constitutive relation for R is required that
describes the contact line velocity [168]. In this work, we use the relation:

dR

dt
=


k||θ − θadv||a if θadv ≤ θ
0 if θrec < θ < θadv

−k||θ − θrec||a if θ ≤ θrec
(2.18)
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Here, k is a typical sensitivity of the contact line position to deviations of the contact
angle θ from the receding contact angle θrec or the advancing contact angle θadv and
a is a power-law index, which can range from 1 to 3. This relation is extensively used
and experimentally validated in literature [12, 21, 28, 51, 58, 66, 166].

Note that with Equation (2.18) it is possible to model contact line hysteresis, since the
contact line only moves for θadv ≤ θ ≤ θrec. If this is not desired, one can simply set
θadv = θrec (see Chapter 3).

The actual contact angle θ can be calculated from the slope ∂rh at the contact line
and, in case of surfactants, θe can be computed by means of Young’s equation:

θ = cos−1

(
1√

1 + (∂rh|R)2

)
, (2.19)

θe = cos−1

(
σlg[Γ(R, 0)]

σlg[Γ(R, t)]
cos(θ0)

)
. (2.20)

Here, θ0 is the initial contact angle.

2.1.3. Pressure in the droplet

The pressure p in the droplet is given by Derjaguin’s equation [38, 165, 170]:

p = pL −Π, (2.21)

where pL is the Laplace pressure and Π the disjoining pressure. Both these pressure
terms are independent of z, which is in accordance with Equation (2.4) and means
that results are more accurate for lower values of ε (see e.g. [71, 72]).

The Laplace pressure is given by

pL = −1

r

∂

∂r

(
σlg

r∂rh√
1 + (∂rh)2

)
. (2.22)

Contrary to the traditional formulation of the Laplace pressure, surface tension σlg is
also part of the derivative in Equation (2.22), rather than that it is written outside the
brackets. This is because σlg depends on the local surfactant concentration and thus
on r. As shown by Thiele et al. [178] the surface tension is required to be part of the
radial derivative in that case.

Apart from the slip model introduced in the previous section, an alternative way of
modeling a moving contact line is by introducing a precursor film, which is a thin fluid
layer that covers the substrate around the droplet. This effectively resolves the contact
line singularity, because the drop height is no longer zero, but (approximately) equal
to the precursor film height at the contact line. Therefore, there is no slip required for
the contact line to move.

If a precursor film is present, a nonzero disjoining pressure Π is required to keep it
stable. This pressure term accounts for the intermolecular forces and in this model it
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is given by

Π = B

((
hs
h

)n
−
(
hs
h

)m)
. (2.23)

Here, B, n and m are positive constants (with n > m) and hs is the precursor film
height for which Π equals zero. The height hs does not necessarily correspond to the
real precursor film height, but only represents the zero-pressure height.

This formulation of the disjoining pressure consists of an attractive and a repulsive
component (B(hs/h)m and B(hs/h)n respectively), corresponding to the attractive
and repulsive molecular forces that govern the physics of the precursor film [152].
In literature, one often encounters disjoining pressure formulations that only include
the attractive forces (see e.g. Karapetsas et al. [86]). In these cases the droplet will
spread indefinitely, because there is no equilibrium contact angle corresponding to this
formulation.

The value of B can be related to the equilibrium contact angle θe. As shown by Starov
and Velarde [171], the equilibrium contact angle θe can be approximated by

cos θe ≈ 1 +
1

σlg

∫ ∞
he

Πdh, (2.24)

where he is the equilibrium precursor film height. If the disjoining pressure solely
consists of attractive forces, the integral is positive, resulting in cos θe > 1, implying
complete wetting. For Equations (2.23) and (2.24) however, the equilibrium contact
angle is given by

cos θe ≈ 1 +
B

σlg

(
1

n− 1

hns
hn−1
e

− 1

m− 1

hms
hm−1
e

)
(2.25)

which implies partial wetting, since hs ≈ he. Also, it follows that for a given σlg and
θe an expression for B can be estimated (as done by Schwartz and Eley [152]):

B =
1

hs

(n− 1)(m− 1)

n−m
σlg(1− cos θe). (2.26)

For a case with surfactants, where surface tension σlg[Γ(R, t)] and contact angle change,
Equation (2.26) can be modified accordingly:

B =
1

hs

(n− 1)(m− 1)

n−m
(σlg[Γ(R, t)]− σlg[Γ(R, 0)] cos θ0). (2.27)

Here, θ0 denotes the initial contact angle.

2.2. Absorption model

The droplet can be absorbed into the porous substrate as a result of capillary action.
This flow can be modeled on a macroscopic level by applying Darcy’s law, which is
often used for the flow through porous media [2, 4, 5, 164].
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Darcy’s law gives a relation for the velocity field ~up = (up, wp):

up =− κ

µ

(
∂pp
∂r

)
; (2.28)

wp =− κ

µ

(
∂pp
∂z

)
. (2.29)

Here, κ is the permeability of the substrate and pp the pressure in the wetted region.
Depending on the structure of the porous material, a good measure for κ is given by
the Carman-Kozeny equation [20, 90], which is a model for the flow through a packed
bed of solid spheres with diameter d. The permeability is subsequently given by:

κ =
η3d2

180(1− η)2
, (2.30)

with η the porosity of the porous medium.

Given mass conservation, it follows that the pressure field can be found by solving the
Laplace equation:

1

r

∂

∂r
(rup) +

∂wp
∂z

=
1

r

∂

∂r
(r
∂pp
∂r

) +
∂2pp
∂z2

= 0. (2.31)

The boundary conditions which pp is subjected to are given by:

pp|z=0 = p(r, t) for r < R; (2.32)

∂pp
∂z
|z=0 = 0 for r > R; (2.33)

pp|z=−hp = pc. (2.34)

Equation (2.32) describes the pressure that the droplet exerts on the substrate, Equa-
tion (2.33) is the no penetration condition at the substrate surface next to the droplet
and Equation (2.34) is the capillary suction the fluid in the wetted region experiences
at its interface, defined at z = −hp. The corresponding capillary pressure pc can be
estimated by considering the capillary action in a single, round channel:

pc = −4σlg cos θadv
d

. (2.35)

Here, θadv is the advancing contact angle. Note that the channel diameter used in
the expression for pc is assumed to be equal to the sphere diameter that is used for
estimating κ.

With an expression for the velocity field, the evolution equation for hp can be found,
similar to Equation (2.10):

∂hp
∂t

= − 1

ηr

∂

∂r

∫ hp

0

rupdz +
1

η
Wp. (2.36)

Suction velocity Wp is here equal to the axial porous velocity at the substrate level
Wp = wp(r, z = 0). This velocity is also to be added to Equation (2.10).
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Similar to the droplet, in the porous medium there are symmetry conditions at r = 0,
specifically ∂rhp = ∂rpp = ∂rup = ∂rwp = 0. Furthermore, initially there is a thin
fluid film h∗ in the porous medium, just below the area covered by the droplet, which
is required to remove the incompatibility of Equations (2.32) and (2.34) for hp = 0.

Darcy’s law is chosen for its simplicity over other models, while still being sufficiently
accurate [149] and able to deal with the boundary conditions that are involved. How-
ever, it would be possible to generalize Darcy’s law by including Brinkman’s extension
[17, 117]. The pressure equation will then get the form:

up +
µ

r

∂

∂r

(
r
∂up
∂r

)
− µup

r2
+ µ

∂2up
∂z2

= −κ
µ

(
∂pp
∂r

)
; (2.37)

wp +
µ

r

∂

∂r

(
r
∂wp
∂r

)
+ µ

∂wp
∂z2

= −κ
µ

(
∂pp
∂z

)
. (2.38)

Given the second order nature of this equation, this form is especially relevant for
prescribing additional, non-pressure boundary conditions. For example, if a no-slip
wall is present in the porous flow, the zero-velocity boundary condition can be imposed
through Brinkman’s extension, while this is not possible through the traditional form
of Darcy’s law. Other applications of Brinkman’s extension include the flow through a
porous medium in which the grains are porous themselves [98].

Nevertheless, given the boundary conditions that are involved in our problem, it is ex-
pected that Darcy’s law is sufficiently accurate. However, Brinkman’s extension should
be used if additional boundary conditions are to be prescribed. In that case, the sys-
tem of equations also would need to be solved for up(r, z) and wp(r, z), rather than for
pp(r, z) only.

2.3. Interfacial surfactant concentration

In this section the transport equation for surfactant at the interface is derived.

At any infinitesimal liquid-air interface patch a molar interfacial concentration of ad-
sorbed surfactant Γ can exist. As given by Stone [173], the transport of surfactant is
described by the convection-diffusion equation:

∂Γ

∂t
+ ~∇s · (Γ ~us) = DΓ

~∇2
sΓ, (2.39)

where ~∇s = 1
1+(∂rh)2 (~er + ∂rh~ez)

∂
∂r + 1

r~eα
∂
∂α is the surface gradient operator, with

~ei the unit vector in direction i. Furthermore, ~us is the interface velocity vector and
DΓ the surface diffusion coefficient. Note that all axial derivatives are dropped in ~∇s,
since both Γ and ~us are independent of z.

The formulation of Equation (2.39) is the conservative form of the standard surfac-
tant transport equation. However, it is generally more practical to express it in non-
conservative form as is often done in literature [48, 86, 178]. Then, the equation is
formulated in terms of the evolution of the tangential interface velocity ~ut and normal
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interface velocity ~un. The equation becomes:

∂Γ

∂t
= − ~∇s · (Γ~ut)− ΓUn ~∇s · ~n+DΓ

~∇s
2
Γ, (2.40)

where Un = | ~un| = ∂th√
1+(∂rh)2

. It is possible to approximate the surface gradi-

ents in the tangential convection and the diffusion term as the non-surface gradient
~∇ = ~er

∂
∂r + 1

r~eθ
∂
∂θ and subsequently replacing the radial derivatives ∂

∂r with surface
derivatives ∂

∂s , which are given by ∂
∂s = 1√

1+(∂rh)2

∂
∂r .

∂Γ

∂t
= −1

r

∂(rUtΓ)

∂s
+

ΓUn√
1 + (∂rh)2

(
∂2h
∂r2

1 + (∂rh)2
+

1

r

∂h

∂r

)
+
DΓ

r

∂(r∂sΓ)

∂s
. (2.41)

Here, Ut is the tangential interface velocity, which is equal to the tangential fluid ve-
locity at the interface. Thus, it can be found by taking the inner product between fluid
velocity vector ~u = u~er+w~ez and tangential unit vector ~t = (~er+∂rh~ez)/

√
1 + (∂rh)2.

Equation (2.41) generally gives good accuracy and similar results if the full surface
gradients are calculated [58, 59, 60]. However, for relatively large slopes the surface
gradients should be calculated completely. The tangential convection term in Equation
(2.40) then becomes:

~∇s · (Γ~ut) =
1

1 + (∂rh)2

(
∂

∂r
(utΓ) +

∂h

∂r

∂

∂r
(wtΓ)

)
+
utΓ

r
. (2.42)

Here, ut and wt are the components of tangential interface velocity vector ~ut that is
given by:

~ut = (~u · ~t)~t =

(
u+ w∂rh

1 + (∂rh)2

)
~er +

∂h

∂r

(
u+ w∂rh

1 + (∂rh)2

)
~ez. (2.43)

Similarly, the Laplacian in the diffusion term of Equation (2.40) can be calculated in
full surface coordinates:

~∇s
2
Γ =

1

1 + (∂rh)2

(
∂

∂r

(
1

1 + (∂rh)2

)
∂Γ

∂r
+

1

1 + (∂rh)2

∂2Γ

∂r2

)
+

∂rh

1 + (∂rh)2

(
∂

∂r

(
∂rh

1 + (∂rh)2

)
∂Γ

∂r
+

∂rh

1 + (∂rh)2

∂2Γ

∂r2

)
+

1

1 + (∂rh)2

1

r

∂Γ

∂r
. (2.44)

In case of relatively large slopes an additional term needs to be introduced in the
surfactant transport equation that compensates for the displacement of the surface
coordinates that move along the normal of the surface. For large slopes this displace-
ment is significant enough to cause a deviation of the surfactant mass at the surface
coordinates in comparison to the global coordinate r. As Wong et al. [189] show, the
relation between the surfactant concentration at the surface coordinates and at the
global coordinates is given by:[

∂Γ

∂t

]
s

=

[
∂Γ

∂t

]
g

− #̇»

X · ~∇sΓ. (2.45)
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Here, s and g denote the surface and global coordinates respectively and the subscripts
indicate which of the two is kept constant in the derivative. Furthermore,

#̇»

X is the ve-
locity vector with which the interface coordinates move along the global coordinates.
In the considered case, it is desired to express Γ as a function of r. From this it follows
that

#̇»

X = ∂th~ez, since this vector gives the displacement of the interface as a function
of r. In terms of r the correction term is given by:

#̇»

X · ~∇sΓ = −∂h
∂t

∂rh

1 + (∂rh)2

∂Γ

∂r
. (2.46)

If slopes are small, it is acceptable within the approximation of the lubrication ap-
proach to neglect the coordinate transformation term. Adsorption and desorption
terms can be added to Equation (2.46) where applicable.

2.4. Bulk surfactant concentration

In this section a transport equation is derived for the surfactant in the bulk of the
droplet.

A thin, ring-shaped volume dV is considered at an arbitrary r-coordinate with some
dissolved mass m in it. The change in mass due to transport dm over a time interval
dt is given by:

dm = 2π
(

(φūh)rr− (φūh)r+dr(r+dr)
)
dt−2πDφ

((dφ
dr
h
)
r
r−
(dφ
dr
h
)
r+dr

(r+dr)
)
dt.

(2.47)
Here, φ is the local concentration of the dissolved mass, ū the height-averaged radial
fluid velocity, h the height of dV and Dφ the diffusion coefficient. The subscripts
denote the radial coordinate at which a quantity is defined.

Now, a new variable ψ(r, t) = φ(r, t)h(r, t) = m(r,t)
2πrdr is introduced, which can be seen

as the concentration projected on the substrate. It is prefarable to use ψ(r, t) rather
than φ(r, t) as a variable, because ψ(r, t) is independent of h(r, t) [179]. Therefore, if
ψ(r, t) is used, any change in concentration as a result of a change in h, is automatically
taken into account. If φ(r, t) would be used as variable for the bulk concentration, an
additional term would be required, similar to Equation (2.45). The rate of change in
ψ(r, t) is given by:

dψ

dt
=

1

rdr

(
(ūψ)rr−(ūψ)r+dr(r+dr)

)
−Dφ

rdr

((dφ
dr
h
)
r
r−
(dφ
dr
h
)
r+dr

(r+dr)
)
. (2.48)

Letting dt→ 0 and dr → 0 then yields:

∂ψ

∂t
=

1

r

∂

∂r

(
−rψū+Dφrh

∂φ

∂r

)
. (2.49)

The height-averaged radial velocity ū is found by calculating the average of Equation
(2.7):

ū =
1

hµ

∫ h

0

dz

(
−∂p
∂r

(
hz − 1

2
z2
)

+
∂σlg
∂r

z

)
=

1

µ

(
−1

3
h2 ∂p

∂r
+

1

2
h2 ∂σlg

∂r

)
. (2.50)
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Subsequently, substitution of ū in Equation (2.49) yields:

∂ψ

∂t
=

1

r

∂

∂r

(
rh2ψ

3µ

∂p

∂r
− rhψ

2µ

∂σlg
∂r

+Dφrh
∂φ

∂r

)
. (2.51)

This equation can be used to describe the transport of both monomers ψ(r, t) =
φ(r, t)h(r, t) and micelles ζ(r, t) = M(r, t)h(r, t) in the bulk of the droplets. Source
terms, like adsorption/desorption and micelle formation/decomposition can be added
where appropriate.

2.5. Pore surfactant concentration

In contrast to the surfactant bulk concentration in the droplet, the bulk concentration
in the porous medium φp(r, z, t) is also assumed to depend on the axial coordinate z.
The reason for this is that the vertical dimension of the wetted region typically is of the
same order of magnitude as the horizontal dimension. Furthermore, the pressure gra-
dient has a significant component in axial direction. The evolution of φp(r, z, t) is thus
to be described by an axisymmetric 3D convection-diffusion-adsorption equation:

∂φp
∂t

= −1

r

∂

∂r

(
rφp

up
η

)
− ∂

∂z

(
φp
wp
η

)
+
Dφ,p

r

∂

∂r

(
r
∂φp
∂r

)
+Dφ,p

∂2φp
∂z2

−JφS . (2.52)

Here, Dφ,p is the diffusion coefficient in the pores and JφS accounts for the sorption
between the bulk and the walls of the pores. This effect is not considered in the
droplet itself, because there the total liquid-solid interface is much smaller. Further-
more, adsorption onto the solid-liquid interface does not directly influence the flow
behavior (it cannot cause Marangoni flow) and will not change the contact angle of
the droplet, because only pinned cases are considered when surfactants are involved.
The concentration φp(r, z, t) is subject to the following boundary conditions:

φp(r, 0, t)wp(r, 0, t) = φ(r, t)Wp(r, t); (2.53)
∂φp
∂r
|r=0 = 0. (2.54)

Furthermore, surfactant cannot be transported outside the wetted region.

The reduction in energy at the solid-liquid interface σsl will affect the suction pressure,
which is implied by Young’s equation: σsg−σsl = σlg cos θadv, with solid-gas interfacial
tension σsg. Substitution of the left-hand side of Young’s equation in Equation (2.35)
results in

pc = −4(σsg − σsl(S̄int))
d

. (2.55)

Adsorbing surfactants will therefore increase the magnitude of the capillary suction
pressure. The volume-averaged value of S(r, z, t) at the interface, i.e. S̄int, is used for
the calculation of pc. This results in better stability, since pc becomes more uniform.

The surfactant concentration at the liquid-air interface in the porous medium is not
taken into account, because it does not affect pc (as shown by [99, 100]). Further-
more, due to the adsorption kinetics ψh� Γ, meaning that adsorption onto the liquid-
air interface has no significant influence on the bulk concentration. This type of sur-
factant is typically called a ‘penetrant’ and is used to influence liquid absorption.
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2.6. Evaporation model

The evaporative mass flux of water ṁw is given by:

ṁw = −DwaMwpsat,w
RuT

∂p̂w
∂n

, (2.56)

with Dwa the water vapor diffusivity in air [93], Mw the molar mass, psat,w the homo-
geneous saturation pressure, which is assumed to be constant, and p̂w = pw

psat,w
with

pw the local vapor pressure [39]. Furthermore, Ru is the universal gas constant and T
the temperature.

Regarding the vapor field, Deegan et al, [37] and Hu and Larson [70] showed that
the vapor diffusion for single component droplets can be considered as instantaneous.
Combined with the assumption of no air flow, this results in the following Laplace
equation:

∇2p̂w = 0. (2.57)

The corresponding boundary conditions of Equation (2.57) are:

p̂w|z=h = 1 for r < R; (2.58)

∂p̂w
∂z
|z=0 = 0 for r > R; (2.59)

p̂w = RHw for (r, z)→∞. (2.60)

Equation (2.58) represents the saturated vapor at the liquid-air interface, Equation
(2.59) the prohibition of vapor penetration in the substrate and Equation (2.60) the
relative humidity in the surroundings (where RHw is the relative humidity). For the
precursor film model, the radial coordinate corresponding to R is defined to be the
point where h = 1.2hs, which results in the droplet having approximately the same
effective radius as if it would have been a spherical cap.

The evaporation velocity we in Equation (2.10) can subsequently be calculated by:

we = −ṁw

ρ

√
1 +

(
∂h

∂r

)2

. (2.61)

Similarly to Equation (2.22), the argument of the square root makes the expression a
better approximation for higher slopes than it would when approximated as unity.

It is possible to derive an analytical solution to the Laplace equation ∇2p̂l = 0, as
shown by Deegan et al. [37] and Popov [142]. This is done by converting the cylin-
drical coordinates to toroidal coordinates:

r = R
sinhα

coshα− cosβ
, z = R

sinhβ

coshα− cosβ
. (2.62)

The position of the interface then becomes defined at 0 ≥ α and β = β0 = π − θ,
where θ denotes the contact angle. The drop apex (at r = 0) corresponds to α = 0
and r → R as α→∞.
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Subsequently, given the boundary conditions p̂l|β=β0
= 1 and p̂l|β→∞ = RH, the

solution of the Laplace equation can be shown to be [102]:

p̂l = RH + (1−RH)N(α, β)

∫ ∞
0

dτK(τ, β)Cτ (α)
cosh(θτ)

cosh(πτ)
, (2.63)

with

N(α, β) =
√

2 coshα− 2 cosβ, (2.64)

K(τ, β) =
cosh((2π − β)τ)

cosh((π − θ)τ)
, (2.65)

Cτ (α) = P−1/2+iτ (coshα). (2.66)

Here, P−1/2+iτ denotes Legendre functions of the first kind with a fractional complex
index.

Subsequently, for the evaporation rate the normal derivative of the vapor field at the
drop interface needs to be calculated, which is given by [142]:

∂p̂l
∂n

=
coshα− cosβ

R
∂β p̂l|β=3π−θ. (2.67)

Substitution of Equation (2.63) in Equation (2.67) gives:

∂p̂l
∂n

=
1−RH

R

(
sin θ

2
+N ′(α)

∫ ∞
0

dτK ′(τ)Cτ (α)
cosh(θτ)

cosh(πτ)

)
, (2.68)

with

N ′(α) =
√

2(coshα+ cos θ)3/2, (2.69)

K ′(τ) = τ tanh((π − θ)τ). (2.70)

This can be rewritten into [107]:

∂p̂l
∂n

=
π(coshα+ cos θ)3/2

2R(π − θ)2

∫ ∞
α

dx
tanh

(
πx

2(π−θ)

)
cosh

(
πx

2(π−θ)

)√
coshx− coshα

. (2.71)

The integral in this expression needs to be evaluated numerically. For a more detailed
derivation, the reader is referred to Diddens et al., who carried it out both for single
component and multi-component evaporation and showed the analytical solution to
be similar in terms of accuracy to other numerical solution techniques for the vapor
field [39].

2.7. Adsorption model

The transport between the interface and the bulk is by means of continuous adsorption
and desorption of molecules that overall tends towards a dynamic equilibrium. Fur-
thermore, there is a limited amount of space available at the interface for surfactants,
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so as the interfacial concentration increases the adsorption rate tends to decrease,
while the desorption rate increases. This behavior can be described by the following
reaction equation [48, 85]:

S + φ
kΓ
a−−⇀↽−−
kΓ
d

Γ. (2.72)

Here, S (= 1− Γ
Γ∞

) indicates the fraction of available space at the interface, kΓ
a is the

interfacial adsorption coefficient, and kΓ
d the interfacial desorption coefficient. Thus,

the interfacial adsorption flux is given by:

JΓφ = kΓ
aφ

(
1− Γ

Γ∞

)
− kΓ

dΓ. (2.73)

In this equation it can indeed be recognized that the first, adsorption term increases as
the bulk concentration increases and approaches zero as Γ → Γ∞, while the second,
desorption term becomes more negative as Γ increases. This behavior corresponds
indeed to Equation (2.72).

The surface tension at the liquid-air interface is given by the Szyszkowski equation
of state, also known as the Frumkin equation of state, which takes into account the
repelling effect individual surfactant molecules have on each other [22]. This closure
relation is typically valid up to intermediate interfacial concentrations that are not too
close to the maximum concentration Γ∞. The Szyszkowski equation is given by:

σlg = σlg,0 +RuTΓ∞ ln

(
1− Γ

Γ∞

)
. (2.74)

In this equation, σlg,0 denotes the liquid-gas surface tension for a surfactant-free liq-
uid. For lower concentrations the equation reduces to the linear, dilute equation of
state, given by:

σlg = σlg,0 −RuTΓ. (2.75)

Note that surfactant adsorption onto the substrate surface is not taken in consideration
here, because this will not have a direct effect on the internal flow. Marangoni flow
can only occur as a result of a surface tension gradient at a free interface. Any indirect
influences of substrate sorption on the flow – surfactant being removed or added to
the bulk – are considered less significant.

Similar to Equation (2.72), a reaction equation can be written for the formation of
micelles:

Nφ
kMa−−⇀↽−−
kMd

M. (2.76)

Here, kMa is the micelle formation coefficient and kMd the micelle decomposition coef-
ficient. Furthermore, N denotes the preferred number of monomers in a micelle. It is
assumed that only micelles of this size are formed, which is often the case in reality
[75]. Equation (2.76) can subsequently be written into a micelle formation rate JMφ

[11, 48, 85]:
JMφ = kMa φ

N − kMd M. (2.77)

Given this equation, it is possible to approximate the reaction constants in terms of the
critical micelle concentration (CMC), which is the monomer concentration at which
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micelles start to form, and local concentrations. From Equation (2.77), it can be seen
that the equilibrium concentrations are given by kMa

kMd
= M

φN
. Now, if Φ(= NM + φ) is

the total concentration of surfactant monomers in the bulk, substitution of the initial
total concentration Φ0 results in:

kMa
kMd

=
Φ0 − CMC

N(CMC)N
. (2.78)

Here, it should be noted that in equilibrium φ = CMC, given that there are micelles
present. Of course, it is still required to choose one of the reaction constants to define
the time scales of the reactions.

The sorption term JφS in the porous medium is given by:

JφS =
4

d
kSaφp

(
1− S

S∞

)
− kSd S, (2.79)

with kSa and kSd the solid-liquid adsorption and desorption coefficient respectively,
S(r, z, t) the amount of adsorbed surfactant per unit of volume and S∞ the maximum
adsorbed surfactant concentration per unit of volume.

The 4
d prefactor is the area of the channel walls per unit of wetted volume [164]. A

control volume V contains cylindrical channels with a total volume of ηV = Lπ/4d2

and a total channel wall area Ap = Lπd, with L the total length of the channels. The
area to volume ratio is therefore Ap

ηV = 4
d .

As an equation of state for the surface tension of the solid-liquid interface in the porous
medium, σsl, a variant of the Sheludko equation [86, 160] is used:

σsl = σsl,0

(
1 +

S

S∞
((σsl,0/σsl,∞)− 1)

)−3

. (2.80)

Here, σsl,0 and σsl,∞ are the surface tensions of a surfactant-free and fully covered in-
terface respectively. Equation (2.80) is appropriate for surfactant concentrations that
approach the maximum, which is the case in this work for the liquid-solid interface.
Hence, this equation of state is used rather than e.g. the Szyszkowski equation that is
used for the liquid-air interface (Equation (2.74)).

At t = 0 no surfactant has adsorbed on the pore walls (S(r, z, 0) = 0).

2.8. Solute transport

In this section two different methods are presented that can be employed to model
the evolution of solutes in the droplet: as a passive concentration and as a distinct
phase.

If the solute is a passive concentration C(r, z, t), the evolution can simply be described
by a convection-diffusion equation:

∂C

∂t
= −1

r

∂

∂r
(rCu)− ∂

∂z
(Cw) +DC

1

r

∂

∂r

(
r
∂C

∂r

)
+DC

∂2C

∂z2
. (2.81)
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Here, DC denotes the bulk diffusion coefficient of the solute. The corresponding
boundary and initial conditions are:

∂C

∂r
|r=0 = 0; (2.82)

∂C

∂z
|z=0 = 0; (2.83)

−∂h
∂r

∂C

∂r
|z=h +

∂C

∂z
|z=h = 0; (2.84)

C(r, z, 0) = C0. (2.85)

Here, C0 is the initial (homogeneous) concentration. The boundary conditions denote
the axisymmetry at r = 0 and the solute not being transported through any of the
interfaces (liquid-air and liquid-solid). If the substrate is porous Equation (2.83) can
be ignored.

For higher solute concentrations Equation (2.8) is insufficient however and the par-
ticles should be considered as a separate solid phase. Both the mass fractions of the
liquid and the solid phase (yw(r, z, t) and ys(r, z, t) respectively) can then be described
by (e.g. see [39, 143])

ρ

(
∂ya
∂t

+ ~U · ∇ya
)

= ∇ · (ρDls∇ya)− ṁaδh. (2.86)

Here, ya denotes the considered mass fraction (with a = w, s, denoting water and
solute), Dws is the mutual diffusion coefficient between the phases, ṁa is the sink
term as a result of evaporation and δh the interface delta function. Mass fraction ya is
subject to the same boundary conditions as C, so Equations (2.82) - (2.85) hold if C
is substituted by ya.

Given that the fluid properties are dependent on the local mass fractions, these become
a function of time and space, ρ(r, z, t), µ(r, z, t), Dls(r, z, t). Therefore, the lubrication
equation (2.17) and surfactant transport equations (2.40) and (2.51) need to be gen-
eralized before they can be applied.

Carrying out the same derivation as before but with non-constant fluid properties
yields the velocity field (also see [39]):

u(r, z, t) =

∫ z

0

(−∂rp(r, t))(h(r, t)− z′) + ∂rσlg(r, t)

µ(r, z′, t)
dz′; (2.87)

w(r, z, t) =
1

ρ(r, z, t)

∫ z

0

(
1

r

∂

∂r
(rρ(r, z′, t)u(r, z′, t))− ∂ρ(r, z′, t)

∂t

)
dz′. (2.88)

Furthermore, the evolution equations for h(r, t), Γ(r, t) and ψ(r, t) become:

∂h

∂t
=

1

ρ|z=h

(
−1

r

∂

∂r

∫ h

0

rρudz −
∫ h

0

∂ρ

∂t
dz

)
+ we; (2.89)

∂Γ

∂t
= − ~∇s · (Γ~ut)− ΓUn ~∇s · ~n+DΓ

~∇s
2
Γ +

∂h

∂t

∂rh

1 + (∂rh)2

∂Γ

∂r
; (2.90)

∂ψ

∂t
=

1

r

∂

∂r

(
−rψ
h

∫ h

0

udz +Dφrh
∂φ

∂r

)
. (2.91)
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For lower and intermediate concentrations these equations can be used as they are
given, but for concentrations closer to the maximum packing fraction ys,max addi-
tional amendments should be implemented. This will be considered in more depth in
Chapter 6.

2.9. Solution procedure

The dependent variables in the droplet (drop height h(r, t), interfacial surfactant
concentration Γ(r, t), bulk surfactant concentration ψ(r, t) and micelle concentration
ζ(r, t)) are to be solved as functions of the independent variables radial coordinate
r and time t. In order to do this, the system of equations is discretized and solved
numerically. The dependent variables are defined on a staggered grid and the spa-
tial discretization of the derivatives is done with a central difference scheme. The
temporal discretization is done by a diagonally implicit Runge-Kutta scheme, which
solves each time step in three stages. Within each stage, the dependent variables are
calculated at the new time step by solving the equation:

−→
G (i+1) =

−→
W (i+1) −

−→
W (i) −∆tstage

−→
f (i+1) = 0, (2.92)

where
−→
W denotes the vector of dependent variables, ∆tstage the time step of the cur-

rent stage and
−→
f the vector of time-derivatives of the dependent variables. The su-

perscripts indicate the discretized time step on which the quantities are calculated.−→
W (i+1) is then solved by means of Newton’s method:

−→
W (j+1) =

−→
W (j) − J−1

−→
G(j)

−→
G (j), (2.93)

where J−→
G

is the Jacobian matrix of
−→
G with respect to

−→
W . The subscripts denote the

iteration number of the scheme.

The evaporation rate is obtained by solving the vapor field as given by Equation (2.57).
This equation can be solved by using the multigrid algorithm as described by Shapira
[159] (see Chapter 3) or by numerically solving the integral in Equation (2.71) (see
Chapters 4 and 6).

In the porous medium, there are three dependent variables that are to be solved as
functions of spatial coordinates r (and in some cases also z) and time t: wetted area
height hp(r, t), bulk surfactant concentration φp(r, z, t) and adsorbed surfactant con-
centration S(r, z, t). These are calculated explicitly on each substep of the Runge-Kutta
scheme. In order to calculate the velocity field in the pores, that is necessary for the
calculation of hp and φp, it is required to first find the pressure field. This is also done
with the multigrid algorithm described by Shapira [159].

In case there is a solute present (either C(r, z, t) or yw(r, z, t) and ys(r, z, t), see Sub-
section 2.8), it is updated every substep of the Runge-Kutta scheme using a simple
explicit Euler scheme. Subsequently, for C(r, z, t) the concentrations in the bulk and
of the adsorbed mass are updated explicitly. For yw(r, z, t) and ys(r, z, t) the fractions
are normalized to add up to one every substep.
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For the cases with a slipping contact line, it is required to take into account the ad-
ditional dependent variable R(t), besides h(r, t), Γ(r, t), ψ(r, t) and ζ(r, t). Then, R
is added to

−→
W and its time derivative to

−→
f (i+1). Because 0 ≤ r ≤ R(t), the physical

domain is mapped on a fixed computational domain 0 ≤ r∗ ≤ 1 defined as:

r∗ =
r

R(t)
. (2.94)

The evolution equations are then rewritten in terms of this new variable and be-
come: (

∂h

∂t

)
r∗

=

(
∂h

∂t

)
r

+
r∗

R

∂h

∂r∗
∂R

∂t
; (2.95)(

∂Γ

∂t

)
r∗

=

(
∂Γ

∂t

)
r

+
Γ

R

(
(∂rh)2

1 + (∂rh)2
− 2

)
∂R

∂t
; (2.96)(

∂ψ

∂t

)
r∗

=

(
∂ψ

∂t

)
r

− 2
ψ

R

∂R

∂t
; (2.97)(

∂ζ

∂t

)
r∗

=

(
∂ζ

∂t

)
r

− 2
ζ

R

∂R

∂t
. (2.98)

The second term in Equation (2.96) arises from the deformation of the interface on
which Γ is defined. Realizing that on any infinitesimal interface patch the surfactant
concentration is given by Γ = N

2πrdr
√

1+(∂rh)2
, with N the local number of moles of

surfactant, allows one to derive this term. The second terms in Equations (2.97) and
(2.98) are derived in a similar way, but without the effect of interface deformation,
given that these are bulk quantities.

Equations (2.95) to (2.98) can be solved with the same method as without a slipping
contact line.
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3. Evaporation of droplets with
insoluble surfactants

In this chapter1 the effect of insoluble surfactants on evaporating droplets is consid-
ered. Using two different contact line models it is analyzed how the contact line
dynamics change for a droplet if surfactants are added. The two contact line models
are compared both quantitatively and qualitatively to each other and to experimental
literature.

3.1. Introduction

Sessile droplets are a common phenomenon. It can rightly be said that these droplets
are encountered in a broad spectrum of contexts, ranging from everyday situations,
as raindrops on a window and coffee spilled over a table, to high-tech applications, as
inkjet printing [44] and spray cooling [89]. Especially the technological significance of
sessile droplets has aroused a widespread interest in the subject. Increasingly detailed
experiments and models have allowed for a much better understanding of the physical
behavior of droplets in many configurations and on different scales. However, several
challenges and questions still remain, which require continued research.

One topic that is still actively investigated is the drying of sessile droplets. This drying
process is typically controlled by the diffusion of vapor from the droplet interface to the
environment, as was demonstrated by Deegan et al. [35, 37] and Popov [142]. As a
result, a nonuniform evaporation rate is induced, with a singularity at the contact line
if the contact angle is small. The wetting behavior of sessile droplets can be divided
into partial wetting, for which the droplet has an associated equilibrium contact angle
[171], and complete wetting, for which no equilibrium contact angle exists, which
results in indefinite spreading of the droplet [50]. Grounded on these principles,
numerous analytical and numerical studies have been carried out [7, 71, 148].

During evaporation, the contact line typically shows two different types of behavior:
either the contact angle decreases while the contact line remains pinned or the contact
line moves while the contact angle remains constant. Also, a combination of these two
types can occur in the form of stick-slip behavior [186]. Pinning of the contact line
can occur if the contact angle is small or if the substrate is relatively rough. This is the
case in many practical applications [32, 36, 55]. Constant contact angle evaporation
on the other hand, typically occurs if the substrate is smooth or the contact angle is
large. Both modes of evaporation can be modelled with hydrodynamic equations, but
if the contact line moves an additional description of the nanometer scale around the
contact line is required to resolve the contact line singularity [74].

One possible way of dealing with the contact line singularity is by assuming a slip

1This chapter is based on the article: ‘The evaporation of surfactant-laden droplets: a comparison between
contact line models’ by van Gaalen et al. [58]

23



length, that allows for some flow parallel to the substrate [21, 28, 110]. This is both
experimentally and numerically a well established method, but a drawback is that it
only introduces a length scale and not an energy scale that describes the interaction
with the substrate. Practically, this means that an additional boundary condition needs
to be introduced for the microscopic contact angle to close the problem. This boundary
condition is usually an equation that couples the contact line velocity to the contact
angle. For more information on this subject, the reader is referred to the review by
Snoeijer and Andreotti [168].

Another method of resolving the singularity is by introducing a precursor film that
covers the substrate around the droplet. In that case, the contact line is defined on
the free surface of the film, where slip is allowed, thus resolving the contact line
singularity [61, 165, 171]. In order to keep the precursor film stable, a disjoining
pressure is introduced, which accounts for the molecular interactions of the fluid with
the substrate [38, 77, 141, 152]. An advantage of the precursor film model is that it
effectively resolves the contact line singularity without the need for additional bound-
ary conditions. A disadvantage however, is that precursor films are rarely encountered
under partial wetting conditions [68, 137, 168].

Given these two contact line models, it is considered of interest to compare them in
the context of evaporating droplets to see whether both models give rise to similar
results. While some studies exist that compare these two models (e.g. [43, 151,
162] in the context of spreading and [104] for a flow driven by a surface tension
gradient), a comparison has never been made for evaporating droplets. Depending
on the outcome, such a comparison is relevant since it guides researchers in making a
substantiated decision with regard to the applicability of these models.

Furthermore, besides comparing the two contact line models for pure droplets, it is
also relevant to compare the models with the inclusion of insoluble surfactants. Sur-
factants decrease the local surface tension of an interface. In principle, all surfactants
are to some extent soluble, which implies that there exists a surfactant concentration
both at the free surface and in the bulk of the liquid. Between these concentrations
surfactant is transferred through adsorption and desorption. However, for many prac-
tically relevant surfactants the bulk solubility is very small (e.g. oleic acid in water
[47, 182]). For these surfactants the bulk concentration can be disregarded in which
case one speaks of ‘insoluble surfactants’ [6].

While several numerical studies exist that consider pure, volatile droplet dynamics
(e.g. [39, 165]) or the dynamics of nonvolatile droplets and surfactants (e.g. [11,
48, 188]), numerical studies that analyze both the evolution of evaporating droplets
and surfactants are less common. This is only done in the work of Karapetsas et
al. [86], who model the evaporation of a complete wetting droplet with insoluble
surfactants. Thus, it is of great relevance to analyze the evaporation of surfactant-
laden droplets under partial wetting conditions, especially given the wide application
of surfactants.

In the present work, a comparison is made between the precursor film model and
slip length model in the context of evaporating sessile droplets with insoluble surfac-
tants. For both pure droplets and droplets with insoluble surfactants the volume, ra-
dial and contact angle evolution calculated by both models is analyzed and compared.
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Also, both models are quantitatively compared with experiments for pure droplets
(i.e. droplets without surfactants) and checked for consistency with experiments for
droplets with insoluble surfactants.

It is hypothesized that for pure droplets both the precursor film model and slip model
will yield similar results, because both involve evaporation with a mostly constant
contact angle. Furthermore, it is expected that during the evaporation of surfactant-
laden droplets the surfactant concentration will increase as a result of the decreasing
interfacial area. This will decrease the contact angle as the surface tension decreases
with increasing concentration. Because of the inherent dissimilarities in interface def-
initions between the models, it is foreseen that the degree with which the surfactant
concentration increases differs per model.

This article is organized as follows: first, in Section 3.2 the applied numerical method
is presented, which is based on lubrication theory. The droplet height evolution equa-
tion and interfacial surfactant transport equation are introduced and an evaporation
model is derived. Extra attention is paid to the formulation of the involved pressure
terms and to the boundary conditions in the slip length model. After that, in Section
3.3 the results of the numerical simulations are shown and the effects of both models
on the volume, radial and contact angle evolution are analyzed and compared. In the
final section, conclusions are drawn based on the found results.

3.2. Mathematical model

In this section the mathematical equations are introduced that model the evaporat-
ing droplet. First, the evolution of the height profile is presented and described and
after that the convection-diffusion equation for the surfactants at the interface. Sub-
sequently, a separate subsection is dedicated to the formulation of the pressure terms
in the system, including the disjoining pressure that is related to the precursor film.
Lastly, the slip model is outlined and the evaporation model is explained.

3.2.1. Lubrication equation

A sessile droplet is considered with mass density ρ, dynamic viscosity µ and (liquid-
gas) surface tension σlg. For this study, only droplets much smaller than the capillary
length lσ = (σlg/ρg)1/2 are regarded. Therefore, the influence of gravity g can safely
be neglected [61, 167]. Another consequence of the small length scales involved is
a low Reynolds number. This results in a viscous flow where the inertia terms can
be neglected. Lastly, cylindrical coordinates (r, α, z) are used with the assumption of
axisymmetry ( ∂

∂α = 0) and no swirl (Uα = 0) and, most importantly, ‘flat’ droplets are
assumed, which allows one to express the evolution equation of drop height h(r, t) as
a function of r:

∂h

∂t
=

1

rµ

∂

∂r

(
rh3

3

∂p

∂r
− rh2

2

∂σlg
∂r

)
+ we. (3.1)

Here, p is the excess pressure in the droplet and we is defined as the height change
rate due to evaporation. Both these parameters will be quantified later on, in Sub-
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section 3.2.3 and Subsection 3.2.5, respectively. In the evolution equation, a pressure
driven term can be recognized and a term driven by the surface tension gradient,
which accounts for the Marangoni effect [153]. For a derivation of Equation (3.1), see
Subsection S.1.1.

The boundary and initial conditions that h(r, t) is subjected to are given by:(
∂h

∂r

)
r=0

= 0, (3.2)(
∂3h

∂r3

)
r=0

= 0, (3.3)

h(R, t) = 0, (3.4)

h(r, 0) = h0(r). (3.5)

Here, R is the radius of the droplet and h0 is the initial droplet profile, which is
obtained by setting we = 0 and relaxing the droplet to an equilibrium solution.

3.2.2. Surfactant transport equation

The evolution equation of the local surfactant concentration Γ(r, t) can be expressed
in radial coordinates as:

∂Γ

∂t
= −1

r

∂(rUtΓ)

∂s
+

Γ∂th

1 + (∂rh)2

(
∂2h
∂r2

1 + (∂rh)2
+

1

r

∂h

∂r

)
+
Ds

r

∂(r∂sΓ)

∂s
+
∂h

∂t

∂rh

1 + (∂rh)2

∂Γ

∂r
.

(3.6)
Here, Ut is the fluid velocity tangential to the liquid-air interface and Ds the surface
diffusion coefficient. Furthermore, ∂

∂s denotes the partial derivative tangential to the
interface in radial direction. The first term on the right-hand side accounts for con-
vective transport tangential to the interface, the second term is a source-like term that
takes into account deformation of the interface, the third term is a diffusion term and
the last term compensates for the displacement of the surface coordinates that move
along the normal of the surface. A derivation of Equation (3.6) is given in Section
S.2.

Surfactant concentration Γ(r, t) is subject to the following boundary and initial condi-
tions: (

∂

∂r

)
r=0

= 0, (3.7)(
∂Γ

∂r

)
r=D

= 0, (3.8)

Γ(r, 0) = Γ0(r). (3.9)

Here, D denotes the domain boundary for the surfactant, which is where ∂rh ≈ 0 for
the precursor film model and D = R for the slip model.

The surface tension equation of state used in this present work, is the dilute limit
relation given by

σlg = σ0 − σΓΓ. (3.10)
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In this relation σΓ is the ‘efficiency’ of the surfactant which is defined as σΓ = RuT
with Ru the universal gas constant and T the temperature.

3.2.3. Disjoining pressure and precursor film

The pressure p in the droplet is given by Derjaguin’s equation [38, 165, 170]:

p = pL −Π, (3.11)

where pL is the Laplace pressure and Π the disjoining pressure. Both these pressure
terms are independent of z, which is in accordance with Equation (S.4). The Laplace
pressure is given by

pL = −1

r

∂

∂r

(
σlg

r∂rh√
1 + (∂rh)2

)
. (3.12)

Contrary to the traditional formulation of the Laplace pressure, surface tension σlg is
also part of the derivative in Equation (3.12), rather than that it is written outside the
brackets. This is because σlg depends on the local surfactant concentration and thus
it depends on r. As shown by Thiele et al. [178] the surface tension is required to be
part of the radial derivative in that case. Disjoining pressure Π is in this model given
by

Π = B

((
hs
h

)n
−
(
hs
h

)m)
. (3.13)

Here, B, n and m are positive constants (with n > m) and hs is the precursor film
height for which Π equals zero. The height hs does not necessarily correspond to the
real precursor film height, but only represents the zero-pressure height.

This formulation of the disjoining pressure consists of an attractive and a repulsive
component (B(hs/h)m and B(hs/h)n respectively), corresponding to the attractive
and repulsive molecular forces that govern the physics of the precursor film [152].
In literature, one often encounters disjoining pressure formulations that only include
the attractive forces (see e.g. Karapetsas et al. [86]). In these cases the droplet will
spread indefinitely, because there is no equilibrium contact angle corresponding to this
formulation as shown by Starov and Velarde [171].

In this work, n and m are chosen to be 5 and 4 respectively. Higher values of n and m
would require a finer grid without any significant changes in the drop profile, while
lower values of n and m would cause significant deviations in the drop profile from
the spherical cap shape. The value of B can be related to the equilibrium contact angle
θe, which is elaborated in Section S.3.

3.2.4. Slip length model

Another way of solving the contact line singularity is by assuming a slip length (see
e.g. [21]). The height evolution equation given by Equation (3.1) then becomes:

∂h

∂t
=

1

rµ

∂

∂r

[
r

(
h3

3
+ βh2

)
∂p

∂r
− r

(
h2

2
+ βh

)
∂σlg
∂r

]
+ we. (3.14)
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with β the slip length. For a derivation of Equation (3.14) see Subsection S.1.2. The
introduction of β does remove the moving contact line singularity, but still requires a
complementary constitutive relation that prescribes the contact line velocity [168]. In
this study, the contact line velocity is obtained by means of the relation:

dR

dt
= k(θ − θe)a. (3.15)

Here, θ is the current contact angle, a a power-law index with a range of 1-3 and
k a typical sensitivity of the contact line position to deviations of the contact angle
from equilibrium with the dimension of velocity. Increasing a typically results in a less
constant contact angle during evaporation, since θ− θe is generally smaller than unity
(the units are radians). An increase of k results in a more constant contact angle, since
the radius will respond faster to any deviations from θe. In this work, a is set to 1 and
k is set to 1.3 × 10−5 m/s. These values are empirically determined by comparison
with experimental data from Nguyen et al. [131]. This data is also used for validation
of the numerical models in Subsection 3.3.1. Note that for small deviations from the
equilibrium contact angle, Equation (3.15) with a = 1 is in agreement with the Cox-
Voinov low.

The current contact angle θ can be calculated from the slope ∂rh at the contact line
and, in case of surfactants, θe can be computed by means of Young’s equation:

θ = cos−1

(
1√

1 + (∂rh|R)2

)
, (3.16)

θe = cos−1

(
σlg[Γ(R, 0)]

σlg[Γ(R, t)]
cos(θ0)

)
. (3.17)

Here, θ0 is the initial contact angle.

3.2.5. Evaporation model

The evaporative mass flux of water ṁw is given by:

ṁw = −DwaMwpsat,w
RuT

∂p̂w
∂n

, (3.18)

with Dwa the water vapor diffusivity in air [93], Mw the molar mass, psat,w the homo-
geneous saturation pressure, which is assumed to be constant, and p̂w = pw

psat,w
with

pw the local vapor pressure [39].

Regarding the vapor field, Deegan et al, [37] and Hu and Larson [70] showed that
the vapor diffusion for single component droplets can be considered as instantaneous.
Combined with the assumption of no air flow, this results in the following Laplace
equation:

∇2p̂w = 0. (3.19)

The corresponding boundary conditions of Equation (3.19) are:

p̂w|z=h = 1 for r < R; (3.20)
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∂p̂w
∂z
|z=0 = 0 for r > R; (3.21)

p̂w = RHw for (r, z)→∞. (3.22)

Equation (3.20) represents the saturated vapor at the liquid-air interface, Equation
(3.21) the prohibition of vapor penetration in the substrate and Equation (3.22) the
relative humidity in the surroundings (where RHw is the relative humidity). For the
precursor film model, the radial coordinate corresponding to R is defined to be the
point where h = 1.2hs, which results in the droplet having approximately the same
effective radius as if it would have been a spherical cap.

The evaporation velocity we in Equation (3.1) can subsequently be calculated by:

we = −ṁw

ρ

√
1 +

(
∂h

∂r

)2

. (3.23)

Similarly to Equation (3.12), the argument of the square root makes the expression a
good approximation for higher slopes than it would when approximated as unity. An
elaboration of the numerical method is given in Section 2.9.

3.3. Results and discussion

In this section the numerical results are shown and discussed. First, both the precursor
film model and slip length model are compared to experimental results, all for pure
water droplets. After that, the effects of insoluble surfactants on the results of these
two cases are investigated and explained.

3.3.1. Pure droplets

First, the case of pure droplets is investigated. Simulations are carried out for 1.45
microliter water droplets. Furthermore, all physical properties of water are taken at
25◦C and the relative humidity RHw = 0.55. These parameters are chosen in order
to compare the simulations with the experiments that were performed by Nguyen et
al. [131]. They carried out experiments for water droplets on an atomically smooth
Oct-Silicon substrate and published data both in the pinned contact line regime and
constant contact angle regime. Precursor film height hs is set equal to the height of
one grid cell (≈9.4 µm) and slip length β = 100 nm. Although physical values of these
two parameters tend to be smaller, simulations and literature show that any smaller
values result in negligible changes in the solution, but require a finer grid [165].

The initial contact angle was set at θ0 = 35.0◦ for both models. This yielded nearly
identical height profiles as can be seen in Figure 3.1a (θ0 = 31.5◦ will be discussed
later). For the precursor film model, the contact angle is defined as the contact angle
of a spherical cap with the same height and volume (after subtraction of the volume of
the precursor film). Calculating the contact angle directly from the height profile, for
example from the highest slope, would result in an underestimation of the effective
contact angle, since the drop blends into the precursor film around R.
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As can be seen in Figure 3.2 both the precursor film model and the slip length model
agree rather well with each other and with the experiments. The differences between
both models are minute in terms of volumetric evolution and radial evolution and the
dissimilarities that can be observed are likely caused by the fact that both models give
slightly different drop shapes during evaporation. In Figure 3.1b it is shown that at
t = 600 s the slip length model yields a flatter, lower contact angle drop than the
precursor film model. This behavior can also be observed in Figure 3.2, especially
in the contact angle evolution. The precursor film model predicts a nearly constant
contact angle that only decreases at the end of the drying process, while the slip
length model also predicts an initial decrease. This initial decrease can be explained
by Equation (3.15), which shows that the change in R is proportional to the deviation
from θe. As a result, the contact angle will keep decreasing due to evaporation, until
∂tR is large enough to maintain a quasi-steady, receding contact angle. This initial
decrease in contact angle is also observed in the experiments.
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Figure 3.1.: Drop profile at (a) t = 0 s and (b) t = 600 s.

Compared with the experiments, two discrepancies can be distinguished in the volume
evolution. Firstly, at the start the experimental results show a slight deviation from
the model results. This deviation can be attributed to the transition between the
pinned contact line regime, which occurs in the experiments before the initial time of
the simulations and is not shown in the figure, and the moving contact line regime,
which is actually shown in the figure. Because the radius is nearly constant during the
transition, the evaporation occurs faster than it would for a moving contact line. The
slip length model partially captures this effect, as can be seen in Figure 3.2c, but the
precursor film model has a nearly constant contact angle until the end of the drying
process. Therefore, more comparable results would be obtained for the precursor film
model if the initial contact angle is set equal to the receding contact angle that is
observed in the experiments (≈ 31.5◦). Therefore, it is decided to use θ0 = 31.5◦ for
the precursor film model to obtain more representative and comparable results. This
will cause the drop profiles to deviate in the beginning of the evaporation process, as
can be seen in Figure 3.1a, but they will be more similar at later stages, as illustrated
in Figure 3.1b.

The second discrepancy between the models and experiments can be seen at the end
of the drying process (around t = 1000 s), where the experiments again show non-
linear behavior. This nonlinear behavior can also be explained by the decrease of the
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Figure 3.2.: Comparison of evaporation of a pure droplet with (a) droplet volume to
the power 2/3 over time, (b) droplet radius over time and (c) contact
angle over time. The experiments were performed by Nguyen et al. [131].

contact angle, which accelerates the drying process. Both models show qualitatively
the same behavior, but predict that the contact angle is constant for a longer duration.
Unfortunately, how large the difference in contact angle between the models and the
experiments is after t = 1000 s cannot be said with certainty, since Nguyen et al. did
not report any data for that time (probably because the contact angle measurements
became increasingly less accurate when θ → 0).

In summary, it is concluded that both the precursor film model and the slip length
model match the experiments reasonably, slightly favoring the slip model when it
comes to contact angle evolution. Of course, it is duly noted that the agreement is
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partly a result of fitting moving contact line parameters (n and m for the precursor
film model, a and k for the slip model) to the experiments, as reported in Subsections
3.2.3 and 3.2.4.

3.3.2. Droplets with insoluble surfactants

In the previous subsection a pure water droplet was considered for a precursor film
model and a slip length model. However, many applications involve surfactants, ei-
ther intentionally or in the form of impurities. Therefore, in this subsection sessile
droplets with insoluble surfactants are studied and again the two contact line models
are compared.

Simulations are carried out for several initial surfactant concentrations Γ0, ranging
from 1.0 × 10−7 to 5.0 × 10−6 mol/m2. Surfactant efficiency σΓ = RuT is set to 2.48
kJ/mol, which corresponds to a temperature of 25◦C, and surface diffusion coefficient
Ds is set to 4.33 × 10−10 m2/s, which corresponds to 2D Einsteinian diffusion of a
molecule with an effective radius of five times the Van der Waals radius of a carbon
atom (850 pm) [52]. All simulated droplets have the same initial equilibrium con-
tact angle (35.0◦ for the slip length model and 31.5◦ for the precursor film model),
regardless of the initial surfactant concentration.

In Figure 3.3, it can be observed that for the slip length model the addition of surfac-
tants has a significant influence on the drop evolution. Higher concentrations result
in a shorter drying time (see Figure 3.3a), which is caused by the fact that the equi-
librium contact angle decreases as the surfactant concentration increases due to the
shrinking interface. This also results in apparent contact line pinning, as can be seen
in the radial evolution: any evaporated volume results in an increased surfactant con-
centration, which subsequently reduces the contact angle accordingly, while keeping
the radius nearly constant. Thus, it can be seen that for higher initial surfactant con-
centrations the contact angle decreases at a higher rate, while the radius tends to
be more constant. This also causes a relatively higher concentration increase for the
lower initial concentrations, since there the interfacial area shrinks faster due to the
decreasing radius.

This ‘quasi-pinning’ behavior is consistent with results found in literature. As reported
by Truskett and Stebe [183], pinning behavior is strongly promoted with the addition
of surfactants. While this increased pinning can also be attributed to the fact that
surfactants decrease the initial contact angle, which promotes pinning as well, the
quasi-pinning observed in the simulations can be an additional relevant mechanism.
Similar results have been reported for soluble surfactants by Dugas et al. [46], who
show improved pinning by surfactants, and by Sefiane [154], who, besides increased
pinning, also shows a decrease in contact line retraction rate with the addition of
surfactants. Both these results are also consistent with the quasi-pinning behavior
observed in the simulations, because the mechanism is essentially the same for soluble
surfactants: a reduction in available space for surfactants results in a concentration
increase, which subsequently results in a further reduced equilibrium contact angle.

The occurrence of quasi-pinning is also predicted by Semenov et al. [156]. They
show both experimentally and analytically that the volume evolution of evaporating,
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Figure 3.3.: Drop evolution of the slip model for different initial surfactant concentra-
tions, with (a) the volume evolution, (b) the evolution of the drop radius,
(c) the contact angle evolution and (d) the area-averaged surfactant con-
centration.

surfactant-laden droplets scales as V 2/3 ∼ t for contact angles higher than approxi-
mately 45◦, and predict that it accelerates for contact angles lower than 45◦.

As a side note, it is not taken into account here that surfactants might also inhibit
evaporation (e.g. as observed by [126], while not observed by [183]). However,
this would only affect the time scale. The observed quasi-pinning of the contact line
will not be affected by including a reduced evaporation rate, since the pinning is
a result of the equilibrium contact angle being reduced by the increased surfactant
concentration.

Another relevant observation is that in none of the simulations the typical circulating
flow occurs, that is often caused by the Marangoni effect (e.g. see Figure 3.4a. Note
that it is possible to model flow circulations with lubrication theory despite the small
contact angle assumption [91].). In first instance, this may seem counterintuitive
given the frequency with which surfactant-induced Marangoni vortices are reported
in literature (e.g. see [42]). However, we will show that, in this case, the occurrence
of a Marangoni vortex is physically impossible, regardless of the initial surfactant con-
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centration.

The argument is the following. Given that evaporation is strongest at the contact line,
there will be a higher curvature at the apex compared to the contact line. The cor-
responding pressure gradient causes the typical outward, ‘coffee-ring’ flow [30, 31].
Furthermore, because of the same curvature effect, the surfactant concentration in-
creases most rapidly at the drop apex. This source-like effect is a direct result of the
second term on the right-hand side of Equation (3.6). The movement of the contact
line does not change this effect, as implied by Equation (S.25). Thus, the surfactant
concentration at the apex can never be smaller than at the contact line due to shrink-
age of the interface, although a positive concentration gradient towards the contact
line is required for a circulating flow.

Figure 3.4.: Typical flow properties during evaporation (Γ0 = 5.0× 10−6 mol/m2 and
t = 350 s), with (a) the flow field and (b) the pressure profile and surfac-
tant distribution.

Thus, for Marangoni vortices to occur the required surface tension gradient should be
caused by convective transport effects. If any surfactant is transported towards the
contact line by the coffee-ring flow, a negative surface tension gradient could arise.
However, this surface tension gradient can never be sufficient to cause a circulating
flow, because as soon as it would be large enough for a negative interfacial velocity,
it would cancel the outward flow at the interface. Subsequently, without an outward
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flow, the concentration at the contact line will not increase anymore. Thus, it can
be concluded that the surfactant tends to reduce the interfacial flow, but it can never
cause a Marangoni vortex. Figure 3.4b is consistent with this conclusion: the nega-
tive pressure gradient induces an outward flow that is partly diminished due to the
resulting concentration gradient.

For Marangoni vortices to occur, other physical effects need to be taken into account.
For example, if the surfactant is soluble, it can also be transported through the bulk
rather than only along the interface. Thus, circulations can then be caused by surfac-
tant continuously flowing through the bulk towards the contact line, adsorbing at the
interface, flowing along the interface towards the drop apex and desorbing into the
bulk. Alternatively, if an additional driving force is involved, like spreading, circula-
tions can occur with insoluble surfactants [86]. Lastly, temperature effects and other
solutal effects can also cause Marangoni vortices [39].
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Figure 3.5.: Drop evolution of the precursor film model for different initial surfactant
concentrations, with (a) the volume evolution, (b) the evolution of the
drop radius, (c) the contact angle evolution and (d) the area-averaged
surfactant concentration.

When observing the drop evolution as predicted by the precursor film model (Figure
3.5), a major flaw of this model is revealed. Addition of surfactants has effectively no
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effect on the volume and radial evolution and higher surfactant concentrations hardly
reduce the contact angle during evaporation. This is caused by the fact that the droplet
is not well defined in the precursor film model and therefore there is no mechanism to
keep the surfactant from flowing into the precursor film. Therefore, while the droplet
shrinks, surfactant is either left behind in the precursor film or flows back into the
precursor film to reduce the concentration gradient. This backflow gives rise to the
tiny concentration increase that can be seen in Figure 3.5d.

This is not an issue that can easily be solved within the context of the precursor film
model. An obvious way would be to introduce an artificial no-flux boundary condition
at the same point where the evaporation is cut off. However, this only solves the
problem of surfactant flowing out of the droplet, but does not cause the surfactant to
move with the contact line. A more physical method would be to involve a penalty
function that assigns a relatively high energetic cost to surfactant in the precursor film,
for example as was done by Thiele et al. [180]. A major disadvantage of this method,
however, is the resulting severe numerical instability. This makes penalty functions
more suitable for equilibrium cases. An alternative strategy could be to introduce a
source function that creates surfactant as the effective drop radius decreases. This
would in principle solve the problem of too low concentration inside the droplet, but
is of course highly unphysical.

In summary, the slip length model yields reasonable results that can be understood
intuitively and are consistent with literature, while the precursor film model has some
serious defects when surfactants are involved. Possibly, in future work methods will be
derived that use disjoining pressure without precursor films as suggested by Colinet
and Rednikov [29]. This would indeed solve the backflow problem associated with
precursor films, but until then the slip length model is preferred.

3.4. Conclusion

A numerical model was developed using lubrication theory to simulate the evolution
of evaporating droplets [9, 65, 136, 146]. Insoluble surfactants were included in
the model by means of an interfacial convection-diffusion equation [139, 173, 178,
189]. In order to incorporate moving contact lines, both a precursor film model and
a slip length model were implemented. For both models, the numerical results were
compared to experimental results with pure liquids obtained by Nguyen et al. [131].
This showed reasonable agreement, slightly favoring the slip length model.

In case of insoluble surfactants, the slip length model showed that ‘quasi-pinning’ of
the contact line can occur. This behavior is a direct result of the fact that a shrink-
ing interface causes the surfactant concentration to increase, which subsequently re-
duces the equilibrium contact angle. Thus, at some point any evaporated volume re-
sults in a decreasing contact angle, effectively pinning the contact line. Quasi-pinning
was found to be consistent with experimental results obtained by Truskett and Stebe
[183], who show that insoluble surfactants promote pinning. Furthermore, similar
experimental results were obtained for soluble surfactants by Dugas et al. [46] and
by Sefiane [154]. The possibility of quasi-pinning was also inferred by Semenov et
al. [156]. Besides quasi-pinning, it was also shown that surfactants tend to reduce
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the bulk flow close to the interface, but will never cause the typical circulating flow
pattern that is often observed when surfactants are involved.

The precursor film model, on the contrary, showed no significant differences in drop
behavior with the inclusion of insoluble surfactants. This is a result of surfactant being
left behind in the precursor film as the contact line moves and even surfactant flowing
back from the droplet into the film. Several methods to counteract this unphysical
behavior were discussed, but none are considered desirable or physical.

These results agree with the hypothesis that was made, namely that both contact line
models would produce similar results for pure droplets, but different results when
surfactants are included. Furthermore, the contact angle indeed decreases over time
as surfactants are included, especially for higher initial concentrations.

From the perspective of progress and innovation the relevance of the findings is twofold.
First, from the comparison between contact line models it is concluded that in the con-
text of pure, evaporating, sessile droplets both models perform nearly equal, slightly
favoring the slip length model in comparison with experiments. Furthermore, with
the inclusion of surfactants the slip length model is preferable over the precursor film
model given the current state of the art. Also, the pinning-like behavior exhibited by
the surfactant-laden drop is of potential use as a mechanism for controlling the final
drop radius in technologies such as inkjet printing, pesticide sprays, the fabrication of
DNA/RNA microarrays and many more. This may be possible by fine tuning the initial
surfactant concentration with regard to the desired final radius.

Previous comparisons between contact line models only included nonvolatile droplet
dynamics [43, 104, 151, 162], so a numerical comparison for volatile droplets is a
welcome addition to the existing literature, especially given the increasing interest
in evaporating droplets with moving contact lines [39, 128, 165, 177]. Preceding
numerical studies about surfactant dynamics mostly involved nonvolatile drops [10,
11, 21, 28, 48, 64, 79, 85, 188, 190, 191], while only one numerical study known
to the authors considers both surfactant and volatile droplet dynamics (Karapetsas
et al. [86]). Since the latter treats droplets under complete wetting conditions the
results of the present work, which considers partial wetting conditions, can be seen as
complementary.

Further research opportunities lie in the modeling of contact angle hysteresis. It is
generally known that during evaporation, water droplets first tend to go through a
pinned contact line regime until the contact angle equals a receding contact angle θr.
Only then will the contact line start moving, while keeping a constant contact angle,
until it passes through a third and final regime where both the contact radius and con-
tact line decrease [131, 155]. In this work, only the latter two regimes are considered,
so it may be of interest to modify the contact line models to include the pinning regime
as well. For the slip length model, this can be done by setting ∂R/∂t = 0 for θ > θr
and for the precursor film model, it might be possible to introduce a prefactor B that
depends on θ. An illustration of drop evaporation with contact line hysteresis is shown
in Figure 3.6. Surfactants could be included by making θr dependent on surfactant
concentration Γ.

Regarding evaporating droplets with surfactants in general, a fitting next step is an
extension of the model to soluble surfactants, micelles and adsorption on the substrate,
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Figure 3.6.: Drop evolution for unpinned, partially pinned and completely pinned con-
tact lines as given by the slip model. (a) is the evolution of the drop radius
and (b) the contact angle evolution.

similar to the work of Karapetsas et al. [85]. This will render the models increasingly
relevant and more open to comparison with experiments.
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4. Flow in evaporating droplets with
soluble surfactants

In this chapter1 the effect of surfactants on the flow in evaporating droplets is exam-
ined. Surfactant-induced Marangoni flow can result in circulating flow patterns and in
this chapter it is analyzed under what circumstances this flow type occurs. The results
are compared qualitatively to literature and are used to explain certain experimental
trends.

4.1. Introduction

The evaporation of sessile droplets is a phenomenon that has a broad practical rel-
evance. From applications like spray cooling [89] and cleaning/drying of semicon-
ductor surfaces [103] it can be seen that many modern technologies involve sessile
droplets. In some technologies the aim is to leave a homogeneous deposition pat-
tern of particles after evaporation of the volatile components from sessile droplets.
Examples of this are inkjet printing [122, 138, 163], pesticide spraying [64, 69] and
manufacturing DNA/protein microarray slides [46].

A common issue hindering the formation of a homogeneous deposition pattern is
the occurrence of the coffee-stain effect: preferential evaporation at the contact line
causes a strong, outward flow resulting in a ring-like deposition pattern (given a
pinned contact line) [35, 36, 37]. Clearly, this coffee ring is the complete opposite
of a homogeneous deposition pattern. Several methods of counteracting the coffee-
ring effect can be found in literature (e.g. unpinned contact lines [165], oil menisci
[106], ellipsoidal particles [194]) of which an important one is what is defined here as
‘Marangoni circulation’. A surface tension gradient results in an interfacial flow (the
Marangoni effect), which – if the surface tension gradient is negative towards the con-
tact line – can result in a circulating flow. This Marangoni vortex is able to suppress
the coffee-stain effect [73, 112, 172].

The surface tension gradient required for Marangoni circulation to occur, can gener-
ally have two possible origins. First, the surface tension can become non-uniform due
to thermal effects, such as evaporative cooling [150] or heated substrates [62, 161].
Second, the surface tension can become non-uniform as a result of non-homogeneous
changes in composition. This happens for example during the drying of multicom-
ponent droplets [39, 177] or droplets with surfactants [86, 115]. Although these
causes are fairly well established, it cannot be predicted straight-forwardly whether
Marangoni circulation will occur or not [53].

In this present work the focus lies on the occurrence of Marangoni circulation in evap-
orating droplets with soluble surfactants. It is hypothesized that using dimensionless

1This chapter is based on the article: ‘Marangoni circulation in evaporating droplets in the presence of
soluble surfactants’ by van Gaalen et al. [59]
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numbers, regime plots can be composed that indicate whether Marangoni vortices can
be expected or not. As a result, it may be possible to identify which parameters are
relevant and what tuning they require to promote Marangoni circulation and hence
a more homogeneous deposition pattern. This is done both below and above the
critical micelle concentration (CMC), where surfactant monomers cluster and form
micelles.

Previous numerical studies focused primarily on the evaporation of droplets without
surfactants [39, 40, 41, 87, 165] or on the evolution of nonvolatile, surfactant-laden
droplets [10, 11, 21, 28, 48, 64, 79, 85, 188, 191]. Only a few numerical studies
combined evaporation and surfactants. Using lubrication theory, Van Gaalen et al.
[58] and Karapetsas et al. [86] both considered evaporating droplets with insoluble
surfactants under partial and complete wetting conditions, respectively. Furthermore,
Jung et al. [82] studied the formation of coffee rings in evaporating droplets with
soluble surfactants, using a lattice gas model. However, they did not consider the
underlying fluid dynamics. The present work is the first numerical study to analyze the
evolution of evaporating droplets with soluble surfactants. Besides, while the number
of experimental studies on evaporating droplets with surfactants is growing [45, 46,
154, 156, 172, 183, 190], only limited actual flow visualisations have been made
[115, 157]. In this respect, the numerical work presented here is a useful addition to
the small number of flow visualisations.

Results are obtained by means of a numerical model based on lubrication theory. Here,
by assuming a relatively thin droplet, the Navier-Stokes equations can be simplified
into a 1D height evolution equation. By combining this evolution equation with sur-
factant transport equations at the interface and in the bulk, velocity profiles can be
calculated. Counter-intuitively to what one would expect, lubrication theory is able
to capture flow topologies, such as circulation, rather well [65, 121, 192]. This un-
expected, empirical overperformance has mathematically been validated by Krechet-
nikov [91].

This article is organized as follows: first, in Section 4.2, the numerical model is pre-
sented and explained. The lubrication equation and surfactant transport equations
are introduced and the evaporation model is presented. Then, in Section 4.3, the nu-
merical results are shown and analyzed. For several dimensionless parameters regime
plots are composed and shown in which it is distinguished whether Marangoni circu-
lation occurs or not. The results are compared with literature. In the final section,
conclusions are drawn from the obtained results.

4.2. Mathematical model

In this section, the mathematical equations are introduced that describe the droplet
evolution and surfactant transport.
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4.2.1. Drop evolution

A droplet that is deposited on a substrate is considered. The contact angle θ is as-
sumed ‘small’ (θ ≤ 40◦ as shown by Hu and Larson [71, 72]) and the density ρ and
dynamic viscosity µ are taken constant. Also, the typical drop height H ≤ 10−3 m,
which implies that the Bond number Bo = ρgH2

σlg
� 1 (with gravitational acceleration

g and surface tension σlg). Thus, the effects of gravity can be disregarded [61, 167].
Note that this assumption only holds, because there are no possible effects of buoy-
ancy in a single component droplet. For multicomponent droplets, gravity cannot be
neglected as shown by Edwards et al. [49] and Li et al. [105]. The Reynolds number
is much smaller than unity and a cylindrical coordinate system (r, α, z) is used with
the assumptions of no swirl (angular velocity Uα = 0) and axisymmetry ( ∂

∂α = 0).

Given this case, the Navier-Stokes equations can be rewritten into a 1D evolution
equation for the height h(r, t) as a function of radial coordinate r and time t [39]:

∂h

∂t
=

1

rµ

∂

∂r

(
rh3

3

∂p

∂r
− rh2

2

∂σlg
∂r

)
+ we. (4.1)

Here, p denotes the pressure inside the droplet and we the evaporative volume flux,
which is negative. From this equation it can be recognized that fluid in a higher
pressure region will tend to flow towards a lower pressure region, while fluid in a
lower surface tension region will tend to flow towards a higher surface tension region
(the Marangoni effect). Furthermore, any evaporation of fluid will accordingly result
in a decrease in local drop height. For a derivation of Equation (4.1) and the velocity
field (u,w), see Subsection 2.1.

The pressure in the droplet is dominated by surface tension effects. Therefore, the
pressure p can be given by the Laplace pressure:

p = −1

r

∂

∂r

(
σlg

r∂rh√
1 + (∂rh)2

)
. (4.2)

Substituting the Laplace pressure in Equation (4.1) shows that the droplet will tend
toward a spherical cap shape. If there is no evaporation (we = 0) a droplet will tend
towards an equilibrium, constant curvature shape (∂p∂r =

∂σlg
∂r = 0). Note that σlg is

also part of the derivative in Equation (4.2), because it is not necessarily constant in
the presence of surfactants. Thus, rather than writing σlg outside the derivative as is
usually done (e.g. see [165]), it should be included in it as shown by Thiele et al.
[178]. Note that Equation (4.2) is beyond the lubrication limit, because of the square
root in the denominator. In traditional lubrication theory, this term is approximated
as unity.
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The boundary and initial conditions that h(r, t) is subjected to are given by:(
∂h

∂r

)
r=0

= 0, (4.3)(
∂3h

∂r3

)
r=0

= 0, (4.4)

h(R, t) = 0, (4.5)

h(r, 0) = h0(r). (4.6)

Here, R is the drop radius and h0 is the initial drop profile, given by the previously
mentioned spherical cap shape. The considered cases involve a contact line that is
pinned rather than one that moves [23, 158]. This means the drop radius will remain
constant during evaporation, while the contact angle decreases, as opposed to a de-
creasing radius with a constant contact angle. Contact line pinning typically occurs
for relatively small contact angles and rough substrates and is also promoted by the
presence of surfactants [46, 58, 154, 183].

4.2.2. Interfacial surfactant transport equation

At the liquid-air interface of the droplet a surfactant concentration Γ(r, t) can be de-
fined, which can be used to describe the transport of adsorbed surfactant molecules
along the interface. As shown by Wong et al. [189], the surfactant transport equation
is given by:

∂Γ

∂t
= −1

r

∂(rUtΓ)

∂s
+

Γ∂th

1 + (∂rh)2

(
∂2h
∂r2

1 + (∂rh)2
+

1

r

∂h

∂r

)
+

DΓ

r

∂(r∂sΓ)

∂s
+
∂h

∂t

∂rh

1 + (∂rh)2

∂Γ

∂r
+ JΓφ. (4.7)

Here, Ut is the fluid velocity tangential to the liquid-air interface, DΓ the surface
diffusion coefficient and JΓφ is the rate with which surfactant is exchanged with the
bulk through adsorption and desorption. Note that JΓφ can be either positive and
negative. The derivative ∂

∂s is the surface derivative which can be written as ∂
∂s =

1√
1+(∂rh)2

∂
∂r .

The first term on the right-hand side of Equation (4.7) accounts for convective trans-
port tangential to the interface and the second term for transport normal to the in-
terface, which in practice boils down to a source- or sink-like effect as the interfacial
curvature decreases or increases respectively. The third term denotes diffusion, the
fourth term corrects for the displacement of the surface coordinates that move along
the normal of the surface and the last term is the adsorption/desorption of surfactant
from the bulk onto the interface and vice versa. For a derivation of Equation (4.7), see
Subsection 2.3.

The surfactant concentration Γ(r, t) is subjected to the following boundary conditions
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and initial condition: (
∂Γ

∂r

)
r=0

= 0, (4.8)(
∂Γ

∂r

)
r=R

= 0, (4.9)

Γ(r, 0) = Γ0. (4.10)

These denote the symmetry condition, no-flux condition and initial (homogeneous)
surfactant concentration Γ0 respectively.

Since surfactants adsorbed at the interface decrease the surface tension, an equation
of state for σlg is required to close the problem. In this work, the Frumkin equation
is used, which is analogous to the Langmuir isotherm and considers that surfactant
molecules occupy a finite amount of space at the interface [22]. The Frumkin equation
is given by:

σlg = σ0 +RuTΓ∞ ln

(
1− Γ

Γ∞

)
. (4.11)

Here, σ0 is the surface tension of the pure liquid,Ru is the universal gas constant, T the
temperature (which is assumed constant) and Γ∞ the maximum possible surfactant
concentration. Note that for Γ � Γ∞ the equation can be approximated by a linear,
dilute equation of state.

Given this equation of state for surface tension and the radial velocity (as defined by
Equation (2.7) in the Subsection 2.1) a typical Marangoni velocity can be defined as
uMar = HRuTΓ0

µR . This typical velocity is used in Subsection 4.2.6 to define several
relevant dimensionless numbers.

4.2.3. Bulk surfactant transport equation

Besides surfactant being adsorbed onto the interface, there is also surfactant dissolved
in the bulk of the droplet. The bulk monomer concentration φ is considered to be a
function of r and t and independent of z, which is allowed as rapid vertical diffusion
is assumed (as outlined by [78, 85]). In order to let the concentration be independent
of h(r, t), the evolution of the bulk monomer concentration is described as a function
of ψ(r, t) = φ(r, t)h(r, t), as introduced by Thiele et al. [179]. The transport equation
can then be written as:

∂ψ

∂t
=

1

r

∂

∂r

(
rh2ψ

3µ

∂p

∂r
− rhψ

2µ

∂σlg
∂r

+Dφrh
∂φ

∂r

)
− JΓφ

√
1 + (∂rh)2 − JMφN. (4.12)

In this equation, three terms can be distinguished. The first term is a transport
term (with Dφ the diffusion coefficient of surfactant monomers in the bulk), which
takes into account convective and diffusive transport, the second term is the adsorp-
tion/desorption of surfactant from the bulk onto the interface and vice versa, including
a factor that compensates for the interface geometry, and the third term is the micelle
formation rate JMφ multiplied with the preferred number of surfactant monomers N
which form a single micelle.
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When the bulk surfactant concentration exceeds a certain threshold, it becomes ener-
getically more favorable for the molecules to cluster together and form micelles. This
threshold is called the critical micelle concentration (CMC). In practice, the number of
surfactant monomers that form a single micelle tends to strongly prefer a single value
N , which is also assumed in this work [75].

Similarly to the monomer bulk concentration φ, the micelle bulk concentration M is
given in terms of ζ(r, t) = M(r, t)h(r, t):

∂ζ

∂t
=

1

r

∂

∂r

(
rh2ζ

3µ

∂p

∂r
− rhζ

2µ

∂σlg
∂r

+DMrh
∂M

∂r

)
+ JMφ. (4.13)

Here, DM is the diffusion coefficient of micelles. Note that it is assumed here that
micelles do not adsorb directly onto the interface. This is a common assumption in
literature [11, 48, 85], that follows from the fact that surfactant monomers need to
dissociate from micelles before they can be adsorbed onto the interface [133]. Since
the micelle formation/decomposition process is modelled as a single step, it is consis-
tent to only allow individual monomers to adsorb onto the interface. Future models,
however, could include multi-step models.

The bulk concentrations ψ(r, t) and ζ(r, t) are subject to the following boundary con-
ditions and initial conditions:(

∂ψ

∂r

)
r=0

=

(
∂ζ

∂r

)
r=0

= 0, (4.14)(
∂ψ

∂r

)
r=R

=

(
∂ζ

∂r

)
r=R

= 0, (4.15)

ψ(r, 0) = φ0h(r, t), (4.16)

ζ(r, 0) = M0h(r, t). (4.17)

Similarly to the boundary and initial conditions of Γ, these denote the symmetry con-
dition, the no-flux condition at the contact line and the initial, constant bulk concen-
trations φ0 and M0 respectively. All initial surfactant concentrations (Γ0, φ0 and M0)
are always chosen to be in equilibrium, so initially JΓφ = JMφ = 0. A derivation of
both Equations (4.12) and (4.13) is given in Subsection 2.4.

4.2.4. Surfactant adsorption

The transport between the interface and the bulk is a continuous adsorption and des-
orption of molecules that overall tends towards a dynamic equilibrium. Furthermore,
there is a limited amount of space available at the interface for surfactants, so as the
interfacial concentration increases the adsorption rate tends to decrease, while the
desorption rate increases. This behavior can be described by the following reaction
equation [48, 85]:

S + φ
kΓ
a−−⇀↽−−
kΓ
d

Γ. (4.18)

Here, S (= 1− Γ
Γ∞

) indicates the fraction of available space at the interface, kΓ
a is the

interfacial adsorption coefficient, and kΓ
d the interfacial desorption coefficient. Thus,

44



the interfacial adsorption flux is given by:

JΓφ = kΓ
aφ

(
1− Γ

Γ∞

)
− kΓ

dΓ. (4.19)

In this equation it can indeed be recognized that the first, adsorption term increases as
the bulk concentration increases and approaches zero as Γ → Γ∞, while the second,
desorption term becomes more negative as Γ increases. This behavior corresponds
indeed to Equation (4.18).

Note that surfactant adsorption onto the substrate is not taken under consideration
here, because this will not have a direct effect on the internal flow. Marangoni flow
can only occur as a result of a surface tension gradient at a free interface. Any indirect
influences of substrate sorption on the flow – surfactant being removed or added to
the bulk – are considered less significant.

Similar to Equation (4.18), a reaction equation can be written for the formation of
micelles:

Nφ
kMa−−⇀↽−−
kMd

M. (4.20)

Here, kMa is the micelle formation coefficient and kMd the micelle decomposition co-
efficient. This reaction equation can subsequently be written into a micelle formation
rate JMφ as well [11, 48, 85]:

JMφ = kMa φ
N − kMd M. (4.21)

Given this equation, it is possible to approximate the reaction constants in terms of the
CMC and concentrations. It can be seen that the equilibrium concentration is given by
kMa
kMd

= M
φN

. Now, if Φ(= NM + φ) is the total concentration of surfactant monomers in
the bulk, substitution of the initial total concentration Φ0 results in:

kMa
kMd

=
Φ0 − CMC

N(CMC)N
. (4.22)

Here, it should be noted that in equilibrium φ = CMC, given that there are micelles
present. Of course, it is still required to choose one of the reaction constants to define
the time scales of the reactions.

4.2.5. Evaporation

The evaporative volume flux we is given by:

we =
DvMlpsat,l
ρRuT

∂p̂l
∂n

√
1 +

(
∂h

∂r

)2

. (4.23)

Here, Dv is the vapor diffusivity in air, Ml the molar mass of the liquid, psat,l the liquid
saturation pressure, which is assumed constant, and p̂l = pl

psat,l
, with pl the local vapor

pressure. The derivative ∂
∂n is the spatial derivative along the normal vector (pointing

outwards) [39].
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In order to calculate ∂p̂l
∂n , it is required to describe the vapor field. As shown by Dee-

gan [37] and Hu and Larson [70], vapor diffusion can be considered instantaneous.
Together with the assumption of no convection, this implies that the vapor field can
be described by the Laplace equation:

∇2p̂l = 0. (4.24)

The corresponding boundary conditions are given by:

p̂l|z=h = 1 for r < R; (4.25)

∂p̂l
∂z
|z=0 = 0 for r > R; (4.26)

p̂l = RH for (r, z)→∞. (4.27)

Here RH is the relative humidity. These equations represent saturated vapor at the
droplet surface, no vapor penetration at the substrate and ambient relative humidity
far away from the droplet. An analytical solution to Equation (4.24) is derived in
Subsection 2.6.

4.2.6. Dimensionless parameters

In order to analyze when Marangoni circulation occurs, it is helpful to define dimen-
sionless parameters that describe the droplet characteristics. To this purpose, Table
4.1 can be compiled, which gives the ratio between several important scales. Typical
numerical values of variables used for the dimensionless numbers are given in Section
A.1 of the appendix.

One may note that the traditional capillarity number Ca = µwe/σ0 is not listed in
Table 4.1. This dimensionless number is omitted, because for any physically relevant
case Ca � 1. Varying Ca therefore has negligible effect on the drop evolution and
internal flow field, because surface tension forces always dominate over viscous drag
forces, resulting in little deviations from the spherical cap shape. Simulations show
that changing Ca by a factor 103 only results in a 0.0067% change in total pressure
gradient from the drop center toward the contact line.

Name Symbol Definition Expression
Evaporation number Ev Evaporation velocity

Marangoni velocity
2
π
µDvpsat,lMl(1−RH)

H(RuT )2Γ0ρ

Transport number Tr Desorption rate
Marangoni velocity

kΓ
dR

2µ
RuTΓ0H

Desorption number De Desorption rate
Adsorption rate

kΓ
dR
kΓ
a

Surface Péclet number Pes
Marangoni velocity

Surface diffusion rate
Γ0RuTH
DΓµ

Bulk Péclet number Peb
Marangoni velocity
Bulk diffusion rate

Γ0RuTH
Dφµ

Micelle transport number TrM
Micelle decomposition rate

Marangoni velocity
kMd R

2µ
RuTΓ0H

Micelle decomposition
number

DeM
Micelle decomposition rate

Micelle formation rate
kMd (CMC)1−N

kMa

Micelle Péclet number PeM
Marangoni velocity

Micelle diffusion rate
Γ0RuTH
DMµ

Table 4.1.: Relevant dimensionless parameters

46



4.3. Results and discussion

In this section, the effect of changes in several dimensionless parameters on the occur-
rence of Marangoni circulation during droplet evaporation with soluble surfactants is
analyzed. First, cases without micelles and diffusion are analyzed and subsequently
surface and bulk diffusion are taken into account. After that, cases with micelles are
considered.

4.3.1. Below CMC without diffusion

Simulations are carried out for various ranges of the dimensionless parameters. The
numerical procedure is outlined in Subsection 2.9. The initial contact angle θ0 is
always set to 25◦ and the contact line is pinned. During each simulation, at least 200
time steps are calculated (∼5% of the drying time), after which the velocity field is
analyzed.

Only the initial stage of the evaporation process is considered, because this allows one
to capture a ‘snapshot’ of the flow dynamics. It is still required to allow the internal
flow dynamics to evolve sufficiently, ensuring that the initial state has no significant
effect on the flow field. If the full evaporation process would be taken into account,
this would give a skewed perspective on the flow dynamics, because the considered
dimensionless numbers change over time. For example, the height decreases over
time and the interfacial surfactant concentration increases over time. Also, the bulk
concentration may exceed the CMC at some point in time. Analysis of the entire
evaporation process is outside the scope of this paper and can be considered in future
work. Nevertheless, the results of this work can still be used to predict flow patterns
during the entire evaporation process, as long as the relevant dimensionless numbers
can be estimated.

Visual analysis of the velocity field has led to the definition of three separate regimes:
the ‘coffee-ring regime’, where the flow field looks similar to pure droplet evapora-
tion, the ‘Marangoni regime’, where a clear Marangoni eddy can be distinguished, and
the ‘transition regime’, which shows behavior of both the coffee-ring and Marangoni
regime. Representative velocity plots of the three regimes are shown in Figure 4.1.
In all three velocity regimes an outward, capillary flow can be distinguished, that
is caused by selective evaporation at the contact line. However, for the Marangoni
regime (and in some degree for the transition regime) there is a backflow close to
the interface that convects adsorbed surfactant towards the center, where it desorbs
into the bulk again. All three regimes have a zero-fluid velocity at both the liquid-air
and liquid-solid interface at r=0, which is in accordance with the ‘Hairy ball theo-
rem’ (Poincaré-Brouwer theorem). This theorem predicts that there necessarily exists
at least one zero-velocity point on the surfaces of compressible liquids and interfaces
allowing mass, energy and momentum transport [14].

Calculating the mean, dimensionless vorticity ω over the middle area where the Marangoni
vortex tends to appear (around R/2 < r < 5/6R) shows that ω ≤ −1.2 · 10−4 corre-
sponds to the Marangoni regime, −1.2·10−4 < ω ≤ −0.8·10−4 to the transition regime
and ω > −0.8 ·10−4 to the coffee-ring regime. Here, the time scale td = R2/Dv is used
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Figure 4.1.: Flow regime classifications: (a) Marangoni regime, (b) Transition regime
and (c) Coffee-ring regime. The red line indicates the position of the
interface, given by h(r).

to make the vorticity dimensionless.

Alternatively, as a cross-validation the resulting velocity fields can be classified by
calculating the fraction of velocity vectors opposing the typical coffee-ring flow. Here,
numerical analysis shows that the Marangoni regime corresponds to more than 24%
of the radial velocity vectors and more than 9% of the axial velocity vectors pointing
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to the center and upward respectively. Similar, the transition regime corresponds to
velocity fields that are not in the Marangoni regime with more than 22% of the radial
velocity vectors and more than 6% of the axial velocity vectors pointing to the center
and upward respectively. If a lower proportion of the velocity vectors points centerwise
or upwards, the velocity field is considered to be in the coffee-ring regime. This gives
similar results to the classification with vorticity and small variations of the values do
not yield significantly different classification results. Further classification of regimes
in this paper is made through the mean vorticity with frequent, random visual checks
for extra verification.

Figure 4.2 shows the regime charts for simulations without diffusion and without mi-
celles. As can be seen in Figure 4.2a, for Tr < 1, both 1/Ev and Tr have very similar
effects on the occurence of Marangoni flow. This makes sense, because as 1/Ev de-
creases, the evaporative velocity starts to dominate over the Marangoni velocity. The
evaporative effects are thus too strong for the Marangoni effect to counter, resulting
in a coffee-ring regime flow. Similarly, as Tr decreases, the effects of adsorption and
desorption become less significant (given that De remains constant). This will re-
sult in behavior as if the surfactant is insoluble, which is described by the coffee-ring
regime [58]. Because the relative strength of the Marangoni effect increases, the inter-
facial concentration is kept homogeneous since the fluid velocity close to the interface
is reduced and the concentration increase at the drop apex due to curvature effects
becomes more dominant. At the same time less adsorption is taking place, so the
increased bulk concentration close to the contact line will not result in enough inter-
facial adsorption to cause a positive concentration gradient. That increasing Tr tends
to promote Marangoni circulation is also found by Jung et al., who used a lattice-gas
model [82].

For Tr > 1, the occurrence of Marangoni circulation becomes mostly limited by 1/Ev.
Only if a certain threshold value of 1/Ev is exceeded, Marangoni vortices can be
formed. At the same time, Tr is largely irrelevant, because the desorption kinetics
are no longer dominated by the Marangoni velocity and thus are not a limiting factor
anymore. That 1/Ev still is a limiting factor however, is not surprising. Decreasing sur-
factant concentration Γ0 or increasing the evaporation rate (e.g. through an increase
in Dv) will eventually always result in a coffee-ring flow, because either the droplet
can be considered pure or the evaporation becomes too dominant.

It is important to note that a correct interpretation of Tr involves not only the desorp-
tion rate, but also the adsorption rate. If Tr is varied by changing kd the value of ka
changes accordingly, given that De should remain constant. Increasing Tr thus does
not only mean that interfacial desorption of surfactants becomes more dominant with
respect to the Marangoni velocity, but interfacial sorption in general becomes more
dominant.

Another relevant observation is that the dimensionless numbers do not necessarily
give information about the strength of the Marangoni vortex. As an illustration, Tr
can be modified by changing Γ0 and by changing kd. An increase in Γ0 results in a
proportional increase in the absolute velocity however, while a decrease in kd will gen-
erally not have that influence. This becomes especially relevant when other physical
effects are involved, such as thermal Marangoni flow or the deposition of a solute. For
example, Jung et al. conclude that increasing the initial surfactant concentration tends
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Figure 4.2.: Marangoni circulation regimes without diffusion or micelles: (a) Evapo-
ration number vs. Transport number (De = 3.08 × 103), (b) Desorption
number vs. Transport number (1/Ev = 2.82 × 106) and (c) Desorption
number vs. Evaporation number (Tr = 5.0× 10−4).

to increase the Marangoni strength, thus suppressing the formation of coffee-ring de-
posits [82]. With respect to Figure 4.2a this can only be explained by also considering
the absolute velocity rather than only relative to other time scales.

In Figure 4.2b the influence of the Desorption number De is shown. An increase of
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Tr still tends to promote Marangoni circulation, but this only holds approximately for
De > 10. As the value of De decreases, the contribution of adsorption becomes in-
creasingly similar in magnitude to desorption. As a result, Marangoni circulation is
increasingly suppressed. The reason for this suppression is that De effectively is the
solubility of the surfactant. As De decreases, the surfactant solubility also decreases
and the surfactant increasingly starts to behave as insoluble. This effectively means
that the bulk concentration becomes relatively small with respect to the interfacial
concentration. As a consequence, adsorption onto the interface, resulting from con-
centration increases in the bulk, will become less significant. Therefore, positive in-
terfacial concentration gradients towards the contact line will no longer arise. On the
contrary, the interfacial concentration gradient will tend to be negative towards the
contact line as a result of the interface shrinking fastest at the drop apex. The result is
a flow in the coffee-ring regime. The flow close to the interface is here reduced by the
Marangoni effect to counter any positive surfactant gradients. This flow behavior was
previously found by van Gaalen et al. [58] for insoluble surfactants.

The behavior of Figure 4.2a and 4.2b is reflected in Figure 4.2c: if evaporation be-
comes more dominant the flow tends to transition to the coffee-ring regime. Similar,
as the desorption number is decreased Marangoni circulation will not appear anymore
some point.

The results in Figure 4.2 are consistent with experiments performed by Marin et al.
[115]. They performed experiments both below and above CMC with the surfactants
polysorbate 80 (P80) and sodium dodecyl sulfate (SDS). P80, is a large, slow surfac-
tant, with low solubility (CMC=0.012 mM [26]), while SDS is a small, fast surfactant,
with higher solubility (CMC=8.2 mM [127]).

For P80 Marin et al. reported a suppression of thermal Marangoni flow and a severe
reduction of the interfacial flow strength. This is also predicted by the numerical
model, given the physical properties of P80. Slow adsorption kinetics correspond
to a low Tr and low solubility to a low De. In all three subfigures of Figure 4.2 it
can be seen that these low values would predict a coffee-ring flow and not a solutal
Marangoni flow. Furthermore, a low De also results in a reduced interfacial velocity
and thus suppression of any thermal Marangoni flow, which is consistent with the
experimental results.

For SDS, on the other hand, Marin et al. reported completely opposite behavior. SDS
tends to increase the strength of Marangoni circulation. The fast adsorption kinetics
of SDS correspond to a high Tr and the high solubility to a high De. This would
place SDS in the Marangoni regime, as can be seen in Figure 4.2. Consequently, it
is not surprising to see an increase in Marangoni circulation, since SDS increases the
magnitude of the already negative thermal surface tension gradient.

From these two examples it becomes clear how two different surfactants can have
opposite effects on the flow in drops and thus it underlines the explanatory power of
the numerical model.
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4.3.2. Below CMC with diffusion

Given the results in Subsection 4.3.1, additional degrees of freedom can be introduced
by setting the bulk and surface diffusion coefficients to a nonzero value. In this way,
two different regime plots can be drawn: one with surface diffusion, but without bulk
diffusion, and one with bulk diffusion, but without surface diffusion. The result are
displayed in Figure 4.3.
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Figure 4.3.: Marangoni circulation regimes with diffusion, without micelles (1/Ev =
2.82 × 106,De = 3.08 × 103): (a) Surface Péclet number vs. Transport
number (Peb = ∞) and (b) Bulk Péclet number vs. Transport number
(Pes =∞).

As can be seen in Figure 4.3a, decreasing the surface Péclet number tends to suppress
Marangoni circulation. This makes sense, because as the effect of surface diffusion in-
creases, a smaller Marangoni flow is required to counter any interfacial concentration
gradient. Adsorption from the bulk causes a surface tension gradient, but this gra-
dient is increasingly counteracted by surfactant diffusion at the interface. The result
tends increasingly towards a coffee-ring-regime flow as Pes decreases to and becomes
smaller than unity.
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Similar behavior can be distinguished when the bulk Péclet number is varied. As Peb
is decreased, Marangoni circulation tends to be suppressed, because the bulk concen-
tration increases less sharply. This way, adsorption of surfactant from the bulk onto
the interface occurs over a larger area at the contact line, resulting in a flattening of
the surface tension gradient. Since at the same time the surfactant concentration in-
creases towards the drop apex due to the shrinking of available interface, a nearly con-
stant interfacial surfactant concentration arises. Thus, the flow will tend towards the
coffee-ring regime as the influence of bulk diffusion increases. Interestingly enough,
the transition from the Marangoni regime to the coffee-ring regime already starts to
occur for Peb < 105, which is a factor 104 higher than the surface Péclet number at
which this transition happens. This implies that bulk diffusion has a larger influence
than surface diffusion.

4.3.3. Above CMC without monomer diffusion

As the bulk concentration increases, at some point it becomes energetically more fa-
vorable for surfactant molecules to cluster together in the form of micelles rather than
as separate monomers. This will influence the internal droplet dynamics, since as
the local monomer concentration increases in the bulk, only part of the surfactant
monomers will adsorb onto the interface and another part will form micelles. In Fig-
ure 4.4 the effect of micelles on the internal flow patterns is shown. In the simulations
the initial bulk concentration starts at CMC.

Figure 4.4a shows that as the micelle transport number TrM increases, and thus the
rates with which micelles are formed and decompose increase, Marangoni circula-
tion seems to become increasingly suppressed. This suppression can be explained
by the fact that the formation of micelles reduces the absorption of bulk monomers
onto the interface, because the bulk concentration is now also reduced through an
additional mechanism. Both adsorption onto the interface and formation of micelles
can now reduce a high bulk concentration. Since less surfactant is absorbed onto the
interface than without micelle formation, the surface tension gradient becomes less
pronounced, which increasingly results in suppression of Marangoni circulation.

Regarding the micelle decomposition number, it is shown in Figure 4.4b that for
DeM < 1 the value of DeM is largely irrelevant. The transition from coffee-ring regime
to Marangoni regime is at that point only dependent on Tr. For DeM > 1 however, a
shift of the critical Tr to the left is observed. This shift can be explained by reformu-
lating the definition of DeM . Substitution of Equation (4.22) in the definition of DeM
yields:

DeM =
kMd (CMC)1−N

kMa
=

N · CMC

c0 +M0N − CMC
=
CMC

M0
. (4.28)

Here, it is used that c0 = CMC. Given this reformulation it becomes clear that varying
the initial micelle concentration M0 has a proportional effect on DeM and vice versa.
A high value of DeM (e.g. larger than unity) would thus correspond to a relatively low
value of M0, which implies that the shift in Figure 4.4b is a transitional effect: the flow
dynamics have not fully transitioned from below CMC to above CMC for DeM > 1.

In Figure 4.4c it can be seen that the micelle Péclet number PeM has a similar effect on
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Figure 4.4.: Marangoni circulation regimes without monomer diffusion, with micelles
(1/Ev = 2.82×106,De = 3.08×103, Pes = Peb =∞): (a) Micelle transport
number vs. Transport number (PeM = 6.96× 107,DeM = 10), (b) Micelle
decomposition number vs. Transport number (PeM = 6.96 × 107,TrM =
5.25×10−3) and (c) Micelle Péclet number vs. Transport number (DeM =
10,TrM = 5.25× 10−3).

the flow dynamics as Pes and Peb. As PeM is reduced, the transition from coffee-ring
regime to Marangoni regime shifts to a higher Tr. This is caused by micelles being
transported inward as a result of diffusion. There, they decompose into surfactant
monomers, effectively reducing the bulk concentration gradient. Subsequently, the
interfacial concentration gradient is also reduced, counteracting Marangoni circula-
tion.
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To summarize, the simulations predict that for concentrations above CMC Marangoni
circulation becomes more suppressed than below CMC, although this effect is minor.
In experiments however, the influence of surfactants tends to increase even more be-
yond the CMC. For example, Marin et al. [115] reported that for experiments with
P80 above CMC the surface velocity is even more reduced than below CMC and for
very high concentrations even reversed. Furthermore, they show that for SDS the
Marangoni circulation becomes even stronger above CMC than below CMC and even
report several Marangoni vortices at once. Similarly, Sempels et al. [157] reported for
Triton X-100 an increased strength of the Marangoni flow as the surfactant concentra-
tion is increased, while it is already above the CMC.

These differences between simulations and experiments can possibly be explained by
physical effects that have not been taken into account in the numerical model. For
example, micelles may adsorb directly onto the interface, without the need to first de-
compose into bulk monomers. Models used in literature (including this work) usually
assume a single step monomer adsorption model [11, 48, 85], but in reality the ad-
sorption process is more complex, especially when micelles are involved [133]. This is
even more the case for high deviations from equilibrium. Direct adsorption of micelles
would indeed explain why the experiments show an increased Marangoni flow above
CMC: for fast surfactants (e.g. SDS) there is more adsorption/desorption resulting in
higher surface tension gradients.

However, this would not explain the even further reduced and reversed surface ve-
locity for P80 and the dual vortices for SDS. This may possibly be attributed to other
adsorption and transport effects, such as adsorption onto the substrate (or even mi-
celle formation on the substrate [97]) and transport of surfactant from the substrate
to the interface through the contact line [85]. This may have significant influence on
the flow.

An alternative factor that could play a role in the experiments, is the influence of
micelles on the fluid properties of the droplet. As an illustration, it is well known that
particles (like micelles) tend to increase the viscosity of a fluid [8, 92]. Especially
if larger, more complex aggregates are formed [77], this may play a significant role.
Also, the shape of the particles can play a major role. For example, while spherical
particles do not tend to influence the flow significantly, ellipsoidal particles tend to
aggregate at the interface in loosely packed structures [15, 19, 108, 111]. This can
either increase [194] or decrease [109] the surface tension and keep the particles
from flowing towards the contact line. A possible way of modeling this, would be to
allow adsorption-like behavior for the micelles, combined with an equation of state for
surface tension. The self-assembly could then be modeled through a concentration-
dependent resistance to flow and increased ‘adsorption’ with surface concentration.

Nevertheless, it can be concluded that while the model is consistent with experiments
below CMC, it deviates above CMC. This shows the need for models that capture
surfactant kinetics above CMC in a more detailed way than the standard models that
are used in this work and in literature [11, 48, 85].

55



4.4. Conclusion

A numerical model was developed to predict the flow in evaporating droplets with sol-
uble surfactants. The drop evolution and flow behavior have been modeled with lubri-
cation theory and the surfactants were implemented by means of coupled convection-
diffusion-adsorption equations. Simulations were carried out for variations in several
dimensionless parameters, over a broad range. The discovered changes in flow char-
acteristics were compared with both experimental and numerical results from litera-
ture.

Below CMC, three parameters (Tr,Ev,De) were analyzed for cases without diffusion
and two additional parameters (Pes,Peb) were considered for cases with diffusion. The
effects of these parameters on the internal flow patterns were explained and found to
be consistent with experimental and numerical results from literature [82, 115].

Above CMC, three additional parameters (TrM ,DeM ,PeM ) were analyzed. Although
these results could be explained intuitively, they were found to differ from experi-
mental results from literature. In experiments, the effect of surfactants on the flow
properties tends to become increasingly more dominant as the surfactant concentra-
tion increases and even results in different qualitative behavior [115, 157], while in
the simulations the influence of micelles tends to be rather small. These differences
can possibly be explained by more complex adsorption and transport mechanisms,
such as micelle formation on the substrate [97], and fluid properties changing due to
micelles, both effects that have not been taken into account in the model. This shows
that more detailed models are needed to capture all relevant dynamics of micelles.
These effects are not considered in current state-of-the-art models [11, 48, 85].

Nevertheless, the results agree with the hypothesis that was made, namely that us-
ing dimensionless numbers regime plots can be drawn to predict whether Marangoni
vortices will arise. This was done both below and above CMC and the qualitative
agreement with experiments is quite good below CMC.

The relevance of these findings lies first of all in the ability to explain experimental
results. The numerical model shows why surfactants can have opposite influences on
flow dynamics in evaporating droplets. Furthermore, this paper shows the predictive
power of the model. The results can be used to predict and understand the flow
dynamics in a surfactant-laden droplet. For example, surfactants that are larger and
slower than P80 can be assumed to reduce the interfacial flow, while surfactants that
are smaller and faster than SDS will only accelerate the Marangoni circulation. Also,
it is shown that increasing the surfactant concentration will generally not increase
the likelihood of encountering flow circulation (except for very low concentrations as
can be seen in Figure 4.2a). This counter-intuitive phenomenon is also implied by
the results of Marin et al., where they show that an increase in P80 only slows the
interfacial velocity further.

The explanatory and predictive power of the model is relevant in a broad range of
applications. Evaporating sessile droplets are applied in various technologies, such as
inkjet printing [122, 138], pesticides [64, 69], surface patterning [67] and spray cool-
ing [89]. Close to all of these technologies involve surfactants, either on purpose or
through contamination. It is thus of crucial importance to have a deep understanding
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of the effect of this component, in order to control the internal flow and deposition
pattern.

Most preceding numerical studies focused either on the evaporation of droplets with-
out surfactants [39, 40, 41, 87, 165] or on the evolution of nonvolatile droplets with
surfactants [10, 11, 21, 28, 48, 64, 79, 85, 188, 191]. Only a few previous nu-
merical studies involved both evaporation and surfactants [58, 82, 86]. However,
this study is the first to numerically analyze the evolution of evaporating droplets
with soluble surfactants and the corresponding internal flow patterns. Furthermore,
various experimental studies consider the evaporation of droplets with surfactants
[45, 46, 154, 156, 172, 183, 190], but actual flow visualisations are rare [115, 157].
Numerical work, like this study, can therefore be an attractive alternative.

Future research opportunities lie in expansion of the micelle model. The current model
[11, 48, 85] is not able to fully explain the experimental results [115, 157] and thus
additional physical effects need to be added. For example, direct adsorption of mi-
celles onto the interface and monomer adsorption onto the substrate may be able to
explain experimental results above CMC. Furthermore, it may also be useful to inves-
tigate the full evaporation process of the droplet, including moving contact lines, to
be able to analyze drying patterns. This will enable the control of the final deposition
in technologies as inkjet printing.
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5. Absorption of droplets with soluble
surfactants

In this chapter1 the effect of surfactants on the absorption behavior of droplets is
analyzed. If surfactants tend to adsorb onto solid-liquid interfaces they can potentially
accelerate the capillary imbibition of droplets into porous media. However, it is not
always clear when surfactants have this effect and how the effect scales with respect
to parameters as the surfactant concentration. The numerical results are compared to
experimental literature both quantitatively and qualitatively.

5.1. Introduction

Porous media are encountered everywhere. The soil in which seeds are planted, the
paper that is used for books and even the human skin are all permeable solids. Despite
this widespread occurence, the flow through porous media is not trivial to understand.
Because of the thousands of tiny, twisting, interconnected channels it is complex to
track a fluid flow in a porous medium, both numerically and experimentally. Never-
theless, research into this topic is valuable: understanding the flow through porous
media allows one to develop or improve a broad range of technologies, such as inkjet
printing [24, 101, 164], irrigation [181], oil recovery [123, 174] and even medical
treatments [25, 88, 185].

In several of these applications, liquid droplets absorb into the porous medium (e.g.
[25]). Although the effect of several factors on this wetting process has been ex-
tensively studied (porosity, permeability, contact angle, gravity, suction pressure etc.)
[2, 3, 33, 34, 57, 144, 145, 164, 193], others received less attention.

One of these uninvestigated factors is the dynamics of the contact line of an absorbing
sessile droplet on top of the porous medium. In case of partial wetting, dynamic con-
tact line behavior can be roughly categorized into two modes: pinning behavior, where
the contact angle changes over time, while the contact radius remains constant, and
slipping behavior, where the contact radius changes over time, while the contact angle
remains constant [36]. Typical factors that promote slipping behavior over pinning be-
havior are smoother substrates [13], higher contact angles and increasing deviations
from the equilibrium contact angle [135]. Apart from the two extreme possibilities,
also a combination is often encountered, called stick-slip behavior, in which the con-
tact line is intermittently pinned and slipping [186].

If the contact line is allowed to slip, the total contact area of the droplet will decrease
over time during the absorption process. It is therefore hypothesized that droplets
with moving contact lines absorb more slowly than droplets with pinned contact lines.
Furthermore, it can be expected that for unpinned contact lines the wetted volume

1This chapter is based on the article: ‘Absorption of surfactant-laden droplets into porous media: a numer-
ical study’ by van Gaalen et al. [60]
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will have a different shape than for pinned contact lines. This is valuable information
given that parameters as absorption rate and penetration depth are important in sev-
eral technologies. For example, in case of inkjet printing slow absorption can cause
smudging and shallow penetration may reduce the lifetime of the product.

Another factor in droplet absorption that has not been fully investigated, is the com-
position of the fluid. Especially the effects of surfactants on droplet absorption have
received only limited attention in the experimental literature [80, 81] and next to
none in numerical articles. This is despite the fact that surfactants are known to be
able to ‘enhance’ (i.e. accelerate) the absorption process, in case a liquid reservoir is
absorbed into a porous medium (1D absorption), which was demonstrated both exper-
imentally [123, 129, 134, 147, 174] and theoretically [169]. It is therefore expected
that surfactants can cause a similar enhancement to droplet absorption, which is of
relevance given the wide usage of surfactants in droplet technology.

In this work the effects of contact line dynamics and surfactants on the absorption of
droplets into porous media are considered. Results are obtained with an axisymmetric
3D numerical model that is based on a combination of lubrication theory and Darcy’s
law. By assuming a relatively small contact angle, an efficient yet accurate model
can be developed to simulate droplet dynamics [71, 72]. The surfactant transport is
modelled by several convection-diffusion-adsorption equations [59, 179].

The article has the following structure: first, in Section 5.2, the equations are intro-
duced that describe the problem and the numerical procedure is outlined. The droplet
model and the absorption model are presented and an explanation is given for the
surfactant transport equations and the corresponding closure relations. After that, in
Section 5.3, the numerical results are analyzed and validated by comparison with ex-
perimental literature. The differences in absorption of a droplet with a pinned and
a moving contact line are discussed and the effect of surfactants is considered both
qualitatively and quantitatively for various pore sizes. Lastly, in a concluding section,
the results are summarized and an evaluation is given of the current state of the art
and potential future research.

5.2. Mathematical model

In this section, the equations that describe the system are given and explained.

5.2.1. Drop evolution

A sessile droplet on a porous substrate is considered. The droplet initially has a height
H at its center, a contact line radius R and a contact angle θ. The fluid the droplet
consists of is nonvolatile, incompressible and isothermal. Thus, no evaporation occurs
and mass density ρ and dynamic viscosity µ remain constant. Only cases are assumed
for which H is smaller than the capillary length lc =

√
σlg

(ρ−ρg)g , where σlg denotes the

surface tension between the liquid-gas interface, ρg the mass density of the gas and g
the gravitational acceleration. This means that the effects of gravity can be neglected.
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The Reynolds number is much smaller than unity and a cylindrical coordinate system
(r, α, z) is used to describe the system. The problem is considered axisymmetric, which
implies that ∂

∂α = 0 and it is assumed that there is no swirl (Uα = 0). The contact angle
θ is relatively small (about θ < 40◦), meaning that lubrication theory (ε = H/R � 1)
can be applied, as shown by [71, 72].

Given lubrication theory, an evolution equation for the droplet height profile h(r, t)
can be derived [58]:

∂h

∂t
=

1

rµ

∂

∂r

[
r

(
h3

3
+ βh2

)
∂p

∂r
− r

(
h2

2
+ βh

)
∂σlg
∂r

]
−Wp. (5.1)

Here, β is the Navier slip length, which is an indicator for the degree of slip that is
allowed, p denotes the pressure and Wp the volume flux into the substrate, caused by
capillary suction. This volume flux is equal to the vertical fluid velocity wp at z = 0,
which will be derived later on. The boundary and initial conditions that define the
droplet evolution are given by: (

∂h

∂r

)
r=0

= 0; (5.2)(
∂p

∂r

)
r=0

= 0; (5.3)(
∂σlg
∂r

)
r=0

= 0; (5.4)

h(R, t) = 0; (5.5)

h(r, 0) = h0(r). (5.6)

These equations denote the symmetry conditions at r = 0 (for h, p and σlg), the con-
tact line position at r = R (where h = 0) and the initial drop profile h0, which is a
spherical cap. Given that the droplet is considered under partial wetting conditions,
there is an associated equilibrium shape (a spherical cap) with a corresponding equi-
librium contact angle. This as opposed to complete wetting conditions, where there
is no equilibrium associated and the droplet spreads out indefinitely. The equilibrium
contact angle can be anywhere between the advancing and receding contact angle of
the liquid, depending on the degree of hysteresis. Since in the considered cases the
spherical cap shape is formed nearly instantaneously compared to the absorption pro-
cess (tcap ∼ µR/σlg ≈ 10−5s � tabs ≈ 1 − 10−2s) and the contact angle equilibrates
nearly instantaneously (numerical experiments typically show tθ = tabs/100), it can
be assumed that the droplet is initially in quasi-equilibrium, i.e. the equilibrium shape
as if the substrate is nonpermeable (also see [33, 34]).

The contact line can be either pinned, for which β = 0 and R remains constant, or
moving, for which β > 0 and a constitutive relation for R is required that describes
the contact line velocity [168]. In this work, we use the relation:

dR

dt
=


k||θ − θadv||a if θadv ≤ θ
0 if θrec < θ < θadv

−k||θ − θrec||a if θ ≤ θrec
(5.7)
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Here, k is a typical sensitivity of the contact line position to deviations of the contact
angle θ from the receding contact angle θrec or the advancing contact angle θadv and
a is a power-law index, which can range from 1 to 3. This relation is extensively used
and experimentally validated in literature [12, 21, 28, 51, 58, 66, 166]. In this work,
unpinned contact lines are only considered for pure droplets, because surfactants have
a strong tendency to pin the contact line [46, 58, 154, 156, 183].

The pressure in the droplet is dominated by curvature effects of the surface. This
means that p can be given by the Laplace pressure:

p = −1

r

∂

∂r

(
σlg

r∂rh√
1 + (∂rh)2

)
. (5.8)

Here, ∂r denotes the partial derivative with respect to r. Note that p only depends
on r and is independent of z. This is a consequence of the lubrication approximation,
meaning that results are more accurate for lower values of ε (see e.g. [71, 72]).

5.2.2. Absorption model

The droplet is absorbed into the porous substrate as a result of capillary action. This
flow can be modeled on a macroscopic level by applying Darcy’s law, which is often
used for the flow through porous media [2, 4, 5, 164]. This model is chosen for its
simplicity over other models, while still being sufficiently accurate [149] and able
to deal with the boundary conditions that are involved (e.g. for an impermeable
boundary Brinkman’s extension would be required [17, 117]).

Darcy’s law gives a relation for the velocity field ~up = (up, wp):

up =− κ

µ

(
∂pp
∂r

)
; (5.9)

wp =− κ

µ

(
∂pp
∂z

)
. (5.10)

Here, κ is the permeability of the substrate and pp the pressure in the wetted region.
A good measure for kp can be given by the Carman-Kozeny equation [20, 90], which
is a model for the flow through a packed bed of solid spheres with diameter d. The
permeability is subsequently given by:

κ =
η3d2

180(1− η)2
, (5.11)

with η the porosity of the porous medium.

Given mass conservation, it follows that the pressure field can be found by solving the
Laplace equation:

1

r

∂

∂r
(rup) +

∂wp
∂z

=
1

r

∂

∂r
(r
∂pp
∂r

) +
∂2pp
∂z2

= 0. (5.12)

The boundary conditions which pp is subjected to are given by:

pp|z=0 = p for r < R; (5.13)
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∂pp
∂z
|z=0 = 0 for r > R; (5.14)

pp|z=−hp = pc. (5.15)

Equation (5.13) describes the pressure that the droplet exerts on the substrate, Equa-
tion (5.14) is the no penetration condition at the substrate surface next to the droplet
and Equation (5.15) is the capillary suction the fluid in the wetted region experiences
at its interface, defined at z = −hp. The corresponding capillary pressure pc can be
estimated by considering the capillary action in a single, round channel:

pc = −4σlg cos θadv
d

. (5.16)

Here, θadv is the advancing contact angle. Note that the channel diameter used in
the expression for pc is assumed to be equal to the sphere diameter that is used for
estimating κ. With an expression for the velocity field, the evolution equation for hp
can be found, similar to Equation (5.1):

∂hp
∂t

= − 1

ηr

∂

∂r

∫ hp

0

rupdz +
1

η
Wp. (5.17)

In the porous medium there are also symmetry conditions at r = 0, specifically ∂rhp =
∂rpp = ∂rup = ∂rwp = 0. Furthermore, there initially is a thin fluid film h∗ in
the porous medium, just below the area covered by the droplet, which is required to
remove the incompatibility of Equations (5.13) and (5.15) for hp = 0.

5.2.3. Surfactant in the droplet

At the liquid-air interface of the droplet a surfactant concentration Γ(r, t) is defined.
The transport equation for Γ(r, t) is given by [189]:

∂Γ

∂t
= −1

r

∂(rUtΓ)

∂s
+

Γ∂th

1 + (∂rh)2

(
∂2h
∂r2

1 + (∂rh)2
+

1

r

∂h

∂r

)
+

DΓ

r

∂(r∂sΓ)

∂s
+
∂h

∂t

∂rh

1 + (∂rh)2

∂Γ

∂r
+ JΓφ. (5.18)

Here, Ut is the fluid velocity tangential to the liquid-air interface, DΓ is the surface dif-
fusion coefficient and JΓφ is the sorptive transport between the interface and the bulk.
The fraction ∂

∂s = 1√
1+(∂rh)2

∂
∂r denotes the surface derivative. The right-hand side of

Equation (5.18) consists of several terms of which each corresponds to a specific trans-
port contribution. The first term denotes the convective fluid transport tangential to
the surface, the second term is the change rate in concentration as a result of changes
in curvature, the third term is the diffusion rate and the fourth term corrects for the
transformation of the surface coordinates to the cylindrical coordinates [58, 59].

Similarly, a transport equation for the surfactant bulk concentration φ(r, t) can be
given. This concentration is assumed to be independent of z, meaning that any ver-
tical concentration gradient is considered insignificant. This is a generally used as-
sumption in literature when the lubrication approximation is used [59, 78, 85]. The
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transport equation is defined in terms of ψ(r, t) = φ(r, t)h(r, t), because in that case
the dependent variable becomes independent of h(r, t) [179]:

∂ψ

∂t
=

1

r

∂

∂r

(
rh2ψ

3µ

∂p

∂r
− rhψ

2µ

∂σlg
∂r

+Dφrh
∂φ

∂r

)
− JΓφ

√
1 + (∂rh)2−

φWp −
2Dφ

h
(φ− φp|z=0). (5.19)

Here, Dφ denotes the bulk diffusion coefficient and φp(r, z, t) is the bulk surfactant
concentration in the pores. The first term on the right-hand side consists of three
parts: a pressure-driven convection part, a part that accounts for the Marangoni effect
and a diffusion part. The second term is the sorptive exchange with the liquid-air
interface, including a factor that takes into account the slope of the interface (∂s∂r ).
The third term is the convective transport flux with the porous medium and the last
term is the diffusive exchange with the porous medium.

The concentrations Γ(r, t) and φ(r, t) are subject to the following boundary conditions
and initial conditions: (

∂Γ

∂r

)
r=0

=

(
∂ψ

∂r

)
r=0

= 0; (5.20)(
∂Γ

∂r

)
r=R

=

(
∂ψ

∂r

)
r=R

= 0; (5.21)

Γ(r, 0) = Γ0; (5.22)

ψ(r, 0) = φ0h(r, 0). (5.23)

The boundary conditions denote the symmetry condition and the no-flux condition at
the contact line.

The surfactants at the interface Γ(r, t) tend to reduce the liquid-gas surface tension
σlg, meaning that an equation of state is required to close the problem. In this work,
the Szyszkowski equation of state is chosen for this purpose, which takes into account
the repelling effect individual surfactant molecules have on each other [22]. This clo-
sure relation is typically valid for intermediate interfacial concentrations that are not
too close to the maximum concentration Γ∞. For lower concentrations the equation
reduces to the linear, dilute equation of state. The Szyszkowski equation is given by:

σlg = σlg,0 +RuTΓ∞ ln

(
1− Γ

Γ∞

)
. (5.24)

In this equation, σlg,0 denotes the liquid-gas surface tension for a surfactant-free liq-
uid, Ru is the universal gas constant and T the temperature.

The sorptive exchange depends on both the bulk concentration φ(r, t) and the inter-
facial concentration Γ(r, t) and on the available space at the interface [48, 59, 85].
Thus, the following equation for JΓφ can be assumed:

JΓφ = kΓ
aφ

(
1− Γ

Γ∞

)
− kΓ

dΓ. (5.25)

Here, kΓ
a and kΓ

d are the adsorption and desorption coefficients of the liquid-air inter-
face respectively. In this equation it can be recognized that the positive adsorption
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term increases for higher bulk concentrations and lower interfacial concentrations,
while the negative desorption term only depends on Γ [48].

5.2.4. Surfactant in the porous medium

In contrast to the surfactant bulk concentration φ(r, t) in the droplet, the bulk concen-
tration in the porous medium φp(r, z, t) is also assumed to depend on the axial coordi-
nate z. The reason for this is that the vertical dimension of the wetted region typically
is of the same order of magnitude as the horizontal dimension. Furthermore, the pres-
sure gradient has a significant component in axial direction. The evolution of φp(r, z, t)
is thus to be described by an axisymmetric 3D convection-diffusion-adsorption equa-
tion:

∂φp
∂t

= −1

r

∂

∂r

(
rφp

up
η

)
− ∂

∂z

(
φp
wp
η

)
+
Dφ

r

∂

∂r

(
r
∂φp
∂r

)
+Dφ

∂2φp
∂z2

− JφS . (5.26)

Here, JφS accounts for the sorption between the bulk and the walls of the pores.
This effect is not considered in the droplet itself, because there the total liquid-solid
interface is much smaller. Furthermore, adsorption onto the solid-liquid interface does
not directly influence the flow behavior (it cannot cause Marangoni flow) and will not
change the contact angle of the droplet, because only pinned cases are considered
when surfactants are involved. The concentration φp(r, z, t) is subject to the following
boundary and initial conditions:

φp(r, z, 0) = φp,0; (5.27)

φp(r, 0, t)wp(r, 0, t) = φ(r, t)Wp(r, t); (5.28)
∂φp
∂r
|r=0 = 0. (5.29)

Furthermore, surfactant cannot be transported outside the wetted region.

The sorption term JφS is given by:

JφS =
4

d
kSaφp

(
1− S

S∞

)
− kSd S, (5.30)

with kSa and kSd the solid-liquid adsorption and desorption coefficient respectively,
S(r, z, t) the amount of adsorbed surfactant per unit of volume and S∞ the maximum
adsorbed surfactant concentration per unit of volume. The 4

d prefactor originates
from the expression for the area of the channel walls Ap for a given control volume
V = Apd/(4η) (see [164] for a derivation). At t = 0 no surfactant has adsorbed on
the pore walls (S(r, z, 0) = 0).

As an equation of state for the surface tension of the solid-liquid interface σsl a variant
of the Sheludko equation [86, 160] is used:

σsl = σsl,0

(
1 +

S

S∞
((σsl,0/σsl,∞)− 1)

)−3

. (5.31)

Here, σsl,0 and σsl,∞ are the surface tensions of a surfactant-free and fully covered in-
terface respectively. Equation (5.31) is appropriate for surfactant concentrations that
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approach the maximum, which is the case in this work for the liquid-solid interface.
Hence, this equation of state is used rather than e.g. the Szyszkowski equation that is
used for the liquid-air interface.

The reduction in interfacial tension will affect the suction pressure, which is implied
by Young’s equation: σsg − σsl = σlg cos θadv, with solid-gas interfacial tension σsg.
Substitution of the left-hand side of Young’s equation in Equation (5.16) results in

pc = −4(σsg − σsl(S̄int))
d

. (5.32)

Adsorbing surfactants will therefore increase the magnitude of the capillary suction
pressure. The volume-averaged value of S(r, z, t) at the interface, i.e. S̄int, is used for
calculation of pc. This results in better stability, since pc becomes more uniform.

The surfactant concentration at the liquid-air interface in the porous medium is not
taken into account, because it does not affect pc (as shown by [99, 100]). Further-
more, due to the adsorption kinetics ψ � Γ, meaning that adsorption onto the liquid-
air interface has no significant influence on the bulk concentration. This type of sur-
factant is typically called a ‘penetrant’ and is used to influence liquid absorption.

The numerical procedure that is employed to solve the equations outlined in this sec-
tion, is given in Subsection 2.9.

5.3. Results and discussion

In this section the results of the simulations are presented and discussed. First, pure
droplets with both pinned and moving contact lines are considered and quantitatively
compared with experimental literature. After that, droplets with surfactants are ex-
amined and results are shown to be consistent with literature as well.

5.3.1. Pure droplets

Droplets with both a pinned contact line and a moving contact line can be absorbed
by a porous substrate. This results in different shapes of the absorbed wetted region
as can be seen in Figure 5.1. In the pinned case (5.1a) the depth profile in the porous
medium propagates with a flat front and the wetted region also tends to expand in ra-
dial direction. In the unpinned cases (5.1b, c, d), however, the wetting front becomes
increasingly parabolic in shape and the ‘contact line’ in the porous medium behaves
as if it were pinned. This behavior seems to be independent of initial contact an-
gle, although the final shape becomes flatter as the initial contact angle is decreased,
because of the change in aspect ratio of the droplet.

Note that decreasing the initial contact angle can be done in two ways: changing the
initial radius, while keeping the initial volume constant (Figure 5.1c) and changing the
initial volume, while keeping the initial radius constant (Figure 5.1d). Regardless of
the way in which the initial contact angle is reduced, the qualitative behavior remains
the same: a relatively flatter wetted region.
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Figure 5.1.: Typical height profile evolution for (a) a pinned contact line with θ0 = 35◦

and moving contact lines (b) with θ0 = 35◦, (c) with θ0 = 20◦ while
keeping the initial volume the same as for θ0 = 35◦ and (d) with θ0 = 20◦

while keeping the initial radius the same as for θ0 = 35◦. In (a) the largest
(blue) drop profile depicts t = 0 and each subsequent, smaller drop profile
indicates a time interval of 0.5s up to 5.5s for the smallest drop. Similarly,
in (b,c,d) each smaller drop profile indicates a time interval of 2s up to
34s, 20s and 14s, respectively. Note that for the smallest drop profile the
wetted region is largest.

An explanation for these differences and similarities can be found by analyzing the
pressure in the porous medium, as for example given by Figure 5.2. The pressure right
underneath the droplet is equal to the Laplace pressure in the droplet (∼ O(1) Pa) and
from there decreases towards the edge of the wetted region, where the pressure equals
the capillary pressure. The vertical gradient towards the horizontal wetting front is
more or less identical for all cases, while the horizontal gradient towards the side of
the wetted region is different, because of the differences in contact radii. Since for
the moving contact line cases, the droplet contact line moves away from the wetted
region contact line, there is barely any radial expansion. This is not the situation for
the pinned contact line case, because there the droplet contact line remains close to
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Figure 5.2.: Typical pressure plots for (a) a pinned contact line with θ0 = 35◦ and
moving contact lines (b) with θ0 = 35◦, (c) with θ0 = 20◦ while keeping
the initial volume the same as for θ0 = 35◦ and (d) with θ0 = 20◦ while
keeping the initial radius the same as for θ0 = 35◦. Note the differences in
shape of the wetted volume and in pressure on the side. The red dashed
lines indicate the position of the wetting front.

the wetted region contact line, giving it the opportunity to expand in radial direction
as well. The same mechanism also explains the differences in shape of the wetted
regions: as the contact area shrinks for the moving contact line cases, an increasing
proportion of the wetted region stops expanding, because it is too far away from the
droplet in radial direction.

This behavior can also be observed in the depth and volume evolution of the wetted
region. As can be seen in Figure 5.3 the penetration depth Hp, defined as the deepest
point of the wetted region, evolves nearly identical for both the pinned and unpinned
cases. However, the final penetration depth tends to be larger for the unpinned cases,
because of the shape of the wetted region. Since for the unpinned cases the contact
area shrinks over time, the result is a more pointed shape than for the pinned case (also
see Figure 5.1) and a relatively slower volume evolution, as seen in Figure 5.3b. It also
shows that decreasing the initial contact angle generally increases the absorption rate:
for the constant initial volume because the total contact area becomes larger and for
the constant initial radius because the total volume to be absorbed becomes smaller.

Note that the pinned contact line case seems to have a smaller final absorbed volume
than the other moving contact line cases with the same initial drop volume. This is,
however, a result of the simulations being cut off for different remaining drop volumes.
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Figure 5.3.: Typical evolution plots for (a) penetration depth Hp and (b) volume of
the wetted region Vp.

The pinned contact line case tends to be less stable than the moving contact line cases,
because its aspect ratio changes more severely. Therefore the simulations with pinned
contact lines are stopped when the remaining drop volume is larger than the drop
volume that remains when the simulations with moving contact lines are stopped.
The input parameters that were used for Figures 5.1, 5.2 and 5.3 are given in Section
A.2 of the appendix.

The implication of these findings is that the evolution of the penetration depth is
mostly independent of the shape of the liquid reservoir on the surface. However, the
final penetration depth and the volume evolution do depend on this shape. These
trends have not been noted before to the knowledge of the authors. A practical con-
sequence of this is that the simulations can be compared to experiments that involve
droplets, but also to experiments that use a container filled with fluid as a reservoir
(1D absorption). This is illustrated in Figure 5.4, where simulation results are com-
pared to droplet experiments by Nees (2011) [130, 164] and container experiments
by Starov et al. (2004) [169].

The experiments by Nees (2011) involve a 10 µL droplet that absorbs into a porous
substrate that is made by melting glass beads together. There is some spread in the
experimental data, which is explained by the inhomogeneities in the porous medium.
The droplet experiments agree with the predictions made by the numerical model, as
can be seen in Figure 5.4a.

The experiments by Starov et al. (2004) are performed by submerging a bound ni-
trocellulose membrane in a liquid-filled bath, resulting in a uniform, onedimensional
evolution of the liquid front. They do this for both pure water and SDS solution. As
can be seen in Figure 5.4b, the droplet simulations agree well with the experiments.
Note that the experimental results that are shown in Figure 5.4b were actually per-
formed with a small SDS concentration. Starov et al. (2004) show however that in
this case the results with surfactant are the same as without surfactants. Since these
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Figure 5.4.: Time evolution of penetration depth; comparison of unpinned and pinned
contact line droplets, respectively, with experimental results by (a) Nees
(2011) and (b) Starov et al. (2004). The input parameters that were used
for the simulations are given in Section A.2 of the appendix.

were the only time-dependent results that were given in the article, they are used for
this comparison with pure droplets and can safely be assumed appropriate.

In all cases the evolution of Hp can be approximated by a Hp ∼
√
t relation. This

follows from the fact that ∂Hp
∂t ≈

κ
ηµ

∂p
∂z ≈ −

κ
ηµ

pc
Hp

. Applying separation of variables
and integrating both sides, shows that Hp evolves according to:

H2
p ≈ −

2κpc
ηµ

t. (5.33)

This approximation follows both the simulations and experiments rather well, as can
be seen in Figure 5.4. As a consequence, it is possible to derive parameters (κ, pc, η)
from results by fitting a square root function to it. Subsequently, a single, unknown
parameter (in this work κpc) can be extracted from the fitted prefactor. This method
will be applied in the next subsection.

5.3.2. Droplets with surfactants

When surfactants are added to the droplet, this can influence the absorption pro-
cess. As surfactant molecules adsorb onto the pore walls, the capillary pressure has a
tendency to increase (as implied by Equations (5.31) and (5.32)), which potentially
accelerates the absorption. As for example illustrated in Figure 5.5, adding surfac-
tants results in a faster evolution of the penetration depth Hp and absorbed volume
Vp. This is indeed confirmed by literature [16, 18, 27, 169, 187]. The magnitude of
the acceleration depends on the adsorbed surfactant concentration at the liquid front
and is mainly limited by surface energy effects, i.e. σsg and the range of σsl (which
ranges from σsl,0 to σsl,∞). High values of σsg and low values of σsl,0−σsl,∞ will typ-
ically diminish the potential for accelerated absorption by surfactants, because they
decrease the relative effect of adsorbed surfactant on pc.
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Figure 5.5.: Comparison of absorption between a pure droplet and a 50 mM surfactant
solution droplet. (a) shows the evolution of the penetration depth Hp and
(b) the evolution of the absorbed volume Vp. The pore diameter is 3.0 µm
for all cases.

The adsorption kinetics of the surfactant also determine whether the absorption pro-
cess accelerates. As illustrated in Figure 5.6, a relatively fast adsorption causes all
surfactant to be consumed before it reaches the wetting front. In Figure 5.6a there is

Figure 5.6.: Comparison of surfactant concentration fields between (a,b) pore diame-
ter d = 0.45 µm and (c,d) pore diameter d = 3.0 µm. The red dashed lines
indicate the position of the wetting front.

only a significant surfactant concentration present in the top part of the wetted region,
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i.e. close to the droplet, which functions as a surfactant source. However, since the ad-
sorption kinetics are relatively fast compared to the liquid absorption, only surfactant
is adsorbed in the upper part of the wetted region (see Figure 5.6b). As a result, there
is no surfactant left to adsorb in the bottom part. The result is that the surfactant has
no influence on the wetting properties of the liquid, because the capillary pressure is
the same as for a pure liquid.

If the pore diameter is larger, however, the droplet absorbs faster, meaning that the
adsorption and absorption processes have similar time scales. Furthermore, for larger
pore diameters the specific surface area is smaller, hence a smaller amount of surfac-
tant can be adsorbed. As a result, the surfactant can get closer to the wetting front
before being adsorbed. This can be seen in Figure 5.6c, where the surfactant con-
centration is nearly uniformly distributed over the wetted region, except close to the
interface, where it is smaller. Naturally, a similar concentration distribution can be
found for the adsorbed concentration S (see Figure 5.6d). This causes the absorption
process to accelerate, because the magnitude of the capillary pressure - and thus the
pressure gradient in the wetted region - increases.

An effective way of actually quantifying the absorption process is through the value of
κpc (the product of the permeability and the capillary pressure). As shown by Equation
(5.33), this product mainly determines the evolution velocity of Hp and is not known
beforehand if surfactants are involved. It can be seen as the effective driving force
the fluid experiences during absorption (it possesses the physical unit of a force). The
value of κpc can be found by fitting a line along H2

p and determining the slope.

As can be seen from Figure 5.7, the value of κpc indeed increases with φp,0 for larger
pore diameters, while it remains constant for smaller pore diameters. As shown before
in Figure 5.6, smaller adsorption rates (small pore diameters) will cause all surfactant
to adsorb before reaching the wetting front, while larger adsorption rates (large pore
diameters) result in an increase of the magnitude of pc by surfactant. For the latter
case the amount of surfactant adsorbing at the wetting front naturally increases as the
surfactant concentration increases, which can be seen for d = 3.0 µm in Figure 5.7.

This is useful data, because it shows that increasing the amount of surfactant in a so-
lution does not necessarily accelerate the absorption. If the surfactant has adsorption
kinetics that are simply too fast, it will never affect the absorption dynamics. There-
fore, this could, for example, guide engineers to use a slower surfactant if an enhanced
droplet absorption is desired.

Similar behavior was also found for 1D absorption by Starov et al. (2004) [169].
They performed experiments on the absorption of aqueous SDS solutions into dry
nitrocellulose membranes and theoretically predicted the existence of a critical pore
diameter under which surfactant does not influence the absorption process anymore.
Their experiments confirmed the existence of this critical pore diameter as does this
numerical work. In the case of an SDS solution on a nitrocellulose substrate this
critical pore diameter is between 0.45 µm and 3.0 µm, which is also found for the
parameters used in this article.

As a final note, κpc at φp,0 = 0 increases linearly with d, which is what would be
expected from Equations (5.11) and (5.16).
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Figure 5.7.: κpc as a function of initial surfactant concentration φp,0 for several values
of pore diameter d. The input parameters that were used for the simula-
tions are given in Section A.2 of the appendix.

5.4. Conclusion

In this work a numerical model was created for the absorption of surfactant-laden ses-
sile droplets into porous media. The droplet was modeled using axisymmetric lubri-
cation theory and the absorption process using mass conservation and Darcy’s law. In
the droplet, the surfactants were considered both at the liquid-air interface and in the
bulk using convection-diffusion-adsorption equations and in the porous medium the
surfactants were modeled in the bulk through another convection-diffusion-adsorption
equation and at the pore walls through an adsorption-equation.

The contact line of the droplet was considered for both a pinned case and an unpinned
case with a slip model. It was shown that if the contact line is pinned, the droplet ab-
sorbs with a mostly flat wetting front, which also expands in radial direction. On
the other hand, for a slipping contact line, the wetting front becomes increasingly
parabolic in shape and the ‘contact line’ of the wetted region remains nearly pinned.
This results in similar evolution of the penetration depth for both contact line mod-
els, while the volume of the wetted region evolves more slowly for the slip model.
Therefore, the final penetration depth tends to be larger for an unpinned contact line.
The evolution of the penetration depth was validated by quantitative comparison with
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experimental results from literature. It was also found that a reduced initial contact
angle results in faster absorption and a flatter – although still parabolic – shape of
the wetted region, which is a result of the relatively larger contact area and flatter
droplet.

When surfactants are involved, it was shown that there is a potential for the absorp-
tion process to accelerate. Whether this acceleration occurs depends on the time scale
of the adsorption kinetics of the surfactants compared to the time scale of absorption
of the droplet. Small absorption rates (small pore sizes) result in surfactant adsorbing
on the pore walls before reaching the wetting front. Thus, in that case the absorption
process of the surfactant-laden droplet will be indistinguishable from the absorption
of a pure droplet. If the absorption process is fast (for large pore sizes), however, sur-
factant does adsorb at the wetting front, resulting in more suction. As a consequence,
the absorption rate will increase with initial surfactant concentration if the pore size
is large enough. These results are in agreement with 1D experimental and analytical
results by Starov et al. (2004) [169].

These findings agree with the hypothesis that was made before, namely that a moving
contact line slows down the absorption process and that surfactants can be used to
accelerate the absorption. This acceleration only happens if the absorption – before
taking into account surfactants – is fast enough.

Possible applications lie in the ability to control the absorption rate, final penetration
depth and final shape of the wetted region. For example, if the wetted region requires
a final shape that is mostly flat, it helps to add components that promote pinning, such
as surfactants that reduce the contact angle [58, 156]. Furthermore, if the absorption
needs to be accelerated, it is important to choose a surfactant that does not adsorb
too fast (typically larger surfactants) and that have a tendency to adsorb onto the
liquid-solid interface. These type of methods for control can be employed in several
technologies that involve porous media, such as inkjet printing, irrigation and medical
treatmens that involve absorption through the skin.

Previous numerical studies often employed 1D absorption models [118, 119, 120,
169] rather than 2D or 3D and although there are several articles on 2D or 3D droplet
absorption models [2, 3, 33, 34, 57, 144, 145, 193], none considered the effect of the
contact line dynamics and/or involved surfactants. Furthermore, while a significant
number of experimental studies on surfactant-enhanced liquid absorption has been
carried out [123, 129, 134, 147, 174], it tends to be rather difficult to actually visualize
the flow, let alone to quantify properties as pressure and surfactant concentration.
Therefore, numerical studies, like this one, are a valuable contribution to the field.

Further research opportunities lie in additional parametric analysis of the relevant
surfactant properties and comparison with experiments. While extensive analysis has
been done on the effect of several dimensionless numbers on the absorption of pure
droplets (e.g. [2, 164]), this has not been done for surfactants. This article has made
a first step in that direction. Furthermore, experimental studies that systematically
consider the effect of different surfactants on absorption are rare. This would be a
requirement for validating potential numerical results.

Also, Molecular Dynamics (MD) simulations can help to increase the accuracy of our
model. In the initial stages of the absorption process and for nanoscale pores the
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current hydrodynamic model tends to be less valid. For both these limits, MD simula-
tions can offer corrections to the equations (e.g. see [116, 175, 176]). Furthermore,
MD models can be employed to get better insight into the adsorption kinetics of sur-
factants and the factors that influence this process. This way, it becomes possible to
compare our model quantitatively with experiments, because real-life surfactants can
be implemented if their adsorption parameters are known [54, 184].

An additional suggestion for improving the model is to define a local capillary pressure
rather than one that is averaged over the wetting front. This would allow one to
capture more details of the flow. The corresponding numerical instabilities may be
solved by employing a different, 2D method to define the interface position, since
in the current model this is done by a 1D height profile hp(r). Also, in many cases
porous substrates swell as a result of the absorbed liquid (e.g. paper, see [118, 119,
120]), which can be modeled as well. Furthermore, the consideration of volatile fluids,
i.e. simultaneous evaporation and imbibition, is of relevance and can be taken into
account in future studies.
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6. Particle dynamics in evaporating
droplets with soluble surfactants

In this chapter it is explored how particles can be implemented as a solute in a droplet
and how the particle dynamics are affected by the fluid flow. Several methods are
introduced and their limitations are analyzed. Furthermore, the particle dynamics as
given by the lubrication model are considered both with and without soluble surfac-
tants. It is shown that lubrication theory is limited when it comes to the velocity field
and particle dynamics close to the contact line.

6.1. Introduction

Many applications involve particle-laden droplets. Technologies like inkjet-printing
[138], micro-arrays [140], coatings [63] and detection of drugs [195] all involve
drying colloidal suspensions in the form of droplets. Here, the final deposition of the
solute after evaporation is of key importance, because the deposition pattern is often
nonhomogeneous due to the coffee-stain effect. As shown by Deegan et al. [35, 36,
37], the evaporation of a sessile droplet on an amphiphilic substrate occurs fastest
close to the contact line. Furthermore, because the droplet tends to a spherical cap
shape, a constant flow towards the contact line occurs that results in ring formation.

Various promising attempts have been made to counteract the coffee-stain effect. It
has been stated that factors as Marangoni flow [73, 112], the wettability of the sub-
strate [124], the particle-substrate adherence [125], the particle shape [194] and the
particle electric charge [132] are all of relevance in counteracting the coffee-stain
effect.

In order to get better insight in the nature of the underlying particle dynamics during
drop evaporation and to control it, accurate models are of great importance. The
advantage of models is that they are transparent and show details that experiments
generally cannot provide. Also, models are easier and cheaper to do large parameter
sweeps.

In this chapter several models are introduced for particle dynamics in droplets in the
framework of lubrication theory. Each of these methods is evaluated in terms of suit-
ability and consistency. For the most simple model of the two, which considers the
particles as passive tracers, two different cases are analyzed: (1) a pure droplet where
there is only flow towards the contact line and thus the coffee-stain effect should occur
and (2) a surfactant-laden droplet where there is Marangoni circulation [59] and thus
the coffee-stain effect should at least be slightly suppressed. For the more complex
model of the two, which considers the particles as a distinct phase besides the fluid, it
is explored how to deal with concentrations close to the maximum packing fraction.

In Section 6.2 the mathematical model is covered. First, the droplet evolution model
is introduced and then the surfactant transport equations. After that, the two solute
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models are outlined. In Section 6.3 the tracer particle model is considered first for
both a pure droplet case and for a case where a droplet contains surfactants. It is
examined how the calculation of the velocity field can be improved to describe the
actual particle fluxes better. After that, the two-phase particle model is analyzed and
it is explored how it can deal with concentrations up to and including the maximum
packing fraction. Lastly, this chapter finishes with a conclusion in Section 6.4.

6.2. Mathematical model

In this section the mathematical model for the droplet, the surfactants and evaporation
are covered. Furthermore, the two different particle models are introduced.

6.2.1. Droplet evolution

Consider a relatively flat droplet with radius R, height H and contact angle θ that sits
on an amphiphilic substrate (θ < 90◦ and ε = H/R � 1). The droplet consists of a
fluid with mass density ρ, dynamic viscosity µ and (liquid-air) surface tension σlg and
it has a Bond/Eötvös number much smaller than one (Bo = ρgH2

σlg
� 1), meaning that

gravity has no significant effect on its shape.

A cylindrical coordinate system (r, α, z) is used for the equations and it is assumed
that the droplet has an axisymmetric geometry ( ∂

∂α = 0) and that no swirl occurs
(angular velocity Uα = 0). Furthermore, isothermal conditions are assumed, meaning
that fluid properties will not change due to temperature variations. The contact line is
pinned since one of the main interests in this chapter is the coffee-stain effect, which
generally only occurs in combination with a constant contact radius R [113].

Since the aspect ratio of the droplet ε is small, the droplet evolution can be described
using lubrication theory. As derived in Section 2.1, the shape is then given by a height
profile h(r, t) and the corresponding velocity field by:

u(r, z, t) =
1

µ

(
−∂p
∂r

(hz − 1

2
z2) +

∂σlg
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)
; (6.1)
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Applying the kinematic boundary condition ∂th+ (∂rh)u|z=h = w|z=h +we the evolu-
tion over time can be found:

∂h

∂t
=

1

rµ

∂

∂r

(
rh3

3

∂p

∂r
− rh2

2

∂σlg
∂r

)
+ we. (6.3)

Here, we is the evaporation volume flux and p the pressure in the droplet. Evaporation
flux we is given by:

we =
DvMlpsat,l(1−RH)

ρRuT

∂p̂l
∂n

√
1 +

(
∂h

∂r

)2

, (6.4)
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where Dv is the vapor diffusivity, Ml the molar mass of the fluid, psat,l the saturation
pressure of the fluid and RH the relative humidity. Furthermore, ∂p̂l

∂n is the non-
dimensional normal derivative of the vapor pressure and is obtained by solving the
integral in Equation (2.71).

Pressure p is given by the Laplace pressure:

p = −1

r

∂

∂r

(
σlg

r∂rh√
1 + (∂rh)2

)
. (6.5)

The corresponding boundary and initial conditions are:

(
∂h

∂r

)
r=0

= 0, (6.6)(
∂3h

∂r3

)
r=0

= 0, (6.7)

h(R, t) = 0, (6.8)

h(r, 0) = h0(r), (6.9)

which denote the symmetry condition at the origin, the position of the contact line
and the initial drop shape h0(r), which is a spherical cap with height H.

6.2.2. Surfactant evolution

Both at the interface and in the bulk there is a surfactant present with concentration
Γ(r, t) and φ(r, t), respectively. The evolution of interfacial concentration Γ(r, t) is
given by:

∂Γ

∂t
= − ~∇s · (Γ~ut)− ΓUn ~∇s · ~n+DΓ

~∇s
2
Γ +

∂h

∂t

∂rh

1 + (∂rh)2

∂Γ

∂r
+ JΓφ. (6.10)

Here, ~∇s is the surface gradient operator, ~ut the velocity vector tangential to the liquid-
air interface, Un the magnitude of the velocity normal to the interface, ~n the normal
of the interface, DΓ the interfacial diffusion coefficient and JΓφ the adsorption from
the bulk, which will be defined later on. The surface gradient operator in cylindrical
coordinates is ~∇s = 1

1+(∂rh)2 ~er
∂
∂r + ∂rh

1+(∂rh)2 ~ez
∂
∂r + 1

r ~eα
∂
∂α . Any dependency of z

is dropped here, since ~∇s will only be applied to variables that depend on r and
t. The tangential velocity vector is given by ~ut = ~u · (I − ~n~n), the normal velocity
magnitude is given by Un = ∂th√

1+(∂rh)2
and the surface normal is ~n = − ∂rh√

1+(∂rh)2
~er +

1√
1+(∂rh)2

~ez.

Interfacial concentration Γ(r, t) is subject to the following boundary and initial condi-
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tions: (
∂Γ

∂r

)
r=0

= 0; (6.11)(
∂Γ

∂r

)
r=R

= 0; (6.12)

Γ(r, 0) = Γ0. (6.13)

These denote the symmetry condition at the origin, the no-flux condition at the contact
line and the initially homogeneous surfactant distribution, respectively.

The presence of surfactant at the interface will reduce the interfacial surface tension
σlg. In this work, the Szyszkowski/Frumkin equation of state is used for this purpose,
which takes into account the finite space surfactants occupy at the interface:

σlg = σlg,0 +RuTΓ∞ ln

(
1− Γ

Γ∞

)
. (6.14)

Here, σlg,0 is the surfactant-free surface tension, Ru is the ideal gas constant, T the
temperature and Γ∞ the maximum concentration (which is the inverse of the space a
single surfactant monomer requires).

Regarding the bulk concentration φ(r, t) it is more convenient to express the evolution
in terms of ψ(r, t) ≡ φ(r, t)/h(r, t). The corresponding evolution equation is then given
by:

∂ψ

∂t
=

1

r
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− JΓφ

√
1 + (∂rh)2. (6.15)

Here, Dφ is the bulk diffusion coefficient of the surfactant.

Similar to Γ(r, t), the bulk concentration ψ(r, t) is subject to the boundary and initial
conditions: (

∂ψ

∂r

)
r=0

= 0; (6.16)(
∂ψ

∂r

)
r=R

= 0; (6.17)

ψ(r, 0) = φ0h(r, 0). (6.18)

The surfactant adsorption rate JΓφ is given by:

JΓφ = kΓ
aφ

(
1− Γ

Γ∞

)
− kΓ

dΓ, (6.19)

where the adsorption rate is limited by the bulk concentration φ(r, t) and the available
space at the interface, while the desorption rate is limited by the interfacial concen-
tration Γ(r, t).
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6.2.3. Solute transport

In many applications there is a nonvolatile solute present in the droplet that remains
on the substrate after complete evaporation [35, 73]. In order to model this deposition
pattern accurately, it is required to track the transport of the solute during the drying
process. In this subsection two different models are introduced: one that considers
the particles as a concentration without volume, which is called the ‘tracer particle
model’, and one that considers the particles as a distinct phase, which is called the
‘two-phase model’.

Tracer particle model

Perhaps the simplest way to model a solute is to consider it as a passive, massless
tracer particle concentration that does not influence the fluid flow in any way. In that
case, the evolution of the solute concentration C(r, z, t) can be described by a simple
2D convection-diffusion equation:

∂C

∂t
= −1

r

∂

∂r
(rCu)− ∂

∂z
(Cw) +DC

1

r

∂

∂r

(
r
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+DC

∂2C

∂z2
. (6.20)

Here, DC is the bulk diffusion coefficient of the solute. The following boundary and
initial conditions hold:

∂C

∂r
|r=0 = 0; (6.21)

∂C

∂z
|z=0 = 0; (6.22)

−∂h
∂r

∂C

∂r
|z=h +

∂C

∂z
|z=h = 0; (6.23)

C(r, z, 0) = C0. (6.24)

These denote the symmetry condition at the center of the droplet, the no-penetration
condition at the substrate surface, the no-penetration condition at the liquid-air inter-
face and the initially homogeneous solute distribution C0, respectively.

In several practical applications, such as DNA micro arrays [44], the solute adsorbs
onto the substrate over time. This process is also taken into account in this work,
one reason being that it offers a useful validation for the final deposition pattern. In
this work the model proposed by Kurrat et al. [95, 96, 164] is employed, which is
typically valid for biomolecules such as proteins. Here, the adsorbed mass per unit
area M(r, t) is split in a reversible portion Mr(r, t) and an irreversible portion Mi(r, t).
The adsorption process of these two portions is modeled as:

∂Mr

∂t
= kCa CΦ− kCdMr/

√
Φ; (6.25)

∂Mi

∂t
= kCs CΦ. (6.26)

Here, kCa and kCd denote the reversible adsorption and desorption coefficients, respec-
tively, and kCs is the irreversible adsorption coefficient. The parameter Φ is defined as
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the fraction of the surface that can be occupied by solute particles and it is given by
the Langmuir expression Φ = 1 − Θ. In this expression, Θ is a function of the total
adsorbed mass per unit area M(r, t) and is given by Θ = M(r,t)a

m , with a the area a
single biomolecule occupies and m its mass [164].

Two-phase model

The assumption that the solute acts as a passive tracer is only valid for small concen-
trations where the mass and volume of the particles is negligible compared to the fluid
mass and volume. For higher concentrations it is required to consider the particles as
a distinct, solid phase. In that case, both the fluid and the particles are assigned a
mass fraction yw(r, z, t) and ys(r, z, t), respectively, and they can be described by the
following evolution equation (e.g. see [39, 143]):

ρ

(
∂ya
∂t

+ ~U · ∇ya
)

= ∇ · (ρDls∇ya)− ṁaδh. (6.27)

In this equation, ya is the mass fraction of phase a (either liquid w or solid s), Dls
the mutual diffusion coefficient between the phases, ṁa the evaporative mass flux of
phase a and δh the interface delta function. The evaporation ṁw of the fluid phase is
given by Equation (2.56) and the evaporation ṁs of the solid phase is zero.

The boundary and initial conditions are the same for ya(r, z, t) as for C(r, z, t) and
therefore Equations (6.21) – (6.24) are valid as well ifC(r, z, t) is replaced by ya(r, z, t).

Since the droplet now consists of two components, the average fluid properties ρ(r, z, t),
µ(r, z, t) and Dls(r, z, t) are functions of time and space. In this work, the mass den-
sity ρ(r, z, t) is calculated as the harmonic mean between the densities of the phases,
weighted by the local mass fractions, the dynamic viscosity µ(r, z, t) is calculated by
the Krieger-Dougherty relation [92] and the mutual diffusion coefficient Dls(r, z, t)
is estimated through Einsteinian diffusion [52] (and is thus inversely proportional to
µ(r, z, t)). Note that, σlg(r, t) is not considered a function of ya, because the solid
phase does not have a surface tension of itself. Therefore, only the surface tension of
the fluid is used (although it can still change due to the presence of surfactants).

Given that these fluid properties are no longer constant, a more generalized form for
the velocity field should be employed. This can be derived as [39]:

u(r, z, t) =

∫ z

0

(−∂rp(r, t))(h(r, t)− z′) + ∂rσlg(r, t)

µ(r, z′, t)
dz′; (6.28)

w(r, z, t) =
1

ρ(r, z, t)

∫ z

0

(
1

r

∂

∂r
(rρ(r, z′, t)u(r, z′, t))− ∂ρ(r, z′, t)

∂t

)
dz′. (6.29)

Furthermore, the evolution equations for h(r, t), Γ(r, t) and ψ(r, t) also need to be
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modified accordingly:

∂h

∂t
=

1

ρ|z=h

(
−1

r

∂

∂r

∫ h

0

rρudz −
∫ h

0

∂ρ

∂t
dz

)
+ we; (6.30)

∂Γ

∂t
= − ~∇s · (Γ~ut)− ΓUn ~∇s · ~n+DΓ

~∇s
2
Γ +

∂h

∂t

∂rh

1 + (∂rh)2

∂Γ

∂r
; (6.31)

∂ψ

∂t
=

1

r

∂

∂r

(
−rψ
h

∫ h

0

udz +Dφrh
∂φ

∂r

)
. (6.32)

This transport model in its current form holds for higher concentrations, but breaks
down when the solid mass fraction ys(r, z, t) approaches its maximum packing fraction
ys,max. In that case additional modifications are required, which will be discussed in
Section 6.3.

An outline of the numerical solution procedure is given in Section 2.9.

6.3. Results and discussion

In this section the two particle models presented in the previous section are tested.
First, the tracer particle model is applied to a pure droplet case and to a surfactant-
laden droplet case. After that, it is examined how the two-phase model can be em-
ployed for concentrations up to and including the maximum packing fraction.

6.3.1. Tracer particle model

The first solute model, the tracer particle model, is tested for two different cases.
The first case is a pure droplet, where there is an outward, capillary flow due to
evaporation being fastest at the contact line (see Figure 6.1a). Here, the coffee-ring
effect should occur [35] and thus the thickness of the deposition layer predicted by the
model should increase towards the contact line with a maximum at r = R. The second
case is a droplet with soluble surfactants, where there is, besides the outward capillary
flow, also an inward, surfactant-induced Marangoni flow [59] (see Figure 6.1b). This
results in a circulating flow and thus the model should yield a more homogeneous
deposition pattern compared to the pure droplet case [73, 112].

However, running the two cases for the tracer particle model yields nearly identical
deposition patterns. As can be seen in Figure 6.2 in both cases a coffee-stain pattern
is formed. For the surfactant case the peak is even slightly sharper than for the pure
case, although the peak of the pure case is broader resulting in approximately the
same deposited mass close to the contact line.

Also, for both cases the concentration plots in Figure 6.3 show that the solute accu-
mulates at the contact line. This holds also for the surfactant case (in Figure 6.3b)
despite the backflow that was observed in Figure 6.1b.
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Figure 6.1.: Two different flow patterns: (a) Outward capillary flow, (b) Surfactant-
induced Marangoni circulation. The red line indicates the position of the
interface, given by h(r).

Inspecting the flow field around the contact line for the surfactant case, reveals that
in the region closest to R all velocity vectors have a positive radial component (see
Figure 6.4). This explains why the solute cannot really escape from the contact line
region: as soon as it comes close to the contact line, it can only flow further towards R.
Several numerical tests show that this behavior is independent of the grid resolution
in both the radial direction and the axial direction.

A potential, although ad-hoc, solution for this issue lies in simply cutting off the con-
sidered velocity field close to the contact line, so the solute does not get ‘trapped’
there. However, this will only move the adsorption peak from Figure 6.2 closer to the
drop center, because solute still accumulates close to the contact line, but now at the
location of the cut-off. This happens because the solute is not transported upwards to
the interface after it arrives at the cut-off location. The axial velocity w(r, z, t) is negli-
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Figure 6.2.: Typical deposition pattern m(r, t) for the pure droplet case and the surfac-
tant case.

Figure 6.3.: Typical solute distribution C(r, z, t) for (a) the pure droplet case and (b)
the surfactant case.
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Figure 6.4.: Close up of the velocity field close to the contact line for a case with
surfactants.

gible there compared to the radial velocity u(r, z, t) and diffusion is also not significant
enough.

This implies that more sophisticated solutions should be considered in order to solve
this problem. Hu and Larson indicate that the standard formulation for the interfacial
shear stress τrz|z=h(r,t) in lubrication theory tends to be less accurate close to the
contact line, because the ∂w/∂r|z=h(r,t) term is dropped [71, 72]. Instead, they use
the entire interfacial shear stress in their calculations:

τrz|z=h(r,t) = µ

(
∂u

∂z
|z=h(r,t) +

∂w

∂r
|z=h(r,t)

)
=
∂σlg
∂r

. (6.33)

This will introduce an additional unknown variable w|z=h, changing the system of
equations to:

∂h

∂t
=

1

rµ

∂

∂r

(
rh3

3

∂p

∂r
− rh2

2

∂σlg
∂r

)
+

1

r

∂

∂r

(
1

2
rh2 ∂w

∂r
|z=h

)
+ we; (6.34)

∂Γ

∂t
= − ~∇s · (Γ~ut)− ΓUn ~∇s · ~n+DΓ

~∇s
2
Γ +

∂h

∂t

∂rh

1 + (∂rh)2

∂Γ

∂r
+ JΓψ; (6.35)

∂ψ

∂t
=

1

r

∂

∂r

(
rh2ψ

3µ

∂p

∂r
− rhψ

2µ

∂σlg
∂r

+
1

2
rhψ

∂w

∂r
|z=h +Dφrh

∂φ

∂r

)
(6.36)

− JΓψ

√
1 + (∂rh)2;

w|z=h =
1

2

1

r

∂

∂r

(
rh

µ

∂p

∂r

)
h2 − 1

6

1

r

∂

∂r

(
r

µ

∂p

∂r

)
h3 − 1

2

1

r

∂

∂r

(
r

µ

∂σlg
∂r

)
h2 (6.37)

+
1

2

1

r

∂

∂r

(
r
∂w

∂r
|z=h

)
h2.

Here it is assumed that ∂w|z=h
∂r ≈ ∂w

∂r |z=h. Implementing this shear stress correction
however, does not result in an improved flow field in the contact line region as can be
seen in Figure 6.5. Although with the stress correction included (Figure 6.5b) there
are more velocity vectors with a negative radial velocity, there is still a point where
particles accumulate (around r ≈ 1.2 · 10−4 m).

Besides, the velocity field itself is much more erratic and seemingly unphysical with
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Figure 6.5.: Velocity field in the contact line region (a) without stress correction term
and (b) with stress correction term.

the stress correction (Figure 6.5b) than without it (Figure 6.5a), which would imply
that the correction does not actually improve the accuracy. A possible explanation for
this is that the equations may not be independent of each other. The simulations in
which the stress correction was added, were rather unstable and the results diverged if
a fully coupled solution method was used. Only using an iterative method, where the
original system of equations of h(r, t), Γ(r, t) and ψ(r, t) and the equation for w|z=h
were solved in an alternating way, results could be obtained.

In the work by Hu and Larson [71, 72], where they do implement the stress correction,
this problem with instability and an erratic flow field is not encountered, because they
prescribe the height evolution ∂th and the surface tension gradient ∂rσlg. This allows
them to derive an analytical solution, which cannot be done in our case, because both
the height evolution ∂th and the surface tension gradient ∂rσlg are unknown.

Nevertheless, it is doubtful that neglecting the ∂w
∂r |z=h(r,t) term in the interfacial shear

stress τrz|z=h(r,t) is the cause of the inaccuracy of the velocity field calculation. Com-
puting both terms of the interfacial shear stress (see Equation (6.33)) reveals that the
neglected term ∂w

∂r |z=h(r,t) tends to be two decades smaller than the ∂u
∂z |z=h(r,t) term,

even in the contact line region. Therefore, it is justified to indeed neglect ∂w∂r |z=h(r,t).

As a final solution, it would be possible to impose a prescribed velocity field close to
the contact line or for the droplet in its entirety. This could be done, for example, by
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assuming or fitting a surface tension gradient and/or pressure gradient from which
the velocity field can be calculated. This would be nontrivial however, because the
velocity field is extremely sensitive to deviations in surface tension and pressure, which
could be a reason why the velocity field close to the contact line does not recirculate
particles properly. Furthermore, when imposing some ad-hoc velocity field it is not
clear whether it is still related to the situation that we attempt to simulate. Therefore,
this direction is not pursued any further in this work.

Based on all this, it is concluded that the lubrication model in its current form is not
suitable for describing Marangoni circulation close to the contact line. This is probably
due to certain terms in the Navier-Stokes equations being not negligible anymore close
to the contact line, while being neglected in the lubrication model. Any method that is
required to describe the flow field close to the contact line, should be able to deal with
this issue. It is certainly possible that methods that calculate the droplet evolution
in a 2D or 3D manner (rather than the 1D height profile h(r, t) in lubrication theory)
would perform better, since these can better adapt the mesh to the shape of the droplet
and can also calculate the pressure field without neglecting terms. Alternatively, the
neglected terms can be added as correction terms in the lubrication model, although
this can cause several issues due to the 2D nature of these terms.

As an illustration of the effect of neglecting certain terms, calculations show that in the
lubrication model the radial derivative µ

r
∂
∂r (r ∂u∂r ), that is neglected in Equation (2.3),

tends to be significant compared to the axial derivative µ∂
2u
∂z2 term close to the contact

line. This is shown Figure 6.6a, where the height-averaged ratio between these two
derivatives is given in the two last grid points as a function of the initial contact angle.
The ratio in the last grid point is here estimated by calculating the ratio in the second
last grid point with double the number of grid cells. There is no straightforward way to
calculate this directly, because the numerical second derivative in the last point cannot
be calculated without introducing additional boundary conditions. Similar ratios can
be found between ∂p

∂r and ∂p
∂z when calculated numerically, as seen in Figure 6.6b.

Note that in all these cases the height-averaged values are considered. Locally, the
ratios can have even higher values.

If one wishes to understand particle dynamics in the context of Marangoni circulation
to suppress the coffee-stain effect, it should be known that there are likely more effec-
tive methods of doing this suppression. In experiments performed by Marin et al. the
authors did not find any correlation between the presence of Marangoni circulation
and the reduction of the coffee-stain effect [115]. The reason for this is that particles
are always transported towards the contact line at the end of the evaporation process,
due to the capillary flow overcoming the Marangoni flow (the so-called ‘rush-hour ef-
fect’ [114]). This could also be an explanation why it is observed that even for lower
contact angles, where according to Figure 6.6 the error should be of an order of 10%,
there is still no circulation close to the contact line.

Although there are several methods to reduce the coffee-stain effect [124, 125, 132,
194], probably the most efficient way is by mobilizing the contact line so that it retracts
during evaporation. This way, particles do not accumulate as a single ring on the
substrate (e.g. see [165]).
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Figure 6.6.: Ratio between height-averaged derivatives as a function of initial contact
angle in the last two grid points. (a) shows the ratio between the two
viscous terms in the equation for ∂p

∂r and (b) the ratio between ∂p
∂z and ∂p

∂r .
The red lines are in the last grid point in radial direction, the blue lines in
the one but last grid point.

6.3.2. Two-phase particle model

In this subsection, the two-phase particle model is considered and methods are ex-
plored to implement it for concentrations up to and including the maximum packing
fraction ys,max. This is only done for pure droplet cases, because this makes the analy-
sis simpler and clearer and because it was previously shown that the lubrication model
does not describe Marangoni circulation in the contact line region well.

A simulation for a pure droplet with an initial (homogeneous) particle mass fraction of
ys,0 = 0.01 shows that it reaches its maximum packing fraction ys,max (corresponding
to a volumetric fraction of 0.64) quite soon after the start of the simulation (typically
before 5% of the evaporation time). This maximum packing predictably occurs close
to the contact line, where particles accumulate. Since water can still evaporate at that
point, meaning that yl can decrease, while the particle fraction ys cannot increase
any further (given that air is not considered as a phase), a contradiction occurs. This
implies that in order to model particle-laden droplet evaporation, even at initially low
colloidal concentrations, one needs to include a void fraction as well.
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In literature, this has previously been tackled by modeling a transition from the Stokes
regime to the Darcy regime as ys → ys,max. While this method gives reasonable results
[83, 84] it has two major issues in the context of lubrication theory. First, it requires
the assumption of an arbitrary linear relationship between the fluid velocity and the
particle velocity. Second, and more importantly, it can only be applied for a z-averaged
particle concentration, which is undesirable if one wants to model particle circulation
(e.g. in the context of Marangoni circulation [59]).

A realistic particle model at high concentrations should – in the view of the author –
at least take into account the following:

1. The particle concentration cannot exceed the maximum packing density (assum-
ing air is not considered as a phase);

2. At maximum packing, particles remain on the substrate (or on a solid mass of
particles) if fluid evaporates;

3. At maximum packing, the particle flow stagnates if it is blocked by other parti-
cles, while fluid can still move through;

4. However, at maximum packing, particles should still be able to flow as a cluster
that is transported by fluid. This also depends on the degree in which particles
adhere to the substrate.

Unfortunately, no such model currently exists in the framework of lubrication theory.
Therefore, the author suggests to either develop such a model or to only consider
particle dynamics below the maximum packing density, which unfortunately has a
very limited scope of application. Alternatively, corrections can be set that modify the
particle concentration if appropriate conditions are met.

As an example of such a correction, if fluid evaporates from a region that is at maxi-
mum packing, one could displace a proportional amount of solid phase to the region
below if that region is not at maximum packing yet. Then, if the entire region below is
also at maximum packing, one could consider an amount of solid phase, proportional
to the evaporated fluid, as removed from the system and leave it as a solid layer on
top of the droplet.

Alternatively, if the fractions are expressed as mass fractions, one could allow for the
solid mass fraction to go to 1 at the interface, because the rest of the region can be
assumed to be filled with air, which has a negligible mass. The volume fraction still
has a maximum smaller than 1 in that case, but the mass fraction has not. This will
not work in the bulk of the droplet, however, because there will be no air there and
thus the volume only consists of liquid and solid.

Regarding the flow behavior in the bulk, one could allow for a net flux of particles
through a maximally packed region, while blocking particles upstream if they would
cause the local solid fraction to exceed the maximum packing fraction.

Although these possible corrections are rather ad-hoc and do not fully take into ac-
count the underlying physics, such as porous flow behavior, they yield qualitatively
reasonable results as illustrated in Figure 6.7. Here, the first and the third of the
previously suggested corrections are used.
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Figure 6.7.: Typical deposited solid mass after evaporation in the two-phase model.

Very similar to the results of the tracer particle model, as seen in Figure 6.2, there is
a clear peak close to the contact line. A major difference however, is that the peak
for the two-phase model is much wider than the peak for the tracer particle model.
This is expected, because for the two-phase model not all particles can accumulate in
the last few cells, but they are blocked by other particles as a ‘porous plug’ is formed
[83, 84]. For the tracer particle model, on the other hand, all particles can freely
flow to the contact line. Both models will increasingly converge as the initial particle
concentration of the two-phase model is decreased.

Another difference between the two models is that the peak in Figure 6.7 is not cen-
tered at the contact line, like for the tracer model in Figure 6.2, but slightly shifted
towards the center. The reason for this is that as particles approach the contact line the
vertical available space decreases as the drop height h(r, t) becomes smaller. There-
fore, the deposition pattern cannot peak at r = R, but will do that closer to the center.
This mechanism is not taken into account in the tracer model and thus the peak is at
r = R in that case.

Thus, to conclude, a start has been made in developing a two-phase particle model
in the context of lubrication theory, and already some qualitatively reasonable results
are obtained. However, before it can be used, it needs to be improved by better
considering the underlying physics and making the implementation less ad-hoc than
it currently is.

The most viable solution lies in developing a model that takes into account the tran-
sition from the Stokes regime at low particle concentrations to the Darcy regime at
higher concentrations. As mentioned before, this was partly done by Kaplan et al.
[83, 84], but with severe limitations, most prominent the requirement of a height
averaged particle concentration. If the axial component is also taken into account,
as for example was done for binary droplets by Diddens et al. [39], only then parti-
cle dynamics can be modeled at higher concentrations in a sufficiently physical way.
This involves several challenges, because it requires a more complex derivation of the
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height evolution equation and velocity field in the lubrication limit and because it
needs a model for evaporation through a porous layer.

6.4. Conclusion

In this chapter a numerical model was proposed to describe particle dynamics in
an evaporating, surfactant-laden droplet. The droplet dynamics were modeled us-
ing lubrication theory and the surfactant transport using several convection-diffusion-
adsorption equations. Two different particle models were considered: a ‘tracer particle
model’, where the solute is considered as passive, massless and without volume, and
the ‘two-phase model’, where the particles make up a distinct phase beside the fluid
phase and have a maximum packing fraction that is taken into account.

The tracer particle model was tested first for two different cases: a pure droplet and a
droplet with surfactants. In case of the pure droplet a capillary flow towards the con-
tact line arises due to preferential evaporation, while in case of the surfactant-laden
droplet there is, besides the capillary flow towards the contact line, also a Marangoni
flow towards the apex of the droplet. Therefore, it was expected that the pure droplet
would result in a coffee-stain like deposition pattern, while for the surfactant-laden
droplet a more homogeneous deposition pattern was expected.

The tracer particle model, however, resulted for both cases in a coffee-stain-like peak
at the contact line. This is caused by the velocity field not circulating in the contact
line region for the surfactant case. Therefore, particles accumulate at the contact line,
similar to the pure droplet case.

Several methods were proposed to solve this problem, of which adding a correction
term to the interfacial shear stress was the most important one. Unfortunately, none
of these methods improved the accuracy of the velocity in any way in the contact line
region.

Therefore, it was concluded that the lubrication model in its current form is not suit-
able to describe circulation in the contact line region. It is likely that models that
consider droplet dynamics in a 2D or 3D way (rather than a 1D height profile h(r, t))
can perform better in the contact line region, because these methods can probably
approximate the pressure field more accurately there by neglecting fewer terms. Also,
these methods allow for a mesh that conforms to the drop shape and flow field.

Regarding the two-phase model, it was shown that any model that takes into account
the space that particles occupy in an evaporating sessile droplet, should also consider
the maximum packing fraction, since this maximum fraction is often already locally
reached in the initial stages of the drying process. However, this raises several issues
regarding how the particles and the fluid flow behave when the maximum fraction is
reached and what happens when fluid evaporates from a maximally packed region.

An initial step was made to deal with these issues by implementing several corrections
to the particle fraction ys(r, z, t) that are triggered if the maximum packing fraction
is reached. Although ad-hoc and not fully considering the underlying physics, this
method did yield qualitatively reasonable results. However, before the model can be
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used in practice, it should be improved in such a way that these corrections follow
naturally from the considered physics. This can be done by treating the transition
from lower to higher particle concentrations as the transition from a Stokes regime
flow to a Darcy regime flow [83, 84].
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7. Conclusions

The goal of this thesis was to give insight into the effects of surfactants on the dynamics
of inkjet printed droplet in the presence of evaporation and absorption.

In Chapter 2 the relevant differential equations were introduced that describe the
physical model. The droplet dynamics are given by lubrication theory, which regards
the contact radius as having a significantly larger magnitude than the drop height, al-
lowing one to describe the evolution in terms of a height profile h(r, t). The surfactant
dynamics are modeled with several convection-diffusion-adsorption equations, both
in the bulk of the fluid and on the interfaces. Furthermore, the evaporation field is
solved analytically using the assumption of a spherical cap shape and the absorption
into the porous medium using Darcy’s law.

In Chapter 3 two models – a slip model and a precursor film model – were com-
pared for the contact line motion of the drop during evaporation. For pure droplets
these models performed comparably, but in the presence of insoluble surfactants sev-
eral problems were encountered with the precursor film model. Because the precursor
film model does not inherently distinguish between the droplet and the precursor film,
all surfactant can freely flow between these two, yielding unphysical results. The slip
model, on the other hand, showed that even if there is no real pinning force present,
surfactants can still keep the contact line nearly pinned. This is caused by the fact
that as the available interface shrinks due to evaporation, the surfactant concentra-
tion increases, which results in a decreasing surface tension and thus a decreasing
equilibrium contact angle.

In Chapter 4 the flow field inside evaporating droplets in the presence of surfactants
was investigated. It was shown that there are typically two flow regimes in drying
surfactant-laden droplets: a circulatory regime, where there is the combination of a
capillary flow towards the contact line and an interfacial Marangoni flow towards the
drop apex, and a coffee-ring regime, where there is only a capillary flow towards the
contact line, while the interfacial flow nearly halts due to the Marangoni effect. Which
of these two regimes will be dominant can be predicted based on the surfactant, the
fluid and the environmental conditions. Factors that were found to typically promote
the circulatory regime over the coffee-ring regime are relatively high surfactant sol-
ubility, fast adsorption kinetics and slow diffusion. These results were found to be
consistent with literature data [82, 115]. Also, for surfactant concentrations beyond
the critical micelle concentration (CMC) simulations were carried out, but these data
points are not in agreement with experimental literature [115, 157]. The differences
are probably a result of underlying micelle kinetics that were not taken into account
in the model.

In Chapter 5 the absorption dynamics of surfactant-laden droplets were examined.
First, it was shown that for pure droplets the penetration depth, being the deepest
point of the wetting front, evolves in time according to a square root relation. How-
ever, for a pinned contact line the droplet absorbs much faster than for a moving
contact line, because of the differences in contact area over time. Also, the final shape
of the wetted region is more pointed for a moving contact line case than for a pinned
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contact line case. When surfactants are involved, the absorption rate tends to accel-
erate under certain conditions. If the adsorption kinetics of the surfactant are not too
fast compared to the absorption dynamics, surfactant will reach the wetting front and
adsorb there onto the pore walls, increasing the magnitude of the suction pressure.
If the adsorption kinetics of the surfactant are too fast, however, all surfactant will
already adsorb onto the pore walls before reaching the wetting front. In that case the
absorption rate will be the same as for a pure case. These results are in accordance
with literature [169].

In Chapter 6 the dynamics of particles were investigated in the presence of surfactants.
Two different particle models were introduced: a tracer particle model, which consid-
ers the particles as massless and passive, and a two-phase model, which considers
particles as a distinct solid phase. First, the tracer model was tested for a pure droplet
case, where there is only a capillary flow towards the contact line, and for a surfac-
tant case, where there is also an interfacial Marangoni flow towards the drop apex. It
was expected that for the pure case a ring-like deposition pattern would form and for
the surfactant case a more homogeneous pattern. However, both yielded a ring-like
residue. A likely reason for this is that the assumptions of lubrication theory no longer
hold in the contact line region, resulting in an inaccurate velocity field. After the
tracer particle model was tested in this way, the two-phase model was considered. It
was shown that quite soon in the drying process the maximum packing fraction of the
particles is reached, which requires several amendments to this model. It was shown
that by making certain ad-hoc corrections reasonable results can be found. However,
a better physicality of the model is required.

Recommendations

There are several options available to extend the research presented in this thesis.
The options that are expected to lead to the most significant improvements are the
following:

• Develop a mechanism that keeps surfactants from flowing freely out of the
droplet into a precursor film. This allows one to also use the precursor film
model in combination with surfactants, especially in the case of evaporation-
driven dynamics and partial wetting. Some methods already exist for this, but
these tend to have low stability (see e.g. [180]).

• Create a micelle kinetics and transport model that incorporates the full richness
of micelle dynamics. This way, experimental results from literature (see e.g.
[115, 157]) can be explained and reliable predictions can be made. Possible
additions to the model presented in this thesis are multi-step micelle formation
and micelle formation/adsorption at the interfaces.

• Develop a 2D interface tracking method for the evolution of the wetted region
in the porous medium. This has the potential to make the method more sta-
ble where the wetting front touches the surface of the substrate, allowing for
a spatially variable suction pressure. In the current method a variable suction
results in instabilities that are too severe to solve. Furthermore, an extension
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to the Darcy model (e.g. the Brinkman extension [17]) could also improve the
method.

• Increase the accuracy of the velocity field in the contact line region. This is
required for the modeling of particle transport if there is a circulatory flow. It
may be possible to improve the velocity field by adding correction terms that are
neglected in standard lubrication theory.

• Create a lubrication model that includes the transition from the Stokes regime to
the Darcy regime at high particle fractions (e.g. see [83, 84]). This is necessary
for any two-phase particle model, since in many cases the maximum packing
fraction is already reached locally in the initial stages of the drying process.

• Further topics of interest that can be considered using the models from this thesis
include: the presence of multiple surfactant types in a single droplet, tempera-
ture effects and nonaxisymmetric behavior (such as fingering instabilities).
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A. Input parameters

In this appendix the input parameters are given for several simulations that were
carried out.

A.1. Input values in Chapter 4

All relevant parameters that were used for the results of Chapter 4 and their typical
values are given by Table A.1. In order to vary the dimensionless numbers (see Table
4.1), any of these parameters can be changed if required. It is ensured that the same
results are found if the same dimensionless numbers are obtained by varying different
parameters.

Name Symbol Value
Critical micelle concentration CMC 1.0 mol/m3

Micelle diffusivity DM 7.2·10−12 m2/s
Vapor diffusivity Dv 2.7·10−5 m2/s
Interfacial diffusivity DΓ 4.3·10−10 m2/s
Bulk diffusivity Dφ 2.9·10−10 m2/s
Typical initial drop height H 0.36 mm
Micelle aggregation factor factor kMa 1.0·10−2 m3N−2/s/molN−1

Interfacial adsorption factor kΓ
a 5.0·10−7 m/s

Micelle decomposition factor kMd 1.0 s−1

Interfacial desorption factor kΓ
d 9.5·10−1 s−1

Liquid molar mass Ml 0.018 kg/mol
Initial micelle concentration M0 1.0·10−2 mol/m3

Preferred micelle size N 12
Liquid saturation pressure psat,l 3158 Pa
Typical initial drop radius R 1.6 mm
Relative humidity RH 0.55
Universal gas constant Ru 8.314 J/K/mol
Temperature T 298 K
Initial interfacial
surfactant concentration Γ0 5.0·10−7

Maximal interfacial
surfactant concentration Γ∞ 1.0·10−5

Initial contact angle θ0 25◦

Dynamic viscosity µ 0.89 mPa·s
Liquid mass density ρ 997 kg/m3

Pure surface tension σ0 0.072 N/m
Initial bulk surfactant concentration φ0 1.0 mol/m3

Table A.1.: Relevant parameters in Chapter 4.
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A.2. Input values in Chapter 5

The simulations that were performed for Figures 5.1, 5.2 and 5.3 had the following
input parameters:

Parameter Symbol Value Unit
Advancing contact angle θadv 70 deg
Contact line sensitivity k 0.12 m·s−1

Drop volume V
1.51 for the constant V0 cases,
0.83 for the constant R0 case µL

Dynamic viscosity µ 0.89 mPa·s
Initial contact angle θ0 20 - 35 deg
Liquid-gas surface tension γlg 72 mN·m−1

Mass density ρ 997 kg·m−3

Pore diameter d 0.22 µm
Porosity η 0.67 -

Radius R
14.3 for the constant R0 cases,
17.5 for the constant V0 case mm

Receding contact angle θrec 20 – 35 deg

Slip length β
0 for the pinned case,
100 for the unpinned cases nm

Table A.2.: Input values for Figures 5.1, 5.2 and 5.3.

The simulations that were performed for the experimental comparison in Figure 5.4a
had the following input parameters: These input parameters and the experimental

Parameter Symbol Value Unit
Advancing contact angle θadv 80 deg
Contact line sensitivity k 6.61 m·s−1

Drop volume V 10.4 µL
Dynamic viscosity µ 0.955 mPa·s
Height H 0.849 mm
Initial contact angle θ0 35 deg
Liquid-gas surface tension γlg 73 mN·m−1

Mass density ρ 1000 kg·m−3

Permeability κp 3.46×10−11 m2

Pore diameter d 90 µm
Porosity η 0.351 -
Radius R 2.69 mm
Receding contact angle θrec 35 deg
Slip length β 100 nm

Table A.3.: Input values for Figure 5.4a.

results were obtained from the Center of Smart Interfaces at Darmstadt University
of Technology [130], with the exception of the initial and receding contact angle,
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the slip length and the contact angle sensitivity, which were estimated based on the
experimental results.

The simulations that were performed for the experimental comparison in Figure 5.4b
had the following input parameters: These input parameters and the experimental

Parameter Symbol Value Unit
Advancing contact angle θadv 70 deg
Drop volume V 1.51 mL
Dynamic viscosity µ 0.89 mPa·s
Height H 4.52 mm
Initial contact angle θ0 35 deg
Liquid-gas surface tension γlg 72 mN·m−1

Mass density ρ 997 kg·m−3

Pore diameter d 0.22 µm
Porosity η 0.67 -
Radius R 14.3 mm
Receding contact angle θrec 35 deg

Table A.4.: Input values for Figure 5.4b.

results were given by Starov et al. (2004) [169]. Not all parameters were given in
that article, so some have been estimated (like θe and η by a typical contact angle and
porosity of nitrocellulose [1, 56, 94, 196]). Furthermore, Starov et al. use a liquid
container rather than a droplet. Therefore, arbitrary droplet dimensions were chosen
since it was shown in Section 3.1 that the evolution of Hp is not influenced by the
shape of the fluid reservoir.

Lastly, the simulations that were performed for the results in Figure 5.7 had the in-
put parameters that are given in Table A.5. Several of these parameters have been
estimated, given that no literature data exists, and primarily serve to illustrate that
the principle that was experimentally discovered by Starov et al. can also be analyzed
numerically.

Note that the initial contact angle θ0 has for surfactant cases the same value as for
pure cases (θ0 = 35◦). This is consistent, because for the surfactant cases only pinned
contact lines are considered (since the evolution of Hp is independent of the droplet
shape). The surfactants therefore have no direct influence on the (equilibrium) contact
angle, since the latter does not follow Young’s equation: γsg − γsl − γlg cos θe = 0.
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Parameter Symbol Value Unit
Advancing contact angle θadv 70 deg
Bulk diffusivity DC 2.88×10−10 m2·s−1

Drop volume V 1.51 mL
Dynamic viscosity µ 0.89 mPa·s
Height H 4.52 mm
Initial bulk surfactant concentration C0 0 - 50 mM
Initial contact angle θ0 35 deg
Initial interfacial surfactant
concentration Γ0 5.0×10−7 mol·m−2

Mass density ρ 997 kg·m−3

Maximum interfacial surfactant
concentration (liquid-air) Γ∞ 1.0×10−5 mol·m−2

Maximum interfacial surfactant
concentration (solid-liquid) c∞ = 4

dS∞ 5.0×10−6 mol·m−2

Minimum solid-liquid surface tension γsl,∞ 3.6 mN·m−1

Pore diameter d 0.22 - 3.0 µm
Porosity η 0.67 -
Pure liquid-gas surface tension γlg 72 mN·m−1

Pure solid-liquid surface tension γsl 36 mN·m−1

Radius R 14.3 mm
Receding contact angle θrec 35 deg
Surface adsorption factor (liquid-air) kΓ

a 1.0×10−9 m·s−1

Surface adsorption factor (liquid-solid) kSa 1.0×10−6 m·s−1

Surface desorption factor (liquid-air) kΓ
d 9.5×10−2 s−1

Surface desorption factor (liquid-solid) kSd 1.0×10−4 s−1

Surface diffusivity DΓ 4.33×10−9 m2·s−1

Table A.5.: Input values for Figure 5.7.
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